forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcooperative_gemm_common.hpp
770 lines (675 loc) · 29.6 KB
/
cooperative_gemm_common.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
/***************************************************************************************************
* Copyright (c) 2023 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/relatively_equal.h"
#include "cutlass_unit_test.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include <iostream>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
using namespace cute;
template<typename T>
struct fp64_tester {
using value_type = double;
};
template<typename T>
struct fp64_tester<complex<T>> {
using value_type = complex<double>;
};
template<class TA,
class TB,
class TC,
class ALayout, // logical shape (M, K)
class BLayout, // logical shape (N, K)
class CLayout> // logical shape (M, N)
auto host_generate_gemm_inputs(
ALayout a_layout,
BLayout b_layout,
CLayout c_layout
) {
thrust::host_vector<TA> h_a(cosize(a_layout));
thrust::host_vector<TB> h_b(cosize(b_layout));
thrust::host_vector<TC> h_c(cosize(c_layout));
thrust::host_vector<TC> h_c_out(cosize(c_layout));
auto h_a_tensor = make_tensor(h_a.data(), a_layout);
auto h_b_tensor = make_tensor(h_b.data(), b_layout);
auto h_c_tensor = make_tensor(h_c.data(), c_layout);
size_t max_size = std::max<size_t>({static_cast<size_t>(size(a_layout)),
static_cast<size_t>(size(b_layout)),
static_cast<size_t>(size(c_layout))});
for (size_t i = 0; i < max_size; ++i) {
double di = static_cast<double>(i);
if(i < size(a_layout)) {
h_a_tensor(i) = static_cast<TA>(di / size(a_layout));
}
if(i < size(b_layout)) {
h_b_tensor(i) = static_cast<TB>(di / size(a_layout));
}
if(i < size(c_layout)) {
h_c_tensor(i) = static_cast<TC>((di*di) / size(a_layout));
}
}
return std::make_tuple(h_a, h_b, h_c, h_c_out);
}
template<class Alpha, class EngineA, class ALayout,
class EngineB, class BLayout,
class Beta, class EngineC, class CLayout,
class ALoadTransform = cute::identity,
class BLoadTransform = cute::identity,
class CLoadTransform = cute::identity,
class CStoreTransform = cute::identity>
thrust::host_vector<typename EngineC::value_type>
host_reference_gemm(Alpha alpha,
Tensor<EngineA, ALayout> const& h_a_tensor,
Tensor<EngineB, BLayout> const& h_b_tensor,
Beta beta,
Tensor<EngineC, CLayout> const& h_c_tensor,
ALoadTransform const& a_load_transform = {},
BLoadTransform const& b_load_transform = {},
CLoadTransform const& c_load_transform = {},
CStoreTransform const& c_store_transform = {})
{
// Cannot use ::value_type because it propagates to complex::value_type,
// so ViewEngine<complex<double>>::value_type == double
using TA = remove_cv_t<typename EngineA::element_type>;
using TB = remove_cv_t<typename EngineB::element_type>;
using TC = remove_cv_t<typename EngineC::element_type>;
using tester = fp64_tester<TC>;
using ABC_64 = typename tester::value_type;
static_assert(std::is_same_v<typename fp64_tester<TA>::value_type, typename fp64_tester<TB>::value_type>);
static_assert(std::is_same_v<typename fp64_tester<TB>::value_type, typename fp64_tester<TC>::value_type>);
thrust::host_vector<TC> h_c_ref(cosize(h_c_tensor.layout()), static_cast<TC>(0.0));
auto h_c_ref_tensor = make_tensor(h_c_ref.data(), h_c_tensor.layout());
// A * B
for (int k = 0; k < size<1>(h_a_tensor); k++) {
for (int m = 0; m < size<0>(h_a_tensor); m++) {
for (int n = 0; n < size<0>(h_b_tensor); n++) {
const auto a_value = a_load_transform(h_a_tensor(m, k));
const auto b_value = b_load_transform(h_b_tensor(n, k));
const auto a_value_fp64 = static_cast<ABC_64>(a_value);
const auto b_value_fp64 = static_cast<ABC_64>(b_value);
h_c_ref_tensor(m, n) += static_cast<TC>(a_value_fp64 * b_value_fp64);
}
}
}
// C = A*B + C
for (int i = 0; i < size(h_c_ref_tensor); i++) {
const auto ab_value_fp64 = static_cast<ABC_64>(h_c_ref_tensor(i));
const auto c_value_fp64 = static_cast<ABC_64>(c_load_transform(h_c_tensor(i)));
h_c_ref_tensor(i) = c_store_transform(static_cast<TC>(alpha * ab_value_fp64 + beta * c_value_fp64));
}
return h_c_ref;
}
template<class EngineC, class CLayout>
void verify_gemm_correctness(cute::Tensor<EngineC, CLayout> const& h_c_out_tensor,
cute::Tensor<EngineC, CLayout> const& h_c_ref_tensor)
{
// Cannot use ::value_type because it propagates to complex::value_type,
// so ViewEngine<complex<double>>::value_type == double
using TC = remove_cv_t<typename EngineC::element_type>;
using tester = fp64_tester<TC>;
using ABC_64 = typename tester::value_type;
for (int i = 0; i < size(h_c_ref_tensor); i++) {
ABC_64 h_c_ref_i = h_c_ref_tensor(i);
ABC_64 h_c_out_i = h_c_out_tensor(i);
double epsilon(0.1f);
double nonzero_floor(std::numeric_limits<double>::min());
bool passed = cutlass::relatively_equal(h_c_out_i, h_c_ref_i, epsilon, nonzero_floor);
ASSERT_TRUE(passed) << i << " - result:" << h_c_out_i << " expected:" << h_c_ref_i;
}
}
template<uint32_t ThreadBlockSize,
uint32_t CopyMaxVecBits,
class GMemALayout,
class GMemBLayout,
class GMemCLayout,
class SMemALayout,
class SMemBLayout,
class SMemCLayout,
class TA,
class TB,
class TC,
class Alpha,
class Beta,
class TiledMma,
class ALoadTransform,
class BLoadTransform,
class CLoadTransform,
class CStoreTransform,
class SMemCopyOpA,
class SMemCopyOpB,
class SMemCopyOpC>
__launch_bounds__(ThreadBlockSize) __global__ void
cooperative_gemm_kernel(GMemALayout gmem_a_layout,
GMemBLayout gmem_b_layout,
GMemCLayout gmem_c_layout,
SMemALayout smem_a_layout,
SMemBLayout smem_b_layout,
SMemCLayout smem_c_layout,
TA const* a,
TB const* b,
TC const* c,
TC * c_out,
Alpha const alpha,
Beta const beta,
TiledMma tiled_mma,
ALoadTransform a_load_transform,
BLoadTransform b_load_transform,
CLoadTransform c_load_transform,
CStoreTransform c_store_transform,
SMemCopyOpA a_copy_op,
SMemCopyOpB b_copy_op,
SMemCopyOpC c_copy_op)
{
using namespace cute;
Tensor g_a_tensor = make_tensor(make_gmem_ptr(a), gmem_a_layout);
Tensor g_b_tensor = make_tensor(make_gmem_ptr(b), gmem_b_layout);
Tensor g_c_tensor = make_tensor(make_gmem_ptr(c), gmem_c_layout);
Tensor g_c_out_tensor = make_tensor(make_gmem_ptr(c_out), gmem_c_layout);
constexpr uint32_t copy_max_vec_bytes = CopyMaxVecBits / 8;
extern __shared__ float4 smem_buf[];
auto* smem_ptr = reinterpret_cast<unsigned char*>(smem_buf);
auto* smem_ptr_a = smem_ptr;
auto* smem_ptr_b = smem_ptr_a + round_up((sizeof(TA) * cosize(smem_a_layout)), copy_max_vec_bytes);
auto* smem_ptr_c = smem_ptr_b + round_up((sizeof(TB) * cosize(smem_b_layout)), copy_max_vec_bytes);
Tensor s_a_tensor = make_tensor(make_smem_ptr<TA>(smem_ptr_a), smem_a_layout);
Tensor s_b_tensor = make_tensor(make_smem_ptr<TB>(smem_ptr_b), smem_b_layout);
Tensor s_c_tensor = make_tensor(make_smem_ptr<TC>(smem_ptr_c), smem_c_layout);
cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, g_a_tensor, s_a_tensor);
cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, g_b_tensor, s_b_tensor);
cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, g_c_tensor, s_c_tensor);
cp_async_fence();
cp_async_wait<0>();
__syncthreads();
cooperative_gemm(
threadIdx.x, tiled_mma,
alpha, s_a_tensor, s_b_tensor, beta, s_c_tensor,
a_load_transform, b_load_transform, c_load_transform, c_store_transform,
a_copy_op, b_copy_op, c_copy_op
);
__syncthreads();
cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, s_c_tensor, g_c_out_tensor);
}
template<uint32_t ThreadBlockSize,
uint32_t CopyMaxVecBits,
class GMemALayout,
class GMemBLayout,
class GMemCLayout,
class SMemALayout,
class SMemBLayout,
class TA,
class TB,
class TC,
class TiledMma,
class ALoadTransform,
class BLoadTransform,
class CLoadTransform,
class CStoreTransform,
class SMemCopyOpA,
class SMemCopyOpB>
__launch_bounds__(ThreadBlockSize) __global__ void
cooperative_gemm_kernel_rmem_c(GMemALayout gmem_a_layout,
GMemBLayout gmem_b_layout,
GMemCLayout gmem_c_layout,
SMemALayout smem_a_layout,
SMemBLayout smem_b_layout,
TA const* a,
TB const* b,
TC const* c,
TC * c_out,
TiledMma tiled_mma,
ALoadTransform a_load_transform,
BLoadTransform b_load_transform,
CLoadTransform c_load_transform,
CStoreTransform c_store_transform,
SMemCopyOpA a_copy_op,
SMemCopyOpB b_copy_op)
{
using namespace cute;
Tensor g_a_tensor = make_tensor(make_gmem_ptr(a), gmem_a_layout);
Tensor g_b_tensor = make_tensor(make_gmem_ptr(b), gmem_b_layout);
Tensor g_c_tensor = make_tensor(make_gmem_ptr(c), gmem_c_layout);
Tensor g_c_out_tensor = make_tensor(make_gmem_ptr(c_out), gmem_c_layout);
constexpr uint32_t copy_max_vec_bytes = CopyMaxVecBits / 8;
extern __shared__ float4 smem_buf[];
auto* smem_ptr = reinterpret_cast<unsigned char*>(smem_buf);
auto* smem_ptr_a = smem_ptr;
auto* smem_ptr_b = smem_ptr_a + round_up((sizeof(TA) * cosize(smem_a_layout)), copy_max_vec_bytes);
Tensor s_a_tensor = make_tensor(make_smem_ptr<TA>(smem_ptr_a), smem_a_layout);
Tensor s_b_tensor = make_tensor(make_smem_ptr<TB>(smem_ptr_b), smem_b_layout);
cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, g_a_tensor, s_a_tensor);
cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, g_b_tensor, s_b_tensor);
cp_async_fence();
cp_async_wait<0>();
__syncthreads();
// Create C fragment for storing intermediate results
auto thr_mma = TiledMma().get_thread_slice(threadIdx.x);
Tensor g_c_partition = thr_mma.partition_C(g_c_tensor);
Tensor g_c_out_partition = thr_mma.partition_C(g_c_out_tensor);
Tensor r_c_partition = thr_mma.make_fragment_C(g_c_partition);
// Create indexing help for predicated GEMMs
Tensor cC = make_identity_tensor(shape(gmem_c_layout));
Tensor tCcC = thr_mma.partition_C(cC);
// Load C from global
// (always loading in predicated way)
CUTE_UNROLL
for (int i = 0; i < size(r_c_partition); ++i)
{
if (elem_less(tCcC(i), shape(g_c_tensor)))
{
r_c_partition(i) = c_load_transform(g_c_partition(i));
}
}
cooperative_gemm(
threadIdx.x, tiled_mma, s_a_tensor, s_b_tensor, r_c_partition,
a_load_transform, b_load_transform, a_copy_op, b_copy_op
);
__syncthreads();
// Store C to global
// (always storing in predicated way)
CUTE_UNROLL
for (int i = 0; i < size(r_c_partition); ++i)
{
if (elem_less(tCcC(i), shape(g_c_tensor)))
{
g_c_out_partition(i) = c_store_transform(r_c_partition(i));
}
}
}
template<uint32_t ThreadBlockSize,
uint32_t CopyMaxVecBits,
class TA,
class TB,
class TC,
class GMemALayout, // logical shape (M, K)
class GMemBLayout, // logical shape (N, K)
class GMemCLayout, // logical shape (M, N)
class SMemALayout, // logical shape (M, K)
class SMemBLayout, // logical shape (N, K)
class SMemCLayout, // logical shape (M, N)
class TiledMma,
class ALoadTransform = cute::identity,
class BLoadTransform = cute::identity,
class CLoadTransform = cute::identity,
class CStoreTransform = cute::identity,
class ASMemCopyOp = AutoVectorizingCopyWithAssumedAlignment<CopyMaxVecBits>,
class BSMemCopyOp = AutoVectorizingCopyWithAssumedAlignment<CopyMaxVecBits>,
class CSMemCopyOp = AutoVectorizingCopyWithAssumedAlignment<CopyMaxVecBits>>
void test_cooperative_gemm(GMemALayout gmem_a_layout,
GMemBLayout gmem_b_layout,
GMemCLayout gmem_c_layout,
SMemALayout smem_a_layout,
SMemBLayout smem_b_layout,
SMemCLayout smem_c_layout,
TiledMma tiled_mma,
ALoadTransform a_load_transform = {},
BLoadTransform b_load_transform = {},
CLoadTransform c_load_transform = {},
CStoreTransform c_store_transform = {},
ASMemCopyOp a_smem_copy_op = {},
BSMemCopyOp b_smem_copy_op = {},
CSMemCopyOp c_smem_copy_op = {})
{
static_assert(std::is_same_v<typename fp64_tester<TA>::value_type, typename fp64_tester<TB>::value_type>);
static_assert(std::is_same_v<typename fp64_tester<TB>::value_type, typename fp64_tester<TC>::value_type>);
static_assert(size<0>(gmem_a_layout) == size<0>(gmem_c_layout)); // AM == CM
static_assert(size<0>(gmem_b_layout) == size<1>(gmem_c_layout)); // BN == CN
static_assert(size<1>(gmem_a_layout) == size<1>(gmem_b_layout)); // AK == BK
static_assert(size<0>(smem_a_layout) == size<0>(smem_c_layout)); // AM == CM
static_assert(size<0>(smem_b_layout) == size<1>(smem_c_layout)); // BN == CN
static_assert(size<1>(smem_a_layout) == size<1>(smem_b_layout)); // AK == BK
static_assert(cute::size(gmem_a_layout) == cute::size(smem_a_layout));
static_assert(cute::size(gmem_b_layout) == cute::size(smem_b_layout));
static_assert(cute::size(gmem_c_layout) == cute::size(smem_c_layout));
#if 0
print(" "); print("gmem: "); print(gmem_layout); print("\n");
print(" "); print("smem: "); print(smem_layout); print("\n");
print(" "); print("threads: "); print(ThreadBlockSize); print("\n");
#endif
const auto alpha = static_cast<TC>(1.1);
const auto beta = static_cast<TC>(1.2);
// Generate inputs
auto [h_a, h_b, h_c, h_c_out] = host_generate_gemm_inputs<TA, TB, TC>(gmem_a_layout, gmem_b_layout, gmem_c_layout);
thrust::device_vector<TA> d_a(h_a);
thrust::device_vector<TB> d_b(h_b);
thrust::device_vector<TC> d_c(h_c);
thrust::device_vector<TC> d_c_out(h_c_out.size(), TC(float(-1)));
constexpr uint32_t copy_max_vec_bytes = CopyMaxVecBits / 8;
const size_t shared_memory_size = round_up(sizeof(TA) * h_a.size(), copy_max_vec_bytes) +
round_up(sizeof(TB) * h_b.size(), copy_max_vec_bytes) +
sizeof(TC) * h_c.size();
auto kernel = cooperative_gemm_kernel<
ThreadBlockSize, CopyMaxVecBits,
GMemALayout, GMemBLayout, GMemCLayout,
SMemALayout, SMemBLayout, SMemCLayout,
TA, TB, TC, decltype(alpha), decltype(beta),
TiledMma,
ALoadTransform, BLoadTransform, CLoadTransform, CStoreTransform,
ASMemCopyOp, BSMemCopyOp, CSMemCopyOp
>;
ASSERT_EQ(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, static_cast<int>(shared_memory_size)), 0);
kernel<<<1, ThreadBlockSize, shared_memory_size>>>(
gmem_a_layout,
gmem_b_layout,
gmem_c_layout,
smem_a_layout,
smem_b_layout,
smem_c_layout,
thrust::raw_pointer_cast(d_a.data()),
thrust::raw_pointer_cast(d_b.data()),
thrust::raw_pointer_cast(d_c.data()),
thrust::raw_pointer_cast(d_c_out.data()),
alpha,
beta,
tiled_mma,
a_load_transform,
b_load_transform,
c_load_transform,
c_store_transform,
a_smem_copy_op,
b_smem_copy_op,
c_smem_copy_op
);
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
cudaError_t error = cudaGetLastError();
FAIL() << "Error at kernel sync: " << cudaGetErrorString(error) << "\n";
}
// Reference gemm
auto h_c_ref = host_reference_gemm(alpha,
make_tensor(h_a.data(), gmem_a_layout),
make_tensor(h_b.data(), gmem_b_layout),
beta,
make_tensor(h_c.data(), gmem_c_layout),
a_load_transform,
b_load_transform,
c_load_transform,
c_store_transform);
// Copy result data
h_c_out = d_c_out;
// Verify correctness
verify_gemm_correctness(make_tensor(h_c_out.data(), gmem_c_layout),
make_tensor(h_c_ref.data(), gmem_c_layout));
}
template<uint32_t ThreadBlockSize,
uint32_t CopyMaxVecBits,
class TA,
class TB,
class TC,
class GMemALayout, // logical shape (M, K)
class GMemBLayout, // logical shape (N, K)
class GMemCLayout, // logical shape (M, N)
class SMemALayout, // logical shape (M, K)
class SMemBLayout, // logical shape (N, K)
class TiledMma,
class ALoadTransform = cute::identity,
class BLoadTransform = cute::identity,
class CLoadTransform = cute::identity,
class CStoreTransform = cute::identity,
class ASMemCopyOp = AutoVectorizingCopyWithAssumedAlignment<CopyMaxVecBits>,
class BSMemCopyOp = AutoVectorizingCopyWithAssumedAlignment<CopyMaxVecBits>>
void test_cooperative_gemm_rmem_c(GMemALayout gmem_a_layout,
GMemBLayout gmem_b_layout,
GMemCLayout gmem_c_layout,
SMemALayout smem_a_layout,
SMemBLayout smem_b_layout,
TiledMma tiled_mma,
ALoadTransform a_load_transform = {},
BLoadTransform b_load_transform = {},
CLoadTransform c_load_transform = {},
CStoreTransform c_store_transform = {},
ASMemCopyOp a_smem_copy_op = {},
BSMemCopyOp b_smem_copy_op = {})
{
static_assert(size<0>(gmem_a_layout) == size<0>(gmem_c_layout)); // AM == CM
static_assert(size<0>(gmem_b_layout) == size<1>(gmem_c_layout)); // BN == CN
static_assert(size<1>(gmem_a_layout) == size<1>(gmem_b_layout)); // AK == BK
static_assert(size<1>(smem_a_layout) == size<1>(smem_b_layout)); // AK == BK
static_assert(cute::size(gmem_a_layout) == cute::size(smem_a_layout));
static_assert(cute::size(gmem_b_layout) == cute::size(smem_b_layout));
#if 0
print(" "); print("gmem: "); print(gmem_layout); print("\n");
print(" "); print("smem: "); print(smem_layout); print("\n");
print(" "); print("threads: "); print(ThreadBlockSize); print("\n");
#endif
const auto alpha = static_cast<TC>(1.0);
const auto beta = static_cast<TC>(1.0);
// Generate inputs
auto [h_a, h_b, h_c, h_c_out] =
host_generate_gemm_inputs<TA, TB, TC>(gmem_a_layout, gmem_b_layout, gmem_c_layout);
thrust::device_vector<TA> d_a(h_a);
thrust::device_vector<TB> d_b(h_b);
thrust::device_vector<TC> d_c(h_c);
thrust::device_vector<TC> d_c_out(h_c_out.size(), static_cast<TC>(-1));
constexpr uint32_t copy_max_vec_bytes = CopyMaxVecBits / 8;
const size_t shared_memory_size = round_up(sizeof(TA) * h_a.size(), copy_max_vec_bytes) +
round_up(sizeof(TB) * h_b.size(), copy_max_vec_bytes);
auto kernel = cooperative_gemm_kernel_rmem_c<
ThreadBlockSize, CopyMaxVecBits,
GMemALayout, GMemBLayout, GMemCLayout,
SMemALayout, SMemBLayout,
TA, TB, TC,
TiledMma,
ALoadTransform, BLoadTransform, CLoadTransform, CStoreTransform,
ASMemCopyOp, BSMemCopyOp
>;
ASSERT_EQ(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, static_cast<int>(shared_memory_size)), 0);
kernel<<<1, ThreadBlockSize, shared_memory_size>>>(
gmem_a_layout,
gmem_b_layout,
gmem_c_layout,
smem_a_layout,
smem_b_layout,
thrust::raw_pointer_cast(d_a.data()),
thrust::raw_pointer_cast(d_b.data()),
thrust::raw_pointer_cast(d_c.data()),
thrust::raw_pointer_cast(d_c_out.data()),
tiled_mma,
a_load_transform, b_load_transform, c_load_transform, c_store_transform,
a_smem_copy_op, b_smem_copy_op
);
cudaError_t result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
cudaError_t error = cudaGetLastError();
FAIL() << "Error at kernel sync: " << cudaGetErrorString(error) << "\n";
}
// Copy result data
h_c_out = d_c_out;
// Reference gemm
auto h_c_ref = host_reference_gemm(alpha,
make_tensor(h_a.data(), gmem_a_layout),
make_tensor(h_b.data(), gmem_b_layout),
beta,
make_tensor(h_c.data(), gmem_c_layout),
a_load_transform,
b_load_transform,
c_load_transform,
c_store_transform);
// Verify correctness
verify_gemm_correctness(make_tensor(h_c_out.data(), gmem_c_layout),
make_tensor(h_c_ref.data(), gmem_c_layout));
}
template<uint32_t ThreadBlockSize,
uint32_t CopyMaxVecBits,
class TA,
class TB,
class TC,
class ShapeMNK,
class TiledMma,
class ... Ops>
void test_cooperative_gemm_col_major_layout(ShapeMNK shape_mnk,
TiledMma tiled_mma,
Ops ... ops)
{
auto a_layout = make_layout(select<0, 2>(shape_mnk));
auto b_layout = make_layout(select<1, 2>(shape_mnk), GenRowMajor{});
auto c_layout = make_layout(select<0, 1>(shape_mnk));
test_cooperative_gemm<ThreadBlockSize,
CopyMaxVecBits,
TA, TB, TC>
(a_layout,
b_layout,
c_layout,
a_layout,
b_layout,
c_layout,
tiled_mma,
ops...);
}
template<uint32_t ThreadBlockSize,
uint32_t CopyMaxVecBits,
class TA,
class TB,
class TC,
class SMemAtomLayoutA,
class SMemAtomLayoutB,
class SMemAtomLayoutC,
class ShapeMNK,
class TiledMma,
class ... Ops>
std::enable_if_t<std::conjunction_v<cute::is_layout<SMemAtomLayoutA>,
cute::is_layout<SMemAtomLayoutB>,
cute::is_layout<SMemAtomLayoutC>>>
test_cooperative_gemm_col_major_layout(SMemAtomLayoutA smem_atom_layout_a,
SMemAtomLayoutB smem_atom_layout_b,
SMemAtomLayoutC smem_atom_layout_c,
ShapeMNK shape_mnk,
TiledMma tiled_mma,
Ops&& ... ops)
{
auto gmem_a_layout = make_layout(select<0, 2>(shape_mnk));
auto gmem_b_layout = make_layout(select<1, 2>(shape_mnk), GenRowMajor{});
auto gmem_c_layout = make_layout(select<0, 1>(shape_mnk));
auto smem_a_layout = tile_to_shape(
smem_atom_layout_a,
make_shape(shape<0>(gmem_a_layout), shape<1>(gmem_a_layout)));
auto smem_b_layout = tile_to_shape(
smem_atom_layout_b,
make_shape(shape<0>(gmem_b_layout), shape<1>(gmem_b_layout)));
auto smem_c_layout = tile_to_shape(
smem_atom_layout_c,
make_shape(shape<0>(gmem_c_layout), shape<1>(gmem_c_layout)));
test_cooperative_gemm<ThreadBlockSize,
CopyMaxVecBits,
TA, TB, TC>
(gmem_a_layout,
gmem_b_layout,
gmem_c_layout,
smem_a_layout,
smem_b_layout,
smem_c_layout,
tiled_mma,
ops...);
}
template<uint32_t ThreadBlockSize,
uint32_t CopyMaxVecBits,
class TA,
class TB,
class TC,
class ShapeMNK,
class TiledMma,
class ... Ops>
void test_cooperative_gemm_col_major_layout_rmem_c(ShapeMNK shape_mnk,
TiledMma tiled_mma,
Ops ... ops)
{
auto a_layout = make_layout(select<0, 2>(shape_mnk));
auto b_layout = make_layout(select<1, 2>(shape_mnk), GenRowMajor{});
auto c_layout = make_layout(select<0, 1>(shape_mnk));
test_cooperative_gemm_rmem_c<ThreadBlockSize,
CopyMaxVecBits,
TA, TB,TC>
(a_layout,
b_layout,
c_layout,
a_layout,
b_layout,
tiled_mma,
ops...);
}
template<uint32_t ThreadBlockSize,
uint32_t CopyMaxVecBits,
class TA,
class TB,
class TC,
class SMemAtomLayoutA,
class SMemAtomLayoutB,
class ShapeMNK,
class TiledMma,
class ... Ops>
std::enable_if_t<std::conjunction_v<cute::is_layout<SMemAtomLayoutA>,
cute::is_layout<SMemAtomLayoutB>>>
test_cooperative_gemm_col_major_layout_rmem_c(SMemAtomLayoutA smem_atom_layout_a,
SMemAtomLayoutB smem_atom_layout_b,
ShapeMNK shape_mnk,
TiledMma tiled_mma,
Ops ... ops)
{
auto gmem_a_layout = make_layout(select<0, 2>(shape_mnk));
auto gmem_b_layout = make_layout(select<1, 2>(shape_mnk), GenRowMajor{});
auto gmem_c_layout = make_layout(select<0, 1>(shape_mnk));
auto smem_a_layout = tile_to_shape(
smem_atom_layout_a,
make_shape(shape<0>(gmem_a_layout), shape<1>(gmem_a_layout)));
auto smem_b_layout = tile_to_shape(
smem_atom_layout_b,
make_shape(shape<0>(gmem_b_layout), shape<1>(gmem_b_layout)));
test_cooperative_gemm_rmem_c<ThreadBlockSize, CopyMaxVecBits,
TA, TB, TC>
(gmem_a_layout,
gmem_b_layout,
gmem_c_layout,
smem_a_layout,
smem_b_layout,
tiled_mma,
ops...);
}
template<uint32_t ThreadBlockSize,
typename T,
class ... Args>
void test_cooperative_gemm_col_major_layout_rmem_c(Args&& ... args)
{
test_cooperative_gemm_col_major_layout_rmem_c<ThreadBlockSize,
cute::sizeof_bits_v<T>,
T, T, T>
(static_cast<Args&&>(args)...);
}
template<uint32_t ThreadBlockSize,
class T,
class ... Args>
void test_cooperative_gemm_col_major_layout(Args&& ... args)
{
test_cooperative_gemm_col_major_layout<ThreadBlockSize,
cute::sizeof_bits_v<T>,
T, T, T>
(static_cast<Args&&>(args)...);
}