forked from NVIDIA/cutlass
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpipeline_tma_async_warp_specialized_persistent.cu
578 lines (484 loc) · 19.4 KB
/
pipeline_tma_async_warp_specialized_persistent.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/***************************************************************************************************
* Copyright (c) 2017 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Unit test for the PipelineTmaAsync class used in a WarpSpecialized Persistent loop
*/
#define KERNEL_DBG_TRACE false
#include "../common/cutlass_unit_test.h"
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
#include <cute/arch/cluster_sm90.hpp>
#include <cutlass/util/reference/host/gemm.h>
#include <cutlass/cluster_launch.hpp>
#include "cutlass/core_io.h"
#include "cutlass/util/print_error.hpp"
#include "cutlass/util/GPU_Clock.hpp"
#include "testbed.h"
#include "cutlass/pipeline/pipeline.hpp"
#include "cutlass/arch/barrier.h"
#include "cute/arch/cluster_sm90.hpp"
#include "cutlass/arch/barrier.h"
#include "cutlass/arch/reg_reconfig.h"
using namespace cute;
using namespace cutlass;
//////////////////// KERNEL /////////////////////////
template <uint32_t Stages, typename PingPongBarrier>
struct SharedStorage
{
typename cutlass::PipelineTmaAsync<Stages>::SharedStorage pipeline_storage;
typename PingPongBarrier::SharedStorage pingpong_storage;
};
template <typename ClusterShape, uint32_t Stages>
struct CollectiveSimulation {
using MainloopPipeline = typename cutlass::PipelineTmaAsync<Stages>;
using PipelineState = typename cutlass::PipelineState<Stages>;
CUTLASS_DEVICE
static void
dma_wg_simulation(MainloopPipeline pipeline, PipelineState tile_start_state_pipe,
uint32_t const num_iterations) {
uint32_t const per_cta_bytes = sizeof(uint32_t);
int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
int lane_predicate = cute::elect_one_sync();
if (warp_idx_in_warpgroup==0 && lane_predicate) {
int tma_k_prologue = min(Stages, num_iterations);
// Simulating Prologue TMA Loads
CUTLASS_PRAGMA_UNROLL
for(int i = 0; i < tma_k_prologue; ++i) {
pipeline.producer_acquire(tile_start_state_pipe);
// Simulating cp.async.bulk.tensor behavior
pipeline.producer_commit(tile_start_state_pipe, per_cta_bytes);
++tile_start_state_pipe;
}
int tma_k_iter = num_iterations - tma_k_prologue;
PipelineState wr_pipe = tile_start_state_pipe;
// Simulating Mainloop TMA Loads
CUTE_NO_UNROLL
for ( ; tma_k_iter > 0; --tma_k_iter){
pipeline.producer_acquire(wr_pipe);
// Simulating cp.async.bulk.tensor behavior
pipeline.producer_commit(wr_pipe, per_cta_bytes);
// Advance write stage
++wr_pipe;
}
}
}
CUTLASS_DEVICE
static void
math_wg_simulation(MainloopPipeline pipeline, PipelineState tile_start_state_pipe,
uint32_t const num_iterations, int* data_ptr) {
PipelineState rd_pipe = tile_start_state_pipe;
PipelineState release_pipe = rd_pipe;
// simulates accumulators + extra reg. pressure
int arr[168];
// Init Shared Memory read stages & PhaseBit
static constexpr uint32_t K_PIPE_MMAS = 1;
static_assert( K_PIPE_MMAS < Stages, "ERROR : Too many MMAs in flight");
// Total number of gemm iterations
auto gemm_k_iterations = num_iterations;
// Simulating Prologue MMAs
int mma_k_prologue = min(K_PIPE_MMAS, gemm_k_iterations);
CUTLASS_PRAGMA_UNROLL
for (int iter = 0; iter < mma_k_prologue; ++iter) {
pipeline.consumer_wait(rd_pipe);
warpgroup_arrive();
// GMMA would typically happen here
++rd_pipe;
}
gemm_k_iterations -= mma_k_prologue;
// Simulating Mainloop MMAs
CUTLASS_PRAGMA_NO_UNROLL
for ( ; gemm_k_iterations > 0; --gemm_k_iterations) {
/// Wait on the rd_pipe stage / phase
pipeline.consumer_wait(rd_pipe);
warpgroup_arrive();
// GMMA would typically happen here
// Dummy op - which will never happen
// But simulates high register usage.
CUTE_UNROLL
for(int i = 0; i < 168; ++i){
if (threadIdx.x > 384){
arr[i] += data_ptr[i];
}
}
pipeline.consumer_release(release_pipe);
// Advance stages
++rd_pipe;
++release_pipe;
}
// Dummy op - which will never happen
CUTE_UNROLL
for(int i = 0; i < 168; ++i){
if (threadIdx.x > 384){
data_ptr[i] = arr[i];
}
}
// Tail Loop
for (int i = 0; i < K_PIPE_MMAS; ++i){
pipeline.consumer_release(release_pipe);
++release_pipe;
}
}
};
struct KernelParams
{
uint32_t num_iterations;
int tiles_per_cluster;
int* data_ptr;
};
// Goal of this kernel is to complete deadlock-free
template <typename ClusterShape, uint32_t Stages>
__launch_bounds__(384, 1)
__global__ static
void pipeline_device(KernelParams params)
{
extern __shared__ char shared_memory[];
using MainloopPipeline = typename cutlass::PipelineTmaAsync<Stages>;
using PipelineState = typename cutlass::PipelineState<Stages>;
/* One for Mainloop and one for Epilogue */
constexpr int StagesPerMathWarpGroup = 2;
constexpr int MathWarpGroupCountPersistent = 2;
using PingPongBarrier = typename cutlass::OrderedSequenceBarrier<StagesPerMathWarpGroup, MathWarpGroupCountPersistent>;
using SharedStorage = SharedStorage<Stages, PingPongBarrier>;
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(shared_memory);
[[maybe_unused]] auto cta_layout = Layout<ClusterShape>{}; // (m,n) -> cta_id
int warp_group_idx = __shfl_sync(0xffffffff, threadIdx.x / NumThreadsPerWarpGroup, 0);
int warp_group_thread_idx = threadIdx.x % NumThreadsPerWarpGroup;
dim3 block_id_in_cluster = cute::block_id_in_cluster();
auto cluster_shape = ClusterShape{};
// #Producers = #RowsInCluster + #ColsInCluster - 1
uint32_t const NumProducers = cute::size<0>(cluster_shape) + cute::size<1>(cluster_shape) - 1;
uint32_t const TmaTransactionBytes = static_cast<uint32_t>(sizeof(uint32_t) * NumProducers);
// mbarrier.init
typename MainloopPipeline::Params pipeline_params;
pipeline_params.transaction_bytes = TmaTransactionBytes;
if (warp_group_idx == 0) {
pipeline_params.role = MainloopPipeline::ThreadCategory::Producer;
}
else {
pipeline_params.role = MainloopPipeline::ThreadCategory::Consumer;
}
pipeline_params.is_leader = warp_group_thread_idx == 0;
pipeline_params.num_consumers = NumThreadsPerWarpGroup;
MainloopPipeline pipeline(shared_storage.pipeline_storage, pipeline_params, cluster_shape);
PipelineState tile_start_state_pipe;
int tiles_per_cluster = params.tiles_per_cluster;
/* Offset pipeline start state for Math WG 2 */
if (warp_group_idx == 2) {
// Update pipeline state for next persistent tile
tile_start_state_pipe.advance(params.num_iterations);
tiles_per_cluster--;
}
typename PingPongBarrier::Params pingpong_params;
pingpong_params.group_id = warp_group_idx - 1; // Since DMA Warp Group Idx 0 will not participate
pingpong_params.group_size = NumThreadsPerWarpGroup; // Number of threads / participants in a group
PingPongBarrier math_wg_barrier(shared_storage.pingpong_storage, pingpong_params);
__syncthreads();
// Ensure All CTAs in Cluster have completed init before issuing commits
cute::cluster_arrive_relaxed();
cute::cluster_wait();
// Producer/DMA WarpGroup
if (warp_group_idx == 0) {
cutlass::arch::warpgroup_reg_dealloc<40>();
// For the DMA (prologue) - we start with an opposite phase - since we skip all waits
// i.e., we know that the buffer is indeed empty
PipelineState tile_prologue_state_pipe = make_producer_start_state<MainloopPipeline>();
while (tiles_per_cluster > 0) {
CollectiveSimulation<ClusterShape,Stages>::dma_wg_simulation(pipeline, tile_prologue_state_pipe, params.num_iterations);
// Update pipeline state for next persistent tile
tile_prologue_state_pipe.advance(params.num_iterations);
tiles_per_cluster--;
}
}
// Math WarpGropups
if(warp_group_idx == 1 || warp_group_idx == 2) {
cutlass::arch::warpgroup_reg_alloc<232>();
while (tiles_per_cluster > 0) {
// MMA
math_wg_barrier.wait();
CollectiveSimulation<ClusterShape,Stages>::math_wg_simulation(pipeline, tile_start_state_pipe, params.num_iterations, params.data_ptr);
math_wg_barrier.arrive();
// Epilogue
math_wg_barrier.wait();
// Simulates long running stage
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 700)
__nanosleep(100000);
#endif
math_wg_barrier.arrive();
// Update pipeline state for next persistent tile
tile_start_state_pipe.advance(params.num_iterations * 2);
tiles_per_cluster -= 2;
}
}
// Makes sure remote SMEM doesn't get destroyed
cute::cluster_arrive_relaxed();
cute::cluster_wait();
}
/////////////////////////////////////////////////////
/// Device NT GMMA + TMA specialized
template<uint32_t Stages_, typename ClusterShape_>
struct PipelineTest {
//
// Data members
//
static constexpr uint32_t Stages = Stages_;
static constexpr uint32_t kBlockSize = 128 * 3;
using ClusterShape = ClusterShape_;
//
// Methods
//
// Run CuTe GEMM kernel
cudaError_t run(uint32_t const kNumIters,
cudaStream_t stream = 0) {
float elapsed_ms = 0.0f;
// Pipeline (multistage pipeline)
auto cluster_shape = Shape<Int<ClusterShape::kM>, Int<ClusterShape::kN>, _1>{};
//
// Configure and launch
//
int iterations = 1;
cudaEvent_t events[2];
cudaError_t result;
for (cudaEvent_t & event : events) {
result = cudaEventCreate(&event);
if (result != cudaSuccess) {
std::cerr << "Error: Failed to create event.";
return result;
}
}
result = cudaEventRecord(events[0]);
if (result != cudaSuccess) {
std::cerr << "Error: Failed to record start event.";
return result;
}
for (int iter = 0; iter < iterations; ++iter) {
constexpr int StagesPerMathWarpGroup = 2;
constexpr int MathWarpGroupCountPersistent = 2;
int smem_size = int(sizeof(SharedStorage<Stages,
typename cutlass::OrderedSequenceBarrier<StagesPerMathWarpGroup, MathWarpGroupCountPersistent>>));
result = cudaFuncSetAttribute(
pipeline_device<decltype(cluster_shape), Stages>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
// Launch a single Cluster, with kBlockSize threads per CTA
dim3 dimCluster(size<0>(cluster_shape), size<1>(cluster_shape), 1);
dim3 dimGrid(size<0>(cluster_shape), size<1>(cluster_shape), 1);
dim3 dimBlock(kBlockSize,1,1);
int tiles_per_cluster = (kNumIters % 10) + 1;
printf("Persistent version: Tiles per Cluster = %d\n", tiles_per_cluster);
const void* kernel = (const void*)pipeline_device<decltype(cluster_shape), Stages>;
KernelParams params{kNumIters, tiles_per_cluster, nullptr};
void *kernel_params[] = {¶ms};
cutlass::ClusterLauncher::launch(dimGrid, dimCluster, dimBlock, smem_size, stream, kernel, kernel_params);
}
result = cudaEventRecord(events[1]);
if (result != cudaSuccess) {
std::cerr << "Error: Failed to record stop event.";
return result;
}
result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
std::cerr << "Error: cudaDeviceSynchronize() failed" << std::endl;
return result;
}
result = cudaEventElapsedTime(&elapsed_ms, events[0], events[1]);
if (result != cudaSuccess) {
std::cerr << "Failed to create event.";
return result;
}
for (cudaEvent_t & event : events) {
(void)cudaEventDestroy(event);
}
return cudaSuccess;
}
};
#if CUDA_12_0_SM90_FEATURES_SUPPORTED
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x1_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 1, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x1_Stage5) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 1, 1>;
static constexpr uint32_t Stages = 5;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x1_Stage10) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 1, 1>;
static constexpr uint32_t Stages = 10;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x2_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 2, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x2_Stage5) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 2, 1>;
static constexpr uint32_t Stages = 5;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x2_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 2, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x4_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 4, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x4_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 4, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x1_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 1, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x1_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 1, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x2_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 2, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x2_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 2, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x1_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 1, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x1_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 1, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x4_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 4, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster1x4_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<1, 4, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x4_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 4, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster2x4_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<2, 4, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x2_Stage2) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 2, 1>;
static constexpr uint32_t Stages = 2;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
TEST(SM90_Verify_PipelineTmaAsync_WS_Persistent, Cluster4x2_Stage7) {
Options options;
using ClusterShape = cutlass::gemm::GemmShape<4, 2, 1>;
static constexpr uint32_t Stages = 7;
using Test = PipelineTest<Stages, ClusterShape>;
Testbed<Test> testbed(options);
EXPECT_TRUE(testbed.verification());
}
#endif