-
Notifications
You must be signed in to change notification settings - Fork 1
/
hx711.py
388 lines (287 loc) · 11.7 KB
/
hx711.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#
import RPi.GPIO as GPIO
import time
import threading
GPIO.setmode(GPIO.BCM)
class HX711:
def __init__(self, dout, pd_sck, gain=128):
self.PD_SCK = pd_sck
self.DOUT = dout
# Mutex for reading from the HX711, in case multiple threads in client
# software try to access get values from the class at the same time.
self.readLock = threading.Lock()
GPIO.setup(self.PD_SCK, GPIO.OUT)
GPIO.setup(self.DOUT, GPIO.IN)
self.GAIN = 0
# The value returned by the hx711 that corresponds to your reference
# unit AFTER dividing by the SCALE.
self.REFERENCE_UNIT = 1
self.REFERENCE_UNIT_B = 1
self.OFFSET = 1
self.OFFSET_B = 1
self.lastVal = int(0)
self.DEBUG_PRINTING = False
self.byte_format = 'MSB'
self.bit_format = 'MSB'
self.set_gain(gain)
def convertFromTwosComplement24bit(self, inputValue):
return -(inputValue & 0x800000) + (inputValue & 0x7fffff)
def is_ready(self):
return GPIO.input(self.DOUT) == 0
def set_gain(self, gain):
if gain is 128:
self.GAIN = 1
elif gain is 64:
self.GAIN = 3
elif gain is 32:
self.GAIN = 2
GPIO.output(self.PD_SCK, False)
# Read out a set of raw bytes and throw it away.
self.readRawBytes()
def get_gain(self):
if self.GAIN == 1:
return 128
if self.GAIN == 3:
return 64
if self.GAIN == 2:
return 32
# Shouldn't get here.
return 0
def readNextBit(self):
# Clock HX711 Digital Serial Clock (PD_SCK). DOUT will be
# ready 1us after PD_SCK rising edge, so we sample after
# lowering PD_SCL, when we know DOUT will be stable.
GPIO.output(self.PD_SCK, True)
GPIO.output(self.PD_SCK, False)
value = GPIO.input(self.DOUT)
# Convert Boolean to int and return it.
return int(value)
def readNextByte(self):
byteValue = 0
# Read bits and build the byte from top, or bottom, depending
# on whether we are in MSB or LSB bit mode.
for x in range(8):
if self.bit_format == 'MSB':
byteValue <<= 1
byteValue |= self.readNextBit()
else:
byteValue >>= 1
byteValue |= self.readNextBit() * 0x80
# Return the packed byte.
return byteValue
def readRawBytes(self):
# Wait for and get the Read Lock, incase another thread is already
# driving the HX711 serial interface.
self.readLock.acquire()
# Wait until HX711 is ready for us to read a sample.
while not self.is_ready():
pass
# Read three bytes of data from the HX711.
firstByte = self.readNextByte()
secondByte = self.readNextByte()
thirdByte = self.readNextByte()
# HX711 Channel and gain factor are set by number of bits read
# after 24 data bits.
for i in range(self.GAIN):
# Clock a bit out of the HX711 and throw it away.
self.readNextBit()
# Release the Read Lock, now that we've finished driving the HX711
# serial interface.
self.readLock.release()
# Depending on how we're configured, return an orderd list of raw byte
# values.
if self.byte_format == 'LSB':
return [thirdByte, secondByte, firstByte]
else:
return [firstByte, secondByte, thirdByte]
def read_long(self):
# Get a sample from the HX711 in the form of raw bytes.
dataBytes = self.readRawBytes()
if self.DEBUG_PRINTING:
print(dataBytes, )
# Join the raw bytes into a single 24bit 2s complement value.
twosComplementValue = ((dataBytes[0] << 16) |
(dataBytes[1] << 8) |
dataBytes[2])
if self.DEBUG_PRINTING:
print("Twos: 0x%06x" % twosComplementValue)
# Convert from 24bit twos-complement to a signed value.
signedIntValue = self.convertFromTwosComplement24bit(twosComplementValue)
# Record the latest sample value we've read.
self.lastVal = signedIntValue
# Return the sample value we've read from the HX711.
return int(signedIntValue)
def read_average(self, times=3):
# Make sure we've been asked to take a rational amount of samples.
if times <= 0:
raise ValueError("HX711()::read_average(): times must >= 1!!")
# If we're only average across one value, just read it and return it.
if times == 1:
return self.read_long()
# If we're averaging across a low amount of values, just take the
# median.
if times < 5:
return self.read_median(times)
# If we're taking a lot of samples, we'll collect them in a list, remove
# the outliers, then take the mean of the remaining set.
valueList = []
for x in range(times):
valueList += [self.read_long()]
valueList.sort()
# We'll be trimming 20% of outlier samples from top and bottom of collected set.
trimAmount = int(len(valueList) * 0.2)
# Trim the edge case values.
valueList = valueList[trimAmount:-trimAmount]
# Return the mean of remaining samples.
return sum(valueList) / len(valueList)
# A median-based read method, might help when getting random value spikes
# for unknown or CPU-related reasons
def read_median(self, times=3):
if times <= 0:
raise ValueError("HX711::read_median(): times must be greater than zero!")
# If times == 1, just return a single reading.
if times == 1:
return self.read_long()
valueList = []
for x in range(times):
valueList += [self.read_long()]
valueList.sort()
# If times is odd we can just take the centre value.
if (times & 0x1) == 0x1:
return valueList[len(valueList) // 2]
else:
# If times is even we have to take the arithmetic mean of
# the two middle values.
midpoint = len(valueList) / 2
return sum(valueList[midpoint:midpoint + 2]) / 2.0
# Compatibility function, uses channel A version
def get_value(self, times=3):
return self.get_value_A(times)
def get_value_A(self, times=3):
return self.read_median(times) - self.get_offset_A()
def get_value_B(self, times=3):
# for channel B, we need to set_gain(32)
g = self.get_gain()
self.set_gain(32)
value = self.read_median(times) - self.get_offset_B()
self.set_gain(g)
return value
# Compatibility function, uses channel A version
def get_weight(self, times=3):
return self.get_weight_A(times)
def get_weight_A(self, times=3):
value = self.get_value_A(times)
value = value / self.REFERENCE_UNIT
return value
def get_weight_B(self, times=3):
value = self.get_value_B(times)
value = value / self.REFERENCE_UNIT_B
return value
# Sets tare for channel A for compatibility purposes
def tare(self, times=15):
self.tare_A(times)
def tare_A(self, times=15):
# Backup REFERENCE_UNIT value
backupReferenceUnit = self.get_reference_unit_A()
self.set_reference_unit_A(1)
value = self.read_average(times)
if self.DEBUG_PRINTING:
print("Tare A value:", value)
self.set_offset_A(value)
# Restore the reference unit, now that we've got our offset.
self.set_reference_unit_A(backupReferenceUnit)
return value
def tare_B(self, times=15):
# Backup REFERENCE_UNIT value
backupReferenceUnit = self.get_reference_unit_B()
self.set_reference_unit_B(1)
# for channel B, we need to set_gain(32)
backupGain = self.get_gain()
self.set_gain(32)
value = self.read_average(times)
if self.DEBUG_PRINTING:
print("Tare B value:", value)
self.set_offset_B(value)
# Restore gain/channel/reference unit settings.
self.set_gain(backupGain)
self.set_reference_unit_B(backupReferenceUnit)
return value
def set_reading_format(self, byte_format="LSB", bit_format="MSB"):
if byte_format == "LSB":
self.byte_format = byte_format
elif byte_format == "MSB":
self.byte_format = byte_format
else:
raise ValueError("Unrecognised byte_format: \"%s\"" % byte_format)
if bit_format == "LSB":
self.bit_format = bit_format
elif bit_format == "MSB":
self.bit_format = bit_format
else:
raise ValueError("Unrecognised bitformat: \"%s\"" % bit_format)
# sets offset for channel A for compatibility reasons
def set_offset(self, offset):
self.set_offset_A(offset)
def set_offset_A(self, offset):
self.OFFSET = offset
def set_offset_B(self, offset):
self.OFFSET_B = offset
def get_offset(self):
return self.get_offset_A()
def get_offset_A(self):
return self.OFFSET
def get_offset_B(self):
return self.OFFSET_B
def set_reference_unit(self, reference_unit):
self.set_reference_unit_A(reference_unit)
def set_reference_unit_A(self, reference_unit):
# Make sure we aren't asked to use an invalid reference unit.
if reference_unit == 0:
raise ValueError("HX711::set_reference_unit_A() can't accept 0 as a reference unit!")
return
self.REFERENCE_UNIT = reference_unit
def set_reference_unit_B(self, reference_unit):
# Make sure we aren't asked to use an invalid reference unit.
if reference_unit == 0:
raise ValueError("HX711::set_reference_unit_A() can't accept 0 as a reference unit!")
return
self.REFERENCE_UNIT_B = reference_unit
def get_reference_unit(self):
return get_reference_unit_A()
def get_reference_unit_A(self):
return self.REFERENCE_UNIT
def get_reference_unit_B(self):
return self.REFERENCE_UNIT_B
def power_down(self):
# Wait for and get the Read Lock, incase another thread is already
# driving the HX711 serial interface.
self.readLock.acquire()
# Cause a rising edge on HX711 Digital Serial Clock (PD_SCK). We then
# leave it held up and wait 100 us. After 60us the HX711 should be
# powered down.
GPIO.output(self.PD_SCK, False)
GPIO.output(self.PD_SCK, True)
time.sleep(0.0001)
# Release the Read Lock, now that we've finished driving the HX711
# serial interface.
self.readLock.release()
def power_up(self):
# Wait for and get the Read Lock, incase another thread is already
# driving the HX711 serial interface.
self.readLock.acquire()
# Lower the HX711 Digital Serial Clock (PD_SCK) line.
GPIO.output(self.PD_SCK, False)
# Wait 100 us for the HX711 to power back up.
time.sleep(0.0001)
# Release the Read Lock, now that we've finished driving the HX711
# serial interface.
self.readLock.release()
# HX711 will now be defaulted to Channel A with gain of 128. If this
# isn't what client software has requested from us, take a sample and
# throw it away, so that next sample from the HX711 will be from the
# correct channel/gain.
if self.get_gain() != 128:
self.readRawBytes()
def reset(self):
self.power_down()
self.power_up()