-
Notifications
You must be signed in to change notification settings - Fork 40
/
async_preprocess.py
40 lines (30 loc) · 1.57 KB
/
async_preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from typing import Any, List
# register with --engine custom_async
# Notice Preprocess class Must be named "Preprocess"
class Preprocess(object):
def __init__(self):
pass
async def preprocess(self, body: dict, state: dict, collect_custom_statistics_fn=None) -> Any:
# we expect to get two valid on the dict x0, and x1
return body
async def postprocess(self, data: List[dict], state: dict, collect_custom_statistics_fn=None) -> dict:
# we will here average the results and return the new value
# assume data is a list of dicts greater than 1
# average result
return dict(y=0.5 * data[0]['y'][0] + 0.5 * data[1]['y'][0])
async def process(self, data: Any, state: dict, collect_custom_statistics_fn=None) -> Any:
"""
do something with the actual data, return any type of object.
The returned object will be passed as is to the postprocess function engine
"""
predict_a = self.send_request(endpoint="/test_model_sklearn_a/", version=None, data=data)
predict_b = self.send_request(endpoint="/test_model_sklearn_b/", version=None, data=data)
predict_a = await predict_a
predict_b = await predict_b
if not predict_b or not predict_a:
raise ValueError("Error requesting inference endpoint test_model_sklearn a/b")
return [predict_a, predict_b]
async def send_request(self, endpoint, version, data) -> List[dict]:
# Mock Function!
# replaced by real send request function when constructed by the inference service
pass