-
Notifications
You must be signed in to change notification settings - Fork 284
/
Copy path07_BernBetaPyMCFull.py
61 lines (47 loc) · 1.68 KB
/
07_BernBetaPyMCFull.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
Inferring a binomial proportion using PyMC.
"""
import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
import numpy as np
import pymc3 as pm
# Generate the data
y = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]) # 11 heads and 3 tails
with pm.Model() as model:
# define the prior
theta = pm.Beta('theta', 1., 1.) # prior
# define the likelihood
y = pm.Bernoulli('y', p=theta, observed=y)
# Generate a MCMC chain
trace = pm.sample(1000)
# create an array with the posterior sample
theta_sample = trace['theta']
fig, ax = plt.subplots(1, 2)
ax[0].plot(theta_sample[:500], np.arange(500), marker='o', color='skyblue')
ax[0].set_xlim(0, 1)
ax[0].set_xlabel(r'$\theta$')
ax[0].set_ylabel('Position in Chain')
pm.plot_posterior(theta_sample, ax=ax[1], color='skyblue');
ax[1].set_xlabel(r'$\theta$');
# Posterior prediction:
# For each step in the chain, use posterior theta to flip a coin:
y_pred = np.zeros(len(theta_sample))
for i, p_head in enumerate(theta_sample):
y_pred[i] = np.random.choice([0, 1], p=[1 - p_head, p_head])
# Jitter the 0,1 y values for plotting purposes:
y_pred_jittered = y_pred + np.random.uniform(-.05, .05, size=len(theta_sample))
# Now plot the jittered values:
plt.figure()
plt.plot(theta_sample[:500], y_pred_jittered[:500], 'C1o')
plt.xlim(-.1, 1.1)
plt.ylim(-.1, 1.1)
plt.xlabel(r'$\theta$')
plt.ylabel('y (jittered)')
mean_y = np.mean(y_pred)
mean_theta = np.mean(theta_sample)
plt.plot(mean_y, mean_theta, 'k+', markersize=15)
plt.annotate('mean(y) = %.2f\nmean($\\theta$) = %.2f' %
(mean_y, mean_theta), xy=(mean_y, mean_theta))
plt.plot([0, 1], [0, 1], linestyle='--')
plt.savefig('BernBetaPyMCPost.png')
plt.show()