-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscse.py
100 lines (83 loc) · 3.62 KB
/
scse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import torch
import torch.nn as nn
import torch.nn.functional as F
class ChannelSELayer(nn.Module):
"""
Re-implementation of Squeeze-and-Excitation (SE) block described in:
*Hu et al., Squeeze-and-Excitation Networks, arXiv:1709.01507*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSELayer, self).__init__()
num_channels_reduced = num_channels // reduction_ratio
self.reduction_ratio = reduction_ratio
self.fc1 = nn.Linear(num_channels, num_channels_reduced, bias=True)
self.fc2 = nn.Linear(num_channels_reduced, num_channels, bias=True)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, H, W)
:return: output tensor
"""
batch_size, num_channels, H, W = input_tensor.size()
# Average along each channel
squeeze_tensor = input_tensor.view(batch_size, num_channels, -1).mean(dim=2)
# channel excitation
fc_out_1 = self.relu(self.fc1(squeeze_tensor))
fc_out_2 = self.sigmoid(self.fc2(fc_out_1))
a, b = squeeze_tensor.size()
output_tensor = torch.mul(input_tensor, fc_out_2.view(a, b, 1, 1))
return output_tensor
class SpatialSELayer(nn.Module):
"""
Re-implementation of SE block -- squeezing spatially and exciting channel-wise described in:
*Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, MICCAI 2018*
"""
def __init__(self, num_channels):
"""
:param num_channels: No of input channels
"""
super(SpatialSELayer, self).__init__()
self.conv = nn.Conv2d(num_channels, 1, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_tensor, weights=None):
"""
:param weights: weights for few shot learning
:param input_tensor: X, shape = (batch_size, num_channels, H, W)
:return: output_tensor
"""
# spatial squeeze
batch_size, channel, a, b = input_tensor.size()
if weights:
weights = weights.view(1, channel, 1, 1)
out = F.conv2d(input_tensor, weights)
else:
out = self.conv(input_tensor)
squeeze_tensor = self.sigmoid(out)
# spatial excitation
output_tensor = torch.mul(input_tensor, squeeze_tensor.view(batch_size, 1, a, b))
return output_tensor
class ChannelSpatialSELayer(nn.Module):
"""
Re-implementation of concurrent spatial and channel squeeze & excitation:
*Roy et al., Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, arXiv:1803.02579*
"""
def __init__(self, num_channels, reduction_ratio=2):
"""
:param num_channels: No of input channels
:param reduction_ratio: By how much should the num_channels should be reduced
"""
super(ChannelSpatialSELayer, self).__init__()
self.cSE = ChannelSELayer(num_channels, reduction_ratio)
self.sSE = SpatialSELayer(num_channels)
def forward(self, input_tensor):
"""
:param input_tensor: X, shape = (batch_size, num_channels, H, W)
:return: output_tensor
"""
output_tensor = torch.max(self.cSE(input_tensor), self.sSE(input_tensor))
return output_tensor