forked from AMNAALMGLY/HypOptRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
61 lines (46 loc) · 1.83 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import random
import torch
import numpy as np
import pandas as pd
import argparse
from collections import ChainMap
from src.config import args
# fix the random seed
def seed_everything(seeds=args.seeds):
random.seed(seeds[0])
np.random.seed(seeds[0])
torch.random.manual_seed(seeds[0])
#load saved model
def resume_checkpoint(path,policyModel,Ns=4,Na=10,n_hyperparams=10):
if policyModel=='MLP':
model=MLP_Policy(Ns, Na, n_hyperparams).to(device)
else:
model=LSTM_Policy(Ns, Na, n_hyperparams).to(device)
model.load_state_dict(torch.load(path))
return model
def save_data(filename, hyperparams, validation_loss,rewards,test_loss):
d = {}
d["learning_rate"] = hyperparams[0]
d["weight_decay"] = hyperparams[1]
d["batch_size"] = hyperparams[2]
d["hidden_size"] = hyperparams[3]
d["validation loss"] = validation_loss
d['rewards']=[rewards]
d['test_loss']=test_loss
data_df = pd.DataFrame(d, index=[0])
data_df.to_csv(f"{filename}.csv")
def parse_arguments(parser, default_args):
parser.add_argument('--task', dest='task',
default=default_args.task, type=str,
choices=['regression', 'classification', 'mnist_class'],
)
parser.add_argument('--model_type', dest='model_type', type=str,
default=default_args.model_type,
choices=['MLP', 'CNN'],)
parser.add_argument('--policy', dest='policy', type=str,
default=default_args.policy,choices=['MLP', 'LSTM'],)
parser.add_argument('--pretrained_checkpoint', type=str,
default=default_args.pretrained_checkpoint,)
args = parser.parse_args()
args_col = ChainMap(vars(args), vars(default_args))
return args_col