-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
318 lines (260 loc) · 12.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import math
import torch
import torch.nn as nn
class InputEmbeddings(nn.Module):
def __init__(self, d_model: int, vocab_size: int) -> None:
super().__init__()
self.d_model = d_model
self.vocab_size = vocab_size
# Embedding layer provided by pytorch - maps numbers to the same vector every time.
# - We always map the same word to the same embedding.
# - However the values in the vector aren't fixed - they're learned by the model.
self.embedding = nn.Embedding(vocab_size, d_model)
def forward(self, x):
return self.embedding(x.long()) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int, seq_len: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model
self.seq_len = seq_len
self.dropout = nn.Dropout(dropout) # To prevent overfitting
# Note: We're using a slightly modified formule compared to what we have seen in the paper and presentation
# using log space - this is for numerical stability, but the result should be the same.
# Create a matrix of shape (seq_len, d_model)
pe = torch.zeros(seq_len, d_model)
# Create a vector of shape (seq_len, 1)
position = torch.arange(0, seq_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)
)
# Apply the sin to even positions
pe[:, 0::2] = torch.sin(position * div_term)
# Apply she cos to odd positions
pe[:, 1::2] = torch.cos(position * div_term)
# We need to add a batch dimension
pe = pe.unsqueeze(0) # -> (1, seq_len, d_model)
# If you have a tensor that you want to keep inside the module not as a (learned) parameter,
# but you want it to be saved when you save the file of the model you should register it as a buffer.
# This way the tensor will be saved as in the file along with the state of the model.
self.register_buffer("pe", pe)
def forward(self, x):
# We need to add the positional encoding to every word inside the sentence.
#print(f'SHAPE 1: {x.shape}')
x = x + (self.pe[:, : x.shape[1], :]).requires_grad_(False) # (batch, seq_len, d_model) # We also tell the model that we don't want to learn this positional encoding
#print(f'SHAPE 2: {x.shape}')
return self.dropout(x)
class LayerNormalization(nn.Module):
def __init__(self, features: int, eps: float = 10**-6) -> None:
super().__init__()
self.eps = eps
self.alpha = nn.Parameter(torch.ones(features)) # Multiplicative
# nn.Parameter makes this parameter learnable
self.bias = nn.Parameter(torch.zeros(features)) # Additive
def forward(self, x):
# x: (batch, seq_len, hidden_size)
# Keep the dimension for broadcasting
mean = x.mean(dim=-1, keepdim=True) # (batch, seq_len, 1)
# Keep the dimension for broadcasting
std = x.std(dim=-1, keepdim=True) # (batch, seq_len, 1)
# eps is to prevent dividing by zero or when std is very small
return self.alpha * ((x - mean) / (std + self.eps)) + self.bias
class FeedForwardBlock(nn.Module):
def __init__(self, d_model: int, d_ff: int, dropout: float) -> None:
super().__init__()
self.linear_1 = nn.Linear(d_model, d_ff) # W1 and B1
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model) # W2 and B2
def forward(self, x):
# (Batch, seq_len, d_model) --> (Batch, seq_len, d_ff) --> (Batch, seq_len, d_model)
return self.linear_2(self.dropout(torch.relu(self.linear_1(x))))
class MultiHeadAttentionBlock(nn.Module):
def __init__(self, d_model: int, h: int, dropout: float) -> None:
super().__init__()
self.d_model = d_model
self.h = h
# Make sure that the d_model is divisible by h
assert d_model % h == 0
self.d_k = d_model // h
# Prepare matrices
self.w_q = nn.Linear(d_model, d_model)
self.w_k = nn.Linear(d_model, d_model)
self.w_v = nn.Linear(d_model, d_model)
self.w_o = nn.Linear(
d_model, d_model
) # In slides the shape is (h * d_v, d_model), but (d_v=d_k)*h = d_model
self.dropout = nn.Dropout(dropout)
@staticmethod
def attention(query, key, value, mask, dropout: nn.Dropout):
d_k = query.shape[-1]
# (batch, h, seq_len, d_k) --> (batch, h, seq_len, seq_len)
attention_scores = (query @ key.transpose(-2, -1)) / math.sqrt(
d_k
) # @ is matrix multiplication in the Pytorch, Transpose last two dimensions
if mask is not None:
attention_scores.masked_fill_(mask == 0, -1e9)
attention_scores = attention_scores.softmax(
dim=-1
) # (batch, h, seq_len, seq_len)
if dropout is not None:
attention_scores = dropout(attention_scores)
return (
attention_scores @ value
), attention_scores # first value for the model, second value is for visualisation
def forward(self, q, k, v, mask):
query = self.w_q(q) # (batch, seq_len, d_model) --> (batch, seq_len, d_model)
key = self.w_k(k)
value = self.w_v(v)
# (batch, seq_len, d_model) --> (batch, seq_len, h, d_k) --> (batch, h, seq_len, d_k)
query = query.view(query.shape[0], query.shape[1], self.h, self.d_k).transpose(1, 2)
key = key.view(key.shape[0], key.shape[1], self.h, self.d_k).transpose(1, 2)
value = value.view(value.shape[0], value.shape[1], self.h, self.d_k).transpose(1, 2)
x, self.attention_scores = MultiHeadAttentionBlock.attention(
query, key, value, mask, self.dropout
)
# (batch, h, seq_len, d_k) --> (batch, seq_len, h, d_k) --> (batch, seq_len, d_model) == (batch, seq_len, h*d_k)
x = x.transpose(1, 2).contiguous().view(x.shape[0], -1, self.h * self.d_k)
# (batch, seq_len, d_model) --> (batch, seq_len, d_model)
return self.w_o(x)
class ResidualConnection(nn.Module):
def __init__(self, features: int, dropout: float) -> None:
super().__init__()
self.dropout = nn.Dropout(dropout)
self.norm = LayerNormalization(features)
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
class EncoderBlock(nn.Module):
def __init__(
self,
features: int,
self_attention_block: MultiHeadAttentionBlock,
feed_forward_block: FeedForwardBlock,
dropout: float,
) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList(
[ResidualConnection(features, dropout) for _ in range(2)]
)
def forward(self, x, src_mask):
x = self.residual_connections[0](
x, lambda x: self.self_attention_block(x, x, x, src_mask)
)
x = self.residual_connections[1](x, self.feed_forward_block)
return x
class Encoder(nn.Module):
def __init__(self, features: int, layers: nn.ModuleList) -> None:
super().__init__()
self.layers = layers
self.norm = LayerNormalization(features)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class DecoderBlock(nn.Module):
def __init__(
self,
features: int,
self_attention_block: MultiHeadAttentionBlock,
cross_attention_block: MultiHeadAttentionBlock,
feed_forward_block: FeedForwardBlock,
dropout: float,
) -> None:
super().__init__()
self.self_attention_block = self_attention_block
self.cross_attention_block = cross_attention_block
self.feed_forward_block = feed_forward_block
self.residual_connections = nn.ModuleList(
[ResidualConnection(features, dropout) for _ in range(3)]
)
def forward(self, x, encoder_output, src_mask, tgt_mask):
x = self.residual_connections[0](
x, lambda x: self.self_attention_block(x, x, x, tgt_mask)
)
x = self.residual_connections[1](
x,
lambda x: self.cross_attention_block(
x, encoder_output, encoder_output, src_mask
),
)
x = self.residual_connections[2](x, self.feed_forward_block)
return x
class Decoder(nn.Module):
def __init__(self, features: int, layers: nn.ModuleList) -> None:
super().__init__()
self.layers = layers
self.norm = LayerNormalization(features)
def forward(self, x, encoder_output, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, encoder_output, src_mask, tgt_mask)
return self.norm(x)
class ProjectionLayer(nn.Module):
def __init__(self, d_model: int, vocab_size: int) -> None:
super().__init__()
self.proj = nn.Linear(d_model, vocab_size)
def forward(self, x):
# (batch, seq_len, d_model) --> (batch, seq_len, vocab_size)
return torch.log_softmax(self.proj(x), dim=-1) # log for numerical stability
class Trasformer(nn.Module):
def __init__(
self,
encoder: Encoder,
decoder: Decoder,
src_embed: InputEmbeddings,
tgt_embed: InputEmbeddings,
src_pos: PositionalEncoding,
tgt_pos: PositionalEncoding,
projection_layer: ProjectionLayer,
) -> None:
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.src_pos = src_pos
self.tgt_pos = tgt_pos
self.projection_layer = projection_layer
def encode(self, src, src_mask):
src = self.src_embed(src)
src = self.src_pos(src)
return self.encoder(src, src_mask)
def decode(self, encoder_output, src_mask, tgt, tgt_mask):
tgt = self.tgt_embed(tgt)
tgt = self.tgt_pos(tgt)
return self.decoder(tgt, encoder_output, src_mask, tgt_mask)
def project(self, x):
return self.projection_layer(x)
def build_transformer(src_vocab_size: int, tgt_vocab_size: int, src_seq_len: int, tgt_seq_len: int, d_model: int = 512, N: int = 6, h: int = 8, dropout: float = 0.1, d_ff: int = 2048):
# Create embedding layers
src_embed = InputEmbeddings(d_model, src_vocab_size)
tgt_embed = InputEmbeddings(d_model, tgt_vocab_size)
# Create positional encoding layer(s) - (Since Positional Encoding Vectors aren't learned, they're computed only once - we could define only one layer and reuse it, but for clarity we will create both of them)
src_pos = PositionalEncoding(d_model, src_seq_len, dropout)
tgt_pos = PositionalEncoding(d_model, tgt_seq_len, dropout)
# Create the encoder blocks
encoder_blocks = []
for _ in range(N):
encoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
encoder_block = EncoderBlock(d_model, encoder_self_attention_block, feed_forward_block, dropout)
encoder_blocks.append(encoder_block)
# Create the decoder blocks
decoder_blocks = []
for _ in range(N):
decoder_self_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
decoder_cross_attention_block = MultiHeadAttentionBlock(d_model, h, dropout)
feed_forward_block = FeedForwardBlock(d_model, d_ff, dropout)
decoder_block = DecoderBlock(d_model, decoder_self_attention_block, decoder_cross_attention_block, feed_forward_block, dropout)
decoder_blocks.append(decoder_block)
# Create the Encoder and the Decoder
encoder = Encoder(d_model, nn.ModuleList(encoder_blocks))
decoder = Decoder(d_model, nn.ModuleList(decoder_blocks))
# Create the projection layer
projection_layer = ProjectionLayer(d_model, tgt_vocab_size)
# Create the Transformer
transformer =Trasformer(encoder, decoder, src_embed, tgt_embed, src_pos, tgt_pos, projection_layer)
# Initialize the parameter (there is many methods to do it)
for p in transformer.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return transformer