-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathrun_preprocess.m
111 lines (95 loc) · 4.26 KB
/
run_preprocess.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
% Copyright 2011-2014 Ulf Blanke, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
% Copyright 2011-2014 Andreas Bulling, Max Planck Institute for Informatics, Germany
%
% --------------------------------------------------------------------
% This file is part of the ActRecTut Matlab toolbox.
%
% ActRecTut is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% ActRecTut is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with HARPS. If not, see <http://www.gnu.org/licenses/>.
% --------------------------------------------------------------------
function [features fType fDescr segments segmentation labelsSegmentation, featureLabels] = run_preprocess(dataAll, labelsAll, segmentsAll, SETTINGS)
% (1) Preprocessing
% (1.1) Split data set into repetitions
[data labels segments nRepetitions] = splitIntoRepetitions(dataAll, labelsAll, segmentsAll);
% (1.2) Calculate label statistics
stats = calculateLabelStatistics(cell2mat(segments(:)));
if SETTINGS.PLOT
prettyPrintStats(stats, SETTINGS.CLASSLABELS);
end
features = cell(0);
segmentation = cell(0);
labelsSegmentationRepetition = cell(0);
% Loop over repetitions
for i = 1:nRepetitions
if SETTINGS.VERBOSE_LEVEL >= 2
fprintf('\nREPETITION %i/%i\n', i, nRepetitions);
else
fprintf('.');
end
% (2) Segmentation
segmentation{i} = segment(data{i}, 'method', SETTINGS.SEGMENTATION_TECHNIQUE, 'options', SETTINGS.SEGMENTATION_OPTIONS, ...
'samplingrate', SETTINGS.SAMPLINGRATE, 'windowsize', SETTINGS.W_SIZE_SECOND, 'stepsize', SETTINGS.W_STEP_SECOND, 'verbose', SETTINGS.VERBOSE_LEVEL);
labelsSegmentation = assignLabels(segments{i}, segmentation{i});
% Sensor selection
data{i} = selectSensorData(data{i}, 'sensorsAvailable', SETTINGS.SENSORS_AVAILABLE, 'sensorsUsed', SETTINGS.SENSORS_USED, ...
'fusion', SETTINGS.FUSION_TYPE, 'verbose', SETTINGS.VERBOSE_LEVEL);
% (3) Feature extraction
[features{i,1} fType fDescr] = feature_extraction(data{i}, segmentation{i}, 'featureType', SETTINGS.FEATURE_TYPE, 'verbose', SETTINGS.VERBOSE_LEVEL);
labelsSegmentationRepetition{i,1} = labelsSegmentation;
end
labelsSegmentation = labelsSegmentationRepetition;
% Generate feature labels
featureLabels = generateFeatureLabels(fDescr, SETTINGS);
% Save variables
if SETTINGS.SAVE
savename = sprintf('%s/features_dataset%s_subject%d---wSize=%2.2f_wStep=%2.2f_Feature=%s.mat',...
SETTINGS.PATH_OUTPUT_FEATURES, SETTINGS.DATASET, SETTINGS.SUBJECT, SETTINGS.W_SIZE_SECOND, SETTINGS.W_STEP_SECOND, SETTINGS.FEATURE_TYPE);
fprintf('\nSaving %s\n', savename);
if ~exist(SETTINGS.PATH_OUTPUT_FEATURES, 'dir')
mkdir(SETTINGS.PATH_OUTPUT_FEATURES);
end
save(savename, 'features', 'fType', 'fDescr', 'segments', 'segmentation', 'labelsSegmentation', 'featureLabels', 'SETTINGS');
end
if SETTINGS.PLOT
% Visualize data
%{
p=1;
dim = size(dataAll, 2);
nSensorTypes =length(SETTINGS.SENSORS_USED);
for i = 1:6:dim
X = dataAll(:, i:i+5);
figure;
for s=0:nSensorTypes-1
Xsensor = X(:, s*3+1:3*(s+1));
subplot(nSensorTypes, 1, s+1);
illustrateLabelsEfficient(labelSegments(:, [1 2 4]), 0, -1, min(min(Xsensor)), max(max(Xsensor)));
hold all;
plot(Xsensor);
title(sprintf('%s %s', sensorType{s+1}, placement{p}));
end
p=p+1;
end
% Visualize features
figure;
for f = 1:length(fDescr)
subplot(length(fDescr)+1, 1, f);
imagesc(features(:, fType==f)');
set(gca,'YTick', 1:nSensorTypes*nSensors:dim);
set(gca,'YTicklabel', placement);
title(fDescr{f});
end
subplot(length(fDescr)+1, 1, length(fDescr)+1);
illustrateLabelsEfficient(labelSegments(:, [1 2 4]), 0, -1);
xlim([0 max(segmentation(:, 2))]);
%}
end