-
Notifications
You must be signed in to change notification settings - Fork 21
/
eig_sshopmc.m
177 lines (153 loc) · 4.97 KB
/
eig_sshopmc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
function [lambda,x,flag,its,x0,trace] = eig_sshopmc(A,varargin)
%EIG_SSHOPMC Shifted power method for real/complex eigenpair of tensor.
%
% [LAMBDA,X]=EIG_SSHOPMC(A) finds an eigenvalue (LAMBDA) and eigenvector (X)
% for the real tensor A such that Ax^{m-1} = lambda*x.
%
% [LAMBDA,X]=EIG_SSHOPMC(A,parameter,value,...) can specify additional
% parameters as follows:
%
% 'Shift' : Shift in the eigenvalue calculation (Default: 0)
% 'MaxIts' : Maximum power method iterations (Default: 1000)
% 'Start' : Initial guess (Default: normal random vector)
% 'Tol' : Tolerance on norm of change in |lambda| (Default: 1e-16)
% 'Display' : Display every n iterations (Default: -1 for no display)
%
% [LAMBDA,X,FLAG]=EIG_SSHOPMC(...) also returns a flag indicating
% convergence.
%
% FLAG = 0 => Succesfully terminated with |lambda - lambda_old| < Tol
% FLAG = -1 => Norm(X) = 0
% FLAG = -2 => Maximum iterations exceeded
%
% [LAMBDA,X,FLAG,IT]=EIG_SSHOPMC(...) also returns the number of
% iterations.
%
% [LAMBDA,X,FLAG,IT,X0]=EIG_SSHOPMC(...) also returns the intial guess.
%
% [LAMBDA,X,FLAG,IT,X0,TRACE]=EIG_SSHOPMC(...) also returns a trace of the
% |lambda| values at each iteration.
%
% REFERENCE: T. G. Kolda and J. R. Mayo, Shifted Power Method for
% Computing Tensor Eigenpairs, SIAM Journal on Matrix Analysis and
% Applications 32(4):1095-1124, October 2011 (doi:10.1137/100801482)
%
% See also EIG_SSHOPM, TENSOR, SYMMETRIZE, ISSYMMETRIC.
%
%MATLAB Tensor Toolbox.
%Copyright 2015, Sandia Corporation.
% This is the MATLAB Tensor Toolbox by T. Kolda, B. Bader, and others.
% http://www.sandia.gov/~tgkolda/TensorToolbox.
% Copyright (2015) Sandia Corporation. Under the terms of Contract
% DE-AC04-94AL85000, there is a non-exclusive license for use of this
% work by or on behalf of the U.S. Government. Export of this data may
% require a license from the United States Government.
% The full license terms can be found in the file LICENSE.txt
%% Error checking on A
P = ndims(A);
N = size(A,1);
if ~issymmetric(A)
error('Tensor must be symmetric.')
end
%% Check inputs
p = inputParser;
p.addParamValue('Shift', 0);
p.addParamValue('MaxIts', 1000, @(x) x > 0);
p.addParamValue('Start', [], @(x) isequal(size(x),[N 1]));
p.addParamValue('Tol', 1.0e-16);
p.addParamValue('Display', -1, @isscalar);
p.parse(varargin{:});
%% Copy inputs
maxits = p.Results.MaxIts;
x0 = p.Results.Start;
shift = p.Results.Shift;
tol = p.Results.Tol;
display = p.Results.Display;
%% Check starting vector
if isempty(x0)
x0 = 2*rand(N,1)-1 + 1i * (2*randn(N,1)-1);
end
if norm(x0) < eps
error('Zero starting vector');
end
%% Execute power method
if (display >= 0)
fprintf('TENSOR SHIFTED POWER METHOD: ');
fprintf('Shift = %g\n', shift);
fprintf('---- --------- ----- --------- ----- -------- ----- --------\n');
fprintf('Iter R(Lambda) Diff C(Lambda) Diff |Lambda| Diff |newx-x|\n');
fprintf('---- --------- ----- --------- ----- -------- ----- --------\n');
end
flag = -2;
x = x0 / norm(x0);
lambda = x'*ttsv(A,x,-1);
trace = zeros(maxits,1);
trace(1) = lambda;
for its = 1:maxits
newx = ttsv(A,x,-1) + shift * x;
newx = newx / (lambda + shift);
nx = norm(newx);
if nx < eps,
flag = -1;
break;
end
newx = newx / nx;
newlambda = newx'* ttsv(A,newx,-1);
if norm(abs(newlambda) - abs(lambda)) < tol
flag = 0;
end
if (display > 0) && ((flag == 0) || (mod(its,display) == 0))
fprintf('%4d ', its);
% Real Part
fprintf('%9.6f ', real(newlambda));
d = real(newlambda-lambda);
if (d ~= 0)
if (d < 0), c = '-'; else c = '+'; end
fprintf('%ce%+03d ', c, round(log10(abs(d))));
else
fprintf(' ');
end
% Imaginary Part
fprintf('%9.6f ', imag(newlambda));
d = imag(newlambda-lambda);
if (d ~= 0)
if (d < 0), c = '-'; else c = '+'; end
fprintf('%ce%+03d ', c, round(log10(abs(d))));
else
fprintf(' ');
end
% Absolute Value
fprintf('%8.6f ', abs(newlambda));
d = abs(newlambda) - abs(lambda);
if (d ~= 0)
if (d < 0), c = '-'; else c = '+'; end
fprintf('%ce%+03d ', c, round(log10(abs(d))));
else
fprintf(' ');
end
% Change in X
fprintf('%8.6f ', norm(newx-x));
% Line end
fprintf('\n');
end
x = newx;
lambda = newlambda;
trace(its+1) = lambda;
if flag == 0
break
end
end
%% Check results
if (display >=0)
switch(flag)
case 0
fprintf('Successful Convergence');
case -1
fprintf('Converged to Zero Vector');
case -2
fprintf('Exceeded Maximum Iterations');
otherwise
fprintf('Unrecognized Exit Flag');
end
fprintf('\n');
end