-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcache.go
678 lines (576 loc) · 21 KB
/
cache.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/*
* Copyright (C) 2017 Andy Kimball
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package tscache
import (
"bytes"
"encoding/binary"
"fmt"
"sync"
"sync/atomic"
"github.com/andy-kimball/arenaskl"
"github.com/cockroachdb/cockroach/pkg/util/hlc"
)
// RangeOptions are passed to AddRange to indicate the bounds of the range. By
// default, the "from" and "to" keys are inclusive. Setting these bit flags
// indicates that one or both is exclusive instead.
type rangeOptions int
const (
// ExcludeFrom indicates that the range does not include the starting key.
ExcludeFrom = 0x1
// ExcludeTo indicates that the range does not include the ending key.
ExcludeTo = 0x2
)
// NodeOptions are meta tags on skiplist nodes that indicate the status and role
// of that node in the cache. The options are bit flags that can be independently
// added and removed.
//
// Each key in the cache is associated with the latest read timestamp for that
// key. In addition, the cache maintains the latest read timestamp for the range
// of keys between itself and the next key that is present in the cache. This
// space between keys is called the "gap", and the timestamp for that range is
// called the "gap timestamp". Here is a simplified representation that would
// result after these ranges were added to an empty cache:
// ["apple", "orange") = 200
// ["kiwi", "raspberry"] = 100
//
// "apple" "orange" "raspberry"
// keyts=200 keyts=100 keyts=100
// gapts=200 gapts=100 gapts=0
//
// That is, the range from apple (inclusive) to orange (exclusive) has a read
// timestamp of 200. The range from orange (inclusive) to raspberry (inclusive)
// has a read timestamp of 100. All other keys have a read timestamp of 0.
type nodeOptions int
const (
// Initialized indicates that the node has been created and fully
// initialized. Key and gap timestamps are final values, and can now be
// used.
initialized = 0x1
// HasKey indicates the node has an associated key timestamp. If this is not
// set, then the key timestamp is assumed to be zero.
hasKey = 0x2
// HasGap indicates the node has an associated gap timestamp. If this is not
// set, then the gap timestamp is assumed to be zero.
hasGap = 0x4
// UseMaxTs indicates that the cache's max value should be used in place of
// the node's gap and key timestamps. This is used when the cache has filled
// up and the value can no longer be set (but meta can).
useMaxTs = 0x8
)
const (
encodedTsSize = 12
)
// FixedCache maintains a skiplist based on a fixed-size arena. When the arena
// has filled up, it returns an error. At that point, a new fixed cache must be
// allocated and used instead.
type fixedCache struct {
list *arenaskl.Skiplist
maxWallTime int64
isFull int32
}
// Cache efficiently tracks the latest logical time at which any key or range
// of keys has been accessed. Keys are binary values of any length, and times
// are represented as hybrid logical timestamps (see hlc package). The cache
// guarantees that the read timestamp of any given key or range will never
// decrease. In other words, if a lookup returns timestamp A and repeating the
// same lookup returns timestamp B, then B >= A.
//
// Add and lookup operations do not block or interfere with one another, which
// enables predictable operation latencies. Also, the impact of the cache on the
// GC is virtually nothing, even when the cache is very large. These properties
// are enabled by employing a lock-free skiplist implementation that uses an
// arena allocator. Skiplist nodes refer to one another by offset into the arena
// rather than by pointer, so the GC has very few objects to track.
type Cache struct {
// Maximum size of the cache in bytes. When the cache fills, older entries
// are discarded.
size uint32
// RotMutex synchronizes cache rotation with all other operations. The read
// lock is acquired by the Add and Lookup operations. The write lock is
// acquired only when the caches are rotated. Since that is very rare, the
// vast majority of operations can proceed without blocking.
rotMutex sync.RWMutex
// The cache maintains two fixed-size skiplist caches. When the later cache
// fills, it becomes the earlier cache, and the previous earlier cache is
// discarded. In order to ensure that timestamps never decrease, the cache
// maintains a floor timestamp, which is the minimum read timestamp that can
// be returned by the lookup operations. When the earlier cache is discarded,
// its current maximum read timestamp becomes the new floor timestamp for the
// overall cache.
later *fixedCache
earlier *fixedCache
floorTs hlc.Timestamp
}
// New creates a new timestamp cache with the given maximum size.
func New(size uint32) *Cache {
// The earlier and later fixed caches are each 1/2 the size of the larger
// cache.
return &Cache{size: size, later: newFixedCache(size / 2)}
}
// Add marks the a single key as having been read at the given timestamp. Once
// Add completes, future lookups of this key are guaranteed to return an equal
// or greater timestamp.
func (c *Cache) Add(key []byte, ts hlc.Timestamp) {
c.AddRange(key, key, 0, ts)
}
// AddRange marks the given range of keys (from, to) as having been read at the
// given timestamp. If some or all of the range was previously read at a higher
// timestamp, then the range is split into sub-ranges that are each marked with
// the maximum read timestamp for that sub-range. The starting and ending points
// of the range are inclusive by default, but can be excluded by passing the
// applicable range options. Once AddRange completes, future lookups at any point
// in the range are guaranteed to return an equal or greater timestamp.
func (c *Cache) AddRange(from, to []byte, opt rangeOptions, ts hlc.Timestamp) {
if from == nil {
panic("from key cannot be nil")
}
if to != nil {
cmp := bytes.Compare(from, to)
if cmp > 0 {
// Starting key is after ending key, so range is zero length.
return
}
if cmp == 0 {
// Starting key is same as ending key, so just add single node.
if opt == (ExcludeFrom | ExcludeTo) {
// Both from and to keys are excluded, so range is zero length.
return
}
// Just add the ending key.
from = nil
opt = 0
}
}
for {
// Try to add the range to the later cache.
filledCache := c.addRange(from, to, opt, ts)
if filledCache == nil {
break
}
// The cache was filled up, so rotate the caches and then try again.
c.rotateCaches(filledCache)
}
}
// LookupTimestamp returns the latest timestamp at which the given key was read.
// If this operation is repeated with the same key, it will always result in an
// equal or greater timestamp.
func (c *Cache) LookupTimestamp(key []byte) hlc.Timestamp {
// Acquire the rotation mutex read lock so that the cache will not be rotated
// while add or lookup operations are in progress.
c.rotMutex.RLock()
defer c.rotMutex.RUnlock()
// First perform lookup on the later cache.
ts := c.later.lookupTimestamp(key)
// Now perform same lookup on the earlier cache.
if c.earlier != nil {
// If later cache timestamp is greater than the max timestamp in the
// earlier cache, then no need to do lookup at all.
maxTs := hlc.Timestamp{WallTime: atomic.LoadInt64(&c.earlier.maxWallTime)}
if ts.Less(maxTs) {
ts2 := c.earlier.lookupTimestamp(key)
if ts.Less(ts2) {
ts = ts2
}
}
}
// Return the higher timestamp from the two lookups.
if ts.Less(c.floorTs) {
ts = c.floorTs
}
return ts
}
func (c *Cache) addRange(from, to []byte, opt rangeOptions, ts hlc.Timestamp) *fixedCache {
// Acquire the rotation mutex read lock so that the cache will not be rotated
// while add or lookup operations are in progress.
c.rotMutex.RLock()
defer c.rotMutex.RUnlock()
// If floor ts is >= requested timestamp, then no need to perform a search
// or add any records.
if !c.floorTs.Less(ts) {
return nil
}
var it arenaskl.Iterator
it.Init(c.later.list)
// Start by ensuring that the ending node has been created (unless "to" is
// nil, in which case the range extends indefinitely). Do this before creating
// the start node, so that the range won't extend past the end point during
// the period between creating the two endpoints.
var err error
if to != nil {
if (opt & ExcludeTo) == 0 {
err = c.later.addNode(&it, to, ts, hasKey)
} else {
err = c.later.addNode(&it, to, ts, 0)
}
if err == arenaskl.ErrArenaFull {
return c.later
}
}
// If from is nil, then the "range" is just a single key.
if from == nil {
return nil
}
// Ensure that the starting node has been created.
if (opt & ExcludeFrom) == 0 {
err = c.later.addNode(&it, from, ts, hasKey|hasGap)
} else {
err = c.later.addNode(&it, from, ts, hasGap)
}
if err == arenaskl.ErrArenaFull {
return c.later
}
// Seek to the node immediately after the "from" node.
if !it.Valid() || bytes.Compare(it.Key(), from) != 0 {
if it.Seek(from) {
it.Next()
}
} else {
it.Next()
}
// Now iterate forwards and ensure that all nodes between the start and
// end (exclusive) have timestamps that are >= the range timestamp.
if !c.later.ensureFloorTs(&it, to, ts) {
// Cache is filled up, so rotate caches and try again.
return c.later
}
return nil
}
// RotateCaches makes the later cache the earlier cache, and then discards the
// earlier cache. The max timestamp of the earlier cache becomes the new floor
// timestamp, in order to guarantee that timestamp lookups never return decreasing
// values.
func (c *Cache) rotateCaches(filledCache *fixedCache) {
c.rotMutex.Lock()
defer c.rotMutex.Unlock()
if filledCache != c.later {
// Another thread already rotated the caches, so don't do anything more.
return
}
// Max timestamp of the earlier cache becomes the new floor timestamp.
if c.earlier != nil {
newFloorTs := hlc.Timestamp{WallTime: atomic.LoadInt64(&c.earlier.maxWallTime)}
if c.floorTs.Less(newFloorTs) {
c.floorTs = newFloorTs
}
}
// Make the later cache the earlier cache.
c.earlier = c.later
c.later = newFixedCache(c.size / 2)
}
func newFixedCache(size uint32) *fixedCache {
return &fixedCache{list: arenaskl.NewSkiplist(arenaskl.NewArena(size))}
}
func (c *fixedCache) lookupTimestamp(key []byte) hlc.Timestamp {
var it arenaskl.Iterator
it.Init(c.list)
if !it.SeekForPrev(key) {
// Key not found, so scan previous nodes to find the gap timestamp.
return c.scanForTimestamp(&it, key, false)
}
if (it.Meta() & initialized) == 0 {
// Node is not yet initialized, so scan previous nodes to find the
// gap timestamp needed to initialize this node.
return c.scanForTimestamp(&it, key, true)
}
keyTs, _ := c.decodeTimestampSet(it.Value(), it.Meta())
return keyTs
}
func (c *fixedCache) addNode(it *arenaskl.Iterator, key []byte, ts hlc.Timestamp, opt nodeOptions) error {
var arr [encodedTsSize * 2]byte
var keyTs, gapTs hlc.Timestamp
if (opt & hasKey) != 0 {
keyTs = ts
}
if (opt & hasGap) != 0 {
gapTs = ts
}
if !it.SeekForPrev(key) {
// If the previous node has a gap timestamp that is >= than the new
// timestamp, then there is no need to add another node, since its
// timestamp would be the same as the gap timestamp.
prevTs := c.scanForTimestamp(it, key, false)
if !prevTs.Less(ts) {
return nil
}
// Ratchet max timestamp before adding the node.
c.ratchetMaxTimestamp(ts)
// Ensure that a new node is created. It needs to stay in the
// initializing state until the gap timestamp of its preceding node
// has been found and used to ratchet this node's timestamps. During
// the search for the gap timestamp, this node acts as a sentinel
// for other ongoing operations - when they see this node they're
// forced to stop and help complete its initialization before they
// can continue.
b, meta := c.encodeTimestampSet(arr[:0], keyTs, gapTs)
err := it.Add(key, b, meta)
if err == arenaskl.ErrArenaFull {
atomic.StoreInt32(&c.isFull, 1)
return err
}
if err == nil {
// Add was successful, so finish initialization by scanning for
// gap timestamp and using it to ratchet the new nodes' timestamps.
c.scanForTimestamp(it, key, true)
return nil
}
// Another thread raced and added the node, so just ratchet its
// timestamps instead.
} else {
if opt == 0 {
// Don't need to set either key or gap ts, so done.
return nil
}
}
// Ratchet up the timestamps on the existing node, but don't set the
// initialized bit, since we don't have the gap timestamp from the previous
// node. Leave finishing initialization to the thread that added the node,
// or to a lookup thread that requires it.
c.ratchetTimestampSet(it, keyTs, gapTs, false)
return nil
}
func (c *fixedCache) ensureFloorTs(it *arenaskl.Iterator, to []byte, ts hlc.Timestamp) bool {
for it.Valid() {
if to != nil && bytes.Compare(it.Key(), to) >= 0 {
break
}
if atomic.LoadInt32(&c.isFull) == 1 {
// Cache is full, so stop iterating. The caller will then be able to
// release the read lock and rotate the caches. Not doing this could
// result in forcing all other operations to wait for this thread to
// completely finish iteration. That could take a long time if this
// range is very large.
return false
}
// Don't set the initialized bit, since we don't have the gap timestamp
// from the previous node, and don't need an initialized node for this
// operation anyway.
c.ratchetTimestampSet(it, ts, ts, false)
it.Next()
}
return true
}
// Cheat and just use the max wall time portion of the timestamp, since it's fine
// for the max timestamp to be a bit too large.
func (c *fixedCache) ratchetMaxTimestamp(ts hlc.Timestamp) {
new := ts.WallTime
if ts.Logical > 0 {
new++
}
for {
old := atomic.LoadInt64(&c.maxWallTime)
if new <= old {
break
}
if atomic.CompareAndSwapInt64(&c.maxWallTime, old, new) {
break
}
}
}
// RatchetTimestampSet will update the current node's key and gap timestamps to
// the maximum of their current values or the given values. If setInit is true,
// then the initialized bit will be set, indicating that the node is now fully
// initialized and its timestamps can be relied upon.
func (c *fixedCache) ratchetTimestampSet(it *arenaskl.Iterator, keyTs, gapTs hlc.Timestamp, setInit bool) {
var arr [encodedTsSize * 2]byte
for {
meta := it.Meta()
oldKeyTs, oldGapTs := c.decodeTimestampSet(it.Value(), meta)
greater := false
if oldKeyTs.Less(keyTs) {
greater = true
} else {
keyTs = oldKeyTs
}
if oldGapTs.Less(gapTs) {
greater = true
} else {
gapTs = oldGapTs
}
var initMeta uint16
if setInit {
// Always set the initialized bit.
initMeta = initialized
} else {
// Preserve the current value of the initialized bit.
initMeta = meta & initialized
}
// Check whether it's necessary to make an update.
var err error
if !greater {
newMeta := meta | initMeta
if newMeta == meta {
// New meta value is same as old, so no update necessary.
return
}
// Set the initialized bit, but no need to update the timestamps.
err = it.SetMeta(newMeta)
} else {
// Ratchet the max timestamp.
if gapTs.Less(keyTs) {
c.ratchetMaxTimestamp(keyTs)
} else {
c.ratchetMaxTimestamp(gapTs)
}
// Update the timestamps, possibly preserving the init bit.
b, newMeta := c.encodeTimestampSet(arr[:0], keyTs, gapTs)
err = it.Set(b, newMeta|initMeta)
}
switch err {
case nil:
return
case arenaskl.ErrArenaFull:
atomic.StoreInt32(&c.isFull, 1)
// Arena full, so ratchet the timestamps to the max timestamp.
err = it.SetMeta(uint16(useMaxTs) | initMeta)
if err == arenaskl.ErrRecordUpdated {
continue
}
return
case arenaskl.ErrRecordUpdated:
// Record was updated by another thread, so restart ratchet attempt.
continue
default:
panic(fmt.Sprintf("unexpected error: %v", err))
}
}
}
// ScanForTimestamp scans backwards for the first initialized node and uses its
// gap timestamp as the initial candidate. It then scans forwards until it
// reaches the termination key, ratcheting any uninitialized nodes it encounters,
// and updating the candidate gap timestamp as it goes. The timestamp of the
// termination key is returned.
//
// Iterating backwards and then forwards solves potential race conditions with
// other threads. During iteration backwards, other nodes can be inserting new
// nodes between the previous node and the lookup node, which could change the
// correct value of the gap timestamp. The solution is two-fold:
//
// 1. Add new nodes in two phases - initializing and then initialized. Nodes in
// the initializing state act as a synchronization point between goroutines
// that goroutines that are adding a particular node and goroutines that are
// scanning for gap timestamps. Scanning goroutines encounter the initializing
// nodes and are forced to deal with them before continuing.
//
// 2. After the gap timestamp of the previous node has been found, the scanning
// goroutine will scan forwards until it reaches the original key. It will
// complete initialization of any nodes along the way and inherit the gap
// timestamp of initialized nodes as it goes. By the time it reaches the
// original key, it has a valid gap timestamp value.
//
// During forward iteration, if another goroutine inserts a new gap node in the
// interval between the previous node and the original key, then either:
//
// 1. The forward iteration finds it and looks up its gap timestamp. That node
// now becomes the new "previous node", and iteration continues.
//
// 2. The new node is created after the iterator has move past its position. As
// part of node creation, the creator had to scan backwards to find the gap
// timestamp of the previous node. It is guaranteed to find a gap timestamp
// that is >= the gap timestamp found by the original goroutine.
//
// This means that no matter what gets inserted, or when it gets inserted, the
// scanning goroutine is guaranteed to end up with a timestamp value that will
// never decrease on future lookups, which is the critical invariant.
func (c *fixedCache) scanForTimestamp(it *arenaskl.Iterator, key []byte, onKey bool) hlc.Timestamp {
clone := *it
if onKey {
// The iterator is currently positioned on the key node, so need to
// iterate backwards from there in order to find the gap timestamp.
clone.Prev()
}
// First iterate backwards, looking for an already initialized node which
// will supply the initial candidate gap timestamp.
var gapTs hlc.Timestamp
for {
if !clone.Valid() {
// No more previous nodes, so use the zero timestamp and begin
// forward iteration from the first node.
clone.SeekToFirst()
break
}
meta := clone.Meta()
if (meta & initialized) != 0 {
// Found the gap timestamp for an initialized node.
_, gapTs = c.decodeTimestampSet(clone.Value(), meta)
clone.Next()
break
}
clone.Prev()
}
// Now iterate forwards until "key" is reached, update any uninitialized
// nodes along the way, and update the gap timestamp.
for {
if !clone.Valid() {
return gapTs
}
if (clone.Meta() & initialized) == 0 {
// Finish initializing the node with the gap timestamp.
c.ratchetTimestampSet(&clone, gapTs, gapTs, true)
}
cmp := bytes.Compare(clone.Key(), key)
if cmp > 0 {
// Past the lookup key, so use the gap timestamp.
return gapTs
}
var keyTs hlc.Timestamp
keyTs, gapTs = c.decodeTimestampSet(clone.Value(), clone.Meta())
if cmp == 0 {
// On the lookup key, so use the key timestamp.
return keyTs
}
// Haven't yet reached the lookup key, so keep iterating.
clone.Next()
}
}
func (c *fixedCache) decodeTimestampSet(b []byte, meta uint16) (keyTs, gapTs hlc.Timestamp) {
if (meta & useMaxTs) != 0 {
ts := hlc.Timestamp{WallTime: atomic.LoadInt64(&c.maxWallTime)}
return ts, ts
}
if (meta & hasKey) != 0 {
b, keyTs = decodeTimestamp(b)
}
if (meta & hasGap) != 0 {
b, gapTs = decodeTimestamp(b)
}
return
}
func (c *fixedCache) encodeTimestampSet(b []byte, keyTs, gapTs hlc.Timestamp) (ret []byte, meta uint16) {
if keyTs.WallTime != 0 || keyTs.Logical != 0 {
b = encodeTimestamp(b, keyTs)
meta |= hasKey
}
if gapTs.WallTime != 0 || gapTs.Logical != 0 {
b = encodeTimestamp(b, gapTs)
meta |= hasGap
}
ret = b
return
}
func decodeTimestamp(b []byte) (ret []byte, ts hlc.Timestamp) {
wallTime := binary.BigEndian.Uint64(b)
logical := binary.BigEndian.Uint32(b[8:])
ts = hlc.Timestamp{WallTime: int64(wallTime), Logical: int32(logical)}
ret = b[encodedTsSize:]
return
}
func encodeTimestamp(b []byte, ts hlc.Timestamp) []byte {
l := len(b)
b = b[:l+encodedTsSize]
binary.BigEndian.PutUint64(b[l:], uint64(ts.WallTime))
binary.BigEndian.PutUint32(b[l+8:], uint32(ts.Logical))
return b
}