-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathevaluate.py
152 lines (125 loc) · 5.18 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : [email protected]
@File : evaluate.py.py
@Time : 8/30/19 8:59 PM
@Desc : Evaluation Scripts
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import torch
import argparse
import numpy as np
from PIL import Image
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from model import network
from datasets import SCHPDataset, transform_logits
dataset_settings = {
'lip': {
'input_size': [473, 473],
'num_classes': 20,
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
},
'atr': {
'input_size': [512, 512],
'num_classes': 18,
'label':['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
},
'pascal': {
'input_size': [512, 512],
'num_classes': 7,
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
}
}
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
# args = dict()
# args["dataset"] = 'lip'
# args["restore-weight"] = './Enter the path of Model'
# args["input"] = './Database/val/person/'
# args["output"] = './Database/val/person-parse'
# args["logits"] = False
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
parser.add_argument("--dataset", type=str, default='lip', choices=['lip', 'atr', 'pascal'])
parser.add_argument("--restore-weight", type=str, default='./exp-schp-201908261155-lip.pth', help="restore pretrained model parameters.")
parser.add_argument("--input", type=str, default='./Database/val/person/', help="path of input image folder.")
parser.add_argument("--output", type=str, default='./Database/val/person-parse', help="path of output image folder.")
parser.add_argument("--logits", action='store_true', default=False, help="whether to save the logits.")
return parser.parse_args()
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def get():
args = get_arguments()
num_classes = dataset_settings[args.dataset]['num_classes']
input_size = dataset_settings[args.dataset]['input_size']
label = dataset_settings[args.dataset]['label']
model = network(num_classes=num_classes, pretrained=None)
model = nn.DataParallel(model)
state_dict = torch.load(args.restore_weight)
model.load_state_dict(state_dict)
model.eval()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
])
dataset = SCHPDataset(root=args.input, input_size=input_size, transform=transform)
dataloader = DataLoader(dataset)
if not os.path.exists(args.output):
os.makedirs(args.output)
palette = get_palette(num_classes)
with torch.no_grad():
for idx, batch in enumerate(dataloader):
image, meta = batch
img_name = meta['name'][0]
c = meta['center'].numpy()[0]
s = meta['scale'].numpy()[0]
w = meta['width'].numpy()[0]
h = meta['height'].numpy()[0]
output = model(image)
upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
upsample_output = upsample(output)
upsample_output = upsample_output.squeeze()
upsample_output = upsample_output.permute(1, 2, 0) #CHW -> HWC
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size)
parsing_result = np.argmax(logits_result, axis=2)
parsing_result_path = os.path.join(args.output, img_name[:-4]+'.png')
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
output_img.putpalette(palette)
output_img.save(parsing_result_path)
if args.logits:
logits_result_path = os.path.join(args.output, img_name[:-4] + '.npy')
np.save(logits_result_path, logits_result)
return
def execute():
get()