-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmodel.py
303 lines (244 loc) · 10.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : [email protected]
@File : model.py
@Time : 8/30/19 9:10 PM
@Desc : Augmented-CE2P Network Achitecture. Reference: https://github.com/liutinglt/CE2P
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import torch
import torch.nn as nn
from torch.nn import functional as F
pretrained_settings = {
'resnet101': {
'imagenet': {
'input_space': 'BGR',
'input_size': [3, 224, 224],
'input_range': [0, 1],
'mean': [0.406, 0.456, 0.485],
'std': [0.225, 0.224, 0.229],
'num_classes': 1000
}
},
}
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class InPlaceABNSync(nn.Module):
"""
Serve same as the InplaceABNSync.
Reference: https://github.com/mapillary/inplace_abn
"""
def __init__(self, num_features):
super(InPlaceABNSync, self).__init__()
self.bn = nn.BatchNorm2d(num_features)
self.leaky_relu = nn.LeakyReLU(inplace=True)
def forward(self, x):
x = self.bn(x)
x = self.leaky_relu(x)
return x
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, multi_grid=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=dilation * multi_grid, dilation=dilation * multi_grid, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=False)
self.relu_inplace = nn.ReLU(inplace=True)
self.downsample = downsample
self.dilation = dilation
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out = out + residual
out = self.relu_inplace(out)
return out
class PSPModule(nn.Module):
"""
Reference:
Zhao, Hengshuang, et al. *"Pyramid scene parsing network."*
"""
def __init__(self, features=2048, out_features=512, sizes=(1, 2, 3, 6)):
super(PSPModule, self).__init__()
self.stages = []
self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes])
self.bottleneck = nn.Sequential(
nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1,
bias=False),
InPlaceABNSync(out_features),
)
def _make_stage(self, features, out_features, size):
prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False)
bn = InPlaceABNSync(out_features)
return nn.Sequential(prior, conv, bn)
def forward(self, feats):
h, w = feats.size(2), feats.size(3)
priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in
self.stages] + [feats]
bottle = self.bottleneck(torch.cat(priors, 1))
return bottle
class EdgeModule(nn.Module):
"""
Edge branch.
"""
def __init__(self, in_fea=[256, 512, 1024], mid_fea=256, out_fea=2):
super(EdgeModule, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(mid_fea)
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(mid_fea)
)
self.conv3 = nn.Sequential(
nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(mid_fea)
)
self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True)
self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True)
def forward(self, x1, x2, x3):
_, _, h, w = x1.size()
edge1_fea = self.conv1(x1)
edge1 = self.conv4(edge1_fea)
edge2_fea = self.conv2(x2)
edge2 = self.conv4(edge2_fea)
edge3_fea = self.conv3(x3)
edge3 = self.conv4(edge3_fea)
edge2_fea = F.interpolate(edge2_fea, size=(h, w), mode='bilinear', align_corners=True)
edge3_fea = F.interpolate(edge3_fea, size=(h, w), mode='bilinear', align_corners=True)
edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True)
edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True)
edge = torch.cat([edge1, edge2, edge3], dim=1)
edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1)
edge = self.conv5(edge)
return edge, edge_fea
class DecoderModule(nn.Module):
"""
Parsing Branch Decoder Module.
"""
def __init__(self, num_classes):
super(DecoderModule, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(256)
)
self.conv2 = nn.Sequential(
nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(48)
)
self.conv3 = nn.Sequential(
nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(256),
nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(256)
)
self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True)
def forward(self, xt, xl):
_, _, h, w = xl.size()
xt = F.interpolate(self.conv1(xt), size=(h, w), mode='bilinear', align_corners=True)
xl = self.conv2(xl)
x = torch.cat([xt, xl], dim=1)
x = self.conv3(x)
seg = self.conv4(x)
return seg, x
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes):
self.inplanes = 128
super(ResNet, self).__init__()
self.conv1 = conv3x3(3, 64, stride=2)
self.bn1 = nn.BatchNorm2d(64)
self.relu1 = nn.ReLU(inplace=False)
self.conv2 = conv3x3(64, 64)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=False)
self.conv3 = conv3x3(64, 128)
self.bn3 = nn.BatchNorm2d(128)
self.relu3 = nn.ReLU(inplace=False)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2) # stride 16
self.context_encoding = PSPModule()
self.edge = EdgeModule()
self.decoder = DecoderModule(num_classes)
self.fushion = nn.Sequential(
nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False),
InPlaceABNSync(256),
nn.Dropout2d(0.1),
nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True)
)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion)
)
layers = []
generate_multi_grid = lambda index, grids: grids[index % len(grids)] if isinstance(grids, tuple) else 1
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, multi_grid=1))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(
block(self.inplanes, planes, dilation=dilation, multi_grid=1))
return nn.Sequential(*layers)
def forward(self, x):
# Parsing Branch
x = self.relu1(self.bn1(self.conv1(x)))
x = self.relu2(self.bn2(self.conv2(x)))
x = self.relu3(self.bn3(self.conv3(x)))
x1 = self.maxpool(x)
x2 = self.layer1(x1)
x3 = self.layer2(x2)
x4 = self.layer3(x3)
x5 = self.layer4(x4)
x = self.context_encoding(x5)
parsing_result, parsing_fea = self.decoder(x, x2)
# Edge Branch
edge_result, edge_fea = self.edge(x2, x3, x4)
# Fusion Branch
x = torch.cat([parsing_fea, edge_fea], dim=1)
fusion_result = self.fushion(x)
return fusion_result
def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'):
model.input_space = settings['input_space']
model.input_size = settings['input_size']
model.input_range = settings['input_range']
model.mean = settings['mean']
model.std = settings['std']
if pretrained is not None:
saved_state_dict = torch.load(pretrained)
new_params = model.state_dict().copy()
for i in saved_state_dict:
i_parts = i.split('.')
if not i_parts[0] == 'fc':
new_params['.'.join(i_parts[0:])] = saved_state_dict[i]
model.load_state_dict(new_params)
def network(num_classes=20, pretrained='./models/resnet101-imagenet.pth'):
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes)
settings = pretrained_settings['resnet101']['imagenet']
initialize_pretrained_model(model, settings, pretrained)
return model