-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainingARM.py
198 lines (154 loc) · 7.41 KB
/
trainingARM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch, random, copy, numpy as np, pickle
from collections import defaultdict
from utils import write_in_file
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
class ARM_CML(torch.nn.Module):
def __init__(self, model, context_net, input_dim, loss_fn, learning_rate, weight_decay, optimizer, support_size, device, momentum=0, adapt_bn=0, img_dataset=1):
super().__init__()
self.model = model
self.loss_fn = loss_fn
self.device = device
self.context_net = context_net
self.support_size = support_size
self.input_dim = input_dim
self.img_dataset = img_dataset
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.momentum = momentum
self.adapt_bn = adapt_bn
params = list(self.model.parameters()) + list(self.context_net.parameters())
if optimizer == "Adam":
self.optimizer = torch.optim.Adam(params, lr=self.learning_rate, weight_decay=self.weight_decay)
elif optimizer == "SGD":
self.optimizer = torch.optim.SGD(params, lr=self.learning_rate, weight_decay=self.weight_decay, momentum=self.momentum)
def predict(self, x):
if self.img_dataset: batch_size, c, h, w = x.shape
else: batch_size, w = x.shape
if batch_size % self.support_size == 0:
meta_batch_size, support_size = batch_size // self.support_size, self.support_size
else:
meta_batch_size, support_size = 1, batch_size
if self.adapt_bn: #training batches are sampled from a single domain
out = []
for i in range(meta_batch_size):
x_i = x[i*support_size:(i+1)*support_size]
context_i = self.context_net(x_i)
context_i = context_i.mean(dim=0).expand(support_size, -1, -1, -1)
x_i = torch.cat([x_i, context_i], dim=1)
out.append(self.model(x_i))
return torch.cat(out)
else:
if self.img_dataset:
context = self.context_net(x) # Shape: batch_size, channels, H, W
context = context.reshape((meta_batch_size, support_size, self.input_dim, h, w))
context = context.mean(dim=1) # Shape: meta_batch_size, self.input_dim
context = torch.repeat_interleave(context, repeats=support_size, dim=0) # meta_batch_size*support_size, context_size
x = torch.cat([x, context], dim=1)
else:
context = self.context_net(x.float())
context = context.reshape((meta_batch_size, support_size))
context = context.mean(dim=1)
context = torch.repeat_interleave(context, repeats=support_size, dim=0)
context = torch.unsqueeze(context, dim=-1)
x = torch.cat([x, context], dim=1).float()
return self.model(x)
def update(self, loss):
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def learn(self, x, labels, group_ids=None):
self.train()
# Forward
logits = self.predict(x)
loss = self.loss_fn(logits, labels)
self.update(loss)
stats = {'objective': loss.detach().item()}
return logits, stats
def get_acc(self, logits, labels):
# Evaluate
preds = np.argmax(logits.detach().cpu().numpy(), axis=1)
accuracy = np.mean(preds == labels.detach().cpu().numpy().reshape(-1))
return accuracy
def run_epoch(algorithm, loader, train):
epoch_labels = []
epoch_logits = []
epoch_group_ids = []
for x, labels, group_ids in loader:
# Put on GPU
x = x.to(DEVICE)
labels = labels.to(DEVICE)
# Forward
if train:
logits, batch_stats = algorithm.learn(x, labels, group_ids)
if logits is None: # DANN
continue
else:
logits = algorithm.predict(x)
epoch_labels.append(labels.to('cpu').clone().detach())
epoch_logits.append(logits.to('cpu').clone().detach())
epoch_group_ids.append(group_ids.to('cpu').clone().detach())
return torch.cat(epoch_logits), torch.cat(epoch_labels), torch.cat(epoch_group_ids)
def train(algorithm, train_loader, test_loader, epochs = 200, print_output = False):
history = defaultdict(list)
# Train loop
best_worst_case_acc = 0
for epoch in range(epochs):
#Train
epoch_logits, epoch_labels, epoch_group_ids = run_epoch(algorithm, train_loader, train=True)
#Evaluate
worst_case_acc, average_case_acc, stats = eval_groupwise(algorithm, test_loader, epoch, split='test', n_samples_per_group=None)
history["epoch"].append(epoch)
history["worse_acc"].append(worst_case_acc)
history["average_acc"].append(average_case_acc)
if epoch % 10 == 0 and print_output:
print(f"Epoch {epoch}")
print(stats)
return history
def get_group_iterator(loader, group, support_size, n_samples_per_group=None):
example_ids = np.nonzero(loader.dataset.domain_ids == group)[0]
example_ids = example_ids[np.random.permutation(len(example_ids))] # Shuffle example ids
# Create batches
batches = []
X, Y, G = [], [], []
counter = 0
for i, idx in enumerate(example_ids):
x, y, g = loader.dataset[idx]
X.append(torch.tensor(x)); Y.append(y); G.append(g)
if (i + 1) % support_size == 0:
X, Y, G = torch.stack(X), torch.tensor(Y, dtype=torch.long), torch.tensor(G, dtype=torch.long)
batches.append((X, Y, G))
X, Y, G = [], [], []
if n_samples_per_group is not None and i == (n_samples_per_group - 1):
break
if X:
X, Y, G = torch.stack(X), torch.tensor(Y, dtype=torch.long), torch.tensor(G, dtype=torch.long)
batches.append((X, Y, G))
return batches
def eval_groupwise(algorithm, loader, epoch=None, split='test', n_samples_per_group=None):
""" Test model on groups and log to wandb
Separate script for femnist for speed."""
groups = []
accuracies = np.zeros(len(loader.dataset.domains_idxs))
if algorithm.adapt_bn:
algorithm.train()
else:
algorithm.eval()
for i, group in enumerate(loader.dataset.domains_idxs):#tqdm(enumerate(loader.dataset.domains), desc='Evaluating', total=len(loader.dataset.domains)):
counter = 0
group_iterator = get_group_iterator(loader, group, algorithm.support_size, n_samples_per_group)
logits, labels, group_ids = run_epoch(algorithm, group_iterator, train=False)
preds = np.argmax(logits, axis=1)
# Evaluate
accuracy = np.mean((preds == labels).numpy())
accuracies[i] = accuracy
worst_case_acc = np.amin(accuracies)
average_case_acc = np.mean(accuracies)
stats = {
f'worst_case_acc': worst_case_acc,
f'average_acc': average_case_acc,
}
return worst_case_acc, average_case_acc, stats
def test(algorithm, loader, n_samples_per_group, save_output=""):
worst_case_acc, average_case_acc, stats = eval_groupwise(algorithm, loader, epoch=None, split='test', n_samples_per_group=n_samples_per_group)
if save_output: write_in_file(stats, save_output)
return worst_case_acc, average_case_acc, stats