-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFIveFingerAPI.py
45 lines (37 loc) · 1.39 KB
/
FIveFingerAPI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import tensorflow.keras
import tensorflow as tf
from PIL import Image, ImageOps
import cv2
import numpy as np
tf.get_logger().setLevel('INFO')
class FiveFingerAPI:
np.set_printoptions(suppress=True)
model = tensorflow.keras.models.load_model('averagemodel.h5')
size = (224, 224)
thresh=137
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# def runmodel(self, frame):
# image=np.array(frame,dtype=np.float32)
# image= cv2.resize(image, self.size, interpolation=cv2.INTER_AREA)
# image = (image) / 127.0 - 1
# self.data[0]=image
# prediction = self.model.predict(self.data)
# score= np.argmax(prediction[0])+1
# return score
def binary_mapping(self,im):
im=np.array(im)
img_read= im.astype('uint8')
gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
im_bw = cv2.threshold(gray, self.thresh, 255, cv2.THRESH_BINARY)[1]
kernel = np.ones((5,5),np.float32)/25
dst = cv2.filter2D(im_bw,-1,kernel)
binary_im=np.array(dst)
return binary_im
def runmodel(self, frame):
img= np.array(frame,dtype=np.float32)
image= cv2.resize(img,(64,64))
input_img=self.binary_mapping(image)
input_img=input_img/255
input_img= input_img.reshape((1,64,64,1))
res3= self.model.predict_classes(input_img)
return res3[0]+1;