-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_processor.py
75 lines (67 loc) · 2.5 KB
/
data_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import re
import itertools
from collections import Counter
import pandas as pd
def clean_str(string):
"""
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def load_data_and_labels(data_file,testing=False):
# Load data from files
df = pd.read_csv(data_file,encoding = 'latin1')
s_c = []
sub_c = []
for index,row in df.iterrows():
if row['category'] not in s_c:
s_c.append(row['category'])
if row['subcategory'] not in sub_c:
sub_c.append(str(row['subcategory']))
print('Categories: ',s_c)
# print('Sub Categories: ',sub_c)
examples = []
labels = []
for index, row in df.iterrows():
if testing:
examples.append(str(row['short_description']).strip())
labels.append(str(row['category']))
else:
for i in range(len(s_c)):
if s_c[i] == str(row['category']):
examples.append(str(row['short_description']).strip())
l = np.zeros(len(s_c))
l[i] = 1.0
labels.append(l)
return [examples, np.array(labels)]
def batch_iter(data, batch_size, num_epochs, shuffle=True):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
num_batches_per_epoch = int((len(data)-1)/batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
if shuffle:
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
else:
shuffled_data = data
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]