-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmain.py
98 lines (74 loc) · 3.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import argparse
import torch
from os2d.modeling.model import build_os2d_from_config
from os2d.data.dataloader import build_eval_dataloaders_from_cfg, build_train_dataloader_from_config
from os2d.engine.train import trainval_loop
from os2d.utils import set_random_seed, get_trainable_parameters, mkdir, save_config, setup_logger, get_data_path
from os2d.engine.optimization import create_optimizer
from os2d.config import cfg
def parse_opts():
parser = argparse.ArgumentParser(description="Training and evaluation of the OS2D model")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
if args.config_file:
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg, args.config_file
def init_logger(cfg, config_file):
output_dir = cfg.output.path
if output_dir:
mkdir(output_dir)
logger = setup_logger("OS2D", output_dir if cfg.output.save_log_to_file else None)
if config_file:
logger.info("Loaded configuration file {}".format(config_file))
with open(config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
else:
logger.info("Config file was not provided")
logger.info("Running with config:\n{}".format(cfg))
# save config file only when training (to run multiple evaluations in the same folder)
if output_dir and cfg.train.do_training:
output_config_path = os.path.join(output_dir, "config.yml")
logger.info("Saving config into: {}".format(output_config_path))
# save overloaded model config in the output directory
save_config(cfg, output_config_path)
def main():
cfg, config_file = parse_opts()
init_logger(cfg, config_file)
# set this to use faster convolutions
if cfg.is_cuda:
assert torch.cuda.is_available(), "Do not have available GPU, but cfg.is_cuda == 1"
torch.backends.cudnn.benchmark = True
# random seed
set_random_seed(cfg.random_seed, cfg.is_cuda)
# Model
net, box_coder, criterion, img_normalization, optimizer_state = build_os2d_from_config(cfg)
# Optimizer
parameters = get_trainable_parameters(net)
optimizer = create_optimizer(parameters, cfg.train.optim, optimizer_state)
# load the dataset
data_path = get_data_path()
dataloader_train, datasets_train_for_eval = build_train_dataloader_from_config(cfg, box_coder, img_normalization,
data_path=data_path)
dataloaders_eval = build_eval_dataloaders_from_cfg(cfg, box_coder, img_normalization,
datasets_for_eval=datasets_train_for_eval,
data_path=data_path)
# start training (validation is inside)
trainval_loop(dataloader_train, net, cfg, criterion, optimizer, dataloaders_eval=dataloaders_eval)
if __name__ == "__main__":
main()