-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_regression.py
70 lines (50 loc) · 2.08 KB
/
streamlit_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import tensorflow as tf
import streamlit as st
import numpy as np
import pandas as pd
from sklearn.preprocessing import OneHotEncoder, StandardScaler , LabelEncoder
import pickle
### load the model
model = tf.keras.models.load_model('regression_model.h5')
### Load the encoders and scaler
with open('regression_label_encoder_gender.pkl','rb') as file:
regression_label_encoder_gender = pickle.load(file)
with open('regresssion_onehot_encoder_geo.pkl','rb') as file:
regresssion_onehot_encoder_geo = pickle.load(file)
with open('regression_scale.pkl','rb') as file:
regression_scale = pickle.load(file)
### streamlit app
st.title('Estimated Salary Prediction')
## user input
geography = st.selectbox('Geography',regresssion_onehot_encoder_geo.categories_[0])
gender = st.selectbox('Gender',regression_label_encoder_gender.classes_)
age = st.slider('Age',18,92)
balance = st.number_input('Balance')
credit_score = st.number_input('Credit Score')
exited = st.selectbox('Exited',[0,1])
tenure = st.slider('Tenure',0,10)
num_of_product = st.slider('Number of Products',1,4)
has_cr_card = st.selectbox('Has Credit Card',[0,1])
is_active_number = st.selectbox('Is Active Member',[0,1])
input_data = pd.DataFrame({
'CreditScore': [credit_score],
'Geography': [geography],
'Gender': [regression_label_encoder_gender.transform([gender])[0]],
'Age': [age],
'Tenure': [tenure],
'Balance': [balance],
'NumOfProducts': [num_of_product],
'HasCrCard': [has_cr_card],
'IsActiveMember': [is_active_number],
'Exited': [exited]
}
)
geo_encoder = regresssion_onehot_encoder_geo.transform(input_data[['Geography']])
geo_encoder_df = pd.DataFrame(geo_encoder.toarray(),columns =regresssion_onehot_encoder_geo.get_feature_names_out(['Geography']))
input_df =pd.concat([input_data.drop('Geography',axis=1),geo_encoder_df],axis=1)
### Scale the input data
imput_data_scaled = regression_scale.transform(input_df)
### Predict the churn
prediction = model.predict(imput_data_scaled)
prediction_proba = prediction[0][0]
st.write(f'Predicted Estimated Salary: ${prediction_proba:.2f}')