In this case study, we describe applying DeepTrio to a
real PacBio WGS trio. Then we assess the quality of the DeepTrio variant calls
with hap.py
. In addition we evaluate a Mendelian violation rate for a merged
VCF.
To make it faster to run over this case study, we run only on chromosome 20.
Docker will be used to run DeepTrio and hap.py,
We will be using GRCh38 for this case study.
mkdir -p reference
FTPDIR=ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | gunzip > reference/GRCh38_no_alt_analysis_set.fasta
curl ${FTPDIR}/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.fai > reference/GRCh38_no_alt_analysis_set.fasta.fai
We will benchmark our variant calls against v4.2.1 of the Genome in a Bottle small variant benchmarks for HG002, HG003, and HG004 trio.
mkdir -p benchmark
FTPDIR=ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio
curl ${FTPDIR}/HG002_NA24385_son/NISTv4.2.1/GRCh38/HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed > benchmark/HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
curl ${FTPDIR}/HG002_NA24385_son/NISTv4.2.1/GRCh38/HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > benchmark/HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl ${FTPDIR}/HG002_NA24385_son/NISTv4.2.1/GRCh38/HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > benchmark/HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
curl ${FTPDIR}/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
curl ${FTPDIR}/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl ${FTPDIR}/HG003_NA24149_father/NISTv4.2.1/GRCh38/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
curl ${FTPDIR}/HG004_NA24143_mother/NISTv4.2.1/GRCh38/HG004_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed > benchmark/HG004_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed
curl ${FTPDIR}/HG004_NA24143_mother/NISTv4.2.1/GRCh38/HG004_GRCh38_1_22_v4.2.1_benchmark.vcf.gz > benchmark/HG004_GRCh38_1_22_v4.2.1_benchmark.vcf.gz
curl ${FTPDIR}/HG004_NA24143_mother/NISTv4.2.1/GRCh38/HG004_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi > benchmark/HG004_GRCh38_1_22_v4.2.1_benchmark.vcf.gz.tbi
We'll use HG002, HG003, HG004 PacBio HiFi WGS reads publicly available from the PrecisionFDA Truth v2 Challenge. These reads have been aligned to the GRCh38_no_alt_analysis reference using pbmm2.
mkdir -p input
HTTPDIR=https://storage.googleapis.com/deepvariant/pacbio-case-study-testdata
curl ${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam > input/HG002.pfda_challenge.grch38.phased.chr20.bam
curl ${HTTPDIR}/HG002.pfda_challenge.grch38.phased.chr20.bam.bai > input/HG002.pfda_challenge.grch38.phased.chr20.bam.bai
curl ${HTTPDIR}/HG003.pfda_challenge.grch38.phased.chr20.bam > input/HG003.pfda_challenge.grch38.phased.chr20.bam
curl ${HTTPDIR}/HG003.pfda_challenge.grch38.phased.chr20.bam.bai > input/HG003.pfda_challenge.grch38.phased.chr20.bam.bai
curl ${HTTPDIR}/HG004.pfda_challenge.grch38.phased.chr20.bam > input/HG004.pfda_challenge.grch38.phased.chr20.bam
curl ${HTTPDIR}/HG004.pfda_challenge.grch38.phased.chr20.bam.bai > input/HG004.pfda_challenge.grch38.phased.chr20.bam.bai
DeepTrio pipeline consists of 4 steps: make_examples
, call_variants
,
postprocess_variants
and GLnexus merge
. It is possible to run the first
three steps with one command using the run_deeptrio
script. GLnexus
is run as a separate command.
mkdir -p output
mkdir -p output/intermediate_results_dir
BIN_VERSION="1.4.0"
sudo apt -y update
sudo apt-get -y install docker.io
sudo docker pull google/deepvariant:deeptrio-"${BIN_VERSION}"
time sudo docker run \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
google/deepvariant:deeptrio-"${BIN_VERSION}" \
/opt/deepvariant/bin/deeptrio/run_deeptrio \
--model_type PACBIO \
--ref /reference/GRCh38_no_alt_analysis_set.fasta \
--reads_child /input/HG002.pfda_challenge.grch38.phased.chr20.bam \
--reads_parent1 /input/HG003.pfda_challenge.grch38.phased.chr20.bam \
--reads_parent2 /input/HG004.pfda_challenge.grch38.phased.chr20.bam \
--output_vcf_child /output/HG002.output.vcf.gz \
--output_vcf_parent1 /output/HG003.output.vcf.gz \
--output_vcf_parent2 /output/HG004.output.vcf.gz \
--sample_name_child 'HG002' \
--sample_name_parent1 'HG003' \
--sample_name_parent2 'HG004' \
--num_shards $(nproc) \
--intermediate_results_dir /output/intermediate_results_dir \
--output_gvcf_child /output/HG002.g.vcf.gz \
--output_gvcf_parent1 /output/HG003.g.vcf.gz \
--output_gvcf_parent2 /output/HG004.g.vcf.gz \
--regions chr20 \
--use_hp_information
The --use_hp_information
arg makes use of a phased reads, thus allowing a
further improvement of the accuracy. You can use tools like whatshap to phase.
By specifying --model_type PACBIO
, you'll be using a model that is best suited
for PacBio HiFi Whole Genome Sequencing data.
NOTE: If you want to run each of the steps separately, add --dry_run=true
to the command above to figure out what flags you need in each step. Based on
the different model types, different flags are needed in the make_examples
step.
--intermediate_results_dir
flag is optional. By specifying it, the
intermediate outputs of make_examples
and call_variants
stages can be found
in the directory. After the command, you can find these files in the directory:
call_variants_output_child.tfrecord.gz
call_variants_output_parent1.tfrecord.gz
call_variants_output_parent2.tfrecord.gz
gvcf_child.tfrecord-?????-of-?????.gz
gvcf_parent1.tfrecord-?????-of-?????.gz
gvcf_parent2.tfrecord-?????-of-?????.gz
make_examples_child.tfrecord-?????-of-?????.gz
make_examples_parent1.tfrecord-?????-of-?????.gz
make_examples_parent2.tfrecord-?????-of-?????.gz
For running on GPU machines, or using Singularity instead of Docker, see Quick Start or DeepVariant PacBio case study.
At this step we take all 3 VCFs generated in the previous step and merge them using GLnexus.
sudo docker pull quay.io/mlin/glnexus:v1.2.7
# bcftools and bgzip are now included in our docker images.
# You can also install them separately.
sudo docker run \
-v "${PWD}/output":"/output" \
quay.io/mlin/glnexus:v1.2.7 \
/usr/local/bin/glnexus_cli \
--config DeepVariant_unfiltered \
/output/HG002.g.vcf.gz \
/output/HG003.g.vcf.gz \
/output/HG004.g.vcf.gz \
| sudo docker run -i google/deepvariant:deeptrio-"${BIN_VERSION}" \
bcftools view - \
| sudo docker run -i google/deepvariant:deeptrio-"${BIN_VERSION}" \
bgzip -c > output/HG002_trio_merged.vcf.gz
After completion of GLnexus command we should have a new merged VCF file in the output directory.
HG002_trio_merged.vcf.gz
sudo docker pull realtimegenomics/rtg-tools
sudo docker run \
-v "${PWD}/input":"/input" \
-v "${PWD}/reference":"/reference" \
realtimegenomics/rtg-tools format \
-o /reference/GRCh38_no_alt_analysis_set.sdf "/reference/GRCh38_no_alt_analysis_set.fasta"
FILE="reference/trio.ped"
cat <<EOM >$FILE
#PED format pedigree
#
#fam-id/ind-id/pat-id/mat-id: 0=unknown
#sex: 1=male; 2=female; 0=unknown
#phenotype: -9=missing, 0=missing; 1=unaffected; 2=affected
#
#fam-id ind-id pat-id mat-id sex phen
1 HG002 HG003 HG004 1 0
1 HG003 0 0 1 0
1 HG004 0 0 2 0
EOM
sudo docker run \
-v "${PWD}/input":"/input" \
-v "${PWD}/reference":"/reference" \
-v "${PWD}/output":"/output" \
realtimegenomics/rtg-tools mendelian \
-i "/output/HG002_trio_merged.vcf.gz" \
-o "/output/HG002_trio_annotated.output.vcf.gz" \
--pedigree=/reference/trio.ped \
-t /reference/GRCh38_no_alt_analysis_set.sdf \
| tee output/deepvariant.input_rtg_output.txt
As a result we should get the following output:
Checking: /output/HG002_trio_merged.vcf.gz
Family: [HG003 + HG004] -> [HG002]
175 non-pass records were skipped
Concordance HG002: F:152203/153489 (99.16%) M:153447/154331 (99.43%) F+M:148795/151183 (98.42%)
Sample HG002 has less than 99.0 concordance with both parents. Check for incorrect pedigree or sample mislabelling.
0/165025 (0.00%) records did not conform to expected call ploidy
159539/165025 (96.68%) records were variant in at least 1 family member and checked for Mendelian constraints
7726/159539 (4.84%) records had indeterminate consistency status due to incomplete calls
2678/159539 (1.68%) records contained a violation of Mendelian constraints
mkdir -p happy
sudo docker pull jmcdani20/hap.py:v0.3.12
sudo docker run \
-v "${PWD}/benchmark":"/benchmark" \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
-v "${PWD}/happy:/happy" \
jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
/benchmark/HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \
/output/HG002.output.vcf.gz \
-f /benchmark/HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \
-r /reference/GRCh38_no_alt_analysis_set.fasta \
-o /happy/HG002.output \
--engine=vcfeval \
--pass-only \
-l chr20
sudo docker run \
-v "${PWD}/benchmark":"/benchmark" \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
-v "${PWD}/happy:/happy" \
jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
/benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \
/output/HG003.output.vcf.gz \
-f /benchmark/HG003_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \
-r /reference/GRCh38_no_alt_analysis_set.fasta \
-o /happy/HG003.output \
--engine=vcfeval \
--pass-only \
-l chr20
sudo docker run \
-v "${PWD}/benchmark":"/benchmark" \
-v "${PWD}/input":"/input" \
-v "${PWD}/output":"/output" \
-v "${PWD}/reference":"/reference" \
-v "${PWD}/happy:/happy" \
jmcdani20/hap.py:v0.3.12 /opt/hap.py/bin/hap.py \
/benchmark/HG004_GRCh38_1_22_v4.2.1_benchmark.vcf.gz \
/output/HG004.output.vcf.gz \
-f /benchmark/HG004_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed \
-r /reference/GRCh38_no_alt_analysis_set.fasta \
-o /happy/HG004.output \
--engine=vcfeval \
--pass-only \
-l chr20
Benchmarking Summary for HG002:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt FP.al METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 11256 11233 23 23105 62 11332 15 43 0.997957 0.994734 0.490457 0.996343 NaN NaN 1.561710 2.316632
INDEL PASS 11256 11233 23 23105 62 11332 15 43 0.997957 0.994734 0.490457 0.996343 NaN NaN 1.561710 2.316632
SNP ALL 71333 71272 61 100735 22 29369 15 7 0.999145 0.999692 0.291547 0.999418 2.314904 1.932428 1.715978 2.093416
SNP PASS 71333 71272 61 100735 22 29369 15 7 0.999145 0.999692 0.291547 0.999418 2.314904 1.932428 1.715978 2.093416
Benchmarking Summary for HG003:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt FP.al METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 10628 10595 33 23047 54 11901 22 30 0.996895 0.995155 0.516380 0.996024 NaN NaN 1.748961 2.557273
INDEL PASS 10628 10595 33 23047 54 11901 22 30 0.996895 0.995155 0.516380 0.996024 NaN NaN 1.748961 2.557273
SNP ALL 70166 70144 22 99173 19 28954 9 2 0.999686 0.999729 0.291954 0.999708 2.296566 1.923292 1.883951 2.164234
SNP PASS 70166 70144 22 99173 19 28954 9 2 0.999686 0.999729 0.291954 0.999708 2.296566 1.923292 1.883951 2.164234
Benchmarking Summary for HG004:
Type Filter TRUTH.TOTAL TRUTH.TP TRUTH.FN QUERY.TOTAL QUERY.FP QUERY.UNK FP.gt FP.al METRIC.Recall METRIC.Precision METRIC.Frac_NA METRIC.F1_Score TRUTH.TOTAL.TiTv_ratio QUERY.TOTAL.TiTv_ratio TRUTH.TOTAL.het_hom_ratio QUERY.TOTAL.het_hom_ratio
INDEL ALL 11000 10967 33 23397 53 11867 19 33 0.997000 0.995403 0.507202 0.996201 NaN NaN 1.792709 2.553655
INDEL PASS 11000 10967 33 23397 53 11867 19 33 0.997000 0.995403 0.507202 0.996201 NaN NaN 1.792709 2.553655
SNP ALL 71659 71594 65 100530 38 28814 9 11 0.999093 0.999470 0.286621 0.999281 2.310073 1.949802 1.878340 2.053544
SNP PASS 71659 71594 65 100530 38 28814 9 11 0.999093 0.999470 0.286621 0.999281 2.310073 1.949802 1.878340 2.053544