forked from lucidrains/lightweight-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
168 lines (140 loc) · 4.53 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import random
from datetime import datetime
from functools import wraps
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from retry.api import retry_call
from tqdm import tqdm
from diff_augment_test import DiffAugmentTest
from lightweight_gan_ import NanException, Trainer
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def cast_list(el):
return el if isinstance(el, list) else [el]
def timestamped_filename(prefix='generated-'):
now = datetime.now()
timestamp = now.strftime("%m-%d-%Y_%H-%M-%S")
return f'{prefix}{timestamp}'
def set_seed(seed):
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed)
random.seed(seed)
def run_training(model_args, dataset, load_from, new, num_train_steps, name, seed):
model = Trainer(**model_args)
if not new:
model.load(load_from)
else:
model.clear()
model.set_dataset(dataset, num_workers=8)
for i in tqdm(range(num_train_steps - model.steps), initial=model.steps, total=num_train_steps, mininterval=10., desc=f'{name}<{dataset}>'):
retry_call(model.train, tries=3, exceptions=NanException)
if i % 50 == 0:
model.print_log()
model.save(model.checkpoint_num)
def train_from_dataset(
dataset,
results_dir='./results',
models_dir='./models',
name='default',
new=False,
load_from=-1,
image_size=256,
optimizer='adam',
fmap_max=512,
num_chans=3,
batch_size=10,
gradient_accumulate_every=4,
num_train_steps=150000,
learning_rate=2e-4,
save_every=1000,
evaluate_every=1000,
generate=False,
generate_types=['default', 'ema'],
generate_interpolation=False,
aug_test=False,
aug_prob=None,
aug_types=['cutout', 'translation'],
dataset_aug_prob=0.,
attn_res_layers=[32],
freq_chan_attn=False,
disc_output_size=1,
antialias=False,
interpolation_num_steps=100,
save_frames=False,
num_image_tiles=None,
num_workers=None,
multi_gpus=False,
seed=42,
show_progress=False,
num_classes=0,
aux_loss_multi=1,
projection_loss_scale=1,
cat_res_layers=[],
shuffle=False,
):
num_image_tiles = default(num_image_tiles, 4 if image_size > 512 else 8)
model_args = dict(
name=name,
results_dir=results_dir,
models_dir=models_dir,
batch_size=batch_size,
gradient_accumulate_every=gradient_accumulate_every,
attn_res_layers=cast_list(attn_res_layers),
freq_chan_attn=freq_chan_attn,
disc_output_size=disc_output_size,
antialias=antialias,
image_size=image_size,
num_image_tiles=num_image_tiles,
optimizer=optimizer,
num_workers=num_workers,
fmap_max=fmap_max,
num_chans=num_chans,
lr=learning_rate,
save_every=save_every,
evaluate_every=evaluate_every,
aug_prob=aug_prob,
aug_types=cast_list(aug_types),
dataset_aug_prob=dataset_aug_prob,
multi_gpus=multi_gpus,
num_classes=num_classes,
aux_loss_multi=aux_loss_multi,
projection_loss_scale=projection_loss_scale,
#cat_res_layers=cat_res_layers,
shuffle=shuffle,
)
if generate:
model = Trainer(**model_args)
model.load(load_from)
samples_name = timestamped_filename()
checkpoint = model.checkpoint_num
dir_result = model.generate(
samples_name, num_image_tiles, checkpoint, generate_types)
print(f'sample images generated at {dir_result}')
return
if generate_interpolation:
model = Trainer(**model_args)
model.load(load_from)
samples_name = timestamped_filename()
model.generate_interpolation(
samples_name, num_image_tiles, num_steps=interpolation_num_steps, save_frames=save_frames)
print(
f'interpolation generated at {results_dir}/{name}/{samples_name}')
return
if show_progress:
model = Trainer(**model_args)
model.show_progress(num_images=num_image_tiles, types=generate_types)
return
if aug_test:
raise NotImplementedError
DiffAugmentTest(data=data, image_size=image_size,
batch_size=batch_size, types=aug_types, nrow=num_image_tiles)
return
run_training(model_args, dataset, load_from,
new, num_train_steps, name, seed)
return