diff --git a/ppo-pick-jobs.py b/ppo-pick-jobs.py index b07d7b5..2769968 100644 --- a/ppo-pick-jobs.py +++ b/ppo-pick-jobs.py @@ -44,21 +44,21 @@ def critic_mlp(x, act_dim): return tf.layers.dense(x, units=act_dim) def mlp_v1(x, act_dim): - x = tf.reshape(x, shape=[-1,JOB_SEQUENCE_SIZE*JOB_FEATURES]) + x = tf.reshape(x, shape=[-1,MAX_QUEUE_SIZE*JOB_FEATURES]) x = tf.layers.dense(x, units=128, activation=tf.nn.relu) x = tf.layers.dense(x, units=128, activation=tf.nn.relu) x = tf.layers.dense(x, units=128, activation=tf.nn.relu) return tf.layers.dense(x, units=act_dim) def mlp_v2(x, act_dim): - x = tf.reshape(x, shape=[-1,JOB_SEQUENCE_SIZE*JOB_FEATURES]) + x = tf.reshape(x, shape=[-1,MAX_QUEUE_SIZE*JOB_FEATURES]) x = tf.layers.dense(x, units=32, activation=tf.nn.relu) x = tf.layers.dense(x, units=16, activation=tf.nn.relu) x = tf.layers.dense(x, units=8, activation=tf.nn.relu) return tf.layers.dense(x, units=act_dim) def mlp_v3(x, act_dim): - x = tf.reshape(x, shape=[-1,JOB_SEQUENCE_SIZE*JOB_FEATURES]) + x = tf.reshape(x, shape=[-1,MAX_QUEUE_SIZE*JOB_FEATURES]) x = tf.layers.dense(x, units=32, activation=tf.nn.relu) x = tf.layers.dense(x, units=32, activation=tf.nn.relu) x = tf.layers.dense(x, units=32, activation=tf.nn.relu)