Skip to content

Files

Latest commit

ee0916e · Aug 22, 2022

History

History

scripts

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Aug 18, 2022
Aug 18, 2022
Aug 22, 2022
Aug 18, 2022
Aug 18, 2022
Jan 23, 2017
Aug 18, 2022
Aug 18, 2022

How to update metadata

(to be moved to the documentation)

1. Create a working directory and set the task type

The working directory will be used to save all temporary and final output.

working_directory=~/auto-sklearn-metadata/001
mkdir -p $working_directory

The task type defines whether you want update classification or regression metadata:

task_type=classification

or

task_type=regression

2. Install the OpenML package and create an OpenML account

Read the OpenML python package manual for this.

3. Create configuration commands

python3 01_create_commands.py --working-directory $working_directory --task-type $task_type

This will create a file with all commands necessary to run auto-sklearn on a large number of datasets from OpenML. You can change the task IDs or the way how the datasets are loaded in the file update_metadata_util.py. To change the time used for configuration, you can alter the commands file which will be written to disk.

4. Run all configuration runs

On hardware of your choice. It is recommended to run all runs in parallel in order to get the results in a reasonable amount of time.

5. Get the test performance of these configurations

python3 02_retrieve_metadata.py --working-directory $working_directory --task-type $task_type

6. Calculate metafeatures

python3 03_calculate_metafeatures.py --working-directory $working_directory --task-type $task_type

7. Create aslib files

python3 04_create_aslib_files.py --working-directory $working_directory --task-type $task_type