diff --git a/.gitignore b/.gitignore index 6af55d4662..2d701af536 100644 --- a/.gitignore +++ b/.gitignore @@ -149,9 +149,8 @@ docs/html .DS_Store # release -docs/model_zoo/*.zip -docs/examples/*.zip -docs/examples/*/*.ipynb +docs/tutorials/**/*.zip +docs/tutorials/**/*.ipynb conda diff --git a/docs/tutorials/advanced_topics.zip b/docs/tutorials/advanced_topics.zip deleted file mode 100644 index 26363943bc..0000000000 Binary files a/docs/tutorials/advanced_topics.zip and /dev/null differ diff --git a/docs/tutorials/advanced_topics/howto_pytorch_lightning.ipynb b/docs/tutorials/advanced_topics/howto_pytorch_lightning.ipynb deleted file mode 100644 index bfd799f8cc..0000000000 --- a/docs/tutorials/advanced_topics/howto_pytorch_lightning.ipynb +++ /dev/null @@ -1,5886 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Custom models with PyTorch\n", - "\n", - "This notebook illustrates how one can implement a time series model in GluonTS using PyTorch, train it with PyTorch Lightning, and use it together with the rest of the GluonTS ecosystem for data loading, feature processing, and model evaluation." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:04.129030Z", - "iopub.status.busy": "2022-06-13T08:52:04.127872Z", - "iopub.status.idle": "2022-06-13T08:52:04.133264Z", - "shell.execute_reply": "2022-06-13T08:52:04.133838Z" - } - }, - "outputs": [], - "source": [ - "from typing import List, Optional, Callable, Iterable\n", - "from itertools import islice" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:04.139617Z", - "iopub.status.busy": "2022-06-13T08:52:04.138480Z", - "iopub.status.idle": "2022-06-13T08:52:04.950854Z", - "shell.execute_reply": "2022-06-13T08:52:04.951562Z" - } - }, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "from matplotlib import pyplot as plt\n", - "import matplotlib.dates as mdates" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For this example we will use the \"electricity\" dataset, which can be loaded as follows." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:04.957409Z", - "iopub.status.busy": "2022-06-13T08:52:04.956369Z", - "iopub.status.idle": "2022-06-13T08:52:05.286927Z", - "shell.execute_reply": "2022-06-13T08:52:05.287369Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.repository.datasets import get_dataset" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:05.291070Z", - "iopub.status.busy": "2022-06-13T08:52:05.290385Z", - "iopub.status.idle": "2022-06-13T08:52:05.295545Z", - "shell.execute_reply": "2022-06-13T08:52:05.295099Z" - } - }, - "outputs": [], - "source": [ - "dataset = get_dataset(\"electricity\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is what the first time series from the training portion of the dataset look like:" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:05.302591Z", - "iopub.status.busy": "2022-06-13T08:52:05.301698Z", - "iopub.status.idle": "2022-06-13T08:52:06.146253Z", - "shell.execute_reply": "2022-06-13T08:52:06.146685Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAHSCAYAAAD45Z1sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADDjklEQVR4nOzdd5gT5fYH8O/ZQu9VpK0gVaWJgGIBAaWo2LuX6/Vefl57uSr2hoK9iyJgFyyAoPTe21KXXcouy7KV7b2X9/dHJtlJNmWSTEtyPs+zzyaTyeTdbCZz5p3znpeEEGCMMcYYY4w5F2Z0AxhjjDHGGDMzDpgZY4wxxhhzgwNmxhhjjDHG3OCAmTHGGGOMMTc4YGaMMcYYY8wNDpgZY4wxxhhzI8LoBrjToUMHERUVZXQzGDON/fv35wghOvryXCJqAmArgMaw7Pt/CCFeJaLzACwC0B7AfgD3CSGqiKgxgB8AXAwgF8AdQogkd6/B+yxj9vzZZ7XG+ytj9tztr6YOmKOiohAdHW10MxgzDSI648fTKwFcLYQoIaJIANuJaBWApwB8JIRYRERfAXgAwBzpd74Q4nwiuhPAOwDucPcCvM8yZs/PfVZTvL8yZs/d/sopGYyFCGFRIt2NlH4EgKsB/CEt/x7AjdLtqdJ9SI+PIyLSp7WMMSJqQ0R/ENFxIjpGRJcSUTsiWkdE8dLvttK6RESfElECER0homFGt5+xYMIBM2MhhIjCiegQgCwA6wCcAlAghKiRVkkF0FW63RVACgBIjxfCkrbBGNPHJwBWCyH6AxgM4BiAGQA2CCH6ANgg3QeASQD6SD/TYblKxBhTCQfMjIUQIUStEGIIgG4ARgDo7+82iWg6EUUTUXR2dra/m2OMASCi1gCuBDAfAIQQVUKIAthf+XG8IvSDdCVpN4A2RNRF10YzFsRCLmAePnMd/vf7YaObwZihpAPvJgCXwnJgtY5n6AYgTbqdBqA7AEiPt4Zl8J/jtuYKIYYLIYZ37Gi+sU1Tv9iBO77eZXQzGPPWeQCyAXxLRAeJaB4RNQfQWQiRIa1zFkBn6bbtipBEfrVIE8NnrsfTv1mOp8sPp2P/mXwtX44xQ4VcwJxTUoU/9qca3QzGdEdEHYmojXS7KYAJsFzi3QTgVmm1aQCWSbeXS/chPb5RCCF0a7BKDqcUYM/pPKObwZi3IgAMAzBHCDEUQCnq0y8AWMYlwDIOQTG1rggNfGU1ckoqsfhAKp7+7TAeW3gQt8zZiYrqWp+3yZiZhVzAzPSVlFOKA8nc62ASXQBsIqIjAPYBWCeE+BvAcwCeIqIEWHKU50vrzwfQXlr+FBwO1owxTaUCSBVC7JHu/wFLAJ1pTbWQfmdJj9uuCEnkV4ts1LoiVFZVHxgvPlDfCfXG33E+b5MxMzN1WTmlCsqq8POeZDw0pjd4EL+5jHl/MwAgafYUYxvCIIQ4AmCok+WJsOQzOy6vAHCbDk1jjDkQQpwlohQi6ieEOAFgHIA46WcagNloeEXoESJaBGAkgEJZ6oYqKqprMXr2Rjw30fXQh7T8cjVfkjHTCIqA+cWlR7EiJgODu7XB5X06GN0cxhhjTA2PAviZiBoBSARwPyxXhn8jogcAnAFwu7TuSgCTASQAKJPWVVVaQTlyS6vw2l+xam+aMdMLioC5pNJSEau6ts7gljDGGGPqEEIcAjDcyUPjnKwrADysdZsYC1VBkcPMWRiMMcYYY0wrQREwWwnvBgszxhhjjDHmUVAEzNzBzBhjjDHGtBIUAbNV4FWIZYwxxhhjZhcUATOXkmOMMcaMx/1WLFgFRcBsxT3MjDHGmDb4GMtCWVAEzGr1LydklSAAZ/5ljHnpdE4prv9sOwrLqo1uCmMBh6/pslAUFAGzlT+hbnRSHsZ/uAU/7DqjWnsYY+b02YZ4xKQVYv2xTKObwhhjLAAERcCsRgpzUm4ZAOBwaoH/G2OMMcYYY0EjKAJmqxmLj6Ciuta/jXBGRsDKL61S5zPAGGOMMSYTJAGzpYs5t7QKv+9P9WMLLJC9t/YEFu1LweIDvn0GWOjg82LGGGPeCJKAWT15ZVVGN4H5yDqA6/do9wFzbZ1AAf+fGdRJ52KM1eNdigWroAiY1TjoWbex+UQ2UvLK/N8g011qvuX/diilwO1676w+jiFvrENRBVdIYM49segg/u/HaKObwRhjzCSCImCWi07K83sbaQXlKrSEmcGm41nILKqwW7biSAYAoKicA2bm3J+H0rEmlitoMGbPczITpzuxYBUUAbO8g3nZoXSn6/yyJxmx6YX6NIgZwtkX9f3f7cNNX+yw3Y9OyuMTIsb11hnzA8+uy0JRhNENUIPjvptVXIFOLZvY7n+/MwmvLo/VuVVMrqa2DhHh2p6fuYqB0gvre5hv/WqXx/VZ6ODjPmOMMSWCoofZUV2d/X0lwbKzA+eqmAz0fXEVyqu4TJm/EnNKnS7/+0g6+r60SpdScFU1dZ5XYiGBz5UY8x1foWGhKCgCZvJzXG7UjBV48tfDDZa/t+YEqmrrkF7Il/C18Mn6eDzyy0FU1dSh/8urNZ+m2LEyxhXvbkJWcYWLtVko8Pe7g7HQwvsLC10BHzBnF1ciNsM+N1lo0H90trACx88Wqb7dUHEqq8RWxcLqx91Jdvcz/Qxeffm/J+dyRZRQxB1kjDHGvBHwOcwTPtqCAo17JoUARs3aAABImj1F09cKVv/9+QAAbd8/j0EQd44wB5zDzBhjTImA72F2Fiz/uOsMdibk+L9xPpgGFO41ZIwxxpgWAj5gdubLzadw97w9yCgsR25JpdN1Xlgag6+3nNK5ZUxO7wCX81UZ88/qo2cRNWMFT+4Usixf2qU8EJ6FIL8CZiJaQERZRHRUtqwdEa0jonjpd1tpORHRp0SUQERHiGiYv4335LudSVgRk+H0sV/2JGPWquOKtlNZU//l8P3OJDWaxoAGlTHcBdCVNbXIL61CWVWNy3XiMjjHnCnDFyN88+BP+wEAyw6lGdwSZlZcQYMFK397mL8DMNFh2QwAG4QQfQBskO4DwCQAfaSf6QDm+PnaqnCcBc6qoKwKGQWWx+LS6wOxj9af1KVdejmWUYTaOvN/wfV7aTWGvrkOA19Zg5JK10GzK4U8qx9jjDHGfORXwCyE2ArAcS7qqQC+l25/D+BG2fIfhMVuAG2IqIs/r6+GkW9vcLr8stkbUS71gD7zxxE9m6Sb2PRCTPpkGz7fmGDI6/s6W5SzKa091XGe+PFW1DgW6GaM+YRnemOMhRotcpg7CyGseRBnAXSWbncFkCJbL1Vapilfv9bLXORolVTU4ItNCagLgF5ZT6w96EdSC4xtiAqqau2D4e93JmHLyWzb/YzCClw6a6PezWKMMcZYENB00J+wJDN5FVkS0XQiiiai6OzsbM9P8NQGv7dgr6ZO4L01J7A27qzKWw4N76854fIxf+pnn8oqsbv/6vJYTFuw1+PzjOooq6ypxVO/HkJaAU+KYwRrniX3lCr3x/5U2+333OzHLLTxPsWClRYBc6Y11UL6nSUtTwPQXbZeN2mZHSHEXCHEcCHE8I4dO/rdGK16git5mmWffL6pPv1Dja/ViupaXPLWetz05U6fnm/U+JQtJ7Kx5GAaRs/mXm9X0gvKIYSAEAIZKs+2af2386Fduf/93nA2VMYYCxVaBMzLAUyTbk8DsEy2/B9StYxRAAplqRua8eVsV0kw/PiiQ1hxRPPm68LsySVJOaV29+XtTSsoR3ax89KBZpTlYpAps7f/TB4um70Rf+xPxfztp3HprI2IzyxusN6bf8dh3rZEA1rIGGMslPhbVm4hgF0A+hFRKhE9AGA2gAlEFA9gvHQfAFYCSASQAOAbAA/589paUnIpHwCWHEj1vJIB9p7OU1T5wugrZ0oD9aUHtSthped7sPpoBka8vQE7EnLs/na9plwnou5EtImI4ogologel5brXgoyasYKvP5XrMvHT5y1pNgcSM7HDmkSopT8hrV/528/jZkrjqnVLOaFHBc17lnw4opxLJT5WyXjLiFEFyFEpBCimxBivhAiVwgxTgjRRwgxXgiRJ60rhBAPCyF6CyEuEkJE+9v4fUmOBTrsEUjTgGjD8Sy3dYGNsDsxF7d/vQtfbjKm8oU3HP81rr6MP9kQr1kb9DwAHEguAAAcTSu0Wz7x4216DbysAfC0EGIggFEAHiaigTCoFOS3O5JcPuZPPrsifOD3yt9H0hssq+K0NF0QUTgRHSSiv6X75xHRHulE9lciaiQtbyzdT5AejzKivVyHmQWrgJ7p72yh58vbWncgvrbcdS+ZEazvSUJ2iYc1A0Owfvk6/lk3fL5Dh9cUGUKIA9LtYgDHYKlUY7pSkPXvD2ka2xp9lSVQPPLLQaObEMoeh2VftXoHwEdCiPMB5AN4QFr+AIB8aflH0nqMMZUEdMDsiR4Hw0DKnzW7aQv2osahPNzxsw3zVk9mFuOOr3fho3Un8amfvc+hGjBJvU9DAeyBn6Ug1a5sY79t2W0eosdCDBF1AzAFwDzpPgG4GsAf0iqOJ7jWE98/AIwjLlnBmGoijG4AM55hvbgOX+VZxZXIKKxA93bNbMvqnLTtjb/icDqnFHtOu0/JYc4RUQsAiwE8IYQokh9ThRCCiLz6QAgh5gKYCwDDhw9X5cMULFUsCsqqkF9WjfM6NDe6KSwwfQzgWQAtpfvtARQIIay5gPKTWNsJrhCihogKpfVzdGstY0EsuHuYgdDtQlQgEN6aQO9VTMoptfWaW3OXNxzPcvcUTRFRJCzB8s9CiCXSYr9KQWqhvk6yNnnmmudIS679eCvGvr9Zl9cySk1tHcqliZ4qqmsbXCViviGi6wBkCSH2q7xdza4IMRbMAjpgDoSAzyhmTv39cO0JpCucsCOQ/8cpeWUY8/5m2yQPB6VBf3tP58GIUWfS5dn5AI4JIT6UPWSqUpBydidMKn4WrPuH1idkmUXBm7L1yC8HkFtSif/7cT8GvLIamUUV6P/yatz+9S4cTM63BdHMZ6MB3EBESQAWwZKK8QksYwmsV4flJ7G2E1zp8dYAch03qvZcB47S8nkyJhacAjpgNoMdpxp8HxlKrQBzW3w29p/JV2djDj7dmIDLFEzYUVZVgwXbT2vSBj1Yy27tdpI6UlRuSHWV0QDuA3A1ER2SfibDhKUg9TrhC+QTMi1FzViB//7kvmPzQHIBPl4fb7ti8uLSGNvym77ciWf+8G6ik6KKanyzNTFoB/p6SwjxvFR9KgrAnQA2CiHuAbAJwK3Sao4nuNYT31ul9VV9M5XsL4kOdfMZCxZBn8Os9fEwGEorOftGvW++pRZ10uwpmr2up//N7FXH8fv+hrWug+GA+uziI7q/phBiO1y/7eOcrC8APKxpo1ywS8kwogEhzPrerzp61uO6P+4+Y7u9/ph9qlFsunf1xV9bHoslB9LQp3MLjOnXyavnhpjnACwiopkADsJy1QjS7x+JKAFAHixBtqqC4KuXMZ8FfcDMlwVdM3t+cFF5tdFN0FVNbR0iwvmijxy5uF1dW4c+L67yebvWA39heTVKK2vQvHHQfxUqplZQ5O23S3GF5apLRXXgd0KoTQixGcBm6XYigBFO1qkAcJuuDWMshAT00VlJwOesLBkzh6KKhmkJ8oO1q4pISbkNZ3zzVVyGeT4fzt6PUGWrkiGv4CF7vEylE+Hnl8Tgync32e5nFVdIOebMX0RAXmkVrvtsG1LyPO+z5j59Z4yFuoAOmD0J5fzEYLhypse/b7MeFStk6QVMGY8zu6v4Ac8trbLdHvHWBtz+9S71Nh6A1Jr0qLSyFssPpeFoWhHmbUv04pnB8O3FGAs2AR0wKykNtfhAwxxYZs+0eWkhFmCWV3P6kCPSpkiG3978Ow5v/BVndDNUcTqnFKNnb0RWkWWW0FeWHbU9duW7mxpM5a7U2SLPM7HK8QklY8zMAjpg9kSrKg9Bw+QHqDAdjqC6HKQVvsiry8w1zboWNp3Iwu/RKR7X8zSw0986yt48f9PxLBSUVdktm7/9NBbssFRwefiXA4iascKv9hhp7PubkVZQjp92n8HDPx/A7sT6lJTkvDI8tsj3abG/3ZkEwJIrrpRpT+AZYyEtoANmTznM8i/+UPPX4XTEpnvoGZIdmPJKq/Cv7/Yhv7TK9fo60yOW9eXgXFFdi+k/RCPJy/JJnv6ejMLgr196/7f78MwfyiuEEMhp8Kx2ULUyJgNZxQ17RP86nI77v9uHIW+sQ2J2CbbF20/0UFFdixVHdC1NraqJH2+13f50YwJWxDT8WxKzfS8TdkYab5BVXIkTZ4sRNWMFomasQJ6T7xnr9znHy4wxMwrogJm59/iiQ4rWIwK+3XEaG49n2ZWJMppZL9HuPJWDtXGZeP0vdXuEzfr3GsE2sYg8JcPFAEA1PPTzAdw3b2+D5Y8urO9dvfqDLbZyi1b9X15tu+1dnq5ryw+nY4kXqWRCCBxMzscPu5Lwy55krIzJwMnMYpRUeh5Eqteg6FPZJbhWFpzvPd2wfj1//hljZsa1lIJMMF3O1KPsnS4H6WD6p+jEmjKx6XgWurZtavfY5E+2YUiPNn5tv7q24f/kRKay4DHORX3hBdtP499X9FK0jZLKGrSQlbIrq6pB44hwhIcRHpOC9JuHdVO0rYV7U/CCNGmI3LAebfDzv0ehaaNwu+VCCJRW1aJZZHiD52jFccZD6y5RXVuH2jqBJrK2+Lu7nC2swM5TOYrfP6Ycf5OxUMY9zEHms43xXj9HjXgut6TS58FBcntkPU+5BqaHFFVU42Cy+xx469uWXlCOhCzPwRYfbJSzfibls4al5lsu78dlFOGXPcleb1Ne2myjH9VRJn+6zelyV2UQHa2JPYsLX11jmz76QHI+Br6yBi/92TDotTpxthjP/nEYtXUC2+KzMWvlMVv5u3VxzicYOZBcgAGvrG6w/IddZ3Dhq2vw9VZ1esR9YX2vJn681dZLb337/M1Pv3f+Hjz122FFPezMvbo6YUujmfjxVtTxyT8LYQHdw1zBVQUaOCXLN/R4+Haygrvvw8MpBaiorsXIXu0bPDbpk23IKq70e2bAZ/44got7tkWvji2QX6Z9wOzq773/233YfyYfCW9NajCZiGPPt3Wab5d/uxQJeKodbPaJZLSwMyEHZVW1OJVdgm5tm+GrLacQ43DitS0+BwDw4tKjuGdkT6+2nyyr2X3Fu5vQp1MLLJw+yv+GO5FXWoXDKQWY+sUOfHDbYNxysfMezu3S33MktRDfbEvEyhhLwLtoXwpm3TzI6XP+78doJOWW4bfo+lSNr7cmYslDl2HTiWynz3Hlr8PpAIDoJOPGeCzcm4yJF57j8H0l5TD7GZNlFlpy0Ws91iZknlTV1k8ic/xsMSZ+7PxkkbFQENAB87trjhvdhJAy9YsdAJwHhlnFlQ2W+co6gYeR4ePhlAIA3CuspjonAczd8/Zo9nqfbYjHB+tO2i2LzyrB8JnrNXm98upa2z7y9O+HUVzhvDKEtSf1WEYR1sZm2pY7Boq/7UvBssNp+PLui132Xmf7sN9FS9WDNuhRg9yFLSedBPm2HmZ7m05kYVVMBt69dbCyjVvfKt55/aZHpSLGAkVAp2Tkl4bW1Mne8vRd9+Hakw2Wmen7UY+2eJwfw80KfHXSO2qk2Fz+zkany6NmrGiQQuMYLOvtNVmd5r7SNN7FFdUokU4IF+1LQY3DScTZwvpKHc8uPoIdCbn49w/7cNpFRZZg+gy62t3v/3afXc+6XHpBw8oy9fFyEL05jDHDBXTAzLxTUV1rd5nSeulbq8NKZY1vKTPWMmJGpii4DdY1apaZTla0oEYAk5rvuvTeqqPOc3nNwHppe9Dra7HkYJrL9UbN2tBg2b4kd7n0wRcUeqrBbbUvKQ+Xzd7YoKKItTdei5OJypparI0969WU34Fs8OtrjW4CY6YR0AGzPL+KNeQYcPZ/eTWedVIDt6Kq1lYvVc2DTL+XGg448oYZAkhVeqkUvqnxmepMSRyq5m5NxMbjmRBC2NUXNouK6lrVg7i/ArgGtNy7q497/d5YS+JFO0xQRbLUDlc9876aveo4pv+4H48tPIijaUX4euspVbdvNjz7KGP1AjpgZu45CzidTRW+NykPy6WBQGZgPW7qETDvSMhxulxJ77baHVh8cPLfWyuO4YWlR3WrL+yNu7/Zrfo2A3nSlH9+W1/T+svNp2yTphyyjh8QAssO2ffGx2cWO61esz0+xzbxj3XPfW/NCYx9f7Oq75G1R3m79L3B4woZCx0cMDM7H60/aRvwZhRrT5O7y+9qade8kdvHVx892+D98DqON0NXuRnoEFycyi7Fwr3el5zTw4HkAkNff9PxLFNN4b3ZRXWPb3ckAQA2HMtqMPnShI+24qYvdzZ4zr3z9+DSWRvx1ZZTyC+zjG2xfg6Oeprx1INvtiYiasYKvLY8FuuP2Q+UVJo+whgLfBwwhwhvSvBZR/or9fMebWYH1CNg7tK6idvHH190yOv3gzGzqaypxf3f7TO6GYql5pehsNx+UPcFsprSVTV19YP7ZDHr7FUNKyfN2exf2sRbK48BAL7bmdTgMY6XGQsdHDCHiL81vHT74tKjKm9Rv6NQE1eznSnoFHbsXRr02hqcyi5BSl4Zhryx1pYXziw4tjCOv+MJ9Hb5O5uwO9F++uxSWR3zvi+twkt/Wr53YhX0IO9MyMHXW9TPN+aJPBgLHQFdh5m5p3TmMX/4UgfWEz2PQXdc0t3r57h6X4sqavDrvhQcyyhCQVk1Zq6w9ExxNxQzkpnSMLzx+37npeQcHUn1HDBb633/31W9vWqDp8ldOIeZsdDBPczMZ/uS8nDJW9pMAqGXiDDnu4A/pxrWmelySiwnE4cVHNAZY9rLKq5osGz/mXy7lLWK6lo8uvAg0gvKcetXu9xuj3uYGQsdHDAHka0Os2dp3b8cm6ZNIBjIh6D9Z/LRqonlwk1TWbqHvKdqWI82ejfLFDi2YEa7+v0tdveXH07HLXN24vklMbZl6+Iy8dfhdGVjF/gzzVjI4JSMIJLmMOuVUcUZtpzMts1mFqjcvXfu3tb9spqwQ3u0wc5TljzMtXH1UyDrkSpjRjzzGjNaSaX999JjCw8CsATJVtbdU0m6WYWPkzMxxgIPB8xBTB6X6RmiTVuw1/NKJqFlECd//+duTdTsdRhj/imprEFGYTm6tG7q1Qyj+880rAnNGAtOnJIRIrQIC7XqKdXz0r0/r+XpuUZO7c0Y886NX+zA0bRCPPzLAcXPqeVRf4yFDA6Yg0h6gfZ1i/Wg52QAvrySv+cJoRpGcw4zM4OoGSsghGhQPSSzqBIzlhzxalvVtfyhZixUcMAcJGpq6/DZxgS7ZdzD6VkzF3WY3b131uoXnpzOKXW63DGPMlSEaOo2M6Hznl/pdPnRtCKvtlNTW6dGcxhjAYAD5iBRa0D3nVYBkNZ/ibxKRfPG3qfxP/nrYQCe858dB2FaHT9b7PVrBoMwjphZkKnhlAzGQoZmATMRJRFRDBEdIqJoaVk7IlpHRPHS77Zavb6eXlwa49XU03oxIj45kGz8IJipQ851+/h7tw3WqSVMjsNlFmxuvbib0U1gjOlE6x7msUKIIUKI4dL9GQA2CCH6ANgg3Q94P+9Jxp8H0wxtg7MUAvkSvfKCb/5yp9/b0LqpvTu2wJh+Hd2uw52hjDFPeOISxkKH3ikZUwF8L93+HsCNOr++Zoz+2nQW4Kk5w5yePej+lnpTEuv+35W9/X4tPlYyFtqCvUpG/3NaGt0ExkxDy4BZAFhLRPuJaLq0rLMQIkO6fRZAZw1fX1dm75D092t92JvrVGmHHpyVu7t5aFeHdTxsQ80GmQQRLSCiLCI6KlvmNE2KLD4logQiOkJEw/x9/eAOLVgoCvJ4OWTHWzDmjJYB8+VCiGEAJgF4mIiulD8oLDkCDb5uiGg6EUUTUXR2drbjw6Zl9CV8rV++rKphD7OWrxmbru602xHhwRgCe+07ABMdlrlKk5oEoI/0Mx3AHH9fnHvkWbCp0zBiJqLuRLSJiOKIKJaIHpeW63aSyxirp1nALIRIk35nAVgKYASATCLqAgDS7ywnz5srhBguhBjesaP7PFMWnH7YeQZTPt3u8/OdhcbeBmtKJmUJtABQCLEVQJ7DYldpUlMB/CAsdgNoY913fX597mNmQUbj6kQ1AJ4WQgwEMAqWjqeB0PEklzFWT5OAmYiaE1FL620A1wA4CmA5gGnSatMALNPi9Y1g+prHsu/155fEIDrJMW4yj9WxZ/3bgBf/ir+PZHheKbi5SpPqCiBFtl6qtIwxJtGyrJwQIkMIcUC6XQzgGCz7oG4nuYyxelr1MHcGsJ2IDgPYC2CFEGI1gNkAJhBRPIDx0v3gYPJ4WW7h3mTcOXe3/xsyOg9FBb/sSXa6PPD/Mu+5SpPyRGkaVaD1yDP/fHh78Jdv1Kv6EBFFARgKYA/8PMkN1LRHxoymScAshEgUQgyWfi4QQrwlLc8VQowTQvQRQowXQpi3mzPAcCyintLKGhSHzmx8rtKk0gB0l63XTVrWgNI0Kv6MBqf3bh3UYNnJmZNw87Bu+PPh0bZlF3ZthU/vGqpn0zSnR7xMRC0ALAbwhBDCbipCX05yOe2RMd94P80ZC0iO+aPBHLx0a9PUr+dfOmuDSi0JCNY0qdmwT5NaDuARIloEYCSAQlmvFmM2tw3vjpuHdcO6uEw8+NN+AECjCEtfzJDubZA0e4rd+o8tPKh7G7Wi9Ux/RBQJS7D8sxBiibQ4k4i6CCEyfD3JZYx5j6fGVkmgXcJXeilx0/EsrPE3p1hHW54Zg/M7N6wd6vjXuvt/FVUEZ+8yES0EsAtAPyJKJaIH4DpNaiWARAAJAL4B8JC/r6/X5etQNu3Snqpt69oLOuOhMb1xZd/6XkjH4NcqPIww8cJzVHvtQNGhRWPNtk2WkcfzARwTQnwoe8jVWKDlAP4hVcsYBT7JZUxV3MOsEiVVFcxEacfI/d/t07YhKuvZvjmOqDhhizuBVvVBCHGXi4fGOVlXAHhY3ddXc2vB64XJ/fHvy3vhcGoBbnIyc+ace4YhIjwM//khusFjA89t5dNr7n1xHDq1bIKLXl2D4soaHHntGrRqEml7PGrGCp+2685391+Cq/p2RHZJJUa8pc5VnbH9OuLb+0fY7mvRbrkmkZr2OY0GcB+AGCI6JC17AZaT2t+kE94zAG6XHlsJYDIsJ7llAO7XsnGMhRoOmFXywtIYVNXU4e6RPYxuim7MeoqgxbnL79Ep2J2Yhw9CYCATM9Z0aRbKoT3aNnjsxMyJaBwRrvprNom0bHNIjzbYFp+DyDDtLz6O6dcJANCpZRPbstk3X4SP1p9EZlElAODdWwfhlmHdEB5GEEIgPqsE13y01eU2P7x9iKZtdqRlHWYhxHa4/prV5SSXMVaPUzJUUlVThxeWxhjdjAZu/2oXAHV79/ScJtsXWpT4e+aPI1h8IBXVtXV2y7U8YAarYT3a2N13dZnfKPL2/P3o5bq97n+uOA+L/3up23U8Bcs3DO6KqUPO9fq1rb3JX917Mf565HI0baR+UK7EnSN6YM8L45E0ewqSZk/B7cO7IzzMsj8TEfp2bomk2VOQ+PZk/Dp9FNY/VT8fVtLsKWjbvJGu7dW4DjNjzEQ4YA5ye6V6y2p+rfd/eTUOJueruEV1hWnY9T3wldW22yl55Xjo5wPavViQcRdbWKsp/PHgpYh57Ro8Pq6PTq2yiHntGqfLL+zaWrXXOD1rMq4f7DqYfXHKQFzcs51fr9G0UTg+udO7ShQJb02y3W7eOAIXdVPvb9ZKWBhhZK/2OL9Tw/EKenI4f2aMBTEOmJlPDiQXmLYMs7N2qdURVF1bv6G0gnL/J1kJIe5yvq3VFIZHtUPLJpG2FAE1WXst377pItW3rYSe4xz2vTgeSx66zON6n989FBHh3h8GOrTQtyfXX09P6KvJdvkKE2Ohg3OYWRAyaSQf4rw5adF7QKW7YJbInAMWbxh8LpYfTnf6WMeWjd2+hx/ePhg3D+vm0+ueensyCECvF1b69HwjaBXX1pnxg8EY0wT3MIeAzzfGY1u8ujM6mblEmJKOvECrahJMwhS89+01zEX19l8/uFsbTdrhr3A/co86tvS9HFp4GCFMy7wnDWh1AjZuQCdNtssYMx/uYQ4S7uLX99ee1OQ1tRhcpwZnrWrVlD/qRrN+RCMVpADcdnF3NIkMx+OLDqnfDi9jJ7PGhp5OWl3tn5HhhNG9O2jRJNPy5/y+c6vGtqodjiZe2MX3DTPGAgpHESqLmrECSx66DMOclIQKNkbXIZ5zzzD818mgO2e9x2YN7kNJ80bhuG5QFzRVkJ8cFkaYOqSrKgHzlIu6eF054uDLE2w90Wpejeh/Tkv8dRhoGhmOco2rzVib3SgiDCdnTnK/cpATsExq9MLSGOxIyLV77MDLE1BRXYvLZm9s8Lz/XHEeXpg8AHO2nEJhWTWendgfqflluOq9zXj06vN1aj1jzAw4YNbA+rjMkAiYjTbpIue9O2btEQx1nVo1wed3D8Nv+1Lw+/5U3V73pqFdMX5gZ6+eIy9PpubnyZoKMWVQF/whew+2PjNWvRfRyfqnrtQsN1htQgj0bN8cP/97FAD7CU3aOaT/yHPWbxraDUSEh8bUB8c92zc3XSlExpj2OIdZAwFyDPHLqexS0/bacnoyk3PcH0ef396r56ua7+7iy6FH+2bqvYZE693g/E4t0dfJNPRm5E1Khvzkhb9LGGNWHDBrIBRGTi/cm2x0E1wyayDPJAb/e3q2b453bx2keH2zXrHw9C0TSANbH7j8PHx5zzDNtu/Nd3L3ds3QL0BOBBhj+uGUDC0Ef7wMACiuqDbsta8b5GawjYI4oYZnHDBOgO0fvp6ANWsUjrIqhzxlHWPYwAmXgZevG+jzc9s2i0R+mfvvIscZOhljzFscMGsgFHqYAWMvV7p7h501y3GAIk9pG+Ic/v2N3FTuCAvw63B67qbbnh2r+/fC+qeuQm5pldt1dp7Kdfs4Y4x5EuCHAnMKlVhMST1dzbh5j5Vciq51GK2UnFtm6trSQcVkXZ+NI8LQKML1V6GvPczuniWEpWKGlqy7gZ6f6u7tmqFbW/Xzsd1p36Kxx1xqV7u2ktkQGWMM4IBZE4EyctxfRuZIuitpp6RV8qsAMamFuPK9Tfh2R5L/DWOqWvfklRjXX9nkEErK1VnJPz9HXrvG7bpqfszlm3rlet/TEJyZMam/w2uZ7MzEQK6u+nE1I8aYUhwwa8Do+sR6+W7naaObgI1PX9VgmZIAR57SmJxXBgCIPpOnVrOYSvp0bommjSyB8Nh+Hd2u27mV97PX3T68GxpHuA+0XZ0Y3nlJd7fPi5T1Wj82rg8A+95ed2kgSvznil5o0yzSdv/Bq3o7XY/DZt+v+gXQuEnGmMY4YNZAqFzZT8krN+y1re9x88YN0/Bj0gpdrm8l73Gavz0RALAy5iyWH05Xr5FMVTcN66Z43UfGej+pxEd3DMa3/7ykwXJXMdP4Ae5rO//x4KW4e2QPl9vwNxi7sGtrHHrFTe84B3s2oTKuhDGmHQ6Yg0So9GpbuTv+VdV4HhFfJ8ubOZBcYLv92MKD/jSLKdC7Y3Ov1vflk929XdP65zv5sDj7/Nw0tBvGOkn/eObafk5fY0SvdujVoTn+fvRyp4+f36klOraw7/XWM4Y1IofZrDhgZoz5iwNmDXy3M8nrsmUV1bWorNF2qtxgYj1BcHYcdDYY0bpoULfWAEInz9yMLu7ZDpv/N0bx+rcM6woAGNq9DUZEtVP0HKX59UryfC/s2hovTRnQYHmrJpHY+L8xuLBra7vlv/3fpfjw9sEAjA1WuYO5nq/xMsfZjDErDpg1EptehEV7k1FeVYvCsmqsPpph19N1JrcUO0/l2O73f3k1Lpu10W4bWUUV2HQ8S9HrOVZ9CGXuJpqYOsQSfJm1rFyoVOqI6qC8l/nq/p2RNHsKurdTXn1B7WDx31f0Ujwd8ojz2uFmD+kjel4R4sAZCDPr7DOMsYDBdZg1MvWLHQCAGUtibMseGXs+/idd3r3qvc0AgKTZU3AmtxQAGtQSHfH2BtvtHx8YgSv6WAY9lVfV4s0Vcbi6Xyf06tgcvTq2wJRPt2v2t5iRNa50FngoOTjW8QmG4YiAh8Y4H6jmirtA05v/qDn++94FcQdfnuDd1nnEms3Q7m18eh6/hYwxKw6YdfT5pgQQAZGy0fE7E3Jw97w9tvtncktx05c7kecQPN83fy+mXdoTkeFhmLfdUp3ilz2W6amfm9gfp3NKdfgLzMNdwBPu5Cjn2HFbxTN/Ge70LGU9tr6QB4vOPivWz4O3AdGWZ8bYTna9a4/DfS+D5eaNwtG2eSOnj13csy32n8lv+JpevUJwuiSqLfYl5WPgua2MbgpjLMBxwCxJmj0FUTNWaP46n21MsLsvD5YBuD0Yf7/rjNPl76w+7ne7Ao2th9lJNBTupofZ+sj2+ByX6xhJCO7Vcsf6/35k7Pn4fFOCy/XIxe0G63n5Xvds3xwXdW3ttBKLO+4ybQZ08RzMvT71QpePLfzPKD4BdKFv55bYl5SPCD9L+LHQkllUgeKKGpzfqYXRTWEmEjIBc68OzfH53cMw+dNtDR776t5hBrSI+cfNxCUKoqBeXlZqYObiTU6q2qkJP/17JFLzy/zahjy1pLGbWQatmjdyXSu6kYuZCvnEy7UfHxiBfUkNe+UZA4CRUjqk0nELLDQExWn3qF7t8Ni4Pk4nsbCadfNF6NDC+SXNiRd2AQDcN6qnJu1j2mkim91t2cOjAbgf9GcVadIeJ3Pk1pqX9f1x9j+W9+J2a9u04Qp22/H9nW7dNBIXnNva84oy1uBVz7xinulPxqGL/4o+HfHUhL4GNYaZTdSMFZi18pjRzWAmZ86oQaH/SgOGZt54IZ6a0Be9Orq+fNKnc0unvTByNw7tanf/rhHd8e/Lz8OIqHZ49GrvJ0Jg6mnnkL85rGfbBssHSwN7nJWVcxRqOd/B4pzWTQAAzdz0uALAyF7t3T7eqollhrz2zb2fHdAZV1csRve2tOOy3h2cPGoJ4rgnWDv83jJ3knJK8dSvhwAAX2+1TGAlT81MKzBuci5mPgGdkvHMNf1w+/DuOE9Wouqfl0Xhu51JDdZ1DLis5PmD3R16pWbdPMju/tPX9MOp7BL07thCl3xnVs9x4oEHr6yvrnD78G74LTrVdt9Z7+OYfh3x3c4kXCwF2ifOFmvTUKap2TdfhAkDOmPcgE6Yu/U0ckoqbY+N6tXONs253CVRbRssu25QF5RX1TY4SfbVnw+PxuqjZ3Hbxfbl5Eb2ao+EtybZcmiv6tsRrZtG4oHLz0OlNMGOkimyfekPt+4zSk4gPXlsXB/EpXuXt+3Kwv+MQseWzr+PGdPTmPc3u3184Z5kW2UrxgI6YA4LI7tgGQBevX4gXpoyAOe/uMrpc5Y9PNpW8u3kzEmIkEVXnVo1Qezr1+KCV9e4fM3eUi/2VX074lBKAQrLq/39M5gCjnWm5Tms79wyCG/fdJHTx6zG9OuE+Lcm2VIxzDrzV2lVja33kzXUskmkLciNfmm87cT1h3+NwKhe7e1OnNzlHxIRbr+ku2rtatUkErcPd749+YCzji0b4/Crlums6+oEHryqN6Zd5jkVzJeQ1xooqzFwSc30hUt7u+/9V5NJd3MWIGpclB8tr6pF44gw27Gmtk6gurYO4WGEOiHQOMJyBUwIgfLqWjRr5D7UKq2sQfPGAR2OhYSg+w8RESLCyeXBcnD3Nm4PpM0bRyhK9P/+XyN8bqOeTmWXYNwHW3Beh+bY5MXsav6+ntpqat0P8osIrw8pnJWVA+zzls1ahrnWzd/JXLuyb0ejm+C1sDDCjEn93a5zwbmtEJtehB7tlU/aYtW0UTi+/ecltlQlxph3SitrUFpZg3EfbMHZogoAwPgBnbD+WP2EYm9MvQCvLIt1u512zRuhd8fm2JeUj1evH4g1sWexOzEPANCqSQSKKmoAWGqtuyofyYwXdAEzc06vVD5XwaqelFyCNuuMempcPg9lSx66DAlZJUY3QzV/P3o5kvPK0LO9b1VdxvbvpHKLAssNg8/FnwfTMMpDTruj+0dHYcaSGHRp7X7wKPPs+NkitG/eGKdzSjHivHY4mlaIxJxS3DD4XKOb1kBGoX3O8o+7z+DH3fblXOXBMgCPwTIA5JVW2eZWeP2vOLvHrMEyAAx9c12D5x5+5Rq0bsZXHc1A94CZiCYC+ARAOIB5QojZerchlLSQLvNc1M27Uf0+v14TbT5Sw3q2wY6EXEXrKok5u7RuguM+5jHP+8dw/PuHaNv9B6/qja+2nPJpW47IZMNwA21/HdajLYb1aJizHKiIyOdgmVlyyGNeu9brqbHvHNEDd47ooVGrtGOW/VXJGJ/HFh60u//t/ZdgbD/XJ3iF5dWoqxN2PbDPLzmCq/p2wsQLz0FybpntSsxfh9Ox5WQ23r9tsFftvnTWRq/W18PgN9baTU70yNjz0bFlY0y7LMpuvZLKGlRW16JJZDge+eUAXpg8AH06twQApOSVoWubpggLIwghXFbrKaqoRmV1HTq2tB8MvScxF3fM3Y2Vj11hmwRICIHznl+J/ue0RFlVLZLzytC7Y3NEhofh+NlitG/eCJ1aNUFidgkqa+rQ/5yWKK2qQUpeudv1BnRphZLKaqTkleP8Ti0QEUY4frYYHVo0QocWjZGYXYqq2jo8c20/XNmnI1Lyy3Bum6aIDCdkFVWicUQYWjeLRGllLQrKqtC1bVPU1QEp+WWYdOE5flUq0jVgJqJwAF8AmAAgFcA+IlouhIhz/0zmq86tmuDPh0ej/zktdXm9Di3UqTrg6NJe7b0ImD3vEJf17oBNJ7Ixqlc726UxR1f06YDZtwzCyiMZGNu/I8qqapFXWoUxDl/qavZWm6mHmfdXFgy8DZYDVaDvr/d/u8+n5y3cm+LysT/2p7p8LJDIZ/K0Ttj06nL3PdubTmSr3g5n81jIO55OZddXn8otrUKubMZipesdyyiy3ZZfLcwpqUJOSf167605gffWnPCq/cN6tMGSh0Z79Rw5vXuYRwBIEEIkAgARLQIwFUBA7NCBaohJchj/c8V5+GbbaZ+eO6ZfJ7y/9qSidZUcHkefbynz9eT4vhh4biuEhxEGvmI/2PPZa/uja5um+M+VvRo8f/qVvTBXKkN07YXn2EoS+auJgkksdGT6/XXNE1eipUZXNRgLMKbfXwPZhIGd8c0/hgMAiiuqkV9ajW0J2Xhx6VF0b9cUs24ahIhwwqGUAiTnleGy3u1xRZ+OGPz6WoNbzqwOJBf49Xy9jzRdAchPB1MBjNS5DUxj7gZNvjhloN39ksoaXPjqGjRrFI64NyaiprYOApaeVscprn2Zdem2i7vhPSeX5Qae26rB9qz3a2rrPE6l+8LkAXhh8gCnbZNfjvzX6PMQGU74emsinpvYH7/vT0FitvMa0CacVcr0+2s/na6cMBYAVN9fN/1vDB74bh9G9mqHx8f1xfNLjmDTiWy8OHkALjmvHVYdzcDXWxLx1b0XY2t8Nn7Zk2z3/HbNG6G0ssZWQtGTNs0iUVBmX3kqPIzsqiTJB8lZDe/ZFtGyXljrlcPOrRojs8hSevK5if3RKCIMWUUVCAsjFJZXo7ZWILO4Aue2aYqi8mr8fSQDAPDRHYMxdXBXl1cnWjaJRMsmkbinfU/cM9K+yo1jvrz1e/3JXw/hcGoBFv1nFM7klaF980bo1bEFFmw/jQPJ+Zh9yyCsjT2LmlqBWiGQW1LpspPonpE98LPDe92ycQSKK2swqFtrHEktxKW92qNHu2ZYeTQD1w3qgtT8cqTml+O6QV1w/GwxCJaB8B1aNEJiTiku7d0ep7NLUVMnkF9WhaNpRXZlOxlAeg5+IqJbAUwUQvxbun8fgJFCiEdk60wHMB0AevTocfGZM2ecbosFByEE3vg7DjcP7aZannVFdS2e/PUQiiqq8fEdQxvkY2ntx91nEEZAdFI+XrluIIgsl89m3nghMosqsGBHEpYfSsdNUnm0H3efscsNc4eI9gshhmv9N0iv5XF/lZbzPssC3mcb4nFht9Zu82h9odc+y/srM7sP151EvjQA8oPbB9vN1OutnadysC0+BznFlYjq0Bx1dQKJOaXo2b4ZIsPDkFZQjuaNwtGmWSMUV9Qgr7QSj4zt47HikLv9Ve+A+VIArwkhrpXuPw8AQohZztYfPny4iI6OdvYQYyFJ54DZq/0V4H2WMUc6Bsy8vzLmJ3f7q94Jk/sA9CGi84ioEYA7ASzXuQ2MMWV4f2UscPD+ypiGdM1hFkLUENEjANbAUvZmgRDCcxFDxpjueH9lLHDw/sqYtnQfXi6EWAlgpd6vyxjzHu+vjAUO3l8Z046palgxxhhjjDFmNroO+vMWEWUD8DSEtwOAHB2aEwz4vVLOrO9VTyFER6Mb4Qrvs6ri90k5M79Xpt1neX9VHb9Xypj5fXK5v5o6YFaCiKL1qhoQ6Pi9Uo7fK+3we6sMv0/K8XulHX5vleP3SplAfZ84JYMxxhhjjDE3OGBmjDHGGGPMjWAImOca3YAAwu+VcvxeaYffW2X4fVKO3yvt8HurHL9XygTk+xTwOcyMMcYYY4xpKRh6mBljjDHGGNOM6QJmIupORJuIKI6IYonocWl5OyJaR0Tx0u+20vL+RLSLiCqJ6H+ethNMVHyvmhDRXiI6LG3ndaP+Jq2o9V7JthdORAeJ6G+9/xaz4X1WGd5fleP9VTu8vyrH+6wyobK/mi4lg4i6AOgihDhARC0B7AdwI4B/AsgTQswmohkA2gohniOiTgB6SuvkCyHed7cdIUSc7n+URlR8rwhAcyFECRFFAtgO4HEhxG7d/yiNqPVeybb3FIDhAFoJIa7T7y8xH95nleH9VTneX7XD+6tyvM8qEyr7q+l6mIUQGUKIA9LtYgDHAHQFMBXA99Jq38PyRkMIkSWE2AegWuF2goaK75UQQpRIdyOlH3OdSflJrfcKAIioG4ApAOZp33Lz431WGd5fleP9VTu8vyrH+6wyobK/mi5gliOiKABDAewB0FkIkSE9dBZAZx+3E5T8fa+kSyCHAGQBWCeE4PfKtY8BPAugTov2BTLeZ5Xh/VU53l+1w/urcrzPKhPM+6tpA2YiagFgMYAnhBBF8seEEAIKz87cbSdYqPFeCSFqhRBDAHQDMIKILtSirUbz970iousAZAkh9mvXysDE+6wyvL8qx/urdnh/VY73WWWCfX81ZcAs5fgsBvCzEGKJtDhTypOx5stk+bidoKLWe2UlhCgAsAnARJWbajiV3qvRAG4goiQAiwBcTUQ/adTkgMH7rDK8vyrH+6t2eH9VjvdZZUJhfzVdwCwlx88HcEwI8aHsoeUApkm3pwFY5uN2goaK71VHImoj3W4KYAKA46o32EBqvVdCiOeFEN2EEFEA7gSwUQhxrwZNDhi8zyrD+6tyvL9qh/dX5XifVSZk9lchhKl+AFwOS7f9EQCHpJ/JANoD2AAgHsB6AO2k9c8BkAqgCECBdLuVq+0Y/feZ9L0aBOCgtJ2jAF4x+m8z63vlsM0xAP42+m8z+of3Wd3fJ95feX81/L0N9v1V5fcqqPfZUNlfTVdWjjHGGGOMMTMxXUoGY4wxxhhjZsIBM2OMMcYYY25wwMwYY4wxxpgbHDAzxhhjjDHmBgfMjDHGGGOMucEBM2OMMcYYY25wwMwYY4wxxpgbHDAzxhhjjDHmBgfMjDHGGGOMuRFhdAPc6dChg4iKijK6GYyZxv79+3OEEB2NbocrvM8yZs/M+yzvr4zZc7e/mjpgjoqKQnR0tNHNYMw0iOiM0W1wh/dZxuyZeZ/l/ZUxe+72V07JYIwxxgxCRN2JaBMRxRFRLBE9Li1vR0TriChe+t1WWk5E9CkRJRDRESIaJtvWNGn9eCKaZtTfxFgw4oCZMcYYM04NgKeFEAMBjALwMBENBDADwAYhRB8AG6T7ADAJQB/pZzqAOYAlwAbwKoCRAEYAeNUaZDPG/McBM2OMMWYQIUSGEOKAdLsYwDEAXQFMBfC9tNr3AG6Ubk8F8IOw2A2gDRF1AXAtgHVCiDwhRD6AdQAm6veXMBbcOGBmTKHMogocTSvE7sRco5vCWEgqKKvCkgOpRjdDM0QUBWAogD0AOgshMqSHzgLoLN3uCiBF9rRUaZmr5Y6vMZ2IookoOjs7W90/gNnkl1Zh6cHg/ayGIlMP+mPMLJJzy3Dle5ts95NmTzGwNYyFpscWHcLWk9kY0r0NenVsYXRzVEVELQAsBvCEEKKIiGyPCSEEEQk1XkcIMRfAXAAYPny4KttkDT2y8AB2JOTi4h7t0KN9M6Obw1QQND3McelF2B6fY3QzWJBKLyw3ugmMhbzMwgoAQFVtncEtURcRRcISLP8shFgiLc6UUi0g/c6SlqcB6C57ejdpmavlzAAZQfpZDWVBEzBP/nQb7p2/x+hmsBBRVydQXlVrdDMYYwGOLF3J8wEcE0J8KHtoOQBrpYtpAJbJlv9DqpYxCkChlLqxBsA1RNRWGux3jbSMMaaCoAmYGdPT+2tPYMArq1FaWWN0UxgLCadzSnEisxgAIIIrkWA0gPsAXE1Eh6SfyQBmA5hARPEAxkv3AWAlgEQACQC+AfAQAAgh8gC8CWCf9POGtIwZIbg+oz5LzS9DYVm10c1QBecwM6aA4wF6sTTw6FR2CQZ1a6N/gxgLMf/6bp/RTdCEEGI7AHLx8Dgn6wsAD7vY1gIAC9RrHfOV9ZBBTv6z87YlYuaKY0h4axIiwoO73/LydzahbbNIHHzlGqOb4rfg/k8x5qf80iqclHq1nLnh8x06toax0FXNuaAsSHy07iQAoKImuD/T+aVVlt9B0sPMATNjbkz6ZBuu+Wir014CxpgxlKZkZBVXIKekEgCw9GAqiiuC48DNjLdwbzJO55S6fNz62KK9yXo1yXRypYA5WAR9wFxWVYN52xJRV8cJRcx7Z4ssI52DLGeSsYDjy0nriLc2YPjM9TiaVognfz2MGUti1G8YC0nPL4nBDZ9t97jeicySBstKpQHj2cWVqrfLLPJLqzD+wy1ePSchqwQz/46DMOkBN+gD5ndWHcfMFcewOvas0U1hAWz54XS7+1whgzF9ZRb5HlyUSftrlnQCzJgaiv0c9L30YPBW/Zuz5ZTXz7n/u72Yt/00UvPNWcY16APmogrLB7qimgMc5ruFDpfVrJ8rxpg+qmT5nu56mzcdz8K8bYk6tIgxz0Ixm6+yphZzt3q3D0Yn5SElz5yBslXQB8yMufPJ+nj0eXGlX9tIzS9TqTWMMSWeW3wEry476vSx+7/bh5krjmHLyYbTPpv0Si8LUcEaTB9OKfT6Obd+tct2e+nBNKQVmC94DvqAuayKewKZax+tP4nqWudH0SQ3AzrkLn9nk+eVGGM+c7xCeCS1EN/vOuP2OdMW7LXd5kG7jBnr+NkixamMH647idtlAbRZBH3AvCY2EwD3LDDv1NUJjHl/s9HNYIwBHgcPLd6fqigNgw8DvssoLMfe0/bzoBSWVSOrmPPC3QnFk7XnlxxpsGzix9vw+KKDireRXWK+AZEeA2YiWkBEWUR0VLasHRGtI6J46XdbaTkR0adElEBER4homOw506T144lomrPXYsxofx1OR35pldcHVrOO6mUs0BVXVHscBPT074cxc8Uxl4+HYMyiujHvbcbtX9v3+g2buQ4j3tpgUIsCQyh+9k5lO786u+tUrs4tUZeSHubvAEx0WDYDwAYhRB8AG6T7ADAJQB/pZzqAOYAlwAbwKoCRAEYAeNUaZGtFCIFMHhHNvJBRWI5HFx7Egz/t9/q53+1MUr9BjDF8scn70fZMXSl5ZaiUDbrMK61C1IwVqJXKtc7dyv8jq0MpBYiascJ2f9OJhrn0ocqbqiJmPNHwGDALIbYCcJyPfiqA76Xb3wO4Ubb8B2GxG0AbIuoC4FoA64QQeUKIfADr0DAIV9X87acx8m0+82XKWUfhZxRWeN1jfDzD9WyAjDHf1XmxL37loZQVXwnyzRXv1o/TyCyqwC977PPH3155XO8mmdaGY5kNliVkOT8+BGO6hrO/3x8peWUo9bN8n1p8zWHuLITIkG6fBdBZut0VQIpsvVRpmavlmkgrKMefh4K3viFTx5RPt9lu3/D5dny2MQGAb1UvckoqUVljP6AhObcMsenejxZmjPlm9irngduxjCK3z8ssqsALS2N4+m0FRr69Ae+vPWl0MwJKdnEVvtma2OCE7Wha8B0fHvg+WpXtWK9oXPHuJtw5d7cq2/SX34P+hOUToNppOxFNJ6JoIorOzvZ8KaOuTuC15bG2+zsScjB69kYcTXP/Bclc16auqqnDujh1zxLNKDa9/jNyJLUQf+xPBQD4MinkhuNZmP6DfSrHle9twpRPPc8EFaqOny3CN17W6mShp1aFWVqPn3V/BejFpTH4ZU8ytvDlcztlVTWISQ2+oM5XpZU1qKyp9Xrm4Lu+2Y23Vh7DjgT7HN71x7JQVlUT0vNEvL/mhF0KizMxJjmx8DVgzpRSLSD9zpKWpwHoLluvm7TM1fIGhBBzhRDDhRDDO3bs6LEhJ7OK7fJHd57KUf5XBKnckkqcOFtsd3kyo7Aczy85YutB2XQ8C/1fXo0DyfkNnv/hupP4zw/R2B4fuu+lpwOsM87qvjLXpny6HW+tdD1QizHA8n3mr5/3WCYechXmcKaGc08sOoTrP+eTfqsLXl2Dfi+txpO/HfLp+ffO34Piimq7ZQNfWYOrQ7gi0+ebEoxugmIRPj5vOYBpAGZLv5fJlj9CRItgGeBXKITIIKI1AN6WDfS7BsDzvjebuRKTWmj3BdeueSPcPrw7ZiyOwZaT2bhm4DkY278TtknB8IEz+RjWw/Jvmfl3HFo1jUSKlJKQX1al/x+gg6ScUsz1UILqus/4IKE1x57DwykFGNStNSgYE/tYQOC42d7BlAKjm2BKyw6lO13+/JIjWLg3xeljVltPNuyISi8MnQIFm05koVlkOEb2am90U7ympKzcQgC7APQjolQiegCWQHkCEcUDGC/dB4CVABIBJAD4BsBDACCEyAPwJoB90s8b0jLVhfqI6pu+3GF3/9k/juBUdgmyi6VeGodYZOaKY7a8qnnbT+PDdcGfm/bowoP4ZU+y5xWZJk7nlDbI5VsVk4GpX+zA4gM89oDZc3cCdbawwqvJqVxtic/RnLMdN5ginoJlANh7OrBLq/nr/m/34Q6FOck1JhtT4LGHWQhxl4uHxjlZVwB42MV2FgBY4FXrVBTKPQfXfrQVNW5yrkqratGiccOPQrC+Z2bJhwpF1isgL00ZYLc8UZpV8bON8Qgj4OZh3YxoHjMhd5UtRs3yrhLSgeQCnMwsRt/OLf1tFmM+8TRDZShxlhIqt81kaaEBP9Pf/G2njW6C6bkLlq32JdV3+AdzZ4saA4iY787kWQJj+SQTVTV1tv/LmdwyPPXbYUPaxsxJ7RSdPaddX9zksnO+C+WBaxuPZ6qSax9KKqprcfOXO92u401JST34msNsGr9LlQ0YsD4u02NwXFVT53RE6m0mnLddbdW1dejz4ipdXstV3c1Q5+z7r+9L+vxPWGAoq6rB6qNncdPQrnjpz6NYelC/NJ01sZkoqqjBrRfzFQ5vVVbXoUlkuNHN0N3B5Hz867toDO7W2q/tJOWUIqpDc5VaZX79X17tcR21StSpJeB7mFm9f//g+cP13poTDZa56lUJtt6Wcp16QCqqazH+w622+59vjNfldQPBq7ISkKGoprYOWQE+A2lBWZVXecPeem15LJ767TDWxJ61VbdQlZvvtcUHUvG/3/kKhy9qg+x4oVRBuaXqxWE/y+/JZ1Jk5hQyAfP+M5qMMQw4Z52Mxr3otbV2909mWnpHH190SI8mBZ2k3FK7+1zkv15eqbLKK97WOQ0Ury6PxYi3N6DEJDNX+WLIG+swQXZCqLbMIsul7Qd/OqDZazRkXCIaES0goiwiOipb9hoRpRHRIelnsuyx54kogYhOENG1suUTpWUJRDRD77/j592cm+uP5YfTMGvVMby7mmdNNKuADphPeFErV8no1VCgpNf4ZGaJ3f2oGStw9zfmmGmHhYZHFuoZLOlnrTQhUFkAB8yAZTbVQJWU23Amz5o6Q3v3vgMw0cnyj4QQQ6SflQBARAMB3AngAuk5XxJROBGFA/gCwCQAAwHcJa2rm7wgLUNqpfRk31dfbDqFr7ck4svNoV3py8wCOmAu1fCyYLAqrfIuLcHaE7bzlKUUjhAiYFM19Gp2uZfvMWtoZcxZo5tgGrV1Ail57qdrL6uq4RJgCs3f3nCguJGTNAkhtgJQegl0KoBFQohKIcRpWEq4jpB+EoQQiUKIKgCLpHWZSkpdnORWhvBgRz1d8e5Go5sQ2AFzgMZtqhJC4PfoFM1GKL/8p+0qIQrLqnHe8ysxOcCmez5+tgjRSXlYrNMA0Zs8jPw1ktQbdZCI/pbun0dEe6TLuL8SUSNpeWPpfoL0eJShDTeh277aiTHvbfLpudavroPJ+TiQnI952xLx35/sp1avqbUM0O3/8ipc8e4mnMq2v/LT76VVeHThQQDADZ/vwCVvrfepLWajR03kb3ecRmp+/UmISQ8ljxDRESllwzrpV1cA8sulqdIyV8uZxvRNHTI3LVNfU/KMv6oV0AEzAzafyMYzfxzBu6sbDuZTg/ys+rFFloPzsYwiTV5LKxM/3oZbv9qFgiC/ZKjQ4wDk81G/A8ul3/MB5AN4QFr+AIB8aflH0nq6emzhQVNf+t+XlO/08r43bvpyJ27+cidmrjiGVUfte9WrpKL91bWWcO52h0o2lTV1+OuwZcaxhCz7YNooZVU1OH7W/N8Pr/8Vh2kL9hrdDHfmAOgNYAiADAAfqLVhIppORNFEFJ2dna3WZhnD5xsDZ5prX4RUwCyEwKMLD+JSL4vdm1mRNC99tg41INNNHLyYhZkHcxFRNwBTAMyT7hOAqwH8Ia3yPYAbpdtTpfuQHh9HOs9ZvfxwOt78K07Pl9SNL29krsY5lGp4+OcDmPjxtoCoyVtUYd59VQiRKYSoFULUwTJr7gjpoTQA3WWrdpOWuVrubNtzhRDDhRDDO3bsqH7jWcjadEK/EzAj4pEAD5i9u5D24bqT+OtwOjJCaN52f5n0UqVpeTMQ1QAfA3gWgHWEU3sABUIIa+Qgv4xru8QrPV4ord+Alj1WIkg/gQLA79G+D0TeFm/OnsG90qQgSiZLckWvszIzp/QRURfZ3ZsAWHPjlgO4U0qZOg9AHwB7AewD0EdKsWoEy8DA5Xq2manHVb40s9iRkIPLZm/E30fSdX3dgA6Yvf3C+yyILxdYL82qbZ00qj8YBEIPnVaI6DoAWUKI/R5X9pKWPVZH/KxtajbyYHDRPvcBMzkJHZNySpGcW4b75ps6ncDngcFVNXV+Bdu+MnIGUCJaCGAXgH5ElEpEDwB4l4hiiOgIgLEAngQAIUQsgN8AxAFYDeBhqSe6BsAjANbAknL1m7QuC0BmmxLabDafyAIAPPLLQeySChLoIaBn+lPjKy69oBxhRDindRMVtqY/Pa+Sy9/vpQdTQSDcODRwxpVoMglC4BgN4AapnmsTAK0AfAKgDRFFSAdc+WVc6yXeVCKKANAagH7fTJKCsmq9X1J1+aVVqKypwzmtmyBLqmThOIDPmRUxGQ2WjXl/M1Y+doXqbTQLPWd9zDHJVMZCiLucLJ7vZv23ALzlZPlKACtVbBozjIkvf8hU19Yht6RK9/jpm231lW7u+mY3kmZP0eV1A7qHWQ2Xzd6IUQGc07wnUfcYBgDw5K+H8cSvhwx5bTPTN8tXOSHE80KIbkKIKFgu124UQtwDYBOAW6XVpgFYJt1eLt2H9PhGYUA9wTozXzdXaNjMdQ2+Y/46nIEYD73ns1Yec/u4memc7s5M4NsdSYiasQLlVbXYfybf6Oao5td9ySiqqNb1u33u1kT9XswPL/95FKNmBfZETN4I+YA5kK2Py9S11zRYZ19T080mLinnwnMAniKiBFhylK09W/MBtJeWPwVA95nDAEsliC0nzZmvq5Q15n9NNi04UX0VDFd8TSH6esspfLHJ2PSzQK3Vzvz335/345Y5O80+nkORI6kFeG5xDAY5zIartQPJBbq+nq/WH7OkbJZX1SIpp9TD2oEvsFMyQvw7+d8/ROv6ekbkFgaLwvJqtG4aaXQzAABCiM0ANku3E1E/Al++TgWA23RtmAvTFux1ecmttk7gWEYRLuzaWudWee+7nUm22/50Vq0+ap+qsel4lt39WassU+s+PPZ8P14lNOxOzEXzRgF9GDSduHRLWcHc0koALY1tjJ/k8xA4lnXUWlFFNWprBdo2b6Tr6/rivTXH8Vu0PvMcGCmge5jL/ShdZJa6pYEk2cNsY2b0mDSxg9F41LM2vtiUgOs+247DKQVGN8UrrmaDVNJL86nD4OX7v9unSpuUqPHQKx5o7py7G9d/HlgTMZldVhDNOHlYljaVrnN1reFvrsfQN9fp+pq+CoVgGfAjYCaifkR0SPZTRERPENFrRJQmWz5Z9pznpZnDThDRtf42/sO1vk/WMf7DLf6+vKGqTXLgstaBNqPk3DIs16h6iLfkffMZheU8fbZKjqZZDmhqlYpMyinFv77bp3nVhCUHnZbIxZj3N+NAsnnzP715nw+nFGDZIed/Jwt+mUVcvtUfnlK2zCCnRP/KU/IZOvXmc8AshDghhBgihBgC4GIAZQCWSg9/ZH1MGrkLIhoIy2CjCwBMBPAlEYX70/iCcv+Ctaoa838gXdlt0GA/R7t1LOnijdLKGlzp47TFWrt01kbcM2+30c0ICmqXFBrz/mZsPJ6F72XpE3o7ne17LqCS6hv+eN+LToqpX+zA44sOadcYZmpP/nrY6CawIFNSWYPL3zHuuK5WSsY4AKeEEGfcrDMVwCIhRKUQ4jSABDjJndTTWytczyJWWF5taG1OT8xeh9VoC/eaq4Sc4yCoQBnUYXbFtlQXdfdVNU5IU/PLbPVC9VKi8ex1pZX1V0beWhHXYCAwV8dgjGnF6CtWagXMdwJYKLv/CBEdIaIFRNRWWmabOUwin1XMJ/4O+jvmYhRvRXUtBr++Fm/8xXXfPTHrKcWnG+KNbgILYGqUs7v2o63457fe5xcXlldjZ4JZJy6of1++2XYacRlFdo+WVVkC9kC+escYYEmdY/ViUgttnYjLD6cbko6ZafAszX4HzNI0nDcA+F1aNAdAbwBDAGQA+MDL7Wk2za5S1pqCrvIMWT2zDp4s0rinzVt3fM0pGFr6YdcZVUuprT/mf89wqY956m/8HYe75+3x6blan8B6Oo+wdjiH+CRBLAj896cDRjfBNHaeysH1n2/HnM0JOJlZjMcWHtS91B5g/IBSNXqYJwE4IITIBAAhRKY0VWcdgG9Qn3ZhnTnMSj6rmI030+wKPw8PeQ51TmetPIaoGSvwuTQKvbiiBkIIfLjuJArKQndaZXfeW3MClTX+DWA7cbY46Gs8pxVYeiteXBpjcEsCU9SMFTjtpoLEzlO5eG+N74OAnfE0sUgoqaqpwy97klGrsOddPig5W8FBrqK6Fs/9ccTn9qmtMAhmmGTeyy2pxE+7LZmlhwKs8o6W/u+H/QAs1TCMrPi0aF+K55U0pEbAfBdk6RhE1EX22E0ArIUMlwO4k4gaE9F5APoA8CsR19+rpo69o/O3W6ZblNdLXX8sC59uiMeQN9aZOqfZSPd841tvGGAZSX/tx1txx1z1alxGzVih2rbUFJteaNfzVlsnMP2HaP5iVmjs+5sRNWMFKvwoJ+mN2PTAC5ijk/I02e6czafwwtIYbD6h7KqfPJNZSbWEP/an4tdoYw+Gck/8ao5ylIEuLr0IX25ueOWnprbOVimouKIa8ZnGT3Ky6XgWLp65Hi/9eRQJWca3xwyqa+tQUV1rGytSUlmDQj+LLQQyvwJmImoOYAKAJbLF7xJRDBEdATAWwJMAIISIBfAbgDgAqwE8LIQwfW0t+eAxtUfkB4toP6ZBnfrFDgDAviT/S2ktP5yOV5Yd9byiQaZ8al/vNTW/DGvjMk1TKzpQFOuUbhMWgAPYZq6on05bCIF52xKRpUJ5r7xSbS+Fmq0rYpPCEwPm3uRPt+Hd1Q2v/PxjwV4MeGU1AOCeeXsw4aOtejetAXk9c6Unhnrwt6NuT2Iuomas8Kkc2x1f70L/l1fb7ueVVuEdJ/9Po+nVieJXwCyEKBVCtBdCFMqW3SeEuEgIMUgIcYMQIkP22FtCiN5CiH5CiFX+vLZle/5uwZ6zmew2ymbR8jcFRC1cw9e5xxYexA+73BVqYcFg4/FMXV4nJq2wQdqWVSCkaG2Lz8HMFcfw0M/+52J6/c0nO9kIwPMOpqHfolOwU9b5dMSEqU/yE0+j+Tvnwg9SismeRO+vPjmr5uRvCqYWFuw4rcvrBPRMf8Emr7QKN3+5w+3o3JraOtuZObOoqxOmTcNw55Y5ljSU5LwyRM1YEZApAEZ4brHrPPCqmjpcNmsD1sSe9ft1ftx9Ble5qOV93EWFHTP5xwJLxltxRQ3+2J+KqBkrfL7U7KpzIq+0CvlOTiqSc+vzzad8up1P8hkA4KfdZ/CsRrnqQgi36QLP/XEE76s8zsHsKqprseKIpc9S6UlvWVWN2yo3iX7UideKs6sYWuCA2UQW70/FgeQCzN/m+mzp5WVc6g6wHKitl2FKqsxVEUOpnBL7y9wbVKjMEOr++9N+pBdW4LXl6uwnrtI/1L66paUTmcX43++WSSS+2epbT4yrq2v/WLDX6fS9fx6yn2HT3YBNs6qrE7hr7m5s0rmWdjCy1qF/6U/tUuZ+3H0Gg19f63J6+V+jU/C5VEnHLDPlKuGYkpGcW2Yr3+jJ67LSuEpLZQ58ZQ1u+nKH8gaaTEJWiWb/34AOmB0ngwgFZpuQw5W6OoETZ4v9qtWYW1KJ6z/b7jT3atib63DLnJ3+NNF0Plx30ugmBLwNUgqVWlNlA5Ze60A6wLqzwcd0Fq2/ap31UhutrLoWuxJzcf+3+7D6qP9XLEKZqzKNag143nIyG2+vtKRRJOW6PzlbvD8VfV5chTOy9cx8de93h8GwV763CdMWKKuXsEr+ufViH45NL/K8kgllFJZj/IdbMPNv15PS+SOgA2a96RWfz9t+Guc9vwI/7T6DE2eLkZRTigEvr8bH680bUFXV1OGsLEj5dGM8rv14q1+1GpceTENMWiEWbE+yLTuaVojt8ZZJHWLTixA1YwVeXGregX7MOOvi1Ml17vvSKkz6ZJsq2zJaTol2gak/03Kb/WTxwZ/2G92EgOYq5//GL9TpyZy2YC8qqi0ntZ5mm1wZY0lRiM+s/7w6Dsg2E2djq5QOkpf3TptlDJaWcqXvNzWKCDgT0AGzmv9+JTmw/1iwV7dcWSEsl6+u/XgrHvr5AMqra/HxevPOXvfErwcxatYGW5rEtnjnM5Wl5LkfqftbdIqt18Fa3u+P/fVn2Nd9th33zrcvY/fXYfvLvyz4Kbm69J8folV7PbNO0KMXJd+1rgZIAsAry47i3dXHnT7m6TuBBb4wItNUmbJehbJ+pmtMfvXIWcCslHx+g1C4IG/9G8M0imwDOmAOJqn5ZXhrpfORuY7Tz5rRyhjLpZ9K6Sz/SGpBg3VWHMnAFe9usuUEOgtCnv3jiK3XITXfMvixqMJS+zEQB/YxbVg/G0wfOR4mH0nIKnE7oCr6TD6+3HzK6WNXvOt8YKXR3lnlPMAvLLN8F/3JM8Eq9uG6k7jrG31mOw1TWJXl130p2HUqF+e/6HfBLk3NXnUc+9zUV6+qqWuQ51xXJzBn8ym72UaVxMvyNBWzn0g4KiyvRkK2ZVBzTa02ZwccMGsoq7jCNs22OwVlVbj8HXMeNLy1+WQWCsqqUC37wFbW1GJlTIYtiD6eYflQj/9wi+Ltbos3T11MZrxQ6C0xk1wPOcZpBeWodDOyPhD9uNt5icrTUlDxrU6lrIKBdaZTdw4mq3MZnaAsYl5/LFO3IN5fe0+7Dpj7vrQKN3xun1Ky5WQ23nG4oqPkO/MX2cRagTZP2+DX1+LJXy2Dm7WqYhTQAbPSUZ9q239GWT3DEW9twIWvrsEED4HhrJXOezIC0eOLDmHIG/aj5vu9tBoP/XwAW066D3rdXdJ95Bee3CPQHT9r/islzDklkyeEyoyVag82J6IFRJRFREdly9oR0Toiipd+t5WWExF9SkQJRHSEiIbJnjNNWj+eiKap2kgd3PSl94O4nZUUfejn/Q3WcaxIFGisHW/yE48bv9iB6VLaWWx6EdIKyrFWKqfp7OTVUw5zXZ3A11sTbfdzNZ6sSGs/7Eqy3T6aVqjKDIUBHTAb5XROGU5ll+BAcj4qa2ox+PW1iJqxwm7Qi/xLNT6rpME/K7+0CrNWHkNNbZ2ppoTVkqezvvtkucn+DCBi5pRZpN4X8JXvbeKp6v20eH8q4hSOhvcUJB4PgLQxtdjeCfVmZPkOwESHZTMAbBBC9AGwQboPAJMA9JF+pgOYY2kKtQPwKoCRAEYAeNUaZAezfCeDCYscSkF+sO4Ehs9cr1eTNDFn8ynEphdi9OyNtmWHUgqwVjawefTsjZj+o/VkoeH+GpdehBs+347F+1ORW1KJwvJqPL8kxm4QvdylszY22EYgeUVWgve6z7bj3nl73KytTITfWwhB1pqmAPDWTRfaguFxH2zBdYO64L1bB+PvI/YD0T7bEI+XrhuImNRCREYQ5m5JxJKDaRjcvY2eTTeFd1Yfx2YntU3lO+y4D5Sna7DQpEat0JraOhARwpUmPgaRp6XvsaTZUxo8Zs1fjAi39Kl4OjdRmlO+LykPl0S186KV5mM9d1DrEyOE2EpEUQ6LpwIYI93+HsBmAM9Jy38QljOY3UTUhoi6SOuuE0LkAQARrYMlCF+oUjN18fH6k7hpaFf0bN/c6eOllTXIKCzH+Z1aAgAuVhAIr43VZ2ZQrSmt5LEnMddp59TPUrrF07L4BbCUqp0xqT9G9WrvfyNNLCbN/9KBAd3DbIY8Rsderr+PZODNFXHY6lAlYt7208gpqcT1n2/HxI+32S6ZWCtBhJo9bnKyQlmw1Pt1Ru2QVI0pdc9/cRXGfbDZ/8YEECWz7l3w6hpcJuvN8nSwcZXv6+i2r3YpWs/cLN/5Gk/53VkIkSHdPgugs3S7KwD5JclUaZmr5QHl4/Xx+Nd3+1w+/u/vozH+w60et3MshK54OLpj7m6vK2rNXnUcexLNUcVETYdTClRNoQrsgNnoBsC+29/qlz3JTkudyS8L7ZVGvbpL5mehp4ynENZdUq6ysmZKcuBeWBqDLzcn+NskTY15336AcVx6EaZ+sQM7E+pP8itr6pDloTKGvzafyMKyQ4FXacJ6/FXjhE3Z6wkBFQ93RDSdiKKJKDo723yDqU9llyJqxgrsSMjB/jN5OCqdrCVkFWOXFNQt3JuMbDefT3nddDPECYFglouqMIFs6hc7nM5E6itOyTCIu52dsWCkcY+c5jKLKtC6aaTLxyuqa22jzB8ac75ezfKaYy755E8twcWzi49g+3NX69KGpJxS/PNb1z2JgUDjHPpMIuoihMiQUi6sOWxpALrL1usmLUtDfQqHdflmZxsWQswFMBcAhg8fbtp4csOxLCyQKpGseOxyu5SE55fE4HnEGNU0FkAKyuo7Ompq62xpZr4I6B5mDjoZY2r5RjZC3BP5Zb7MIssMl/1fXq16m4xWWFaNXs+rX/9cSblNszmTW4rSyhqPJfZUshyAtdLFNADLZMv/IVXLGAWgUErdWAPgGiJqKw32u0ZaFrDkVbDMPBMfCxz+5jFzDzNjTBdK66MaxdXEQc58trE+7WLk2xsaDJxLV1B31kjOJgFKzS9HUk4pojrUD7iKSStUvR5roE5AdNV7m9G7Y3NVylPJEdFCWHqHOxBRKizVLmYD+I2IHgBwBsDt0uorAUwGkACgDMD9ACCEyCOiNwFYu+3fsA4ADFT+ju+JmrHC6YBWFroW7U3B0B6+F4/hgJkxEwn0tAUzKyyrRqumESAf32T5s6I91GKXD5gLJGPe34ylD11mdDNM61R2qd396to6RPpxiRcAhBB3uXhonJN1BYCHXWxnAYAFfjUmyPzv98MhP609q+fPNOOAnykZRJRERDFEdIiIoqVlXhdcZ4wxLaXml2HwG2sxb5s6s7NVazT1qhnIJ5CIy9BnYFug4lrg5vbH/lSjm8BMZPEB/z4PauQwjxVCDBFCDJfue1VwnTHGtJacZ6mEsf6YNjVZL3otoNNFXcorVTf9gDHGApUWg/6mwlJoHdLvG2XLfxAWuwFYC64zxiTBnJFhaLqJdbIJjdpQXBF4g9iU8DSdLmOMhQp/A2YBYC0R7Sei6dIybwuuM8ZCQHGFcb2Vn260FPKXDzzcctK7GrSloVgjm+Nlt4oM/EwzxvTlb8B8uRBiGCzpFg8T0ZXyB30puG72ouqMMd9YZ7c0wu5EyyC9XYm5SJHSM6Yt2Gt7/N3Vnov23/jFDkz5dJvH9Vjo+G1fiueVGGNBwa+AWQiRJv3OArAUwAhIBdcBQGHBdcdtzhVCDBdCDO/YsaM/zWMs4PhawYE5V1hWjavf32y37LFFBxus9+XmU4q2F5seWlPufu1FbepQxPsrY6HD54CZiJoTUUvrbVgKpR+F9wXXGWNME0/9dgiJOfalwEqCNN+YMcaYdvzpYe4MYDsRHQawF8AKIcRqWAquTyCieADjpfuApeB6IiwF178B8JAfr80Y8xIRdSeiTUQUR0SxRPS4tFyXUpBG9MZtOJ7VYFl8VglOnC3WvS0s+HAHM2Ohw+eJS4QQiQAGO1meCy8LrjPGdFED4GkhxAHp6tB+IloH4J+wlIKcTUQzYCkF+RzsS0GOhKUU5EhfX7x100g/m6+eaz/e6vNzR729QcWWsEB2PINPvBgLFVqUlWOM+UjLDishRIYQ4oB0uxjAMVgq1ehSCrJds0a+PtVUzhZVGN0EZhJHUguMbgJjTCccMDMWgogoCsBQAHugUylIvnzNjDTr5otU3yYP+mMsdHDAzFiIIaIWABYDeEIIYVf2gUtBsmClRWjL8TJjoYMDZsZMROsDMBFFwhIs/yyEWCIt5lKQLOhsePoqPDm+r6avEawzPDLGGuKAmbEQQZbrx/MBHBNCfCh7iEtBsoA07dKeLh/r2qYpbhvezXY/LEz9s9Hs4krVt8kYMycOmBkLHaMB3AfgaiI6JP1MBpeCZAGkQ4vGaN4o3Oljg7u1tt0Woj63qEvrJpg65FwdWscYC1Y+l5VjjKmPNKyTIYTYDtepnFwKkgWE1U9cgb8Pp+O1v+IgAAzt0Qap+eXILq5Eo4gwNIkMQ0V1HYQsFZ8ANI5wHmQzxpgS3MPMmJduu7ib55VYA5Hh/HXD/PP2TRehQ4vGtuoUQgBLHxqNL+4eZrvfu2MLAEAYj8hjjKmIj2CMeem92xrM18MUCFeQQ/rerYPwyZ1DtG8MCzhbnxmLu0f2cPqYNTYWAH741wh8e/8laBIZDstFknof3zFE20YyxoIWB8yMKRQeRtjzQoPMBaaSh8f2xm3Du2PqEJ9LPQe1u0Y4DxZDRY/2zVw+1ki6etGqSQTat2iMsf062T1u7ZE+p3UT7RrIGAtqHDAzptBTE/qicyvLATdp9hScnjUZn9411O1z5IOQlAgL4j3S8Qp522b2U2U/c21/HVsTGPp2tqQXtGwcgYu6evdZCmaOn6VB3VrjpSkD8MHtQ+yWO3QwazqTJmMsuAXx4Zkx9Xxx9zA8PPZ8u2VEhCg3vV6+CKW8y1euH2h0E0zv/67sjbdvugi7XxjXIEi885Luzp8UgogI/76iF9o1D47p162IKImIYqSKNtHSsnZEtI6I4qXfbaXlRESfElECER0homHGtp6x4MIBM2NONI20H1F/We/2vm2ICJ1aNla+um+vEnA6t2qM5o3qi/TsfZFTXZwhAu4e2QPNG0c0+GzIA+hlD4/WtV1GG9ytDQDgij4djG2IPsYKIYYIIYZL92cA2CCE6ANgg3QfACYB6CP9TAcwR/eWMhbEOGBmIWvbs2Ox9KHLnD7WxSHXsUmk85JUapeBC+Ye5nDpb7uwayvseWE8zuvQHADw2vUD0allaOeWTrmoC5Y+dFmD+sLyj0P/Lq3sHhvVy3ISN+8fwzG4exutm2gqg7u3Qdwb1+KaC87x6nnntmkKALj2gs5aNEsvUwF8L93+HsCNsuU/CIvdANpYZ/BkjPmPA2YWsrq3a4ahPdpi+SOjcUlUW7vHurZtil3PX40TMydizwvj0NTFRAnyyg9bnhnT4HEC8OQE5dPzBnG8jJ7tm2HGpP6Ye5+lo6xP55bY++I4TLssqsG6H8gqkYw4r51eTTTMF/cMw9AebRukqchPyIZ0b4O9L45D0uwpSJo9BVOHdMXeF8dh/EBL8Lfgn8MRSpo1Uj6NgHW/6t6uGfa9OB5z7rlYo1apTgBYS0T7iWi6tKyzbMbNswCs0X9XACmy56ZKy5hO3r1lkNFNMI13bxmEfS+Ox7AebeyWjx/QyfkTZObcMwx/Pjwau58315VHDphZyBvUrQ1+f7BhT3OX1k3ROCLcNtDPmQFdWuLpCX2x4rHL0bN9cxx57RrcNaI+t7RlkwhbT6oSFMQRMxHhwat623r5AKBTyyZO/+ZbLu6G2Nevxa7nrw6puteOk2s4vjWOPfHy+1f3D+heU910bNlYk2myNXK5EGIYLOkWDxPRlfIHpcmFhNNnukBE04komoiis7OzVWxqaPv70ctxu8O4AvnHrKfK413M7vZLuqNjy8YNvt8/v9t1av3NQ7viy3uGYdJFXTCkexvTVbXxOWAmou5EtImI4ogologel5a/RkRpDlPvWp/zvDQg4QQRXavGH8CYFpor7L0iIjw6rg8uONdSwaBVk0jMunkQnrm2HwDLJArNXPROM/eaN45Al9ZNcdtwz4PbZkwKjgobEy88BzcOOTcketU9uXHIuUiaPcWvbThWyQg0Qog06XcWgKUARgDItKZaSL+zpNXTAMh3lm7SMsdtzhVCDBdCDO/YsaPb1x/Viz+Hrjw2rg9aNK4/TnRqZRmr8tjV5+OlKQOQNHsKEmdNsV0R2vLMWPTyovMkkP1TdtXwsXF9bGUfAUt6o6tOpFevvwCTL7LPInrzxgs1aaMv/JkauwbA00KIA0TUEsB+IlonPfaREOJ9+cpENBDAnQAuAHAugPVE1FcIUetHGxSZeME5WB17VuuXYToY268jNp2w9IrMvvki3DSsK/q9tFrx8/e/NB5tmzVy2yXzzLX9cLefNW/lgwYHdWuD164fiNf+ivNrm8y1aZdGYdmhdBzLKDK6KV7Z+sxYlFfXfwU2iQzHx3cOxSO/HADg/RWHHx8Ygfvm71W1jXqbeeOFuG14N1WmsrZOj+3pbbxrRA8s3Jvs9fb7n9PSl2YpQkTNAYQJIYql29cAeAPAcgDTAMyWfi+TnrIcwCNEtAjASACFstQNzTw3sT/eWX1c65cxldjXr0XzxhF4akJfJOWU4khaoe1qz1PX9HP5vEeuPh9P/XYYgOVKR3ZxpS7t1Zs8YL6qb0ecfGsSZq06hq+3JAIA1jxxJQrLq5FXWoU+naSZOV1c9blvVE/cN6onomas0LzdnvjcwyyEyBBCHJBuFwM4Bvf5UlMBLBJCVAohTgNIgOVsWXMvc/kqRf59+XlGN8Gp7+6/xHb74zvq6x7fOaIHGkeEY8ogyxnpwC6tMP3KXhg/wPWl6fYtLJdj3c069/DY89FW5fJU/xx9HrY+MxZrn7zS88rMpc9c1L1u2igcqx6/QufW+K9H+2bo5yTosp7QeZs4cEWfjn73ynoi71XTwp2XdLcLli/r3d7vXiZPg3M7tPBtf1cye6UfOgPYTkSHAewFsEIIsRqWQHkCEcUDGC/dB4CVABJhObZ+A+Ahfxvw3MT+aN3UUi+9cUTDcOGmoV1xR4iVN/z9wUvRXLYPRHVojhsGn6vouTcP64ak2VPw9X0XY/kjozH3voDJpfdKlJMe5OcnDbB9NzWKCEPHlo3R75yWCAujgEmRUiWHmYiiAAwFsEda9IhUB3KBtUYkNBiQ8LSCwVQbn74KXWU5k6Fg74vjGpTpenGy5cPaoUV9iTPH9+Wl6wYi9vVrMaZfR3x0x2C8MFmfy9xf3uO+XOiYfp3QUSrN1qxxw16nL+4ehqTZU7Dy8SvwwuQBmDdtOA68PAHTr+wFAPj8bveTi1hd2svH0nFOOOvB7tG+Gfp2tg+OvrqXS6V6I8CvsIMISHx7sucVRf36ZhMZTjhf6hVS25x7hiEi3P6w9Mt/RuG+UT192l7nVk3QKCIMz05s2Ov3nyvqOwjqTJi7IYRIFEIMln4uEEK8JS3PFUKME0L0EUKMF0LkScuFEOJhIURvIcRFQohof9swtEdbHH71GiTNnoJf/jPStvzWi7vhij4d8MFtg9GueSM8eFVvAOauPuJY+chXjiVHfXHtBeegS+umXld50YPS4N8VrSZYOj1LwfemxvwOmImoBYDFAJ4QQhTBUvuxN4AhADIAfODl9hQPSPjn6CiP2+vV0fLFvu7JK70afBWotjwzBp1aNkGnlk2w7OHRiH5pPFY/cQX+IwWPQnZg2PLMGIw+3z5IbN44At/dPwI3De2Gu0f6dpDylrMeNkeLH7wMs2++CJHhYdj9/DiPvYntmjfC85P64/Ssybhu0LnY+PRVTqtYyH3/rxE4/Oo13jTdI3cBT5tmkZh4YRf88C9dLrQENOvnVHgIbD6+Ywi6tzPfCfLdIy0pPtufuxphYYS3b7oIT453fcLfTfob2jVT50qH2pOc/PHgpYjQoFdo0kXqVkFrEhmOkzMn4bpBDYMAeanIc9wM7HXHhHG2ZuS9qjNvvBA/PjDS1jPo7YymehvSvQ3WP3UVHrv6fHRv1xTXDGwY2CuND9QevCf/Hnj7potU3bYS8isHLZtE4KGxvW3337rpQq86kq7u3wnLH9GmJjwRGX6F1q9ra0QUCUuw/LMQYgkACCEyZY9/A+Bv6a7iAQkA5gLA8OHD3X4deVOztk/nllj52BU4W1SBse9vVvw8vax87Apsi8/G4dQCrIzxPd+6Z/v6nd5am1Xeqzz/n5fgge/2YfmjlyMiPAzntrYcmJ0dUB1rwmph7wvjUFJZ43G9Hu2boUd7S9BxTusmikbPyvM/rSdO7jSKCEMjJ5cdtWL9/F7Z1/3AGwaM7dcJOxJy0b1dw4OVvJf+xqFdsfRgGlLyyvVsnkfPTexvdzC0BtCuPD2hH4b3bIfLzjffxBzntmmKNs0aoabO+dfzJ3cOwXWDzsXH60/is40JOrdOuf+O6Y3qWoELzm2FKRd1wcvLYr3exrltzDWKX0v9z2mFj+8YgqsHdGpQl36QdKy5fXh3RISFobC8GtsTcnRr2+lZk3E4tRD/92M0Movq84KfndgP764+gUt7t7fkHF/Tr0GO8bq4TFzYtRW6tG6KhKwSPPTzfpzMLHH5Wi2bRKra9sfH98FH608CsHwvvLA0RrVtz73vYuSWVuH5Jc63OX5AZ7w+9QLcN28PfvnPKNtxdc49w9D3nJbo3bEF7hnZMH94/rThWBeXiUX76pMG/jX6PMyY1F/TSk99O7fE7JsvwgwXf4/W/KmSQQDmAzgmhPhQtlzeRXATgKPS7eUA7iSixkR0HiyzEfk1OqV54wiXaRm3DOuG1U/Y90I2bWQZnbnt2bEN1rdeUjLCTUO7YuC5rfB/V/XGl/dcjKTZUxD3xrWYdqn6PbxDurfB/pcn2NIxXp96AT69ayhmO6kfSURImj3F6SxsT4zv0+D99UWnVk3QpbX5egS19NMDlkuboVZmyB8PXH4e1j15JYb1sK+Xff/oKEy8UP25GdTMA06aPcWWB6pUo4gwTHDSC6bU4v9ayiR2lkbuE8GW6++PMAJevs79mJCpQ7oiPIzwtJvBT2bQrFEEZkzqj+sHn+tzDmXrpsE1FbcnNw7tilZOAsaubZoiafYUjBvQGV/cMww//Xukk2erY/qVvfDSlAG2+3eP7AEiwpDubfD6DZZc9w9vH4yk2VPw0Jjz8ct/RuIpN+mbEwZ2th2Dzu/UAhf3tK8McvDlCbbb1upHalvy0GX42cl79seDl/q13fEDOuOuET3sBuFZbX9uLOZNG46ubZpi4//G2HVCTbqoC3rLOpm+uncYzpUef2Fyf4wb0BmzbxmEpNlTcJc0QP6V6wfq0uF054geDb6fu7VtisX/9e+9UsKfv240gPsAXO1QQu5dIoohoiMAxgJ4EgCEELEAfgMQB2A1gIfVqJDx6Lg+2Pj0VQ0uCX1w+2D0P6eV0+d0b9esQY9qu+aRqhxQHG18+iq3j797yyB8dMeQBsubNYrAK9dfAMDSYxPlIrj67f8uxfE3J+LHB0bg+JsTvW5fs0YRHnOWOrVsgvnT7CdFuH/0eeh/TivEvzXJ52l5bxlmqa/btFE4kmZPwcmZkxpcTv/w9sHOnmp67lIHLu/TAfOnDcf8aZe4XIfZIyL06dwwdUd+9cSqV0d1Uq/UuPzn7wHPVxf3bIslD12GR8aeLy0hVXIvE2dNsc0w6K1Hxp6P429ObHDw/uYf5ppw5fFxfRSv27QRT2Xgyq0O9dPlQY7S6iKv33CB3f1fp4/CC5MH4N9X9MLX912MkzMn2V25mXjhOdj49FW4eVj9a1/WuwMiw5X/nwZ2sbRtcPc2iHntGtvJ7j0je+Bh2/6krmE92mK0k6tJzq6oKXVxz7a2E8GXpgzA1mfG2krcJc2egm5tlW974oVdsPF/Y/DE+D4NJpqadfNFmg80duf5Sf2x5L+X4fxO2lWssfI5JUMIsR3OB3GvdPOctwC85etrutKrYwt8/68R+PNgGn7ak4yELNeXU6xm3zIIT4zvi1GzNgCwJPK/feNF6NqmKb7bkYSq2jrV2taicYRd2sFTE/rin6Oj0KJRhNuejfAwsn0Qr+zTEccyivDK8li7v89ar/WKPtpe1h/nUHnCmq4RGR7m87S8tw23/0JtFBGGzf8biwXbT+PmYV3RumlkgwFAgcbV6HzH95P55nYnNZqfnzQA3+5I8nmbLaVczb6dW2Jgl1aI86NU3cBznZ+062FYj7aIS9euzN7wnm0RfSbf7TqvXDcQ+8/k40xeKe4d1RNNIsPx0pQB+G5nkm2d8DDLVZfKGs0rjCry6NXn45MN8R7Xu314Nzw3MTjqf2vhpSkD8Mf+VKePrX7iSlTX1uHbHafx9kpLSboXJw/AP0dH4b01JzAiqh12nMrBPy7tiduHd0dGYTlWHMnASNnJ2rUuBswpSb9z595RPTGke1tcJOuEO/7mRLtawnpY/cQVbifNcmbJQ5dh/vbTeOzqPnZjgyLCw9DDzyuaTSLD8YSbcRdG+T8pO6Coolrz19K2PpCO2jRrhH+OPg83Du2K9IIKRc85p3UT3DWiOxbuTUF4WBhaN4vEC5MH4IXJA1BQVoUhb6zzvBEXWjeNxEypFNLR169FQVkV/jqSgZf/PIrbhndzelnLnbbNG+Gy8ztg/VNXIWrGClx7QWd8ePsQn9vni6TZU1zWQjz+5kTcO28Pos/k4+6RPfDLnvqapj3aNUP/c1pibZwlvf3eUT1wfscWGOlkcobwMLINUAwlztKEmHvbnh1rq54i1ygiDEO6t8GhlAKftrt9xtW223/891IUV9Rg5NsbfG2moWzl6chy6dkawPzy75G4e94e109UYHhUuwYBszUVxOpfl5+HfzmUq3TMcby4Rzu0bqZuXqg/IsLDMOK8dth7Os/teo+P76t6PmswcdZZIO+JjAwPw/Qre2P6lfbpkC9MtqRbWKd8b9ooHL06tsCjXvT8+4OI7IJlAA1ytvVgvUL+6/RRICIcTSvEG3/HIYyAm4Z2w+ID9icjfz1yOS7q1hrD7m7rbHNBr2XjCPx3TG+MH9AJVTUCd32zu8E6A7v414ERNAGzVZtmjdDGi5Hlrq6ct2nWCJHhhOpa34ZBvzH1AlwvS3Vo06yRrQC3v+LeuBaNwsMM7X11POg1iQzHY+P64B8L9uKZa/rhv1f1xm/RKfhsYwIiwwkvThmAtXGZmHXzRbacJ1bPn0tvocrde/bw2PPxnx98q6olzzdu1igCzVzM+vjPy6LQq2NzVNcKvPl3HBqFh+GP/16KM7lleHThQQDmqaJAsPTIJbw1yfa98eHtg5FfVo03//ZtQp1bL+6Gr7ac8vp5YWTJQ120NxlFFTWmCpatfvu/Sz1OlKBGikswa8LpKqqw9qqPOK+d3cnntMt64u5v9uDQKxMC/kqsGojI7oqPs8mIrCdjvgq6gNlXzgZ2bnhqDI6kFeCRXw4q2kaHFo2w5okrkZhTiuE9tTvLc3UA15OzRIMr+9ZPmtC2eSM8Ob4v8kqrcP/oKPRs39zQPCejmLGObijwdSIKb7x6/UDbieM9UtWLJpHhGNStDZ5bfARlVbXG1412iNjlB1Zrnqc1YP6/q3rZZuJyxnHw7/mdWlim/80uweebErDkQBo6Oenxd0REeGHyADxzbT9U1aiT+qaF3x+8FK8si8VX9w7DtAV78eSEvnh80SFEhBF+/b9RaKfy5EbBpnFEOE7MnOjVTKxMuUHd2uDo69ca3QzTevumC9G6aSQahROenNAXcRlFuOBc/8ofGh95GcxdD5CllFkzdG/bDIdSCvDqcvuyQ0N7tMHTE/phdWwGftqdjIfHno/2LRqjvZOBSMFGSSAYFkZ4y4C6kowN7eHbCavSA9BDY3rbXWVxvGR7RZ8OWBObqUmtYm/IUzJcmTCwM9bFZeL5SQOwcI+l13fvC+Pw855krIk9i+Nni/HVvcNsU/866tWxBd67dTD+d00/nOvFJFGR4WFeDcbS2yVR7Wz13jc/MxblVZYc6yfG92lQSYE5p8b05oz5gogwY1J9j7O/wTLAAbONu8Pa4O5tMLh7G0y7LAp3zt2FppHh6N6uGV67/gKEhREu79MBL04eiCaR5v3yV5uWtRYZU8N391+Cf367z+N6yx8Zjd+jU/Hj7jNo4qIsUvRL41FXJ9BJ4SCcT+4civSCckNyH+WsHQLupoaWV6nY+fw45JVUoVOrJnhyQl88OaEvjmUUYYCH3L/wMPIqWA5E1mo+jLHQxAGzlxZNd14mqqkOk3wwxpQb068Ttj4zFvuS8lBRU4sJAzqjVdNIPL7oIO4c0QOllTX4eksiBnVrgwvPbY0XJg9wmQvorHydO00iw/0era8mpee3LRpHoEVj+8OCp2CZMcZCQcgHzML4LEPGmEasaVVyX99X36NqnTI5LIyC8qTX01TijDHGlAmdHALGGAsxthxmQ1vBGGOBjwNmxjTAHXvMTHjMAWOM+YcDZgkfT5gW+GPFjMQnbowxpo6QD5j5gMIYC1b89cYYY+oI+YDZyl3ZJcYYC2R8BY0xxvwT8gEz98AwLXD1FWYGXCWDMcbUEfIBsw33wDANcM8eMwO+gsYYY/7hgJkxxoIcn7gxxph/Qj5g5iuWTAv8uWJmwJ9DxhhTh+4BMxFNJKITRJRARDP0fn1XuAOGaSHQ69+adX9lylhz6QP7U8iU4v2VMe3oGjATUTiALwBMAjAQwF1ENFDPNjjiwVmMOWfG/ZX5JsDP25gCvL8ypi29e5hHAEgQQiQKIaoALAIwVec2OBXoPYGMacC0+ytThlMyQgrvr4xpSO+AuSuAFNn9VGmZDRFNJ6JoIorOzs7WvEHDe7YDAPTq2Fzz1woGl0S1NboJAWFAl1YAgIu6tja4JX7xuL8C+u+zADCufyddXifQWT+Hg7u3MbYhAaJv5xZGN8EfptxfO7RorPlrBJsA/xzqwojvNNKzTicR3QpgohDi39L9+wCMFEI84mz94cOHi+joaE3bJIRAan45urdrpunrBIuK6loUVVSjU8smRjfF9FLyylT/XBHRfiHEcFU36vq1vNpfAX322ayiCrRuFonGEeGavk6w0OJzGIxySirRrFE4mjWKUHW7eu2zZt1fSyprUFVTh3bNG2n6OsFCq89hsKmorkVxRQ06tlT3hMzd/qr3fyQNQHfZ/W7SMsMQER9MvNAkMhxNIjlQUSIIPlem218BoFMrPlnzRhB8DnURBD2hptxfWzSOAAL+rdVPEHwOdWFELKJ3SsY+AH2I6DwiagTgTgDLdW4DY0wZ3l8ZCxy8vzKmIV17mIUQNUT0CIA1AMIBLBBCxOrZBsaYMry/MhY4eH9lTFu6J8kIIVYCWKn36zLGvMf7K2OBg/dXxrSj66A/bxFRNoAzHlbrACBHh+YEA36vlDPre9VTCNHR6Ea4wvusqvh9Us7M75Vp91neX1XH75UyZn6fXO6vpg6YlSCiaL2qBgQ6fq+U4/dKO/zeKsPvk3L8XmmH31vl+L1SJlDfJ92nxmaMMcYYYyyQcMDMGGOMMcaYG8EQMM81ugEBhN8r5fi90g6/t8rw+6Qcv1fa4fdWOX6vlAnI9yngc5gZY4wxxhjTUjD0MDPGGGOMMaYZDpgZY4wxxhhzw3QBMxF1J6JNRBRHRLFE9Li0vB0RrSOieOl3W2l5fyLaRUSVRPQ/T9sJJiq+V02IaC8RHZa287pRf5NW1HqvZNsLJ6KDRPS33n+L2fA+qwzvr8rx/qod3l+V431WmVDZX02Xw0xEXQB0EUIcIKKWAPYDuBHAPwHkCSFmE9EMAG2FEM8RUScAPaV18oUQ77vbjhAiTvc/SiMqvlcEoLkQooSIIgFsB/C4EGK37n+URtR6r2TbewrAcACthBDX6feXmA/vs8rw/qoc76/a4f1VOd5nlQmV/dV0PcxCiAwhxAHpdjGAYwC6ApgK4Htpte9heaMhhMgSQuwDUK1wO0FDxfdKCCFKpLuR0o+5zqT8pNZ7BQBE1A3AFADztG+5+fE+qwzvr8rx/qod3l+V431WmVDZX00XMMsRURSAoQD2AOgshMiQHjoLoLOP2wlK/r5X0iWQQwCyAKwTQvB75drHAJ4FUKdF+wIZ77PK8P6qHO+v2uH9VTneZ5UJ5v3VtAEzEbUAsBjAE0KIIvljQggBhWdn7rYTLNR4r4QQtUKIIQC6ARhBRBdq0Vaj+fteEdF1ALKEEPu1a2Vg4n1WGd5fleP9VTu8vyrH+6wywb6/mjJglnJ8FgP4WQixRFqcKeXJWPNlsnzcTlBR672yEkIUANgEYKLKTTWcSu/VaAA3EFESgEUAriainzRqcsDgfVYZ3l+V4/1VO7y/Ksf7rDKhsL+aLmCWkuPnAzgmhPhQ9tByANOk29MALPNxO0FDxfeqIxG1kW43BTABwHHVG2wgtd4rIcTzQohuQogoAHcC2CiEuFeDJgcM3meV4f1VOd5ftcP7q3K8zyoTMvurEMJUPwAuh6Xb/giAQ9LPZADtAWwAEA9gPYB20vrnAEgFUASgQLrdytV2jP77TPpeDQJwUNrOUQCvGP23mfW9ctjmGAB/G/23Gf3D+6zu7xPvr7y/Gv7eBvv+qvJ7FdT7bKjsr6YrK8cYY4wxxpiZmC4lgzHGGGOMMTPhgJkxxhhjjDE3OGBmjDHGGGPMDQ6YGWOMMcYYc4MDZsYYY4wxxtzggJkxxhhjjDE3OGBmjDHGGGPMDQ6YGWOMMcYYc4MDZsYYY4wxxtyIMLoB7nTo0EFERUUZ3QzGTGP//v05QoiORrfDFd5nGbNn5n2W91fG7LnbX00dMEdFRSE6OtroZjBmGkR0xug2uMP7LGP2zLzP8v7KmD13+yunZDDGGGMmRERtiOgPIjpORMeI6FIiakdE64goXvrdVlqXiOhTIkogoiNENMzo9jMWTDhgZiyIEFF3ItpERHFEFEtEj0vLvT7IEtE0af14Ippm1N/EWAj7BMBqIUR/AIMBHAMwA8AGIUQfABuk+wAwCUAf6Wc6gDn6N5ex4MUBM2PBpQbA00KIgQBGAXiYiAbCy4MsEbUD8CqAkQBGAHjVGmQzxrRHRK0BXAlgPgAIIaqEEAUApgL4XlrtewA3SrenAvhBWOwG0IaIuujaaMaCGAfMzHBXvrsJF7yy2uhmBAUhRIYQ4oB0uxiWHqmu8P4gey2AdUKIPCFEPoB1ACaq2daoGSvw/JIYNTfJWDA5D0A2gG+J6CARzSOi5gA6CyEypHXOAugs3e4KIEX2/FRpGdPR2tiziJqxAhmF5UY3hamMA2ZmuOS8MpRW1RrdjKBDRFEAhgLYA+8PsrocfBfuTVZ7kyHpTG4pdifmGt0Mpq4IAMMAzBFCDAVQivorQwAAIYQAILzZKBFNJ6JoIorOzs5WrbHM4td9lq/NV5bFGtwSpjYOmBkLQkTUAsBiAE8IIYrkj/lykPXwWnwA9tNXW05hyBtrfX7+Ve9txp1zd6vYImYCqQBShRB7pPt/wBJAZ1pTLaTfWdLjaQC6y57fTVpmRwgxVwgxXAgxvGNHU1a7Cwrr4jKx7FCDt58FMA6YGQsyRBQJS7D8sxBiibTY24OsooMvwAdgNcxedRwFZdVGNyPgpBeUIzW/zOhmaEIIcRZAChH1kxaNAxAHYDkA6yDcaQCWSbeXA/iHNJB3FIBC2VUlprKK6lpU19Y1WE5Uf/vxRYewMyFHx1YxLXHAzFgQISKCZZDQMSHEh7KHvD3IrgFwDRG1lQb7XSMtY8w0Lpu9EZe/s8noZmjpUQA/E9ERAEMAvA1gNoAJRBQPYLx0HwBWAkgEkADgGwAP6d7aENL/5dW44+tdTh4hu3spQXpCF4pMPXEJY8xrowHcByCGiA5Jy16A5aD6GxE9AOAMgNulx1YCmAzLQbYMwP0AIITII6I3AeyT1ntDCJGny1/AmAtCCAgBhIWR55WDgBDiEIDhTh4a52RdAeBhrdvE6h1ILjC6CUxHHDAzFkSEENvh2MVRz6uDrBBiAYAF6rXOtU0nsvDOquP4+9HLEREeOhe+hBBYtC/F84oMADB/+2nMXHEMh16ZgDbNGnlcf/+ZPESEhWFw9zbaNy7IpReUI6OwHBf3bGd0U0yNQuNcLiT5fGQiogVElEVER2XLXiOiNCI6JP1Mlj32vDQ5wgkiutbfhrPgY4ndGqqprcP+M3koLK9GYTnneQajZ34/guNni5FXVmV0U3S1+US2XWm9QykFLtdNyStDSl5oX979LdpycpFZVKlo/Vvm7MLUL3Zo2aSQcdnsjbhlzi6cLawwuimGq6xxXtUpJrUQJzOLPT5/TexZTP1iB+rqVBt7zXTgTw/zdwA+B/CDw/KPhBDvyxdIEyfcCeACAOcCWE9EfYUQXEuM2dQJINzJ2fnNc3biSGqh7X7S7Ck6toqp6fFFB7HsUDr/DyXFlTV299MLyjHERW/oFe9acnVD9b0TQqCWAwxDbIuvr37z4boTePfWwQa2xniuTlyv/3y7ouc/+stBVNXWoaq2Dk3CwtVsGtOQzz3MQoitAJTmNE4FsEgIUSmEOA1LvuQIX1+bBac6Fz3M8mCZBbZlh9IBAPvP5NuWxaQW2kabV9U0HHUezFxdVWENfbQ+HqeyS233C0LsaoSR7pu/13b7t+hUl+tN/Xw7Pl5/Uo8mGaa6tg5VNd7tt3V1AmVVlpPjwvJqVEnfd7z7BxYtkgUfIaIjUsqGdSpdnoGIeeQqYGbB55Y5O223Y9IKbak2X205ZVSTTOFwSgHSC9zPEBaKE5R8u+M0Pt0Qb7s/f3sihryxzsAWhTZXPf2HUwvx8fp4p48Fi6FvrMPkT7fZ7lsD4egk1/2H7645gYGvrEFpZQ2e/eOwbfnyw1ynOZCoHTDPAdAblvI3GQA+8HYDPAlC6OJ4OTR9trH+APvT7mSUh/Csj19vTcRlszciasYK1Ei9UL/sScaDP+63rXPn3N3YdSq0gubX/4qzu7/xeJbdfflnxlnqRlJOKZh63vzb8v/ILakM2jrYrpQ4pFENfMVSbfPWr5yVmLMc15YetPTKF1fUIKek/srIibMlGrXSXCprapFX2vCKUE5JpdNa1malasAshMgUQtQKIepgqQNpTbvgSRCYR0sO8Nl2KMpwGEQ04JXVITNDlruTxEMpBUjJK8MLS2OwOvas3WPZ0oEmVHN65UEHALyy7Kjsdix6v7ASRRX1A4RT89332jPv/H3Eklp18cz1wV4HW3XyYToLdpw2rB3+KCirstu/PHnwx/0Y9qb9FaGqmjoMn7keMxbHuHiW+agaMFtnEpPcBMD6LbYcwJ1E1JiIzgPQB8Bex+ez0PbC0sDZcZi2Hl90yOgmaGL/mXxEzViBA8n5Hte99atdtoF+zvR5cRXu8jAddkJWCb7YlOB1OwONdXKIb3ecxo+7zwAA8ko4x1kvq4+e9bwSAxAcZeeGvLEOg15bi5l/x3leGcCmEw2zBWrqLD3LK2LSVW2blvwpK7cQwC4A/YgoVZoQ4V0iipFmJRoL4EkAEELEAvgNlmk9VwN4ONQqZOSWVOLq9zcjMTs0LsH4ypuzVsYCQV1dfYrAlpOWA8dW6beAbz3E1mPuXjd5kwBw59xdeG/NiQaXkYMNSe+IPHWjSnapd0VMBk6c9Vzui/nmwZ/2e14phFk/itYgMVjM2+5dD/n3O5MAWKYVt6ayVFTX4bCbcppm4k+VjLuEEF2EEJFCiG5CiPlCiPuEEBcJIQYJIW6Qz2MvhHhLCNFbCNFPCLFKneYHjo/Wn0RiTim+2RaYl2D0ssDLHZAxs7v+8+3o/cJKAPVVMY6mFfm1TXkvVUW1676HshDOB7/mo6222wv3JuPaj7e6WZsx33k6Ic0psdQN/2HXGdvJXSAqr6rFjMVHfH7+q8tj8d+f9mPgK6vtlssH9JoZz/Snk592JxvdhIDQOIJrUrLgEpteHxxbD5zrj2UCUD4BhyP5Qbey2nWvlTVgDtxDtDK7EnPR96WQ64dhJjFvW6LLx+Qnt/mlVQG5MwohsDsxD8fPFimembS2TiA6Kc+uFCQArHKSvnM0PTBKx3LArLNgyF/SUs/2zezuh/rMZix4HUopwOxVx3V5rUD93imprMGFr65RtK6SGt5ZxRXo1LKJv80KKc5m9sspqcJjCw/aLSssC910uuxiZSe+AgEZL+P36FQ8u/iI4inmC8qq8O2OJHyisOdYPvi5rk5gW0IOruzTAWSyLy4t6jAzN3i0tnf2ecjRZCyQRCfVD/Y76UdOrfw4cu/8Pbbbrk4wA/UysNoly+7+Zo/nlZjN+rhMjJq1weljyw/bD9Ya/MZaPZpkSj/vcX0FOc3hmG+yGFCRM3mWXuJUhR1YQ95YpzhYBiyz/Fp9vysJ0xbsxYqYDNdPMAgHzDqzDvZhzjmWybJewmYs0O1MyEF8Vv2g3xQ/gsHTsrrCMWn1lzPnuJj4RY+DdHVtHY6mqXdpdenBVJSqPFgxIasE983fg0+CfHINtfz7h2ijm2AqP+5K8vo5n26sr1Lzx37XsySa2YZjWZ5X8kv9cT8lz3KC4ezKhtE4YGamUlxhf4B8e6U+l6yZOe1LytMtbUFrd8+z7938bKPv5d7eW3PC6XIjO69mrTyO6z7brkoloOikPDz562G8uPSo55W9tC0+Bx8F+fTNTH2HUwrw8rJYv7cTaFd70gvKcdyLq2GZRd4HuoFSTp4DZmYqWcXmO6tkxrntq10hP122N4y83Hs4tQAAkOtkRi9v3f/tPgDw6kDtrZjUQlvVEhbaqmvrPM4497FKJ1nOZrwzs3I3VXicGfm28xQed+qk/XD10bO2yVzMuGtywMxMRb5z8sEstG0+ofVlwOAj773S+8BsfWVfd9uSyhp8u+M0tp7MRrEOdaOv/3w7/gyRGSWZexe/uQ59XlyFix1mo5NTawDaiczArQeuxsmwM9bvjNeW+9+DryUOmA0QyqOJPZKPluV4OaT9U+plNNrWk9kBM5OZ/Jiu99Ua62vnllQiasYKbDye6dXzX1sei9f/isM/v9VvEtiELJ5IKpRtPJ6Jt1bEoUhKBXQXEG48rs0JfLyGAXRcehEeW3iwwdggs7F2jskncvJ1UictccBsgOs/3250E0yrZ/vmRjeBMTv/WLA3YGYy+2HXGVsOsVEXaL6XBkZ9uyNJ0fonM4sRNWOFbRZEkx/bmQqGvrEWLyyNMboZ+Nd30W4nExNCYH1cJmI1rBO8Jla7k/FHfjmA5YfTkZRb6nllF/TI8hIC2JGQg9JKc0+0xAGzAZK5trBLEeGBNSCC6aOOoyjFrv5gC2atOmZYwLw70VIKUv76ry2PxUfrnOeAbpJ67pTWslUTZ30ZI7+sGr+4KcVmFquOnsW/f4jGjMXGBPd1dQJn/Ah2rfT4nB9NK/T5ik1xZQ3umbenwYyJJZU1uO6zbTiW4d/MqGrhgJmZijxvmXOYmVUvaWrpQFBZU4tDKQWGtuHrLYlYtK8+IFHrkmx1bR3u/3av0wOj4+h/+SXV73a6nsSA9/Lgc9msDUgv0HbOgbKqGox9fzOiNazVnyVVfIhRsVyiN+ZsOYWr3tuMkz6mbSTm+B9sK3XdZ9sx/sMtqm1PCGBPYi6OphW5rAqkNw6Ymal0bdPM80rMLSJaQERZRHRUtuw1IkojokPSz2TZY88TUQIRnSCia2XLJ0rLEohoht5/h5GSc8t8DjJfWx6LG7/Ygb2n82wHXCP8sOuM7fbiA+rUf/18YwI2nch2fmB0uDh0MLkAu07lImrGCrfbNPK82PrSSw+mYhkPAFRNemGF5jWH49KLcDqnFLMCvOyku8GEe09bTgbS/D758H0n8zTYUckMm75YciDNdGNHOGBmpqIk0Z9n//PoOwATnSz/SAgxRPpZCQBENBDAnQAukJ7zJRGFE1E4gC8ATAIwEMBd0rpBLzm3DFe+twkfrrPv1VB6WdDaG3X717swwocSS1pwvNTpK29m7yqrqsW6OM8D/zyV89LDk78exuOLDtkt+3xjPHaeyjGmQUFA7UlnXFF6JfLGL3bg3dWeg+sKL8uoaWXR3mRbXr+Z9X1plSbbPZFZjN+lky6zJGpywMxMRf7d5+prMD/A6ljqTQixFYDSs4qpABYJISqFEKcBJAAYIf0kCCEShRBVABZJ6wa9s1Kv8JID9j2O98xzP63ywr3JeHWZ+hNtqCHMoALNSoKmD13kNuthVUwGtsU7D0reX3uSp9I2MW8/0odSCvDlZs813Vcc0X9K5ro6gR0JOfh0Qzyu/Wgr6uoEZixRL296+WHf/qbU/DIkKUjrWKLSFSxXzDKdOAfMzFSU9BVEhvPH1kePENERKWWjrbSsK4AU2Tqp0jJXyw2Tml+Gb3fUj2iPTS/E0oPqf1Fbi+hnOEzN6uk7+/klMfh+1xlTzuQVpkOTnL3Er9EpTpZaevH8v8zsv6TcMtw3X78ydkx93iYbHE4pwLgPNuORXw44fdyI4OzH3Wdwz7w9+HDdSZzILLadtNv4kFEhHyj9qRdXhuQuf2cT7v/Oc3nPp3477NP2lVp/LAuzVh7T9DWU4MiDmYqiy2vmi0cCwRwAvQEMAZAB4AO1NkxE04komoiis7O1u4T4jwV78fpfccgtsVRTmPLpdjz5q7pf1EsOpOJeWU+y/PKsqwPpnkTPebpGW3IgDVEzVvh1ubmgzP7KzoLtp+16n7wJNB5deBCjZ2/k6ifMD8o/cLtO5dpuT/1iB05ll+JvBT3JNTp9Ph0HCV82e6Pf2/R1kpHyqlpDx1648vXWRKObwAEzMxf515Or2DnHgPJTgU4IkSmEqBVC1AH4BpaUCwBIA9Bdtmo3aZmr5c62PVcIMVwIMbxjx47qN16SmG0JzrQ8hj3122G7g+RHsulwc0oaHoB2J+bijrm77ZaZ5fKhnHWK6Wf+OGK3fPOJLETNWGGr3ezOS3/ap5u88Xccbvt6l+2+kp71iupafL4x3pbbnFPC+zLzj5I+lscWHfR6u2cLKzBzhfa9mplFFVh60DwDTu+ca56xF2bDATMzFSU9zBUajcoNZkTURXb3JgDW6Gc5gDuJqDERnQegD4C9APYB6ENE5xFRI1gGBi7Xs816qKiudTvoLDXfPm2gn2yAy4HkfNzpECyb3V+H0+3uL5fuH0gucPu8R3454LRHrkzKUc4tqcSuxNwGjzu67atdeH9t/UkIH5iZJwlZJZi96niDqjXenJj6UolFrcoynsir2ZjB4VRjSugFAg6YmaEOJOfb3X/wpwO2klWuKma8/OdRZBQan/9oVkS0EMAuAP2IKJWIHgDwLhHFENERAGMBPAkAQohYAL8BiAOwGsDDUk90DYBHAKwBcAzAb9K6hnP8XKTm+z4RUP+XV2PyJ9tcPl5ZbR9MV0ona0fTCnHzlzudPseEHcweeTpRdXX5mohQXVuHi2euV/Q6RtWzVarGBBU7gsXXWxNRVFHtdp2jaYUor3KfJnTPvN34asspXP6O8zQFZ59cIQR+3H1GloLkfcS8WOOyeN5QOk10an4ZVsboP2gxVHDAzAxTVycaBB1VNXW2SRF+dHPmfchDj1goE0LcJYToIoSIFEJ0E0LMF0LcJ4S4SAgxSAhxgxAiQ7b+W0KI3kKIfkKIVbLlK4UQfaXH3jLmr2no+51Jdvdrav3L0Yh3MzvV+mMNy6I99eshXPeZ6+ntA6mHxlkaxa5TuSgscx/o1D9fvUlRzMBasSOXU0VU8dpy9+fY1322HU/9dsjl4xmF5cgsqpRu2+fVuvvcrYnNxMt/HsU7Uhk5b3qYrevqOemHNwrLqu1y/+Mzi21B8uXvbMJDPx+AEIJLImqAA2ZmmLVxrouSV9bUNuh9ZgwAvth0ytAKC0tMlG+oFgHLPhefWYy7vtmNwW+sxaRPtuGLTQlue5+LK2uCanrpX/ZaZke05nybgVQX/SAR/S3dP4+I9kgTCv0qpUxBSqv6VVq+h4iiDG046gebFpa7PgFb5WZyiktnuR785qrKBWCZBRAACqQTP28+orHpRXbVeMwkv7QKg99Yi/fW1teIn/DRVjz0s/178fOe5AZ1xZn/OGBmhknKdX0pXQhgZYy5Zvlh5iEP4oiAZ/84bOtluf/bvYiasQL/+13bUkfBQF414/nFMZjw0Vbb/WMZlilpv9nmfnT6gFdWa9Y+vRW5CewM9DgsaVFW78AyCdH5APIBPCAtfwBAvrT8I2k9U5j+Q7Qq25H3rFp7np1x7I2u8+KsbsGO03j9rzjvG6cD68RBczzUk07Oc5+mVllTi0wPlTDu/iawxmfogQNmHfg6D3ywaxzh+uPn6QsuXI/Cssy0Pt+YYHf/t+hUPPTzAby67Cg2nbCUtnOcmregrMpugF9ljTlm9DLSCmu+owC2upjA4+2VgT31sDfMll1CRN0ATAEwT7pPAK4G8Ie0yvcAbpRuT5XuQ3p8HHma11gnpVXKZv2LmrHCbYnGXi+sREpemX3es5NjxXtrLD2wpvjjVWD9E5VeWfP0dz/880GM9DDgducpz4N4Qw0HzDp44HvPhb9DUeOIcJePeeoQaNYoQuXWsECyaF/9hBgJshzk713kvdfVCQx5Yx2elZVVk18mTi8ox9UfbFa/oSZ0NK2Q6x+7Mfb9zdh8IsvpY2+vPIb31uh6AvExgGcBWM/02gMokAblAvYTCtkmG5IeL5TWt6NX3XS52HRl08orccW7mzD9R+96rAM9bWjJgTQIIdwGwm940SvubGwGABR7GKQZ6jhg1kFKHld08JanHmalo4ZZ8Hvge88Hzzxp0g1X9U4vm73RVuc52F332XbMWmVfX5b3p3qnc0rxzTbnOaxztybii02ep1dWAxFdByBLCLFfze3qVTfd/jXV3d62+PoBbUo27S6HOhCsiMnA9oQct1PcL5DnXTtZbYOLIFnuSAANWD6QnK9sojMVccDMGAta1hmrDjqpqpIdwhPgfLPtNJYdsj95CPReuCA0GsANRJQEYBEsqRifAGhDRNZLbPIJhWyTDUmPtwbA19WDRGlljeJURGfVbzYet1w1UVoBx4w2SX/DmtizuPnLnXhn9Qmk6zgA3K+AmYgWEFEWER2VLWtHROuIKF763VZaTkT0qTSC9wgRDfO38YFsk4tLfqHEXXadp2M3H9yZEtbpVOUlqLaetFyGnvKp69JwoUA+in7u1kSfp9INRXrMUCiEeF4qCxkFy8RBG4UQ9wDYBOBWabVpAJZJt5dL9yE9vlHo3QVnAHd/YbBVtFGake5qvaScUgx+Y63tvuPHw+yfls83WcauJEsFA77ackqVacSV8reH+TsAEx2WzQCwQQjRB8AG6T4ATIJlFrE+AKYDmOPnawe0+7/lvGZ3+76nHdfk+zUzifnbT+PFpTF48+/6/L5/LNiLd1eHzkA2JU6FSDqKWobPXG/k5EnPAXiKiBJgyVGeLy2fD6C9tPwp1B97g1ropBMRHMdwJruoNHW20HkFjNO5gb2fWwP8kkplg0jV5tfIKSHEVie1HqcCGCPd/h7AZlh28KkAfpDOeHcTURsi6iKfQIGFFrdny6HyHcg09/Oe5AbLvvRQlokxq8MpBUjMKWkwWdKPu87g2Yn9dWmDEGIzLMdSCCESAYxwsk4FgNt0aZDJbD2ZjQvObYX2LRob3RTNEAGOGRm7TzvPuHE2BqjASR63EPbHYbOffNRIVwqt5fX0pkUOc2dZEHwWQGfptm0Er0Q+upcxO2bfcZn3QuDqMAtCU7/YgSd/PdygAgufdJlDXZ3lqtFdQV43+H+/H3Y76E/O2VqbjzdMAw20b2SjByVqOuhP6k326n9iRMkbZj4cWzHGWPA4nVOKgjL18+Rr6iwV96xT3AdrycTiihrFOczOAmuTlOT2m+NgZT1pETBnElEXAJB+W09rbCN4JfLRvTZGlLzREg/uc83ZSF4rz4P+gvNLMZjxv4yx0DX2/c24RjaTpFpOZloCZev3y7c7k1R/DbNwDIRdHUGdBcfkZP1AG/QHwNApv7UImOUjdR1H8P5DqpYxCkBhKOQvx6lYsD3ouDnh9VyHmTHGWCDJKq7UfHKME2eD95irdILbcCeRXXFlDfaczrNbFizH0eraOszZfErz2Vv9GvRHRAthGeDXgYhSAbwKYDaA34joAQBnANwurb4SwGQACQDKANzvz2sHiiC5CqK7QDjTZd7hfykLNjW1dYhwFp0wly56ba3nlZhT8h7mW+fsxInMYqfrubp6O8ch7/6zDfFo2SQS/7myl3qNNMBPu8/gndXHUVNbh0fH9dHsdfytknGXi4fGOVlXAHjYn9djwcV9kQyuK8cYM7fjZ4txYdfWRjeDhQh5B1z0mXyX64UpPIf7dKOlrnGgB8xlVZae5bJqbXuY+dRYY+7ydJkbHBAzxkzuus9Ce/Ibpi+lA/eCZYCfUqn5lnrU5VUcMAe0EPvcqobj5eDDAzUZY8x3SsMJpbnOjgL1G3r5oXQAwHcaD/jkgFljs1fxjGK+8DzoL1B37dCVkF1idBMYY0GOr+p6/x4UaTwQU2ulGvcsW3HAzAwTapeNQl1avmFTCTPGQsQeF7PfBQOlh0xvD633ztsDgK8CesIBMzOMP+Ey79eMMcbkErKKkZRbZnQzDKd0RkAro2fQCxQcMLOAVBukszmpgYgWEFEWER2VLWtHROuIKF763VZaTkT0KRElENERIhome840af14Iprm7LUYY8ws8koDO7XAE6WpFr5cvN1wLNP7J4UYDpiZKa2Pc7/zcrzs1ncAJjosmwFggxCiD4AN0n0AmASgj/QzHcAcwBJgw1JXfSSAEQBetQbZjDGmpqgZK5CSV98z7GtqwO1f71KrSaakZRbjA99HI5XT5tzigNlAoZ4v5G7nT8wpdfvczKIKlVsTPIQQWwHkOSyeCuB76fb3AG6ULf9BWOwG0Eaa0v5aAOuEEHlCiHwA69AwCGeMMVVc8e4m2+0QPzQa5qU/j3peKYRxwMxMaW2s+x7mGu5i9lZn2VT0ZwF0lm53BZAiWy9VWuZqeQNENJ2IookoOjs7W91WM8ZCDn+7O6e0g7lC4wk8QhUHzAaqqK4zugmGcteL0L5FI7fP/WjdSayNPatyi0KDNOumasckIcRcIcRwIcTwjh07ulyPi6IwxpQoraoxugmmpLSyVGVNaMcWWuGA2UDrOMneJU+jdksqazD9x/06tSYoZEqpFpB+Z0nL0wB0l63XTVrmarnP+DIrY0yJQa+tVW1bUTNWqLYtZn65JZWabZsDZg39vOeM28dDPYeZ6Wo5AGuli2kAlsmW/0OqljEKQKGUurEGwDVE1FYa7HeNtIwxxjR39ze7jW5CwArlyVsunrles21HaLZlhheXuk+gD/V4+YvNCUY3ISgR0UIAYwB0IKJUWKpdzAbwGxE9AOAMgNul1VcCmAwgAUAZgPsBQAiRR0RvAtgnrfeGEMJxICFjjGli56ngnYDEV5zWplxWUQXCwwjFFTWISStEVnElHrj8PL+2yQGzRgrKqjyuE+rTOydmu6+EocTRtEJc2LW1Cq0JHkKIu1w8NO7/27vv8Ciq9Q/g37OppPdCKiSBAEkIIaQQegiBRKUpeBERFREviIqiAdQLFojee22/iwUVFZWLIioqggKiFGkBAWmXEkKH0EFaSHJ+f2zJ9p3dndmd3byf58nD7szszNlhz+47Z855j5FtOYDxJvYzF8BcEYtGCCHERh+tqxG03eYaatvIm7nSYJm9ATN1yZCIkLnNm3sLsxgspZ8j8kGfd0IIkd6R8817tsOKRTsk2S8FzBLx9rB8aimAaJJJrcSEEEIIsdOCzUctb2QDCpglohDQ16iRImaN27JinV0EQgghhBCjKGB2IgqXm9g6mIEyjRBCCCHEEntTDFLALBEhYRwFe6Q5iQrycXYRCCGEEJtQwOxEFC83ac55I5sLP29KykMIIcQ1UcAsESHBMMXLTSi/JCGEEELkigJmiQjJsUyD/uxHp5AQQgghUqOA2Yko2GvCbGxibu6Tv7gSuovgHuY/lG92/bLHu2PFpJ4AgMLW4Y4oEiGESI46FUqFumRYxdZYii46CHGcFZN6IDUq0OT6IZ3ikB4TBACoqSwHoDsy/bsJRai9fBNj5lVJW1BCCBEZtTA7E0V7GgMyY5xdBEKIBZGBvibXjSpMwr+HdTRYHhHgrXmcFR+Cvu2jJSmbu2GMJTDGVjHGdjPGdjHGHlMtD2OMLWeM7Vf9G6pazhhjbzHGDjDGdjDGcpz7DghxLxQwS0RIKNxI8bJGbHALi9tM6J1qsIyuOQhxnOAWXibXvTAww2jXqhJVgPxseTvJyuWm6gE8yTlvD6AAwHjGWHsAFQBWcs7TAKxUPQeAAQDSVH9jAbzj+CIT4r4oYHYiGvRnnYy4IINldAYJMS2vVZgk+w310w2cF4wtMLntXbkJAIDSDk13kVpH+Ots0ykxBOH+3hBC/9jO1DbadPcUe3HOT3LOt6oeXwGwB0AcgIEAPlFt9gmAQarHAwHM40obAIQwxmgKVUJEIlnAzBirYYz9yRjbxhirUi0zeivJHdkTC09euN3uGWnczczBmeieFunsYhAimllDMnWezx2dK/oxsuKCDZaViNAl4veKYqyf0kfzvMDM4L6cxFDUVJYjIcxPs+zj+/PwWHEa1jzdG+un9MF/HyrAludKBB1bO/B2tpYhpruoiIkxlgygE4CNAKI55ydVq04BUP+HxgE4qvWyY6pl+vsayxirYoxVnTlzRrpCE+JmpG5h7s05z+acq38JTN1KcjvzNx3Ree6pUN6q9PG0fMoXbjkmSZlc1Z/T+2FEfiI8FIa3e2m2RCKF7c/303k+KLslAnzEGSP9zzuzUFNZjm6pEZplH4zKRZ/0aJRnCWsQ/G5CkebxpmnFgo/dMSEE74+yPzBv4e2B2OAWiLZx9sbEcD88UdIGCWF+iA1uAV8vD8GvnTUkE58+mIe4EPPduF4alGGwrE96lNVldTbGWACARQAe55xf1l7HlV+AVn0Jcs7ncM5zOee5kZHUCEGIUI7ukmHqVpLbOVj7l87zuaO7YNeMUpoe2EoFrcMQ6Ku8BWssLZkjw+VrdfW4cuOWA4/onpLC/fDy4AwUp0fhCzO38p3J30c3gHvj7k7YOaMUWfFNLbYfje6CQF9hQfTOGaW4o2NLLBxXqOmikBDmh01Ti/Hx/V00A+Fmj9AdpzV7RA7+91J/g/21jgzAoVll2DmjFFGBvhiRn4iUSGU3hzIzA2gTQpVB5rieKYLKre3LhwsNlq15ug/2vmhYPlvtfbE/HihqheVP9DC5DWMM3dMi4a3X+DBlQDoAYP6YfNRUlqO4nTI4nn57e7w+XDkYcVhuPFZP7i1KKzsg/fcPY8wLymD5c87516rFp9VdLVT/1qqWHweQoPXyeNUyQogIpEwrxwH8zBjjAN7jnM+B6VtJ7kcvuCtKjYCHgulMAU2No5ZpnyOFxBHz7wfPIibIF60jA4yuz5+5Eldu1GvSZRHbeDCGe/KTcE9+Em7WNzi7OEZ5eihQU1mOgpkrceryDc3y1MgA7Dh2CbOGZKJ3ehTWVfRB1vSfEejjiVFdk5DRMhgZccG4Wd+Ivq/9BkDZzzXAxxNv/a2TwXGignwRFWT6tr6XB4OPZ1PwvvaZ3jh9+aamtVv978zBut07Fm87jmMXruPmrabze3eXBDzZry0AYHTXZLz720Grzomx/tD6Qau9fL088Pzt7QEAP07sjrK31pjcVn8MyMM9U/Cw1oVAbHAL7HmhP3y9lGVMiwpEhqqLyqN9UrF892mT+549Igfj52/VWTbvgTyMmrvJujdkB6YcQfkhgD2c89e0Vn0H4D4Alap/F2stn8AYWwAgH8Alrd9bQoidpAyYu3HOjzPGogAsZ4zt1V7JOeeqYFoHY2wslCN8kZiYKGHxpKUf2qmfa0+00Zzj5UvXhbXUap8jD4lnvhjx/kYAMBkQX7lRL+nxieMomOksNdqDzzZM1e3uoH6Jt4dCtR/lZzLQ1xOTS9N1tn13ZGeM+2wLpomYHSI+1A/xoX4WtxuYrey6+uVmZZfW/h1iUDk0S7M+JtgXk0ra4LXl+wxeO/+hfHh5KLD18AXMWqr82h7cyaArrOTatwzSqYvLdp5CplYLv5AGhxbeTRcbGVr9ubPiQ/DuyBxUn72KV5f9z+B15VmxeOILBeoaGjGxOA0920Sic1IoVkzqqbkQAsxnDRFBEYB7AfzJGNumWjYVykD5S8bYgwAOAximWvcjgDIABwBcA3C/lIUjpLmRLGDmnB9X/VvLGPsGQB5Ut5I45yf1biVpv24OgDkAkJub67IxpX56JZrlTI/A/1ntPsoKY32Ym/VlB7FV9axyJFcswaDslvh22wnlspllmLOmGkPMBIfqLg3hqtzCAT6emHFHB/Rua9g3tn9GDDZOLUa0mRZkoeY9kIezf920+nXq+mGs68jIgiRsrjmPp0vTcft/1mqWd01R9q3ukhym02LrbP0zdLuaxAb74sj5a3bsT9lf/OTFG/h0w2HDDVRfN3/vlaLpY50aFYDPx+Tjng+UF9ejCpNsPr4lnPO1MD2nk0HHdVV/5vGSFYiQZk6SPsyMMX/GWKD6MYB+AHai6VYSoHsrye2sO3DW6HJm85x27kXorXhLrUhSdGs5dPaq+DuVCWuy17jjRAhJ4X744dFuAJR3Et64u6mbhELBMK5nitkuEo8Wp+GDUbnopRUg39c1GYnhxlt9bQmWV0/ujfaxyhSK6o93jzaRGJITb/W+1IxdsIf5e+PTB/N1Wm3/fZfhxCNypT1o0h7ardDaNHcF9b5j1P83ANA5SZq0fYQQ+ZFq0F80gLWMse0ANgFYwjlfBuWtpBLG2H4AfVXPRXP0/DUkVyzBzuOXNMvOXLmJa3WOv5V+/mqdznN1i3OMFT+gcskA8c0fx5A27UfU1TeKtk/tFp1WejlZtVnKVW3P5C+ccxw10kLV+1+/ah7XXr6BG7d0g/vkiiXYUH0OtxoaNc9dLA2g0Ow1Dp0IoX1sEKqe7SvlIfDLk710bs0DyoFmQgeueXkoJJ+pLjHcD3GhlifyEULoV8imacV4sqQNhuQ4vuuFs43p1gr5Rvpnm7orGCBwoCchxL1IEjBzzqs55x1Vfx045y+rlp/jnBdzztM453055+fFON6v/6vF/tNXsHKPchDHwqqmVJRdXl6BIW//LsZhrBJv4gfvnZFNjXSWAuIGmUwF+PKSvbjVwHHxWp3ljQWq13pvmUZyxarpnwLtaXbtNXddDbq/ugobq88ZXf/99hPIm7kSXV5aYbDu7jkb0PPVVTrLth65IFrZHMwhEyGo4w/trjVeCuVXULvYICyZ2A0RAT6IDfbF3/ISkZtkPk17solWXXOMpSb09fKwKq2ZK1FXH0t3tqICffFocZrRmfrcXVSQL74wkgFETb/bl5eHAkNy4qTuv0wIkRm3mOlv9EebUfL6as3zT9Yfxtu/HtA833vqisPLlGIi00J4gPC0cg02tDA/tXA7vt5qfx7nmrNXMXD2Oly6fksT2I+auwm/7VMmule3rtpKO24xd2Ggv+a529rrPL960/a7By/+sBsAcO+HhiPfT166jkf/+wcA4MrNeqMtyCcu3dBZ7owLMxuos9dsUQ2wBeycCEGoVhH+eLhHa508wAoFQ01lOZY+1l0TrK2fUoxZQzLx1SNd8ckDeVj6WHckhhkGx1PLLA+me7a8HWKDlXd1hM4kJycyuckkS2K1wpuivsgw9n/w2rBsbP9HP8MVhBC35fIBc6OJYEt/5PP+044Nmod3SbC8kQWNNsSkX205hklfbrf72G+u3I/tRy9i5Z7TOKfqXrL31BXcN3cT5q2vQdq0pVhkxwQr2ini2piZXrZdjPmpZ9Upo6yl3b2krqFRpxsPAHxmbBCQlTjnWLW31uRn1Em6cc5zoOxuMZ4xppPw1paJEITOHMYYw5Sydma74Ojr2SYS7WKDsGJST+x+oVQna4KlbBHvjuyMMd1bY/2UYqx8sieWT+op+LjOJnVGGHcwuFMcPr6/i+j7XTxeOSmMn6pvs6xqr4M91L2Vs4vgsg7NKnN2ESQzoXeqs4vgFC7fGWve+hpB25W8vtqh+XM9tZpQtWfl0map9ai+sRGA/G4VP794FwBg6c6TGNrZtoFI2rd+JxabrnzT7+hgdj/WxKK/HzyL3Scu46UlewzW3fZ/a3Wez15lXY5aY7754zgmfbkdLw7KwL0F0o2mt4aV2WsETYTgiMw23p4KeJu5vi9sHY5Xhmbh2IVrOHL+Gu7O001JaeqOj1y9MLADwgK8NZNv2Msd42/GmM7gS7F0TAgBAHzxcCF+2nVKtBkeXVFWfIizi+Cy3LV7032FSXiqtC3+s+qAyW3aRAdg3gP5CA/wxk+7TmHCfOXd2i/GFmD4nA2OKqroXL6F+diF6ybXyWUglrk+uuaI1TD5y97TSK5YgjNXrE9LddPMQD97bhcHaQ2cMffFYqlvqaVBgWqnLt3AiPc3Gg2WpbBqb62mpf+5b3c65JiW2JC95jsAo1TZMgogs4kQUqMC0C01At+OL8J/xxYgMdwPXVMjDIJlVxQV5IuZgzPh5WHfV3Rz6dKh7nYjptSoAIxvpi1patp3//oauXh75x6XT5wjqdWTezu7CKILEtB3f+HDXRET7AsvDwVKOzSlg0yJMt5woZ6d9KHurbBzRqk4BZWAywfMcr2I0/6dcvaV5kfragAAu09eBgBsOXwea/abvnWubcrXf5pcZ89vsVgtF0IHRhbMWinK8YS6/+PNDj2eQNZmr/kRQDWUEyG8D+Dvji+yad6eCnw2Jh/ZqhZBYkg9YE2u35Ni2Ptif/w6uZezi+GW2sYEYliu8i5il+Qwg7u01ozJkTtb7kD/SysNY/8OMQbrE8P98HCP1gCU2VjcgZCvkmC/pqBa+6I/uIWXZtKnUD8vPNM/HbtmlOLtezqjprIc08rbI8DHEz3bRIpdbFG4dMC88/glvL/mkOb59O93m92+0IFBk5CWHbF+xGZ8vwuzluq2nH687pDBdpxz3LjVgKHvrNcZ6Hatrh4Vi3bgzRX7rTru5kPGk5z8ZcdAPGvVy6t/MACImn5PTNZmr1FlxxjPOU/hnGdyzquc+w6I7dw3Yvb18tCZPpyIy1w2kHaxgfA3kcfa3SWF++FOrS6JqVqtp4/2abozEWHkomLRI12lLZyUVIGLLQ0VXh4K7Ht5AGoqy/HH8/3wSK8U+Bvp8tS+ZZCRVzufSwfMr/5kOKWpOScvKXPqrtl/RtQUadZS38ZKNXF7QqjjF69jy+EL+GhdDd77rVpn3fTvd+PyDeX00+oW7lsNHNVndCflqKtvRPvnf8KCzUfx+op9qKpRBsFCZhW7crMee1St1mrbjl5Exj9+wrKdp8y+1tYc0/qt9fVmsnUcOnsVq/edMTmJjBTmrD6I77efcNjxCDGnuXTJINJTf/WqA6XoIB8E+nph1wu6OcxD/dw33V55ljKr5vwx+fheNQGSWojW+36yX1ujr09XDWLvbCFlppyph2c9f3t78xtq6ZYagWfLLWc1UnugSJ6t8S49mmGvXrAmRFXNBdz74SZ0TgrFoke64rXl+9CzTaQEH2DTv1TmZhKzRo9XV+l0SdBvIc6a/jN+eLQb1qq6Xzw0r0rnQ/vUwu1Yf1A3B/Gd7663qgwD3lyDmspyfLCmGilRAZqJQNYeOGMwla0UPlx7CBP6pBldpz0BiaPM/HGvw49JiCXu3CWDSEvdeq++lf7t+CKs2X/GZHaju3ITMGd1tdF1cpGdEIJtRy9qnuclm56xserZvshV5eKfPSIHs0cY3+7Bbq3w0pI98PE03Q751SNdcfn6LZvK7CxbnytBzovLNc/Vs5d66uW0f7a8HVIiA5AVbzhm67Mx+VYdU67fVy4dMNfaMIht5IcbAQBbDisnmXhr5X68tVIZaI4sSMRLgzJFKZu5lh2xPgz6/XdfX7HPYBv97A/ag96+siMtnD71fjPilLdSPttwBAdq/8KCsaYnBLCF/qm7cM01vnw2HTqPvFZhGPz2Ovxx5KJDM7aQ5osamIm9/t47BQAwIr8p00/3NN0+pqUdorGh+jxGFiRiYnGarAPm2GBffP1IV8xZU43KpcoGji/HKX+nyjNjseRP3XHNnAO3d2xptI+yNsYYFo4rNJozXi3Ax9Olsq70bhupc8fgtWEdMShbmYpfP8b5W16i0e4V7sS9352VPttwRLyAWaRtXIF2NpKdx5ta/TdU6/Zx3lxzHheu1qGfhS8edzTsvfVgrOlLZtvRi8hOCMGxC9ewYvdpjJbpLSji4lQfOJk22BAX4OftiadKjXcxUHvv3lyd5wE+ng4dy2KN3yv6gDGGJCOB7ex7crBEL7tWuL83/u9vnUzub/kTPTSt8F2MtFSrJ9hJtGFmUmf76P48nedDcpr6bEsZv4T5eetcvOyY3g9Z03+W8IjCuHQfZnudM9JP98TF67h4rU7TenuzvkHTF1gsmh8vC5+463UNuF7XYHTdjVvGl8vZXe+ux9hPt4i+X/3+6HX1jaL/n4lB+4r89eX70GbaUnR7ZRWmf78byRVLcK1Onj8wxPXJ9RYncU8djAzaWiGTiYPU42BiQ4TNFKlQmK88adGBZoPhARkxmD8m3+pc/AvGFli1vZQe6ZWCZL33aOs4JCEUCobZ9+Tg/VG5mFicBj8z6WWnlqVLVg6DcjnsSDLUWdUvSVvXyl+Q/cJyvLREmXGj7bPLbLqyMd8lQ9ivV8Gslcia8ZPRdXf8Z63R5XJjLOBfWHUUm2uMZ9iwRfYLy3WeP/jJZllcjZrz274zqNMbsFgw07Gp74j7c5e7WMT1pUYF4J17cjC1LB1fjSvE7R1bOrwM5ZmxmseWsjxEBfpg2ePd7T4mYwxdUyPM/u53TgpFrt44KoWMrnKf6Z+OX/VySjviu6WkfTQmlbSBp5l89GN7pDigJErUJcOEj9bVYNdx6wcVqn291XL/YHWO1O1HL+LzjYfxytAs/Lz7tM42txo4FlYdxfOLd+Gtv3VCSftoAMC+03/ZXDZHavf8MgBNA0YAYPJXO0Q/zvjPt8LbU4HyzFis2e+4rBhiunyDWpiJNBh1yiAOlJscio2HzuPnJ3qg3+urNcsHaAWsuclhmq4OCzYdQYWZnP9imW3FRCulHWKQHiNderMfHu2GlXtq8Vhf5aB1zjn+/fM+zQx6Fhq2RTMwuyUWb7M+s1OEv266PBnF95Jp1i3MlmzSagX9eZf5NGnaTl66jpV7a02uV3+uVu87i+SKJRg4ex2+rDqGk5du4GEjXRYmf7UD12814KF5VUiuWCKbGQytod+aaoyxfJX6TFXKJX+exDd/HMeYeZQqmBA1SitHnGFSSVusmNTDZCYNfdr5jG3xtolA2NJMe93TIvDKUN1xSxOLlQFsoK+07YkZccGaYBlQtkRr9xW31BVELIWtw3WeRwYKm4zG0X2yayrLNWn9nIUCZoHGfroFjVpZKQ6fu4r3fjtodNvCWb8I2ufHv9foPH9q4Xaby+cOHHVFTUhzoe5n2Bxaf4h8eCgYUqOEBcsA4OmhQE1lOX6v6IMR+YkYq5odD1D+LmyYUmzytXtf7I8yrZbrr8Y1ZWZKDPfDR6O7YFpZO/yglzcZAD59MB/DuyTqLFP31Y2RYLp1a7QK9xdtX9+OL8LjfQ3Tr8aHtkD/jBh0aBmEf96ZhdykULx5d7ZNx3BEFxL1MWwt4xvDbXudGnXJsELrqT8ixM8Lw7TyTJZ2iMGouZtwRJV/WMhkJJdM5GH8XS8ncnMjpL65+63lWw2NOlOJEiIG9641xF20DGmBmYOVLb5je7TGxurzKMuMAWMMrwzNxDOLdLttZMQFwVc1IGz7P/rBU8EMUpv1To9C7/QowWUY3CkOQb5e6GPFa6QQ6u8tyn7G9UxBdkIIshNCMKowGf3fWI3aKzexYUoxogJ9oFAwLJmo7Kt9V26CZhC9qVZ7bd9NKIKvlwfOX63T/D9ISf09pn/nbPaIHIyfv1Xz/M7O8QZpc78dX2TT7ITaKGC20sVrt3RyTPbSmxzjQK3lvsV/Hr8kdrHcgpAr1CQXTM1jjWt1DQhuQQEzEQf1yCCuKiLAR+cW/PAuiRjeJRHrDpzFfzcdwQ87TmJARtN67Sm8HyhqZXPAyxhDX9VYIbn48uFCDHtPd1KxIF9Pg3EvSeF+OHzumub5oVllOoMNw/y9sezxHjhx8brJFvQQP2/B8wRkxYcIfAfiUL8VrvfNVp4Vi2t1WZrxUZNL2+Ly9VtIDPODt6cCpy/fRFac4YQq1qKA2QnkNPpVTiaXtsWkL813S8kQ4UMvZ/qzJxEiBqGZeQiRu6LUCBSlRqByaD38vY23alozbbOcvT8qF8nhfkiLDjRoYR/UKQ4PdW+N7q+uAqBsSa4YkG5xjFOYvzfCRGq9drTRXZOxeNsJdE2JMFinvjN7R8eWiA7yxZxRuQbb2IsCZieg3y7jhuTE4/aOLZE2bamzi+I0HhQwExHRoD/irlxpxjxblWi1dA/vkqgTMIf5eyMhzM+gNdidZ5HtlBhq8v1lqqbk7p8h3cRo7v+JkyGKiUzzEHA1cXeXBCzYfNQBpXE8amEmYqJ4mRD3sWBsAarPXIWPpwJ3ZDs+j7WcpUQGoHpmmaTZRVy6s2TfdvLqZ2RMSqThSFfqkmGakA97u1jpcmMGmmi1uL8o2WBZRpz45aAWZiIF+sohxPUVtA7HiPxEDO0cT4PDjZA6FZ9Ln/F2scLT1jjLmO6tDZZRf0L7NDRK1242pntr/PR4D51l8x7Iw+PFbfDiwA5Y+0xTXs/pt3fQPBaau9IS+mwQMUk5fS0hhDQnLt0lo9EFfgzqjUzY0ShhwAcAeclheHtkDnKNTP3tDkraR2umLrf1VP76VC/8dbMeSeF+uHqzATHBvjh9+QYiA5Rpdg68PAAbD51HdkKIJk3RvYXJAIDnbmuPF3/YjdzkMM3+Nk/r65ITypDmwd3TMRJCiNRcuoW5faz8Myb4eBqO4m2QONBfMLbAYNa8IF9P1FSW4/sJ3ZAeE4iVT/Y0+frXhnXExD6pOstqKst1OtuL1aJqi4QwP1TPKse344ssbrv0se74Re+91lSWIznCHxlxwQj09dKk14kO8tXc0vH0UKAoNcIgpycAPNitleZcLHqkEK8P76jZr77RXZM1j0P9vAzWE0IIIUT+XLqFuSxTutGQYumWZpj+pFfbSFQu3SvZMfX78dzVOR4vDc4AoBxJukzV5WDFpJ7w8mB44ott2HrkIrw8GLw8FBiSo5ym9K1flHPaP1vezuAYPz/eA+eu1uHS9Vv436krmPrNn/jwvlwUt4u2qqVVu4uDvq3PlZh9bVZ8CL4dX4RBs9eZ3Ebd33nx+CKEB3ij0fIM3VbpnBSGzklNLc1rnu6NTzccRri/N2Yt3QvGlK3PV2/WIznCHzN/3KOTx5sQKamvzamnDyGE2MelA2bGmNkUKg2NHApmul9oQyNHxaIdWKiaEWbfSwPg7WnY6P7a8n14a+V+m8rYMqSFwbL0mCC8OzIHB89cRVlmLHr/61esebo3DtT+hfs/3mzTcdS0z4el9DLqWQm//rvxllpzrw/199bMRNQ5KRQj8pumF7U3rc3BmWWCB79lJ4QIOl5HO2f4ESohzA9Ty9rhgzVNQXFkoI+mRX5qWTtMLTO8ACFEShQvE0KIfRweMDPG+gN4E4AHgA8455VSHctS0OWhYJq0S68OzTIaLAPApJI2mFTSBjduNWDR1mO4XteAzLhg5LcO12zT2Mjx3fYTuC0rFp4eCmw9cgFBvqZvwffXmqFIHfBp51TknGPxthNoaOTokx6FjYfOoX9GLNYfPIeWIb5Yf/AcKr7+Ex4Khvlj8jF8zga3yUvpTpkiXL3vqCPrKxGf/oxYxL1RfSVEOg6NsBhjHgBmAygBcAzAZsbYd5zz3Y4sh1EC4hpfLw/ck59kdJ1CwTCoU5zmeU5iqH3FYbr7UwfYhSnKID0p3B8DMmIR4OsJDwXD7hdKKV2djLjDrXBZ11diFVf+HBJhqL4SIi1HD/rLA3CAc17NOa8DsADAQAeXQYcLJNowKdjPS9Ma6+ftCV8v49OEEsdTt+y5eJwiu/pKrOPK32/EalRfCZGQowPmOADaU7QdUy1zGnXLi4sHNkSmpE6kLjHZ1VdiHc33GzUxNwdUXwmRkOw6vTLGxgIYCwCJiYkWtrbflAHp8FQw3N6RppkUYuG4QmysPufsYsjeyIIkHKy9ivG9Uy1v7OIcXWcn9klFsQvM8ikHzelzaK+pZeno0FL+qUrt5ej6+uF9uTh+8brkx3EXzeVzaK8vxhag6vAFhx6TOXImKMZYIYDpnPNS1fMpAMA5n2Vs+9zcXF5VVeWw8hEid4yxLZzzXAcdy6r6ClCdJUSfo+os1VdC7Geuvjq6S8ZmAGmMsVaMMW8AdwP4zsFlIIQIQ/WVENdB9ZUQCTm0SwbnvJ4xNgHAT1CmvZnLOd/lyDIQQoSh+kqI66D6Soi0HN6HmXP+I4AfHX1cQoj1qL4S4jqovhIiHUd3ySCEEEIIIcSlOHTQn7UYY2cAHLawWQSAsw4ojjugcyWcXM9VEuc80tmFMIXqrKjoPAkn53Ml2zpL9VV0dK6EkfN5MllfZR0wC8EYq3JU1gBXR+dKODpX0qFzKwydJ+HoXEmHzq1wdK6EcdXzRF0yCCGEEEIIMYMCZkIIIYQQQsxwh4B5jrML4ELoXAlH50o6dG6FofMkHJ0r6dC5FY7OlTAueZ5cvg8zIYQQQgghUnKHFmZCCCGEEEIkI7uAmTGWwBhbxRjbzRjbxRh7TLU8jDG2nDG2X/VvqGp5OmNsPWPsJmPsKUv7cScinitfxtgmxth21X5mOOs9SUWsc6W1Pw/G2B+MsR8c/V7khuqsMFRfhaP6Kh2qr8JRnRWmudRX2XXJYIzFAojlnG9ljAUC2AJgEIDRAM5zzisZYxUAQjnnzzDGogAkqba5wDn/l7n9cM53O/xNSUTEc8UA+HPO/2KMeQFYC+AxzvkGh78piYh1rrT2NwlALoAgzvltjnsn8kN1Vhiqr8JRfZUO1VfhqM4K01zqq+xamDnnJznnW1WPrwDYAyAOwEAAn6g2+wTKEw3OeS3nfDOAWwL34zZEPFecc/6X6qmX6k9eV1J2EutcAQBjLB5AOYAPpC+5/FGdFYbqq3BUX6VD9VU4qrPCNJf6KruAWRtjLBlAJwAbAURzzk+qVp0CEG3jftySvedKdQtkG4BaAMs553SuTHsDwNMAGqUonyujOisM1VfhqL5Kh+qrcFRnhXHn+irbgJkxFgBgEYDHOeeXtddxzjkEXp2Z24+7EONccc4bOOfZAOIB5DHGMqQoq7PZe64YY7cBqOWcb5GulK6J6qwwVF+Fo/oqHaqvwlGdFcbd66ssA2ZVH59FAD7nnH+tWnxa1U9G3V+m1sb9uBWxzpUa5/wigFUA+otcVKcT6VwVAbiDMVYDYAGAPoyxzyQqssugOisM1VfhqL5Kh+qrcFRnhWkO9VV2AbOqc/yHAPZwzl/TWvUdgPtUj+8DsNjG/bgNEc9VJGMsRPW4BYASAHtFL7ATiXWuOOdTOOfxnPNkAHcD+IVzPlKCIrsMqrPCUH0VjuqrdKi+Ckd1VphmU18557L6A9ANymb7HQC2qf7KAIQDWAlgP4AVAMJU28cAOAbgMoCLqsdBpvbj7Pcn03OVBeAP1X52Anje2e9NrudKb5+9APzg7Pfm7D+qsw4/T1Rfqb46/dy6e30V+Vy5dZ1tLvVVdmnlCCGEEEIIkRPZdckghBBCCCFETihgJoQQQgghxAwKmAkhhBBCCDGDAmZCCCGEEELMoICZEEIIIYQQMyhgJoQQQgghxAwKmAkhhBBCCDGDAmZCCCGEEELM+H8z/gXNX5RxWQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "date_formater = mdates.DateFormatter('%Y')\n", - "\n", - "fig = plt.figure(figsize=(12,8))\n", - "for idx, entry in enumerate(islice(dataset.train, 9)):\n", - " ax = plt.subplot(3, 3, idx+1)\n", - " t = pd.date_range(start=entry[\"start\"].to_timestamp(), periods=len(entry[\"target\"]), freq=dataset.train.freq)\n", - " plt.plot(t, entry[\"target\"])\n", - " plt.xticks(pd.date_range(start=\"2011-12-31\", periods=3, freq=\"AS\"))\n", - " ax.xaxis.set_major_formatter(date_formater)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Probabilistic feed-forward network using PyTorch\n", - "\n", - "We will use a pretty simple model, based on a feed-forward network whose output layer produces the parameters of a parametric distribution. By default, the model will use a Student's t-distribution, but this can be easily customized via the `distr_output` constructor argument." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:06.151855Z", - "iopub.status.busy": "2022-06-13T08:52:06.151064Z", - "iopub.status.idle": "2022-06-13T08:52:07.212823Z", - "shell.execute_reply": "2022-06-13T08:52:07.213755Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/stellalo/.virtualenvs/gluonts/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" - ] - } - ], - "source": [ - "import torch\n", - "import torch.nn as nn" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:07.223180Z", - "iopub.status.busy": "2022-06-13T08:52:07.220677Z", - "iopub.status.idle": "2022-06-13T08:52:07.320935Z", - "shell.execute_reply": "2022-06-13T08:52:07.321902Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.torch.model.predictor import PyTorchPredictor\n", - "from gluonts.torch.distributions import StudentTOutput\n", - "from gluonts.model.forecast_generator import DistributionForecastGenerator" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:07.328181Z", - "iopub.status.busy": "2022-06-13T08:52:07.327143Z", - "iopub.status.idle": "2022-06-13T08:52:07.329879Z", - "shell.execute_reply": "2022-06-13T08:52:07.330450Z" - } - }, - "outputs": [], - "source": [ - "def mean_abs_scaling(context, min_scale=1e-5):\n", - " return context.abs().mean(1).clamp(min_scale, None).unsqueeze(1)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:07.345960Z", - "iopub.status.busy": "2022-06-13T08:52:07.344710Z", - "iopub.status.idle": "2022-06-13T08:52:07.348674Z", - "shell.execute_reply": "2022-06-13T08:52:07.349359Z" - } - }, - "outputs": [], - "source": [ - "class FeedForwardNetwork(nn.Module):\n", - " def __init__(\n", - " self,\n", - " freq: str,\n", - " prediction_length: int,\n", - " context_length: int,\n", - " hidden_dimensions: List[int],\n", - " distr_output = StudentTOutput(),\n", - " batch_norm: bool=False,\n", - " scaling: Callable=mean_abs_scaling,\n", - " ) -> None:\n", - " super().__init__()\n", - " \n", - " assert prediction_length > 0\n", - " assert context_length > 0\n", - " assert len(hidden_dimensions) > 0\n", - " \n", - " self.freq = freq\n", - " self.prediction_length = prediction_length\n", - " self.context_length = context_length\n", - " self.hidden_dimensions = hidden_dimensions\n", - " self.distr_output = distr_output\n", - " self.batch_norm = batch_norm\n", - " self.scaling = scaling\n", - " \n", - " dimensions = [context_length] + hidden_dimensions[:-1]\n", - "\n", - " modules = []\n", - " for in_size, out_size in zip(dimensions[:-1], dimensions[1:]):\n", - " modules += [self.__make_lin(in_size, out_size), nn.ReLU()]\n", - " if batch_norm:\n", - " modules.append(nn.BatchNorm1d(out_size))\n", - " modules.append(self.__make_lin(dimensions[-1], prediction_length * hidden_dimensions[-1]))\n", - " \n", - " self.nn = nn.Sequential(*modules)\n", - " self.args_proj = self.distr_output.get_args_proj(hidden_dimensions[-1])\n", - " \n", - " @staticmethod\n", - " def __make_lin(dim_in, dim_out):\n", - " lin = nn.Linear(dim_in, dim_out)\n", - " torch.nn.init.uniform_(lin.weight, -0.07, 0.07)\n", - " torch.nn.init.zeros_(lin.bias)\n", - " return lin\n", - " \n", - " def forward(self, context):\n", - " scale = self.scaling(context)\n", - " scaled_context = context / scale\n", - " nn_out = self.nn(scaled_context)\n", - " nn_out_reshaped = nn_out.reshape(-1, self.prediction_length, self.hidden_dimensions[-1])\n", - " distr_args = self.args_proj(nn_out_reshaped)\n", - " return distr_args, torch.zeros_like(scale), scale\n", - " \n", - " def get_predictor(self, input_transform, batch_size=32, device=None):\n", - " return PyTorchPredictor(\n", - " prediction_length=self.prediction_length,\n", - " freq=self.freq, \n", - " input_names=[\"past_target\"],\n", - " prediction_net=self,\n", - " batch_size=batch_size,\n", - " input_transform=input_transform,\n", - " forecast_generator=DistributionForecastGenerator(self.distr_output),\n", - " device=device,\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To train the model using PyTorch Lightning, we only need to extend the class with methods that specify how training steps are supposed to work. Please refer to [documentation for PyTorch Lightning](https://pytorch-lightning.readthedocs.io/en/stable/) to know more about the interface you need to implement in order to fully customize the training procedure." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:07.355155Z", - "iopub.status.busy": "2022-06-13T08:52:07.353911Z", - "iopub.status.idle": "2022-06-13T08:52:08.973191Z", - "shell.execute_reply": "2022-06-13T08:52:08.973764Z" - } - }, - "outputs": [], - "source": [ - "import pytorch_lightning as pl" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:08.982092Z", - "iopub.status.busy": "2022-06-13T08:52:08.981283Z", - "iopub.status.idle": "2022-06-13T08:52:08.983857Z", - "shell.execute_reply": "2022-06-13T08:52:08.984416Z" - } - }, - "outputs": [], - "source": [ - "class LightningFeedForwardNetwork(FeedForwardNetwork, pl.LightningModule):\n", - " def __init__(self, *args, **kwargs):\n", - " super().__init__(*args, **kwargs)\n", - "\n", - " def training_step(self, batch, batch_idx):\n", - " context = batch[\"past_target\"]\n", - " target = batch[\"future_target\"]\n", - "\n", - " assert context.shape[-1] == self.context_length\n", - " assert target.shape[-1] == self.prediction_length\n", - "\n", - " distr_args, loc, scale = self(context)\n", - " distr = self.distr_output.distribution(distr_args, loc, scale)\n", - " loss = -distr.log_prob(target)\n", - "\n", - " return loss.mean()\n", - "\n", - " def configure_optimizers(self):\n", - " optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)\n", - " return optimizer" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now instantiate the training network, and explore its set of parameters." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:08.988739Z", - "iopub.status.busy": "2022-06-13T08:52:08.987908Z", - "iopub.status.idle": "2022-06-13T08:52:08.997850Z", - "shell.execute_reply": "2022-06-13T08:52:08.998409Z" - } - }, - "outputs": [], - "source": [ - "freq = \"1H\"\n", - "context_length = 2 * 7 * 24\n", - "prediction_length = dataset.metadata.prediction_length\n", - "hidden_dimensions = [96, 48]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.003598Z", - "iopub.status.busy": "2022-06-13T08:52:09.002659Z", - "iopub.status.idle": "2022-06-13T08:52:09.023203Z", - "shell.execute_reply": "2022-06-13T08:52:09.023834Z" - } - }, - "outputs": [], - "source": [ - "net = LightningFeedForwardNetwork(\n", - " freq=freq,\n", - " prediction_length=prediction_length,\n", - " context_length=context_length,\n", - " hidden_dimensions=hidden_dimensions,\n", - " distr_output=StudentTOutput(),\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.029709Z", - "iopub.status.busy": "2022-06-13T08:52:09.028848Z", - "iopub.status.idle": "2022-06-13T08:52:09.032211Z", - "shell.execute_reply": "2022-06-13T08:52:09.032765Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "144243" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sum(np.prod(p.shape) for p in net.parameters())" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.037494Z", - "iopub.status.busy": "2022-06-13T08:52:09.036626Z", - "iopub.status.idle": "2022-06-13T08:52:09.039753Z", - "shell.execute_reply": "2022-06-13T08:52:09.040328Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "torch.Size([96, 336])\n", - "torch.Size([96])\n", - "torch.Size([1152, 96])\n", - "torch.Size([1152])\n", - "torch.Size([1, 48])\n", - "torch.Size([1])\n", - "torch.Size([1, 48])\n", - "torch.Size([1])\n", - "torch.Size([1, 48])\n", - "torch.Size([1])\n" - ] - } - ], - "source": [ - "for p in net.parameters():\n", - " print(p.shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Defining the training data loader\n", - "\n", - "We now set up the data loader which will yield batches of data to train on. Starting from the original dataset, the data loader is configured to apply the following transformation, which does essentially two things:\n", - "* Replaces `nan`s in the target field with a dummy value (zero), and adds a field indicating which values were actually observed vs imputed this way.\n", - "* Slices out training instances of a fixed length randomly from the given dataset; these will be stacked into batches by the data loader itself." - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.045160Z", - "iopub.status.busy": "2022-06-13T08:52:09.044307Z", - "iopub.status.idle": "2022-06-13T08:52:09.046946Z", - "shell.execute_reply": "2022-06-13T08:52:09.047466Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.field_names import FieldName\n", - "from gluonts.transform import AddObservedValuesIndicator, InstanceSplitter, ExpectedNumInstanceSampler, TestSplitSampler" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.052158Z", - "iopub.status.busy": "2022-06-13T08:52:09.051157Z", - "iopub.status.idle": "2022-06-13T08:52:09.053562Z", - "shell.execute_reply": "2022-06-13T08:52:09.054007Z" - } - }, - "outputs": [], - "source": [ - "mask_unobserved = AddObservedValuesIndicator(\n", - " target_field=FieldName.TARGET,\n", - " output_field=FieldName.OBSERVED_VALUES,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.059746Z", - "iopub.status.busy": "2022-06-13T08:52:09.059054Z", - "iopub.status.idle": "2022-06-13T08:52:09.061524Z", - "shell.execute_reply": "2022-06-13T08:52:09.061953Z" - } - }, - "outputs": [], - "source": [ - "training_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=ExpectedNumInstanceSampler(\n", - " num_instances=1,\n", - " min_future=prediction_length,\n", - " ),\n", - " past_length=context_length,\n", - " future_length=prediction_length,\n", - " time_series_fields=[FieldName.OBSERVED_VALUES],\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.065813Z", - "iopub.status.busy": "2022-06-13T08:52:09.065070Z", - "iopub.status.idle": "2022-06-13T08:52:09.067120Z", - "shell.execute_reply": "2022-06-13T08:52:09.067598Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.loader import TrainDataLoader\n", - "from gluonts.itertools import Cached\n", - "from gluonts.torch.batchify import batchify" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.071482Z", - "iopub.status.busy": "2022-06-13T08:52:09.070686Z", - "iopub.status.idle": "2022-06-13T08:52:09.072855Z", - "shell.execute_reply": "2022-06-13T08:52:09.073363Z" - } - }, - "outputs": [], - "source": [ - "batch_size = 32\n", - "num_batches_per_epoch = 50" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.077847Z", - "iopub.status.busy": "2022-06-13T08:52:09.077161Z", - "iopub.status.idle": "2022-06-13T08:52:09.079353Z", - "shell.execute_reply": "2022-06-13T08:52:09.079785Z" - } - }, - "outputs": [], - "source": [ - "data_loader = TrainDataLoader(\n", - " # We cache the dataset, to make training faster\n", - " Cached(dataset.train),\n", - " batch_size=batch_size,\n", - " stack_fn=batchify,\n", - " transform=mask_unobserved + training_splitter,\n", - " num_batches_per_epoch=num_batches_per_epoch,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Train the model\n", - "\n", - "We can now train the model using the tooling that PyTorch Lightning provides:" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:09.085509Z", - "iopub.status.busy": "2022-06-13T08:52:09.084663Z", - "iopub.status.idle": "2022-06-13T08:52:17.835530Z", - "shell.execute_reply": "2022-06-13T08:52:17.836022Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:GPU available: False, used: False\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:TPU available: False, using: 0 TPU cores\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:IPU available: False, using: 0 IPUs\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.callbacks.model_summary:\n", - " | Name | Type | Params\n", - "-----------------------------------------\n", - "0 | nn | Sequential | 144 K \n", - "1 | args_proj | PtArgProj | 147 \n", - "-----------------------------------------\n", - "144 K Trainable params\n", - "0 Non-trainable params\n", - "144 K Total params\n", - "0.577 Total estimated model params size (MB)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Training: 0it [00:00, ?it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Training: 0it [00:00, ?it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 0it [00:00, ?it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 1it [00:00, 4.11it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 1it [00:00, 4.09it/s, loss=6.71, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 2it [00:00, 5.98it/s, loss=6.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 3it [00:00, 6.60it/s, loss=6.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 3it [00:00, 6.58it/s, loss=7.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 4it [00:00, 7.46it/s, loss=7.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 5it [00:00, 8.34it/s, loss=7.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 5it [00:00, 8.33it/s, loss=7.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 6it [00:00, 8.41it/s, loss=7.53, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 7it [00:00, 8.70it/s, loss=7.53, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 7it [00:00, 8.69it/s, loss=7.47, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 8it [00:00, 8.92it/s, loss=7.41, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 9it [00:00, 9.10it/s, loss=7.41, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 9it [00:00, 9.09it/s, loss=7.39, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 10it [00:01, 9.87it/s, loss=7.52, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 11it [00:01, 10.68it/s, loss=7.39, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 12it [00:01, 11.46it/s, loss=7.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 13it [00:01, 12.21it/s, loss=7.19, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 14it [00:01, 12.96it/s, loss=7.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 15it [00:01, 13.68it/s, loss=7.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 15it [00:01, 13.66it/s, loss=7.19, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 16it [00:01, 14.35it/s, loss=7.25, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 17it [00:01, 15.04it/s, loss=7.24, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 18it [00:01, 15.70it/s, loss=7.21, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 19it [00:01, 16.32it/s, loss=7.2, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 20it [00:01, 16.94it/s, loss=7.21, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 21it [00:01, 17.52it/s, loss=7.21, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 21it [00:01, 17.50it/s, loss=7.18, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 22it [00:01, 18.05it/s, loss=7.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 23it [00:01, 18.60it/s, loss=7.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 24it [00:01, 19.17it/s, loss=7.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 25it [00:01, 19.70it/s, loss=6.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 26it [00:01, 20.20it/s, loss=6.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 27it [00:01, 20.73it/s, loss=6.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 27it [00:01, 20.71it/s, loss=6.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 28it [00:01, 21.23it/s, loss=6.9, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 29it [00:01, 21.74it/s, loss=6.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 30it [00:01, 22.18it/s, loss=6.77, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 31it [00:01, 22.61it/s, loss=6.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 32it [00:01, 23.04it/s, loss=6.8, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 33it [00:01, 23.46it/s, loss=6.8, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 33it [00:01, 23.44it/s, loss=6.76, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 34it [00:01, 23.84it/s, loss=6.76, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 35it [00:01, 24.26it/s, loss=6.72, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 36it [00:01, 24.66it/s, loss=6.65, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 37it [00:01, 25.06it/s, loss=6.63, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 38it [00:01, 25.45it/s, loss=6.6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 39it [00:01, 25.80it/s, loss=6.6, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 39it [00:01, 25.78it/s, loss=6.57, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 40it [00:01, 26.12it/s, loss=6.49, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 41it [00:01, 26.49it/s, loss=6.49, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 42it [00:01, 26.81it/s, loss=6.5, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 43it [00:01, 27.15it/s, loss=6.49, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 44it [00:01, 27.47it/s, loss=6.45, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 45it [00:01, 27.81it/s, loss=6.45, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 45it [00:01, 27.79it/s, loss=6.48, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 46it [00:01, 28.09it/s, loss=6.45, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 47it [00:01, 28.41it/s, loss=6.39, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 48it [00:01, 28.71it/s, loss=6.41, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 49it [00:01, 29.04it/s, loss=6.41, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 50it [00:01, 29.49it/s, loss=6.4, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 51it [00:01, 30.06it/s, loss=6.4, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 0: : 0it [00:00, ?it/s, loss=6.4, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 0it [00:00, ?it/s, loss=6.4, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 1it [00:00, 34.34it/s, loss=6.33, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 2it [00:00, 44.08it/s, loss=6.32, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 3it [00:00, 48.34it/s, loss=6.37, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 4it [00:00, 50.74it/s, loss=6.35, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 5it [00:00, 52.22it/s, loss=6.33, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 6it [00:00, 52.85it/s, loss=6.33, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 6it [00:00, 52.41it/s, loss=6.35, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 7it [00:00, 52.83it/s, loss=6.35, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 8it [00:00, 54.29it/s, loss=6.34, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 9it [00:00, 55.91it/s, loss=6.36, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 10it [00:00, 57.19it/s, loss=6.4, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 11it [00:00, 57.69it/s, loss=6.36, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 12it [00:00, 58.73it/s, loss=6.34, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 13it [00:00, 59.56it/s, loss=6.34, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 13it [00:00, 59.36it/s, loss=6.33, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 14it [00:00, 59.95it/s, loss=6.33, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 15it [00:00, 60.33it/s, loss=6.3, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 16it [00:00, 61.59it/s, loss=6.3, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 17it [00:00, 61.21it/s, loss=6.33, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 18it [00:00, 61.55it/s, loss=6.33, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 19it [00:00, 61.32it/s, loss=6.31, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 20it [00:00, 61.43it/s, loss=6.31, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 20it [00:00, 61.21it/s, loss=6.36, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 21it [00:00, 61.06it/s, loss=6.36, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 22it [00:00, 61.18it/s, loss=6.35, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 23it [00:00, 60.83it/s, loss=6.31, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 24it [00:00, 60.70it/s, loss=6.31, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 25it [00:00, 60.84it/s, loss=6.28, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 26it [00:00, 60.63it/s, loss=6.3, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 27it [00:00, 60.40it/s, loss=6.3, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 27it [00:00, 60.27it/s, loss=6.28, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 28it [00:00, 60.20it/s, loss=6.28, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 29it [00:00, 59.89it/s, loss=6.25, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 30it [00:00, 60.07it/s, loss=6.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 31it [00:00, 59.98it/s, loss=6.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 32it [00:00, 59.83it/s, loss=6.25, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 33it [00:00, 59.86it/s, loss=6.28, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 34it [00:00, 60.07it/s, loss=6.28, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 34it [00:00, 59.97it/s, loss=6.25, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 35it [00:00, 60.17it/s, loss=6.27, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 36it [00:00, 60.04it/s, loss=6.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 37it [00:00, 60.10it/s, loss=6.24, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 38it [00:00, 60.50it/s, loss=6.23, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 39it [00:00, 60.87it/s, loss=6.27, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 40it [00:00, 60.97it/s, loss=6.18, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 41it [00:00, 60.96it/s, loss=6.18, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 41it [00:00, 60.87it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 42it [00:00, 60.88it/s, loss=6.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 43it [00:00, 60.80it/s, loss=6.23, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 44it [00:00, 60.89it/s, loss=6.23, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 45it [00:00, 61.00it/s, loss=6.25, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 46it [00:00, 61.18it/s, loss=6.25, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 47it [00:00, 61.11it/s, loss=6.24, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 48it [00:00, 60.96it/s, loss=6.24, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 48it [00:00, 60.88it/s, loss=6.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 49it [00:00, 60.90it/s, loss=6.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 50it [00:00, 61.59it/s, loss=6.23, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 51it [00:00, 62.61it/s, loss=6.23, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 1: : 0it [00:00, ?it/s, loss=6.23, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 0it [00:00, ?it/s, loss=6.23, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 1it [00:00, 39.39it/s, loss=6.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 2it [00:00, 47.39it/s, loss=6.26, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 3it [00:00, 52.12it/s, loss=6.18, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 4it [00:00, 54.76it/s, loss=6.23, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 5it [00:00, 55.86it/s, loss=6.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 6it [00:00, 57.67it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 7it [00:00, 58.36it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 7it [00:00, 57.87it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 8it [00:00, 58.24it/s, loss=6.1, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 9it [00:00, 58.51it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 10it [00:00, 59.28it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 11it [00:00, 59.17it/s, loss=6.19, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 12it [00:00, 59.27it/s, loss=6.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 13it [00:00, 59.28it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 14it [00:00, 59.39it/s, loss=6.1, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 14it [00:00, 59.14it/s, loss=6.1, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 15it [00:00, 58.72it/s, loss=6.09, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 16it [00:00, 58.79it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 17it [00:00, 58.73it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 18it [00:00, 58.35it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 19it [00:00, 58.50it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 20it [00:00, 58.67it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 21it [00:00, 58.74it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 21it [00:00, 58.57it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 22it [00:00, 58.88it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 23it [00:00, 58.73it/s, loss=6.13, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 24it [00:00, 58.90it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 25it [00:00, 58.88it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 26it [00:00, 59.19it/s, loss=6.13, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 27it [00:00, 59.37it/s, loss=6.21, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 28it [00:00, 59.38it/s, loss=6.21, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 28it [00:00, 59.25it/s, loss=6.22, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 29it [00:00, 59.42it/s, loss=6.2, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 30it [00:00, 59.42it/s, loss=6.22, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 31it [00:00, 59.61it/s, loss=6.2, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 32it [00:00, 59.46it/s, loss=6.2, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 33it [00:00, 59.35it/s, loss=6.19, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 34it [00:00, 59.55it/s, loss=6.2, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 35it [00:00, 59.60it/s, loss=6.2, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 35it [00:00, 59.49it/s, loss=6.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 36it [00:00, 59.32it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 37it [00:00, 59.15it/s, loss=6.16, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 38it [00:00, 58.89it/s, loss=6.14, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 39it [00:00, 58.72it/s, loss=6.13, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 40it [00:00, 58.58it/s, loss=6.14, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 41it [00:00, 58.46it/s, loss=6.19, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 42it [00:00, 58.30it/s, loss=6.19, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 42it [00:00, 58.22it/s, loss=6.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 43it [00:00, 58.35it/s, loss=6.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 44it [00:00, 57.96it/s, loss=6.14, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 45it [00:00, 57.81it/s, loss=6.18, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 46it [00:00, 57.62it/s, loss=6.17, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 47it [00:00, 57.67it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 48it [00:00, 57.53it/s, loss=6.14, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 49it [00:00, 57.44it/s, loss=6.14, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 49it [00:00, 57.37it/s, loss=6.14, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 50it [00:00, 58.00it/s, loss=6.16, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 51it [00:00, 59.05it/s, loss=6.16, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 2: : 0it [00:00, ?it/s, loss=6.16, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 0it [00:00, ?it/s, loss=6.16, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 1it [00:00, 38.85it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 2it [00:00, 45.76it/s, loss=6.08, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 3it [00:00, 48.61it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 4it [00:00, 49.47it/s, loss=6.08, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 5it [00:00, 49.83it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 6it [00:00, 50.85it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 7it [00:00, 51.09it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 7it [00:00, 50.63it/s, loss=6.09, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 8it [00:00, 50.50it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 9it [00:00, 49.99it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 10it [00:00, 49.79it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 11it [00:00, 50.17it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 12it [00:00, 50.86it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 13it [00:00, 51.70it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 14it [00:00, 52.15it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 14it [00:00, 51.93it/s, loss=6.08, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 15it [00:00, 52.00it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 16it [00:00, 52.69it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 17it [00:00, 53.33it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 18it [00:00, 53.70it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 19it [00:00, 54.37it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 20it [00:00, 54.81it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 21it [00:00, 55.16it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 21it [00:00, 55.03it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 22it [00:00, 55.42it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 23it [00:00, 55.56it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 24it [00:00, 55.68it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 25it [00:00, 55.89it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 26it [00:00, 56.26it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 27it [00:00, 56.31it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 28it [00:00, 56.43it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 28it [00:00, 56.32it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 29it [00:00, 56.40it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 30it [00:00, 56.43it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 31it [00:00, 56.52it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 32it [00:00, 56.70it/s, loss=6.08, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 33it [00:00, 56.93it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 34it [00:00, 57.09it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 35it [00:00, 57.48it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 35it [00:00, 57.39it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 36it [00:00, 57.50it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 37it [00:00, 57.66it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 38it [00:00, 57.85it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 39it [00:00, 58.16it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 40it [00:00, 58.37it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 41it [00:00, 58.60it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 42it [00:00, 58.69it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 42it [00:00, 58.61it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 43it [00:00, 58.74it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 44it [00:00, 58.79it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 45it [00:00, 59.01it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 46it [00:00, 59.07it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 47it [00:00, 59.21it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 48it [00:00, 59.40it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 49it [00:00, 59.55it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 49it [00:00, 59.49it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 50it [00:00, 60.29it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 51it [00:00, 61.40it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 3: : 0it [00:00, ?it/s, loss=5.98, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 0it [00:00, ?it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 1it [00:00, 39.49it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 2it [00:00, 47.99it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 3it [00:00, 54.31it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 4it [00:00, 56.07it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 5it [00:00, 59.51it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 6it [00:00, 60.16it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 7it [00:00, 60.50it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 7it [00:00, 60.08it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 8it [00:00, 61.53it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 9it [00:00, 63.15it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 10it [00:00, 64.35it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 11it [00:00, 64.35it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 12it [00:00, 64.53it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 13it [00:00, 66.09it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 14it [00:00, 64.94it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 15it [00:00, 64.31it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 15it [00:00, 64.04it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 16it [00:00, 63.33it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 17it [00:00, 63.01it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 18it [00:00, 63.27it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 19it [00:00, 60.65it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 20it [00:00, 50.55it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 21it [00:00, 50.23it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 22it [00:00, 50.24it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 23it [00:00, 50.11it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 23it [00:00, 50.01it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 24it [00:00, 50.17it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 25it [00:00, 50.32it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 26it [00:00, 50.66it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 27it [00:00, 51.11it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 28it [00:00, 51.41it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 29it [00:00, 51.81it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 30it [00:00, 52.07it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 31it [00:00, 52.44it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 31it [00:00, 52.35it/s, loss=5.91, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 32it [00:00, 52.37it/s, loss=5.91, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 33it [00:00, 52.90it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 34it [00:00, 53.05it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 35it [00:00, 53.42it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 36it [00:00, 53.62it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 37it [00:00, 54.06it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 38it [00:00, 54.42it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 39it [00:00, 54.66it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 39it [00:00, 54.59it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 40it [00:00, 55.00it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 41it [00:00, 55.44it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 42it [00:00, 55.81it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 43it [00:00, 56.18it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 44it [00:00, 56.57it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 45it [00:00, 56.90it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 46it [00:00, 56.95it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 47it [00:00, 57.02it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 47it [00:00, 56.97it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 48it [00:00, 57.13it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 49it [00:00, 57.21it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 50it [00:00, 57.93it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 51it [00:00, 59.00it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 4: : 0it [00:00, ?it/s, loss=6.06, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 0it [00:00, ?it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 1it [00:00, 38.32it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 2it [00:00, 46.45it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 3it [00:00, 53.54it/s, loss=6.08, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 4it [00:00, 55.57it/s, loss=6.09, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 5it [00:00, 56.80it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 6it [00:00, 58.05it/s, loss=6.16, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 7it [00:00, 58.89it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 8it [00:00, 61.01it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 8it [00:00, 60.66it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 9it [00:00, 61.81it/s, loss=6.14, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 10it [00:00, 62.29it/s, loss=6.14, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 11it [00:00, 63.62it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 12it [00:00, 64.04it/s, loss=6.08, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 13it [00:00, 65.22it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 14it [00:00, 66.43it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 15it [00:00, 67.43it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 16it [00:00, 67.60it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 16it [00:00, 67.37it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 17it [00:00, 68.00it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 18it [00:00, 67.98it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 19it [00:00, 68.28it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 20it [00:00, 68.26it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 21it [00:00, 67.58it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 22it [00:00, 67.37it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 23it [00:00, 67.12it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 24it [00:00, 67.28it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 24it [00:00, 67.10it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 25it [00:00, 67.00it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 26it [00:00, 67.25it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 27it [00:00, 67.45it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 28it [00:00, 68.15it/s, loss=5.87, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 29it [00:00, 68.29it/s, loss=5.86, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 30it [00:00, 68.51it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 31it [00:00, 68.68it/s, loss=5.89, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 32it [00:00, 69.06it/s, loss=5.89, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 32it [00:00, 68.95it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 33it [00:00, 69.38it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 34it [00:00, 69.53it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 35it [00:00, 69.31it/s, loss=5.9, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 36it [00:00, 68.93it/s, loss=5.91, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 37it [00:00, 69.07it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 38it [00:00, 68.95it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 39it [00:00, 68.71it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 40it [00:00, 69.03it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 40it [00:00, 68.93it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 41it [00:00, 68.88it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 42it [00:00, 68.77it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 43it [00:00, 68.89it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 44it [00:00, 68.98it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 45it [00:00, 69.33it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 46it [00:00, 69.58it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 47it [00:00, 69.80it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 48it [00:00, 69.89it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 48it [00:00, 69.81it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 49it [00:00, 69.76it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 50it [00:00, 70.59it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 51it [00:00, 71.84it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 5: : 0it [00:00, ?it/s, loss=5.99, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 0it [00:00, ?it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 1it [00:00, 38.92it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 2it [00:00, 45.77it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 3it [00:00, 49.33it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 4it [00:00, 51.09it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 5it [00:00, 52.94it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 6it [00:00, 54.95it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 7it [00:00, 56.83it/s, loss=5.91, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 8it [00:00, 56.80it/s, loss=5.91, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 8it [00:00, 56.43it/s, loss=5.9, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 9it [00:00, 57.77it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 10it [00:00, 57.83it/s, loss=5.84, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 11it [00:00, 58.32it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 12it [00:00, 58.91it/s, loss=5.86, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 13it [00:00, 59.73it/s, loss=5.83, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 14it [00:00, 60.93it/s, loss=5.84, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 15it [00:00, 61.80it/s, loss=5.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 16it [00:00, 62.52it/s, loss=5.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 16it [00:00, 62.33it/s, loss=5.84, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 17it [00:00, 62.57it/s, loss=5.83, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 18it [00:00, 62.55it/s, loss=5.74, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 19it [00:00, 62.61it/s, loss=5.76, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 20it [00:00, 62.86it/s, loss=5.78, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 21it [00:00, 62.43it/s, loss=5.78, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 22it [00:00, 62.56it/s, loss=5.76, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 23it [00:00, 62.09it/s, loss=5.78, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 24it [00:00, 62.36it/s, loss=5.78, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 24it [00:00, 62.21it/s, loss=5.78, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 25it [00:00, 61.98it/s, loss=5.78, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 26it [00:00, 61.87it/s, loss=5.81, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 27it [00:00, 62.03it/s, loss=5.83, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 28it [00:00, 61.65it/s, loss=5.78, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 29it [00:00, 61.67it/s, loss=5.8, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 30it [00:00, 61.89it/s, loss=5.81, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 31it [00:00, 62.45it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 32it [00:00, 62.87it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 32it [00:00, 62.78it/s, loss=5.83, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 33it [00:00, 63.25it/s, loss=5.83, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 34it [00:00, 63.75it/s, loss=5.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 35it [00:00, 63.96it/s, loss=5.88, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 36it [00:00, 64.31it/s, loss=5.89, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 37it [00:00, 64.61it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 38it [00:00, 64.98it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 39it [00:00, 65.33it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 40it [00:00, 65.65it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 40it [00:00, 65.56it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 41it [00:00, 65.80it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 42it [00:00, 66.10it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 43it [00:00, 66.28it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 44it [00:00, 66.57it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 45it [00:00, 66.87it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 46it [00:00, 66.81it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 47it [00:00, 66.76it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 48it [00:00, 66.77it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 48it [00:00, 66.69it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 49it [00:00, 66.50it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 50it [00:00, 67.31it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 51it [00:00, 68.56it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 6: : 0it [00:00, ?it/s, loss=5.97, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 0it [00:00, ?it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 1it [00:00, 53.08it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 2it [00:00, 65.63it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 3it [00:00, 69.82it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 4it [00:00, 70.69it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 5it [00:00, 70.01it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 6it [00:00, 71.93it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 7it [00:00, 71.17it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 8it [00:00, 70.63it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 8it [00:00, 70.15it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 9it [00:00, 70.41it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 10it [00:00, 70.75it/s, loss=6, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 11it [00:00, 70.78it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 12it [00:00, 71.68it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 13it [00:00, 72.17it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 14it [00:00, 72.24it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 15it [00:00, 72.40it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 16it [00:00, 72.71it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 16it [00:00, 72.47it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 17it [00:00, 73.07it/s, loss=5.81, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 18it [00:00, 72.85it/s, loss=5.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 19it [00:00, 73.55it/s, loss=5.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 20it [00:00, 74.19it/s, loss=5.84, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 21it [00:00, 74.08it/s, loss=5.83, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 22it [00:00, 74.42it/s, loss=5.8, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 23it [00:00, 74.42it/s, loss=5.8, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 24it [00:00, 74.75it/s, loss=5.8, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 24it [00:00, 74.53it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 25it [00:00, 74.26it/s, loss=5.8, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 26it [00:00, 74.22it/s, loss=5.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 27it [00:00, 74.03it/s, loss=5.81, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 28it [00:00, 73.16it/s, loss=5.77, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 29it [00:00, 72.80it/s, loss=5.75, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 30it [00:00, 72.77it/s, loss=5.77, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 31it [00:00, 72.54it/s, loss=5.75, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 32it [00:00, 72.58it/s, loss=5.75, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 32it [00:00, 72.44it/s, loss=5.81, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 33it [00:00, 72.29it/s, loss=5.83, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 34it [00:00, 72.38it/s, loss=5.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 35it [00:00, 72.51it/s, loss=5.78, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 36it [00:00, 72.59it/s, loss=5.77, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 37it [00:00, 72.83it/s, loss=5.87, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 38it [00:00, 72.44it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 39it [00:00, 72.13it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 40it [00:00, 72.06it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 40it [00:00, 71.94it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 41it [00:00, 71.54it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 42it [00:00, 71.20it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 43it [00:00, 70.88it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 44it [00:00, 70.86it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 45it [00:00, 70.84it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 46it [00:00, 70.89it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 47it [00:00, 70.72it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 48it [00:00, 70.89it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 48it [00:00, 70.81it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 49it [00:00, 71.00it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 50it [00:00, 71.85it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 51it [00:00, 73.12it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 7: : 0it [00:00, ?it/s, loss=6.01, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 0it [00:00, ?it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 1it [00:00, 55.24it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 2it [00:00, 62.66it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 3it [00:00, 60.93it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 4it [00:00, 61.99it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 5it [00:00, 62.19it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 6it [00:00, 62.33it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 7it [00:00, 63.20it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 8it [00:00, 63.87it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 8it [00:00, 63.36it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 9it [00:00, 63.57it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 10it [00:00, 64.71it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 11it [00:00, 65.31it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 12it [00:00, 66.07it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 13it [00:00, 66.40it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 14it [00:00, 65.86it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 15it [00:00, 66.39it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 16it [00:00, 67.38it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 16it [00:00, 67.16it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 17it [00:00, 67.95it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 18it [00:00, 68.57it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 19it [00:00, 69.10it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 20it [00:00, 69.30it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 21it [00:00, 69.43it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 22it [00:00, 68.95it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 23it [00:00, 68.80it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 24it [00:00, 68.18it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 24it [00:00, 68.02it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 25it [00:00, 67.93it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 26it [00:00, 67.66it/s, loss=6.06, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 27it [00:00, 67.72it/s, loss=6.09, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 28it [00:00, 68.15it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 29it [00:00, 68.84it/s, loss=6.08, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 30it [00:00, 69.00it/s, loss=6.09, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 31it [00:00, 69.18it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 32it [00:00, 69.50it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 32it [00:00, 69.38it/s, loss=6.15, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 33it [00:00, 69.66it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 34it [00:00, 70.08it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 35it [00:00, 70.22it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 36it [00:00, 70.45it/s, loss=6.13, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 37it [00:00, 70.70it/s, loss=6.12, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 38it [00:00, 70.78it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 39it [00:00, 70.95it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 40it [00:00, 71.00it/s, loss=6.1, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 40it [00:00, 70.89it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 41it [00:00, 70.89it/s, loss=6.1, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 42it [00:00, 70.89it/s, loss=6.11, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 43it [00:00, 71.05it/s, loss=6.07, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 44it [00:00, 71.02it/s, loss=6.05, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 45it [00:00, 71.23it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 46it [00:00, 71.03it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 47it [00:00, 70.94it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 48it [00:00, 71.09it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 48it [00:00, 71.02it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 49it [00:00, 71.25it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 50it [00:00, 72.08it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 51it [00:00, 73.40it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 8: : 0it [00:00, ?it/s, loss=5.99, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 0it [00:00, ?it/s, loss=5.99, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 1it [00:00, 43.24it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 2it [00:00, 51.27it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 3it [00:00, 54.24it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 4it [00:00, 56.61it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 5it [00:00, 57.49it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 6it [00:00, 57.02it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 7it [00:00, 57.34it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 8it [00:00, 58.72it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 8it [00:00, 58.31it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 9it [00:00, 58.24it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 10it [00:00, 58.91it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 11it [00:00, 59.66it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 12it [00:00, 60.10it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 13it [00:00, 60.56it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 14it [00:00, 60.75it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 15it [00:00, 60.77it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 16it [00:00, 60.61it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 16it [00:00, 60.40it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 17it [00:00, 60.70it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 18it [00:00, 60.67it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 19it [00:00, 60.22it/s, loss=6.03, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 20it [00:00, 60.39it/s, loss=6, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 21it [00:00, 60.77it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 22it [00:00, 60.95it/s, loss=6.01, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 23it [00:00, 61.35it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 24it [00:00, 61.38it/s, loss=6.04, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 24it [00:00, 61.25it/s, loss=6.02, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 25it [00:00, 61.35it/s, loss=5.98, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 26it [00:00, 61.71it/s, loss=5.97, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 27it [00:00, 61.90it/s, loss=5.94, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 28it [00:00, 62.30it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 29it [00:00, 63.00it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 30it [00:00, 63.32it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 31it [00:00, 63.74it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 32it [00:00, 63.98it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 32it [00:00, 63.86it/s, loss=5.96, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 33it [00:00, 64.27it/s, loss=5.95, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 34it [00:00, 64.40it/s, loss=5.93, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 35it [00:00, 64.67it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 36it [00:00, 65.04it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 37it [00:00, 65.06it/s, loss=5.91, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 38it [00:00, 65.21it/s, loss=5.89, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 39it [00:00, 65.31it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 40it [00:00, 65.32it/s, loss=5.85, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 40it [00:00, 65.22it/s, loss=5.84, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 41it [00:00, 65.26it/s, loss=5.84, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 42it [00:00, 65.35it/s, loss=5.87, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 43it [00:00, 65.19it/s, loss=5.8, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 44it [00:00, 65.22it/s, loss=5.82, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 45it [00:00, 65.41it/s, loss=5.87, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 46it [00:00, 65.61it/s, loss=5.86, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 47it [00:00, 65.85it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 48it [00:00, 66.09it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 48it [00:00, 66.02it/s, loss=5.9, v_num=36] " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 49it [00:00, 66.22it/s, loss=5.89, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 50it [00:00, 67.04it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 51it [00:00, 68.26it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "Epoch 9: : 51it [00:00, 67.73it/s, loss=5.92, v_num=36]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "trainer = pl.Trainer(max_epochs=10, gpus=-1 if torch.cuda.is_available() else None)\n", - "trainer.fit(net, data_loader)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create predictor out of the trained model, and test it\n", - "\n", - "Now we can get the predictor out of our model, and use it to make forecasts." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:17.841368Z", - "iopub.status.busy": "2022-06-13T08:52:17.840545Z", - "iopub.status.idle": "2022-06-13T08:52:17.842767Z", - "shell.execute_reply": "2022-06-13T08:52:17.843237Z" - } - }, - "outputs": [], - "source": [ - "prediction_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=TestSplitSampler(),\n", - " past_length=context_length,\n", - " future_length=prediction_length,\n", - " time_series_fields=[FieldName.OBSERVED_VALUES],\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:17.847312Z", - "iopub.status.busy": "2022-06-13T08:52:17.846460Z", - "iopub.status.idle": "2022-06-13T08:52:17.849001Z", - "shell.execute_reply": "2022-06-13T08:52:17.849418Z" - } - }, - "outputs": [], - "source": [ - "predictor_pytorch = net.get_predictor(mask_unobserved + prediction_splitter)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "For example, we can do backtesting on the test dataset: in what follows, `make_evaluation_predictions` will slice out the trailing `prediction_length` observations from the test time series, and use the given predictor to obtain forecasts for the same time range." - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:17.853250Z", - "iopub.status.busy": "2022-06-13T08:52:17.852357Z", - "iopub.status.idle": "2022-06-13T08:52:17.857932Z", - "shell.execute_reply": "2022-06-13T08:52:17.858359Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.evaluation import make_evaluation_predictions, Evaluator" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:17.863155Z", - "iopub.status.busy": "2022-06-13T08:52:17.862338Z", - "iopub.status.idle": "2022-06-13T08:52:30.843878Z", - "shell.execute_reply": "2022-06-13T08:52:30.844462Z" - } - }, - "outputs": [], - "source": [ - "forecast_it, ts_it = make_evaluation_predictions(\n", - " dataset=dataset.test, predictor=predictor_pytorch\n", - ")\n", - "\n", - "forecasts_pytorch = list(f.to_sample_forecast() for f in forecast_it)\n", - "tss_pytorch = list(ts_it)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Once we have the forecasts, we can plot them:" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:30.863360Z", - "iopub.status.busy": "2022-06-13T08:52:30.854504Z", - "iopub.status.idle": "2022-06-13T08:52:32.296712Z", - "shell.execute_reply": "2022-06-13T08:52:32.297126Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABZIAAAQlCAYAAAAsrDgSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3ikV333//eZPpoirdpKu6vttrU29i5g40KA0EtiOqHkARJICM8TkvySJwmY4ISEZkgIDwESAgm9E6oBYzDGgO01eF3WZYu9vUmrsiozmj73+f1x5h6NpBnVKbdG39d16dJqZiSdVRnNfO7v/TlKa40QQgghhBBCCCGEEEIIUYmr0QsQQgghhBBCCCGEEEII4WwSJAshhBBCCCGEEEIIIYSYlwTJQgghhBBCCCGEEEIIIeYlQbIQQgghhBBCCCGEEEKIeUmQLIQQQgghhBBCCCGEEGJenkYvYKU6Ozv11q1bG70MIYQQa8x99903orXuavQ66kn+5gohhGgU+bsrhBBC1E+lv7urPkjeunUr+/bta/QyhBBCrDFKqZONXkO9yd9cIYQQjSJ/d4UQQoj6qfR3V6othBBCCCGEEEIIIYQQQsxLgmQhhBBCCCGEEEIIIYQQ85IgWQghhBBCCCGEEEIIIcS8JEgWQgghhBBCCCGEEEIIMS8JkoUQQgghhBBCCCGEEELMS4JkIYQQQgghhBBCCCGEEPOSIFkIIYQQQgghhFgipdROpdR/KqUeUkrllVJ3LHD7jyiltFLqX+q0RCGEEKKqPI1egBBCCCGEEEIIsQpdBrwIuAfwzndDpdSlwJuByTqsSwghhKgJmUgWQgghhBBCCCGW7matdZ/W+lXAowvc9mPAR4Gx2i9LCCGEqI2aB8lKqdcope5XSsWVUmeVUl9QSm2YdRullHqnUuq0UiqplPqlUmpPrde22kwkskymso1ehhBCCCGEEDUzOJFq9BKEWBSttbWY2ymlXgn0AzfVdkViLRlPZEhm8o1ehhBijalpkKyUejHwVeBu4CXA24GnAz9USpV+7ncANwIfBK4H4sBtSqmeWq5vNTkyFOM5H/kFf/2N/Y1eihBCCCGEEDWx78QFrr3pZ5wYmWr0UoSoCqVUEPgw8A6ttfxgi6p53ad/zYd/crjRyxBCrDG17kh+HXC/1vpt9gVKqUnge8AlwEGlVAATJH9Aa/3xwm32AieAtwHvqvEaHe/wYIzf/697GIlnmEjKRLIQQgghhGhOw7E0WsPARIqtnaFGL0eIargBGAC+tJgbK6XeArwFYPPmzTVclljtBiaSDE7KGRxCiPqqdbWFF5iYddl44bUqvL4OiALfsG9QOFJ7M/DCGq/P8Q6cm+S1n74Ht0uxvTNE3tKNXpIQQgghhBA1kcmbpoB4OtfglQixckqpbcBfA3+htV7UEzmt9ae01ldqra/s6uqq7QLFqjaVyZPKLqpdRQghqqbWQfJngKcppd6glIoqpS4G3gvcrrU+ULhNP5AHHp/1vgcL161p/+fL9+H3uPj6W65l47og+cU9/hBCCCGEEGLVyeTsIFnOwhNN4SbgFuCwUqpNKdWGeQ7uL7yt5n1vISrI5S0yOYtUVjqShRD1VdMgWWv9Q+APgE9hJpMPA27gFSU3WwfEtdaz7wHHgBallG/2x1VKvUUptU8ptW94eLgma3eKwckU1+/ewNbOEG6XkolkIYQQQgjRtLJ581g3npZwRDSFS4CXY57b2i99mArHMWBj45YmVrNEIUCWIFkIUW+13mzvmcAngY8CzwReA7QD31FKuZf7cdfS6T55S+N2mQPVHpcil5cgWQghhBBCNKesXW2RkmoL0RT+CPM8uPTlPKbW8ZlAc09FiZpJFA62pXISJAsh6qvWm+19GPi+1vrt9gVKqQeBQ8BLgG9jjsSGlVLuWVPJ64CE1jpT4zU6Wt7SeApBskspLKm2EEIIIYQQTcoOkqekI1msAkqpFuBFhTc3AlGl1CsLb/9Ia72vzPukgNNa6zvqs0rRjBIZcx8pHclCiHqrdZDcD3y19AKt9WGlVBLYUbjoEKbuYiem+qL0fQ/VeH2OZlkaSzM9kexW5KTaQgghhBBCNCnZbE+sMt3AN2ddZr+9DThR19WINSORMTN4yYxMJAsh6qvWQfJJ4EmlFyildgFBpv+o3g1MAq/CbMRnH9m9HtOtvGbZG+u5VclEsgTJQgghhBCiSWVzdkeyBMnC+bTWJ4AlbZintd5ak8WINcUOktNSbSGEqLNaB8mfBD6ilDqH2a12PfD3mBD5RwBa65RS6ibgRqXUGGYK+a8w/c0fq/H6HM3eWM/tLulIliBZCCGEEEI0KelIFkKIhU1JtYUQokFqHST/G5AB/jfwVmAcuBO4QWs9VXK7mzDB8Q1AB7APeK7W+nyN1+dodpBsdyS7Xa7iZUIIIYQQQjSbYkdyRoJkIYSoxK60SGVlIlkIUV81DZK11hr4j8LLQrd7X+FFFNjTxy5lB8lIkCyEEEIIIZqW3ZEck4lkIYSoyN6QNGdpsnkLr9vV4BUJIdYKubdxsHITyVJtIYQQQgghmlVxIlk6khft0788xgOnxhq9DCFEHSVKNtmTqWQhRD1JkOxg0x3J5tvkdoGlJUgWQgghhBDNSTbbW7oP//Qw37r/TKOXIYSoo5lBsvQkCyHqR4JkB5s9kexxucjl5Y+EEEIIIYRoTsXN9iRIXhStNZmcxXgi2+ilCCHqKFHSIy8TyUKIepIg2cFylnkg7S52JCuk2UIIIYQQQjSrTEm1hZYz8RaUszSWhomkBMlCrCVSbSGEaBQJkh2sWG3hmg6S7XBZCCGEEEKIZmNPJFsakhKOLCiTM18vmUgWYm2ZOZEsGYEQon4kSHawYrWFu2QiWf5GCCGEEEKIJpXNT08hx1NSb7GQYpCczDR4JUI0j0zO4qO3Pe7oSd8ZE8k5565TCNF8JEh2sDkTyUomkoUQQgghRPPKluwHEpOe5AXZVSAykSxE9dx3coyP3PYYvz5+odFLqWgqLdUWQojGkCDZwXJ2kDyrI1n64oQQQojq0FpLt6gQDmJP2ILpSRbzSxdOaY+lcrIptxBVYgezyYxzA9pkNkfQ6zb/dvA6hRDNR4JkByvXkVx6uRBCCCFW5lePj3DVe29jOJZu9FKEEJiJZG+h1k2qLRaWyU8HSJPy9RKiKuwgOe3gyoipdJ72kA+AVE4OIgkh6keCZAcr15EM05PKQgghhFiZgYkkmbzF+clUo5cihMB0JLe1mHAkLhPJC0qXBEjjCelJFqIa7M5hJ1dGJDK56SDZwesUQjQfCZIdzA6MXYVqC08hSLak2kIIIYSoikxhYy85hV4IZ8jmLdolSF600iqQcanpEaIqkhmr8Nq5AW0iMz2RnJYgWQhRRxIkO1hxItllvk0ykSyEEEJUV7YQwkhgJYQzZPIW60JeQA7wLEbpRPKEbLgnRFXYE75OroxIZPJ0FILkpATJQog6kiDZwSp1JFsSJAshhBBVkc1LkCyEk2TzVnHKLia/lwuaOZEs1RZCVMNqqbZYV6y2cG7gLYRoPhIkO5h0JAshhBC1lZGJZCEcJZvThP0e3C4lE8mLMCNIlolkIarCDmadGtDmLU0qaxEJePC4lKMDbyFE85Eg2cFylvnDZXck20FyXoJkIYQQoirsiWQJrIRwhmzewudxEfZ7iKfk93IhmbwEyUJUW7HawqEBrV1lEfJ5CHrdjg28hRDNSYJkB5vuSC4EyUqCZCGEEKKa7M32JLASwhkyeQuvuxAkp50Z4jhJ6UTyhGy2J0RVOD1IThQOfrf43fi9bulIFkLUlQTJDlapI1mCZCGEWHuUUjuVUv+plHpIKZVXSt2xwO0/opTSSql/KXPdpUqpnymlEkqpc0qpf1JKuWu2eAezJ5Kli1UIZ8jmLXzFIFmC0YWkC12uXrdiPCEdyUJUg+OD5IxZV4vPTcDrIu3QdQohmpOn0QsQlc3uSLZfS5AshBBr0mXAi4B7AO98N1RKXQq8GZgsc9064DbgAPASYAfwYczB5XdVd8nOZ0/zSbWFEM6QzWszkRzwMCUTyQuy78O6IwHGZSJZiKpwekfyVKYwkezzEPC6i5sDCiFEPdR0IlkpdUdhGqrcy7WF2yil1DuVUqeVUkml1C+VUntqua7Vwt5Uz660sLuSZbM9IYRYk27WWvdprV8FPLrAbT8GfBQYK3PdW4Eg8HKt9U+11p8E/hH4K6VUtKorXgXsiWTZbE+IxstbmrxlguSQ3yNnCixCuhAkd0X80pEsRJXYVRFOrYwonUiWjmQhRL3Vutri/wDXznr5KTAC3Fu4zTuAG4EPAtcDceA2pVRPjdfmeLOrLTwu8+2ytATJQgix1mitF/UsQSn1SqAfuKnCTV4I3Kq1Lp1W/homXH7Giha5CmWKQbIznywKsZbYB3a8HkXE7yGekmB0IfZ9WHfELx3JDbBQ7ZRSqlcp9c9Kqf1KqXhheOrzSqkNDVqyWITVU23hIeB1kcw4c51CiOZU0yBZa31Aa32P/QLcD1wJ/I/WOqeUCmCC5A9orT+utb4NeBWggbfVcm2rwfRme+bb5C58t3J5CZKFEELMpZQKYmoq3qG1nqpws37gUOkFWutTQKJw3ZqSLW62JwGMEI1mB8k+t4uQ3y3VFouQLkwidkf90pHcGHbt1GHgsTLXPxl4GfBVzNDU3wBXA3crpcL1WqRYGvv3KpVz5qRvcbM9n1uqLYQQdVfvzfZeAKzD/CEFuA6IAt+wb1B44nszZmJqTbOD5EKOjLvwD+lIFkIIUcENwADwpXlusw4YL3P5WOG6GZRSb1FK7VNK7RseHq7KIp0kU3jyJYGVEI1nH9jxul2E/V6pnFmETN7C61a0t/iYSGax5HlCvS1UO3Un0K+1vklr/XOt9deAFwNbgFfUc6Fi8exg1qmb2NkTySGfB79Hqi2EEPVV7yD5NcAZ4FeFt/uBPPD4rNsdZA1ORc2WqzCRnJdqCyGEELMopbYBfw38hdbV+0Ohtf6U1vpKrfWVXV1d1fqwjlGcSJbASoiGK1ZbuF2E/W6mMjkJRheQyVn43C5aW3xYGumVrrOFaqe01uNa69ysyx7DnAUk9RYOZVdFOLcj2fxIBX1ugj63YwNvIURzqluQrJRqwRx9/UbJE9x1QFxrPfuebwxoUUr5Knyspp6OstmBsd2RPD2RLEcchRBCzHETcAtwWCnVppRqw/yd9xfeVoXbjQGtZd5/HeU352tqstmeEM6RydlBsiIc8KA1JCQgmVcmZ+HzuGgLegGYkA33HE8pdQXQQvkqDOEA9kSy0zuSQ343AY/LsYG3EKI51XMi+XogxHStxbI1+3SULV94cuspbrZnXuclRxZCCDHXJcDLMWGw/dKH2XNgDNhYuN0hZp31o5TqwzypndGdvBbYwVU8naOKg9xCiGUodiR7XIT8HgCm5CDPvNK5PH6Pm7YWEySPSU+yoymlXMBHMWfkfr/CbdbE0JST2VURTq2MmMrkUQoCnkJHsgTJQog6qmeQ/BrgiNZ6X8llY0BYKeWeddt1QEJrvaYfCeWKHckmQHYVhslyMpEshBBirj8Cnjnr5TxmH4JnAvaz0VuA5yulIiXv+2ogCfyibqt1CDu4yluatEM31RFirZjZkWyC5FhKguT5FCeSC0HyeFImkh3uA8C1wOu11mW/WWtlaMrJ7GDWqQFtIp0j6HXjcikCXpdjA28hRHPy1OOTKKVaMZvnfWjWVYcAN7ATs9Otbc6O8mtRvtiRXJhIdpvXkiMLIcTaU6iIelHhzY1AVCn1ysLbP5p1oNZ+nxRwWmt9R8nFnwT+HPi2UuqDwHbg3cC/aq0na7R8x8qUnOYTS+UIeGcf2xZC1EtpR7LfY+ZdZCJ5fpm8CZJbg6YRcFwmkh1LKfV/gL8BXqu1/nWj1yMqswPkdM7CsnRxsMspEtk8LT4T5QS9blK5PFprplvMhBCiduo1kfwywM/cWou7gUngVfYFhSfK12Mmpta02R3JMpEshBBrWjfwzcLLNcClJW93L/aDaK3HgGdjDuTeDPwj8BHgH6q83lUhm5uus5CeZCEaK5Mv6UguTCTL7+X87M327InkCZlIdiSl1CuAjwF/q7X+eqPXIyrLW5psXhMsHFh24tlKiXSOFp9Zn9/rRmtnrlMI0ZzqMpGMqbXYr7U+WHqh1jqllLoJuFEpNYaZQv4rTMD9sTqtzbHy+VkTycWOZOlwFEKItUZrfQJY0qiJ1nprhcsPAM9a+apWv2zeKp4WKpOPQjRWthCE+NzTHckSJM8vnbMnkgvVFrLZnuMopX4b+DLwMa31vzR2NWIh9jTyuhYvyYk8qWyeoM9ZZyslMvlikGyfSZXOWnJWlRCiLmoeJCulOjGTTzdWuMlNmOD4BqAD2Ac8V2t9vtZrczq7I9meSHZLkCyEEEJUVSZv0d7i49xESrpYhWiwYkeyx0UkUAiS5fdyXumchd/jKvZKS5BcXwvVTgFbgO9iBqa+rpS6puTdh7XWR+u1VrE4dpDcWnhskMo5ryd5ZpBsTjJP5fK04m3ksoQQa0TNg2St9QhUvkfTZov09xVeRIm8pXEpil1HEiQLIYQQ1ZXJWXSG/ZybSMlEshANVtqRbFdbTGXk93I+mZxVDN1bg17Gk9KRXGd27VQp++1twNVAK7AbU+tY6vPAH9RycWLpkoUgua0w5Z/MODFIzhXP2rArOJy6MaAQovnUq9pCLENeazyu6RrrYrWFliBZCCGEqIZs3qI9ZDapklPohWis0o5kOySRMwXmlylMJAO0tXiZkInkulpE7dTnCi9ilUhlzf3QupB3xttOksjk6Qz7gelqi6QEyUKIOqnXZntiGfKWpiRHLu4WKxPJQgghRHVk85p1EiQL4Qj2RLLP7SrUNSj5vVxAJm86ksEEyeOy2Z4QK2JP9ra1mMcGTq22sA+2FastHBh4CyGakwTJDpbLV5hIliBZCCGEqArTkWymjiSwEqKxSqstlDJTyVI5M790Lo/fYyYS24I+xhNSbSHESqRzM6stnFgZkcjkpjuSPVJtIYSoLwmSHczSutiLDOAqdCXnJEgWQgghVkxrTSZnEQ16cSkksBKiwbK56c32AMJ+j2y2t4BMzsLnNl+v1hYvEzKRLMSKJDPmgFZbi3OD5Kl0yWZ7PgmShRD1JUGyg+UsqziFDOBxy0SyEEIIUS32gVmf20XI75EuViEarLQjGQpBshzgmVcmV1JtEfQynsiiZT8VIZZtTrWFwyojLEuTzOZp8RWqLWQiWQhRZxIkO5jpSJ4Okt1KgmQhhBCiWop9rB4XYTmFXoiGK+1IBgmSF2NGkNziJWdppjISKAmxXHYn8rpikOys3yd7U73iRLJ0JAsh6kyCZAczHcklQbJ0JAshhBBVUzyN3u2SwEoIByjtSAakI3kRZmy2FzTBl/QkC7F8diA7XW3hrIA2UThQ1FLcbE8mkoUQ9SVBsoPlZ3Uk2xvvSZAshBBCrFw6b550eT2m2kKCZCEaK5ufPrgDEA54iMnvZUWWpcnmNX7PdEcywHhCepKFWC574tfebC/psIA2kTH3iS2FADkoQbIQos4kSHawvDVzIrmQI0uQLIQQQlSBHVr53IpIQIJkIRotk5vVkeyTieT5ZErqeWA6+JIN94RYvvScjmRnBbT2RHLIb1dbmNdJh01OCyGalwTJDpab1ZFcnEiWDTSEEEKIFcvmZnYkx2WzPSEaKpu38LoVqrAvSDggv5fzSedmdkrbwZdMJAuxfHZw3Br0otR0sOwU9kRysLDZnn1GgtMCbyFE85Ig2cHyeZlIFkIIIWqltI9VuliFaDwTJE8/PQn7PUxl8ljy2Lcse4LbDpLW2dUWSelIFmK5UlkLlzJnRvg9LlI5Z036FieSC5vtuVwKn8dV3CRQCCFqTYJkBzMdydPfInsiOZeXB9NCCCHESqVz00Fy2C9drEI0Wjav5wTJAFMZ+d0sJ10IjvweEyhFg9KRLMRKJbN5Al43SikCXjfJjLMC2ql0YbO9wkQymJ7ktFRbCCHqRIJkB8tbmpLH0tjDyVJtIYQQQqycPZHsKwTJU+kcWv7GCtEwmdkTyYFCkJx2VpDjFJnczI7kgNdN0OuWjmQhViCVzRc3sAt63Y6rjChutleYSAYIeF2OC7yFEM1LgmQHy1kzJ5KVUrhdirwlRxuFEEKIlSputudxEQ54sLTzdmcXYi3J5ix87ulat1BhIjmelmC0nNmb7QG0tXgZT0i1hRDLlcpaxQ3sAl63Y6stWvylQbJbqi2EEHUjQbKDWdbMjmSgECQ3aEFCCCFEE5ndkQwQl3oL0WC5vMV/33mcu4+ONHopdZfNW3hLQtFI4fcyJhvulZWZtdkemA3CpNpCiOVL5fL4veZ3yu9xOXgiebraIuBx3uS0EKJ5eRa+iWiUnGXhnh0kK5lIFkIIIaohU+xIVsXAKp7K0R1p5KrEWjYST/NnX3mAvcdGcSn4v8+7hP/z2ztQSi38zk1gdkeyfYBHqi3KS+fmTiRLkCzEyqQyJdUWPucFtPZEsr1GgIDPTUo6koUQdSITyQ6WtzTuWU8cPC5FTnauFkIIIVYsU2YiWQIr0SgPnh7n+o/dyf2nxnj/yy7nd6/YwD/fepg/+eJ9xFJrIxic05Es1Rbzsg+G+UuC5GjQy+Qa+XkRohZSufx0tYUDJ30TmTwBr2vGwFnA45JqLiFE3UiQ7GA5S+NxzwySXS6FJUGyEEIIsWJ2tYXf4yoGVjEJrEQDjCcyvPZT9+B2Kb71v6/jdVdv5qOv2cONv3spPzs0xNu/9VCjl1gX2fzMjuRIwLnVFs/511/w6V8ea+gaZm+2B2Yi2YlfLyFWC9ORbG9g6XLcpG8ikyPkm3liecDrJi1BshCiTmoeJCulPEqpdyilHldKpZVSZ5RSH5l1G6WUeqdS6rRSKqmU+qVSak+t1+Z0lqXnVFvIRLIQQghRHaUdyWGZSBYN9PhQnGQ2z3tf+gSesLEVMJssv/m3tnH9Fb3sPz3R4BXWR3bWRHJbixeAMYdtHjeZynJkKM7+M+MNXUe5aotowMtEUg6ICbFcqWyegKdksz2HBbSJdJ6gzz3jMicG3kKI5lWPieTPAX8O/AvwPOAdQHLWbd4B3Ah8ELgeiAO3KaV66rA+x8pV2GzP0hIkCyGEECtV7Ej2uAgH5BR60TjHR6YA2NYZmnPd1s4Q5yaSjgszaiGb03OqLXweF6NTzgqSz1wwT2UGJlINXUcmX67awkM8nSMnu3MLsSzJbJ5AIagNet2Oq4yYKjORHPS6SeWctU4hRPOq6WZ7SqkXAK8GdmutD1S4TQATJH9Aa/3xwmV7gRPA24B31XKNTpa3NC41N0jO5SVIFkIIIVYqU/h76nUrvG7zpDEuE8miAU6OTuFxKTa2Bedct7UjhNZwZizBzibfCTKTt4j6vMW3lVJ0hnyMxp0VJJ8eSwBwbnz2bEx92aey+z3T04nRgPn6xdM52lp8DVmXEKtZOmsVJ5L9XudtYpfIlJtIdpPMyOMXIUR91Hoi+U3A7ZVC5ILrgCjwDfsCrfUUcDPwwtouz9nKdSS7XYq8TCQLIYQQK5a1N6pyu4n4C+GLdIuKBjgxmmDTuiAe99yH5ls6WsxtRhL1Xlbdze5IBmgP+xiNpxu0ovLOjJkA+fxkqqGTv/ZE8uyOZEDqLYRYplQ2P6Mj2Wndw4lMnpB/bpC8Fs5aEUI4Q62D5KuBx5RSH1dKTSqlEkqpbyulNpTcph/IA4/Pet+DhevWLNORPPNb5HYp8tKRLIQQQqxYsSPZowh4XbiUVFuIxjg5OsWWjrm1FmAmkgFOjE7Vc0kNkcnN7EgG6Aj5ueCwaovTF0yob2k4H2tcyF3cbM9dWm1hguTJpBwUE2I5TJBc0pHssMqIRCZPy6xqC7/XRSrnrMlpIUTzqnWQ3AP8AbAHeA3wh8CTge8oVexsWAfEtdaz76HHgBal1JxzspRSb1FK7VNK7RseHq7V2hsuZ2lmDWWYagsJkoUQQogVK3Yku10opQj7PbLZnqg7rTUnRxJsLUwez9bW4iUa8HBydG1MJM8JksM+RhxWbWFPJENj6y0yZTfbMwHTZEoOitWDUmqnUuo/lVIPKaXySqk7ytxGNpZfJbTWJLN5gt7pjuRsXjuqczyRydEyq9oi6HWTyVlYkhMIIeqg1kGyKry8RGv9I63114HXA08BnrXcD6q1/pTW+kqt9ZVdXV1VWqrz5MtNJCslfyCEEEKIKrAnku2NbSMBLzGptqgprTWfu+s4Iw6rKmikC1MZYukcW8tstAemJ3hrZ6imE8lT6Ryf/uWxhocl2bwuM5HsY3TKWT8vZ8amg/9GBsnpckFycSJZguQ6uQx4EXAYeKzCbWRj+VUim9dYmhnVFoCjpn3LTSTbE9ROm54WQjSnWgfJY8DDWuvRksvuBDLApSW3CSul3LPedx2Q0Fo7awShjnKWVXxya5OJZCGEEKI6MnmNz2OmkQFCfjdTaQmSa+mhMxO8++YDfPXXpxq9FMc4UZg03lqh2sK+rpYTyd998Czv+9FBHjg9XrPPsRiZvIXPM/Oxb0fYTyprkcg443dTa82ZsSRXbW0H4Nx4qmFryeQsXIoZzxekI7nubtZa92mtXwU8OvvK2RvLa61vA14FaMzG8sJB7CC2tNoCcFT/cCI9dyI5UDiY5LSNAYUQzanWQfJBzETybAqw7+UOAW5g56zb9BeuW7PyFrhndVt43DKRLIQQQlSD2dhr+qFQ2O8hLkFyTe09ZmYL9p+ZaPBKnONkYdJ4S4VqC4CtHS2cGUsUqwyqbe9R8305P9m4UBQqVFuETMvdqEPqLcYTWeLpHJf0RGgNehmYaGC1Rd6acTAMSiaSpdqiLrTWC/1Sysbyq4gdGPvtINnjrCBZa00imyc0O0h2YOAthGhetQ6SfwBcrpTqLLns6YAX2F94+25gEnNkFgClVAvmtJ9barw+R8tbFm41ayJZyUSyEEIIUQ1mY6/pv7MhCZJrzg4sHzw9jtbVfTzzh5/9De/74YGqfsx6ODGawKVg07rKQfKWjhCWhrM1qFHQWnPPsQsADE02tkIiW26zvbAJkp1Sh2L3I29a10Jva6DhHcm+WV+vkM+NS8lmew4iG8s72G0HzvPhnxwuvp3KmOMCdkdywFe/gPans9ZSTiproTUEZ1VbBOu4TiFq6a4jI7znB6vvsVyjTKVz/OmX76/7Qe1aB8mfAkaBm5VS1yulXgd8EbhNa30ngNY6BdwEvFMp9adKqWcD3yys7WM1Xp+j5SyNu0y1hVXlJ15CCCHEWjR7+jESkCC5lrJ5i3tPXCDi9zAST3NuonrTr5alufvoKA+cGq/ax6yXEyNTbFwXnNFzO9vWzpbibavtyFC8GNIOxRocJJftSPYDpkvaCU6PmYqRvvYgG9uCDa22SOfy+DwzJxOVUkSDXplIdg7ZWN7BfvjwAP995/Hi29PVFoWO5DpWRnzvwbN8pmQt5YwlzP2gXWFj8xfuB5ISJItVzv6dzDpog0sne+TsBD98eIC7j4wufOMqqmmQrLWexGyqNwZ8DfgE8DPg92bd9CbgfcANmCnmKPBcrfX5Wq7P6SxLl+9IzkuQLIQQQqyUfVq4LeTzSEdyDT10ZoJEJs/rrtkMwP4q9vGeHU+SzlkNnQ5drpOjU/P2I4OZSAZqsuGeXTfi97gYijUuFNVam99J9+yOZGdVW5wpBMmb1rXQ2xbgXAOrLdI5C3+ZAxCtQa90JK9ia2VjeSeIpbIkMvliB7s90WtXWtSzMmIknmYqkyeZqfy57IN+neGZxx+KmwJKR7JY5UYKB7SdcvDY6UYKj43qfdZWrSeS0Vof0Vq/SGsd0lqv01r/gdZ6bNZttNb6fVrrTVrroNb6aVrrB2q9NqfLWXpOR7LbpchLtYUQQgixYtm8ntmRHPAQT0mQXCv3FALLP7xuGz63q6pB8pGhOADnY2lyq2yK5cRoYt5+ZDA9wWG/pyYb7u09OsrGtiD9vVGGGziRbFe3VZpIHplyRrXF6QtJogEPrUEvG9qCjCeyDdsIMFMhSI4GvExKkOwUsrG8g9kVMCMx822wg9i5m+3V/u/KYgIh+7quiH/G5fY60zKRLFY5+2e8kY9HVhP769V0QbJYvryl53YkuxR5qbYQQgghViyTy88IrcJ+D/FMrurdvcLYe3SUS9ZH6GkNcOmGKA9WMUg+OmyC5LylG17PsBTjiQwTyeyCE8lKKbZ0tFR9ItmyNPccG+Wa7R10R/wN7Ui2T2P1zgpGgz43LT43Fxw0kWz3WW9sCwI0rN4ik7PKVqJEgx4m5aCYU8jG8g5mV8AMF0IYuxoi6DO/V3ZXcj0qI4oB2nxBciHw7gzPDJLtddrVHEKsVo2asF2tpoPk+j5GkiDZwXJlqy1cstmeEEIIUQXZvJ4RwoT9HrSGxDynlYrlSefy7Dt5gWt3dACwp6+Nh89OVO0sK3siGaj7hiMrcaIwYbxlgSAZYGtHqOoTyYfPxxhLZLl2RyFIbmC1RTZXfiIZTL3FqENOcz09lqSv3QTIva12kNyYn7nZ9Tw2qbZwFNlY3sFihQMudhhjV1j4i9UWrhmX10omZzGeML+zI/McDB1eYCI5mVldZ+QIMVujgtHVSiaSxQxW4YmV2zXzW+RxqeJ1QgghhFg+s9ne9AHbkN/sgi4b7lXf/tMTpLIW12w3QfLuvlYSmTyPD8Wq8vGPDMVpD5nOyLMN3PxsqU4WJoy3LlBtAbClo4XTFxJVre7Ye9TUjZggOcBYIksm15ggIlP4f83uSAZoD/kdMZ2ktZ4xkbyhLQA07uBFOivVFo2mlGpRSr1SKfVKYCPQZb+tlGqRjeWdrTiRHJsZJM+ttqhtkDxaUt0z70RyPE3Y7ymuy1avwFuIWppK54rDHFJtsTjDhbMU6v31kiDZoXLFIHnm5S6lZCJZCCGEqIJMzpox/RgJSJBcK3uPjqIUXLO9HYDdm9qA6m24d3Q4zlN3dgKNmw5djhMjCZSCvvaFg+StHSFylq5qjcLeY6Nsbm9hY1uQ7qiZcJsvxKilYrVFmYnkzpDPERvvjMQzpLIWfevMJPL6aAClGnfwotxE8gMPQGIwXAzIRM11Y4LhbwLXAJeWvN1duI1sLO9AlqWLf+/tA1XpYkey+b3y2wFtjQ+w2ZUVs/8953bxzJyN9qAk8JZqC7GKlR4wdsLB49VgWCaSRam8TCQLIYQooZTaqZT6T6XUQ0qpvFLqjlnX9yql/lkptV8pFVdKnVZKfV4ptaHMx9qolPqOUiqmlBpRSn28cKrtmjI7hAn5CkGydItW3d5jI+zqidLWYp4Ab+sMEQ14ePD0xIo/9mg8zVgiy+5NrUQDHgZWUZB8cnSKDa3BOdNl5dgb8lWrJzlvaX59bJRrC1Pi3YVTpYcmGxOKzhckd4R9jDrgNNczY6ZaxJ5I9rpdrI8EGvYzl8lZMzYMBXjjG+Gr799EMmORllCp5rTWJ7TWqsLLicJtZGN5BzJ7Iph/j8zuSC7cJxe7h2tcebXYAG04lprTjwz13RRQiFqRIHnp7CqcC1OZqtXFLYYEyQ6Vs8wfgbkdyap4nRBCiDXlMuBFwGHgsTLXPxl4GfBVTPfi3wBXA3crpcL2jZRSXuBWYAvwGuAvMN2Nn6rl4p0om58ZwoQLE8lTMpFcValsnvtPjRf7kcFsHre7r60qE8lHh02wurM7zIa24KqqtjgxOlUMiBeytdP0KJ+sUpB8cGCSyVSu+H3pjpiahkZtVlhpsz0w1RajU+mGb4R5eswExqUT5L1tAc41qNpi9mZ7U1Pw6KMwcs5H+nQ7k0m5LxOikljJQWN7CrhR1Rb2VGHQ6543QDMTyeWCZKm2EKufXdOw0O+BMLTWjMTTBL1uLE1dz9ySINmh7KzYXSZIrueRBiGEEI5xs9a6T2v9KuDRMtffCfRrrW/SWv9ca/014MWYwPgVJbd7JbALeIXW+oda6y8Dfwa8Til1UY3/D46SzekZ04/hQkfypEwkV9X9p8bI5Kzi5KttT18bh8/HSK5w0sveaM8OklfbZnuL2WgPzMRw0Ovm+Eh1Ntwr7UcGitUWjQqSM4XN9sp1JHeGfWTzmliDD/LYE8k9kSDvfz/ccgtsaAtWtW5kKdK5PD7P9DT7Aw9MP4eIP9Qn9RZCzCNW8vsxvdmeXW1hfq+8bhdul6p5ZYT9+S/uiSwQJKfnbLQH4HO7UEqCZLG62T/7l/RE5q14EUY8nSOds7ikJwLUd4pbgmSHsqeOywbJDZ7GEEIIUX9a63lPR9Faj2utc7MuewxIAKX1Fi8E7tVaHy+57LtABnhBdVa7OmTz1ozpx+kgbfVMtK4G9xwdxaXgKYV+ZNvuTW3kLc0j51ZWb3FkKE7Q62ZDa5De1sCq6UieSGa5MJVZ1EZ7YKa4t3S0VG0iee+xUbZ3hlgfNZPIHSEfSsGwQ6stgIbXW5y+kKQ95KM15OGjH4VvfAM2FH7mGjEtncnN3Gzv3nvN66c+O03icC9nz0uQLEQl9sR+e8g3HSTn8njdasZz8IDHVfPKiJFYhpDPTd+6ICMV7ueyeYvxRLbsRLJSioDHLUHyGjA1BYkEpFKQTkMmA7kc5POw2mOiYpC8fv4DKsKw7yt29dY/SPbU7TOJJZnuSC4TJOdX+T2EEEKIulBKXQG0MLMKox84UHo7rXVGKXW0cN2akc5ZeEumHztDfrxu1bDpwma199goT9jYSjTgnXH5FX2tgNlw76qt7eXedVGODsfZ3hXC5VJsaAsylsiSzOQJ+hbuHW6kU6NmunWxE8lgNtx7fCi24s+dy1v85vgFXrxn+hiTx+2iI+RvfLVFmSC5PWSCk9F4mm2di/96VduZsQSbChvt7dkD+/fD0/8oSDpncWEqQ0eZgKeWZve879sHmzbBW/48xV0/a+W73/Lw9CfUdUlCrBr2RPL2zhCHBs39ajKTn9NZH/S5i93JtTIST9MZ8dMZ9hc7T2ezD6R1RuZutgdmndKR3NwyGfjiFxe+nVLmxeWa+brSv+e73WKuW+n19usjZ9JE/V58+QAXpjIcOWoGPlbyeQMBcDv74eCy2cFxf090xtv1IEGyQ9lTx7M7kj0ykSyEEGIRlFIu4KPA48D3S65aB4yXeZexwnWzP85bgLcAbN68uerrbKRsfuY0n8ul6G0NrpqJ1tUgmcnz4Olx3vTUbXOu644E2LQuyL4TY/zR05b/OY4Mxblyq/nR3dBmpmvPTSTZ0RWe790a7nShJqGvPbjo97l0Q5RbDwxy+kJiRk/vUj1ybpJ4OjenbqQ70rggOTPfRHKoMJFcx/6/cs6MJbm01zxh270bPvpR6Gox37+BiVTdg+T0rM327r0XrroKrr3ahbdrkh98M8C//kNdlzRDLAbhsHkyL4TT2NUv2zpD7Ds5RjKTJ52bGyT76zDpOxxL0xn20xXxE0vnSGXnrsMOicpNJIOZnK514C1WB63Ny2rbWuuxoTQ+y8/5kz408N1bMoQ9gRV9zBe+ELZsqc76nMY+6NRvV1vUsQ5Eqi0cKpcvP5Hsko5kIYQQi/MB4Frg9VrrZZ/frLX+lNb6Sq31lV1dXVVbnBN6bLN5a05o1dsacMTamsW+kxfI5jXX7Ogoe/012zu45/go1jIf2yQzec6OT4fGG1pNqLcaDgYMTpjJ997WxQfJr7pyEy6l+NI9J1f0ue1+5GtmB8lRf8OqXbKFx74+T7mOZHsiuXFBsmVpzo4lZ0wkZzKQHjET0mcb8DOXLqm2GB+Hxx+HK6+E1qCX8BWnefxRHw8/XPdlFb3sZfD85zfu8wsxH3uzvW1d5nd4JJ4mlbWKG9fZAl4X6VpXW8TTdIZ9dBZqfIbLHNAbXihI9kq1hVjdpvIZWtx+Wtz+wttSbzEf++DSts4QPo9LOpJF5WoLjwTJQgghFqCU+j/A3wBv1Fr/etbVY0BrmXdbV7iu5r657zTP+NAdPHZ+5afor0Q2r+cEyRsbuHFWM9p7dBS3S1Wsrrh2ewfjiWzxtOKlOjo8vdEemI3PAAZWwffw/GQKn8fFuhbvwjcu6G0N8oLLevjavadXtEnh3mOjXNQdnrNpU3fEz9Bkg6otcpUnkteFzNdotIGdiecmkmTyFpsKk+C7d5vLh06aaamBOgfJWusZHcn33Wcuv/JKiAa9hC49i9uj+e//ruuyinI5uOceuOSSxnx+IRYymZyutgAT1CYzeQKemZPA9QhoTZDsL4bE5QIhO1zuqhAk+71SbSFWt6l8mpDbT8gOki3ZcG8+w/EMSpme966wv3iwqR4kSHaoXIUg2aVU8TohhBBiNqXUK4CPAX+rtf56mZscYlYXslLKB2wvXFdzz+zvpsXv5oZvP7zsSdRqyOTKTCS3BRicTMlB2yrZe2yUKza1EvaXb1O7tjCpvPfY6LI+/uwgeX00gFKNmQ5dqsHJFOujftQSz/t/w7VbmEhm+f7+s8v6vNm8xb4TF4pf+1LdkQAj8XRDfv7n60j2e9xEAp6GVlv8/PAwAFdvMwdFLrkE/H44esiDz+Pi3ER9D15MT3Cbr9e+febyK68Ev8dFMJLnsutifOIT8Od/DiMjdV0eDz1kNoV66lPr+3mFWKxYKoff4yoegByJpUnl5vbrB7217UjO5i3GElm6Iv7iwb1yG+4Vqy0qdSR7XaRzMpEsVq9EIUgOy0TyogzH0rS3+PC4XXSGfWXPZKgVCZIdyip2JM/8FslEshBCiEqUUr8NfBn4mNb6Xyrc7BbgKqVUaWPYiwE/8OOaLrCgM+znXb9zKfedHOPLvzlVj085h9Z6zkZVYCZa85Zu2On9zSSezvHQmYk5PbylNrQF2dLRUqxaWKqjQ3FcCrZ0mClRn8dFV9i/KupJBidS9ESX3v33lG3t9PdE+PzdJ9HL2DfjoTPjJDL5st+X7qgfS8PoVP2fvM3XkQzmfqORQfJPHh1ke2eIiwoHLTweeMITYP9+xYbWQN3rVOyvl30fdu+9sH07tLeDUopo0Msz33SGN70JPvEJ2LHDdDrXy513mtcSJDvD2FSGR89NNHoZjjKZyhEJeEumgDOmm7jOE8kXCvdrC00kj8QytPjctPjKH5gNeN0rOlOlEsvSjDW4n75ZpLJ5Eplco5fhSFkrT0bnCbl8xWqLhATJ87LPZADoivjLHoCqFQmSHWq6I3nm5W4JkoUQYk1SSrUopV6plHolsBHost8uXLcL+C5mqvjrSqlrSl52lHyo/ync5ttKqRcppV4LfBz4itb68Xr9f17xpI08dWcHH7rlULErtp7ss3t87pnToKupY9fp7j1xgbyly06+lrp2ewe/Pj66rMc3R4bjbOkI4S954r9hldSTnJ9M0bOEfmSbUoo3XreVAwOT7Du59DYaO7S/ulyQXJiGa0S9RXHCtkKQ3B7yNazaYiKRZe/RUZ53Wc+MCfLdu2H/fuiJBhmo8/1YplAFYn+99u0zG+3ZokEPWW+K//xPePhhc93/9//BkSP1Wd9dd0Ffn3kRjfeBWw7yxs/8ptHLcJTJVJZo0ENHoZfY7kj2l+lIrmVlhD1F2Bn2T6+lzGThSDw9p46oVIvPQzxd/ZDyW/ef4bqbbmciseztNkTB//3mfv74C/savQxHsqePQ24/PuXGo1wykbyAkXi6eIZCZ9gvHcmitCN55rdIgmQhhFizuoFvFl6uAS4tebsbuBrTfbwbuBvYW/Jyo/1BChvvvQA4DXwDEyJ/C3hLnf4fgAnD3vfSy8nkLf7h+4/U81MDlU+jt09xXQ1BpNPdc3QUr1tx5Zby/ci2a3d0EEvlOHBucsmf48hQvLjRnm1DW4BzDp9I1lozMJGiJ1o5FJjPS/ZsIBrw8Pm7Tyz5ffceG6W/J0J7aO7p0V0RMyFdz9MjbdlZE7azdYR8xcm9evvZofPkLM3zL1s/4/Ldu2F4GMJWqO5nMdinsPs8boaH4eRJU2thiwa8xQ7YSy+FD33IXP7AA7Vfm9YmSJZpZOfo74kyEs805HfbqWKFiWS/x01r0FsIkvMEvDMnkv1eN6kaVkbY4U9XxIff4yYa8JSfSC6ZPixne1eIYyNT5PLVDb33nRgjmc3z6IBMtK/UvhMXuO/kmOQ5ZZQGyUopQm4/U3mZhJ/PSDxNmy/AZz4DIYJcmMrUrTJQgmSHylnmD4Cn3GZ7yziNUQghxOqmtT6htVYVXk5orT83z/V/MOtjndFav1RrHdZad2it/1Rrnaj3/2lrZ4j/7zkXc+uj55ddbbBcmQobe/W2mSBNJpJXbu+xUZ7Yt25O3+RsdsXC3mNLK3HN5S1OjCTY0R2acfmG1iDnxpPLqn2ol4lklnTOYv0yqi3ATJ793pV9/PiRwSWdcpzO5dl3YqzilHhxIrkB1S7TB3fKd0Z3hOt72mapWx8dZH3Uz+5NbTMu37PHvM4OtTI0ma7rz5x9H+b3uIr9yDMnkqeDZDBhsscDDz5Y+7WdOgVnz0qQ7CS7eqMAHBpc+gG7ZjWZzBINmJqIzrCvGCQHvXM7klM1qIywlU4kA3RGym+aZYLk8v3IAP09ETI5i+MjU1Vdn/0zc2igsRskr3YXpjKcnzRT7ydHq/s9agalQTJAyOWXieQFDA7A999/MW9+M/zXDZvJxL2MJerzOEmCZIeyO5LnbLbnUmhNQzcnEkIIIarlDdduwaWWv9nacs3uF7VFA14ifk/dT1NvNpOpLI+cneCaBWotALqjAbZ3hZZ8MOH4yBSZvEV/T2TG5b1tQVJZi3EHn4Y7OGl+vnpalxckAzyrv5ucpXl0CZPcD5waJ52zKvZWdzWw2qJ4cKfCRHJn2MdYon7TNrZkJs8vHhvmeZf24Jr1uPyKK8zr2LkQ6ZzFZKp+3ZfFaguPi3vvBaXgSU+avr416J2xnkAA+vvrEyTfdZd5LUGyc9j3kxIGToulskQDXqBwWngsQyprEShXbZGrXbWFfYCsGCQX1jLbcGz+iWT7YMHBwep9j/OW5vB58/HkIMTKlH79DlXxe9QspizzuKPF7Su8liB5Pr/el+P4f1/L0MkAf//3MHjKx/mvXMOjR+rz2LemQbJS6g+UUrrMy1tLbqOUUu9USp1WSiWVUr9USu2p5bpWg+mO5LkTyYBMJQshhGgKIb+Hi9dH2H96vK6fd74+1g1tQc7KRPKK/ObYBSzNvBvtlbp2ewf3nhhb0im59pPl/p7ojMs3FqbKnfw9tHvBl7PZnu2SQjB0cGDxT+73Hh1FKbh6W/nvS8BrTvEeaki1xcIdyXlLM5Gs7wGCXz4+TCpr8fzLeuZc19YGW7bAyElTiTNcx0nudEmQvG+fCYkjJcdUogHPjIlkMBPU+/fXfm133QXhMFx+ee0/l1icdSEfPdHAku4vmp2ptihMJEdMv2gqN7faIuCp7WZ7I/E0Qa+bkN+spatM12k2bzGWyM4bJO/oCuNxKQ5V8Xt8YnSKVNZCKTgoByFWxP76ma+l/B7OZtdYFCeS3T4Jkit45BF49m+7QSve81/D/OM/wkc+O0kuFuR1Lwly8mTt11CvieRnAdeWvHy75Lp3YLobPwhcD8SB25RScx+trSHTHclzJ5JLrxdCCCFWu92b2th/Zryup4Vni9OPc0+j720LSLXFCv3w4QHCfg9P3Ny2qNtfu6ODeDrHw2cX38F4cGASr1vN6UjuXQUbJp4vTCQvt9oCTNVDd8TPwSVMiT16bpKLusO0tngr3mZ91N/gaosKHcmFAGV0qr5PLG99ZJDWoJert5fv+t6zB04dMRNU9ZzkLg2S77sPnvzkmddHg14mU9kZ96t79pjKieHh2q7trrvgmmtMlYZwjv7eSFWnVVc7s9meuS/sCvsZjqVJZspUW/hMkFyrxyilG2aBOftidrWF3Q/fOc9mez6Pi53d4apOu9oT7Fdva+ex87Gq9y+vJYcGJukM+9jRFZZQvoxEPk3A5cWtzGOAkNtP0soUz9QX0777XZiaUvS8/i6ecqV5HvO8Z7tZ/+pfMz6m+NSnar+GegXJ92qt7yl5GQJQSgUwQfIHtNYf11rfBrwK0MDb6rQ2R7Injst1JMP0bvNCCCHEardncxvjiSwnR+tX05yZJ7Ta0BaUaosVGI6l+cFD53jlkzfNmeyq5JpiT/Li6y0ODUyyoys8p57E3jDRyd/DwQkTEqwkSAZzKvNSTlU/N55k07qWeW/THQk0aCLZwqXmDlHYOgubA9azJzmbt7jt4Hmevau7YsC9ezecPu7Gyrrq+nUrVoG4XAwOwrZtM6+PBrxk85pkySSl3elcy6nkyUl4+GGptXCi/p4oR4ZixYM2a1kmZ5HKWkT80x3JsXSOdM7CP3si2evG0tOPG6ptJJ6mq2TSuCviJ5bKzZiCtnuUu+bpSAZTYVLNaddDg5O4XYoX795IOmdxoo6P05rNocEY/T1R83dbakLmmMqni9PIYIJkDSQt8zc/lYKvfx3i8QYt0EH274eeTTk80VTxLIWusB//hnH+7tNn+Kd/qv0aGt2RfB0QxewaD4DWegq4GXhhoxblBLlKE8lKJpKFEEI0F3sDq/1nxuv2OYv9ouWC5NYAF6YyJGu4uU4z+9pvTpHNa15/7ZZFv09n2M/F68N86MeH2fqOH7L1HT/kBf/vl/P24R4ciBU7IUt1hHz43C5HTyQPTqbMOiv0AS9Wf2+EI0PxRQdD5yaSbGibP7zujvgXPVl7771w+DBMVWHfoEzeqhjWArQXApQLszYXjKdzvO0r9/PMf7mDh88sfqJ9Me49foHJVK5srYVtzx6wLEV2JFLXSW471Mqn3FiWqdko1VqYtJxMTvck795tXteyJ/mee8CyJEh2ol29EbJ5zbFh2egrljK1L3a1RVfJpO/sjmR/4X46la1RkBzLzKis6CyefTF9X2dXXcxXbQHm4OLARIrxKm24dXAgxvbOELv7WgHpSV6uXN7isfMxdvVG6O+JcGYsyWTKufs4NIIJkqcPlNihsl1vMTwMd94Jn/mM+Ruzlu3fDxt3mN9x+74rGvTgc7tQ0QTuxc1wrEi9guSjSqmcUuqwUupPSi7vB/LA47Nuf7Bw3ZqVX6gjWYJkIYQQTeLi9WECXhcP1rEnuXgafZkgb3qi1blBpFNl8xZf/vUpnnZR55zKiYV84OWX8xfPvoi/ePZFvHTPBg4NxniwwsGFsakMg5MpdvVG5lzncilTT+LgieTzk6kVTyMDXNobJZO3FhUMJTI5xhPZYvVHJV1Rc4r3Yk7jPn4cfv5z+OIX4RvfgLvvhtOnIbeMPeeyOV2xHxmgI1QIV0pO+T4yFOclH7+THz08QCyV4xWfvJtv7ju99E9ewZ1HRnC7FE/d2VnxNnY4q0db61ptYR8MS02ZZ4yzg+Ro0ARkpWFFZyds3FjbieS77gKXy1RbCGcpbsYm/azEChtR2tUWpQFtwDN3IhkgXaOeZFNtMTdIHik5w8E+E6NrnmoLgP7C97ha9RYHBybp742yszuM26XkZ2eZToxOkc5ZhYlk87jlsNTMzDCVzxByzZxINpeb34O+Pvi934ODB+GHP6z9enI5c7D8oYcq30Zr+OlP4XWvMyF3PUxNwZEj0LnZnB3QXjhbSyllanHqdGZUrZurBjD9x78B3MBrgE8qpVq01h8B1gFxrfXse+UxoEUp5dNazzmcppR6C/AWgM2bN9dy/Q1TaSLZXXiALUGyEEKIZuFxu7h8Y2tdN9ybb2Ov6Y7dFNuXGIaudT959DyDkyne+9InLPl9n7ylnSdvMT20E4ksP3hogFsfHeRJm9fNue2hChvt2Xpbnd1zPTiRoqd15UGy/f8/NDhZ3HyvknPjJljf2DZ/kNwdCZDJW0wks7S1zH8adakLF8zLQw+B2w09PeaJ36ZNJsBcSDZvlT2wY1vX4kUpuOWRQS5MZUnn8nxh70n8Hhdf+qOruWR9hD/76gP8zf88xKPnJvmH6y9FqfI1GYu199goV2xqJeyv/JRp61azyZ3rwjqGYjUuHy4xO0heN+vXJBqwJ5Lnbrg330TyPcdG6Qz72dm9vPu+u+4y4XokAl+/9xR+j5uXPnHjsj6WqK5tnSF8bhcHByd5KWv7e2IHyZHA3CA56JvVkVwIkmsxkZzLW1xIzJpILoTFpRvuLXoiuWQT1msWudltJZOpLGfHk7zu6s34PW52dIWWVKUkptmdyP29EdYV/q4eGpjkqq3lu/fXokQ+TcuMagvzdSrdcO+3fsscwP7Rj0yd0xOW/lBzQT/6EXzsY+ZvWSxmNkf88pfhta+dvo1lwVe+Av/8z9NBcy5n1ldrjzxiAuzwhinaQ74ZZ3LZm4bWQ00nkrXWt2qt36u1/onW+hat9RsxNRbvUkot+3NrrT+ltb5Sa31lV1dX9RbsIFaxI3nml8kt1RZCCCGa0O5NbTxybrJu3Y3FftEyQbIdtJ2TieQl+/zeE2xaF+SZ/d0r+jitLV6u3dHBrY8Mlp2Mtaei+stMJANsaQ9xbDhe1w0cl6JaE8nbu0wwdGARU2J2sL5hwSDZPJFbSd9vPm82dbvnHvif/4HPfx5uvx0eewwSFSo2s3kLr7ty8Otxu7hiYyt3Hx3lI7c9xr/fcZT+ngg/+PPf4rodnXSE/XzhTU/htU/p43N3n1hx53o8neOhMxNct2P+MMblgiuugOxwfast0jkzh5OIm/uwStUWE2WC5IMHTd9kOW/7ygN86MeHlrUmreE3v4FrrzVvf+bOE9y8/9yyPpaoPq+7sBmbhIHFSf1oodqic55qC3siOVmDieQLUxm0ntl93Fn4d+lk4XAsTdDrJjTPQS0wE8vtIV9Vvsf2xKw9QWu6feVnZzkODU7icSl2dofpbQ3QGvTKxpclslaetM7N6EhumTWRDCbUfc1rzAHqz3wGRkaqu44DB+AVrzB/I//X/4KvfhWe/nR4wxvgBz8wtxkagt/5HXj9681jnc98xkwk33abebvW7DOKvN0TxfsKW2e4SYLkCv4HaAe2YiaPw0qp2S0e64BEuWnktWJ6Innm5cVqC4c+MRJCCCGWY8/mNjI5q25PcO3AulxH7fpW8+DVyROtTnRwYJLfHL/AG67dUnHDtKV4/mU9nBhN8Nj5uTurHBo0u593R8qHsZdvamUskeXMmPO+h+lcntGpDD1VCJKXEgzZVS29C0xCF4PkKtY0JJMmRL79dvjCF+Cb34S9e+HMmeknXgt1JAN890+fyrH3v6j48s23XjujqsPjdvHKJ28C4Pjoynpg7z1xgbyluXb7wuPUu3bB1FBLQzbbS1YIku1T9mf3cO7ZY77mjz4692OOJzKMxNMcGVrebkbDw2aCq7/fDL0cH5la9mSzqA3Z6MuY7kg2vycdoelAZm61hd2RXP2UaLjMpHGx2mLWRHJnZOEzRJRS9PdEqvI9PlQ4QGlXovT3RDk7npxzcEos7NBAjB1dYfwe9/T3SGpCiuywuLQj2a88uHExlZ8ZCfp88Ja3mH9/8YvmAGY1pNMmEA6HzUHwf/93E1p///vwxCfCK18JH/6w+Rv685+b6x9+GP7wD+H662FsDO67rzprmc/+/RCNQjoQn3OGQmfY19RBsi55fQhTebFz1m36C9etWflCg7h71kSyyw6S8xIkCyGEaB72hnuVOnGrzd6oqtwEpN/jpiviZ2C8cR27Q5Mp9vzTT9h+ww/ZfsMP2fnOH/Gt+840bD2V/MFnf1Nc4ws/+isCXhe/d2VfVT728y5dj1Jw66ODc647OBCrWGsBsKevDaCuvduLZQe0Pa3zn6K8WP29kUX1Vp4dT6EUC1ZqdBcC7sHJ2v38j46aJ0M/+AF89rOm73B4RONe4KmJUgqXa/qlXHXFlo4QACdHVhYk33N0FK9b8eQtc6tVZuvvh+Skl4Hz9dsByL4Pm4pVCJILk5alm+3BdKdzuZ5kO0A+eSFRDKqX4tgx83r7djh9IUEmb7FDgmRH2dUb4fxkes6mlWuN/Xthd4kHvO7ixnv2BLItUKy2qH6QbHcfz5yIdhPxe4rXmdulF6y1sO3qjXL4fGzFZzAfGIjRGvQWD3raZwBJALp0pmt6+gwqe7p7vg2F15KEZQfJ0z/jSilCbv+MiWRbVxe87GXmAPXevdVZw7veZf4ufuYzpprLFo3CLbfAzp3w138Nra3mzJv//b/NhDTAc55j/n3rrdVZy3z27zdnQY1Ozb1P6Az7GY1n6vJzVeuO5HJeCYwAJzEdypPAq4D3AiilWoDrgU81YG2Okcvb1RblN9vLrfWtKoUQQjSVTeuCdIR87D89zuuv2VLzz1ecSK4wAbmhNdDQaouHz04wnsjy2qf00Rn289XfnOK2g+d5RWHa0gn2nx7njsPDvOjynuLGeldsaltSr+58uqMBntjXxq2PDvLnz76oeLm9+/kbrq38c3JJTwS/x2zgeP3uDVVZT7XYAW3PApveLdalvVG+ff9ZRuNpOuYJGgbGk3RH/AtO/W5aFyTgdXHg3CQ8uSpLnFcuZzboOz9ikci6+MIXzGmrdr9ycIlfpo6Qj7Dfw4kVVlvsPTbKE/vWzelLLae/sEX4+ICfZCa/qPdZKTvotYPkOR3JFaotduyAUKh8T/LRYRMk5y3NydEpLlo/f+/2bHaQvG3bdCi91E03m5VS6jXA3wIXAxPAz4B3aK3r2v1R7FUfmOS6eTaRbHaTsyaSAbrCfmKpXMUguRbVFvaGenMCoYi/OK1sbpdhc0fLoj5mf0+EVNbixOjUin7/Dg1O0t8TKR6wu7RkI7+rV9i/vJZMJLKcm0jNOPi9qzdCIpPn9FiiePBzMdJpE1a63aZWyeWa/vfs1/a/F3p79uXlbr/C7QYWZE8dlwbJ5m0fiTJBMsBTnwq//jV861umKzlaebZgQbffbqaN3/pWM108W0cH/Oxn5myqP/xD8ze0VGcnPOlJ8JOfwI03Ln8dC7Es08n8hjfAz2Plg+ScpZlIZlkXqs5j8UpqGiQrpb6F2WjvIczk8asLL3+utbaAlFLqJuBGpdQYZgr5rzCT0h+r5dqczu5Inn1qqD2RbEm1hRBCiCailGJ3X1vdNtybryMZTI/s4fON66+zQ7C/eX4/7SEfJ0YT3HfiQsPWU87n954g5HPzwVdcMePJeDW94Ak9vP9Hhzh9IUFfu3kSXbr7eSVet4sn1HkDx8UanCgEyVWotoDpYOjwYIzrdponFT98aICrtq4rTheD6fxeqB8ZCl+7Da3sr9PZAba8tnApRSJhpowee8xc3tk5HSz39JgntfNRSrGlo4UTK6i2mExleeTsBG971kUL3xi45BLzOjsaZiiWWlIwsFzpwn1YbEKh1Nwn0V63ixafe85mey6XmUouFySXVlocGYovOUg+fty83roVfnWv+Vg7JUhGKfVi4KvAJ4C/AXoxQ1Q/VEo9ufC8uC7sqciDg7E1HiSbieTSjTQ7w36OjUyV6Ui2qy2q/22a3kRvdteprxgy27d70iLOjoDpKgq7TmE5LEtzeDA24wyj7oifdS1eqUZZIvvrVTqRbP/dPjgQW9LfC8syB17rTanKgfViX88XbJ/0pMELI2f9pEvfN+9nQqcYHS0fgL/61fDBD5ow+Q//cHn/t1gM3vhGuPhiEyZXsn49vO1tla9/3vPgQx+CycmVhdrzOXGiUB91qcUPTuXn1N2UbtS5qoNk4DDwJqAPUMAB4A1a6y+W3OYmTHB8A9AB7AOeq7U+X+O1Odp0R3KliWQJkoUQQjSX3Zva+PnhIWKpbM2CSdt8HckAva1B7jg8jNa67OnztXZydIpIwMO6FvN12L2plZv3n2NoMjUjHGyU0XiaH+wf4DVP6avp9+r5l5kg+ScHzvPm39oGzNz9fD67N7Xxld+cLGzi1og2t/LOT1Y5SC58HQ4UJgx/8uggf/qV+3nrM3bwjhf2F283MJ4qBgwL2d3Xxpfuqe/XztIW7jJ7cY+MmJcHHwSPB3p7p6eV2ytseL+1I7SoDQgr+c2xC1garl3k1N3WreD1arIXwgzF0vUNkicV0ah5Uj1bNOCd05EMpuPxS18y3ZKld29HhuJsbm/h1IVEcTp5KY4dM9+flhbzsTrDflpbantfvkq8Drhfa12MIZRSk8D3gEuAg/VaSGfYT2fYv+brCWKpLBG/Z8Zz7a5CCFNpItne4LKaRuJpAl7XjEDbXou92V0ub3EhkSmubyE7u8O4XYpDg5P8zhW9y1rX6bEEiUye/p7pv7Om2zda/BssFsfeoHBXycHvi9dHUMqEzC94Qk+ld3UMrc3ZQ7WS2JaGHXDPz32okpgrtstPpnOC7/y08vt2d5uqiYkJ85hgduC8cydsmedEx7//e7M58N13m79dy/X858MHPmD6k1/ykuV/nPnYlVSbd2bgVJkzGeyNOuPpJR8IXqqaPjLUWr9Ta32J1rpFax3UWj95VoiMNt6ntd5UuM3TtNYP1HJdq0G+QpBsv73SziMhhBDCafZsbkNrU+tQa5lChVTlieQAyWye8URjNpU5MZpga0eoGGLbnb/7z9T+a7MYX7v3NJm8NW+9RDVs6QjR3xPh1keme5JLdz+fz+6+VlJZU4PhJIMTKQJeV7Gbc6U6w366In4ODcaIpbL8/ffMLmqlvclaa86OJ9nQtrjwendfG+mcVQwy6iGPtWBHsl2Dcffd8I1vmI127rgDjhyBVEml85aOFk5fSJDLL2+CcO+xUXweF0/c3Lao23s8sGW7RXY0VNVNCueTyVn43C4mJtScWgtbNOiZ05EMZiJ5ctJMN5U6OjzF5Zta2dAaWNaGe8eOmVoL87Hi7OyufaC+SngxdRalxguv636kcldvhINrfKo0lsoVO5FtdghT747kzrB/zgHrzrC/2JF8IZFBa+gKL27CMOB1s70ztKju/EoOztpoz9bfG+Hw4Mr7l9eSgwOTrGvxsj46HfoFfW62dazse9RMLF8alfWg9MzfPVfGj/Zm0FT+eevpAb/fnBGTSpnNfaemzOTu+PjMxwaz3X8//Nu/wZ/8CVxzzcr+D9deayovatmTvH+/OfjbsdlU780+uNRV3Kiz9h34jehIFotg3znP7kh2KwmShRBCNKfdm1oBs0HadTtqe8ptNjd/R/LGQgXAuYlkzU8PK+fk6BSXb2wtvn3ZhlbcLsWDp8d47qXr676eUrm8xZfvOclTd3aws7u2Ew9gppL/7fbHue3AeZ5z6XoOlux+Pp8n9pl0bf/pCS7b0Drn+ql0jpf/+92856VP4CnbKoy21sDgZIqeaKCqk+79PWbDvQ/9+DDnYyku2xCd8QR1LJElnbPoXWQv8xOLBy7GecLGuV+7WshrjVctrVt4agoOHTIvSk3XYLR5QuQszbnx1KJ7RUvtPTrKkzevmxMozWdXP5z4VZih2PCSP99yZHIWPo+LsbG5G+3ZogHvnI5kgFH/eWA9P7w9ydvebH4mUlnT1/myJ25kMpnlyDImko8fh6c9zRy4ODIU58V7nNVP3kCfAb6rlHoD8F2gB1NtcbvW+kC9F7OrN8rn7jrBu7//aL0/dVnrowHe+ozty7pPPDYc54v3nGSh1kel4LVP2czFhSm9yWS22CNus6f7grN+7+23v33/2apP4/7m+IWyk8adYT8TySz/8L1Hir/Di91sD6C/N8qvHh9e9vf4kbMTKEXx62Xb1Rslmc1zw7cfosW38ijJ73Hx1mfsWNbjrGQmz7/d/jjJTPUD/vns6WvjpU/cOOOyRCbHx24/UnYtv3hsmP6e6Jyf7129UfYeG13S9yidhvjF5a9zpQIET21HlRyb0miSW45h+au3eW7wzBbciZVXFqV6z5CLmONr2fYRXJm5P9+ujA9cmqn+R8CqfKC5e10Lp2/fxsn0MF27h2Zc982jsO/7c9/HysN//+12glEPrU87wru/v/Lqmo2XbuZr3/Hxxr+OF3vEZ5/5M5vWmv/4xdFFHYT++o/7aO/189lfHwGmg2ObfR8xHKv9AW0Jkh2q4kSyW4JkIYQQzamtxcfGtmBdTpvMFCYVvZ7yj+567SB5PFU2hKylbN7izFiSF5dsEhf0uenvibD/dOMnkm87eJ5zEyn+4cWX1eXzveHaLdx+aIg/+sI+/uxZOzk4MMnViwh++9qDrGvxsv/0OK+7evOc64+PTHH4fIz9p8frGiSfn0yxvsr1JJf2RvmvO49zYGCSP7huKxtag7zvRweLG/CdGzfTK4vpSAaz4V57yMeDp8b5/atrv/klmI7kgGv5T020huFh83I6ZSZhv/njKZ53RQt9fZXD1tnGExkODk7yl8+p8Gy9gssvc3HzzS0MjNVnIjmdy+PzuBgfr/x/aw16i5s7ggmf/+kHj/LFh8+A6/l8/2fTQfLxkSm0NqfFT6ayfO03p7EsXdyfZSGZjJkW377dnFY7mcrJRnsFWusfKqX+APhv4POFi+8GXlzu9kqptwBvAdi8ee5910r99iVdfPv+M3zngbNV/9hLlclZJLN5Xv6kjcu6X/z6vtN89q4TtAbnr1CJpbIk0nk++MorCm/PnUi+ZkcHVz62jvZZoWY04OGyDVEODcaKNQXV9PInbZxz2ZVb1tEZ9vHdB81ejL2tgSU9Fnnupeu58/HhFX2Pn7Nr/ZyNQ6/d3kFva4BbH115C6llaWLpHJduiPKSPXO/Bgu54/AQ/3HHUSJ+z6Lvp1Yqlc3zzX2nefHuDTM+5x2Hh+ddy/MvmzsA8NxL13P30ZElfY+0hnSZthKtLPDk8Q/14k5NHzzNt0yRuOgQ5NwovfIyAu3NoiwXoSO7VvZxlEW8/2EAlGV+xvwDc38GPBPrUGk/6fUD8348dy+EBn1cONRL4MrH8HVO75Fw7zA8OD73fUZ+3ce5I0H6XvEQtzw+OPcGyxDvdDF27y7+8SuP8nfP7OBtb4NIBH75y8rvc2YsyYd+fJig112xbs927PA2ghvGuPfEGNs7Q2yZdaC8NeglGvAU6/tqSYJkh6rUkSwTyUIIIZrZrt5oXU71W2gi2a4AODOWqPlaZjszliRv6Tk9q7v72rh5/7klhTu18Pm7T7KxLchzdtVnMroj7Oebb72Wv//eI3zsdjOF0b+Irt/iBo4VNo2zw9XxZO1PASw1OJniSZsXt2nSYvX3Rshbmg2tAf7v8y7hgVNjwPQGfGcL/9eNiwySlVLs3lTfDffMZnvVad1b5zFPrg6fnSIU6wIgHJ7etG/TJnMqbDn3HLuA1nDtjsX1I9t27VJgKR5/fEVLXzS72mJ8HHbsKH+baNDLfafG+Pc7zO/NTw+c54FT47z1Wdv5wFcTPLx/+uttV1ns6AozkcySzOYZmEwt+mfm1CmzEdS2bXB0yDyJX6h+Zq1QSj0T+CTwUeAWYD3wbuA7SqnnaK1njDFqrT8FfArgyiuvrPqTvut2dLLvXc+t9oddlu8+cJb/7+sPMpVeXgHrcCzNxrYgd73jWfPe7vf/654Zm8RNprJzguurtrbzP//7ujnv63G7+OGfP21Z61uu63au7Hv04t0bZhyMrpa+9hb23vDsqnys0xcSPO1DPyebX96P+MHBGC4Fv/m758wJvGvla785xTu+/TBnxpIzznY5NDCJS8G973rOos9keekTN86ZbF7IxAQ8u8yXPxsdY+Ipd5OLTM4MksPmwEfbfdfiia18KOLCU2/H8q/8YGk+mAC3RfjR3QQGNlW8nXeyjY5fPWdRH7PVC48omPjWU7nkkukp4He/G373d2fe9pFH4LoPw3OfC7d+8wqUumKZ/5OZDh+G/lvg5x/fyS03mp5myzLft9YKX/7hwoabn/j9J/Ks/sqPqycnofXd8Pd/3cLf/V35Xm2XS/HQu5+/0v/Gojhn5xExQ6WJZNlsTwghRDPb1Rvh2HC8Jl2EpbJ5y+xCXSGQ7Qz52dgW5F9/8hg/ebQ6kwqLdWLUhDBbZ00a7NnURiyV4/joVLl3q4t0Ls/eY6O89IkbKn7taiHgdfPBV1zB+192OZ1hH7+1c3HVJ7s3tfHY+VjZkKIYJNexB1trzfnJdNU22rNduaWdthYv73/55YT9nuKO8PaGcwOF/2vvIjuSwRy4eHwoTnyZAc9SWYvoSF6skNuPV7kZy00fCIrHTQXGT38Kn/scfPvbZoOegQHzRM9274kL+D0udm9qW9LnvOQS8/r40fo8vcrkLfxeEyRX6kje1RthPJHlQz8+zId+fJgjQ3E+8bonccOLdnHRZVmGjrcU72uPDMVRCrZ3hYoB8NEl9CQfP25eb99OsRZDJpKLPgx8X2v9dq31HVrrrwMvBX4bqNG2TKuDHQAmlllPYDqGF65F6O+Jcvj8dLdvLJUjGpCZukbyFM60Xu705KGBSbZ2huoWIsP0QezZHeMHB2Ns7wovqQ6pmjxTEdDTwbEtF54EDe6p6twXuzI+LF8VguSw+fp54tWrR/N4zEHiqSmzQW8lx47B855nJoU//en5ayeW6uKLoWtDltRwmD/9iyzf+Ia5/P77K7/PSKGGYqHqmofNADe7d1djpSsnQbJDTXckz/wW2U/aLAmShRBCNKFdvVEszbI2elqKTF7jdbsqdjK6XIpvvPVatnWFeMsX7+PDPzlct7OBTo6YoLjcRDLA/tPjdVlHOXZXY7WD0MVQSvG6qzez713PXXRv756+NqwKGzgOTJhT/sfLdMjWylgiSyZnVb3aoq+9hQdufC6/fUk3YDZg6Qz7i6dhn5tI4fO46FhCD+XuvsLml3Xa4DGvNe4qTSQrpWjztHAhW/6gi9YwNGSe3H3ve/DZz8Itt5gppftOmF7ohU4xnc0Oks+dmP8U+2qxJ5Ln60h+y9N3cOg9Lyi+PHDjc/mdK8x50b91jRsr6eOWe8wT+qPDcfrWtRDwuotB8lLuh48dM6+3bzcBdMjnpre1/vcTDtUPPFh6gdb6MJAEKsyTrw2hQs/usoPkWHpR3cH9PRFSWYuThQOxsVSWSKA+v6uiPHuz42UHyYMxdvUsfHZSNV28PoxScGhWBduhwUn6e2q/Z0QlKu/BlWwxwXGJfCSGeypcrI9YKVfGj+Vb+VlcuUgMLFW1gNvW0WHOPjp92kwBzzYwYKaQ02n4yU9gS5Wbu5SCT355ig1/fAcvf+sFnvEMc/m991Z+H3tjvHJd6aX27zevJUgW87InjmcP+7hlIlkIIUQTsx+IH6hxvYUdwsxnY1uQb/zJtfzelZv42O1H+OCPD9V0TbYTowlCPvecKaud3WFafO6GBsmThdB19iZFTjVf+G7XPUzUcSJ5sBBe99QgYJu7kU+kWBNzbjzJhtalbfBnT+TWq94ir61ihVs1rPOGGM8tbno/m4WTJ+EXv7J45OwE/ngbv/ylCUfTixy+ikYh3J5l9OziN8RaiUzOwqNcxOPz9z8HvO7ii6fkPu+lzzVnPHzvp+b34MhQnB1d5uBVR8hHa9C7pA33jh0Dnw82bDCh9I7ucFU3lFzlTgJPKr1AKbULCAInGrEgp2jxm4BrKrO8Mx9G4ukFAxgwB6kBDg7E0FozmcoRDcpEciPZQXImt/QgOZbKcupCgl299Q1vW3wetnWEZlSwxVJZTl9IFn/GGsUTi5IrM5HsjldvXSrjr9pEsjsRqlrAbVPKHMwMBuHIEbhwwVyuNezdC89/Ppw/bw4cX1ajbT6ec00Ib1uSgwMxOjtN3dP8QbL5enaEKt+PaQ3f+Ib5+7qpchNIXUmQ7FB5y8LtUnMegNlBcn6hrWmFEEKIVWhLR4iA1zVn2qPasnlrUROHdqXC0y7q5BeHh2u6JtvJ0Sm2dITKPga4fGMrD9ZpQrQceyJ5oY2NnKI95GNze0vZMLQRHcmDk+ZzVnsiuZxdvVEePx8nl7dMkLzIrltb8WtXpwMXJkiu3lOTdZ4WxrNJrCU8Zh7JxMhpi07VxoEDZmLpc5+D73zHPBEcHJxZgzFb7+Ys8fPBZQUjS5XOWbiy5mBTpWqL+Vx7lQflsvj1vRZ5S3N8ZKo4iayUYmd3eMnVFlu3mk5IE0pLrUWJTwKvVkp9WCn1HKXU7wPfxYTIP2rkwhqtxa62SC99ItmyNKNTmUVNJO/sDuN2KQ4NTpLM5slbWiaSG8w+mL+cAbnHzpvHiP11nkgGsydBad/24cKZP/UOtWfzxKNYLVNolzkoY7mzWMFkVesjXBk/2pdGs7IsKheO4aliwF3K6zUVE+Gw+bv08Y+b0Pi668zb3/sePOUpNfnUAEQDXjatCxYPNlx11fxB8nAsTWvQO+9zkltvhV/8At75zupWcayEBMkOlbN02e7BYpC8zFJ6IYQQwsncLsUlPbXfcC+bt/C6F/doTCnFFZtaOTocJ52rbXczwMnRBFs7W8pet6evjYPnJuuyjnJWW5AMZip5/+l5qi3qOpFsJk9qMZE8W39PhEze4vjIFAMTKXpblxYkg/21G6/+4srIY+Gq4lOTdd4QeSxi+WTxssNTA0zlK09TDWTMz8kGf1vxMq3NBNN998F3v2uC5VtvhUcfNZvflNqyI0/2Qpjh2MonthaSyVmQMUHyfBPJlQQC0LM1w6nD/sJ9mzVjc7ydXWGOLnEieds2iKdzDEykZKO9mf4N+FPgucD3gA9hqi6erbVuXOm9A0xXWyx9InkskSFv6UV1JAe8brZ3hjg4EGMyaT5XVILkhrIfg2WXceDtYGHYoL8B4W1/T5STFxLFvRcODjYu1C7ljkdAQS5s7rftvmRPrJpBsg8UaO/yD8BbHhNwu6u4rtncbrjoIrPB3a23moOt//VfcO5c+c0Kq62/J1qsFrvqKnPG03CFWZSReHre+zDLgne8w0xa//Ef12K1yyNBskNZli5urFdKJpKFEEI0u109ZtpD1/BvXSZvFU+rXIz+nig5S9e8uzmXtzg9lpjTj2zb09dGJm8Vn0TV22oMkq/Y2MrZ8SRjU9NPfHJ5i/OTJkiuZ7XFydEpfG4X3Ys4FXul7NNsHz47wfnJFBuXsNGebU9fG+cmUgwVvla1ZFWxIxlgncf8Do1lzYZ759MTfGf4fr4//EDF+5Zz6XGCLi+tnsqheyZjppp+9Sv4ylfMyy9/aS7buUOj014OHa/9lHs6v7IgGeCJT9KkBlv5+m9OAzM3x9vRHWIknmE8sbj/y7Fj5onuseJGe+Xvw9YibfyH1voKrXVIa71Ra/1qrfWxRq+t0Vay2Z7dLdq5yPvT/t4ohwYniaXMfX5ENttrKDvXWE5H8qHBSSIBDxuXeKZNNfT3RNAaDhemog8NTBINeBreCW9P+Nob2eUi5nU1qy1cafO7tpJ6i2LAXaOJZJvLBTt2mIO/d90Fb36z2WCvHko3Dr/qKnNZpalkEyRXvg/72tdMP/J73mPqo5xCgmSHylm6bE9cMUiWjmQhhBBNaldvlLFElvOTtZvqy+QWV21RuiaYu8FKtQ1MpMjmNVs7yk8kN3rDPTt0XU1B8s71Jhwrna48H0tjadjQGiCWzi17s5+l2n9mnF0boks6iLFcO7rCeN2KXzw2jKWhdxlPuPf0mU0NH6zDz1v1O5LN79BYoSf5vthJAE6mRnk4fqbs+wykx+n1ty2p23dyEg4cMFNP8Zj5vv7gxznOnzfTzLWSyVlYKROELTdIfu7TfVhJH1/5mdnivjRItieKFzOVPD4OY2MmSLYPtslEsliMlWy2Z3eLLqbaAky4c2YsWezHlyC5sZRS+NwuMss40/rggNlorxE97LMfDx4ajLGrtzFrKeVKBlE5TzFAzodjqKwXV7p6AbcrUwiS/cs/WGpvCFjNgLsSpcwGfPVWunH4k55k1lE5SM5UPBiWycCNN5oN9l7zmhoueBkkSHaovKVxlznl1iOb7QkhhGhy9oZ7BwdrV2+RzS+82V6prR0t+D2umldunCjsKF9pIrm3NUBXxF+3DdBmmyicEryqguRCOFY6TW73I9tPCO1NBGspb2kePjPBnk2tNf9cAD6Pix1dYe4odHsvtSMZ4LINrXhcquZBstYai+pOJEfcATzKxVg2QTKf4cDUWXaH+9jkX8ftYwfnVFxkrBwj2Ri9vrZlf86+HhNM7dtnepXtGowDByBW5WNQ6VwenTa/h8vpSAa47mozDTpyMkRHyMe60PS4084ucz+8mLMwjh83r7dtM7f3uFTF+zAhSgW8LpRaXrXFkoPkQvXAvSfMDlyrZdPYZuZ1qyUfyLUszeHBWENqLQA2rQsS9ns4NDhZXEujN9oDUCjc8Uhxwz2z0V4ERfUCbpVZ+URyLjyJyniL083NqPg8ZmCSSAR27ZonSI6l6apwH/bpT5uzfT7wATNh7SQOW46w5StWW5hvmSVBshBCiCZl98zVMrTN5vWSpkI9bheX9ESKnWe1cmLEBMlbK4QwSim2d4Y4NZqo6ToqmUhmCfs9eOowUVstG9uC+D2uskHypRvMz9p4HYLkI0NxpjL54lR5PezqjRbrSDYs47TbgNfNJT0RHqrxBo95TJDgruJTE6UUbZ4WxrJTPBQ/TU5bPDm6lRd0XE7GyvGzCwdm3H4wM4FmZj/yUm3o8KG8OYaHzP8jnTYh6y9/CV/+sulZrpZMziKXXNlE8hVXgMutyQy2smPWBPHGdUF8HhdHhxeu8D1WKGjYvt1MMG/uaKnL1L1Y/ZRStHjdy5pItrvIK4Uws9nB473HxwCIykRyw3k9LnJLDJLPjieJp3MN6yRWStHfE+HgwCRnxuy1NHajPZsnHiEfnkSjzYZ2sep+jeyJZL2SaotIDE+VA26nsTcOt2vo7A33Zp+llMrmiaVzZTuStYaPfMRsEviCF9Rj1Usjf+EdKl9psz0lE8lCCCGaW2uLl41twZrWSCxlsz2b/cShlt3NJ0YTBLwu1kcrPzHe2BYsBqH1Np7MrKppZACXS7F91sZh58ZN5689RVSPDffsOpJ6BsmlT26XU20BhQ33zozXdIjB3vvDVcWJZDA9yRdyce6PnaTP3063L0qnL8K1rTs5MHWOY4mh4m0H0uMA9PqXPzHucbvwtScYGzKTvlP5NMeS0zvs5JY+dFlRJmeRT5nfxeUGyYEA7Lg4R2awdU4VhdtlDlotZSLZrrbY2SW1FmLxgj7PMieSM/jcLqLBxQXCPdEArUFv8QwL2Wyv8bzLqLawhwwaNZFsf+5DAzEOFNdSn1Db4zFnfmzcCF1dZjO5YNBsLgfgjkXR3hzZdaPgyeOJV/drpHIesFzLnki2A+561Fo0ktuluGS92e8FTJA8NASnT8+8nX1WRVeZaou77oKjR+FP/sRUYziNHIZzqIodyYUnvTKRLIQQopn190w/AKuF9BI7ksFMSn9j3xmG42m6I7XZVOXk6BRbO0Lzdu1taAtyPpYml7fqPhk8mcyuytOBd3aHefD0WPHtgYkkrUFvse5hIln7zdEePDNOJOBhWx1P+beD8tagl7B/eQ/792xq4yu/PsXx0akZHbrVZOnCRHKVny2t87bwePI8AM9ct6t4+bVtOziUOMetFx7hzYGn43N5OJcep9UTpMW9stNtQx0pJs+1cjY1xneG7yOeT/N/Nj2L6Dwb+C1HJm/hS7rxeCC0gh+p665x8+WvtXH1trkHU3Z0h3n07MLT6MeOmXqNlrDFydEEz7usZ/kLEmtOyL/8ieSOsG/R3bRKKXb1RrjnmKm2iEiQ3HBe19KrLQ4OxFAKLlnfuCB5V2+UL91zitsPna/rWrxeePazy1+Xz8OJeIRvjsH6p5xlMg/X7IoS3g7ZrOnbzWTMmTKZzMzL7JeF5iQUClfGt+wg2QomwJ2v+UZ7TrCrN8qtjw6iteaqq8x91L33wubN07cpbhha5qyKL3zB/G1/+cvrstwlkyDZoSp1JMtEshBCiLVgV2+UOx4bJpXNE/C6q/7xs3lrycGaHcodHIjVLEg+MZpgR9f8qVBvW4C8pRmKpZfVe7sSE8ksrYuc/nKSnV1hfvDQueLP07nxJL2tAdoKoXi9JpJ3b2rDVeaMs1qxJ7ZWspv8ns1tADx4arxmQXK+GCRXfyIZTF/yRS3ri5d7lJsXdFzBlwf38qvxx3h2+6UMpCfYGFhm2XCJSEeWCwe9fOncPXgKj+VjuVTVg+R01sI/5aGtbWXTSldf5eLzn3Wxu23DnOu2dYS49ZHBwhkclb83x46ZaeSTowlylpaJZLEkLT4PU+nlbbZXbpJvPv09Ue45dgGPSxHwysnZjeb1uJYcJB8anGRLewuhZR4crQa7VuOWhwfZ1hEi6Kv+49SlcrthUyQCY3DKGgRg95YIi/0x13puuJzNTgfP9stvXH7cbRk2bZobRC901k1xo72YM6pAaqm/J8LX7j3NcCzN7t0BvF4TJL/iFdO3set5ZgfJySR8/evmtmGH/jldfc8E1gjTkTz3t96uu8hb9dldXAghhGiE/t4IeUtzZCjOEzZWf3OypW62B2bHd4BDA5M84+Kuqq8pb2lOjSZ4dn/3vLezw+OBiWRDguRtnatvE60d3SG0hmPDU1y6IcrZ8RQb24K0tdQnSE5l8xwajPG/n7Gjpp9ntu5IgM6wj40r+DnZ0RUm5HOz/8w4r3jypiqublotOpIB1nnNz+qeyOY5IXVfoJ094c3smzzO1kAnk/kkV/q2rvhztrZr0C42ZHt5Wu8mvnb+18TzqRV/3NkyeYtM0r3sWgvblVea1/v2wdatM6/b0tFCztKcG0/Ou3ne8eNmV3m7BmN2TYYQ82nxuZe92d766NIOktl/x6NB76InmUXteN0uckustjg0GGtYP7LtkkJtVCyd42kXdzZ0LaX8Li+tniATuSTtnhBe1+IDbqXA5zMv8zl53k8sn+IFl869zrJmTj7PDqYPuGPENFzSG8HqKH/bZom57LqTg4MxnnFxgCuumLvhXnHD0FkHxL73PZichDe8oS5LXRYJkh0qb2nKDaxMB8kykSyEEKJ5lW64V5MgObe0zfYA2lp89LYGarYJ4OBkikzemjewAdjQakLBs+MpnrylJkupyEwkr77Tge1g68hwnEs3RBmYSPLkLW1EAl6Uqv1me4+emyBv6br2I9v++ZW76SizkctiuV2Kyze1Fjuea8HuSK72RHJfoJ1nrtvFnsjmstf/9rp+Hk+e53vDDwAr22jP9sTeDh4CrnHtptNrniTG88vfmKicvKXJW5p0YSJ5Ja64Atrb4ROfMNNPpdna1sJBoxOjiYr3S/k8nDgBL30pxR7y7QucVSFEqRafm1hqeUHyZRuWFijajy0istGeI5iO5MUnh4lMjhOjU7xkz9wzKOop7Pewub2FUxcSDQ+1Z+v2RpnIJeny1WbqN+T2cT5TvvLI5TLd+4EKx3cOD03SngnxrKdXDrgXMxVd6SWbNS813Mpk0XYVfi7s4ZOrroKvfMUE5fa86EhhIrkjNPMx2he+AH198Mxn1nXJSyL3oA6Vs6x5J5Kl2kIIIUQz29YZwu9xcWiwNhvuZfJL70gGu7t5ek0TiSz7z4zz9CpMKJ8cmQJga0fLvLfb0GYeoQ80YMO91Rokb+0I4VJmYjKRyTGeyLKhLYjbpYgGvEwkatuR/OBp86Rr96bqHxRZyDMXmHBfjN19bXzmzuOkc3n8nuqfwluragu3cnF16/aK1wfcXp7bfhnfHb4fhWK9b+Xfny3d5kDP2Jhix04/CrPpXjVlcubrlUq42bTCPMXvhw98wGzo86UvwetfP33dT74RYfzOizj5kimg/H3c4cPmCfz27XB4KE5PNCDds2JJWnxuzk8ubWrfsjSj8UzZbtH5XLw+gkvJRntO4XUvrSP58GAMraerxhppV2+EUxcSjlhLqW5flMeT5+n21WZdIbefqXwGrfWSp/qHMzF6Fvg76/Wal+V2/1vWzDB6R31PBCtqbfGyoWT45KlPhU9+Eh54AJ78ZHObkXiaSMAzo8JvYABuvRXe8Y7pwNmJ6rY0pdRGpVRcKaWVUuGSy5VS6p1KqdNKqaRS6pdKqT31WpdT5S1dDI1LeQqXWU44zCKEEELUiNul2NEVLk64VVsmN3/nZyW7eqMcGYqTyVlorfmLrz/AGz7zG247cH7FazpWCJK3LFAdEQl4ifg9nKtzkJzO5UllrVUZJAe8bvraWzg6HOfcuAks7MnuthZvzSeSHzw9zobWAN1LPA3bKfZsaiOb1xwcqM2BHTtIdjXgVPNLWnrob+llc6B9SacBV9Lebl5fuGD+PyG3v+rVFnaQnIy7VjyRDPBHfwTXXAP/9//CWGFPyv/3/+Bdb/cycdfF3PaTyt+X97wHgkG4/nozkSy1FmKpQj7Pkjfbm0hmyVl6yUFy0Odma2doVf4da0Ze98IdyZ+58zj9N95C/4238Hv/uReYnvZsJHsSub/HWX2/9iRyrYLkFrcfjSZplX/cdDQxxOfO3UlOz/ydTls5xnOJmk1K21wuc4A0EoGODmiZfzajpvp7o3xv/zn6b7yFd9//MwB++KPpn/eReIauWfdh9tSyk2stoL4Tyf8MxIHZz47eAdwI/A1wCPgr4Dal1BO01oN1XJ+j5C1d3KCjlEwkCyGEWCu6o/5if1i1ZfMWPs/SQ6v+3ii5QnfzkeE4dxweJuRzc+P3HuHq7e0rmsQ7MhSnxeemdxFh44a2IOcmqt+7Op+JQtja2rL8moRG2tkV5uhQvBjA2/3SbUEvYzXuSN5/erwhtRbVYq99/+lx9tTg/2HVqCN5MZRSvKTriVX7eH6/maS6cMG8bYLk6t6PpXPmCXq1gmSXC/7jP8yU1A03wHXXwV/+JbzsZfCTuxJ899/Xk/xbExiXuvde+NrX4O/+Dnp7NUeHp3jFkzaufEFiTQn63EsOkit1iy7G+192Of5lnJEkqs/rVmRz8+caD5+dwOt28bqnmIqintYAfe313R+inP91zRY2rgvS197ApLKMnS3dPKf9UrYHq7+XB0DYbX7npvJpWtxzHw8eSZ5nMDPBSCZOj396+ng4YyZzaxVwO9FfPudiLiocXD05muB0zzjfvTnM399o7n+G4+kZ92Faw2c/C1dfDZdc0pAlL1pd7kGVUk8HXgD8y6zLA5gg+QNa649rrW8DXgVo4G31WJtT5SxddirDDpItCZKFEEI0uc6wn5FYbSoHsvnlTSRfWtio555jo/zTzY+ye1MrX3jzUxicTPHhnzy2ojUdHY6zvSuEq9wmCbNsaAvMmUj+xWPD/N4n95Jb4g7oizVpB8mrdJJrR3eYYyNTnBkzX7feVhPYt7X4alptcWEqw6kLiZoEsPXS2xqgO+LnwRr1JNeqI3mxlFJV3XirvX06SA67AzUIks3veCLuYt266nzMPXvgz/8cPvUpeNOb4NnPhq9+FZ71pjPEhgJ84AMzb681vP3t0NkJf/u3puM9ns7JRLJYspDfs+TN9obtIHkZ/e/XbO/giZur9IsjVsTrdpFdYHe1TN6iO+Lnhhft4oYX7eIPn7rNERsldkX8/N6VfY1exhwe5ebK6Laa/T1tcU0HyeUMZWKF1zP3ExkuXN5d44lkJ7l8U2vx5/avn38xwW3D7L/PXTzzZySenjGR/MMfwqOPwlvf2qAFL0HNH60ppdzAx4B/AkZmXX0dEAW+YV+gtZ4CbgZeWOu1OVne0sUai1JuJRPJQggh1oauiJ/RqXRNDp5mcha+ZQTJWztC+DwuPvjjQ4wlsnzg5Vfw5C3tvOGaLXx+7wnuPzW27DUdHYqzs2txIUxvW3BOkHzro4P85sQFBmo0qTyxyoPknV1hMjmL3xwfRSkz1QS1r7bYf2YcYFVPJCul2N3XVrMN92rVkdwoM4NkP1O56gbJY4kMOucim67ORLLtn/4JNm82k8nf+Y6Zrr7u6RaRy87ywQ9qDh+evu2Pfww//znceCNEo3B0yFTz7JAgWSxRi89NKmstaTP54cImVbNPCxeri28R1RbLrSITtREqTCGXC5K11sXAeDg7swprKDuJX3mIuhs/Td4IWztCRC4awbIUt91mLhuOpYsHw7SG974Xtm6F3//9xq1zserxG/lWwA98osx1/UAeeHzW5QcL161ZuQodyS6XQimW9IdWCCGEWI06w36yeV0MMKspm9d4l3Fqq8ft4pL1EdI5i7c8fTuXFnaM/5sX9NMTDXDDtx4u9pcuxVQ6x7mJ1KKn+Ta2BRlLZEmWnA5sb+hRq+7k8cTqDpJ3dJt2tTuPjNAd8RefmLYFvcX/Wy3sPz2OS8HlG+u/0V417elr49jIFBM1+FpNB8mNnzKrBjtI1rqwMZGVxtLVO1NgaDKNlTK/h9UMkiMReOQRuPtu828wm3+2PvMAgQC87nXwkY/AD35gppG3b5+enDoyZEKDxR4ME8LW4jPd5Mns4ustRuLmLJKldiQLZ/Esotoim7ekisRBQu7KE8kTuSQZbc4umD2RPJSJ0eWLOmKavBE8bheXPzGHryXHj38MqWyeWCpXvA+77Tb49a9NvZR3FTzMrulvpFKqA3gP8Fda63KPOtcBca317L8aY0CLUqrsuSpKqbcopfYppfYNDw9Xd9EOYVXoSAbzIFuCZCGEWFuUUjuVUv+plHpIKZVXSt1R5jaL2sBWKXWpUupnSqmEUuqcUuqfCmcQOYp9lL7aPclaazLLrLYAuHZHBxd1h/mLZ19UvCzs9/CelzyBw+djfPpXx5b8MY8NF6b5FjuRXJimPTdhQmPL0hweNEGOTCSXt7PLJGMj8UyxHxlM5/NkKluzx1YHBybZ1hki5K/n1iTVt3tTGwAPnR2v+scubrbXgI7kWmhvh3QaEglTbQEwla9efcpQLI2VNj9P1QySAcJhcJf8NdjaGcIdyvCX745x/Dj81V+ZjfUefhje9z7wFZ6tHR2eIhLw0LWMzlqxtrX4zM9yIr34eouReBqPS63av0fCWMxmezKR7CwBlxcXikSZv2l2eNzljTCUiaELtVX2pPJaqrUo57KNUULbRvnxj0sOhhX+Zr73vbBxI7zxjY1c4eLV+jfyfcA9WusfVfODaq0/pbW+Umt9ZVdXbUrEG61SRzKYnmQJkoUQYs25DHgRcBioVMZrb2D7QeB6zCa3tymleuwbKKXWAbdh9iN4CaZ66v8C/1izlS+TfcrqcJWDZLseylfhgO1CbnhhP7f8xdMIeGdm78+5dD0vuryHj/7scY6PTC3pYx4ZLkzzLXIi2Q5CB8ZNaHzqQqK4WdHZGk0kr/YgubXFW5z82NA6HSS3Bb1oDbFUbaaSz42n2LTOWZvxLMflm8xEdWm9xTe/aaZT774bDh+G4WHIL23PLADyNF+1BZip5PA801vLNRRLFSeSq9WRXMnWDjPJv/PaMUZHzfd4715TbfHqV0/f7shQnJ3d4TU7bSaWz55InlrChnsjsTSdYf+i9hQQzuVbTEdyzsInE8mOoZQqnmkz21ChzuLS0AaSVqb4d8+eVF5LG+2V098bxbV5kHPnYO+95jFnZ9jPL38Jv/yl2W/Av0qOxdZsNEIpdRnwJuDpSqm2wsX2o+hWpVQeM3kcVkq5Z00lrwMSWuva7XzicJU6kgE8EiQLIcRadLPW+nsASqn/ATpLr5y9gW3hsr3ACcwGtu8q3PStQBB4udZ6EvipUioKvFsp9aHCZY5gT7bZR+2rxa6eWO4TE6VUxbOG3n39Zfzq8RHe+e2H+cofX73oUOXo0BRul2JLIbRZiB2E2jUWhwanv20DE7UNkqOB1TtZu6MrxEg8zYa2QPGythYTyI0nsrS1LH3jpoUMTCR5wiqvtQBzAGFHV2jGhnvpNAwOmhebywWtrdDRYV7a283rQGDux7Q1Y0cymCC5q9vcj8XzKaA6PwdDsTQtmPuAak8kz9Yd8RPwujg5OoVSZnO9zs65tzsyHOcZFzfngI+oreJE8hI23BuJp+mMVP/+WtSX1+1aVLVFeBU/7mhGLW5f2YOjw5lJ1nlCbAyYI5xD2RhhT4ChrHmMutYnknf1RAhsOwrAT3+iwAMdIR9v/wvo7oY//uMGL3AJavlo7SLAC+zFBMZjTPckn8FswHcIcAM7Z71vf+G6NStvadyu8t8el0vJZntCCLHGaL1gweZiN7B9IXDrrMD4a5hw+RnVWW112NOjI7HqTiTbp1HW4lTJ7miAG164i73HRvnmfWcW/X5HhuJsaW9ZdLi9vtWPUtPVFgcHYrgUbO8McW68dtUWYb8Hzyo+xdSe+O4tnUi2g+QadHGnsnlTpdE6T4q6ijxhYysHB2Lz3sayYGwMjhwxfX+33AJf+hJ85Stw661w771w7BhMTJgOYYB84R/N1JEM5usQKlRbxKs5kTyZJqzqEyS7XIot7SFOjCYq3mYimWU4ll70GRVClLInkhNLmUiOZ6QfuQl4PWrBaou0VFs4TtjtLxskDxXqK7q8JjAeLlRdDBU24Ov0ru0gub83iieSZtOONHfd4SVzPspbXxPlttvMvgPBVbQPYS0P7dwJPHPWZS8A3o45NfcYcBKYBF4FvBdAKdWCOR33UzVcm+OZILn8dR6XwtISJAshhJhhvg1sXz3rdreX3kBrfUoplShcd3MtF7kUrUEvHpeqerVFpoZBMsBrrurjuw+c5X0/PMgzL+leVGfokeE4O5YQwvg9brrC/uJE8sGBSbZ2htjeGeLMWO0mkldrrYXN7qCe0ZEcNFNt44nqnwhn91WXfr7VrL8nyvcePMdEIktry9J+FhIJ83L69PRlHo8JXTN9FqyDsVEXLe2rY6OZ+YTD5v82OjpdbVHNIHk4liJgdQC1r7YA2NLRwonRynU9R4fjgGy0J5Yn5F9OkJzmkp61HUo1A4/LVXxMVkk2L9UWTtPi9hfDYVvGyjGWm+Ky8EaCbh8Rd6B4GzOp3ILPtbYny9tDPtZH/VhPGOe+m7vR9/8W2Q749KfhTW9q9OqWpma/kVrrEa31HaUvTE8Z/0prfVhrnQJuAt6plPpTpdSzgW8W1vWxWq1tNchZFp4KE8lumUgWQqxyiQS85z1w8mSjV9JUFruB7TpgvMz7jxWum6GRG9y6XIqOsK8GE8l2R3JtHga5XIr3v/xy4uncojbey+YtTo5OLXmar7ctWAwqDw3G2NUbZUNbsBguV9tkEwTJV21tx+dxcWnvdE+fPZE8UYOJ5IHC96JZguRdvSa4Ka1SWYlcDoaGYGDIBAk/+bGLL3wB/ud/4Pbb4cEHTfA8tbTK8YZzuUzAOzZm6jqCLi9T+eqdKTAUS+PNm0nn1jq0pmztDHFyNIFV4fnH0SETJC/lYJgQtqB3aZvtaa1NtYVMJK96Ps8iNtvLWzV7vCaWJ1SYSNYlw40jhX7k7sLUcbcvUtx8z0wqr+1+ZFt/TxTfzrN4/RYdV53isccUf/RH5nHDauKEQwI3YYLjG4AOYB/wXK31+YauqsHMRPI8m+3lJUgWQqxe73oXfOQj8PnPw69+Bb29jV6RqERr/SkKZwldeeWVdf/j0xXxM1LtieQVdiQvxs7uMM+/bD1fv/c0f/mciwn63BVve+pCgmxeF6dlF2tjW4BDgzFiqSynLiT4vSs34XG7mEzliKdzhP3VfZjXDBPJl29q5fB7XjCju7otON2RXG1ni0Fyc1Rb7CoE8AcHJrl6e0fVPq5WhSDBcqE1jI+bl2Mlx2GCwem+Zft1a6tzn3y1t5uOZICwO0A8V537McvSDMfSbMz5CATm756uli0dLaRzFudjqRm1MLYjw3F8bhd965rjgImor6VOJE8ks2Tzms6wdCSvdl63IrdArpHJSZDsNCGXHwtNysoSdJvfQ3v62A6Mu3xRjidHSOWzxUllAf29EfYePcEf/ueDHD4fY926LY1e0rLU9TdSa/05rbXSWsdLLtNa6/dprTdprYNa66dprR+o57qcKK8rb7bnVqrYJSeEEKvNPffA//t/8KIXmQ2anvtcc/qvWLHiBrazLp+9ge0Y5Xd8Wle4zlE6w/6qb7ZXy47kUm+8disTySzf33923tsdKUzzLXkiuTXIwHiKw4Pmwfuu3ii9hS7egRpMJTdDkAzM2QCxtYZBsj0x3tMkHcndET/rWrwcGpy/J3nJXOZxrdKVO5KTSTh7Fh56CO64A771LXMw8rvfNQckDxwwf1MyDtmquzRIDrn9Vau2GEtkzJmJaW/N+5FtWwubgB4fKT8afnRoim2doVXdny4aZ6mb7dkHlxdTGyWczet2kbN0xbMdwJxFJtUWzhIqhMelPclDmUl8ykOrxxxQ7PZGsdAcSgwU3pYqGoBdPVEyeYt7T1xY1QfDnDCRLMrI5zWuSkGyW5GXagshxCqUTpsOqE2b4KtfhX37TKD8ghfAz34GUTnraSVKN7A9XHL57A1sDxUuK1JK9QEtOHCj286wvxiUVos9kex113Zjr6dsa6e/J8Ln7j7J713ZNyfAtNn9oju6Qkv6+BvagiSzee45Zo7E9PdGiwHy2fEkF62v7oP28URzBMmzedwuIn4P48nqJ5DnxpN0hv34PZUn0lcTpRS7eqMcHKhOtYVNe3JgKbCWFhbk8zAyYl6m12g6ijs6Zk4vh+vcutDebjYUzGZNT/KFbHzhd1qEoULVj5X21qUfGcxEMsDJ0QTX7Zh7/dHheLH2RJSnlPIAfw28GdgMDAPf1Fr/ZUMX5gBL3WxvOGbuq6XaYvWzD+hnLQu/q/zfyYxstlfkcsHGjeZvn/2Sy839d61nDlsK3f9T+TSdmPv+oUyMLl+k+Fi322cufzR+tvC2PMmD6TO7RqcyPGVbe4NXs3wSJDtUzqo8kexxuSRIFkKsSu99Lxw8CD/6kQmNn/Us04X54hfDRz8KN97Y6BWuanezuA1sbwH+RikV0VrbCe2rgSTwi/otd3HMRLLpYasUxC5VcSK5xhMuSineeN1Wbvj2w+w7OcZVW8s/YDwyFGd91E8ksLSQdkNhyvVnh4aIBjzFt2F6EraaJpJL32BttWht8TJRg4nkcxMpNjZJrYWtvyfKV35zsvBYtDq/k9qTRWW9qCp8PK0hFjMvJ05MX+73z63GWLeudtUY7YVf9/HxQrVFsU9yZf9HO0jOTHnqNpG8oTWIz+Mqbrg3lc7x40cGSecsNJpTFxJcf4V0VC3gc8CzgH/EHLTtAy5t5IKcIug1AeLUIoNkeyJZguTVzz6gn81rKrVxZWSzvSKPB66/fuHbWdbMsHl24LzSt/WkH86DCmZobYVsVjOSneSyyAZcLvP5270h3Lg4nb4wY1J5rdveFcLrVoV6ntV7HyZBskPN15HsUkiQLIRYdR5+GG66CV7/enjhC6cv/93fNUfXjxxp3NpWg0Io/KLCmxuBqFLqlYW3f6S1TiilbgJuVEqNYZ6o/hVzN7D9JPDnwLeVUh8EtgPvBv5Va13dMcMq6Az7yOY1E8ksbS3VOQXMnkj212HC5SV7NvCBHx3k83efqBgkHx2KL7nWAqY3cHvw9DhXbW1HKcX6iB+Xouob7qWyedI5qyknksFsuDdeg832zo0n2bnE7mun29UbIZU1G0RCdf5vljeLK1fbn610GgYGzIvN7Ya2trkBs78Kz+3sIPnCBQj1mj7JWCYLrOx+bGjSHCRKTbnYWKfs1uVSbG5v4eRIguMjU/zJF/fx2PmZE9Z7NrfVZzGrkFLqBZgDtru11gcavR6ncbkUQa970ZvtSbVF8yhOJOcsKPPt1FoXOpJrewZZs3G5zIu3Rn9WL0z5+eBDsPMJaV77W3B2PMXfH8jx0mdGef015oBuPu/iB58Ic2Bgkks3RnjNa9SSA+uFblvpNtb8+zc2lNftYmd3hIMDkxIki+qbryNZJpKFEKvRO94BkYjZZG+2vj44fbr+a1pluoFvzrrMfnsbcIJFbGCrtR5TSj0b+DhwMzAOfAQTJjuO/URxJJ6uWpCcLWzsUuuJZDDdj6++qo/P3nWC85Mp1kdnTqdqrTk6PMXLn7T0TUjsIFlr2NVjTiH0uF2sjwY4N17dieTJQsgabdIgeV2Lj/FEdasttNYMjCd5+kVdVf24jTa94V6MagXJ9kRyveXzpqN/dBQef3z68nB4OlS2A+ZIxNRmLFZpkNy2ydyPjadSrDhILkwkT8VcrKvjPOvWjhbuPXGBF3/sTjxuxWf+4Eou22Dq9r1uF+2h1dv1WAdvAm6XELmykN9NIrv4iWS3SxU3ShWrV2m1RTn24zWZSHaWtqAXj0sVD+ocPGfmUC4tVBwpZaanL90Q5cDAJJdtjNStislmB8y1CtNXYlePCZJX88EwCZIdar6OZJdLmU02hBBilbjzTlNncdNN5kn5bH19cP/99V/XaqK1PsEC50Rrc970+wov893uAOYUW8frKhytH45l2NldnY9Zr832bP/rmi38153Hef+PDvLPr9w94wnR+ck08XRuWRPJHSEfPreLTN4qhntgAuZqTyRPFILkZp1Ibg16OVvlr9lkMsdUJs+GJqu22Nkdxu1SHBqcBKozEqu9WVTGOUFkPG5eTp2avsznM+Gw/WIHzO4K9df2k+YLF2CT2/wMjKVWvuHecCxNxO9hYFzVrdoCYEtHiNsODnH5xlb+4389iU3rWur3yVe/q4HvK6U+DrwB8xz8x8DbtNbnGroyhwj65k4k//rYKIOTcw+KPnBqnI6Qr+JzZbF6+OwgOV8+27Afr0mQ7Cwul6Ij7OOBU+N878Gz3H5oCICLZ+3N0V8Ycih9jFovHo95caJdvVF44Kxstieqb/6OZEXeyfP6QghRQmu44Qbo7YU/+7Pyt+nrg+9/39y2SjW4okl0lkwkV0smX5/N9mxbOkL82bMu4t9+9jinLyT4j//15OJk8pEhc3r4cuoPXC5Fb1uAk6MJ+ksepPe2Bnjk7ER1Fl/Q7EFyWw06ku1g2p4cbxYBr5vtnaGqbrhnebJ4p5a22WS9ZTIwOGhebErNrMaww+Vg0ExBRaMmSA677Ynkld+PDcVSdEb8HBynrkHyG67dwvqonzdcu5WAtzk2j6yjHuAPgP3Aa4AI8CHgO0qpawoHgYuUUm8B3gKwefPm+q60QUI+z4zN9mKpLK/99D1Ump26ehVvUiWmeeyO5Fz5bGN6c2QJkp1me2eYvcdG2VvY8PmS9ZE5e31ctbUdt0vx5C11Hkd2uKu2ma/LjmUMkTiFBMkOldcad4XdP1wuRYWDdkII4Ti33GImkv/936GlwgBTXx+kUjAyAl3NdRa4WKHO4kRyFYNkuyO5jhMuf/Xci7lkfYS/+Z/9/O7H7uRtz9xJwOvi18cvACz7wWRva4BTFxJcUjIFsrEtyE8OnK/qBoV2kNyspxK3BX2MJ7NV/ZoNTJggube1uSaSwUzT3HdyjDInmCyL9mZRNe5IrgWtYWzMvBw9On15S4sJlX0+OHsWcnFzPzaWWnnlzNBkmnZfkHy+vkHylo4Qb3n6jvp9wuaiCi8v0VqPAiilBjAb3D4L+FnpjbXWn6KwSe6VV165Jp71BX3uGUHy+ck0loZ3/c4untU/93Sk3tbmOkC3VhWrLfKVqi1kItmpPvMHVxUf5wB0R+c+1tnd18aDf//cJW8m3ez29LXx0D88j1ClHSZXgdW78iZnNtsrf51MJAshVgvLgne+E7Zvhze/ufLt+vrM69OnJUgWM83uYauGeldb2H7nil4uWh/mrV+8j3/4/qPFyze0BuheZk/a5RtbyeQsgr7pCcHe1gCZnMXoVKZqG3mshYnkvKWJpXNEq/SEx64X2dhkE8kA/b0Rvr//HG2uLLCyr5dGN6wjuVYSCfOSy5kJ5u99y4P6bQ8Hj1djIjnNjhbzh7KeQbJYkTHgmB0iF9wJZIBLmRUkr0VmInm62sL+m9/fE2V7k21YKqZ5F6i2SMtEsmMFfe5F/W5KiFzeag6RQYJkR9JaF4Lk8neYbpeSzfaEEKvCN74B+/fDl75kJrMqKQ2Sn/Sk+qxNrA52D1szBMlg+uNu/cunz5iwbmvxLnsK9oYX7sKaeVZ0sUrh3HhSguRFsv9fE4ls9YLkiRRet1rVu3JXYvcdpgIxYGWnmGtPDhS4VuFE8kL8fpiYMJPLrrSfcf/K7se01gzFUlyCqQGx/3YKxzsIlDs1QQEyHQS0+Nwz/s7b/+6MrN4OUbEwn6dQbVFhItmuIqvnGWRCiIXJb6QD2SFxpY5kt5IgWQjhfIkEvP3tsHs3vPa189+2NEgWYrbOsJ+ReKZqHy9TmHxp1ISL1+1iQ1uw+NLiW/5xfZdL4Zn1/5gOkld+Gr1tvNAfHG3SILmtxYQV41XsST43nqSnNdCUG0Lt6jFBctK/8p5k7TVf82aaSLb5fCZEzuVAZfwk9cp+J2PpHKmsRW7cBMk7d1ZjlaIOfgBcrpTqLLns6Zhx/v2NWZKztMyqthgpHGztasIDcWLaoqstZCJZCEeR30gHyhcmi9yVNttzS5AshBM8cGqMu4+MNHoZjvUv/2J2vP/oR6HCCRZF3d1mYyIJkkU5Jkiufkdys3bulU4kV8tEMkvE76n42GS1a2sxIeZ4snoHLAbGU2xo0h7P9VE/61q8pAJVCJI9hSC5CSeSg4VvfyIBrnSAhF7Z/djQpHn/qeEAbjds2bLSFYo6+RQwCtyslLpeKfU64IvAbVrrOxu7NGdo8c+utsjgdinWtchEcjPzFJ4gZCpNJEu1hRCOJL+RDmSHxJWerLlkIlkIR/jIbY/z/lsONnoZjnTqFNx0E7zqVfCMZyx8e5cLNm2SIFmU1xXxV3WzvWafcFnX4sXvcc3YBGWlJpPZpp1GhulNBKs5kXx2PFkM9ZuNUor+nigpf2zFH8sqTCS7mnAi2d5g1gTJfpI6jdbLfww/FDMTzWMDfrZuNQdghfNprScxm+qNAV8DPoHpRf69Rq7LSVq8bqbS0xPJw7E07SFfU57RIaZNV1uUv1+UzfaEcCbpSHag3ALVFh6XKt5GCNE4k8nsjNPwxLS3v92czvvP/7z49+nrkyBZlNcZ9jMaz6C1XnaXcKlsccKlOZ+gKqXY2BasarXFRDLbtP3IAK3FieTqBMl5S3N+MsWGtnK1qM3h4vVhfv34WVpW+HGKE8lNGCS73aYnOZGA1oyfHHni6dyyNx+yD6idP+thx45qrlTUmtb6CPCiRq/DqVr8HpLZPJalcRU22G3Gfnkxkz1pnKswkSyb7QnhTPIb6UD5/AITybLZnhCOEEtlSUmQPMevfgVf+xr87d8u7bRbCZJFJZ1hH5m8xWQyt/CNFyGbt1Cq8t/ZZtDbFuBcFSeSmz5ILm62V51qi+FYmpyl6W3SaguA7mgAy51Dq5X9HSx2JDdhtQWYqWR7IhlgaAVnVwxNptEaTh53ST+yaCotPjcAyay5PzFBstRaNLuFOpKbvYpMiNVKfiMdyO5Inm8iWYJkIRovns6Ryslm27N96EOwYYOZSl6Kvj44exbyks2LWboiJoAZrlJPcjpv4XW7qjLd7FQbWoNV70hu5iDZ73HT4nMzVqVqi7OFr/3GJq22AGgPmZDH8q0sfLc8zVttASZIzmTAipmfBbvneDmGYim8WT+TE0qCZNFUQoUg2T7TbySekY321gA7SM5UrLYwl/slSBbCUeQ30oHskLhSJ5TbpYphsxCicWKpHKmspJ6z7d8Pz3rWdDfkYvX1mZ3tz5+vzbrE6mWf3lqtDfcmkzmiyzy1fLXobQsyFEtXnPJZqolktrghXbPqjvhXNC1ayu6n7m3iaouOQpCsVxgka28WLAWWuxrLcpxQyLxOXTBB8koOiA3F0oQzbQASJIum0uIzjZuJTA6tNcPxNJ0RCZKbnV0xlq0wmCOb7QnhTPIb6UALdSS7ZSJZiIbLW5pEJk8ym1/RxjnNZnLS1FNceunS37evz7yWegsxW3EiuUoh32g8XQzBmtXGtgBaw+BEdXqSm30iGaC3ilPc9sdp1s32ADoKB3gs7wqDZE8WlfWiaM4zBOyDqqkJc58zssJqC+9UFJAgWTSXlpKJ5Fg6RyZnyUTyGlDsSLbKB8my2Z4QziS/kQ5kWXZHcvlvjwTJQjRePGW6WrWGTJUm/prBwYPm9WWXLf19JUgWlVR7IvnCVIaOJu9etLt5B6oQJKeyedI5i2iTB8kb2oIMVC1IThH2e5p68r2jWG2xst9Ly5vB1aT9yFCy4V7MjUKt6H5sKJaCyTBKwbZtVVykEA3W4p+eSLYPtnRGmvvvtFi42iLT5JsjC7FaSZDsQLlikFz+ereSIFmIRoulp3s0U1kJkm0HDpjXMpEsqqkt6MXtWlkAU2p0KlOcpmxW3VF7Y6+VB8mTSXN/1+wTyRvaAgxOpiruHr8U58aTbGjiWgugeDBmpR3J9kRyM2tpgWRCEVS+FZ1ZMRRLk7kQpK8PAs394yXWmNKJ5JG4uU/pbPK/0wJ89mZ7Faot0jKRLIQj1fQ3Uin1SqXU3UqpUaVUSil1WCn1LqWUr+Q2Sin1TqXUaaVUUin1S6XUnlquy+nyhVM7Kk0ke9yqGDYLIRojVphIBkhLT3LRgQNm8mo5k1Lt7RAMSpAs5nK5FB0hHyOxlQVWtpE1UG3RHTEp00o29rKNr5kgOYilqUpP8sBEqjgV3qzCfg/KcqFXPJGcRTXxRDJMb7jnSYSXfUAslc0TS+WIDQWk1kI0HTtInkrni78jEiQ3P4/dkVzhAK4dMPvdzdmhL8RqVetDOx3A7cAfAS8EPgP8HfCvJbd5B3Aj8EHgeiAO3KaU6qnx2hxrMR3JlgTJQjRUPD0dJCclSC46cAD6+82pvEullJlKliBZlNMV8VdlIjmTs4ilck0fJK9r8eJ1q6qEonbfb29rc49A2v+/avQkD8fSrI82dwiilMKT91VlItnV5BPJ9oZ7ucF1xWnLpbIPCo0O+CRIFk2ndLM9e2pfguTmZ1dbVAqS7fpAr0eqLYRwEk8tP7jW+j9nXfRzpVQU+FOl1J8BfkyQ/AGt9ccBlFJ7gRPA24B31XJ9TpUvVltUCJKVTCQL0WixlFRblPPoo3Dddct/fwmSRSWdYT/DVQiSL0yZEKfZqy2UUnSF/VWptjg5mgBgS0doxR/LyTYWNsY7t8Jeaa01o1Pppv8ZA/DkfORWutneGplIBkifjzISP7OsjzEcT2GlPUyOuSVIFk0nNKPaIo1LQXuTH/AV093H2QU6kn2VOj+FEA3RiN/IUcD+q3AdEAW+YV+ptZ4CbsZMMK9JxSBZVZpIdslEshANVlptkZKJZADicTh5cnn9yDYJkkUlnWE/o8uc5CtlTzWvhSeoXdHAivpYbcdHpgj53HQ2+waFdpC8wonkyVSObF43/dQ7gDvvX1G1hUajPbmm70gubrg3aKottF764/jzk2myYyaRliBZNJtgMUjOMRJP0x7yVRyqEs1DKYXXrSpXW+QtlPr/2bvveLmqcv/jnzXt9H7SeyUhBQKBEESkNwGxoCAWbKhXRcVyr1752RV7Q0X0KhcRsVwbRRCkQwIEQhKSQHpIT06v09fvjz1zetunzT5nvu/Xa78OZ8+eOSsPM7Nmnv3sZ/VeYCcimTEqiWRjjN8Yk2+MOQO4Hvi5dT5BLQISwPYud9maui0rtS2218vqpH4fqkgWybCOiWS1tnC8/LLzc8mSwT/GzJlw6BDEYv0fK9mlvCDYVk08FOnHGO9JUYCJRTnD0iN5b3UzsyoKML2c4B4vCnMCFOcGODTERHJ71fv4f44F4kNrbWEDcTDgG+cVyeBUJdcfyiOWsNS3up/kDteHidc6VwUokSzjTXtriwTHGqNqa5FFgn5f760t4klCft+4//whMtaMVkVyc2p7AngM+ExqfxnQZK3tmoWpBfI7LsrXkTHmOmPMOmPMumPHjo3UmDMm0W+PZB+JQVQyiMjw6dgjWRXJji1bnJ9DrUi2Fg4eHJ4xyfhRXpBDayxBa3Ror7fqZiexmg1tByYWDV9ri9mV+cMwIu+bWprHgbqhxaw6VfVeUTD+n2ND7ZFsg05CdbxXJIOTSG5tCJBoCQ2q3/uRhjC2wUkkz5073KMTySy/z5Ab9LW1tphQNP7fP8UR8JneW1skkoQCamsh4jWj9ao8HXgt8CngDcDNQ3kwa+2t1tqV1tqVEyZMGI7xeUq/PZJ97ceISGaoR3J3W7ZAMAjz5g3+MWbMcH6qvYV0VV7gJJpqWoZWlZxuj5ENrS0mFuVS2xJr6zE4GPFEkn21LeO+P3La1NK8Ibe2qMqi51ggngP+BNYX7//gHthAKpGcBRXJ6QX3oodKONbo/n3scEMYf1MRU6a0P5bIeJIfCrS1tlBFcvYIBfqvSBYRbxmVV6W19gVr7ZPW2u/jtLb4sDFmHk7lcaExxt/lLmVAi7V26NewjkED6ZGcSNpB9VcTkeHRpB7J3WzeDMcdB4EhLOOqRLL0pizfScrVDrG9RXVzlKDfUJw7ousNe8LEYueL+FAWKTxUHyaWsMyuyI6K5CkluRyqH1oiOV31ng2JkMoi53U52KrkZGqhPl9s/CfdCwrA57OE95UPqiL5cH2YZF2B2lrIuJUf8tMSSaQSyeP/PUEc/ba2UEWyiOdk4lX5QurnHOBlwA90/Ui0KHVbVkr3Pw700iM53fJCRckimdMYjre9FpVIdmzZMrS2FqBEsvQu3W+2eqiJ5KYIFQU5WdFvb2Lq0uCjDYNv1bCnuhmA2VlUkVzbEhtSC5WaLKpIPmWZ82+84PIoF18Mp57qXJVSWgoDeYm1VSRnQWsLnw+mTLOE91UMurVFa3WeEskybuWH/BxrihCOJbPiRJw4nERyz4mNWCJJUBXJIp6TiXKc16R+7gYOAA3AlcDXAIwx+cBlwK0ZGJsnJNtaW/T8pplueRFPJvH7uhZzi8hoaIzEqSzM4XBDWIlkoKUFdu+Gd797aI9TVAQlJUokS3fDVpHcFM2KBB84rS0AjjYOviJ5T3ULALMrsyWR7MTsYH0r8yYUDuoxqpujFOUGsqKKqiDgJHsSgQjTpsG0ae23xeNQUwPV1c7PqiqorXX2pyWD2dPaAmDOLMOBp0s4cOyoq/tZazlYFaO5NqREsoxb+aEAe1NzjhLJ2SPoN0R7q0hWj2QRTxrRRLIx5n7gIWAzkMBJIn8K+IO1dmfqmJuAG40xtThVyDfgVEr/ZCTH5mXxfltbpCqS1ZZVJGMawzEqi0IcbgjTqh7JvPKKs0jeUCuSAWbOhD17hv44Mr6kk781w9DaoiJLLplNt7YYSiJ5b1UzuUFfW3XzeDe1JA+Ag3WDTyRnU3/PwoDzWmpJdH9dBgIwcaKzpVkL9fVOcrm6GrYQoxnwZUFFMsCcOYYnnzRsfD4AVwz8fg2tcZqqnJMcSiTLeJUf8rPpgNNaqDJL5hxJVST3spZDNG7VI1nEg0a6Ivk54FpgNhAHdgGfA27pcMxNOInjzwEVwDrgfGvtkREem2clUhniXhfbM+0VyU5nEBEZbU2pimRQawtw2lrA8CSSly6FJ58c+uPI+FKcG8TvM8OQSI5kTb/fioIQxsCxIbW2aGF2RUFWtAIBp7UFwKG6wcespjlKRZZUvbclkpMDe10a47S9KC11WmA018Q41uDj6rf6qK1tTzBXV0Njo5N4Hk9mzADjs7zyYp6r+x1qaCVe41wVoESyjFf5oUDbWkHqkZw9gn5fWyFdV9FEkqAqkkU8Z0QTydbaG4Eb+znGAl9PbUL/PZJVkSySeY3hOPMmFBIK+AjHlUjessWpPhuOL7grVsDvf+8kEioqhv54Mj74fIay/CA1LUNvbVGRJdWiAb+PioKcoVUkVzczd0J2tLUAmFScizFwoG7wC+5VN0WZlSUnK0L+AEHjpzkxuOdYOBkj1xeksNBQWNjeJx8gGnVaYqTbY1RXO60xEmN4ys3JgYpZzezf4u41dbg+TKzaqZA/7riRGJlI5hXktBdITVBFctYI+k0fi+0lyFFFsojnjP8ly8egRFuP5L4TyXFlkkUypikcpzAnQG7AR0StLdi8GRYsgNAwFJCsWOH8XL8ezjtv6I8n40dZfmhIPZJbowlaoomsaW0BzoJ7g00kJ5OWvTUtnLNoYv8HjxOhgI8JhTkcqh9CIrk5wkmzyoZxVN6W7w/12NpiIMLJGLn+nr+OhEIwebKzpSWTUFfXuXK5pgYigz9XMupmL23h+fsqaW2FvAEWJh9pCBOtLmT6jCQFBUqqyPiUH3ISycZAeX72zNPZLuj3Ee2ltUUsYckN6j1PxGuUSPagxAB7JCd6uQREREZeYzhOUW6QvJCf1ugYLo8aJlu2wPLlw/NYSiRLb8oKQlQPIZFc3exkm7Kl7QA4fZKPNg6uTcOhhjDReJJZFdlTkQxOe4uDg2xtkUxaapqjWXVZdr4vZ2iJZN/A+yP7fFBe7mwLFrTvb2zsvKhfTQ00NQ1qSCPu+JMjrLvbx5o1lnPOGVjLmMP1EeLVEzn+xOxoMSPZKT/kpCbK80MEVIWaNYJ+Hy3ReI+3ReNJinOVshLxGr0qPSjeT0VyIJ1IHm+N40TGiEg8QTSRpCg3QG7Qn/WtLRobYccOeOc7h+fxKiqcy5vXrx+ex5Pxo6IgxI6jg88OVTdFU4+TPZfMTizKYcvBhkHdd29VM0DW9JROm1qay8uHGgd137rWGEnbvjhkNsj3h2hKDC7xHk7GKPQP/fVYVORss2d3eOxw57YY1dXOQn+ZvqDv5FPj3G4s//p3knPOGdhaJ4fqwsRqClm6RIlkGb/SFcnZslipOIJ+02uP5FgiSUg9kkU8R4lkD0r00yPZl25tkVAiWaSj5mYIBoenvUJfGsPOWfOi3AC5AX/WL7a3fr2zINLJJw/fY65YoUSydFdWEKJ2CD2S0wv1ZVdri1yqmiIkkrbXE9S92VPdAsDsyiyrSC7J4+GXj2Ktdb3IYHVTquo9ixIh+f4QR6ODO1kRTsaoDBYN84gcubkwdaqzpSUS7cnljj9jsREZQo9mTQkRmtjAo48O/HW1c3cSG/OzePEIDkwkw9IVyZVF2TNHS9+tLaLxJEFVp4t4jhLJHtRfj+R0RXJSFckinbzwgtOrNz+/fVX40lIoKXF+Fhc7fdeGqimVSC7MCZAb8tOa5T2Sn3/e+TmcieSTToK773ZODhRkVw5L+lCeH6K2JUYyadtOqrpRlU7yZVNFcnEOSeu09ZhYlOvqvnurmwkFfEwudne/sW5KaR7hWJLalpjryuJ065XKbKpI9jk9kgeTeA8n3LW2GCq/HyZMcLY0a6GhoXPP5epqaGkZmTFUFuaQM6Oa9c8XE4k4C/D1Z/d2p1Lz+ONHZkwyeowx04BXgAKgyFrr0SYso08VydkpGPD1utheJK6KZBEvUiLZgwbaI7m3S0BEsl1Li7MdPNh5v8/XnlTumGAuLXUqlwaqvSI5SG7AN+4qkr/7XXjgAbj33oFVdz//vFPxNWnS8I1hxQrny/2GDXD66cP3uDK2lReESCQtDeEYpYNYiKc6KyuSnS/kRxvcJ5L3VDczqzx/UEn7sWxaqROng3Wt7hPJqfYp5Vn0HMv355AgScTGyTUDTwonrXXuM4qJ5J4Y43weKCmBuXPb97e2dl/Ur77emZuGorIwh9yZNTSum8uzz8JrX9v/fQ7vdZ5PqkgeF74DNOEkkqUDJZKzU8jvI9bLldaxRJKQKpJFPEeJZA9KJ4gDvp7fNNOJ5KQSySKuJJNQW+tsXeXm9pxgLilxEtAdNUaca2ALc5weyXVDuNTei267zans/trX4Ctf6f/4558f3mpk6LzgnhLJkpZO6tU0RweVSK5pjpIb9LV9Wc0GE1LJ42ONEdf33VvdknUL7QFMKckDnETy0mklru7bvqBj9iRCCvzOa7ElEXWVFI4knbk004nk3uTlwfTpzpYWizkJ5Y69l2trId7zOlE9qiwMkTO9BoCnnuo/kRyJJ6g7lEdRWZyyMn11G8uMMWcCFwHfwEkoSwfp1hYTirLn/VOcq617q0iOqkeyiCfp04gHpRPE/l56JKcrlVWRLDJ8wmE4fNjZOjLGaYmRTiqXlcGr1e09kvOCfg6No4rkI0ecJHJZGXzjG3D55bByZe/HNzbCK6/AVVcN7zimT3cW3VOfZOmoLJVIHmyf5KqmCBUFOa4vvx/L2iqSG90thmatZU91M2fMrxyJYXna1FInkXyo3v0CcumK5LJ8byZHR0K+L51IjlAeHPiJh3A6kewfO7EKBp2rbzpegZNMOpXKXauXw708fcryQ4QK4pRUxtiypf9/+9GGCLHqQhbMjaOvbmOXMcYP/AT4ClCX2dF4U36OKpKzkdPaopeK5LgqkkW8SJ9GPCg+wNYWCSWSRUactc4XxPr69n2bmpxE8v13Bzja6KO2JckLL3SuYvaP0YLHRx91ft51F7znPfDudzu9p3vr4fjii8O/0B44CXwtuCddVaQSyelknVvVTdGsamsB7ZVdRxvcVSQfbYwQjiWZlWUL7YHzPAv5fRysa3V93+rmCGX5QQJZ9MU33+88x1oS7l6XYY9XJA+Uz+ecfC0rg/nz2/c3N0NVVefqZWOcRbMrCkIkp4bZurX/f/vh+jCx6iIWnOWi7Fm86ENADvBT4JoMj8WTylNXGk0tza6+/NnOaW3Re0VyUBXJIp6jRLIHJZLOG2mvi+35lUgWyaT05bi+RJBExE9rNMGzz7bfbgwUFnZe8C+9eX3huIcfdiqwzzkHfvUruOQS+OIX4aabej5+JBbaS1uxAn70I+dS4uDYzjPIMBlqRXJNc5TKLEsk5wb9lOQFOeqytcXuqmYAZlfkj8SwPM3nM0wpzeXgICuSK7Ksmi4/3doimZ2J5N4UFDjbrFnt+0480flZWZhD88QWXl5bhLV9LwS8ZWcUGwmydMn4ufop2xhjKoCvAu+w1sb6uyrGGHMdcB3AzJkzR36AHrF8egl3XXcaq+aUZ3ooMoqC/p5bWySTlljCqiJZxIOUSPag9h7JPX/I8Km1hUhGRZNOVVCOL0DA+IklO3+5s9Zp+dDYCPv2db5vINBzgrm01Lkt0x55BF73OmcsF18M73sffOc78K539bxa/AsvwJQpzjbcVqyAaBS2bIETThj+xx+PjDFXAZ8FFgL1wL+B/7LWHuxwjAE+B3wYqASeA6631r446gN2KV2tVNMcG9T9q5siLJxUNJxDGhMmFuW4bm2xpy2R7PGzXyNkelkee6ubXd+vujnqeoG+sa4tkZxwd7JivCeSe5LOH1YW5XCgopGmpkns3w8zZvR+n40vOQmWU070wIcEGayvA2uttfcN5GBr7a3ArQArV67Mmi98xhhOm1uR6WHIKAv2UpEcSxXXqUeyiPfoE4kHJZO27dK3nqQX4UsOddloERmUSDJOwPjwGx9B4ydue74cqyfxuHOpa1VV99sKCnpOMBcW9l2tNFz27YPt2+HDH27fd9NN8Ic/OFXJf/pT9/uMxEJ7aR0X3FMiuX/GmMuB3+NcNvsZYArwNeBeY8zJ1rY9Uf8LuDF1zMvADcBDxpil1trD3R/ZO/JCfvKCfmqa3S8cZ62lKgsrkgEmFue4rkjeeayJnICPaal+wdlm6dQSfvPUHiLxBDmBgfcqqm6KcNzk7DpZETB+ckyA5ixtbTEYlYUh4kVOz6ytW/tOJL/ysvMBYOWJY7RnVpYzxiwB3gucaYwpTe1OX+pRYoxJWGvd99ERGScCfqdHsrW20xoW0XgqkayKZBHPUSLZg+JJ22t/ZHB6sQHEe2lKLyIjK5KMEzLO22fA5yNBkqS1bVcLDFZzs7MdONB5v9/v9F3uKckcGsac2COPOD/POad9X2UlfPKT8NWvOgnddHI3Pd6XX4YrrxzY41trOVQfblvIqj8LFkB+vvN3r712YH8jy70deMFa+9H0DmNMA/B34DhgqzEmFyeR/E1r7c2pY9YAe4CPAl8Y7UG7VV4QGlRFcnM0QTSezLpqUYBJRbk8s7vG1X12HG1i7oTCXk9qj3cnzCglmkiy9VAjJ84oHfD9qpujVBRkV2sLcKqSXbe2SGRvInlCUQ6tBc6FIlu3wgUX9H7s3p0BAnkxpkzJvjiNEwuAILCmh9v2A/8DvH9URyTiISF/+9XWQX/7Z470AnyqSBbxHiWSPSiRtL32R4b2imT1SBbJjIiNk5P64hswToVQ3CbaksvDLZFwFuup6SEPlJfXc4K5uNh9FfMjj0BFBSxb1nn/pz4FN98MX/gC3Htv+/4XX3RWqz/ppIE9/qOvHOP9t6/jqf88h8kl/S+k4vc7lciPPQa1tc5CRtKnIE47i47qUj/Tz4bTgWLgj+kDrLXNxpi7gYsZA4nksoLgoHokVzc5FbnZ1r8WYEJxDscaI92qffqy41gTJ87I3hddOnm8YV/dgBPJ8USSupZYVp6syPeHBtXawo+PoC/7Km0nFOaQyAlTVm7ZurXv1+SRV0OUTAljjBLJY9STwNld9l0E/CdwCbBr1Eck4iHBVMVxLJFs+29or0gOqiJZxHOUSPageNL22h8ZIP1emlBrC5GMiCZj5Pict89gx0RyBt5SW1ud7dChzvt9PieZ3FOSObeHHK61zkJ7Z53VftVDWkkJfPaz8LnPwdNPw+mnO/vdLrT3ak0LiaTlcEN4QIlkgKuvhuuvh5kz4UMfcqqjp04d2N/LQr8G/maMeRfwN2AyTmuLh621W1LHLAISwPYu990KvG2UxjkkZfkhqpvdJ5Krmpz7VGRja4uiXKKJJPWtMUrz+//3h2MJ9te28uaTpo/C6LxpSkkuE4py2LCvbsD3qUmd4MjG9in5vhzq4i2u7hNOxsj1Z2dytLIwB2Ng7vwkW7b0nUivO5jHgpWNozQyGW7W2irg0Y77jDGzU//5hLW2abTHJOIlbYnkuIUO02dbawtVJIt4jl6VHtRfRbK/rSJ54H1ZRWT4RJLxtkRywKQ+/Ljokzwakkmoq4M9e2Dd+gSPPgp/+xvcdpuz/e1v7YlggF274NVXO7e16OhjH4NJk+C//9tJOoNz/0mTBp7YrW91LmNuDA+8LcHHPgYbNsDll8P3v+9UKDfpK1ePrLX3AtfiLNBTD7wC+IE3dzisDGiy1ia63L0WyDfGdMuAGWOuM8asM8asO3bs2IiM3Y2KghC1g0gk16TuU5GF1aITi5wq7IH2Sd51rBlrYf7EwpEclqcZYzhheikv7q8b8H2q205WZF/Vu1ORPPDXZcImORCppdCffbECJ5EMMG12jK1bO9/23e86c96+fVBVZYk1hZg1L56BUYqIjLxgKlEc7bLgXvr3ju0uRMQblEj2oP5bW5jUcaM1IhHpKJKME2pLJLdXJHvRntYqfvjqvzgabWjbFw7D4cPOl9S0nvojd1RQAJ//PDz6KKxeDbfeCs8841QjD7SFRl1LOpHs7gvx8uXwu9/Bn//sLFL43HOu7p41jDFnA7cAP8K5jPYqoBz4qzFm0NeOW2tvtdautNaunDBhwvAMdgjKBplIzubWFm2J5IaBJZJ3HHPO1mRzIhngxBkl7DrW3HYSrD/pkxVZ29oiGcUO8Gq55xp2UxVr4jUlC0Z4ZN40IfWanDAj0mkB3mQSvvc9uPtu58TpV7/pfNhfeJyuQhxPrLW3WWuNqpFFIOhL90jukkhOVSTnqCJZxHP0qvSgeNK2VR33JL2glyqSRTIjkoyTk+pVmG5tEUt6M5FcFWskbpM8Wbetz+MefhgmT4bjjuv9mI98BH7wA6ci+IMfhFdeGXhbC2ivSG4YYFKmq9e9zvm5du2g7k5Li/MlfRz7HvAPa+1/Wmsftdb+AbgCOAt4Q+qYWqCwh8RyGdBirXWfoR1l5fkhGiNxInF3r7nqbK5ILnZayWwYYHXtzqNN+AzMrigYwVF53wmp3sib9ndtPd6zqtTJiqxsbeHPwWJpTfb//l4ba+bJum0szJ/MwoLJozA670k/RwomOe1A0lXJ69Y5J3q/9CWYOxd+/H3nrfqEZfrKJiLjU6fWFh3EEmptIeJVI/qqNMZcaYz5hzHmgDGmyRjzvDHm6h6O+4AxZrsxJpw65tyRHJfXJZLJPnskB/yqSBbJpIht75Ec8Hm7Ijl9qfG2liMcjvSeDHn8cac/cl/VxX4/fOITsGkTPPuss/jeBz4w8LG0t7YY3CW65eWwcKFTCT0Y3/42TJzoVGSPU4uAFzvusNa+ArQC81K7XsZpdzG/h/u+PMLjGxblqQRMusJ9oKqbohSE/OQGs29hr5nl+Zw6p5zvPPAK37hvK/F+PkDsONbEjPL8rIxVR8unlwLw4r7aAR3f1tqiIPuq3isCzkmHI9G+k+7WWu6v3oQfH+eXLxmNoXlSeUGIxVOKefyos85aOpF8993OXPuxjzlrErztvc3kzjnKskXZ2UtaRMa//ltbKJEs4jUj/aq8AWgCPglcDjwC3GmM+Vj6gFRi+RbgdpwV4zcD9xhjlo7w2DwrkaTP1hbpiuSul3+IyMiz1hLtoUdy3GM9ktNaElFyTIBcX5AneqlK3rcPDhxoX0SvP8bAKafAV78KM2YMfCz1rU6SxU2P5K5OO82pSB7MWqOPPw6zZvW82OA4sRc4qeMOY8xiIA/Yk9r1NNAAXNnhmHzgMuCfozLKISpPLRZX47K9RXVzJCvbWoDzmeKO963inafN4tbHd/HO/3m2z/jtPNrEvAnZ3dYCoCQvyNwJBby4b2AVyTXNUfw+Q0le9iX9pueW48OwN1zd53EvNR9gb7ias8oWURQYv2/G/THG8M03LaPWX0cwJ9mWSP7HP+CMM5wTp6EQvOGD1Ux663NMLc3eWInI+BZKFcnFuiaS04vtKZEs4jmBEX78y1Ir1aY9bIyZipNg/klq35eA/7XWfhXAGPMYsAL4L+AdIzw+T0okkwPskax+aSId3XefkyzMyXGShTk5/f93KORsAxWzCSy0JZLbWltkuCL5j390Wjdce23n/S3JCEWBXJYUTOOxulc4GKllak5Zp2PWrHF+rl49smNsa20xyIpkgFWr4PbbYe9emD174PeLRJx/54c+NOg/PRbcAvzAGHMQJyk8Cfh/OEnk+wCstWFjzE3AjcaYWpwq5BtwTiz/pKcH9ZqygsElkg/Vh9v6kmajUMDHV69YygkzSvn8XzbxnQde5ptvWt7tuETSsquqmTMXZr4fthecOL2Ux7dXYa3F9NMQvro5Qll+CF8fn+HGq5AvwJScEl5trXYa5fTAWsuTdduYmlPKiUUzR3eAHnTijFKuPX0237ytkWdeyGfPniAbNzqL7aXtqW4m4DNZ/d4lIuNbINXSs1siOV2RrNYWIp4zoonkLknktPWkVpA3xswFFgIf73CfpDHmTx33ZZt40vbZ2sKvRLJIj5JJJ2EYiUBDQ//Hp/n97cnlrsnmrvviQScJGsBbi+0lEvDiixCLQbBDMVxLIkq+P4eTi2fzbMNunqjdxtsmr+p036efhrw8Z2GfkZRuRdAwxIpkcNpbuEkkr1vntLQ488xB/+mx4MdAFPgw8CGgDngS+Jy1trnDcTfhJI4/B1QA64DzrbVHRnW0g1QxiERyImnZfKCet5w8faSGNWa85eTpPLjlME9s7+kjGuyvbSEaTzJvQnb3R047YUYpf1l/gEP1YaaW5vV5bFVTNCv7I6fNzK1gbf0uZx0BX/evGPXxVurjrZxaPLffpHy2+PSFx/HTKcdYvymHv/7ND/i4/PL225/ZVcMJM0p1abeIjFvpRHEs0Tm3oYpkEe8a6YrknqwG0tdXL0r97NqXcStQboyZYK09Nmoj84iktX1WJCuRLDK8Egmnmrelpf9j4/kxOB3WPh5kUzX4S/ywAp5/McmhSPdq554qoPtYS3PQli51qrG3b4fjj2/f3xSJw64ZRAsDnFYyl0dqX+ZgpI6pOaVtx6xZ47SqCI7w1dhD7ZEMsGyZk/Reuxbe9raB3+/xx52fr33toP+051lrLfDz1NbfcV9PbWNOuiK5tmXgieQdR5tojibaFk/LdqvnVvDA5iPsq2lhRnl+p9t2HmsCYP5EtbaA9gX3Nuyr6zeRXNMcpTwLF3NMm5VbyZr6newP1zAvf2K32/eGq1LHVYz20DyrMCfAZWcW8Zsf53Lzr8IsWpTLggXObU2ROJsO1PPh183r+0FERMawYC+tLdK/56giWcRzRjWRnFpE7wrgvald6Yvf6rocWtvh9m6JZGPMdcB1ADNnjr9L4+KJvhPJba0tBtMkVESGxAacJKiJB4jHIdrofLipbUgQPtD//Y1xksm9VT/3Vg3dX/uN445zEsEvvdQ5kXzgmclUPTqHzX+Fpctn07rgGAfKa9sSyeEwrF8PN9wwmGgMXDiWIJKqLGhoHXxFcjAIJ5/sJJLdeOwxWLIEKisH/afFI0pT/WfTC5sNxIZ9dQBKJKesnue8ENbsqu6WSN5x1Ekkq0eyY/GUIkJ+Hy/uq+PiZVP6PLa6KcKy1AJ92WhaTllbn+SeEsmvhqsp8OVQEdRzq6NLX1fIb34Muzbn8ulPW8D5nP/c7hoSScvqeUq8i8j4la447q1Hsq7IEPGeUUskG2NmA3cCf7fW3jaUx7LW3grcCrBy5cpxl01NJPtOJPtUkSySMR0TyQAknNYW+AfW2sLa9vYbbvh8/Vc7z5gBGzbAeec5+wKhJHUbp1I2NcyJx+XyzDM+Wl44jU28yilnOY/7/PNOO4zR6o8MQ6tIBqe9xU9+4sQwZwBtI+NxeOopeOc7h/RnxSMCfh8leUFXFckv7q+jKDfAnAq1awBYOKmQioIQa3dW89aVnVfM3HG0icrCEKX52VtZ21FOwM/iqcW8mDoZ0Zfqpmhb65VsFPT5mZpTxqs9LLhnrWVvuJqZueVqa9HF4sXt/33Sa1sB5+TOml3VhPw+Tp7VS9NpEZFxINhPIjmkimQRzxmVRLIxphxn4Z+9wDUdbkpXHpfQuSq5rMvtWaW/HslabE8kc7omkk3SSSRb38j2SE4mobXV2XoTi0FNDdx5p5NYbojGiNcUUnhSNYFALmedZXjo6RY2P17GcwUwf77TCgNGL5EcCvhojAy+IhmcRPJ3v+skzU89tf/jX3wRmprGfX/krFJREHLVI3nDvjpOmF6alYug9cQYw2lzK1izq7rbInI7jzWrGrmLFTNK+cNz+wjHEuQG/T0eU9McpTESZ2Jxdi+KNiu3gqfrtxNOxMj1t/dLqo0305SIMDNP1bVdzZ8PgYAlGYxxNPcA4PS2WLOzmhNnlvb6nBMRGQ8Cba0tOuc20ollJZJFvGfEX5XGmHzgHiAEXGqt7diFNN0beVGXuy0CarKxPzL03yNZFckimWMDThLUxFNfkK2BpMEOsCJ5JJWUOD/r652fNdVgAgkKy+LU1MCRI1A8v4aWQ0WsXeskWNesgXnzYGL3q5CHVXqhvelleTS0Dq0ieVVqrcBnnhnY8Y895vxUInn8KHORSA7HErx8uJET1daik9PmVXCoPsze6vaPZdZadhxtYp76I3dyzqKJtMYSPNnLAoUAD21x1qo8c8GE0RqWJ5SVOS2b0mbmVmCBfZGaTsftTVUpqz9yd8EgnH66Yc6qKh585TDgnHzdfLCe1XMVLxEZ33prbRFRawsRzxrRV6UxJgD8CefU+kXW2qMdb7fW7sJZeO/KDvfxpX7/50iOzcsG2iM5rkSyyKhrq0hOpCqSMZikD+tL9nW3UZFucVFf71Qw1x0NkrfgMEHbXhVWNjUM/gTHjiWx1kkkj3Q1MrRXJM8oy6cpEscOocf79OkwbdrA+yQ//rhT8TV16qD/pHhMWf7AE8kvHagnkbTqj9xFOkG1Zld7G4Kqpij1rTHmqyK5k9PmVlCUG+D+zYd7PeaBzYeZVprHkqnFoziyzDv/fLj2WrjwQqcP/eKJpfjxtSWO015trabQn0NZQO1levLoo/Cp/9fKSwca2F/bwrO7a0ha1B9ZRMa93lpbpCuUtdieiPeM9KvyZ8AlwFeBCmPMaR229LV/XwLeY4z5gjHmbODXOInnm0Z4bJ7Vb49ko4pkkUxJdu2RDJD0D7hH8kgrKXHaONTUQCLuo3DZfnyx9p6doUQuBYsOUV1jaGiAw4dHJ5Fcl+pnO70sj0TS0hIdWrxOO21gieRkEp54QtXI401FQWjAPZLTvW1PmF4ygiMae+ZNKGBCUQ5rdrYn/HYecxbam6+K5E5CAR/nLprIv7ceIZ7oftKwKRLniR1VXLBkUlb2/83JgTlz4LWvhXdd4+fkWWXUBqpZsADy8pxK91fDNczKrcjK+AyEMXDxsskA/GvzEdbsrCYn4GPFzNLMDkxEZIQFU4niWLxzbkOL7Yl410i/Ki9I/fwRsKbLNgXAWvt74EPAtcD9wHKcFhgvjfDYPCueTBLw9f6/Rj2SRXq2fDmsWOFUn06c6FTnDjcbiGPifgztX4ZNwj/iPZIHqqTEWdBv/34I5MbJnVWFibb37PS3FFB44qskE4b16519o1qRXO4sItQQHlqf5FWrYNcuOHq07+Neeglqa5VIHm/KCkLUNscGVNm+YX89U0tymVg8Am8IY5gxhtUd+iSDs9AeoNYWPbhwyWRqW2I8u6em222PvXKMaDzJRUsmZ2Bk3vPahRXsqm3g5NVR3v1uOOXcJpqTEU6cWkEw2P/9s9XsygKOm1TE/ZsPs2ZXNSfPKiMnoP7IIjK+BVM9kqNdF9tLJPD7TJ8FdiKSGSO62J61dvYAj/sl8MuRHMtYkrD0uSCQX4lkkR7NnAknn9x5XzQKjY1Ou4fGRmhoaN9aWpykqxvWH2vvj5xikj6sP/OtLQAKC8Hvh0QCyhfUO603OlRP+1sKyJlWS05RlKNHQxQUwLJlIz+uhtYYxsDU0jwAGsNxpgyhQPTcc52fn/kM3HZb5x6dHT3+uPNTieTxZXJxDtFEkhf31bFiZlmfx27YV6e2Fr1YPa+Cf2w4yM5jzSSSll8+sYuy/CBTlHTv5nXHTSAn4ONfm49w+rzKTrfdv/kwFQUhVs4uz9DovOW1CyfwvQe3ccMfN/CDt53Ilmqn6v2DV1Qyvczp179/Pxw44JwMTHpj+vSEC5dO5uaHt2OBG85bmOnhiIiMuGCqgK7rFT+xhG3rnywi3jKiiWQZnEQy2VZ13BNjDD6jRLLIQIRCUFHhbF0lEt2Ty+mkc1NTz19unYrkLm+dHqpINgaKi50q3OIFxzDRUKfqaV88hC8WpOS4Ko6um8qpp0JgFGaCutYYJXlBSvKcJHzjECuSTzoJvvxl+OIXnUT4pz/d83GPPw4zZsDs2UP6c+Ixbzp5Oj9/bCef+8sm7v7YGb1e9ljTHOXVmhbevmrmKI9wbDg91X/1Ow+8zOPbqijMDfDLd63s82R2tsoPBThz4QQe2HyYL152fFuLhkg8wSMvH+X1y6aoairlxBmlfPUNS/jy3Vu4/OYnKS8IMa00jxnleRgDU6Y42ymnQCwGBw86ieX9+525K5tduGQSP/73dkD9kUUkO7S1tkh0b22RrlYWEW9RItmD+ltsDyDg85EYwmJVIuJU7paWOltXySQ0N3dOMDc0wJa8ODbR+a3TJP3gkUQyOF/QCwshMKGRZCyn2+3+lgIKlhwgtHEq5503OmOqTyWSi3Kd2DW0xof8mDfe6LSu+Oxn4fjj4ZJLOt9uLTz2mLMYlNpyji/FuUG+fPlSPnTH8/zqid18+Kx5PR63YX8dACdMLx29wY0hM8vzmVqSywObj7ByVhk/u+YktQDpw4VLJvPgliNs3F/fVuX+9M5qmiJxLlw6KbOD85h3rp7N8VOL+fAdL7C+uo43nzS9x/7IwSDMmuVs4FwplE4qHzjgzMPZ5PgpxUwvy6O6KcpyvW+JSBbovbVFkpDa+4h4khLJHpS0ts+KZACfTxXJIiPJ54OiImebNq19/4GDcXJ9AS57e3uC+RHrJ5qMM2GC83s4nLlxg7O4UV4e1IWi+KKhbrf7WwpIlldzySVOEnY01LU4ieTiXKcieag9ksFJDt92G+zYAVdfDevWwYIF7bdv2+ZcNv261w35T4kHXbR0MhcumcQPH9rGJcsmM6uioNsxL75ahzGwTAvt9cgYwyfPX8i+2lY+evZ8QloZvU/nLZ6I32d4YPPhtkTyvzYfpjAn0K3dhcDJs8q55/oz+P6/tnHNqlkDuk9+Pixc6GzgVCgfOOAklg8edNpVjWfGGD5z4XEcaQjr9SgiWSHd2iLWNZEcTxJSRbKIJymR7EHxpO33stKAz0c8oUSyyGiL2hglvjzy850vvJMnw4YjPhoSSd7whtQx0c49mTu2zxhMX+bBSgYjBFu6J9f8rQVEcg/gz0kQGKUz/emK5OJURXJjeOgVyeD8P/j7350E8i23wPe+137bY485P9Ufefz68uVLOf/7j/H5v27ijvet6lbxuGF/HQsnFlGYo487vbly5YxMD2HMKM0PsWpOOf986TBnLpwAwINbjnDWcRPIDapqqicTi3K56c3LB33/sjJnW7rUuVLo2LH2iuUjR8Znf+U3nDit/4NERMYJX2pBva65jWg8qRNqIh6lb1YelEgOoCLZOJXLIjK6wok4OV2SUgHjJ55sb20RCsGECc7WVSLRvV1GeuutL/NgJUNRTC8VyQCRQDNQPHx/sA8NrTGml+VRNIwVyWkzZsDZZ8M993ROJD/+OEya1F7ZJuPP5JJcPnvxIm7820v83wsHeMvJ09tuO1wf5tndNVx+wtQMjlDGm0uWTeELf3uJq25d27bv9cumZHBE2cPnc97TJ01yFtaNxzv3V66pyfQIRURkMIJ+060iOZZQIlnEq5RI9qAB9Uj2+4iPxzIMEQ9L2CTNyQiF/s49RIM+P3E7sB7Jfn97hVVXyaSTTO6YYO7433EXRbzWl4BAotfWFgCtwdFLJNe1xijND5Ib9BH0m2GrSE679FL46EeddhYLF7b3Rz7zTPVHHu+uOXUmf1t/gK/fu4Wzj5tARaHTF/yL/3iJRNLyodf13D9ZZDCuOmUGx00uavvCmxPwc9LM0swOKksFAjBzprMBtLa291bev9+ZT0VExPuCfl/3HsnxZK+LKYtIZimR7EED6ZHs9xkSyiOLjKrmRASAokDnRHLA+IjZob8gfT4oLna2aT1c2drS0ns1cyTS+dhkyNnh62GxPV8qkRwOjs4qRtbattYWxhiKcoM0tA5fRTLA61/vJJLvvddJJO/Z4yQS1B95/PP5DDe9aRmX/PgJvnbvVn7wthO5/6XDPLD5CJ+96DhmV3Zv7yIyWAG/j1Nml2d6GNKDvDynzVG6V359fXu18sGD3edJERHxhpDf171HsiqSRTxLiWQPiif7r0j2G0NCFckio6oplUgu9HdOzgbMwCuSh6JjX+auIpHOCeYD4Si1QJ4Jgencl9mXCGAiOURGKZHcFImTSFpK8py2FkW5gWGvSJ492+mhec898MlPqj9ytlkwqYgPnzWfH/97O+cfP4kv372ZxVOK+cBr52Z6aCKSISUlzrZkiTMHpvsrHzgAhw87raZERCTzgn4fsXj3HsmqSBbxJiWSPSgxkESyKpJFRl1TPAzQvbWF8ROzCay13Rb7Gi05OZ37Mhe2RNh0FC4+J4eJ/u7tMp5PFBDLHZ1Ecn2q+rg0z2mzUZwbpHEYeySnXXopfPe7ThXa449DebmTQJDs8B9nzeOejQf5yJ0vAHDrO1fqC4iIAE6Lo4kTne2kk5xWUYcOtbfBqKrK9AhlPDPGXAm8EzgZKAFeAb5rrf19Rgcm4hEBvyGW7F6RrMWSRbxJr0wPiieSBHx9f/l1EsnKJIuMpqZEOpHcvSIZIEGSAP5RH1dPWhJRAPJ9IQKB7n2Z66oK2BU5MipjqWtxksbFHSqSG4a5IhmcRPJNN8G//uVUJL/2tU67EMkOuUE/33zjMq765Vrec/ocTphRmukhiYhHBQLOQq0zZji/h8PtSeX9+50TriLD6AZgN/BJoAq4BLjTGFNprf1JRkcm4gFOa4vOFcmxRJKQCgJEPEmJZA9KWvD1U9UY8BniSdvnMSIyvJoSEQyG/G6JZOdDTjyZJOD3SCI5mUok+7svtgdQHixgY1OUxnCMotzgiI4l3Q+5NL89kVxVNfzV0Ked5lQh33IL7Nrl9EyW7LJqbgWPf+ZsppXmZXooIjKG5ObCvHnOBs7VOx37K4fDmR2fjHmXWWs71r0/bIyZipNgViJZsp7T2kKL7YmMFUoke5CTjOq/tUXSKpEsMpoaE2EK/TndTvQEfU7yOGYT5DKySdmBaklECBo/IV/Pb/NlgXwA9lS1sGx6yYiOJd3aIt0j2WltMfwVyX4/XHIJ3HGH87sW2stOM8rzMz0EERnjiovh+OOdzVqn9UW6v/KhQ+qvLO50SSKnrQfePNpjEfGiYMB0W2wvlrBabE/Eo5RI9qCB9kiOJ5RIFulo9WpYvBhqaqC21vlZUzN8l6g2xcPd2lpAe2uL0Vhwb6CaE9Feq5EByoIFAOyqauoxkRztUBXg95ke35MG2hO6rksiuSg32FalPNwuvdRJJBcXwwknjMifEBGRLGJM+xoEK1Y4SeTDh9srlquqOi9oKzJAq4FtmR6EiBcE/T5iSS22JzJWKJE8gpJJy1tueZql00r4yhuWDvh+iaQlMIBEsiqSRToLBKCy0tk6isedxHI6uZz+6TbB3JSIUBroXu0YbEske6dveUsiSr6vj0RyoAAD/GvzES5bPhVf6j0nEk9wwx82cO+mQ23HVhSE+NW7V7JiZnuT5ef31vAfv3uBz1+ymDecOK3PsdR3aW1RnBegOZoY0Ekzty680KlMPuMM56eIiMhw8vth2jRnW7UKIpH2/soHDjgLvor0xRhzLnAF8N5ebr8OuA5g5syZozcwkQwJ+rq3tojEk6pIFvEoJZJH0D2bDvHCq3W8uK+Od58+m3kTCvu9TzJpB9Qj2a8eySIDFgi0VxN1FIv1nGBuaur5cRoTYWbklnd//HSPZA9VJLckIxT6c3u9Pejzc8G0Bdy7aTt5IT/fevNyYokkH77jeR555RjXnj6bCUVO9fUf1+3jnf/zLLe95xRWzi7nmV3VvOe252iJJvjWP1/moqWTyQn0nrWta4kR9Bvygs4x6Z7MTeE4JfnD2wqktBR+9SvncmQREZGRlpMDc+c6GzgnqTsmlltbMzs+8RZjzGzgTuDv1trbejrGWnsrcCvAypUr9YVPxr1gwBCJdW1tkSRHiWQRT1IieYQkkpYfPrSNuZUFHKoP8+N/b+dHV63o/36pKuOBVCQnlEgWGZJgECZOdLaO0gnmdGuM2lo4UpUgnIz12doi5qVEciLKxFBxn8dcNH0BixfDDx/aTjyRpKYlxuPbjvGNNy7j7avaK2DefNJ0rv7lWt7162f5xHkL+MGD25lWlsd/nDWPG/64gT88t493rZ7d69+pb41Rkhdqa4NRlOtMPQ3h2LAnkgGuvXbYH1JERGRAiopg0SJnA6iubm+DEdA3r6xmjCkH/gnsBa7J8HBEPCPo99HUZf0Up7XF8F65KCLDQx9nhsGzu2v48t2b+fQFx3H2Iicj9fcXD7DrWDM/v+YkNuyv5xeP7+SjZ89nwaSiPh8rnRz297fYnlEiWWSk9JRg3lcT4Stb4cxTc3nNlM5VzMFwqrVF0huJZGstLYkoBb7uSe+OjDF84ryFBHyG7/5rG8bAt9+8nLeeMqPTcZNLcvnDdadx9S/X8o37Xua4SUXc8f5VVBaGuOvZfdz88A7eunIGucGeq5IbWmOU5LVPN8WpiuSG8Mj0SRYREfGKigpnU9/+7GaMyQfuAULApdbalgwPScQzgn4f0S7rP8USam0h4lVKJA/R0zureN9t6wjHE1z323X8/JqTOeu4Cfzo39tZPKWYC5dMZtXcCn67Zg8/fGg7P73mpD4fL50cHkhFslpbiIyeIw1hABZMz2Xxws63bdjr57c/h4XHJ1lc1J5kbsnQV4SIjZMgSV4fi+119NFzFjC1NI/i3CDnHT+px2MmFudy13Wr+d0ze3nnabOoKHSS1DdcsJCrbl3LHWv38v7Xzu3xvnWt0baF9gCKUxXJjV0qD0RERETGG2NMAPgTsAA43Vp7NMNDEvGUoN8QT7S3tkgmLfGk1WJ7Ih41oolkY8x84DM4q9IuAZ6w1p7V5RgDfA74MFAJPAdcb619cSTHNhye3F7F+29/jpnl+fz8HSdzwx9e5EN3PM9lJ0xlb3ULv3zXSnw+Q3lBiPeeMYefPLyDjx5qYPGU3i83TyeH++uRHPB37yMkIiPnSEMEgEnF3at8i/KdDzmVkxK8pkMHm0ike4uMmpqR75fYmogCUDDARDLAm06a3u8xE4py+MR5nbPop82t4PR5Fdzy2E7evmom+aHu00p9a4yJRe39mtM9khtaVZEsIiIi497PgEuAjwMVxpiKDrett9ZGMjMsEW8I+n3EOiSSo6n/VkWyiDeNdEXyEpxJcy3QWyPM/wJuxEk4vwzcADxkjFlqrT08wuNz5Z6NB/nVE7tJ1wFvPdTA3MoCfvf+VVQU5vDb96/i2l8/y1/XH2DZtBLOW9x+Xfz7z5jLbU/t4T2/eY5JJd0XwCrODfCly5dQlu8kfvqrSPYZVSSLjKZ0RfKkou6v33RLh3Csc2uLnByYPNnZOgqHuy/wV1s7fAnm5oTzfSS/h37OI+GG8xfyllvW8NNHdvCZCxd1u72uJcaCie1tfYrzVJEsIiIiWeOC1M8f9XDbHGDP6A1FxHucRHJ7bqMtkayKZBFPGulE8t3W2r8DGGP+jFNx3MYYk4uTSP6mtfbm1L41OJPpR4EvjPD4Bqw1muBL/9hCTsDH/ImFAFy6fAo3vv54ygqc5G9xbpDb37eK79z/Mm85eUbbwlIAJflBvnrFUv66/kCPj79xfx1X3bqWH6cW5PP386YZ8BmSVolkkdFypCFMyO+jtIfF4XpLJPcmNxemTHG2jlpbe04wh8PuxtqSqkjO9w28InkoVs4u500nTeOnj+wkPxTgI2fP73S7s9hee9zSFcmN6pEsIiIi45y1dnamxyDiZU6P5A4VyXFVJIt42Ygmkq21/fVeOB0oBv7Y4T7Nxpi7gYvxUCL5t2v3UNUU4U8fWs0ps8t7Pa4wJ8CX37C0x9uuWDGNK1ZM6/G27UcaufqXz/D+/30OcBbT64vfZ4gnlEgWGS1HGsJMLM7pdIIoLS+VSG4dYruZvDxnmzq18/7W1u7J5Zoap3VGT1qS6dYWo1ORDM4ifYmk5TsPvEI8Yfn4eQsAp+97YzjeJZHsTD0NqkgWEREREclqoS49kmOqSBbxtEwvtrcISADbu+zfCrxt9IfTs6ZInFse28VrF1T2mUQeigWTivjDB0/j7b9cS3M0MaDF9sZjRfLG/XU8tOUInzx/YY8JO5G/vLCf+tYY154+u9fnSE1zlJsf3sHbV81gfoeWCn3ZuL+Oh18+ysfOWYC/h9ffkYYIk4q7t7UAyEmdLR9oRbJbeXkwbZqzddTS0nMFc0Ot0yMjz99bR6HhF/D7+P5bTyTg8/GDh7YR8Bs+cvb8tj7IHRPJQb+PvKBfFckiIiIiIlku0LW1RaoiWYvtiXhTphPJZUCTtbZr9qUWyDfGhKy10a53MsZcB1wHMHPmzBEf5P8+vYea5ig3nL+w/4OHYN6EQv5w3Wpu/PtLLJte0uexft/465FsreVzf9nE5oMNLJ9eynnHT8r0kMRjfvn4Lr5+31YADtWH+dzFi7olk6uaIrzjV8/w8uFG/v7iAX73gVUsmtz7ApcA6/bUcO1vnqMpEufUOeWcPq+y2zFHGsMsmtxzUtrnM4QCPsLxkUkk9yY/39k6Jpgf2nKE5363i+VTyjjzNf5OCeZot3fT4eX3Gb7zluWEYwl+9NB2rlgxjVjqg2DXliBFuQH1SBYRERERyXJqbSEytmQ6kTwo1tpbgVsBVq5cOaLZ1IZwjFsf38U5iyayYmbZSP4pAGZXFvDb963q9zi/z0dinCWSH9h8hM0HG8gJ+Pj+g9s4Z9FEfP1UZkv2+NmjO/j2/a/w+mVTqCgMcevju4glkvy/S49vSyYfbQxzzS+fYV9tCze9aRk/fGg7V9+6ljvev4olU3s+ObN2VzXvve05Jhfnkkha7tl4qMdE8tGGCK9bOKHX8eUF/YSjo5tI7ur+lw7z0TtfYMnUYm5/7ymU5He+vbm5c/Wy3z/8Y/D5DJ9//WIe3HKEmx/ewdtOmQF0rkgGJ5HcoIpkEREREZGsFvIbYokk1lqMMe2L7SmRLOJJmU4k1wKFxhh/l6rkMqClp2rk0fDn5/ez7Ugj4PQurm+NjXg1slsBnxlSInntrmpqm6NcvGxK/wcPUkM4xh+f28ebT5retiBhb5JJyw8f2sbcygI+dNY8PvvnjTyw+fCIjs+L/v7iAaaX5XPyrM4nLbYdaWTdnlquOmVGp+R6OJbgd8+8yqXLp3Rru/DIK0cpzg12e6yx6JbHdvLt+1/hDSdO5XtXnoDfZwj4fPz6qd0cqG1ldmUB4FTjHm4I85trT2X1vApWz6vg6lvX8vZfPsNbV07vVr0cT1jufHYv08vyufMDq/jK3Vu4/6XDfOXyJQQ6XErVFInTFIn32toCIDfoIzzEHsn9sdZyxzOvcv7iSUwu6TyWBzYf5iN3vsAJ00u47b2nUpzbva1FQYGzzZgxosNkWmkeV506gzufeZUlU51q8K4VycV5QVUki4iIiIhkuaDfh7XO2ioBv2mvSFZrCxFPynQi+WXAD8wHXumwf1HqtlF3tCHMZ/68gaDP19Yn9cqTp7N0Wt+tJkabzww+kXz/S4f46J3riSct/33JYj5w5txhHh3Ut8Z416+fZcO+Ov78/H5+9/5VVBT2vvDXfS8d4uXDjfzoqhO5dPlUbnlsJz94aBsXLpmcNVXJP3poOz94aBuhgI9fvPNkzj5uIuD07n3Hr56hIRxn4/46vvHGZfh8htZogg/cvo4nd1Rx+5o93PmB05hWmgfAb9fs4ca/b2ZWRT6PfvqsMd1vOpG0/OTf2zln0US+/9YT216XN166mPyQn988tZsntlcBTrLytvecyqlznF7msyoK+MMHV/OB29dxx9pXe3z846cUc+u7VlJZmMOly6dyz8ZDPL2zmjM7VB8fbQgDMKm49+dwbtA/4q0t1u+r48a/vcSanVX87JqT2/a3RON8/i+bnErk962iMCfTb+3wH2fN567n9vHDh7YBPVUkB6lvVUWyiIiIiEg2C6Yqj+NJS8BPW79kVSSLeFOmsw1PAw3AlcDXAIwx+cBlpFpXjLb7Nh3CWrj3+jNYMGlgi3RlwmArku/ecJBP/OFFTphewuSSXL5+31ZiyST/cdb8YRtbXUuUd/zPM7xyuJHrz13ALx7bydW/XMvv3n8aE4q6J+ISScsPH9rOgomFXLp8Kn6f4RPnLeT636/nnk2HuPyEqcM2Ni+y1vL9B7fxk4d38MYV09h2pJEP3v48P3/HSZQXhHjXr5+lJC/Im06azm1P7yGetHzxsuP5wO3reGZ3DR89ez7/u2YPb/vFGn7/gdN4aOsRvnz3FqaV5rG3uoWXDjT023Pby3Yda6I5muCSZVM6LYJnjOHTFx7Hpy88rs/7zyjP5/5PnDmgv3XWcRMozAlwz8aDnRLJRxoiAEwq6r0iOS/op3WEW1vcs+EQAPdtOszmg/Vt7Tr+9+m9VDdHufVdKz2RRAaYXJLLO1bN4tdP7QagJK/zVQnFuQH217RkYmgiIiIiIuIRgdR3vGgiSW7Qr8X2RDxuRDMOqaTwJalfpwHFxpi3pH6/z1rbYoy5CbjRGFOLU4V8A+ADfjKSY+vNPRsPcdykIk8nkcHpQ9rTYnvReJK7NxykKdL9kvHqpgg3P7KDlbPK+fV7TiE34CPg28C373+Fw/Vh5k0oBKAwJ8AbV0wbcCXw/toWHn75KDY1nD88t48dR5v4xTtP5pxFkzhtbjnvu20dV926hneeNqtbdezuqmZ2HG3ip28/qS1ReOmyKdz88Ha+/69XqG3u3uHEGLjg+MndLu8fCxJJy/+9sL8t6bj1UAN3PbePq06ZwTfeuIzGcJx3/voZPnTH84T8PiqLctqqjcvyQ/zgoW38e+sR6ltj/PBtJ/KGE6dxwZJJvPN/nuWym5+kriXGhUsm8dUrlnL6Nx/mno0Hx0QiOZm0PLj1COctntQpYbxxfz0AJ4zCvyE36Of84ydx/0uH+doVy9rOgh9tdCqSJ/bR2iIn6CccH57WFg3hGM/vrW2rSgcnPvdtOsRpc8vZfLCBHz60nV++ayWN4Ri/eHwnZx03wXNtTD581jzufHYv4Viyx4rkhhFqbfH0ziq2H2lq+33FzFKWTy8dkb8lIiIiIiKDl/7OlV6kO5pIdNovIt4y0qVrE4E/ddmX/n0OsAe4CSdx/DmgAlgHnG+tPTLCY+vmYF0r6/bW8imP9UPuydSSXKqaIvzv03t49+mzAYjEE3zkdy/w0Najvd7vjPmV3Pquk8kPOf/rf/C2E8kJ+Lh9zd5ux7755OkDGsu37n+FuzccbPs9P+Tnl+9e2bYw2enzKrntPafw/tvX8aW7t/T4GMumlXDx0sltv/t8hs9cuIgP3L6OL/5jc4/32XyggW+9ZfmAxuglj7x8lM/+eWOnfe9aPYsvXbYEn89Qkh/kt+9bxftue4661hh3vG9VW8L84+ctIOA3/OTh7fzoqhVclqrWXj69lN+9fxXX/uZZLjthKt9/6wkE/T7OWFDJPRsP8V8XL/J8e4t/v3yUD/72eW55x0lctLS9N/amA/Xkh/zMTZ3oGGmXLp/CX9cf4Mkdxzhn0SQADtcPoLVFwEc4NjwVyb9+cjc/fGg7d113GqfNrQDg+VdrOdwQ5nOXLGJvdQvff3AbG/fX8dgrx6hrifHJ87z3vjWhKIcPvW4ef1t/oNsHweLcAI0jsNjewbpWrv31c51Wfi4vCPHEZ8+mwCPV2iIiIiIi4khXHqdbWkTjqdYWqkgW8aQR/VZtrd0D9Jm9stZa4OupLaPu2+RcNn7pGGil8MHXzWPjgXq++I/NxBJJ3nHaLD58x/M88soxvnz5krYEY1dl+cFOCUW/z/CdK0/gC68/noS1WGt516+f5ccPb+fyE6f2ezmJtZY1O6u4dPkUvvKGpYCTSM4N+jsdt2puBc/993m09HLpf1FuoFsF9PnHT2Ljly4gnuheef3ZP2/g6V1VfY7Nq57eWU1OwMcTnz2bgN/pxd21WrMkL8ifPrSapKVTdS7AR86ezwfPnNtpMTiApdNKWPu5czvtv3T5VD79pw2s31fHSTO9Va3a1VM7nP+fT++s7pRI3ri/jqVTS7rFYaS8dsEEinMD3LPhUFsi+UhDhPyQv8+2EXkhf4/V84Px9I5qAL7/4Db+cN1pGGO4Z8NBcgI+zl08CWstv35qN9+4bytbDjZw3uJJnDCjdFj+9nD7+LkL+Ng5C7rtL84LEoknicQT5AT8PdxzcG5+ZAcWywOfOJMJRTlsPdTANb96hv9ds2dYW/h4lTEmAHwaeB8wEzgG/Mla+8kOxxick7cfBiqB54DrrbUvjvqARURERCSrtSeS0xXJqcX2At4uhBLJVjrF08HdGw+xZGoxcyoLMj2UfoUCPn52zUlcvHQyX7t3K5f8+Ake3XaMb75pGe8+fTblBaEet96qUkvyg5QXhKgozOGT5y1kb3ULf3lhf6dj9lQ1d+sBu/1oE1VNUc5cMKHtb3RNIqflBv29jqu3hHVxbrDH48+YX8m+mlb2jcEeq2t2VbNydhkTi3MpLwh1SyKnGWN6TZ52TSL3tv+CJZMI+X1tvXW9oCEcY39t9/9va3ZWd/oJzoeJzQdHt8dzKODjwiWT+deWI20Vxkcaw0wqzu2zqjs34Kd1GCqSW6MJ1u+rZWpJLs/uruGpHdUkkpb7XjrMOYsmUpgToCg3yHVnzmXtrhoawnE+eX73RK1X9PY8Lsp1kvKNw9jeYl9NC398bh9XnTKT4yYXUV4Q4jXzKzn7uAnc+viuEamA9qDbgOuB7wIXAP8FtHY55r+AG4Fv4axJ0AQ8ZIyZjIiIiIjIKAr6ne8K6URyusVFyD98xSYiMnyUSE7ZV9PChn11XLrc+9XIaUG/jx9fvYJLl09hd1Uz33rzcq4+deaQH/fcxRM5YXoJP/73jrZG93dvOMi533+Mr97buTVFOum3el7FkP+uG6vnVTp/f1d1P0d6S01zlK2HGlg9d3TiVZwb5MyFE7hv0yGSg1iccbjtr23h9T9+gstvfqrtuQVO/+5XjjQysSiH7Ueb2noSbz/SRCSeZPko93i+YsU0miJxvvC3l0gkLUcbwkzsYaHIjnKDPsKxofdIXre3hljC8qXLlzClJJfvP/gKz+yu5lhjpNP707tXz2ZCUQ6vXz6lbdG9sSSdSG5oHb7k7k8e3o7PZ/jI2Z0rj284/zjqWmL85qk9w/a3vMgYcxHwNuA8a+0vrLWPWWvvsNZ+vsMxuTiJ5G9aa2+21j6Es+CtBT6akYGLiIiISNbq1toilVAOqiJZxJOUSE65Z2OqrcXyKf0c6S1Bv4+fXL2CZz5/Lm9dOWNYHtMYwyfPX8iBulb+uG4ff12/n4/ftR4D3LvxUKcE4Jqd1Uwvy2NGef6w/O2BWjipkIqCEGt3jq1E8jO7Rj/xftkJUzjcEGbd3tpR+5s9ebW6hbf9Yi2H6sLUNEd5csexttvW7qoBaEsApn/fdKAOYNQXSjt9XgUfP3cBf35+P5/50wYO1jkVyX3JC/mHpUfymp3VBHyG18yv5KPnzOeFV+v48j+2kB/yc86i9sX3CnIC/OsTZ/K9K08Y8t/MhOJcpxJ/uCqS91Q1838vHOCaVTO7LcK5bHoJ5x8/iV8+sYv6lnFdlfxe4GFrbc/N6B2nA8XAH9M7rLXNwN3AxSM7PBERERGRzrq1tmirSFa6SsSL9MpMuWfjQU6YUTrqCdHhYIxhYlHfSS63XrdwAifNLOVb97/MDX/cwGlzK/jB206kvjXW1ss2mbSs3V09atW1HRljOG1uBWt2VeO02R556SrZgYrEE92SVmt2VZMf8o9qYvTcxZPICfi467lX2Xqoga2HGjhU3/VK9+F3tDHc9vee3V3DVbeuoSkS548fWt3Wgzjt6Z1VFOYEeNspMyjKCbRVum/cX09RboBZo/y6TJ9M+dT5C/nL+gMcqGvtlpzsKmeYWlus2VXNCTNKKcgJcOXJM5helscrRxo5d/Ek8kKdL+8q66OVjNcVDXMi+ccPbyfoN3z4rHk93v7J8xbSGI7zP0/uGpa/51GrgG3GmJuNMQ3GmBZjzF+MMR0vtVkEJIDtXe67NXWbiIiIiMioSbe2SFcix9p6JCtdJeJFemUCu6ua2XywgcvGWDXySDLG8KkLjqMxHOeM+ZX8z7tP4YIlkyjKDXD3xoMAbD3cQF1LbNTbWqStnlfBofowe6tHvk/yX17Yz6pv/Jt1e2oGfJ///PNGzv/BYzRH2hNla3ZWc8rs8n4XMRxOhTkBzls8ib+8cICLf/QEF//oCV737Uc51hgZsb9Z0xzl3O891vb33vqLNbTGEvz+A6dx0syybj2I1+yq5pTZZeQG/ayaW87aVOX2pgP1LJtW0m0hxtHysXMX8J8XObm16WV5fR5blBugORKnumnwcW2KxNm4v77t5Ewo4OP6c53+x5ePgUVA3SjNdxLJVUOIV9rRxjB/W3+Ad6ya1etJteOnFnPJssn8+qk91A9jOw2PmQxcC5wIXAW8BzgZ+Ktpb/BdBjRZa7ue9agF8o0xoa4Paoy5zhizzhiz7tixY11vFhEREREZtHTlcTzV2iKSqkgeze/MIjJwgUwPwAumlORyyztO5qSZpZkeiqe8Zn4l913/WuZNLCAn4FQ9XrhkMg+8dJhwLJGx/shp6b/79M5qZo/gAonReJLvP7gNa+G7/3qFu65b3e99Xj7cwN9edBLu/7tmD/9x1nyONobZfrSJN588fcTG2puvXrGUy05wTpQcqAvz1Xu2sGZX9YglJ3/x+E6aInG+/ZblFKd64Z44o6ytqvfSE6byp+f389i2Y5w4o5Rdx5q56hSnNctpcyt4aOtR9lY3s/VQA+89Y86IjHGgPnzWPF4zv4KFk4r6PO4NJ07jp4/s4BeP7+Lzlywe1N96bncNiaTt9Jq68uTpzJ9YyIoZpYN6TK+aW1lAYU6A5/bUcMWKaUN6rDU7q0lauKyf5/OnLziOt586q+05OQ6Z1PYGa201gDHmEPAYcA7w78E8qLX2VuBWgJUrV2a+2bqIiIiIjBuBLq0t2iqSlUgW8SS9MoHcoJ+Llk5mYj89ULPR8VOL25LI4CRqGiNxHt92jLW7qplTWcCUkr4rNUfK3MoCJhblDGrBvYSLhef+/Px+9te2ct7iSazdVcPTO6v6vc8PH9xOUU6AVXPKufXxXTSGY219fzPRCqS8IMRFS6dw0dIpvHv1LAo7tI8YbscaI9z+9F7ecMJU3rpyRtvf7dga4vR5FZTlB7ln46G26uPTUwsoppOov3lqD7GEZfm00hEZpxvLp5f220Ji/sRCrjhxGrev2eO6DUraml3VhPw+Tp5V1rbPGMNJM8toLygdHwJ+H6fMLhuWBTPX7qqmKDfAkqnFfR43d0IhZyyoHHex7KAW2JROIqc8CUSB4zscU2iM6fqELgNarLXRkR+miIiIiIija2uLaDxJwGcydlWqiPRNiWRxJZ0A/PuGgzyzq4bTMpAUTTPGsHpeBWt2uuuT/NyeGk7+2oN8+e7N/d4vEk9w88PbWTGzlJvfvoLJxbl8/1/b+rzfSwfquX/zYd57xhz++/WLqWuJ8esn97BmZzVFOf0nu0ZawO/j1Dnt7SOG2y2P7SSaSPLx8xb2ekzQ7+OipVP499Yj/HvrUYpzAyye4sRl8eRiSvOD/HHdPgCWTy8ZkXGOhOvPXUAsYfn5ozsHdf81O6tZMbP/pPV4sXpeBbuONXOkYXCJ97Q1O6tZNae8rZohi23FqUjuygDpVVJfBvzA/C7HLErdJiIiIiIyatoW24u3J5LVH1nEu/TqFFfSCcD7Nh2iMRLPWFuLtNVzK6hqirDzWNOAjl+7q5p3//pZkknLb57aw3//7SWSfVQn/+G5fRysD/Op848jN+jnI+fMZ93eWp7Y3ntV8g8f2kZxboD3vXYOy6eXcv7xk/jVk7t4fNsxTvVIsuv0eRXsrmoe9kX3jjSEuWPtXt64Yhpz+mk3ctnyKbREE9y98SCr5lbgT51x9vkMq+aU0xJNUJYf7Lc3sZfMrizgzSdN43fPvMrhenfJ0fqWGC8drM/4a2o0pavQh1Idf7CulT3VLRk9qeUh9wDLjDGVHfadCQSBDanfnwYagCvTBxhj8oHLgH+O0jhFRERERID2RfViqR7JsYQSySJeplenuHbZ8imkC3JPm1ue0bG4SUQ9taOKa3/zLFNL83joU6/jP86ax53PvMp//WVjj60uwrEENz+8g1PnlPOa+U6S6q0rpzOtNI/vPdhzVfKL++p4aOtRrjtzLsW5zmJinzxvIY3hOAfqWj2TJEwn3Ya7vcXPHtlBImm5/pwF/R67am4FlYU5WNu93Uf6/+uy6aVjrg3Bx85ZQDJp+ekjO1zd75nd1T3GYjxbPKWY4tyhtVnJdK92j7kVqAbuNsZcZox5O/Bb4CFr7ZMA1towcBPweWPMR4wx5wJ/wvk88JMMjVtEREREslS6IjmeTFUkJ5JaaE/Ew8btikMyctIJwNL8IBOLMttXekZ5HtNK8/jKPVv49v2v9HlsczTOgolF/O4Dq6gszOEzFx5HwO/jx//ezj0bD+HvkrBMWEtLNMGPr17RlszMCfj56Dnz+dxfNrHsS//qdg15JJ6kLD/Ita9pXyDu+KnFXLJsMvdtOuyZZNfxU4opyQuyZmc1bzqp++J/yaTlff/7HCfNLONj5/afFAanMvT3z+7jypXTmVmR3+/xfp/hkmWTuX3N3m5xSf++fNrYaWuRNqM8n7eeMoM7ntnL39YfACAY8PGza07qs2r2sW3HyA36ODGLFv30+wyr5lYMuE/yfZsOcfPDO7jrg6e1nahZs6ua0vwgiydntmWMF1hrG4wx5wA/Bu7C6Y38d+CTXQ69CSdx/DmgAlgHnG+tPTKKwxURERERIZC6MjWaam0RiSe10J6IhymRLK75fYYfvO0EAr7Mv7kbY/jaFUv7bDWRVpDj5z2vmUN5Qajtvjecv5BZ5flsPtjQ431mlud1S/695eTpHGuMUNcS6/E+Zx03gcKczi+t/3fpEk6ZXc7xU7yR7PL5DKfNLe81gfevLYd55JVjPLWzmreeMoNJA1iI8icP78Bi+cjZXVuv9u4jZ89n/sRCFk0u6rR/wcRCvv7GpZy3eNKAH8tLPnX+QopyA8TiTtX6vZsOctM/X+av/3F6jxXWRxrC/Pn5/Vy6fGqnxS2zwenzKnhwyxH217Ywvaz3ExDReJJv3LeV/bWt/PrJ3XzivIVYa1mzs5rT5lRoMY4Ua+0O4JJ+jrHA11ObiIiIiEjGdG9tYdXaQsTDlEiWQXntggmZHkKbsxdN5OxFEwd9/zefPJ03nzzw44N+H9cPsEo3bXJJLu/pUKXsBavnVvDA5iPsq2lhRnl7Ai+ZtPzgwe1MK83jSEOYnz6yg6+8YWmfj7WvpoU/rdvH1afO7DMZ2NWk4lzetXp2t/3GGK5ZNWvAj+M1FYU5fO7ixW2/L5hUyOf+solHXjnKOYu6J8d//uhOEknLx10+r8aDdPX5mp3VXLmy9+fOn57fx/7aVuZUFvA/T+zm2tNn09DqtIy57sy5ozVcEREREdeMMcfjtJBaDdQBvwK+bK1NZHJcIl7QttheIr3YXkIVySIeplenSJZane4v3aUq+d5Nh3jlSCP/efEirlw5g7ue3ceBur4X5fvxv7fj8xlX1cjZ5C0nT2dGeR7f76G39sG6Vu585tUBtwQZbxZOLKK8INRne4tI3OlXftLMUn7+jpNoisb51RO7WbPLuRLBKy1jRERERLoyxpQBDwEWeAPwFeBTwJczOS4Rrwj6nSsL04lkVSSLeJtenSJZauGkQioKQqztsNBZImn54UPbWDipkEuXTeGj5ziJ4Zsf7n3huN1Vzfxl/QHesWoWk0sy2zPbq4J+H9efs4CXDjTwry2d29De/Ij7liDjSbrNytqd1T0uYAlw17P7OFQf5obzj2PR5GJev2wKv3lqN/duOkxlYYgFEwtHedQiIiIiA/YhIA94k7X2QWvtLThJ5BuMMd7oeyeSQe0Vyc53gWg82ZZcFhHvUSJZJEsZYzhtXgVPd0jg/WPDAXYea+aT5y3E5zNMK83jqlNn8Kd1+9hX09Lj4/z439sJ+g0fOkvtBfryxhXTmFNZwA8e3EYy6cR7X00Lf3xuH1ed4q4lyHizel4lB+vD7K3u/hwLxxL89JEdnDqnnNfMdyqPP3HeAlpjCR7fdozT5lb02HdaRERExCMuBh6w1nZclOUunOTy6zIzJBHv6N7aIqmKZBEPU49kkSy2em4F9248xLt/8xxBn2HD/jqOn1LMhUsmtx3zH2fN567n9vHe255jZnnnZKcFHn3lKB947VwmFqkauS8Bv4+Pn7uAT/zhRd7+q7UUhAK8WtOiliA4z0OA6+9az4TCnE63VTdHOdoY4cdXr2hLGM+fWMQbTpzGX9cfUFsLERER8bpFwMMdd1hrXzXGtKRuuzsjoxLxCL/P4DPw1/UH2LCvjpcPN3DCjNJMD0tEeqFEskgWu+D4SfzjxYPUNEcAmFaax39dvBifr73Cc3JJLv950SL+un4/RxrD3R5j1ZwKPvi6eaM25rHsshOm8tDWI+ypbqYpEicn6OOzFx6X9S1B5k0o4PITprKrqqnH59g7T5vFaXM7J4xvOH8hDa0xLjh+crfjRURERDykDGeBva5qU7d1Yoy5DrgOYObMmSM6MBGveNNJ03n5cANHGsPMrMjvVNgkIt5ieutJOaqDGMIqtitXrrTr1q0b2QGKiIh0YYx53lq7MtPjGE2ac0VEJFPG6rxrjIkBn7HW/rDL/v3A7dbaz/d2X827IiKSKb3NuxmvSO6wiu0WnFVs5wHfw+nf/IUMDk1ERERERERkKGqBkh72l6VuExERGTMynkim8yq2DcCDqdVrv2SM+XaXRQlERERERERExoqXcXohtzHGzADyU7eJiIiMGV5YClOr2IqIiIiIiMh49E/gQmNMUYd9bwNagccyMyQREZHB8UIieRFdzsRaa18F0qvYioiIiIiIiIxFtwAR4C/GmPNSi+l9Cfi+rr4VEZGxxguJZFer2IKzkq0xZp0xZt2xY8dGcmwiIiIiIiIig2KtrQXOBfzA3cCXgR8AX8zkuERERAbDCz2SXbPW3grcCs5KthkejoiIiIiIiEiPrLVbgHMyPQ4REZGh8kJFslaxFREREREREREREfEwLySStYqtiIiIiIiIiIiIiId5IZGsVWxFREREREREREREPMwLiWStYisiIiIiIiIiIiLiYcbazK9VZ4w5HrgZWA3UAb8CvmStTQzgvseAvSM6wN5VAlUZ+ttjlWLmjuLljuLlnmLmTsd4zbLWTsjkYEZbhudc0PPVLcXLPcXMHcXLPcXMHc27mnfHEsXLPcXMHcXLHcXLvX7nXU8kkscqY8w6a+3KTI9jLFHM3FG83FG83FPM3FG8Mkvxd0fxck8xc0fxck8xc0fxyizF3x3Fyz3FzB3Fyx3Fy72BxMwLrS1ERERERERERERExMOUSBYRERERERERERGRPimRPDS3ZnoAY5Bi5o7i5Y7i5Z5i5o7ilVmKvzuKl3uKmTuKl3uKmTuKV2Yp/u4oXu4pZu4oXu4oXu71GzP1SBYRERERERERERGRPqkiWURERERERERERET6pESyiIiIiIiIiIiIiPRJiWQRERERERERERER6ZMSySKjwBij15pLxhiT6TGMFYqViEhnmnfd0TzijuIlItKZ5l13NI8MnGLlPXqxi4wwY0zQWpvM9DjGEmNModVKoG681xgzH/QhTkRE8647mnMHRfOuiEiK5l13NO+6pjnXY7L6f4IxJs8Ys8wY8w5jzHxjTCDTY/K6VLwuMsaUZHosY4Ex5mLgp8aY/EyPZawwxpwD/MMYc2mmxzIWpOL0S+CTAPoQ1zdjzARjzOXGmK8bY642xszJ9JiyieZd9zTvuqN51x3Nue5p3nVH825mad51R3Oue5p33dG8647mXPdGY9412XwixBjzS+BioBKwwP+z1n4ndZvRWaLujDH7gDLgp8DvgK3W2lhmR+VdxphjwC+stV/I9FjGCmPMNmAtcLO19tlMj8frjDF7gRpgFs5r8r+ttQ16D+uZMeafwDIgHygGbrPWvj+zo8oemnfd07zrjuZddzTnuqd51x3Nu5mledcdzbnuad51R/OuO5pz3RuNeTdrK5KNMZ8DXgd8E1gMfAm40RgzNXWm1hhj8jI4RE8xjhLgIBAH3gc8CHzcGDMzfXbbGJOTwWF6ijHm/wGtwK0d9gWNMWcZY042xkxWvDozxnwECAI3pidWY8xJxpgbjTE3GGPeZ4yZlNlReocx5os47+PvBO4C3gu8AUATa3fGmP8C5gEfsNaW48TqvcaYE40xpcaY6caYysyOcvzSvOuO5l33NO+6oznXPc277mjezSzNuwOnOXdwNO+6o3nXHc257o3avGutzboNKAKOAR/usG8a8DTw/4BNwIvAt4ETU7ebTI/bCxtwLvAAcCLOh5IY8BzwFqAEeBy4KNPjzPSWikUz8L4O+y4HHgMiQBLYAnwCKErdnvXPMeArwG+BvNTvH8T5QFcNHAZeAe4BLsz2mAGlOB/c3t9h3/8CYeD92RybXuKVC2wGPgP4Ouy/G+dyqcPAztT729syPd7xtmneHVLsNO8OLE6ad93HTHOuu3hp3nUXL827mY2/5t3BxU1z7sBjpXnXfcw07w48Vppz3cds1ObdbK1I/gBwBHg4vcNaewCYCVyNE9gXgA8BX1fZfCeP40yoH7HWfg44DagF/pi67SScSw+y3feAPGA/gDEmBPwGqAM+hvMhZSPwfeC/QWfVUuqB11hrW1MVEj/CedNbDEwFfoDzIfgLxphQlsfsVzgfzv5gTNtKtl8CHgX+E+e1KO1ygSYgx3burXUisAT4AvAznNft540x80Z9hOOb5t3B07w7MJp33dOc647mXXc072aW5t3B0Zw7cJp33dO8O3Cac90bvXk301nzDGTpDXAJzhtfeYf9nwKqgGUd9p2BcybtmkyP20sbsBrnTMZ5Hfa9C2fSDQPfAY4HApkeawZjdDnOG18DcCPOmce1wLQux/0nzpnc1Zkesxc2nAnhEPA2YCHwBDCjyzELU8+1T2R6vBmMUynOGdnX9HDbccDLwG5gRabH6pUN5zKyf+KciT0ZWAD8JPX77A7HzcA5+31Tpsc8XjbNu8MSQ827/cdI8677mGnOHXisNO+6j5nm3czFXvPu0OKnOXdgcdK86z5mmncHFifNuYOL26jNu1lXkWydyD0CfNdaW5Pqh2RwgvxJa+2mDmc8XgG242T2JcVauwb4E3Bdh92vAXbhnHH8D+B+nDMdWcla+w+cF+83cC4tuAa4HefSFYwxwdShD+H04ZqWgWF6jrX2BeB/gFuAL+KcOZsNYNpXAt6BUxEwIwND9ARrbR3Ol4GnO+5PVZO8ArwdZ3L4ljFmZuq2rHu/78g6C6V8AueDx3PAU8DpwDPAwVQ/N2Ot3YfzuiwzxvgzNd7xRPPu0Gne7Z/mXfc05w6c5l33NO9mjubdodGcOzCad93TvDswmnMHZzTn3cDwDHlssda2Aq1dLuH5UDqIHfYV45SGJ3t4mKyUWmggAdwB/NsY8x6c/lofAN5hrb3TGHMLcKq1ttEY47Ody+qzRup5dpMx5nfAu4F96eeWbV/9NwwcRR/eOq4c/VOcvm4Xpn5ea4xZa61tSR1aAUwBnuxyv6xira2Czv/+Dj9fMMZ8A+eSoG8ZY67J1tdhR9baV4wxH8Z5vSWBpTgr/0bTxxhjJgLTgXXW2kS2Pr+Gm+bdwdO8O3CadwdOc657mnfd07ybOZp3B0dzrjuadwdO8647mnMHZ7TmXZOFz0mMMUXW2sYOv/uttYnUfxtrrTVOz5rrgU/iXJ6R1R9susYste99wGXALJxLNK621tZ3OSYrY9ZLvNLPrYC1Nt7hOfYZYJKeY+0xM8YUA+/B+UByIs5iIT/BOZt9Ds7Z21mpOGZlzHp6jvVwzBtxVrj9ubX2E6MyMI8yxhRbaxu67JuHczb2GeDHQCNOT7eLgTnZ/Pwabpp33dO8647mXXc057qnedcdzbuZpXnXHc257mnedUfzrjuac90bzXk3a8q/jTGnGmO+ZYzZDvzOGPNRY0wZQHpSTf13OoDX4AT4i6k3vEC2vYD7ilnKv3AukToB+HbXiRWyq6F+L/EqT9/e4QxaPLXrPTgf3L6g51hbzD5mjKm01jZYa38EvBnnspYngQ/jLAiyH+eDXDzbYjaA12T6uPTliv/CWRzk2S77s0KXeN2Ren6Vp27zAXuAXwCLcFaz3YDzfvbxbHx+DTfNu+5p3nVH8647mnPd07zrjubdzNK8647mXPc077qjedcdzbnuZWrezYqKZOOUbj+Ok31/ASdwM4CvW2t/1sPx5wEfAQ5aaz8ymmP1CjcxM8acCrxk2y/HyDqDeI6dgdO/psZae13X27OBy+dYPhDBOZN9cLTH6gVun2PZzuXzazUwGfADT1lrD43ycMcdzbvuad51R/OuO5pz3dO8647m3czSvOuO5lz3NO+6o3nXHc257mV03rUeWF1wpDeccvd/klqpEKcS+6c4/XpOSO0zHY43wHKgJPW7P9P/Bo/GLNjlPr5Mj9vj8er6HFsKlKZ+13Os55gFutxHz7EBPsdSv4cyPW6PxyurV9v2QPw177qPmeZdd/HSvOsuXppz3cdM8667eGnezWz8Ne+6i5fmXPcx07zrLl6ad93FS3Ou+5iNyLw77ltbGGPm42Tmf2mt3WOMMdZpxP0VnKbvV3Q53m8dG23q8hXb4VKgbOAiZvHU8QbAZmmD8yE8x16yzoqkeo71HrO2Xm6g5xgDf46l4xXt+ljZYBDPL60SP4w077qnedcdzbvuaM51T/OuO5p3M0vzrjuac93TvOuO5l13NOe6l+l5d9wnknGa41cCMejUt+cIcCdwqTEmJ70fuMgY881UP5Fs5TZmlxhjvpHFMdNzzD09x9xRvNwZzGsym+M13PSe6J5e4+7oOeaOnl/uKWbuaN7NLL0nuqPXt3t6jrmj55g7ipd7GZ13syHw63BWJ3w4vaND8P6Js0rm6an9k4Ef4lxSkEyf6chCg4mZP1vPoKHn2GDoOeaO4uWO4pVZek90T89Zd/Qcc0fPL/cUM3cUr8zSe6I7er66p+eYO3qOuaN4uZfZmFkP9PYY6Y0u/Y067ge2AN9L/f4lnGbw6dvNSI/Nq5tipngpZt7aFC/Fayxtir9ipnh5a1O8FDPFa3xvir/ipZh5a1O8FK/xHLNsqEjGWhvrY/9dwMXGmOOAjwOfBjDGBGwqytlIMXNH8XJPMXNH8XJH8cosxd89xcwdxcsdxcs9xcwdxSuzFH93FC/3FDN3FC93FC/3Mhkzk8VxB8AY81rgH8BBIG6tPSHDQ/I8xcwdxcs9xcwdxcsdxSuzFH/3FDN3FC93FC/3FDN3FK/MUvzdUbzcU8zcUbzcUbzcG+mYBYbzwcao9UATsBg4GdpWGc2aVUUHQTFzR/FyTzFzR/FyR/HKLMXfPcXMHcXLHcXLPcXMHcUrsxR/dxQv9xQzdxQvdxQv90Y0ZlmfSLbWNhljPgAsttauN8b49ITsm2LmjuLlnmLmjuLljuKVWYq/e4qZO4qXO4qXe4qZO4pXZin+7ihe7ilm7ihe7ihe7o10zLK+tQW0rW5orbU2FeBsXv1xQBQzdxQv9xQzdxQvdxSvzFL83VPM3FG83FG83FPM3FG8Mkvxd0fxck8xc0fxckfxcm8kY6ZEsoiIiIiIiIiIiIj0yZfpAYiIiIiIiIiIiIiItymRLCIiIiIiIiIiIiJ9GpeJZGNMaS/7Tepn1i8y2JVi5o7i5Z5i5o7i5Y7ilVmKv3uKmTuKlzuKl3uKmTuKV2Yp/u4oXu4pZu4oXu4oXu55KWbjLpFsjFkN/KjD7+mgmlST6YXAZ4wxk1L7x10M3FLM3FG83FPM3FG83FG8Mkvxd08xc0fxckfxck8xc0fxyizF3x3Fyz3FzB3Fyx3Fyz2vxWw8/g85DninMebz4CxR2PEn8Dbg68CXUvu12qNi5pbi5Z5i5o7i5Y7ilVmKv3uKmTuKlzuKl3uKmTuKV2Yp/u4oXu4pZu4oXu4oXu55K2bW2nG3AZ8EdgFXp373dbn9CmAT8DEgkOnxemFTzBQvxcxbm+KleI2lTfFXzBQvb22Kl2KmeI3vTfFXvBQzb22Kl+KVTTEbV31HjDF+a20C+D1wNvA9Y8wWa+2GLof+A5gF5Fpr46M9Ti9RzNxRvNxTzNxRvNxRvDJL8XdPMXNH8XJH8XJPMXNH8cosxd8dxcs9xcwdxcsdxcs9L8bMpDLX406qZ8i/gTzgA9bal4wxgY4BNcbkW2tb0n1FMjZYj1DM3FG83FPM3FG83FG8Mkvxd08xc0fxckfxck8xc0fxyizF3x3Fyz3FzB3Fyx3Fyz2vxGxM90g2qQbSxpipxpirjDEXGWPyjDGTUwG7AagAPgKQDm76ftbaltTPrHlCCF/C4QABAABJREFUKmbuKF7uKWbuKF7uKF6Zpfi7p5i5o3i5o3i5p5i5o3hlluLvjuLlnmLmjuLljuLl3liI2ZhubWHbG0h/AXgXUAMUAy8YZxHDPwFbgA8aY8LAjdbaJiBrnoRdKWbuKF7uKWbuKF7uKF6Zpfi7p5i5o3i5o3i5p5i5o3hlluLvjuLlnmLmjuLljuLl3liI2bhpbWGMWYqTGD8OOBEoAc4B9gHLU79fY639v0yN0WsUM3cUL/cUM3cUL3cUr8xS/N1TzNxRvNxRvNxTzNxRvDJL8XdH8XJPMXNH8XJH8XLPqzEbN4nk3hhj5gO1wBeBdwNvtNY+nNlReZti5o7i5Z5i5o7i5Y7ilVmKv3uKmTuKlzuKl3uKmTuKV2Yp/u4oXu4pZu4oXu4oXu5lOmZjMpFsjPFZa5PGmFLgJGAqUGOtvS91uwGC1tpoh/tUAP8CHrDWfj4Dw84oxcwdxcs9xcwdxcsdxSuzFH/3FDN3FC93FC/3FDN3FK/MUvzdUbzcU8zcUbzcUbzcG0sxG3M9kjsEtwS4HTgD2Aocb4x5BviStXYtEDXGBICktTZpra02xryaOj6rKGbuKF7uKWbuKF7uKF6Zpfi7p5i5o3i5o3i5p5i5o3hlluLvjuLlnmLmjuLljuLl3liLmW80/9gw+xkwGTgN+CZO8+m5wEPGmJ8aYyqttXGbalRtjKkEQqljs5Vi5o7i5Z5i5o7i5Y7ilVmKv3uKmTuKlzuKl3uKmTuKV2Yp/u4oXu4pZu4oXu4oXu6NjZhZa8fMRnsrjiXAYeCC1O+PAX8EVgP3AkngKPDVLvdfmOl/g2Lm7U3xUswUL29tipfiP9Y2xUzxUry8tSlmitdY2hR/xUsx89ameCleiln3bUy1trCpKAGnA2uBp40xFwIrgLOstS8YY64Gngbqgfwu9982muP1AsXMHcXLPcXMHcXLHcUrsxR/9xQzdxQvdxQv9xQzdxSvzFL83VG83FPM3FG83FG83BuLMRsTiWRjTJG1tjH13z7gOSBhrW0yxlwArAF2dbjLEeCO1NbWb2SUh51Ripk7ipd7ipk7ipc7ildmKf7uKWbuKF7uKF7uKWbuKF6Zpfi7o3i5p5i5o3i5o3i5N5Zj5vkeycaYK4DvGWNeZ4wJWqeh9IvAX1OHHAUWAxWp3/OBCUCrtTYGkIVPyCtQzAZM8XJPMXNH8XJH8cosxd89xcwdxcsdxcs9xcwdxSuzFH93FC/3FDN3FC93FC/3xnrM0r04PCmVlW8CcoGHgIeBe6y1L3U45iLgTzgl4BuBU4DZ1tqZoz/izFPM3FG83FPM3FG83FG8Mkvxd08xc0fxckfxck8xc0fxyizF3x3Fyz3FzB3Fyx3Fy71xETPrgebSPW2Awcm63wMkgD1ANU6QrwWmdDh2JU6/kCPA/wFnp/YHMv3vUMy8uyleipni5a1N8VL8x9qmmCleipe3NsVM8RpLm+KveClm3toUL8VLMRvY5umKZABjTAXwFZyM/TPADcBS4G6cFQyfsNbWpY6daa19NUND9QzFzB3Fyz3FzB3Fyx3FK7MUf/cUM3cUL3cUL/cUM3cUr8xS/N1RvNxTzNxRvNxRvNwb8zHLdCa7v2x96ueFwEHge6nf3wfsx8nefwtYDfgzPV4vbIqZ4qWYeWtTvBSvsbQp/oqZ4uWtTfFSzBSv8b0p/oqXYuatTfFSvBSzAfwbMj0AF8FeAWwAvpT6vQT4GVCH0zfkRmBipsfppU0xU7wUM29tipfiNZY2xV8xU7y8tSleipniNb43xV/xUsy8tSleipdi1su4Mz2AXoK5EKd3SGmX/e8GDgMf6LBvGU4/kcNAXqbHrpiNjU3xUswUL29tipfiP9Y2xUzxUry8tSlmitdY2hR/xUsx89ameCleitnAtwAeY4y5HvghTtB2GWNygD8DR4HbU4f90BgTB35nrd0EnGOMmWetbTXG+K21iUyMPVMUM3cUL/cUM3cUL3cUr8xS/N1TzNxRvNxRvNxTzNxRvDJL8XdH8XJPMXNH8XJH8XJvvMXMU4lkY0wAeEPq15XAepwVDf8Hp0/ILGAzzuqG7wIeMMYcsdYmrLU7AbwU3NGgmLmjeLmnmLmjeLmjeGWW4u+eYuaO4uWO4uWeYuaO4pVZir87ipd7ipk7ipc7ipd74zFm6SbPnmCM8QMXAOfiNJ4uBK4H7gWOA2bi/A8oAvYBN3otoKNNMXNH8XJPMXNH8XJH8cosxd89xcwdxcsdxcs9xcwdxSuzFH93FC/3FDN3FC93FC/3xmPMPJVITjPGVOIE+W04AX8S+Ly19oXU7SVAzFrbYozxWWuTmRutNyhm7ihe7ilm7ihe7ihemaX4u6eYuaN4uaN4uaeYuaN4ZZbi747i5Z5i5o7i5Y7i5d54ipknE8lpxpg5wMU45d3HA38FPmutPZK6PWCtjWdwiJ6jmLmjeLmnmLmjeLmjeGWW4u+eYuaO4uWO4uWeYuaO4pVZir87ipd7ipk7ipc7ipd74yFmnk4kpxljVgBXAG8HioHvWWu/ndFBeZxi5o7i5Z5i5o7i5Y7ilVmKv3uKmTuKlzuKl3uKmTuKV2Yp/u4oXu4pZu4oXu4oXu6N5ZiNiUQygDEmDzgDeAvwDmAD8Bo7Vv4BGaCYuaN4uaeYuaN4uaN4ZZbi755i5o7i5Y7i5Z5i5o7ilVmKvzuKl3uKmTuKlzuKl3tjNWZjJpGcZoyZAFwO7LPW/svrvUO8QDFzR/FyTzFzR/FyR/HKLMXfPcXMHcXLHcXLPcXMHcUrsxR/dxQv9xQzdxQvdxQv98ZazMZcIllERERERERERERERpcv0wMQEREREREREREREW9TIllERERERERERERE+qREsoiIiIiIiIiIiIj0SYlkEREREREREREREemTEskiIiIiIiIiIiIi0iclkkVERERERERERESkT0oki4iIiIiIiIiIiEiflEgWERERERERERERkT4pkSwiIiIiIiIiIiIifVIiWURERERERERERET6pESyiIiIiIiIiIiIiPRJiWQRERERERERERER6ZMSySIiIiIiIiIiIiLSJyWSRURERERERERERKRPSiSLiIiIiIiIiIiISJ+USBYRERERERERERGRPimRLCIiIiIiIiIiIiJ9CmR6AENVWVlpZ8+enelhiIhIlnn++eerrLUTMj2O0aQ5V0REMkXzroiIyOjpbd4d84nk2bNns27dukwPQ0REsowxZm+mxzDaNOeKiEimaN4VEREZPb3Nu2ptISIi4nHGmCuNMf8wxhwwxjQZY543xlzd4fbZxhjby/ZKh+PO6uWYmzLzLxMREREREZGxYsxXJIuIiGSBG4DdwCeBKuAS4E5jTKW19ifAIWB1l/vkAf8C/tnD410D7Orw+4FhH7GIiIiIiIiMK0oki4iIeN9l1tqqDr8/bIyZipNg/om1NgKs7XgHY8yVOPP873t4vI3W2pdGbLQiIiIiIiIy7qi1hYiIiMd1SSKnrQem9nG3q4Fd1tpnRmZUIiIiIiIikk2USBYRERmbVgPberrBGFMMXAzc1ct9HzbGJIwxe4wxXzDG+EdqkCIiIiIiIjI+qLWFiIjIGGOMORe4AnhvL4dcAeTSPZFcD9wEPAFEgUuBLwMTgI/38reuA64DmDlz5tAGLiIiIiIiImOWEskiIiJjiDFmNnAn8Hdr7W29HHY1sNlau6njTmvtepyWGGkPGWMiwA3GmK/21ELDWnsrcCvAypUr7dD/BSIiIiIiIjIWqbWFiIjIGGGMKQf+CewFrunlmArgPHpeZK8nf8Y5sbx8OMYoIiIiIiIi45MSySIiImOAMSYfuAcIAZdaa1t6OfQtOInh3vojd2W7/BQRERERERHpRq0tREREPM4YEwD+BCwATrfWHu3j8KuBZ621Owf48G8B4sDGoY1SRERERERExjMlkkVERLzvZ8AlOAviVaTaV6Stt9ZGAIwxU4HXAp/q6UGMMT8HjgHP4Sy2dwnwUeCH1trqkRv+wL10oJ6ZFfkU5wYzPRQRERERERHpQIlkERER77sg9fNHPdw2B9iT+u+3pn7+sZfH2Qq8H/gkTouMHThJ554ed9TFE0ne/POn+cjZ87n+3AWZHo6IiIiIiIh0oB7JIiKSFW57ajdvvWVNpocxKNba2dZa08u2p8NxP7TW+q21B3t5nB9ba5dba4ustTnW2iWp+3iiP3JtS4xIPMmxxkimhyIiIiIiIiJdKJEsIiJZ4dWaVrYcasj0MKQP1c1OArkhHMvwSERERERERKSrQSWSjTGPGmNsL9vq1DHGGPN5Y8w+Y0yrMeZxY8yJPTzW8caYfxtjWowxB40xXzHG+If47xIREekkmkgQCuj8qZdVN0UBqG9VIllERERERMRrBtsj+T+A4i77vgKswFnAB+C/gBuBzwAvAzcADxljllprDwMYY8qAh4AtwBuAecD3cBLcXxjk2ERERLqJxJLkKJHsaVVNqYpkJZJFZIw60hDmUH2YE2eUZnooIiIiIsNuUN+orbVbrLVr0xvwArAS+LO1Nm6MycVJJH/TWnuztfYh4ErA4qwOn/YhIA94k7X2QWvtLcCXgRuMMV0T1SIiIoMWTSRVkexxqkgWkbHup4/s4NrfPJvpYUgfjDHzjTG/MMZsNMYkjDGP9nDMsF1dO9DHEhERGQuG6xv1RUAZ8PvU76fjVCy3rRpvrW0G7gYu7nC/i4EHrLUdm1behZNcft0wjU1EREQVyWNAe4/keIZHIiIyOEcbItS1xGiO6H3Mw5YAlwCvANt6OSZ9de23gMuAJpyrayenD+hwda3Fubr2K8CncAqjXD2WiIjIWDFc36ivAvYDT6R+XwQkgO1djtuauo0Ox73c8QBr7atAS5fjREREhiSaSJITUAt+L1NFsoiMdTUtzvvYkYZwhkcifbjbWjvDWnslsLnrjcN5da2LxxIRERkThpxINsbkA5cDf7TW2tTuMqDJWpvocngtkG+MCXU4rq6Hh61N3dbb37zOGLPOGLPu2LFjQxq/iIhkh0hci+15XVUqkRyNJwnHun6EEBHxvtrmdCI5kuGRSG+stcl+DhnOq2sH+lgiIiJjwnB8o74MKKC9rcWIs9beaq1daa1dOWHChNH6syIiMoZF42pt4XXp1hagBfdExoJnnoHNm6GuLtMj8Y5aVSSPB8N5de1AH0tERGRMCAzDY1wF7LDWruuwrxYoNMb4u1QllwEt1tpoh+NKenjMstRtIiIiwyIST1KQMxzTnoyU6qYoQb8hlrA0hGNMLM7N9JBEpA9790JNjfPfBQUwbZqzTZ/u/J5tkklLbYtzEkyJ5DGt36trU99nB3J17UAfq40x5jrgOoCZM2cO6R8iIiIy3Ib0jdoYU4JzSc63u9z0MuAH5uMsYpDW9azty3Q5E2uMmQHkdzlORERkSLTYnvdVN0WYVVHAjqNN1LdqoSqRsaS5GbZtczaAkpL2xPK0aZCbBeeFGsNxEkmn059aW8hgWWtvBW4FWLlype3ncBERkVE11NKsNwI5dG9r8TTQgLOQwNegrZfyZaQmxZR/Ap8xxhRZaxtT+94GtAKPDXFsIiIibaKJJCEttudZrdEEzdEEcyqdRLJaW4iMbfX1zrZli/N7RUV7UnnqVAgGMzu+kZBeaA9UkTzGDefVtQN9LBERkTFhqInkq4AN1tqtHXdaa8PGmJuAG40xtTjVxTfg9GT+SYdDbwGuB/5ijPkWMBf4EvD9LosWiIiIDEkkllBFsoel+yPPrXSuh28IK5Hs1ksH6rnruVf5yuVL8flMpocj0kl1tbNt3Ag+H0yc2J5YnjQJ/OPgPF9NaqE9Y5RIHuOG8+ragT6WiIjImDDob9TGmErgXJyVaXtyE/B14HPAPTir1Z5vrT2SPsBaW5t6DD/OyrVfBn4AfHGw4xIREemJU5GsRLJXVTc5CZi5E5xEcr0qkl27e8NB7lj7attiXyJelUzC4cPw/PPwj3/Ab34D99wD69fD0aNgx+jF/LWpRPLsigKONCqRPIZ1vLoW6HR17T87HPdP4EJjTFGHfV2vrh3oY4mIiIwJg65IttZWAb1elGattTiJ5K/38zhbgHMGOw4REZGBUI9kb0tXJM+pLARQa4tB2F3VDEBtS5SKwpwMj0Zk4OJx2L/f2QBCIaf9Rbpiubw8s+MbqHRri8VTinho61GstRijqwO8JpXIvST16zSg2BjzltTv91lrW4br6loXV+qKiIiMCVq+HmgMx7j/pcOsnF3OnMosXGJaRCQLRFSR7GlVqYrkKSW55AX9qkgehD3VTiK5plmxk7EtGoU9e5wNIC+v88J9xcWZHF3v0hXJiyYXc9+mw9S1xCgrCGV4VNKDicCfuuxL/z4H2INzda0P5+raCmAdPVxda4w5F7gZ5+raOpyra7/U5bH7fSwREZGxQolkoCEc5zN/3shNb1qmRLKIyDhkrSUaT5KjxfY8K91btKIwRHFegIbWeIZHNLYkk5a91S1AeyxFxovWVtixw9kAioo6J5bz8zM7vrSalighv6+tRc+RxrASyR5krd0D9FkqPpxX1w70sURERMYCJZKB8nznA161vniJiIxL0UQSQK0tPKy6KUJe0E9+KEBxblAVyS4dbggTiTvPc/VIlvGusRFeftnZAMrK2pPKU6dCToY6u9Q2RykrCDK5OBeAw/VhFk32aPm0iIiIyCAokQzkhfzkBf1tl6OJiMj4kk6wKZHsXdVNUSoKnRO7JXlBGsJKJLuRbmsBqkgeKGst//Pkbt5w4jQmFKmn9FhWW+tsL70ExkBlJUyf7iSVp0yBwCh946lpjlGWH2JSKpF8tCEyOn9YREREZJToG3VKeUFIX7xEerG3uplXDjdmehgigxaJje1EsjHmSmPMP4wxB4wxTcaY540xV3c55lFjjO1hy+1y3DRjzF+NMY3GmCpjzM2phYcyqqq5fYG44jxVJLu1p6ql7b91Ynxgth9t4mv3buW3a/dmeigyjKyFY8dg/Xq491749a/h73+H55+Hw4chmRy5v13XEqW8IMTEYue97EhDeOT+mEiW2l3VzOaD9ZkehohI1lJFckp5QahtpWUR6ezr927lYH0r93zstZkeisigpFtbjOHF9m4AdgOfBKpwVpu/0xhTaa3tuOr7I8Dnu9y3rSTOGBMEHgCiwFVAKfD91M93jNDYB6S6KdJ2OXhJXpDtR3Xyyo091c2EAj4q9XlmwHYdawJg7c5qOD/Dg5ERk0zCoUPO9txzEAzC5MlOxfK0aVBR4VQxD4ealiiLpxSTE/BTlh/ksBLJIsPum/dt5UBdK/dePzrfSxJJy3/930betXo2y6aXjMrfFJGB++Xju6gsCvHGFdMzPZSsoURyiiqSRXpX2xLliC7PlDEsEksAjOXF9i6z1lZ1+P1hY8xUnARzx0RyjbV2bR+P8xZgMTDfWrsbwBgTA+4yxnzZWrt9uAc+UNVNUZZMdXqJFucGqG9RRbIbe6qamVWeT65adQ3YriqnHcj6fbW0ROPkh/SxOBvEYrBvn7OB00+548J9paWDf+za5mjb2iuTinP12UlkBFQ3R6kbxc8I+2tb+NPz+ykvDCmRLOJBv127l9mVBUokjyJ9Yk4pLwixM1WZIiKdNUUS1DZHsdZihqtsR2QUjfWK5C5J5LT1wJtdPtTFwHPpJHLK33AqlC8CMpJIttZS3Rxpa21RkhekMRInmbT4fHrPGYg91c3MqiggmkhSoyT8gOw65iSSYwnLuj21nLlwQoZHJJkQicCuXc4GUFDQObFcWDiwx0kkLXWtMcoK2hPJRxtVkSwy3OpbYzRF4qP29/ZWO62jdh9r7udIEcmE2uao1roYZWPzG/UIUEWySO9aonHiSUvjKH5oExlOY71Hci9WA9u67LvAGNOS2h4wxizvcvsi4OWOO6y1UWBn6raMaAjHiSUsFakETHFeEGuhKar3nIFIJi17q1uYU5lPeX5QFckDtOtYEydMLyHoNzy9szrTwxGPaG6GbdvgkUfgjjvg97+Hxx+HnTsh3EdeuL41hrVQnh8EYFJxDofrlUgWGW51LTGaI3GstaPy9/amFrNNX8UiIt4RiSdojMRpCus7w2hSRXJKeUGIlmiCcCxBbnDMXvosMiKaUwnkmqYoxbnBDI9GxL2xXpHclTHmXOAK4L0ddj8G/C+wA5gF/DfwhDHmBGvtntQxZUBdDw9Zm7qtp791HXAdwMyZM4c++B5UNzmXf1d2WGwPoL4lpvecATjcECYSTzKrooB40iqRPEC7q5q5aOkUQgEfa3b2VPQvAvX1zrZli/N7RUV7tfLUqU7PZaCtIKVjRXJVU4R4IknAPz7mHpFMs9bS0BojnrRE4slR+d6erkjeW91MImnx60opEc9It7kZzasURBXJbcpTH/pUlSzSXfqNWQs4yVjVXpE89k8UGmNmA3cCf7fW3pbeb639orX2N9baJ6y1dwBnAxb4xFD+nrX2VmvtSmvtygkTRubS/+rU3FtRmKpITiWPG8Jq0TAQe1JVUnMqCyjPD9EYiRNLnTyRntU2R6ltiTFvQgGr51Wy6UA99a16vkn/qqth40b45z/hN7+Bv/4Vnn0Wtu113sfKOySSk7b9/U1Ehi4cS7YVB4xW4mhvjZNIjiUs+2tbRuVvDqcdR5t488+f1hwn41J1kzPHKpE8upRITlEiWaRn8USScCoJpyo3GauiifRie2N72jPGlAP/BPYC1/R1rLX2MPAUcFKH3bVATyvFlKVuy4h0RXJFQboi2blgSl96BmZPqlpqVkV+WzVkrU789WlXlbMuxtwJBZw+r4KkhWd312R4VDLWJJNw5Ai88AI89Ljzmtu0LsT69ZBrcwHU3kJkGHX8XNA8SomjV6tb2nIFY7G9xQt7a3l+by1bDzVkeigiwy79ebdpFNvdiBLJbZRIFulZczTR9t+qqpGxKl2RPJZbWxhj8oF7gBBwqbV2IGUxNrWlvUyXXsjGmBAwly69k0dTVaqaoDJVkVySam3R0KrqgoHYU91MKOBjakle2+eZ2mYl4fuSXmhvTmUhK2aWkhPw8bTaW8gQtCZTX2arQzzzDGx61jkx9s9Hw2zaBDU6TyEyZHWt7d9FRqMC0VrL3ppmXpdajHUsLriXjtmh+tYMj0Rk+KXzE4mkbSt+k5E3dr9RDzMlkkV61vFsvyqSZayKxMf2YnvGmADwJ2ABcJG19ugA7jMZOAN4vsPufwKnGGNmddh3OZAD3D98I3YnfVlaupq2rbWFKpIHZE9VM7PK8/H5DGX5+jwzELuqmgn6DTPK8sgJ+DlldjlrtOCeDEFLwnnN5fmc12CR36lI3nUowlNPwR//CM89l7HhiYwL9S3tnwtGY3Gto40RwrEkK2aWUpwbaLuaZSxJ95A9WKerI2T86ZifaIzoe8No0WJ7KeX64iXSo46JZPVIlrEqGh/zFck/Ay4BPg5UGGMqOty2HjgO+CZOsnkvMBP4HJAEftjh2D/jLML3F2PMjThtLn4A3Gmt3T7C/4ZeVTdHKM0PEkwtSFWSrx7JbuypbmZWRQHQfmJcrS36tutYEzPL89sWQVs9r4LvPPAK1U0RKlKLPoq40ZqMEjR+gj6nF3++PweDoSnRnrxJqlhKMmTj/jqONESYVJzDpOJcygtC+E37onG+MbKAXKfWFtGRTySnF9qbWZ7P3AmF7B6DrS3qUjFTRbKMRx2vmG6OJKAog4PJIkokp5TkBfEZJZJFumpSRbKMA5F4ukfymF1s74LUzx/1cNscoBowOMnkCqAReBS4wlr7avpAa23MGHMRcDPwRyAC3AV8ZsRGPgDVTVEqUglQgMJQAGPUI3kgkknL3uqWtstuywqcJLw+z/Rt17Fm5k4obPv99HnOuZm1u2p4/fIpmRqWjGEtiVhbNTKAzxgK/Tk0JlQFKJn3+2df5ffP7uvxttygj7s/egYLJnk/A9Pxc0HjKFQk7612EsezKgqYW1nAml1j78qVdMwOqSJZxqGO+YnRuEpBHEokp6QvB1XFpUhnzZH2HslKTMhYFRnjFcnW2tkDOOySAT7WfuCKoYxnuFV1qQL1+QzFuUG1thiAww1hIvFkW0VyaV66R7Ler3uTSCXfz1k0sW3fsmkl5If8rNurRLIMTmsySp4/2GlfoT+HpngkQyMSaffpC47j6lNncqQhwuGGMLXNUax15t/frt3LrqrmMZdI7vgdZaS8WtOC32eYVprH3AkF/GX9AVqicfJDYyeNkm4HclALf8o4VKPWFhkxdt4BR0F5QYiaJn3xEukoXZFclh9UItnDmiNxEta29ZaVzsZ6j+Txrro5ysJJhZ32FecFVJE8AHuq0ovGOYnkUMBHUU5AJ8b7cKC2lWgiydwJBW37An4fk0tyOdqopJ8MTmsi2qkiGaDQn0tdfCDrooqMrIrCnB7b9uypaua3a/d2amXnZZ0TyaPT2mJqaS6hgI85lc7nlN1VzSyZWjLif3u4pBfbO1in1hYy/tQ0R8kN+gjHkqNyckkc+kbdQXlBSIkykS7SH9JmlOdT26Kkjld99v82ct3t6zI9DM9q65Hs17TnRdVNkbbevmkleUEadIlav/ak+jfOqshv21dWEFJFch92phZL6tjaAqCyIIfqJiWSZXBaklHy/Z3fx4oCuWptIZ5WkOPUlY2lRHJxrjPmxtFIJNe0MKvcOemYPvk41vokpxfbq2+N0TIKfaVFRlNNc5SZ5c5n4CZVJI8afaPuoLxArS1EukovZDGjPF9fsD1s66EGXtxXRyJpMz0UT4rEk4T8vjGzmEw2iSeS1LXGqCjoXClVnBtURfIA7KluJhTwMbUkr21fWUGIGp3469XuY04SYG5lQaf9FYUhqnVlmgxSzxXJOYSTMeJJVUmJNxWmEslNY6SSr741RllBiIKQf5QqkpuZmTpROzvVQmrXsbGVSK5viVGaWsT4oPokyzhT09IhkawClFGjRHIHqkgW6S7d2mJGWT4N4TixhJYc95pk0rK/tpVwLMm+Gl1C25NoPDlm+yOPR0cbwjy5vYont1fx4JYjWAuVhT1UJCuR3K+Dda1MLcntdJKkPD+oiuQ+7Kpqojg30K0KvqIw1Gn1b5GBStgkERsnr0tFcoHfOUHWnNTzSrwpN+jDZ8ZWRXJJXpCCnMCIj7m+NUZdS4zZqURyXsjPtNK8MVWRHE8kaYzEWTy5GIBD9WpvIeOHtZba5igzU1cNjMZVCuJQj+QOygtC1LVESSQtflWtiQDOB0ufgamluYBzedSEou491iRzjjVF2lo3vHKkkdldquwEIvGE+iN7yNM7q/nEH17stG96WX6n34tzgzSElUjuT0M4Tkle597oZQUhth1pytCIvG/XsWbmTijEmM6f9SoKcqhtiRJPJAmoDY640JpwEsX5vs6vxZDP+aoVTerLrXiTMYaCnEBb4YjX1bU4ieSmcHzEk0avplpHpZNU4KxHsOvY2Jlf0y3CFk8pZs2uag6pIlnGkYZwnHjSMqUkF7/PjJkTYuOBPiV3UF4QImnRpbQiHTRHEhSE2iu3VLXvPR2rkLcdbszgSLwrEk8qkewhZyz4/+y9d5hkV33m/zl1K6fO3dM9OY8kFFBAgSAQUWSEyHgdlgW8sN41tteYn9nF2F6D8xrMavEaB7ISQaCAkIQEKKCskTQ5T6fpXDncuuf3x6lbXV1d1V25bnXX53n66Znq21W3qqvuOec97/f99nPLx6/Off3wky/n2j0DS47pNNsrj3AiTaCgyWav18lcJ6qrJCemo0sa7Zn0+51ISacfQAU89xxE2kdTaRhxQ71nCh3JTtERktsZIcQ7hRDPCSGSQogTQohPFTlGCCE+I4Q4I4SICyEeEkJcUuS484UQ9wkhYkKIMSHE54UQWlOeyCr4nI1399aLUNaR7Hc3/pxPzSrncX4Pgu39Po5PR5GyPaLk5rNzgX0bAgCMdRzJHdYQpi7R63Pid9k70RZNpONIziNfKCssd+zQYb0STer4XHZ6vR0h2aqcmVNCslOzcWiyIyQXoxNtYS36/S76i3SPz6fL4yCRNrJuckustS1JOKGzIehecluPz0kslSGRzuB2dF67fGIpnfGFBDsLGu0B9GXfkzPRZKfypkyeew7Gx2HbNrjgAtiwodVn1BpiWUdyYUZyzpEsO4vbdkMI8XLgduBrwO8DVwJfFEIYUsq/zzv008BngT8ADgKfAn4qhHiJlHIie189wE+BF4F3ADuBv0GZuv64KU9oBXwujViqfTKSuzwOfM7Gi0anco7kRSF5x4CPcEJnOpJqi3FiPrshPxBwMRBwdRzJHdYUOSHZr4TkTrRF8+gIyXl0HJcdOiwnmtLxuTR6s/mlHZeb9Tgzq9wFV+7o5XBHSC5KR4xsP4LZuIZQXGcg0PnblUI5kpdO58z5zFwsxXBeE74Oi02StheJAOrLvm6dhnuVISWcOKG+BgaUoLxjB9jW0d5dPJuB7C10JGeF5GTHkdyO/A/gl1LKj2T//xMhRDfwP4QQX5FSpoQQbpSQ/BdSyi8DCCEeAU4Cn2RRJP444AFukFKGgHuFEEHgc0KIv8ze1jL8bRJtIaXMCcl+t73hfUFOzUTp97vwuRbHWHPsODEdbQsheSFbYdPldTDS5e44ktscw4CFBejpafWZWIOckOztOJKbzTqa4q1OR0gun3OhBFPhZKtPo0MTiCQz+PMcyZ1GRNbjzGyMwYCLCzd2cXwqmstL7rBIx5Hcfpi5v52c5JUJJ3T8roKM5E4FSUlOZ4WHbX1FhOSsI3k60pnfVMvUFPzsZ/Dd78Izz0BinZjf4iUcya5OtEU7cwlwb8FtPwF6gKuz/78GCAI3mwdIKaPAHcD1eb93PXBPgWD8HZS4fG1dz7oKmtG4rh5EUxl0Qyoh2WUnmmq8I3lb39L+DWY1y4np9sj0mY+ra1O3x8Fwl4fxhXVyUW4zQok0/+/nxzGMlSNTdB1uuQUefxwy7VFE0FDm8qMt3I2/JnRYpLOqzqMjJJfPJ7/9NO/9v4+Q1DtXsLWOGW3RnRUm5jqfD8txZi7G5l4vezcE0A3ZVt2km0UnI7n9CGZzfzs5yaXRMwaxVKa0Iznaee0KGZtXbqyN3cud2h1Hcv2IRuGJJ+A734Ff/ALm5lp9Ro0llnUke7QSzfY60RbtiBsovBiY/z8v+30fkAGOFBx3IPsz8o47mH+AlPI0ECs4riW0S7M9cz7Q7XXgc2kNdx+eno2xpUBIHun24LTbctUtVmc+Zr5mToa73YzPx9sm33k98dMXJ/mzHx/gwMTqxQmGAU8+CTffDKOjTTg5CzPTyUhuGZ1VdR6LDp6OE2UlpJQcHA9xYjrKPz10vNWn06HBmEKy024j4LZ3NlosyJnZOJt7POwZUo00OjnJy+k4ktuPxWiLjhhaCnPhv1xIVq/dbCeKaBlj8wl8To2gZ3m6W5fHgWYTzHTmgXVD1+HgQbjtNrjrLjhzRkVhrDXimRROYcde0DvNaVP/Txkd40UbchS4ouC2l2W/92a/9wARKWXhH3gO8AohnHnHzRd5jLnsz5YghPioEOIJIcQTU1NT1Zx7RTTD3VsPcjENHgd+l4NosnGfq0Q6w0QowdbepdUrmk0w0uVmdL49IiJMITnotjPS5SGayhDqiG2Ww5zPnQuVP/9YWIA77oD772999c9CLN2Sz8RcLIXLbsPr1PC7OxnJzaSzqs7D7dDwOTVmOw6eFZmJpggldHxOjS8/cLTh+VQdWkskqePPZoP1+pwdIdlipDMG4wtxNvd62THgQ7MJDk90hORCOo7k9qMrK/R1HMmlCWcXg6Z726SnU0FSkrH5OCPdHoQQy35mswl6fc6OI7lBjI7CPfcoUfnFFyG9hj7acSO9zI0MYBcaNkTHkdye3AS8Uwjxn4QQPUKIN6Ia6QE0NENMSvlVKeXlUsrLBwYGGvlQgGq210hRtl6Y84Ggx4HfpZHKGA2rjj07F0NK2FrgSAbl7m2XuclCXPVRsGs2hrtVY97xTk6y5TCF5MlQ5Yrw4cOq+ufgwdWPbRRfuPsgv/G1XzX9cWciKXp9ToQQ+J3tEdGzVuisqgvo9Ts7juRVMMvmP/vW87EJwed/9GKLz6hDI1GOZOWo6fE6Ld1s78ABeOwxOHoU5ufXpuupkPH5BIaEzT1eXHaN7f2+jiO5CB1HcvuRcyR3nDMlMYXkQkdyl8eBEJ2ormKMLSghuRR9PmenF8AKPHh4iocO1+aQnJ+Hhx9WC99f/Qoi7RE1uiJxI4W3IB/ZxGmzdzKS25OvAf8n+zUL3A78afZnE9nvc4BfCFHYEbYHiEkpU3nHdRV5jJ7sz1pK+0RbqJezy+PINcBrlABuOkM3dLmX/azb62grIbnbq+ZTZvPd8flOTrLViGXfx5MVOJLzSSRUf4If/lCNsc3mxHSEiSpE8FqZi6VycW5+dyfaopksr+tb5/R6nczG2mNgaBXHp9SM/5qd/fzOa3fzhbsOcv/BSa7bN9TiM+vQCKLJTG6y1udztmSQKJfpaXjhhcX/2+3Q1wf9/Yvfe3vV7WuFM3OqImBTr5oc7t0Q4PnRhVaekiVJ6hlc9sJ1XgcrY7psO9EWpQlnGxEGChzJds1Gl8dh6Y2/VjE2H+eCkWJ6jqLf72Km02yvJH9590E8Do1X7andJZlMwnPPwfPPw7Zt8JKXwOBg7efYCkJ6nG778gaOAE5hJ9kRktuObFzFJ4UQnwU2ASdYzDN+NPv9IKABu4BDeb9emIl8kIIsZCHEZsBbcFxL8DntpHSDdMbAoVl3030xI9mZq5aMJvWckFRPQiU2akEJ2e3Sj2Q+lso1Lx7JOpLHOo5ky5FzJIdrW2ePjans5Je+FC69FLQmLX0mFhJEkjqGIbHZlld8NYrZaJ6Q7LITTWXIGBKtieewXql6pBBC2IUQnxZCHBFCJIUQZ4UQf1dwjBBCfEYIcUYIERdCPCSEuKTIfZ0vhLhPCBETQowJIT5fZGe3KajS/c4CYiWOT0VxajY29nj4rZdvZ+eAj7+4s+VzoA4NIKUbpDIGfqeaRPW0WbSFrsPkpBKXH3oIbr8d/vmfVTf5++6DZ5+Fs2dbnytVC2a0zOYeVXq3dyjA6dkYsTbIumsmqU60Rdvhdmg47baOkLwCpRzJkN0Yb6PrdTNIpDNMR1Js7F7uMDPp83ccySsxOh+vu3PRMOD4ceWk+sEP4NgxdVu7kJEGs+ko/Q5/0Z+7bPZOtEUbI6Wck1Lul1JGgP8MPCylNBc+DwMh4D3m8UIIL/A24K68u7kLeKMQIpB32/uAOPBgI8+/HHx5oqyVMYVklZGszjncIAeieZ0rjI4C6PY4ctnDVmc+nqbbo4S2wYAbzSY6jmQLEs1lJNf+t2l2Mz4pJeMLCaSESJPXn/lCsjkXboe890YhpeTXv/Yrvv904//wtfjy/hW4DvgT1E7qZuD8gmM+DXwW+IPsMZ8CfiqEeImUcgJACNED/BR4EXgHsBP4G5TI/cc1nF9V9PpcHJ5cAzV2DeT4dJStfV40m0CzCW68bDNfvPsgC7E0Xd7lg22H9sUc1HwFGclSyqL5ku2AlKp7/NwcHMnrse3zKcdyvns5GGzdeZbLmbkYmk0wnC292zMUQEo4ei7CRZu6W3tyFiLZibZoS7o87VM+2grCSdORvHw61+OzdhRRKxhfUAu0laMtXJ2M5BJEkjrzsXTR91u9mJqCBx5QkRfnnw9794K7tO5vCebTMQwkfc7iQnIn2qI9EUJcBbwCeAYIAh8A3pi9DQApZUII8QXgs0KIORbXuzbgS3l3dxPwO8DtQogvAjuAzwF/K6UMNfzJrII/G2EXTWXoXh4JbBkW4mk0m8Dn1BbF7waJRmbFjylY59PldRJKpNvC+bgQS+fGPM0mGAq4Oo5kCxJL1RZtUQyzGd+ePXDNNY0bS+diaZK62v0NJ/Simy/1IJ7K8D9+8DyfesOeXEzLXDSV6wuSvyHWqHOwOknd4MHDU1y5o3f1g2ukqpmgEOJNqF3Ui6WURQNyhRBulJD8F1LKL2dvewQ4CXySRZH444AHuCE7kN4rhAgCnxNC/GWzB9den2NJt+6T01FsQrClSND+euX4VIRdg4uT5X3DanP94ESIK3f0teq0OjQAczc+v9leUjeIpzN4nWsoHwKIRtXXqVOLtzmdxaMxbBbSI8/MxhnpdmPPliLu3aA+j4cmwly0qZt4KsPBiRAv3bKsKfi6QjXb60RbtBtBt70jJK/AoiN5+YS5x+tsm67yzWIs+3qsKCT7nUSSOol0Brejc83IZ3ROvX7NaMoVjcLjj8PTT8OuXSr2oru74Q9bFdNpZUAp5Uh2CjsJo3Mda0PSqPXu51DN9X4OvFxKub/guC+ghOM/AvqAJ4DXSyknzQOklHNCiNcCXwbuAOaBv8ved8tpJ0ey6gEg8Gc3tBqV7WxmrfpLRFtIqcTmbm/9YzXqiXIkL84Rhrs9ubGwVjKG5L/f+hxvvXiY1+xt01wii1BLs73VOHwYTp+Gq69Wm7P1Jr95YyieZuMKc6xaeOr0HLc8eZYdA35++9U7SeoZwkmdvrxoC8h+dksnmFmC2WiKP/3Ri/zJOy6oq+gdKhF51wiqlUN+C7i/lIic5RrU7u3N5g1Syihq8Lw+77jrgXsKBOPvoMTla6s8v6rp9blIpA3iqQwp3eBD/+8x/uDWZ5t9GpZFzxicno2xY2BxsnzeBmXbPDjRafC11jB3+XOO5Oxkab24tVIpGB+H/ftVA4Nbb4X/9//glluUY+q551QWVaqFL8eZuVgu1gJgS68Xl93G4ckwY/NxbrzpYd71lYfbJsutUXSa7bUn/X4X05282pKsGG3hczDXiWhYgimsr7TI6fdnx7nOa7eM0XkVpdTMply6rjrR33Yb3H23iqOyGjNZIbm3lJBs0zrRFm2IlPJJKeUVUkq/lDIopXxLEREZqfhzKeUmKaVHSvlKKeXTRY57UUp5XfaYYSnlZ7M5zC3HnOdbveHefCydy/tdIho1gEhSx+2wFc2MNoVZq290SymXNNsDGO5y56pzauXUTJTbnjrLR/7tCW5/yoIX5zbCjCScjiTRM/XPdkok1Nr1hz9UTuV6MpH3fmpU1AzAsWyfrkePzwDk4mV68prtAYQtfh0D9Ry+9/QoT5+er+v9mq9/sIGVYybVrqqvBA4LIb4shAhls41vF0KM5B2zD8gARwp+9wBLmw0UNiNASnkaiBUc1xR6fepCOxNN8v2nRxmdj+fetB3g7FycdEayvX+xochQ0EWP18HBiZZXZnWoM4vRFsqVZV6o13O5tGHAzAwcOqS6zv/wh/C1r8E3vwn33KMyqU6ebF4X+jOzcbb0LgrJmk2we8jPA4emePuXf8mBcfW5PJttyrceMQxJKtPeGclCiPcIIX4ohBgVQkSEEE8KIT6Q9/OgEOJPhBC/EkIsCCEmhBDfE0LsKbifbUIIWeTrO81/VqtTzwXPWiSUSOPUbEWdsz0+J7MxFUXUQTE2H0cIGAqukJHscwF0Gu4V4WzWkWw25WomUioR+e67lah84IASma3ATDpCQHPjshVfuHWiLTpYHX+bOZKh8eccSuj4XcVdfaYwa/Wc5EhSJ2PIXEYyqIoclWdb+9zANKls6fXyqZuf5Wu/OFHzfa5XItlKH0M2diPbbMb3xBP160WQP09vZF+TY+fU4vqJk7PMhwxedZWDqe+/FCOs5nSBNrmOAUyFk0u+14uVDCb1ptpH2AD8BvAs8H4gAPwl8D0hxFVSXZl6gEiRndY5wCuEcEopU9nj5os8xlz2Z8sQQnwU+CjAli1bqnwKxenNLiCmwkm+8rOjAExHUoQT6aZYxK2OOWDsHFgUkoUQ7NsQ5MXxjiN5rWEOavnRFkCngVMRwmH1dSJvDuV2q0gMMxajv1+V5tYrGiOeyjAdSbK5d2n0zp6hALc/NcqWXi9fuOFyPvLvTyzZLV5vpLKCR5s7kj+F6hj/u8A08GbgW0KIfinll4AtwH8C/hn4/1Cd4P8IeEwIcZGU8kzB/f0+8Mu8/083+PyrYqjLzblQsuldoNuFcEIvOVns9TpJ6QaxVCbnNlvvjM3HGQy4VrwW9PnXV+VNJZjRFqAWaq0q6Z6bg1/+Um3c7t2rspR9vtV/r1HMpCP05bmRo1G1WN+6VUVkOUVHSO5gbXzO9hBgQvHFKIlGu6gjydLja05Itrgj2RS6uzxLHckp3WAmmqLf76rp/k1d4Nv/6Sr+5w+f5/M/ehGPU+MDL6uvPrMeiCZ1/C47kaTOZCix4oZ3rWQySkg+ehRe9SoYGVn9d1ZiiSM52bjPxPHpKEKoLPf/+RcJDh/wgjbEx95hY+x/wPUfaGyVQj05F04s+V4vTCG/GbpltSsLkf16h5RyBkAIMY7qOnsdcF99Tq84UsqvAl8FuPzyy+tqtTEdyV9/9BQnZ2K885IRvv/MGCenY1y4yeJhK03AdGdv719avrdvOMB3fnWmLZoOdCifWJFme9ARksslkVDdcvM75mqaylnOz13u7wd7FVdj02W8qWdpmfb7Lt+Mw2bjD6/fh9epnIrn6rzj2U6YDSDa2ZEMvE1KmS/23p+tAvoUqqHPCWCnlDKn9Aghfg6cRsVR/UnB/R2SUj7a4HOumeGgm1TGYDZW+4JnLbKSkNyTd73uCMmKsfnEivnIQO591olUWc7ZvFzNSAuFZJNEAp59VsVPbdumcpQHmxzTKaVkJh3hIv/m3G3f/z784hdqvN++Hfy7BkhedDLrAOzMkTtYj1xMRBPyz2thIZ5ma5/aNfJl57eNy0gu3VjUFGbnLV6haUZvdC2JtlBj4Ph8ouZ51fHpKN1eBxu63PzjBy/lur95kAcPTXWE5CqIpXS29/vYP7pQ14Z7KzE/rypr9+5V+cnVNuMbX0jgdthIpA1C8QZGW5yL8MrdA/xs/xz//DUXl708wcSFD3PeqVfyR3/k4MARDwy0R7RFox3JzWg2WO2qeg7Yb4rIWX4BpIDz847xCyEK6y17gFjWjWweV0yh7cn+rKmYjuTbnxpl96Cfj75qJwAnZtZ3vqiJOWCYgqLJecNB4ukMp2fXb/l8Id949BQf+/oTrT6NmjAnZ6ZTwcxI7gjJ1ZPJqK70Bw6oheb3vw///M/w7W/DvfeqxkKnT0OsjI/SmayQXOhIvnJHH1+88SJ6fU7cDo0uj2N9O5LXgJBcICKbPA2MZH8ezReRs7fNAqfMY9qRDV1qVrue378rsVK1lNnFej1HERUyNh9npGtlIbmvk5FckrN5jmSzw7wVMAw4flwtiO+4Q/27XiW7qxHKJEjLDP3ORYPFiROweTO89rUq5uqZuwfRQx7S1ojD7dBhGd5shJ3VHcnzedEWds2Gx6E17JzDCT0nsBfSlY2KaGQZfz0wHcn5zfZGutW8amyh9oZ7J6ejubhLu2ZjU4+Hqc4mbFVEkjo7shXfEw1ouLcShw7Bd76jmvJVw0Qozq5BNQaGE435TMRSOmMLCV62rQfHgb1EQxpv+61Z7F1xvn2zwbXXwoEXsptLbeFITi75Xi/CuWZ71s1IPkDxLXWB6moLKvdYA3YVHFOYiXyQgixkIcRmVFnukuzkZtCb5674xGt25S6OJ9d5oyqTE1PRJfnIJrmGe+OdnGSTx0/Oct+Bc2SM9s2nLMxIDnrsaDbRESbqjJSq8cGxY/DYY3DnnfDv/w7/9m/w4x+r244eVTvH+ZFmp2eyQnKPt/gdZ9kQdDekC3C7kNTV4t1lX54j2+ZcDZSc9gkhBlBjcLFj/kUIkRFCjAsh/lYI0ZgWyzVilvat5/fvSqzkSDYX241sfNJOSCkZnY/nFtGl8DrteBxaJyO5CKNzcTZkP5NWbco1OQn3368yIJ99FpIN/jOajfbMaAuzSe8FF8C73gU33KCOy0Rd6zLe4s9+9CJ/dU/Tl3MdKsTfBs32DENmoy0WRVGfy94wF/VK0RaLjmSLC8lxtV7Lrx4x+6qcqoNJ7sT0Ul1gMOCqe6n+eiBjSBJpg629XmwCzrVgzptIqLHzjjsqb8Y3vpBga68Pl91GqEFzzuNT6v064Aow+vPNBPZO4t0YQgi1UbJpE0xNKnnS6htisL4zkn8E/Ek2m9F0Sb0KcKBykwEeBkLAe4A/AxBCeIG3kY2lyHIX8AdCiICU0gzZfR8QR0VlNJWgx47dJhjp9vDWi4axazaGu9wdITnL8ekIr9g1sOz23UN+bAIOjIe4/sLhFpyZ9QjF0+iGZCqczLnq2o1o1nFklkULIejxOjuO5CYRj8OZM+rLxG5fjMR45ngct12j271yefFg0MXkOo62MB3JbZ6RvAQhxGuBd6JiK0rxN0AE+Ne825LAPwI/QY3Rrwb+ENgJvKPEYzWsL8Fq5EowO47kooQTafqLbO7CojDQKHdIuzEbTZHUjVWjLUC5kjsZyUtJpFUm/6v2DDARSlh+oRaJwOOPqyqf3buVsNvdXf/HmU6ppUt/Vkg+e1a5obduVT8PKp8FmZiT1Dp0JD96YoahQHvOgdcTLrsNzSYs/bmOpHQMuTTv1+/SGiZ+h1dotue02/A5tbbJSM4X37u9Tvr9To6dq03biKV0xhcS7MibgwwEXEyFk0gpEaIT41Mu0ZQp/jkYCLhaap4YHVUbsZdeCi996ep9faSUTCwkeM3eQYIeR8PmnGa86s9u6SEZ0+i95hAPHbbR5XFg12yMjMDYmGCrZrP0hpjJuYYJyWmEWKwmbyTVPsJXgd8B7hBC/C9Us70vAj+VUv4CQEqZEEJ8AfisEGIO5S7+FMoF/aW8+7ope1+3CyG+COwAPgf8rZSy6fZWIQT/+dU7uWJ7L3ZNfXK29fk60Rao3Z3JUDJXdpGP26Gxvd/HgYlOwz0Tc0dubCHetkJyJKljt4klkQC9PkdHSG4huq4cV5OT8MK5GH7h4WtfE3R3L+Ytm0KzmXW1IejmyKQle6k1hTWSkZxDCLEN+BbwAynlv5Y45reBDwPvzo+hklKOA5/MO/RnQohJ4CtCiIullM8W3FVD+xKsRr/fiU10HMmlUI7k4gtd043QcSQrxubVe6g8IdnFdGecW8JoNh9534YADx2esrTglI+uqyipgwdh0yaVo7xxY/3ufyYdwWNz4NVUNN7p0+p2c88tEFDf16sjORTX2TXQyWi3OkIIfE7NUpE1hSxkRdFgvpDstjcw2qJ0RjIoQXvB4kJyLiPZs3SesKPfz/HpSE33fXJaVUXm900aDLhJpA3CSb0pGa1rhWheT6KhoLtpGcmlyGTURuyRI3DttTC8gkcwlNCJpTIMd7kJuu0Ny0g+NhVFxp1842tO3vnuDE8Phtk/Sk6XGh5WFUFe6bZ8RnLGkLmqt3q7z0PZSJ5mNCivamSXUoaEENcB/wB8B5WN/ANUN/l8voASjv8I6AOeAF4vpZzMu6+5rLPqy8AdwDzwdygxuSV86g17l/x/W7+Pu58fb9HZWAezM+uOEu6n84aDPHt2volnZG3M3Kzx+QS0ac+BaFLH57Iv2VXu9TmZi1p74rReWEjH6bJ7kVJ1sZ+bU4O+ic+nBOVM1M25cJK5eUlP9/pzCOSEZEf7C8lCiF5UJc8p4EMljnk7asP2D6WU3yvjbm8FvgJcxmJVkSWwazYGA+6OI7kEK0VbmLe3gzOjGZhC6MYyhOR+n7PpGYVWZzSbj7xnSCmjVm/KVYiUixU+PT3Kobx7t2qIVwsz6Ugu1gKUkBwIqMeARSHZiDlJrkchOZFeIvx1sC5+l93S40UxUdTntDckD1VKuWK0BUCX12n5aIuFeBq3w4bbsfRCt3PQxz0vTJb4rfIwdYFt/YvxegMBtaE2FU52hOQKiCbNCmCNwYA710y91czPww9+APv2qWZ8riK9Gc0eJsNdHgJuB6EGOZKPT0UYcATZcongL/5M43fu8nN4MpKLpR3JdoNxJH2Wz0ieiSYxpJqPjs7Hc3pLPQgnmreJU/UZSymPAm9e5RgJ/Hn2a6XjXgSuq/ZcGs2Ofh9zsTQLsfSSrqfrjePZAWN7EUcyKCH5R8+Nr9j8Zz1hXkjH5mtvZtAqIsnljSZ6fU4OdZznliCSSTDi6i7582hUfUVCLgwp+edvJOn1unOO5Y0bVaf7tU4u2qJWxaDFZOOhfgQ4gbdKKZfNNIUQL0dt8N4kpfyrMu9aFny3FENd6zvjuxQZw1zoFh9vfa6OIzkfcywuN9rihbFOz4d8zEZ7+zYoZbRdHMnFmJtTzW6feEJ1qz//fLXxWg0z6Qh7vBty/z91SsVamPvvDge43FI5kmX7vmbVIKVs6qK2Q234XI1z99YDU0juXhJtYW/IRnMslcGQlGy2Z57HQtzalSvzsdQyNzLAzgE/s9EzzEVT9PhWjscrxYmso3lb39KMZIBzoSQ7B/xFf6/DcqJ5ze2Hgi6eOj3X4jNaysGDamy7+mrYs2fpz8azTRs3dLkJNtClf2wqyoUXuPiXv1b/v+pQH4cnI7n3r+matiU8RJPWXjOYcRbnjwQZnY8zFU7WTUgOrVJJUU/a357VBLZlHbjrPd7i+FQEIZYOGPmYi4vDkx2REciVdtSjK26rUDtkS8W3Hq+TOYvvwK8XUlLHaVs+WBw4oBr2mV3r/fZsc6RMMtcIaP9+eOaZJp5sC8k122tjR7IQwg7cAuwG3iSlPFfkmAtQlT13oyKjyuXG7Pcnaz3PRjAc7DiSi2E6x4IlJowOzYbb0R5Zcc1gbD6O22GjpwxDQJ/fxUxU5Tx2UIzOx9BsIldGuhbeV4mEasj33e/Cz34GU1OV/X4skyRupOl3qPlvMqnG18IoeX9AqozkdeZIjqUyZAzZtEVth9rwtYsj2VsQbZGq/zmbr4N/lWgLqzuS52Npuj3LhWLzOl5LvMXx6Sgbgu4lAljOkdxpVlsRhdEWqqeDtap+4vHizfjGc45kNwG3vSEZyYYhOTEdWbI5cdWOPgD6CoRkYtaPtjDzkS8YUU0U6vl5CSfSTdu8bd9VdRPZni3ZWO8N945PRdnY7VlWHmOyb1h9GF4c7wjJKd0gnlYDQDs7kqPJzLIdsl6fk7lYiozRWWC3EkMa6NJYIiRLCffdB1/6khrob7lF3RbQlJAczqxPMW7RkdzWQ95XUFVAfwr0CSGuyvtyCSEGUQJyBBU79bK8n59v3okQ4nNCiL8RQtwghHidEOLzqDip26WUz7Xgea3Khi43kx0heRnmZH0lkcbvcnQcyVnGFuKMdHvKagDU53OSzsiGdR9vR0bn4gx3ufE4NOwWb8pVKYYBR4+qEt477oATJxY3YldiOq1EmD7nYqM9KZcLyYEA69KRbFbmdaIt2gN/mziSl0RbuBoTbWGOmytV2HZ7rZ+RPB8vXk1tCnK1NNw7MR1le0Hc5WC2sWa9c1+bwVw0xZX/66c8c2a+6Y+92NxeYyi4GA9iRcxmfE8+qcbJ8YUENqE2EYJuR0MykscW4iTSBjvyhOQrt/cC0O9Xr5cpJBsRt+WjLaZyQnIXoBz89WKlyLt609kiLoPNvV5sYjELaL1SbMDIZyQbsn5wvFMOmr8b185OumL5YL0+J1KqDOhqy6E61I7Z/d0p1MaOrsO3vw0PPwyXXKK60//sZ6rx3pWvzjqS9fZ9L9bCGslIfkP2+/8u8rPtwDZgU/b/DxT8/EHg1dl/HwR+H/gI4AFOA3/FKhFUrWQoqNwFxaJ21jPlLHSDDXKHtCOj84my8pFhcWEyE0kWLQtej5ydi7MxK8RbvQS+Fsxmtn6/ylHeuxecJaY6M6aQnM1IPnVK3b5169LjgkEYPesiZSywnjCvUZ1oi/bA69QsK15BcSE50CAXdW6jdoU5R5fXwXw8jZSyrA3KVrAQS7O1z7vs9k09XpyajWNT1TuST0xHefOFS7uwBT12nHZbWzqSz8zFmAwl+dWJGS7Z3N3Ux853JA8G1ZptMpRkU8/yv50VMJvxHT0KJ1JxBgIuHJqtYXPOY1NKg9uZF6/a53fxL79xRc7V6/erTVs94mpIlUI9yY+2UP+v3/o8nNDZPdgRki2Dy64x0u3h5DqPtjg5E+VdW0q3uhZCsG84yMFOfm5usuN1arlO8e1INKmzITugmfRmxePZWPW5Wh1qxyyRddnsSAk33QQvvADXXw9vfas6JhyG226Dri4nYqDjSG5nR7KUctsqh5wEVl3JSCm/g8pQbhuGu9Q1aGIhwa7BTuaeyaKQvIIj2W3tUuVmMjYfZ9/ewbKO7fOrsW0mmmLHQCPPqn0YnY9z9U5VSqqaclmr7LbeRCLw2GPw1FOqKd8FF0BX19JjplMRHEIjmK36OX1aicaFx3UFBJmok5Sxtl+zQsym051oi/bA6s325mNpnJoNT15lrM9lJ6kbpDMGjjrO8cqJtuj2OEnpBom0gcdpzR4cC/E03UUcyZpNsK3fmxPoKmUummI+lmZHgcFMCMGA38VUHR2WzcL8m5+Ybn6jO1P49LvsDLWRq3tuDp6fSOBzeUgmVfVJUjdIpDMlK9ir4Xh2w2NHQe72a/YtndONjEBiwYWtDRzJAbed4aAbu03koi7qQTN7lbXvqrrJbO/3retoi0Q6Qzih50L0S3HehgCHJsIY6zz2wCyH3T0UYDqStFzOUbkU6yLak+2OOhe1doOJtY4pJDuEHSHgFa+A3/xNePvbwWZTX7/+67BrF/z7v9twxgNE1qmQvJiRbM2JfoeVGcq5M9bn+7cUi9EWpSeM/gaV/bYbST3DVDhZVqM9gD7foiO5g9qMmwwlcu4on0tbs47kQtJpePFFuPVW+MlPVFmvyUw6Qp/Dn3Mjnj69tNGeSTAoMOJO4vr6eM1MOtEW7YXP1Zi84XqxEE8T9DiWuH/NNUq9r0eRMjZqTWe0leMt5uMpur3FTT87B/w5ga5SzL5RxSqVBwKutnQkx7Kbo6daYBw0379e52K0RbvMecOZBPa0m+98B+KhxjR5PjYVIei20+9f2cA2PAzxBUcbZCQnGAy4sNkE/X5X3SpBzAa3nWZ7FmNbn48T09F123jFbCbQ61tZSN43HCSS1Blto1zge1+c5ECd4zhMF8Z52QaEE20ab6FKyZeKbzlHckdIbim5aAub+vtccgm87GVLj3E4lLCs6yCmeolk2m9iVw/WgiN5PWM6kts5JqgRmO6ZlSaMgY4jGYDJBXXtG+l2r3KkwnQkT0c64xyoOYwhYVNWiLe64NQIpFRC8V13we23w6FDKiPZjLVIJGBiYnk+MqhyWxBEqq8ib0sWoy06juR2wOqRNaF4mi7P0veSGT1R73HOfO+uFKdlOn3n49YcJxLpDIm0UTKeaeeAn1OzsdwcuRJOTJUWkgcDrrpmvjYLc0w7NdN8R7JZ4eNz2unxOnFogkkLx8zkE9YTBDQ38TicOqLea+PT9d1cOXYuys5B/6oRMiMjEJ2zk9KNqt7XzWIqnMw1phwIuOrmSE6kDXRDdhzJVmNbv49QQmfO4t1ZG8VMVL3Be30rvzH3DKkJ9eHJ9oi3eObMPB/7+hN86f4jdb1f04WxLyskt2O8hZSSaGp5s72ejpBsCUxHcn6zvWIMDanvxlyQcCcjucVn0qEaNnR1HMnFCJUTbdFptgeQ29wu15FsVt7MdIRkAM7Oq4X1pp6skOxc3xsUs7PwsyeiRDIJ9HPdxGKLjfYK85HBFJIhErZmjmqjWIy26DiS2wG/SyOdkZYVYBbi6WWiqK9RQnJuo3aFZnvZc5m3qDZQLFM6nx0DPjKG5PRs5cLpiekomk2wuXd5hm+7OpKjWTFXNXZrbiVxLKnjdWrYbAKbTTAYcLfFnDdppElKnaBdzdNd2TXp7T/Seeqp8prWlsPx6Qg7+lePthsehoUZFflo5U2xc+FkrjHlYKB+juRQGU2460lnVV0m2/vVhXK9Ntybi6o3Zk+J8hiTXYNqtnx40vq2i6Se4b/f+iyGVE146onZsXTfsApRH2sjh7ZJUjfIGHKZkNzrXcxI7tA6ckKyWHmwCATA4wF91reOoy2yQrK9M+S1I26HRrfXwfhC+11HG4kZbbFSI6tAp9kesDgGlyskO+02ujwOZqPttxhuBKNz6vXbaArJLi1XBrxeSfWfA+DcMwN897tw333q9mKO5KCaChKLrDMhuYzNrg7WoVExEfWiWEyDL1s12ahoi5UcyV1eawvJ5nkVy0gG5UgGqmq4d2I6ypZeb9Fc6sGAm9loyrIbEqUw30NSwtm55rqSoykdr3PxvTYYbA9Xt2lQCmimkKzea3E9za9+pSKhJiZqfIxEmslQkp2Dy93vhQwPQzplQyatvdndKEdyuMlxUp1VdZls61Nv3vWak2yKhn2rZNN0eRxsCLo50gaO5H+8/yiHJyNs7/cxXmeh19wR2jukhPV2FEDMAbVwEuVxargdNktkJH/9kZP81r8+vi4jZ1JysdneSgihXMnxGQ9xI42+zpr9wKKQ3Im2aF82BN1MLFh/Ut1Mwgkdu02suEFiRlusx2tkPhNZZ48Zk1IOfX4n0xYY56zA2bk4QsBw12K0hZUXac0g1TeFLepDi/vIZFTshcMBP/85nDypxAgT05EcC6+vMSiUSOOy2+radKlD42iUu7dezMeWO5LNTYp6N/8MJ9J4nRqarfTmj3kuIYtmJM9n1+7dnuJr9x0DStuoRkg+Ph1lW99yNzKQE8hm2mwjNv993+yGe9FkZkmU5FCbOJLNJu4Bu5obmGvSZNbsNDsL3/8+PPggJKt8OxzPxqjsHFjdkTwyor7rEbdlq/EiSZ1YKpPrOzYYcDEbTZKpQ3+xZm/erq8ZTQ1s7vWi2QQnWxDAbgVmsyUqqzmSAXYP+Tl8ztpC8gtjC3zlZ8e44aUbefvFI0xFknXdOQ3F0zg0QbfXQa/PyVgbZnuaJT7eIp2Ie71OZqPNmzh95N+e4BPffGrJIP+9p8/y2R+8wP0Hz63LmA2z+/tq0RaghOTwlPrsrsec5KSewWm3rZqt1cG6bOhqj0l1M1Gdme0rvq/9LjuGhFhq/W0g5ROKp3FWKGj1t2nn+UYwOh9nKODGmd208K/DjOR8pC1DumcG58xA7rZYDLxe5b766U/h5pvh+echlVp0JCci68uZG4rrnViLNsI0jljxsy2l5FwoyWBwaa+enPhdZ9Eokly9YZXpjrZqRvJ8fGVHcsDtYDDgygl15WIYkpPTUbaXiBowBbJ2cNTmE0vpmPsGzW64V9jcfijoaos5b6Ej2Z11JCeNpRrBgQPwne/A0aOVP8bJFRo7FjI8rL5nIi5LXseAXIxFviPZkPVp7tzsvgQdIblMHJqNTT2edRttMRtLIwQlO7/ms2cowNFzEYw67Kw0Aiklf3jbc3R7nfyPt53Pxm4PUtY3fzOUSBN0q87CI93utoy2iJRwJAP0+p3MNSnaIpbSue/gJD/eP867v/IwZ2ZjPHh4ij+45bncZGU9bvCYjuTVoi0ANmyAaMiOkdTWZbxFSjdwddzIbc2GoLvTbK8A1Zl5ZZHG77a2w6xZmGNyJWzr83J8nc75Cjk7F8vFWoD1m3I1mnTPDGhGTkiWUrmt3HmG93AYHn1ULZ6ffhqEZpCIri9nbiiRJuhpb/FcCPF+IcRTQoiIEGJUCPHvQoiRgmOEEOIzQogzQoi4EOIhIcQlRe7rfCHEfUKImBBiTAjxeSGEZd4UpnHEip/t2WiKVMZgOLi0qsTnbEwcRzihrxhroR5bw24Tlo22WC0jGZTLs1JH8mQ4QTydYftAcWHPFMjqlfvaLCLJDL0+F10eR9PXlZGknnsvAwwG3YQSOnGLmwBMR7Lfrv7mpiM5YSz/TMTjapP1xz+GUKj8xzDfx72+1TUo05GcibjrvrlUL85l9SYzI3kg+70e8RbhRHP7EnRW1hWwrc+3LgUrgLloim6PY8USH5M9Q34SaYMzTc4XKpexhQTPj4b4xGt20u11Mpzt4l5PsTcU13P5NMNdHsbbsNmeuZNXmJEMypneLBfw4ckIUsJvXLON8YU47/jHX/Lb33iSPUMB/vnXrwCoeDd9LZAydARgF6tfxs2Ge+k5X27QX08kdaPTaK/NGQq6mYnWt3Kk3VFC8ioZ6dnJpFVL/JpFKKFXLGjtGvQzHUmyYFGRoJmMzsfZmJcv7XfZSWckSd3ai9xGkeqbgowNx1wfoERkKZcKybljU/Dii6C5dBIhO2NjTT7ZFhKKV76BYyWEEG8Hvg08DLwD+EPgVcCPhVgy+fo08Fngi8DbgAjwUyHEhrz76gF+CsjsfX0e+D3gTxr/TMrD72pMTEQ9MDeSN3QtzbkPNGizNJzU8a/y3hVC0OVx5IQuq7GwSkYyqHiL41PRiuKvDo6rquOdJRyipmu8XrmvzSKa1PG7NLb1eTk101wNI5bK5PK+Qc15Ac6Frb1mC+sJfDYX9ux+mFPYESxGWxTjzBlVsfP00+U141ts2rr6HC7nSI66cg0zrYbZiDLfkQz12XgJd6ItrEsrLixWYTaaoqeMnSCA3UPWbrh3Ovs33JM9TzPzb6yOOcbK/aQ+xCNd7e1ILiYk9/qa50g+OK62LX/r5dv5/ideTrfHQb/fxb/+1hWcNxzAbhO5SoGf/xx++Us4dQrS1pzX1Y2UoasBu4y4BlNI1mf9RPT2mtjVg5RudPKR25zhLjdSWn9S3UzMaIuVCGSv3+u94V4onq7YobFrUJXtHp2ydlRXo5FSMhlKLsmX9uWci9YTnJpBqm8Kx1wfwlCvQyJ7WSomJJvYXRnSMQf79zfhBC1COZtdFueDwFNSyk9KKe+TUn4D+B3gEmAvgBDCjRKS/0JK+WUp5U+B96AE40/m3dfHAQ9wg5TyXinlTSgR+VNCiGDTntEKWLnZ3sRC8Zz7RuU6R/LWcSvR5XXkIiSsxmwshd0mVnRW7xzwsxBPM1OBOehnh87hdti4dGtP0Z/3+drTkRzLNrzb2udregV6NKnjLYi2AJi0eDxIKBMnYF/8TAohcNrsRR3J+eg6PPZYec34Qgkdl92Gy7568UYgAD6/JBNxWdiRrP6m+RnJUC8hueNItiyDQRXcbfUyg0YwG03RW0asBcDu7OLrsEUb7p2eVYPDll7VJGAk50iuY7RFPJ1zJI90ewgn9bZbyJdqtgfNdSQfnAjjc2ps6vGwY8DPPb/7Kn7yu69iMODGrtnY0ufNDfgLCyqH6d574RvfgDvvhP37Vdj/WiMl9bLykQEGBkAISWbWv44dyZapHu1QBUPZxWM7ZMY1i060RfmEEnrFmXG7BtRm89Fz1twUbxaRpE5KN5Y0W84XnF7zmsVy0vVAxhPF8EVxTg/mbjOFZI+nxC8BmsvAiDsx5PqpqlDRFu3rSAYcwELBbfPZ7+Yu/jVAELjZPEBKGQXuAK7P+73rgXuklPlF3d9BicvX1u+Uq8dv4WZ7ZsPUDQVCskOz4bLbWhJtAdDtcVi2amVyIcFQ0L2i4WRnds1+rMxxTkrJfQfP8fKd/SV7DjjtNnp9zrbb+I8k1d98W5+Xsfl4UytuIkkdf360RaA9HMkRPYlfW5pb7rY5VnQk52M243voodLN+MIVjiMbNqhoCytuiAGMzyVzfbRg0ZFcj791KK5yvv/x7zUefbTmu1uVjpBcAYN1/EO3G3OxVFnZNKB2QUa63JYVkk/NxLDbRG5X2+u00+11MF5HR/JCXjnfcLYctN3yPaM5R3KRZns+J+GE3pQy8xfHQ+zdEMCWjVVxaEsbJm0vsXOcycDYmNrxvP12+Pa3lWP5xAlVatrupIwMTlt54qjDAX19AjkXXKcZyZmOI7nNMa/X7XYdbSTlRVs0phFRu1HpQgRgY48Hl93GEYtWVzULc9O417e4WMwXnDZuhDe/Gd72Nti0qSWn2FRS/ecAljTaSyTUOKutMCTbnQaZqIs06+ezGIrrbR1tAXwNeKUQ4j8IIYJCiD3AnwH3SylfzB6zD8gARwp+90D2Z+QddzD/ACnlaSBWcFzLsLojWbMJ+v2uZT/zu+x1L2M3RcXV6PY6LdtsbyKUWCa8F7IjG0/x/NjS0FopJYcmwhwpWMsfORfh7Fyc684bZCUG/K42dCSreIlt/T4MCWfnmldNrB578f1mRnGF4svf1/E4/OhHMDnZtNMrSdxI4dGW6kMu4VjWbG81XnwRvvvd4s341DhSvhFg44hqtmfFaIuvfQ3+9AO7CKS6chs8bodG0G2vmyPZKz18+tOCn/2s5rtblbauN2o2i3k1Sbb2rd45ci0xE01xyebuso/fPRSwbLTFqdkYm3o82POEpZEuT30dyXl5jCPZQXx0Pp6L02gHzIy0oo7k7KbCfCzFYHDlSUotSCk5OB7ibReXtjtt7/fxy2PT2eaOpXfdo1E4dEh92WwwOKgWvZs3Q28vlJEQYSlSUi+r0Z7J0BCcnPHlOuyuJzoZye3Phux1ZqIjJOcop4GcPxdtYb0JdTOpRtDSbIIdA36OVtiIaK1hljz3+Yo7kk2GhuBNb4KpKZV9ePp0c8+zWaT6prBFfWjxxXVAPL5yrAWAwynJxJykjCRQnjGj3QmXGQ9gVaSUPxZC/Abwz8C/ZW9+GHh73mE9QERKWWhfnAO8QginlDKVPW6+yMPMZX+2BCHER4GPAmzZsqWGZ1E+pnEkZsHK2/GFBEMBV9FePY1o/hkpo+IHVCO7I+esaZyaWEhw3vDKqSkbuz30eB386Y9e5JuPneL15w+R1iX3HpjgzGwcv8vOLz99Xa5h3/0H1UbadftWFpIHg662y0iOJHU293pzGs+pmSg7B/wNf1wpJdGUvsS4tdjforggOzEBd9wBW7bAFVdAT/GUkYYTN1J4bAVCss1etiM5n1hMNeM7dAhe9SoVUwGVV7aMjAjkfo8lDRT33APJqJ3RH5+H/MtF7WEgUJ/PSzihI+a6Abj44prvblU6K+sKyIXHWzyvpt5IKZmrICMZVMO9Y1MRMkb54f3N4vRMjC0FGwEj3fXNMc5vMDJiOpLbrOFedKWM5GzMyWyDc5LHFxKEEjr7VpgIbR/wkUgbubK3cjAMNQg/8QR873vKrfzgg3Ds2GKJqtVJGeVHW4Ba5CdmPITXYUZyMt3JSG53ujwO3A5bR0jOYhiSSLIMR7IruxixoDOjmYSqFLR2DfrXfbTFTCQrJBeJtihWAj8wAG94A7zrXbBtW/tt0q6EtGVI98wscSNLqeYNqwnJdjuQ0SwZG9AIEukMSd1o62gLIcRrgJuA/w28Bng/0At8TwjR0LwsKeVXpZSXSykvHxgYWP0X6oDLruHQhCXfoxOheEl3rb/OQrJhSCIpPRcNtRJdHgfzFoy2kFIyvrC6I9lmE9z9317Fn7z9AjZ2e/jnn5/gG4+dYvdggN97/R4iSZ1vPHoqd/z9B85x/nAw11+oFO3oSI5m4yW29anoy5PTzemLFU9nkHLpetvn1LCJ1U0Ap0+rqtsHH4RIk6cqaSODLg08tqXXeJfNsWpG8kqcOaPcyWYzvkp7XAwPgx5xWTJS9NFHwe5Jc+5AL9/5zuLtgwF3XT4voYSOPtUFwCWX1Hx3q9K+28QtwMyrWW8ZjeGkjm7IJW6U1dg9FCClG5yaibKjCbt5lXBqJrrMXT3c5eHxk3N1uf/CyfNgwIVNUNfojGYQTeo47TYcRQS4Hp96bo3OST6QbbR33obSTu7t2bIsFW+x8sSmFLEYHDmivoSA/n7lVN60ycwXrupuG0rKyBC0l/+ZHBqCTFpjfh7kJllWk761Qipj4O44ktsaIQQbgu6KNozWMtGUjpSrd2Y2HS5WdGY0i0Q6Q6pKQWvXgJ8fPTdGPJXB41yfOeuzUbW4yY838+ccyaWdi3198LrXqQzEZ55RsVLSet6CitADIdAMHHN9udvSabXYXVVIdqgnH4qsj4xkUwBpZ0cy8DfAD6WUf2jeIIR4BhVR8Q7gdpSj2C+E0ApcyT1ALOtGJntcV5HH6Mn+zBI0wt1bDyYWEuwtsRbwu+y591sineGnBya5dEtPzshTKeb4Ws57t9vrIJzQ0TPGkkrXVhOK68TTmWXNCYsxFHTz69ds49ev2UYkqTJWvdm83sdPzfEvvzzJf3zFdhLpDE+cmuUTr9m16n0OBJWQLGX7rDdiyQxel0avz0nAZefkTHMa7hVrbi+EyL6vVxdDpVTr1+PH4fzzlRN1tfGoHphicWG0hdtm51wVjuR8zGZ8R47AXFQ5xctlZASMtMb8vLUmHGNjSvjf9KYTZI5t4r/+Vy9vfKOqih4IuHjmzHzNjxFOpElMBhgcVFnRjcY6V7w2oMfrwKGJtivVqJXZrBulp8xme0AuwsFq8RbzsRShhM7WvqUXpJFuDwvxdF0mT4WTZ7tmY0PQzWgdHc/NYKV8MHNBORdt7G7fwQlVLlZq8giwo19tVByvU4ddKVVp7lNPwQ9/CN/8JjzwgBrM4hb6E6akjqvMjGRYHFDiM26S0nqLhEaS1DNldfvtYG02dLnX3UZuKcxxZjWXhl2z4XVqRJLWc2Y0i1oErV2DfqSEY+s43mIx2mIxm9SbFdXLmTP19sJ118G73w27dllzY7ZcdL/a3LaHF6ukzCqmVaMtNPXEQ+vkrdTs7vENYh/wTP4NUspDQBzYmb3pIKABhepaYSbyQQqykIUQmwFvwXEtxee0W86RnHPXBosLwz6XlhV/Jb9387N88ltPc80X7uetX/o5/3DfkYrXdubzL7fZHignoJUYD6kFy2qO5EL8LntORAb4+LU7mI4kue2pszx4eApDwmtWibUA5UhOZYyiGb9WxIyX8LvsCCHY2u/l5ExzHMnmhqyvYLM66HFUFEuWyagG8zffrDZv0w2e9sUNNTdwF3EkV5qRXIrZWZheSBOdc5Td32h4WH0/d85aMudjj6nv+sAUH/q9c8zNwR/8gbptMLC48VIL4YROeNTHxRc3Z65lrVfY4gghGAy4112zPTO+oNxmewC7s11gC0P6W82p7KCwpbdQSDYbOdWuFIayk+d899Nwt6ctoy2KNdqDxfdCo6MtDoyH2NzrWXEhMhR04XFonKyTkFxIIqEiLx58EL71LdVd9vHHVTSG0UJjUTXRFgDpGT+RdZaTnNI70RZrgY3dXg5PRoil2mNh0kgWheTVrwH5bq31SKgGQWv3ULaj/ToWkmcjKTwObYkj279CtEUpurvh1a+GG2+E3btVr4J2IxMIIdJ2bIlFQcsUkj2rmB8d2ScciVrLJdUoTGHN7BfSppwCLs2/QQhxHqr87WT2poeBEPCevGO8wNuAu/J+9S7gjUKIfGfE+1Ci9IP1PvFq8bk0yzmSw0mdWKq0u9bvdhBNZvjKz47x4/3j/OdX7+TT1+/Dqdn423sPc8ezY5U9Xva9W1a0hVeNKwtxa23WmjFgG2rsY3P1jj4u3tTFPz10nHtfnKTP5+TiTd2r/t5grq9Ue6w3EmkDIy9eYlufj1NNciSXipIMuB1VbVCkUiq68ZZb4MCBxq1V45msI3mZkGwnKfWaRVGTpKETW7Dzne+o9fhqmELy7JS1JhmPPgpOp8Q5GOLiiwW///uq+d7jjytHcjydqXkTbyGmMz/qaUqsBXSE5IoZCLjWXUbyXLRyIdnnsrOx28Nhi2ULnppVQnJhs0Sz/Gm0DmJvKDuZyG/sM9zlbrtoi0gyg89ZfBJlutPnGhxtcXAizL4NKzeKEEKwrd+XjbZoLFLC9DQ8+6zqmPvNb8J998HBg6qZXzOptNleMAhOl4E+6yeSWV/XsE6zvbXB+1+2mYV4mq8/cmr1g9c4lbj9/O76d7RvJ8I1CFrb+nxoNsERi1VXNZOZaGpJPjIUb7ZXLl1dcO21SlDet6+9BGXdH0KLBBF5jX0TCdC0bAbyCpgxYc2eK7SKYnPhNuQm4H1CiL8RQrxOCPEh4PsoEflOACllAvgC8BkhxCeEEK8FbkGtsb9UcF9J4PbsfX0U+Bzwt1LKUJOez6qoaAtrNdvLiaIlM5I1zs7F+OufHOIdl4zwB2/cy8ev3cmtH78Gt8NWcXVsuRU/AN2exebjVmK116xchBB8/NqdnJyJ8eP947x672DRhoeFDPhVBUu75CTn4iWyG6bb+nycnYuTzjTeMZQTkp2FQnJ50RaliMXgl7+EW29VsRf1jpZKmI7kZdEW6nNTj+pX3ciQwcBtcxCLwb33wp13QngFn+LIiPq+MG2tTcxHHoG9F2QQdoPBgIvPfAb8fvjHf1zsw1br52XqjIuMbusIyVZlKOhqm921ejFThZAMquGe1RzJp7O7i5t7l1pHzF3u8TrETyy6MBYnIBu7PYwtJFbcnYunMvz9Tw/z0OGpms+hHkRXiLZwaDYCbntDM5IT6QzHpyIr5iOb7GiSkFxIMqlyH3/xC9Ww77bbVOnK2JgqMWoUhjTQpVGRI1kIGBiSpGd9LOjttalRKx1H8trgim29XLtngJsePGbJJhrNpBJHcsDtWNcZybUIWk67ja293nXdcG8mmlrWI8Npt+HUbERT1Q90wSC84hXw3veqXEfN4ulDEonuD2OPLJ2TmI32VisjddjsgCS6Tt5KlYhxFuYfgE8Arwd+APwlKuritVLK/EnnF4A/B/4I+BEQBF4vpZw0D5BSzgGvRcVg3AH8CfB3wP9s+LOoAL/LetEWq4miPqeddEbykpEuvvjui3KZvDabUA1TK6woMecX5URbmI7keYs5kscXEgix2N+pFt5wwQa29/uQEl573uqxFrAojLVLHGihK3hrn5eMIRmda/x6KZoyH7sg2sJtr0tkSigE998PP/gBjI7WfHc54kZpRzIoJ3GtmDnMrrzHOH1aNeN75pnibmvTkRyatc6kIp1WLvHdL1Gfh4GAi0AAPvxh9VxcutKlavm8SCmZP6sq7i++uPZzLofOyrpCVLRFe1wU64XpOu2pWEgOcHwqit6E3bxyOTUTYyDgWpL/BKrRgBAwtlA/R3JXnvtppNtDSjeYihR/7zxzZp63/MPP+fufHuFzd7xQt3KQWoil9GVlNvn0+pzMNXAH/shkBEPCecMrO5JBNdw7PRvDoLXvtbk5lU91553wjW/AT36iyopW2jmthpShFu+VOJIBRoZsWSG5OblfVmEtOJKFEO8RQvxQCDEqhIgIIZ4UQnygyHH/SQhxRAiRyB7z2iLHbBRCfE8IERZCTAshvpwtxbU8v/eGPczF0vzLL0+2+lRaSi5CqRwhucyGLWuVWqItAHZWIUSsJWajyaJGgnqVwPv9cM01SlC+4ILVnb2twvDEwJ5Zko8MqndCOY2NbBk7Nm+KeLSNQ6IrYDHmzaJ/0DKQiv8jpbxISumTUm6UUr5PSnm8yHF/LqXcJKX0SClfKaV8usj9vSilvC57zLCU8rMFDfpajs9pvWZ7q8U0nD8SZFufl//7a5fhdiwVj3YN+DlaoanJFNLL2ajtMjOSLSYkTywk6Pe7cNprn/tqNsGnXr+Hjd0eXrm7v6zfGQi0lyN5UczNRluYjdybEG9hVgAUblwE3I66zt2mp+Guu9TX9HTt95drtmdbOj8wRd965CSbYrS7wDil6yoq4rbb4Ny5pb8TDILDZRCbr0y3aiT796u5wsY9amPCjH757d9Wm9E/v1O932r5vMRSGZITQewOg717az/ncmjvlXULGAy4mI+lSaQtNe43lNlYCqfdtiwEfjV2DwVIZYymhdWXw6nZGFuLdP50aDaGAm7G6uJIXu5+2pJt7ne6yGvxjw8c5d3/52ES6QwfvmoLx6eiPHV6vubzqJWVmu2BirdopCP5wISq9NtXhpC8rd9HxpBEsc57LZ1Wu6a//KXabbz1VlXWcvZs7W7lVLZcyFlBsz2ADRsEmZCX2dh6dCRrPPAA/P3fqwlIG/IpIAL8LvB24AHgW0KI/2IekBWWbwL+HbgeeAH4kRDiJXnHOIB7gK3A+4H/isp2/GpznkZtXLSpmzecP8Q//fw4CzFrLdyaSSVuPys6zJpJLdEWoBrunZyONqXE1YrMRlL05jXaM1El8PV7X/l8cPXV8L73wYUXWk9Q1gNqTqJFFuckuq6+yhGShbSheVPEo+tj6bVGoi3WHfX+XNeD8ayQPFRCSL7h0k088PuvzsUU5rN7KMDYQqKiMTBSQcWP2Wxv3mLzkYlQouZ85HzedvEIv/z0dWVvyAZcdtwOW9tUcS82vFt0JAOcakK1q/l58y4TkhvT32J0VLmT778fFhaqv594JoVd2HAUrEVz0RYNciTnMzMD3/se/Pzn5JrxCQGBXp3EgnXGnkcfVd+DWxawicXol4suUhvpt3zDhZS1OZLDCZ3UuSBbdqWbNn9aH7OZOmIOYu2yw1YPZiMper3OXKlQuVyyuQuAO/ePN+K0quL0TCwn6hYy3F2fHGOz4UJ+tMW2bCZzoah+Lpzgr+45xHX7Brn7d1/Fp68/D49D45YnztR8HrUSS2WWNNcppNfXYCF5PITHoS1rjFiM7dmd4zDWDR+cn4cXXoC774avf119f/756gbxlGEKyZWNFGbDvYlzrXe8N5OknsHlsHHbbfC5z1m/hLoEb5NSflBKebOU8n4p5e8D30YJzCafA/5NSvmnUsoHgN8AjgKfzjvmRuA84N1Syh9LKb8J/Bfgg0KI3c14IrXyu6/fQzih808/P776wWuUyqIt7J1oC6oXtHYN+NENmWvWu56QUjIdTdHvX+7sadQGhccDV16pBOWLLwanRUxFuj8EkiXRFmajvXKEZADNkyIRbc8BqFLCCR3NJvBWaELp0Fr8Ls1yG48ToTj9fueK7tpSa9Rd2ebvxyqIJ8o12ysn2sKqQvJCouZ85FoQQjAYcDMVTjIbTXHrk2f5zq9Ot+x8VmMx2kJdrwb8LvwuO8emmiAkZyOi/EUykiPJ+jWty0dKlZt8223K8BSrYnoTN9I50TgfM9oiUQ9HctY45VphvSulWl9/97vqOQF09+mkwi4Mwxrr3UcfhQ0bYFZbYEuvd8m17Ld/G44dFaRO9zMbrV5fDMXTpM4F2LmvedfvjpBcIQNtlvlTD+ZiqYpjLQB2DQZ4vYWcY4l0holQgq29vqI/H+nyMFaXZns6Ts2GK+8isanHg2YTnCzY2TRzF//D1VsJuh34XXbectEwP3punFiqtRO5eDqz4gKgx+tsaLO9g+Nh9mwIlNXUYUcbCMn56LpyJj/6qOqq+93vqoH81CnlZF6NnCO5wmgLU0ieObd+FnaGIUlnJE7NxtGjsGvX6lmWVkRKWawQ7WlgBEAIsQPYA9yc9zsGqunP9Xm/cz3wuJTyRN5t3wdSwJvqe9aN4bzhIG+9aJiv/fJEy6+TrSKcSKPZBB7H6p9lf4NcLe1CKPtaVStomULEesxJjqYypHSjRLSFPVcO3Ag8HrjiChV58dKXtl5QzgTCaDEfwlh8H5lCsme5EbIomlsnGbWY1bpBhBJpAm57xSaUDq3F57ITS2UsEbFnUosoal6/j1QiJCd1hFje/KwYds1GwGVnPm6tZnvjC/Fc/59WMRBwcfcLE1z+Z/fy+7c8y6dv38/+szVYYBtIYbSFEII9Q34ON6HX06IjuTAj2UHGkMRq6EWwGoahIhhvvlll+KYqeBvHjdSyWAuod7SFuo9ignUh0aiKlLzrLgj2GmQiLhK6NRIEHn0UrroKjk9F2DHgX/KzG2+Evj5IPLedmUj115FjpzIYcRfnXdC86rmOkFwhQ9nQ+nOh9ijVqAezRRqtlMunLOQcOzOrttu2lnAkj3SraItaJ0+hRJqgZ+nk2aHZ2NTj4WRB1tLx7E7nzryLynsu20QkqXP38xM1nUetJNKZZVlj+fT6HMw2KCNZSsnBiRDnD6/eaA9Ufne319E2QnIh4bAayO+9V2Ur33mnylOanS1+fC4juUJHcl+f+h6Zd5A2rDG4NppUthzd5VgUktcQVwOHs//el/1+sOCYA0CvEGIg77glx0gpU8CxvPuwPO+9fDOxVIYnTs61+lRaQjihly3SBFx2IindMs6MZlPJa1WMnTkh2VrNg5vBbKR0s2Wfy04k2fhxxO2Gyy6D979ffXctT9loCro/hFaQj5xIqI3JckVuzZMmFVsfG7mheLoTa9GG+Fx2dEOS1K0T5TO+kGBDsMzdmgK29npxaKKijcBIQsfvtGMrw8gCqgJ1wUIZybGUTiiht9SRDHDdvkF2Dfr55Gt28d2PXkXAbeemB4+19JxKUdhsD2DvhgCHJ8MN31SJJnWcdhuOgqbgZoxIM4wAuq6a1918s1p/lhPBmMgUdyS7G9xsbzVOnYK0bmDEncSaMEdZjZkZOHIErrxScmI6ys6BpYZGtxt+8zdh4eAAp89U/1579ln1/aKLmzfX7wjJFdJuXUjrwWy0OkcyLHWOTZdoNNcszLLUktEWXR6SusFcje7pUpPnrX2+ZaWxx6eieBzakhyrl23vZVufl5tbGG9hGJJE2lhRSO7xOUmkDeIN2CmdjaaYi6XZPViekAwqPqRdheR8MhkYG4PHHoPbb4dvf1tlP504sbhTbA7OTlHZgtTjAZfHQF/wML9OGu4l02oxpKFx8uTaEZKzTfTeCfxN9qae7Pf5gkPnCn7eU+QY87ieIrcjhPioEOIJIcQTU1NTVZ5xfbl8Ww8OTfDwsZlWn0pLiCT1smItQC1GpITYOurtkE+tgpbfZWeky70uHckz2TLLvqLRFvVptlcuTqdyJr/vfcqpXG6cRD0w7GkMTxx7ZLmQ7HaXX+Vid2XIJO05J/NaJpzQ27rR3nrF7IdjpZzkiVCianetXbOxo99f0UZgOJHGX+b4CtDtdVii8tbEbE7YakfyJ16zix/9l1fyqTfs5codfXz4qq3c9fz4supcK5BreJfnQt89GGAulmaqwfpFNFW8J5E5x2tms+REQq0/b7kFDh9WsRGliBspPFqjHcmrR1sUw+2RGAkHt34/s6wZX7N57DH1fecFSZK6scQ8aPLRj4I0BC88XL7uUcgL+5Wse+lLm1cF1BGSK6TX68RuE20THl8PZqMper3VL8J+9/V7SKQz3PSz1u5CnjIdySUyd80mDbU23AsldAKe5a/Xtj4vJ2eiS3Y2j01F2DHgW7LrLYTgxss28ejx2aLN+ZqB6URYqWzadKk3wpVsRoxs7CnfgbCj30dkDQjJhUSjcOgQ3Hefciv/6Edw9KQaWB0VRlsAdPcaZELrSEjObquHp5xkMmtDSBZCbAO+BfxASvmvjX48KeVXpZSXSykvHxgYWP0XmoDXaeelm3t45FgdWk+3IeFEmoCrvHHZ34LFiJUIJcoX3Uuxc9DP0al1KCRnHcl9xZrtOVvTlMvpVNnJ73ufylIuN1aiFjJ+1WjPXuBIjscrE7TtLjUetXph2wxCFVyjOlgH05EZtYCTD1R15HwsXZO7dteQv6Joi9WajRfS7XUwbyFH8sQqzQlbxW++fBt2zcZXLVClXEixeIm9G5Sod2SysWN/NJnJZTPnY85bQi2Yu0Ui8NBDytB06lTxYxJGGk8Rp7AmbNiFjUQdHMlJI40NgaNC45TPDyA4dTbD974H4y1s1/XII2CzgX+TmkcURluAWpt6gmkmT1Q/oTl8QMPeHWVkoHnjbkdIrhCbTTAQcDEZWh+O5HTGIJTQi3bsLpedA35uuHQTX3/0VG5wawWnZ6L4nFrREk1Q0RZQByE5niZYZNG6tc9HOKEvaVB3fHp5Vg6oDsRCwK1Pna3pXKolkXWuuR2lLxE9XvU6NiIneSzb9HCkq/wL6vZ+HzGRQNqsMfltBIYBExNw/IwanH/8AzsPPgjHjlG2w2mgT6AveFlYL0Jy1pE8O67er+0uJAsheoG7gFPAh/J+ZDqPuwp+pafg53NFjjGPa6uciKt39rF/dMFSJaXNohJx1FwQr9eGe+FE7SX2Owf8HJ+KWio3tBmY85XS0Rate085HHDhhUpQvuoq8K7el7dq9IBaAGp5jmQp1TlU8riaS71/JifrenqWJBTvOJLbkdx4YRFHsrlu3FCDKLprwM+Z2VhubbMalVT8gMqytdI8ZDznSG7CLlsFDAbcvPvSTdz65FnLGfIiqeXxEnuGlJB8aKKxsVbRpF40j9uMtgi1cO42N6diF++4Q60/TaSUxDPpohnJoFzJ9XAkJ4w0Lpuj4mgyXzY9IhyRSFlZ9nO9efFF2LMHxqJmnOnyXl1CwPCOJAuj1U9kTh524BwM1WycqISOkFwFgwHXuom2mIuZi4jaFmG/c91ukrrBHc+O1eO0quL0bIwtfb6SFyNzwB2vUexWGcnLX6/t/ericDLrMk6kM5ydi+caxeUz0u3hyu293H+wNauNeHaytZIj2VxYzjZASB7PivnD3eVPHM3Ikoxn7QukUlN/n0TYzpEj8MAD8M1vwg9+AE89pdxOpfSOgT4besjDXGrtv06wmJE8PaY+k+0sJAshvMCPACfwVill/h/RzD0uzDneB8xKKafyjltyjBDCCexgeb6ypblmZx+GhF+dKBEmvoYJxdO5RcZq5BzJFhEGmk09BK2N3R5iqUxLF3StYCY7vheLtvBloy1aLa7b7fCSlyhB+ZprFheQ9UT3hxEpB7bkoqlCCNi3T3ViLxeHU43dY62bCjeNemzgdGg+OUeyRRrZjtchpmH3kB9DLvalWY1QQsdfwXs34LZbquJnIlS7+N4oPvqqHaQzBv/6y5OtPpUlxJKZXKyLSb/fSa/P2fCGe9GUviSb2SSYqyZr/WdxclJVxP7kJ0pcTssMGQzcWvHPidtmr0tGctLQK461APBn9dhQpPWb/6OjsGmTqkLv9jpKGhq370mTOOcnHKvcEBeNwtRZB66hcFlNuOtFVUKyEOI3hBCyyNfH844RQojPCCHOCCHiQoiHhBCXFLmv84UQ9wkhYkKIMSHE54Wo0L/eZAYC7nXTbG8uqgbGajOSTTb3enDabS3NST41GysZawEqqsFpt9XBkayXzEgGOJVtuKdiLhYb+RSysdube/2bzaIjeeWMZGiQkLyQwGm3VdTksd+vFnjSYa3OyY1A2nWQgLF4CZcSpqaUkPzDHyph+YEHVMB/PO8t3dcnkCk70+tkM8x0JJ8bdeDzwdBQi0+oSoQQduAWYDfwJinlkuJoKeVxVOO99+T9ji37/7vyDr0LuEIIsTXvtrcDLuDuxpx9Y7hkSzcuu41H1mFO8kw0RX8Rca8Y5mJkvTqSQ4nyRfdSmJua4wu1zQ/ajdloErfDhreIW8rnsmNISEtrNOXSNDj/fHjve+EVr4BA9VGDy8j4Q9gjQQS1ZQ86Peq1Om69yu66o6omOkJyu+GzmiM5pK65tURbmP1WjpSZkxxJpCt2JFtB7DMZX4jT7XXgcVpPTtne7+P6l2zg64+eslQOdzS5XMwVQrBnyM+hBgvJkWQGb5G/lWlKs9ImxenTKu7iZw+rcyoWbQHgEvVxJCeN4g39ViPgV+vjSLT1QvLYGIyMwPGpCDv6Sxsa912QgYzGr56p/HXbvx+kFHRtilbdWLoaanUkX4fqGm9+3Z73s08DnwW+CLwNiAA/FULk9u6FED3AT1GSyDuAzwO/B/xJjefVUIaC68eRvFJZYyUIIejxOnIO52aTMSRnZ+NsLdFoD1RsyXCXm7G6OJKXT0A293ixCXJNBsyd8WKOZICgx06oRaVS8TKE5F5v44TksQXVWKOSi2F3NsfbWA9CsqYjdPuKi9pEQkVePPggfOtb8P3vw+OPq5wmgKl1or2ZjuSJM3Z27Sq/KZIF+QrwZuBPgT4hxFV5X6ZN7nPAbwoh/lgI8Rrgayjh+Qt593Mrynl8uxDizUKIDwBfBr4lpTzSrCdTD1x2jSu29fLwOstJzhiS2Wgqt3m2Gn5X8zp/W5FwovjmbiWYbrjx+fVhIjCZiaSK5iPDYgl8MmOt95WmKafwe94Dr3oVBIOr/85KSGGg+8No4RrvCNBsAuFKc+xY6xe3jSRjSCLJTrRFO+LPZSRb43NtOpJrEZK39av117Eyc5LDCZ1ABRnJAbeDWCqDnrHGptrEQtKSbmSTt1+8kXBCL9sh3gxKNbzbOxTgyGSkoZU3sRKZ3AELOZLzkRKOj6q19pljzqLRii6boy4ZyYkqHckBv1rsRVv8FjMMlc+8cSMcm4oWbbRnctHF6vuvnqzckbx/v/rev6W5ZodaR/jHpZTLrspCCDdKSP4LKeWXs7c9ApwEPgn8cfbQjwMe4AYpZQi4VwgRBD4nhPjL7G2WYzDgZjaaIqUbOO1rOx2kXkIyqEzduRZ1tZ0IJUhljFz8QSmGu9w1OZIT6Qwp3Si6aHXabWzs8eSiLcwJzY4iWTkAXR4H4aROxpBotuaqX4msi3OljOSgx4FN0JDNgfH5eMWTIDOzWTqss3PbKKRdR2TKv3xLCdPT6iuWDUOYmYZDhyTU6LCyOsnspsj4GY0rXtrik6mNN2S//+8iP9sOnJRSflsI4Qf+ELWR+wIqAuN580ApZVoI8SaUeHwzkAS+A/xBI0++UVy9s4+/uucQM5EkfWUKq+3OXCxFxpAMBMoUkk1HcnLtXxsL0TNGXQStekVftRsz0VTRWAsgl+mYzOjYsN5nz2ZTuYS7dikH8DPPwPx85feT8URBM7BHaheSbYYdR3eMI0cDrOWx16x+6ERbtB9m0y+rCMmTCwmCbnvRqohycdk1tvX5ym64V2mzvYB70cXd7a19vVwrE6F4TcJ7ozHHlFaZy4oRLeEK3rMhQCSpM7aQYGN3YzKni7mhQcVLajZhKUeyiWFX53TmqIObn4OLLoILLlB9AwBcNntdevEkjTQ+R2nxtRRBnzUcyVNToOvQO5BhajJZsgod4OKXaKBleOaZyh9n/36wuzP0DzW3T1SjVNBrgCBqkQqAlDIK3AFcn3fc9cA9BYLxd1Di8rUNOreaGQyqCfNUC2MamsWsmZFch4Gxx+tkvkWDxuicEoc39awmJHtqagBgdlYtlpEMsK3Pl4u2OD4dZaTLXXJyZE7AWzGAJMrISNZsgm6vs2HRFiMVDtimkLyeHMnV4Mx+lNNhN489s/Zfq1TGQBowdkZr63xkKeU2KaUo8XUy77h/klLuklK6pJSXSinvK3JfZ6WU75RS+qWUfVLKTxTkLbcN1+zsA+DR4+snJ9mMiCrXkWxVV0szMMuzay2xHwy4sIn1GG2RKmkkMBe+qTq4jhqJzabE5He/G667Dnp6Vv+dfNJ9quLBHirWo7QyhG7H3h3j2LGa78rSmHPhZjb96VAfzA2iSNIajavHFxJ1aRq3a9BflpCcMSSxVKaiMcNqY+xEtqrTqvRkK0itJCRHSoi5ZsO9ww1suBdJ6svymUFVc6v8bWu8r/IxYyRF2kkqBU88AbfcAgcOKBeu2+aoW0ayuxpHsk8DIYlHW7tha/ZDED6lLZWqQgcY7nbh7I9w8IXKI2n274fgcIwuX3PH3FqF5GNCCF0IcUgI8bG82/cBGaCwTPYAS5v87KOguY+U8jQQY3nDIMswlBWS10NO8lxWJKw1I1ndh6NljmRzsFotc3cg4GIqnKy6hMWMougqISRv7fPmHMnHpyLsWKHEwbyPULz5A0g8lRWSV8nXakRcScaQTIQqnwR5nBqatK0PR7KWqciRnI+mgU0z0Bc8JBxtqR1WRDJtkAl70NOirYXkDsW5cGMXfpd9XcVbTGWjtcp1JJvCgBUXI40mnHNG1ja5tms2BgPudedIXklIzkVbGNYQnFZDCNixA264AV73OujrW/13JJL4plPY57uxR2sPXRYZO/buKKdPCTLt8bJVxUJ8ZVNFB+vit1im/kQoURd37a5BPyeno6RXiZ8wn7e/gjHDFJ1DFnCOJvUM05EUG4KNcc/WA9O1Pd8iTaAYsRLRFnuy+dqNykmWUm1cFBOxAcsKyUZ2rW1LL17jYzH45S/h1lshHraTlLX/fRNGGlcVGckuTcPmThOLWUNITrmUiXAlR3Kf34ljMMTxQw4qkaGkVEKydyjS9L4E1QrJ46iy2V9D5R8/CtwkhPjd7M97gIiUsnCaNAd4sx3izePmi9z/XPZnRRFCfFQI8YQQ4ompqalShzWMwYAa0NZDTvJsNEXAbceh1W5e7/Y6c8J0s1lYReA1GfC7SKSNippM/O29h3ns+Ez2cVZetG7r87EQTzMXTXFsKloy1gIWJ+ALLchJTuirZySDijyptyN5KpwkY0iGqyghcuLEcFpnh7tRqGiL6ppoCAFOl0QPeUja14GQrBuk51QlQkdIXnvYNRtXbu9dVw33Fh3J5W3wajaBz6lZpnlSM6mnoDXc7V5XjmQpJTPRZEnnu1kCn7BYRvJqCAHbtsG73gWvfz0MDJQ+Nt03heGL4jmzrT6PnXUkp9OCs2frcpeWJNyJtmhbHJoNj0OzTDn9+EKiLnm/u4f86IbMVYWWIpyNgKokI9lc87XC+FPIuZCaH2zosl7ckEl3djy2kpCsoi2W/827vA42BN0NcyQndQPdkKWFZJejZf2SVmLRkbz8Gh8KwZljDnRpcOps9TumGWmQlpmqmu05hIbNnSLRYiF5dFR9D9tC2G2CLb2lK+O9Tg3fcJjIvMbERPmPMTEBMzPgGAg3vQqoKnVQSnmPlPLPpJQ/kVLeJaX8dVSMxR9nu8Q3FCnlV6WUl0spLx9YaQbYIAYD68eRvJIbpVJ6vA7m4+mGBtaXYiE7WHV5VxGSs3/bqTI3CeaiKf7hviP85T2HgPKiLQB+dXKWSFJfMXQ9NzFpwWQu50guQ0iei9b3/MayC/WRKhwIThzrxJFcfbQFgNNhQ1/wkFwHjuRUJoM+pz53HSF5bXL1zj6OT0fXjchXqSMZlGPKKg6zZlLPEvvhLve6arYXS2VIpI3VHcltJiTns3UrvOMd8KY3wdDQ8p/HN59EJF04zw3X5fFERsPek61KO16Xu7QknWiL9ibosYYLMp0xmI4kGaqDI3l31ll6ZHLleIvFOKTKHclWEN8nQmZzQus6ku2ajYDbbrloC7+r+Jp3z4ZAwxzJsex6u1i0BRT/LGoaeFr85zUcadA1hCx+3lpUrbvufGSBu+5SWcGVYkZjVNNsTwiB5kmTiLa2l9nYmNq8ntIX2NLnXdGYKYRgYKv6/FaSk2w22qN3vumbt/V8dW8FeoFtKEexXwhR+O7qAWJSSvPKMQcUCx3ryf7MkvT5VVbeenAkz8XqKSQ7yRiSUAsmJ/PxFJpNrLrDXKmQvH90AYAnT81xbCqS2zUs9UHe1q92oh44eA4o3WgPFkXvVuxEJnRV+uVaodkeZB3JdZ4ITGRLh6vJRHPhXD8ZyVVGWwC4nILMgnd9OJLTBvqcD7dbMjLS6rPp0AhevVdtKN/9fAVb+G3MdCSFy26rqBmQ323POa3WE/V0Rg53eRhfSLRkM7wVrNZs2ZeLtmi94FRI2shwIl7+ynXTJnjb2+D662HDBnVbxhsh3T+F5+xWhKzPcsmWcuHozjZcXsM5yfkxb5//PPzVX7X4hDpURMDtsERMw2w0hZSLkZK1YK63Dq7iLA1XEW1hNnO1gvg+nltDWTcjGVrbN6kYsZSOt8Scau+Qn6PnImSM+o/9ZlPL0tEWyz+LTqfK/N+9u+6nUzbSkcaml55XOeb6QUKqb4rRUfjhD+H++2FhofzHSBrqeVcTbQFg9+gkYtVV79aLsTEYHISTc5EVzYMmm3cp/enZZ8t/DFNIznTNt4cjuQQy7/tBQAMK/V+FmcgHKchCFkJsBrwFx1kKzSbo97ty5SNrmZlIqi6N9iA/E6n5A8d8LE2Xx4EQK5c45ITkMhspmkKyZhPc+uTZnEheqkP8ph4vQsD9WSF5ZUdyC6MtynQk92TjSuq5sB6bzzqSu6t1JFtnYtIopD2D0KsfHJ1OMJIOopm1fw1LZQzS8162bZfYWrsx3aFB7BoMcOHGLm57ag3XiucxFU4yEHCtOp7l43dZw2HWbFbrW1AJw11u4ulMS8bkVjATXbm3hM/CjuQXo2N8d/JXRPTKHOQbN8Jb3wpveQvY9p4CQ+Ae3VK389LiXrRAHM0u17SQbF5rbLqDv/5reP75Fp9Qh4qwSi6rGePU56tdSPY67Vy2tYc7nh1bcc2Sy0iuYKPWUo7kbGVWPXKlG4nqsdP61wtUrnQ6I0v+zfcMBUjqBqdn62++iawqJBf/LLrdcO21avMzUHt8f8VIRwqRLq0P2XQH9oVu0r2qf4mUqgrntttUjnKsjJfS3KSuJtoCwOHRScVbKySPjsLwiOTkzMpxpiYbBjQ8vYmKHclDGyTCk25rIflGYBo4BTwMhID3mD8UQnhRecp35f3OXcAbhRD5H4H3AXHgwTqeW90ZDLqYDK/9Ese5WKoujfYgv0tr8weOhXg6l8m0EgP+yhzJz48usKXXy6v3DHDbk2dzGdCl3E9uh8ZIl4dz4SQeh7Zi7pcZj9GSaIt0+RnJep1d5uMLCTwOraqFv3IkW2Ni0khqdiRn5+TR+Np31pmO5J07W30mHRrJDZdu5PnREIca2FnbKkyFS+fWliLgtq/LjGRzbKpPtIWqklkvDfdmo1kRp1RGcrYU14rN9hKGmotV65buHUoT7j/LTscIWwbrlzUqDA2vzUVwILWmhWRz3vrj79sJh+GjH23xCXWoiKBFHMkzEfU5LrcfwGp86MotHJ+O8sjx0j0Vwrloi/LXIOb4YgXxfWIhic+pVZTx3Aq6LeRIjiVXjpfYuyHbcK8B88tYamUhOeh2rLhBsXGjcidfdBFNNcsYjvSSRnvFcMz2o3fNY9gXz98w4MABuPlmePxxSK3wFkjkHMnVvZedXp2UBRzJvf1qo6IcR3Kf34V7KFyxI3nveaqSvC2a7QkhbhNC/KEQ4nohxFuFEF9HCcCfl1IaUsoE8AXgM0KITwghXgvckn28L+Xd1U1AErhdCPE6IcRHgc8BfyulDNXwvBrOUMC95h3JUkpmo6mSbpRKMR3JrchEWoiny2q20+Vx4NBE2bElz51d4MJNXbzn8s2cCyf58XPjOO22FQVYM95ie78Pm620o8zn1NBsojWO5HQGu02s2mSxJ/s3rWfDvfGFOMPd7orcdiZBtwNpTyNZuwKpFAZoRk1CsjP7kY5HbKT0lTtYtzuJtIE+721pCViHxvO2i0ew2wS3P93eruSnT8/xhr97cMW85+lIsqJ8ZLCOw6zZmI7kStxlpRjOVsm0Iov7i3cf5At3NbdQbzqysiPZrtlwO2yWdCSbAnJKVnduB6LjpKTOywe38aY3qRzlLXUyJgdsXly9sbUtJMd1/C47//RPggsugGuuafUZdagEq4wXM6tsZlXKmy8cptvr4JuPnS79mFkXdCWbj47stTBsgc3a8YU4Q13VraGaSbeFHMnmJnupaItdg0oAPNyAnORIVsQulc9smgBWctHb7fCyl6lxqr+/7qeI4Ugxd+XP0f2L0txqjmQA58wACEj3TC/7ma6r+Iabb1ZCaKbIfnSt0RZOr0EmpaG38GM5NgaebjWXKk9IdiL65jl8WJbl2s5k4MUXYdvu1jS4rXbv4hDwW8BtKIH4fOA/SCnzReIvAH8O/BHwIyAIvF5KOWkeIKWcA16LisG4A/gT4O+A/1nleTWNwaBrzWckx1IZkrpRd0dyq6ItuldptAdgy8aWlONInoumGJ2Pc+HGLq7bN0ivz8mhyfCqH+Kt2YZ7OwdXvqAIIQi67S3pAhxPZ1aNtQDY1KMcWidX6YJcCWPzCUaqbBJx3g4n2CRXvkJn40YVcL/WkJp6P9TUbC/7kdZD3lyUyFplakIgdY09u9fgm6FDjn6/i1fvHeD7T48WzbHLGJL/87NjfPOxUy04u/J58tQchycjfPn+oyWPqcaR7HfZ12WzvXBCCVr2VTZFy8Ecl8Za0HDv4aPTPHJs+WKskayWkQzgc9rpGdQtlz+fkmpVmpbVuaXn0lHswsaIqxuAgQF4wxvgXe+Cbdtqm1sEhRcZiHDsmCr3XYuEEmlsMz088QR87GNrcy62lgl6HC3pz1KI6Ujuq5Mj2e3QuPHSTdzz/ATnilQVSym5+Ymz7Bzw5SpUyyWwinO0WbwwFmLPYAuyDiqkx+u0TLO9aGrlOBOv086WXm9DGu7FTBHbWTrawpAQTa0+lvX1wdvfDldeqcTleqH7Q2QCIVL9OQmvLEeyPdSN0O2k+0rPXRIJeOwxuOUWOHx46ZiYyEVbVOlI9qjXLFo/iaIiUik4dw6EX11rdpYRbdHvc6H1hzAMkYuE+os7D/CZ7+0vevzRo+o1jPtnsQm4dGt3vU6/LKqaWUspPyOl3Cul9EopPVLKy6SUXy84Rkop/1xKuSl7zCullE8Xua8XpZTXZY8ZllJ+VsoqZ35NZCDgZiaaRM+sXTdfbhFRp4xk0706F23+QDsfT5UVbQEqJ7kcIdnMR75oYxdOu413XrIRKJ2PbLI9KyTv6F/9ghL0tKa8LJE2cJUhJO8ZMrsg129wHV+IV53t5c8qpJt3prj+evjgB+HlL4fh4bWzkJH2rJCcqb5cx24HYZNkFjwNyfyyEuNn1edxd0dIXvPccOkmJkNJHi4Q3GajKX7jX37FF+8+yLd/VdqJZAXM2ITvPn6GM0U+m3rGYDaWqsKR7Fin0Rb1y4wbCLjQbCLXELaZRJJ6WQvJejIbVU0dvSXKfSFbjmvXefvb4Z3vhM2bm3d+K5HKLkDTVcZuxI100VzGvj543euUoLxjR3XzioDNS8obZmEB5izbVrw2wok0c09twu2GX/u1Vp9N9QghfiaEkCW+rs4eI4QQnxFCnBFCxIUQDwkhLilyX+cLIe4TQsSEEGNCiM8XaUpvCaziSJ6OpHBoqzdKr4QPXLkF3ZDc8sTy6qWHjkxzYDzEx67duWLFaDECLTL+5DMTSXJ6NsZLt3S39DzKodvrIJzQLaGjRM1oixXeZxu7PUw2YOw352WlRGwzqqDcjR2bDS68EG64QcVe1APDo+aielDpHhKJtKcRqwjJQtpwzPWR6l19EzwSgYcegttvh1NZv0etjmS3T723WiUkT2T7f+uuGL0+Z64yfyX6/E4cQ+p1NuMtfrx/nFueOFO0Qt1stLc/dorXnjeUi2BrFp3WQ1UyFHQh5WLp31pkPltyUo6TtxyCHgdCtNKRXJ4gPlCmI9kUki/Y2AXAe6/YBKxeVrC1T0VblBO63uVxtCzawuNc/fLQ43PS73dxeDJSl8dNZwzOhZOMVCkkBxzqtY9n8xE9HjjvPNU45wMfgKuvhqGh9haVpaYmPLU4koUAp0uiL3g4M7e2heTJM+p12lXY+rXDmuO6fYME3XZuf2o0d9tTp+d425d+wWPHZ9nY7SHWZDGuUiZCCfr9Tmw2wT/cd2TZz80u9gMVOrT8LlUeaTSg67iVmI2mlrjCQvF03Ur9NJtgKOBirAXRFpGknnMuNYuZSIp+/8pNHX0ue67r/IYNaqx997uVa7eV5ITkKn0pCSO1YoOf3l647jr1XHftqmxOERBe7N1q3F2r8RYzcwYTTw3xvvdBd3erz6Ym/jNwdcHXvaieQI9nj/k08Fngi6heQBHgp0KIDeadCCF6gJ+iGtK/A/g88HuoSlzLEXQ7SGUMEunWjpczkSR9vsoay67GzgE/1+zs41uPnV5WvXTTz46xIejOGYMqIWCBXOlnzswDcMnm7paeRzmY5rJ5CzjfzTGsVEYyKIFvpo4xjssee4WMZKg8fzsYVI34rr1WNearhYxHzXlyQrKmg02uGm0B4Jjpx/DGyHjKU3Pn5uDee+GOO2AmlBWSRXXrXbe3tULy2Jj6rrtjDJepa/T5Xdi74vgCBo8/rswQZ+fipDOS+w5MLjt+/36w2SRR7xwfurJ+jYHLpSMkV4lZVmp2lF2LmCUn9Yq20GyCLk/zM5EyhiSc0Mtu3jYQcDFVxt91/9kFtvZ5c/e7b0OQl23rzQnFpbh6Zx8feNkWXr1ncNXHCLpbU16WKDPaAmDPkL9ujuTJUAIpYbi7uh0105Eczyx/zbxeuOACeNvb4H3vU6U/AwM1nW5LyEVb1JCRDOByCPTQ2nckT406EJphGadch8bhdmi89eIR7n5+gm88eop3feWX3PCVhwG49bev5hW7+nNNVazK5EKC3YMBfu2qrdz21FmOTy3dpDPHpmoykgEiqda7zBrJR/7tcf6/7z2f+384oa9aJVQJG7rcjLcg2iKazDTdkTwTTa4YawEq17HQ6T4wAG96E7z3vbBzZ2s2bs1s5FSVzfYSRhq3bfW5b3c3vPrVcOONsHt3ec2OgsKHvVutbNeqkHzo4R70pMbHPtbqM6mNbNXso+YX8BRwOXCrlFIXQrhRQvJfSCm/LKX8KarRvAQ+mXdXHwc8wA1SynullDehRORPCSGCTX1SZRDMjhetFkZnoqm6xVrk86ErtzI6H+ehw1O52549M88jx2f4j6/YjtNeuTwStICL++nT82g2wYWbulp6HuXQ3cK4y0JWa3gHSveZbkCkqTmul6r8WWzkWN1ncfduNT7VYqYx3LHs9wSGM4HMNrVfLdoCVMM9oCxXcj6Tk3DohI6WsTM3V90kwuNVG0WtEpJHs56WtCu66lzKpM/nRAi4+GUp7rwTDo4v6it37p9Ydvzzz4NvIMGWQRev2t18UaMjJFeJuYgrx7narpi7hOVGQpRDKzKRTCG2XGf1QMDFTCRZNGczn/2jC1y4celg/e//8WX89XsuXvH3Am4Hf3HDhXSVcT5dHkeu63wziaczKzYMzGfPUIAj5yJ1cbqZZd3l7twVkhOSjZXfY36/Kv15xzvUYveKKxrToKAR5KItanAkAzidgsyCl9G5tZ2RPDPuxNUTR7NkAWmHevPuSzcST2f44+8/Tzih88dvOY87f+eVXLSpG69Ly2XhWZXxhQTDXW5++9U7cdk1/v6nS13J5pyjmoxkYM3nJI8vJHj0+EyuMU0oUT9HMqhNzolQc4Vkw5DKkdzk9+5sNLXq4kc5kosL3L298PrXq43bvXub21G+VkdyPJPGU0E5bVeXcn7deCPs27fycw3Y1r4j+eQvh+jbHOeqq1p9JnXnTUAP8O3s/69B9QC62TxAShlF9f25Pu/3rgfuKWgk/x2UuHxtI0+4GgJVuiDrzUwkWbdGe/m84YIhBgIu/uSOF3js+AwANz14jKDbzgeqdPUFLZCR/MyZefZtCJTM27USubhLCzTcMxve+VZ43QYCLsJJve4u/UhSx24TuEpsXiwKydV/Ft1uteH5pjdBoIr47IwnDrpaROmBBQyHWmOX40jWYj5scc+KOcmlkPY0MuXge9+DBx9U8ReV4PO1Vkg2HckxR6TsObt53AVXRxgdhXseVPPNN14wxENHppZt3D/1jEGma54PXrml4jieetARkqvEDOEvx7narpi7hOVGQpRDt9eRi8xoFqYgXokj2ZCLGdHFmM1rtJeP26HhqENTH5Ogx96SaIt4qnwhefeQn1gqw2gdmraZjd9GqnUkm9EWRRzJpQgG4eKLVb7je94Dl1+uFsBWpV6OZKcTMnEnJyfW7jUMYGHKgadnbT/HDotcuqWHv3nPxdz229dw7+++io+8ckdu087ntBNLZVbsft1KDENyLpxgqMtNv9/Fb758G3c8N8bRc4uOBDNOq5qMZGDN5yRHEjrnwsncpmQ9M5IBRrrcjM3Hm/oeimUXrumMJKk3z5U8E0nRV5aQvPJ7qrsbXvMaFS91/vk0ZVMvWXO0RRq3VvkGRDAIr3iF2qAu9VzdOPH7BP7e9JoUkhcWJJGzQS58ZaitY8RK8H7gLPDz7P/3ARmgMIfoQPZn5B13MP8AKeVpIFZwnCUwqzha3XBvOpKiv05Vsfk4NBv/8P6Xks5I3vfVR/nEN5/i7hcm+LWrt5bMql2NVudKG4bk2TPzbRFrAfl9k1rvSF6Ml1gh2iL7Pqx3vMV0tnlyqfiWXEZyHTYpNm1S2ckXXlhZpZDhjuOcGQCp4i0qcSQLBI7ZftI900hRWR62dOgI3Y6UcOSIasj36KOquVw5eC0gJDscEKZ8R7J53NaL1fj5k7s1gm47v/Xy7aR0gwcOnssdG4vByRMC91CY917emrLbjpBcJeaOwVp2JJtN8eqVkQytcSQvCuJlCsll/G3NfORGlw+1LNpCNypyJAMcOVd7vEWtjmSvw4FgdUdyKbq64JJL1EB7441w6aXWy/eT9mxGcq3RFlkd6uSpWs/I2kRmHXh6Wj9R7dAchBC8+7JNXLa1Z9nE3OvSyBiSpN765i7FmImmSGdk7vr3a1dvRUr4xZFFJ0fVjuQayyPbAcOQuegOMytSRVvUbw6zoctDUjeauiGeL9Q2M5pltoyycr/TXrbLPxCAV71KNcG98ML6dpUvpD7RFtW/b/x+uOYaJShfcMHS5yqEYEuvF29fguPHq34Iy3LzT5Tp9orL1tYSUwjhBd4O3CwXd5J6gEiRJvFzgFcI4cw7br7I3c5lf1bs8T4qhHhCCPHE1NRUsUMahhUcyVJKZqLJhkRbgIoZ/OmnruW3X72Te16YwKHZ+I1rtld9f60Wko9NRQgndV66pejbyXIsRlu0fk4SLTPaApRLvp5MhpMMBUvP54J1cCTn43CoaMe3v101j10NKTIYrgT2SAAt6icdXEDmHMnljZHO2X6kQ0cPhFY/OA/Dnkboi4+Ryagoh5tvhqefhvQqbx23ywY2g2i0NeaR0VHYMCyJpzNlC8lOu42A207KEePqq2H/wz7OGw5y+bZe+v0u7np+PHfsU89mQAquvMxe8ZqgXqytUb6JeJwafpd9TWckz8dTBFz2ujpsW+FIXsg5kststhdY3W2+/+w8AC/Z2GAh2eMgqTe/4UUilcHjKO/vvmdQCcn1aLg3Ph8n4LLnJrGVYhMCt81RtZCcT3e3EpJvvFEJyxdfrNxGrSbnSNZrs3VlU0CYGtNa3lClUeg6xBcc+DpCcgcWyxat2nBvMhuZMBRUQvKGoJten5MD4/mO5CRep7bigqcYpsuq1aXKjSSWzmDKO8+cmUdKWddme0CuEWwzG+7l/82aFc0SS+nZxc/Ki5Ou7JyuEoe2zwcvfzl86EPw0peqhW29qSXaQpcZ0jJTUbRFKXw+1eT3fe9bKp5v6fVi64quSUfy1++cB+A/vs3CpV3V8TbAx2KsRUORUn5VSnm5lPLygSY39Ki2wVc9iaUyJNJGQ6ItTDxOjT980z7u+d1X8d2PXlVxpU8+AbeDeDpDOtOajeqnT88D7dFoDxb7LzXbXFaMaFJHWyFeAshtaNRb9zkXSjAYLG2eatSmzsCAind82ctW3tQ13AkQYEt4sYe60YMLGDlHcnm6ihZWi+eMtzKdQNp1bPrycTiVgiefVILyiy+CUeIj57RpaJ4U4UhrhOSxMRgcUifXX8GGWL/fxUw0xVvfKlk442ejoxfNJnjjBUM8cHCKeCqDYUg+9b/mAPitt7du86gjJNdAv9+ZKzNdi8zH0mXl+FZCbwscyQtVZCTD6o7kbX3eui5Qi2E6qZrd8CKhl99sr8vrYDDg4nAdGu6NLyQY7q6tvazH5qwo2qIcentVjvJ736sG3osuUo6jVpDLSK5DtAWAHvLkIkXWGpOTIKWgZ8CaDtQOzcVsZrJaKX6rMCsyNmQXFUIIzhsOcGBi0cUxFU5Wtdg1XS1T4SShRHpNOpPz85+fOT1PNJXBkNQ12sJsBNvMhntLHMlN2gQxcyt7fSvPcQYDLpK6QShe+WfK41HOqA9/WEVKueqoF6WMbByIUfnrlcjOH8pptlcu5nN9//vhvPNga5+XtDfM6Kgsu0y3HRidj/PMcxKXN8OeXWuuMcH7gaNSyifybpsD/EKIwifbA8SklKm844o5T3qyP7MUAQs025vJrq9Xi9epBzsH/DU7eeuRZVsLT5+ZJ+i2s6Pf15LHrxSfU8OhiVz8ZCuJJjP4nFrJeAlYdCTXW/eZDCVWdCS7HTYcmmjIZ9FmU+vZG26AjRuLH5PxqPWhFvdgD3UhXUl0v5qTiiIibzG0uAckZLyVNXeX9jQiXXr+Fo/Dww/DrbeqfgOF+9kOm4bNkybSwmiLngE1B1ltUz6fPp+TmUiKK65Vr/3CYbWReP1LhomnM9x3cJJ3/OFxHv9RP1e+ZZZ3v7q77udeLh0huQYGAi6mwmtoBljAXCyVyzCqFz0+J7FUpqk5f6YDutymgeXEluw/u8CFm7prPrfVyHVOrmKRVguVZCRDtuFePRzJCwmGu6rLRzbxaPVxJJdiYEDt4L7//ao06CUvUa6jZiE1HQwBRm2Xb4cDbJokPeOvS761FTE75g6PWDMTt0NzMV28VnUkm03c8qN9ztsQ5NBEGD3rcpqOJKsqYTN7BPzBrc9x0ed+woWf+wlfuq8w1rO9iSTVWN/vd7F/dCGXvVjPaAvzbzPexIZ7+bnWzdoEMUV5v2vl1850z0/WMBd2uZSQ/OEPK7HVU9sUgIw0yKA+L9U4khOGeh95qshIXg23G7ZsgS19PghGkFJw4kTdH6ZlfOPRU6TOBbmowgxOqyOE6EI1zCt0Ix8ENGBXwe2FmcgHKchCFkJsBrwFx1kC85rZyg3H6Wh1MU6tYtE52prX7OnTc1y8ubslDbeqQQhBt9eZi59sJdGkvmqV16KQXD9HclLPMBdLMxQobaASQhBocCPHYBCuv15FT7kLTsVwK/HXllBCMkC6bxqh2xGyvHWokBq2hAfDU5miKwuiLUoRCsEDD8APfgBnzy7e7hB2bO4UkRZGWwR61Vyq3GgLUO73mWiSdCCEvTvKoV+pyu8rd/TS43XwO/90iDu/vJnNuxM8cMvyGL9m0hGSa6Df71rzjuR65iNDazKRzMcqdzHpc9nxObWSQvJMJMnYQoILNzY+58Bc/De74V4iXZmQvHvIz9FzEQyjtov1+EKckRodyW6bk7jRnNdrcBCuukqJym99q2quU+sieDWklkFkNAS1DRxCQG+/QeJML6Nza1NIPnNGvR83b2rxiXSwBDlHcpPiASplciGBZhNLSnnPGw6S1A1OzqgJ+FQ4mcvxr4TBoJt/+MBL+eO3nMcfv+U8Nvd6+NXJ2bqduxUwnWCv2NVHPJ3hyVPK6FfPyqF+vwu7TTDexM23SAscyeZnxLtC8yFYFJInFmoX1h0OFXXxoQ+p6ItqN2jzc5HTsvLPujl/qCUjeTW29HpxdKsF+lqJt0ikM3zrsdPI2SCXvXTNuZHfBbhYLiQ/DISA95g3ZLOU3wbclXfcXcAbhRCBvNveB8SBBxtxwrXgc2rYRPNNLPnMmo7kBmUk15tWOpKjSZ3Dk+G2yUc26fE6cv2YWkk0tbqQ7HFq+JxazilfD86FlM4wtEK0BTQvf3vPHnj3u2HnzsXbMp44GAJb0o09EgRDYHjiZecjm2gxX0WOZIlE2lWzvXKZnoa774Y774SpKXAI5UhuRbO9SEQJ3N5u0+BQiZDsYiaS4uBECO+uSZ542E4kopqEvn7fMGPfuwSXzc79d7rxeFq7cdQRkmtAOZLXcEZyLEV3vR3J3uZnIs3HU/grzHoeCLhKZiSbOVQXN8OR3Kpoi3T5zfZAOZLj6QxnaxAkk3qG6UiqdkeyzUki09wNHiFgwwbVXOeDH4Q3vxn27Vu+s1sPpF2vOdbCZGhAkD4X5PDptXkdO3pSTbx2bl0bi1ohxC4hxP8VQjwnhMgIIX5W8PNXCyFkia978o77jRLHfLzpT6qJ5BzJTWxYVgnjCwmGAi60PEfRecNqw/LFbE7yVCRJf6C6cfntF4/wkVfu4COv3MEVW3s5eq72KhIrYQqur9itygAfOqIaVNUz2kKzCYaC7roIp+WSH9kRaZIj2XQ++1dZXJsxLJN1dGjb7SpP+IMfVA6pQGD138knmSckp6qJtmiCkLy114s9KySvlYZ7P3hmlJlJjVTMzkUXtfps6s77gWellAfyb5RSJoAvAJ8RQnxCCPFa4BbU+vpLeYfeBCSB24UQrxNCfBT4HPC3UsrKOlA1gWa4IFdjJutIbmRGcj1pZRzIc2cXMCS8tE3ykU26WxB3WYxoMlNW34k+v6uujuRz2UqewRWiLaC5jRw9HnjNa+BNb1IRjoY7hi3pRkgbwtDQompALjcf2USLe8lU4EiWmq6ymcuMz8hnbEy5kw/sVxnJsWjzxdbxbE88Z1D9jStxJPf7nMzGUrwwFmLHZSGSScFdd8Ett8BDf/cSkqM9/MvXbOwqrINpAQ3smbz26fe7WIinSekGzhUC2tuVuViangY5kmejzRs4FuLpnLO3XFaKLXny9Bx2m+DiJgzYppMq1ERHcsaQpDJG2RnJAHuGVGDw4ckwW/q8VT2uuTDf0FWb+qqiLVo3+RUCRkbU1zXXqAHtxAk4eRKSdZh/SK2yHdqVGByw8QLw+KN2uLEud2kpjp40wGawc0tjs8ybyAXAm4FHgWJP6ing6oLbtgDfZak7yuQ6lCPKZI1IGsWxvCM5lGCo4Pq3a9CPQxMcGA/xpgs2MB9LM+CvfYdq56Cf258eJZxIV93c1GqYguv5w0F6vA5+fmQaqG+0Bah4i2Y228t/v8aa9N41hWSzQWUpzAXwuQaYKjRNVfns2wdHjqgu7fPzq/9eSuY7kisXkuPZjWhPHTOSC9nY48HuS2F3Gpw+3f7rBykl//LLkwylhxhFbQSsFYQQ/cBrgc+WOOQLKOH4j4A+4Ang9VLKSfMAKeVcVmT+MnAHMA/8HUpMtiQBt51QC5vtTTcxI7ketLJB4TNn5oH2abRn0uN1cHK6stzcRhBN6vicq695+/3OujqSJ8t1JLuav6mzaZNyJ//TiThGdNHgZQ91kQmEKnYk22I+pDONYU9h01f/TMtsQ79a1ruTY9mM5IggXHsbp4owoxWFL4Ezalt1Uz6fPr8LKeGxEzNcc3U/J76jKp8NA7ZtE9x0k2rgawU6QnINmA1vZqLJml2UViNjSEKJdMMcyc2MtlioIqJjIODi0ETxq86Tp+a4YCRYkWO3WkwBvJlCciKtFl4eZ/mLm91Daofy8Lkwrzt/qKrHNeMVNnbX7khOywy6kcFua60T1WZTg/GmTapUd3RUlbGePq26zlZDPR3Jvb2gOTIceqoB1mkLcPqMRPMl2dDdHo6WMrhDSvkDACHErUB//g+zzqZH828TQrwSMICbi9zf41LKtWVLXQFTFGuWGFcp4wtx9m5Yar902m3sHPBzYDyUc2hV60jOZ9eg2vw7NhVtu8VnKcJZ8TPgtnPx5m5+dkg5koN1dCSDarj33Nn5ut7nSizNSG5StEX2cXyrRFu4HRpdHkddHcmF2Gywd68quz1+XHVrn10hlcWMtrALW3XN9prgSHZoNjb2eJjrSXH2bPuPv1996DgHJ8Jc47qIp1hbQrKUcpriG7fmzyXw59mvle7nRdTmbVvQckdyJIXPqTVlrVUPWikkP316ju39PnraRHQ36fY4mYvNt/o0iCR1NvtWN0H1+V2cma2f8G2Om+VEW5yu4+OWi8MB0hNnm7cfWx/MzCghObnxDKJSR3JMZVVlvDFsoTKEZLOxfBWOZBOR0bC5UxiG4OBB1dOoWYyNqe+GN06fcFaUY2zG+YQTOi/ZFGTrf4dHHoGPfUxlWWsWuiS2/zZ4CymnKVu7EoqnkbL8BnXl0ppoiyqEZH/x2JJ0xuC5s/NcurU5OVRBj1kq1byJSTwrJFcyeQu6HQx3uWtquHd0Sv3uzgF/1fcBiw1yWulKLobNBps3w6tfrTIgX/c6lUNlr1DjUI7k+owimgYje2OMHqztNbcqY2OgBRJVZcpaESmlUcWvfQB4UEo5Vu/zaTfMvNdmiXGVMhlKFl1QnD8c5MB4iOmwGjfr8X42heS1FG9hOpIDbvsScbzejuvhLjfjCwlkYYvwBpEfbdE0R3L2ccop993QpKgPIdSY+d73qrLbwcHix5lCsk9zVZWRnDDSCMBla6zXZmufF0dXYklzoHbkrv3j/MVdB3nrRcPImS62bIGurlafVYdaCbbYkTwTTbZNrAXkZyQ3f+3xwliICze234eu2+dgPpZu2lhailgqU5ZjtN69sSZDSRyaWLX6W23qNP+zqMsM4UyCIb+Hd7wDrrgC3NFuAGyVZiTHlVBfbryFtGcdyRU+Tj7CUI5kUHnFzcQUktOuaEWxFgB9vsXr3r7hIJ/5DNxxh+rFZCURGTpCck2Ywdn1zMuxCqbQ2+NbC832UlVFW4QSes6da3JgPEQibXBZk4Rkl13D7bA1tdleogohGZQr+fBk9bUjRyYjBFx2hlbJiloNsxw1brQ+d6sUmgbbtqkcqg9/GF77Wti+vTxRWdozdXMkA1xwWYLYuJ/JqWo0SmszNWHD7k+smj+2VhFC7AFeyvIGQSbHhBC6EOKQEOJjTTy1lmBlR3I4kSaS1HOZs/mcNxxkMpTkUPb62h+o/f28tdeLQxNrS0hOLoqfS4XkOjuSu9ykdIOZJkV0RZN67jk0axMkUmZGMqh4i8kmGyq2bYMbboC3vEX1J8gnlY2zUEJydY5kt83R8E7oW3p9ZDyxthaSnzkzz3/77jNcuqWbv37PxTz/vFiL+cjrkoDb0dRqyEJmIqm2abQH4DczkpvcoFBKyVQkyXCNsYCtoMfrJJUxmtZEthTRpJ6LPluJfr+T2WiSTI2N5U3OhRIMBtyrjjVBj70l2dthXW0Qd9m92Gxw8cXw7tcF0DKOnDBcLlrcCxKMMhvuGVlHcjUZySYiozKSgZZEW/h8ENLjFW+I5Tfm27ehwiYRTaYjJNeAGW3RCkfyI8dm+If7jjTs/ueyQm+9oy3cDg2PQ2OuqRnJOl2eyp6H+bct3CQwu8A3S0gG5fZtRbRFpULynkE/R89Fqh5gj5wLs2vIX/PizZMtR401ueFetdjtSkR+7WuVU/k1r4GtW0vvOkqtftEWAFe93AAEd9xtLQd3PZib1nB3p/CukvO5hnk/kAZuK7h9HJX3+Guo7vKPAjcJIX632J0IIT4qhHhCCPHE1NRUI8+3oZi571Z0JJsljsUy4s2Gez/PNo+rhyPZrtnY1udbc0Ky22HDodlyQrLLbqt7abT593gm23i30YSTOkG3A69Ty2UXN5pYMoNNqNdvNYaCbs41MNpiJTZvhne+E97+dhUhBYvN9vyaq6poi3hWSG40W3q9ZDwxRkclGetdklblXDjBR/7tCYaCbv7pP1yOTWocPLi2Yi3WM0FP8xp8FWM6klzizLM6Ds2Gx6E13ZEcTuqkdCNXJd1OmE7cVjfci6b0sh3JhlQGtXowGU6UZZ4KuB1EkjpGnQTsclnQVeRkl30xcrK328Yntl3L67dtw1XBW04YGrakm4y3TEdyHTKSVbSFup9Ik6e6Y2OwcSPMxlIV57ybwnPAZWdTj7WjcztCcg2YF+16ljmUyy1PnuFv7z3MI8dmGnL/C3H1nOodbQFq4JhrkiNZSslCPFVVRjIs3yR48tQcI13upmZiBz2Opu5ExlPKmVpJsz2APUMBkrpRdX7U0XMRdg/WHrHg0dQFO2GxaItycDhU6e7rX69E5WuvVQtlW96Vup7N9gBeeY2GsGe49/615UgOhSAV1+jut577tIm8H/iJlHJJoqiU8h4p5Z9JKX8ipbxLSvnrqAzlPxZCLJsXSCm/KqW8XEp5+cDAQJNOvf7YbAKvU2uZI/m5s/MlBbeJBTXWFHckK0fCL7LN4wbq4EgGFW9xbGrtCMnhhI7fpcb6bq+T7f2+hjQSfOmWblx2Gw83aP5VSDSpFrlep51ok5xbkaSOz2Uva2N3Q9DNuXD9XFrVMDKiyj5vuAH83YvRFimpV1w2ncikcDew0Z7J1j4v9kACXRecO9fwh6s79x84x3QkyT9+8FL6/C4OHgRdp+NIXiME3c1dexQyE00tcea1AwF388V3s/lbO7m3Tbpb0DepED1jkEgbZRlO+nKV6HUSkkvEmRUSdNuREiJNnrsu6Go9ny8kA3g1F/v22LjxRtixo/z702K+yqMtanAkk9GwZR3JrYi2GBlRn89Koy26PQ5sAvYNBxpeGVUrHSG5BtwOjYDb3hJHsnkR+9t7DzUkW2guqj7APXV2JIMaOOq1m7casVSGdEZWLIgP+NWFvfBv+9SpuablI5t0eRzNjbbQs832Ko62UCJwNfEWs9EU05EUuwdrL+HIRVu0iSO5FE4n7N4Nb3wjfPCD8MpXqt3NekdbbB/y4No4x2MPWyx4qUbMfKr+obUlkJeLEOJi4DxKx1oUcivQC2xr1DlZgWaKcfmEE2ne+38f4e9+WrySaHxBOT+KbVL2+V0MBlzMRFMEXPa6OWx3Dfo5NRMlqbehHbIIkbwICIBX7x1g16Cv7o/jsmtcsa2Xh49N1/2+i6FEXQ2/q3mbIKZ4XQ5DQRcZQ+aaQbaSwUHYvEO9Rpv73UggU2G0fNxI53otNJItvV60oPrct2O8xdFzEdwOG+ePKIf+c8+p2zuO5LVB0G1vmgsynsrw+MnF/W7DkMxG2yvaArJCcrK5ouhMtnK2nfKkTVrRN6kQcz64WmNZWDQQztQp0nQylChLSF7M3262kBxHIAhoxc/R44HrrlPrVH8ZPjAt5iNTZrTFYrO9GhzJeRnJzY62OHsWNgwbxNOZiq9jNptg16CfK7f3Nejs6kdHSK6RAb+LqRZkJE+HkzjtNh4/OcdDR+q/mMllJDdASO7xOZo2aMzHzYiOKh3JeX/b8YU4YwsJLt3SXCE56LY3NXMrnjKjLSq7POzdEMAmVNOHSjHLq3cN1cORbDbba28hOR+3W3Wtf8ObDLAZbN2oMTKimg/Vyki3G9eWGU4fcTA7u/rxzSCSXJ5PXimjo+r7yEhrm3i0kPcDceAHZR4vC76vSXwujViT4gHyuWv/BIm0wamZ4m4MM9qiVJ63GadQj3xkk12DfgwJJ6bLc4hYnUgivUT8/OxbzudbH7mqIY919c4+Dk6E67agXIlIMoPPdCQ3KZYllsqUlRkJMJhdCJ8LtV5IBiWCu+w2LrlAvRe27MhUNFYmmhVtkXUkQ5sKyVMRdvT70Wzqxd2/X22A79nT4hPrUBcCbkfTXJC3PXWW99z0CKdnlMi0EE+TMWRbRVuAqiBttthnGssqLZ+3AovRFq1zJJubs+VFW6jXuB66TyylE07oZfVwMSurmh2bsqDHCNrd2JYXKi5h82Z497vhggtWXpfa4l6kM4VhX/15GI40QtcQsnqpUkgbmlPNmZopJBuGWoP2DanHruaz+cNPvoL/9rrd9T61utMRkmuk3+9iuiWO5CRvvXCYjd0e/uYn9XclL8TT2ET9m9SA6UhuzsXQdD5X2mzP3D3KdyQ/dWoeaG4+MqiJSTs02/M67ewa9LN/dKHixzxyTl3h6xFtYRcaDqERb8Noi9VIZp/TpiE7b34zfOADcM01qtlQtaKyy64xvDeElIKHHqrjyVaJlJL33PQIn7l9f033YwrJmzdbuyyogbwfuENKWW52wY3ANHCqcafUelrlSL7tKaUUjc7Hi/58fCFBr89Z8rprCsn1yEc22ZW93q6VnORIgYvWZhPYbI35/F+zUzlFHj3e+N23SCJNwG1XmyBNciQXvpYrYcaxTCy0Jie5kEguCkR9li67KsMHPgDnnbc0JqoUzRKSg24Hw9mNzjNnGv5wdefouUjuGgLKkXzeeSqiq0P700wX5Jk5JSD/KutKNqsb2s+R7CDU7GiL7GvVjhnJi9EWLXQkZ40F3jIzkmExTqQWzI3XoYC1HcmFsRalcDjg6qvhbW+D3t7ix2gxVSFmeFZ3JRuuBLZk7Q0kbUIg7JmmCsmTk5BOQ7Bfrdl7q9gQczs07Jr1ZVrrn6HFGQg035FsGJKZaIrhbjf/9XW7ee7sAve+OFnXx5iLpejyOBqyCFMZyc0ZNEwBttJmew7NRq/PuURIfvLU3JIyvmbR1eyM5CqFZICXbOxi/+hCxRsbRyYjeJ0aI3XKnvbYnG0fbVEMs/FBMDuwe71w/vkqG/L974erroJqImz3vCSN5sjwwAP1PNvq+NWJWQ6MhzgwUduof+KUeh/v3Lp2IjuEEF4hxI1CiBuBjcCA+X8hhDfvuKtQERVFYy2EELcJIf5QCHG9EOKtQoivA+8DPi9lhXXgbYavBRnJZ2ZjPHZiFr/Lzth8vGip8GoljmZOcn+gfgvrnQN+hFg7QnI4oTdk87sYF27swu+yNyXeIprM4HOajuTmRVv4yo62UO/bybA1hGTz3E1hIJ7SCQZVz4EPfQhe8hLV5LYYhpRNE5IBztvuwmY3WuJIjqV0/ucPnq+q+XUspTM6H18iJO/f38lHXksEPc1zQU5mN6GePKWEZNNl227iqMpIbna0hXqtKs1htQJmtbAZp9kKItkqH38Z0RZBtwO7TTBdB93HrEIrLyO5VY7kOF127+oH5jE4qBrgXn758qbxWkzdVzkN9+olJIuMhuZqrpBsbgz7ets3v7xcOkJyjfT7nU13JM/FUmQMSb/fxQ0v3cj2fh9/e+/huuZYzcXSDYm1ABWXsRBPNyV3ayFWXbQFZGNL8oXk03NctKkbR5N3iIJuB6F4uiFZ2MVIprPN9sosa83noo1dTIWTTFZY4mo6W+q1ceHRHGvSkTyfbXzQXWRg9/nUAvkd74D3vQ+uuAL6+8u73y2DHnybwjzxRD3Ptjq+9avTAJydq65po8mxkwY2V5pNA2tqAB8Ebsl+XQWcn/f/wbzj3g8sAHeVuJ9DwG8Bt2V/93zgP0gpv9SY07YOXlfz4gFMvv+0ssd/+KqtpDOSc0XmDOMLCTasUOJ4fgMcyW6HxqYez5oRkiNJHX+ThGS7ZuPK7b0Na3icTzT7vHwurWlu+mgqU1bzIVDzYJug4nG/UeSiQLKb4bG818zng1e8QgnKl1yy3D1rVv14mtBsD2DfhgBaIM6ZM81PFHr69Dz/9sgpvpe9PlXC8akoUi5WNczOqiqgTj7y2sHclGtGtN5EVlR7/OQc0L4N5JodRQgqrzfotuO0t5+k49BsBFx25uOtM/6YUWfljHc2m6DP76yLI3kyOw8cKivaovmOZF1mCGcSZTuS87HZ1Ph6ww0wPLx4uxZXjuRyGu4pIbn2+a4SkvWWCMnOrmxlRRtu8pRL+111LMZAwEUooTe1WU3+Tq1ds/GRV27n4ES4rt3XF2JpuqoQX8uh2+vEkDTFZVttRjIsdZsn0hleHFtoeqwFQNBjx5BqkdwMTEdypc32AC7c1AVQcbzFkXPhJc6WWvHYnGsqI9lkPl1aSM4nEICLL1a7wu95j9oZLlVqBLCx2wPdC7z4oqRJ+xVFmY2muGv/BH6X6nxdS6TL6bMSLZDI5Z2vBaSUJ6WUosTXybzj/puUsltKWVTZkVJ+Rkq5V0rplVJ6pJSXSSm/3rQn0kKa7UiWUnL706Ncub2XK3eoD+Ho/PJNkslQgg0rVGRs7/exo9/HhZu663p+uwb8a0pIDpTpoq0HV+/s4/h0tKGRDlJKIikV1eBz2puW762a7ZU3B7BrNvr9rpyrsNVEs+8DM9qi2MaRx6MqeD78YbjsMnBlh4lEVkh2N6HZHsCeDQFs/gRHTzS/EMR01f3s8FTFv5vra5Gdt+3PJlF1hOS1QzNdkOYm1NFzEeaiqcVoizbLSA64HU13jU5HU23n3M6n2+doWtxlMcy1dblRTn0+V10cyedyfTHKibZQn8VQE2MuQ7o6v0odyfl0dcGb36yaxbtc2eZ3CfeqDfcksm6OZDIaNle6JUKyza+eZztWC5RLR0iuEfPiPV2H3alyMS9gpkBycXZheXiyfovBuViqYY7kXl/zwvXNwam7wmgLUK/vxEKCBw9P8bkfvkA6I7msyY32YDHfuVm5W4vRFpVfHs4f7sImKhOSF+JpJkNJdg8GKn68UnhsDuKZtedIntNj+GwunLbyxZKursWd4RtvhEsvhe7upcds6vGg9YWZnxeMj9f1lCvi9qfOksoY/MdXbAdqcyWPjYLmT5TVyKLD+qGZDcsAnj4zz4npKO++bBObupVQfHZuaU5ySjeYjqRyWbPFsGs27v/9V3PjZZvqen67Bv0cn46SaUKFUCORUhJJNM+RDEpIBnjkeOPiLWKpDFKqRa7P1bx870qiLUCV51ol2iKS1PG5tFxVVTxdeu7kcqnqnQ99CF72MnJNgDxNirbYOxTAHkhw5mzzP3+z2UiLR4/P5Josl8vRcxE0m2Bbn3KYPfecuv3ii+t6ih1aSM6R3GBhVErJxEKCCzcqI8qTp+Zya+qeBhmaGkXAZSepG6T05m0MzUSSbefczqfH62xa3GUxolljQbnjXX/AxXQVcUCFTIYSuB02gmXMWRY/i80zQSxkK2CrcSTnI4RqFn/jjbBjh2q4t1q0hXSkwCbrE21haGie5juSPR5IagmcdlvZmxTtSEdIrpGckNzEeAtTSDYfe9egH5uAQ5P1+5TMx9JVuXjLwQzXb8bAsRBP49RsVYmiAwEX4wsJfv1rv+L2p0d54wVDvHxXmVkBdSTY5J3IXLM9e+WOZI9TY/dggP1n58v+HdPZsmeojo5krTWO5EbHj8zrMbod1Q/q3d1KSL7xRiUsm4u+jT0eHP3q7/Dii3U40SqQUvKtX53m0i3dvO68IWC54FYJU5M2tECCwTIaWXRYPzSzYRmozRG3w8b1L9nAxp7iQrKZlTfc1fz36q5BPynd4Mzs0k0bw5D8/U8P84ov3t/UjP5qSeoGuiHxu/5/9t47zLWrMNd/l3qf3mdOmdObfexzXHC3jzvGxthAaKHcXH5OSLlAkptA6DcXSALJDbmhpBFyAwQSDDHB4AIu4G4f26f3OnOmN/W6fn8sbY1Go5mRNFuakWa/zzPP2NKWtEdH2nuvb33r+yonPGxp91HvsvLM8fLFW2huKXfaYVupz24wVqyQbF820RaZjOT0UuVQASKpzabOjW+4ofRVbKWwoc2D2RdmZNBMqsKmZE1IjiVSRU+GHB8KsLrRlVlO//rrKkqrvV333TRYIqYzkst7zJmKJAjHk9y6tQ2rWfDSmXFGA1EaXNaqKJvKZjqCoHLnzNFAlTuSXbaKGMvmQvt8F9qv0OzWJ9J0cCpKu8+BKKAp3WE147CaKlpKmOnkMevUXeSEm26C1Q1uUgs4klN2dU2sV0ayyRGruJDc0wNjoRhNbltB/8bVSnUdoZchmit4uIJCsvZaWlaiw2pmTZObo4ssp8pmPBQrycVbCA0VbGmdDMeoc1lL+hK//bIefvvG9Xzz/Zfx2idv5evv2V1SbvBi0RzJi1nmXwzheBKbxVRyXrEq3JsqWFQ9PqQ+t3o6kh0mK5FUnFQFcxpe85/l7/qeJFJGJ/REPLRgrEWhNDaqoj6A7nontqalFZKfOznGyeEg77xiNd1zCG6FkkjA5JgZmzdCvbO6HC0G5cVlq5yrM5ZI8dBrF7htWztehxWXzUKj20bfRH4huW1JhGR13M2Ot5gIxXj/N1/krx47xvnxMBcmlofTdD60wWAlHckmk+ANvU08c2K0bJOImpDsdShHcjwpyx6llkimiMRTuAvMSAblSNaW6i41gaiKAtGiLeYTkv/+6ZP8dP9A5v/9UXVd+tZ7rFx7rYqJKicum4WWthTJhGA4K2FicpIZ/18ORoMxfA4LTquZJ44U92LHhwOzivZ27FDuM4PaoFK5rNr5b3Wzm+1ddbx8ZozRQIymKhRHvY7KiO/ZjFS5I7neaa2oQJpL5tqhCEfyaDC66HP+4FSkoFgLjTafI2+/RrmYTIQQCHwWfa9LexrcpGxRNm5LzHm+yAjJEZ2EZGecQICKTdZqQvJoIFrTsRZgCMmLptmrRVtU0pEcw2Y24XNOH/Q2tnk5qpMjOZpIEooly7akqKGCLa0ToXjJQtK6Fg+/f9smbtjUuiQCsobmCqiUIzkaT5WUj6xxUXcdI4FopjxjIY4OBnBYTRm3nh44zerAHa1g4d7ZyBhjiSBPTxwty/MnZQp/Mky9xa37c3c1ODG5o7h8ySUTkr/zwll8Dgt3XdRBvcuK22YuOdpicBBkSlDfktStwNGgNnDbzMQSKeLJ/FeUyZTkuy+cLXqpdz5ODAeYDMe5afN0D2JXvXPWBMmFyaV1JIMShhLJFI8fGuSur/ySZ0+M8uadnUDlm8JLISO4VngJ4VXrmuibCHNmdHHloHMRSA9y3bYsYbTM0Syh9Kokd4EZyaAGuaPBWEEi93MnR3nl7HjJ+7cQ047kdLTFvELyKb75zKnM/2sT9o0eG9u2wTveATfcoCKiysXa1WoopuUqAvzGb8CNN5bvNUENctt8Dq5a18QTR4YLFkbiyRSnR4KZY0cqpYTkiy4q594aVBq7xYzNYir72EMTktt9DnavbuC185NcmAxXZUFVpVzcGolkivFQvOqypLNpcFkZ1yEqolT8kUR65XJh57tmj41IPLVoQ8KQXx1/C6XN6yhrH0Muk4kwPosDk9BXKtTMUJsuDfKmN0FDnsTQlENparo5kl1RUimYmFj00xVExpEcrM4JsWIwhORF0pyeBaykI1mbfcx22W5s93J6NJiJJVgMk1qucJlO4pWMtihnREel0KItKuZIjiVLigLR2J7OOdt3vrCc5GNDAda1eDDrKPhp+YaVjLfQ8qRe8Z9mMDZVhucPI4F6qz6O5GxcNgtNHhuNXREOHND96RckFE3y4+fGuOeiLhxWM0IIuhqc9JXoSO5Ll9C3tFW+wMhgeeOyz7/c/ZEDA/zRD/bx8P7Fh4VPx/ZM2xq7G5z05UyQZBzJRQwq9KLOaaXFa+d7L53jmi/+gv/2zy8hJXzvgTfw3qvWAODXqeBNz0LgXAJFuor04oZNrVjNgo89uK8suZjB6LTTWouaCJY53iIYLS4zEqab5wu5Fv6d7+zl/q8+w98+cVx3J3cqJQnGkgVHW4yHYhwZ8Gf2Q+vV0FaCmUyweTP82q/Bnj3zl9aWytYNSsA4dUbtZzIJjz0GBw7AiRP6v56GGuTauGFTC2fHQpwamT+3UuPMaJBESmaE5JMnIRQyhORaxOewlj2XVRPH2n0Odq9pJJZIsa9vsirjGiodbTGWHkc3V7Mj2WVjKpIgMcfkfrkJROMFx1rAdAHk6CIMhFJKBqcitBVRBt5WV2lHcnjR+cj5aLAqM9RYIkhrK9x7ryq8NWfp+El7BCSYYos/BoikBZNbHWMGBxf9dAuSSMCFC9DdrVb9VOOEWDEYQvIisVvM+ByWCjuSo7NOsJvavKQkurSvj2cK6sojwPocFswmUZGW1olwnLoyRXRUiqUo21uMI3lrhw+zSRRcuHd80M+GVv3ykQGcJvVvXsnCvclEmPXONhwmG4+O7td9gDyRFqr1irbIZU2TC3OjnwMHoBKJIFLCt74F73439K6FU3+9h6Fn12Tu725wlRxtoQnJHZ3VXSBmoD/uzHL3/MfT/3hFfXgKFVXm4/hQAJOAtc3Tqwi66p30TYRnHB/OjYVw28wFla6Ug4u66jg9EmRLh5evvXsXT/zBDezsqdd1afNzJ0fZ86UnOTyg/yQbgD+qjvWVjLYA6Gl08YW3XMQzJ0b5+IP7dD/u+7Ma5d1FZP4uhtKEZDUJslBO8rA/yrA/Skedkz/76RE++C8v65rBrYnsHrvKlBRi7u96OJYkmlCOPq3cazIcx20zZ7J/NYSADRvgbW+D225TecB6celW9d69fkTtw/79086phx/W73VyUYNcOzdsUismCo230MYZmpCsFe0ZQnLt4XNYyp6Rr02ktvrs7Fqt7IkpSVXGNVSqoFBjNH3cqmbXo7ZKuVJmqVz8RZb06rESPRBNEIoli3Qk2xmcipS9i0djMhGirgzjzSaLG7fZzlPjR4gk45hMcMklSlDWMvZT9ggiZkdIHWTKlBmzVx1jBgYW2FYH+vvVKh0VbWEIyQYF0OK1Zy5CK8GwPzpr9nFTu7qg0yPeQssq0rKM9UYIQb3TmplJLSdT4ep3JGsnuEqW7RW6xCcfqnDPU5CQ7I/E6Z+MsKFN3yBCLdqiUo7khEziT0Zot/u4oWEz56Pj7A/26foaE/HyCsl7trQx5RhlfByGhsryEjN49VV473uV86pjYwiTO8KFY9N/W3eDs+RoC01IXtVjnOIMZqLFFAXzxAOMBqI8cUR9+E/rEFVwfChAT6NrxvG0q8FJJJ5iNGsp52vnJ9nWVbdkhRx/+Ws7ee5je/in91/O7dvbsaYLjqbzHhd/7jmWvjYpV97yUjmSAe7b1c3v7tnA918+z98+oa+FNFvUddnNM24rF9p3w1NktAVMi0JzceiCmkj487dexCfv2sovDg/xO9/eW+KezmZ631U3htNqnlN4z14Vp30+1Sq2+a99165VhbV33qlPudxlm91gTnLwmPp3feopdXtTU3mF5LFgjEa3jZ5GF+ta3DxxtDgheV2LGnfs26ec21rngkHt4HVayx7TMDAVocFlxWE10+yx05ueeK3GuIZMOXqFjD8ZIbmKxaoGt7ZKeemE5OIcyWp/F6P7aBOurb4iHMk+B6FYUrcVYvORkEkCyWhZHMkWk5l7Wy5lMhHmR8OvkJLKiV5fD298I1xzDeCMYIrq8/0XSTNmr7qer4SQrEVUtbYnCceTNFbhhFgxGKNsHWj22CsebZHrSF7d5MZmNnFEByE540guowC7qsnFwf7yOJOymQjFMo7easVsEnjtloqW7S1GSAYVb7G/b3LBmdMTw8r1t14nR3JDA1it4DGr78dUojJ5UlPpdts6i4uLPN102ev5xdghYin9TvgTiSAWYcr8bXpzx/Z2rM3q+FGJnOSj6SjpRx+FLe86QMu6AEcOTZ+SuhucTEUSJX3uz56TYEqxumvpss0NlifTrs7Z382HXusnkZJ01Ts5XYQj+ZWz43z4314lmZp5vDs+FGB9y8xjW3eDmizRYluiiSQH+6e4pKe+mD9DV3wOK63e2c4YbXAVKGJQ/E+/OsWf/fTwrNvPpwsGJ8KzB1+ffeggP3p1cRNv2aV0S8GHb97APTs7+fOfHeHJAgW5QgguoSPZVWTZHhQuJG/t8PGBa9Zyz84u3fo9YPpzoOU7u2xzC8nZq+K0a+fJcCyTc7oQq1bBm98Mb3oTdHWVvs/rWt1YvFFOnVHHj6eegtWr4Z3vhF/8AiJluIyJJ1NMhOKZIqAbNrXy3MnRgrLhjw8F6KxzZBzrr78O69eDqzxz3AZLiM9hKbuJZWByZlas5kquZkdypTKSR4NKe6hmR7I2cbdUhXuBSKKoCegWHRzJQyXEmWmicyVKbbWxczkcyQDdjkZua9rOqcgIT4wfydwuhIqS8rRE8Jr1iXoTSTMmj/q3qkS0hSYke5qqf5KnEAwhWQeavfaKRVukUpLRQCxzINOwmk30trg5MqCjI7mMH/6bNrXy2vmJsgrwsYQKwy9XREcl8TmtFVsqtdiyPdAK92KZEqm50AaQekVbbN8O73sfvPUuBzazmSm5+OXphTCRFpLrLS6EEFzuW0coFWM0rl8m6ER6mVG5XIu9LR62bFH/XYmc5OPH1e/uVSleOTvOps0pjh+fHjTnCm7FcOpMCrMnQltd9V5cG5SHaVfnbMHkB3v72Nbp46bNrZweDRa8hPDbz5/lwb19M86/iWSKU1mFVBpd9crhocW2HLrgJ5ZMsXMJheS5cFrNmE2i4EHxg3vP85mHDvIvz56Z9d5p3+PJPK6jb79whj/+wb6SVyDAtIC4FI5kUCut/uz+izCbBC+cGtXtebOjLbTyuECZHUmlvJcNLis2synjtArHknz9yROz9vXghSk66hwZ8aDeZdVVqArm7LvLZiE8R7RFtnBxNNuRXOQ1Y1eXEpPvvVeJy8Vit5jxNMa40C+QUgnJ110Hd9wB4TA8+WTxz7kQ4znZqjdsaiGWSPHsyZEFH3t8OMC6rOPa668bsRa1is9hLXve7+BUZIagdtkaFURejbm/2nGnUhnJmiu2Gt8rDS3aYqkcyVOReGb1VSFok2+ji3Ek+4sXktsLjI/SA63zpxyOZI2Lvau41LuaF6ZOcjg4s5MkKCOsbXdwyy3gXmS/vEiaMTnimC2yoo5kR316kqcKV1YUgy5CshCiSwgREEJIIYQn63YhhPiYEOKcECIshHhKCLEzz+O3CiEeF0KEhBD9QojPCiGqxkrWUkFH8mQ4TiIl85YQbGr3clQPITlc3oxkUMvopYRfHC7fGnrNyVjt0RaQFpLDlctIXkzZHmQV7i0Qb/HcyVHqXVZWNy3yTJGF2Qxr1wjWtbpxtga4+241yPHqm54xg8n4zJOuz6JO+IGkfseFiXi4bLEWGvde3YTJHuelV8v/WTt+HDo64NTkJJF4iqsus5JKweG0mbG7QRPciheXzp5PYfZEaS2iyMJgZTCXI/nYoJ/Xz0/ylku7WdPsxh9JMFZAk7iUkmdPKOHwtfMTmdvPjYeJJVOzheT057pvQn2uXz07DsDOVfUl/T3lRAiBx24paFD8wqkx/ue/78NhNeGPJmZ1IGjC+WTOeSwSTxKJpwjFknzswdKz5TWxu9IZydnYLeb0+6Xf8TMYTWA2CRxWU8YBOlfmr15oDt5iMpKFELT67BlH8pceOcLnHz7Mf77aP2O7Qxem2NLhy/y/z2ElGEvqVrSUm+88nyNZEy4aXNbMJNDEIuLQ2tpU3MX996v4i2JoaU8xMWzhyBEVLXXddXDDDeBwlCfeQju2NaYHuZetacRsEuw9OzHv41IpqVZapI9rgYAqBDSE5NrE69D3eJaPgalIRiQD2LOllZu3tHJp2plcTVjMJlw2c+UcyYEoFpPIRGpUI5oxbshfmRWkuQSixUVbWM0m6l3WRRkIM9EWxZTtpb8jAwsYtPRgMmuVbTnZ07iVeouL/YHzmdviqSSRVByP2cHq1XDffSo2qVQPlUiaEQLq6isnJHu9EDenz7FVPMlTCHo5kv8cyGe9+yPgE8AXgTelt3lMCJFJFRNCNACPARK4B/gs8FHgMzrtW9lp8drxRxNE4uVdbgjTSyma8xx8NrV76Z+MLNq5Oh6KYUufDMvFlg4vnXUOHjtUvnUGmpBcV6as50pSieVlGpF4MpMjWiqZwr3zcwvJUkqePjbCNeubMZv0d9n2trg5ORKksxOuugre9S41wNu1S//m9YlECDOmzFIcdzp+IqiTkCylZCIRKruQ/MaLVLzF869URkhev14JUAB33aAmE/bvV/drjuRSCvcGLggsngitRcz2G6wMtCXvueLSD/b2YTYJ7r64k7XN6rNXSE7yubEwfenYhlezRJjcQiqNOqcVr8OScei+em6CNp+djrryOT8Wg8duWTCT79RIkA/+y0t0Nzr53D3bATg7NvO965sj2kI7T2/r9PHU0WF+WGLERSCawGY2YbcsrQfB59T3XB2IJHDbzAghMp/dfG56PcnEQxR5HdDmczA4FeG1cxP8469OAfDsyWl3diSe5MSwKnXU8Dn1XQqe66Z2ziskq8/i5WsbOToYQErJpA69Gs3NqpDvbW9TBX2FDIB7uiEyaeORx9S+XncdOJ1w/fVlEpIDmpCsro8dVjOrGl2cHJ5/FVffRJhIfHqCTCvnrWUhWQhhEUL8kRDimBAiKoQ4L4T4y5xtatI45S1z2V48mWIkEKWtbvparclj5+/fe1neuKVqoBIubo3RQIwmjw1TGcZQlaLV68BiEiWtPtQDfySBt8iVTE1u2+IcyVMRvHZLaYW2FRDcJxMhTAi8ZYpS1DALE132egZj01Gn2rhZG0/bbGoMf9ddKr6yaJLq8OrzyYpFW/T0TOt1RrTFAgghrgNuB/4i53YHSkj+vJTyb6SUjwFvRQnGv5216QOAE3iLlPJRKeXXUCLyR4QQPqqAFs/i83IKZVgTkvPMcGxKF5YdW2Te3ERQXUiXs/hHCMGeLW08fWykbAL8ZHrAWgvRFnUVjLbQIyPZYV24cO/QBT/D/ijXbWxZ1GvNRW+zm3NjIWKJaadTczNcdpka4L3jHXDllcpFtFgmE2F8FmfmO6MJyXo5ksOpGDGZoN5aXiF5fauX5u4op46Xf1yjCckvnhqjt8XN5RfbsFqnYzUaXFZcNnPRQnIqBQN9Jsy+8KwIIAMDVx5HcjIl+eHePq7f2EKL155ZIVFITvIzJ9RS8NVNLl49N5G5PVNIlSe2p6vemflcv3puYlnGWmgU4kj74x+8jgD+6X2XsaNbrUY5kyUkR+LJzKqt3Mxzzbn8wPXruGRVPZ996CCjJVxLBYpsXi8XXru+5VSBaDKz7Ha+fG89yXX1Fkq7z0HfRJj/+R+v0+K1c/OWVp49MZJxmR8fCpBMyVmOZEC365tAXkfy/NEWl69tIhBN0DcRZjIUp86pz8CvsRH27IFf+zWV+2iaZ8S1sdcMSTPf+V6K9nYlQIOKtzh6FE6e1GWXMoykHcnZObRrm92cGJ4/jut4+v4NrWq8sW+fur2WhWTgm8Dvosa5t6LGtrkXJjVpnPI5rETiqRnX0XoyEogiJTMcydVOJVzcGqPBaNUvnTebBO11DvonKi8kSynTjuTidIJmjz2jx5TC0FS0qKI9UJOiPoeFoYpEW4TxWhyYRPkTcFttdfiTEUJJdU7yJ5VQ7rXMPCa0talOgksvVSuPC0Wk1Mae+lTFHMk9PdOrfqo5v7wQFvUJSc+ifgV1MswN1roK8AHf026QUgaBh4A7sra7A/iZlDK7ee27KHH5+sXsX6Vo9qoLsUrEW2h5SC15Ppgb00LykYHF5bJOhGMViYPYs6WVcDw5w7GiJ9oAtdrL9kBFW1SqbC+ig5AMsGOBwr2njqlCous2lElIbnGTknB2LL8YVFcHO3eqXMNf/3XlAOrpmX+wNxfKLTztKDQLE06TjWBSn5njiXReVbkdyQC7LzET9Vs5dEodz44dgy99SbmO9CIQUO25veskL5we44q1jVitsGnTtCNZCEFXvTMTAVAo/f0Qi5qwNgbzHicNVjaaGJft6nzh1BgXJiO85VLVmNXT4MIk4PRoIULyKC1eO2/e2cXRIX9GyDo25KfNZ8+75LS7wUnfRJjxYIzToyEuXsZCss9hXbBs79xYmBs3t7K6yc2qRnWMOpv13mUPEHPduportMlt44v3XUQgmuDPfnqEYvFH4kuWj5yN3iJCIBrPOJG17oJyO5KDsSRCUHRXQqvPzpnREIcH/Hzunu3curWdkUCMY+lJlYPpor0ZQnL6+kyv6K5gTtme02qZt2zPaTVzUXry47Vzk8SSKd2vGevqVEzFO98J27blHwRftEmNI57/lYXrrpt2Md+RHi399Ke67hJjedxSvc1uTo8GSaXmPtmfyFlp8frr4PGocsBaRAhxO/B24GYp5dellE9KKf+flPJjWdvUrHFqujyuPOMPbZl+ew31WZTbxZ3NSNqRXO2oa/3KC8nheJJkShZd0tvsWVw31nAgWpLA2OZzVCzaotyxFhptNnXoG4wp45k/XfTnyVO2ZzYrIfnee6G9fdbdeRFpR7LHl6y4kGyzmIpe2VVtLHaq4QHADvzfPPdtBpLAsZzbD6Xvy95uRsW3lPIsEMrZbtmiLUnNXcpZDkb8miN59gGoq96J22ZedAP2eCieKUIpJ1f2NuGymXnsYHnWGmhCck1kJDusjAZifOpH+/nUj/bz5UeOENcpUzCXiA5le6AK90aDMfrnOOk9dXSYTW1e2uvK40RY26wGOgst1QTVNr51K7zxjaqsb88e6O0FS4HXFpPpIrxsPGa7bo7kiXQGc0MFTuxvul69b//v4XH8flUi9Pu/D32lrTjPi+aucjWF8UcSXL5WZY1s2zYtJIMS3Ip1JB9Ln3Ea2qPYLEafrMFMtNiebJfikQElcF2xtgkAm8VEV4NzwWgLKSXPnBjlqnVN7FxVj5Twejon+URWjmgu3Q0uzo+HeTW97XJ2JHscFvzR+QfF/kg8I5i7bBaaPfYZ10PaANFmMc3KTp4+T9vY2Obl9u0d/PL4woVfuQSixTWvlwu9i3GD0WTm7zKZBC6bOSOWlotgNIHLai56ubS29PaNOzq4dVs7b1invk/PpP89D12YwmE1sSarE8GXHsDr50hWorHXrn0ezYTnWPU2HorT4LKyMe2uffG0ilkq1zWjxwPXXgu7d8++79Kt6r2TKcF1103fvmGDuhbRO95iLBhDCGZc6/e2eIjEU1yYmluo6J+I4LKZM5EYr78OO3aUNgFfJXwA+LmU8uA829SscUqb6CmXw1bLVK/WGIt8eB36rkqZj5FANK8eUG10NTiXJNqi1G6F7kbnrBWvxTARitFYgs7S5nMw6I9gscAll6j4o3KgxrSViVubFpLVYTHjSM4jJGvU16vx+tVXq+iL+dCEZJcvyfAwJMs4Dx+Nqo4DFW0Ro8ltK+vq/uVAyad+IUQT8DngI1LKfFeADUBASpn7TzYOuIQQtqztJvI8fjx9X77X/qAQ4iUhxEvDw8Ml7b+erG/1YLeYeH2ePFi9GEkH6+dzTJhMgg1t3hnN8YXw+vkJvvzIkYwLYSIUy7SolhOH1cy1G5r5+eGhkgt25mM0qES8hhrIp7lsTQNeh4UfvdbPD17p469/fjwz6NEbPcr2IKtwL8/3IhRL8NLpca7fVB43MqhlmgAnC1ieno3NpgZvt94K73+/cgRt3qxKb/IRTSUIp+KzYifcZrtuGckTmQbd8gvJt16tLh4e+VWYBx6AI2lz4Jkz+r3G8ePqt98+AUy3dG/fDqdPK8cyTAtupTx3x6rKXMgbVBc2iwmb2UQwy6U45Ffn1Wx33pom94LRFseHAowEokpI7q4HVFSFlJITw8HM8u9cuuqdBKIJnjo6jBBwUfqxy5GFHLba0tBsEXd1k4szWSK89h3e3O6dtbImE0GVvubY3O6lbyJctAPOv1yiLXR3JCdmREy4bJYZn91yEMx5zUK5sreJy9Y08Om7twHQ0+iip9GZWXV26MIUm9p9MzoRph3J+gjJwWgCkyBzDeO2z52RPBGKUe+yUeey0u5z8Hw6r38p4tBWr5p+T7btmr5uEEJdg/z855BIQCKZ4lfHRxZ9zTwajNHgss34t+htSV8zzRNvMRqMZhyQUiohucZjLa4Ajgoh/kYIMZXONv6BEKIza5uaNU55dY6eyWXakVxLQnIFoy3SYlW1013vZGAqUjaD1Fxo/07FRlts66wjnpQcGyrNuDcWjJekTbT5HAxNRTGZ4Ior4N3vhptu0ieiUSMhkwSS0Yo5kp1mGz6zMyMkB5IRLMKE3TT/NYgQsGWLKuNbs2ae7TQh2ZskmYTR8iyCB+B8ujNQOZKjNbFaYCEWoxb9KfCclPIneu1MoUgpvyGl3C2l3N3SUj4hqlCsZhM7uupm5COWi2F/dN5g/U1t3qIcyZF4kt/+9l7++ufH+ekB5fkfD8Wp1ykjbiH2bGnjwmSEA/1TC29cJAOTUVw2c9Eh+suRO3Z08PInbuHVT97KE39wAwD758kfLpV4MkUyJXVxJG/RCvf6Jmbd99zJUWLJVNliLUBFmjR7bPMOihbCbFZLNm+4Ad77Xrj7buW+8WQZDSczIu/M2Vu32U4goY+QPJ4I4THbsZrKv0Smu1tgdyV59b/a+Pa31YUKKIFXLzSx91xiiK56Z6ZYb7vq6eJg2vvT3eBkMhwvahBz7BiYLClW9dT2LLBB6bjsZkJZrs7BqSgtXvuM8+ra9DLv+QSbZ06oK9Kr1jXT4LaxpsnFq2cnGJiKEIgm8uYjg3LfAPxk3wU2tnqXhZN2Ljx2y7zRFsFYkpRkxtLQ1Y0uzmU7ksfDmE2CjW2zheTxnJVDWkSXFodQKIFo8YU55cDn0NeRnNso77HPnfmrF8FYsqTP5M6eer7/wFUzsumv6m3muZNjJFOSQxf8bO2YObmSEZJ1zEh22y0ZF5DTaiE8T9legzv9uWv3cji9MqFuCVaxtbaC1SoxOWN879iBGfddcQWEQurc9o2nT/Kuv3+eo4OLi7AbDcQyrmKNXm3yfZ5VXNkOyP5+GB+veSG5HXgfsBP4NeD9wC7gQTFtNSuLcWo5mKZ8mWiL8hxzBqaiWM2iJHfmcsVbobK9UCxBOJ6siQzWznonKUlFYhuy0f6dir122NapXLSlaBdSypINe20+O0P+SMb4ZzbDxo0q6uH++5WwWuhK2rmYSkdLVMqRDMqVPBidjrbwmh0FO3ndbrj5ZvXjyqN9i6R6Q+w+9W9dzniLc+fU754eZVBprPL88kIoSUgWQmxDLff5rBCiXghRD2j/fHVCCCfqxOjJ00bbAISklFrd5ThQl+dlGtL3VQUX99Szv2+y7LNpI4HovAVSG9u9jAZjBWf3fP3Jk5wdC9HssfHlR4+STEkmQ3Hq3ZW5kL5pcytCwOOHhnR/7sGpCO11hR+MqoUmj52uemdZHPDaElA9MpIdVjMb27zs65t9on3yyDAOq4nda0qpYC2c3mYPp4p0JM+FENDZqZbSvPvd6qS9axckHfnziz1pR7IebvuJeKgi+cig/s51G1MkJl1cfk2Mr35V3a63kNzSInl1cCQTawEq2gKmC/c0gbmYJW/HjoG9IUxrDWXuGeiLO8fVOeSP0JpzXl3d5MYfSWQKM/LxzIkRuhuc9KRzgXf21PPquYlM0d76lrmiLdQF+uBUdFnHWsDCy3QDeRw9PY0uLkxFiCbUe3x+PES7z0GT28ZEnrI9m8WUmbzUSoOPFrmyKhBdHo5kn8NCIJqYN2e2GILRRCbXG9KO5HJnJEcTuOz6TFq+YV0Tk+E4jx8aZDIcn5GPDFnRFjpmJHtmOLjNBGOJvOfhiawYt01tnkwPwFL0aphM0Nsr2LE7xk8OXOCRA9Oj3R071O/nXkrw9SdVLlQphZTZjAVnOxlbvHY8dsu8k+8j/lhGSH7ppZn7V6OI9M89UsqfSCn/DXgPcDlwUzlfeDmYprTjermE0cGpCK1eR9ExOssZn8PCVDj/MUdPRgOzCzOrFW1yvdI5ydOO5OKuHdY2uXHZzBwsQUj2RxMkUnLWRF4htPkcxJOSsdDs69LmZrj+enjPe+Cqq1Q2fynMZY4qJ212H2OJILFUgkAykjcfeSHWrJkW02fIPumyPbtH/VtXQkiO2QMc6J/i8jJrHMuBUh3JGwAr8CxK7B1nOif5PKqA7zBgBtbnPDZ3ac9hcpb0CCF6UML0jCVAy5mdPfVEE6miYyWKZSQQmzcPaXO7GoS98++e4/M/OcSvjo/MOaA5Oxrib584zhsv6uCz92zn+FCA77xwllgyRUOFZoebPXYu6annsUP65yQPTEVqqgk4G63ITm8iMf2EZIAdXb68hXtPHRvhyt4m3V5nLnpb3AVlJJdCczNcdhms2qoufPZc6ZqxvMhttpMkRTS1+AHyZKJyQjLATdeZsfjC3PKhM3g8yi2lt5DcsybFSCCaibUAlQXpcEznJGuCWzHxFgcPp6DOn3EMGBjk4rLNdHUO+6O05GQ0rm1W37e5cpKTKclzJ8e4Kp0DC+o6YMgf5eljKhN2rozkrvrpC/Sdq+pL+hsqhddhIZZMEZkjZ1YTGLJF3NVNLqRUJXygBofdDU58TiuxxMznmgzHqHdaMxO+3Q1OnFYzR4rseghElkdGstdhRUoI6OQaDkRmxky4K+BIDuSI14tBy0n+h1+eAmBrjpDstlkwCXQrE86NAnHazEgJ0TxZlhPheCbGQnPCAxXpCMnHQw/Bf/2bi83tXj7xo/0Zl/aWLcp59u2HJzPv02Id3KN5lt0KIdQ10zyT76PBKM3px33729DUBJdfvqhdWe6MA/uklNkLon8JxICtWdvUpHHKq/NETy4Dk5GairUAJezGkin8Zc6y1wxjzbUgJKeviSqdk6yVIxcbbWEyCbZ0+DjQX/w4fDyoxXmVIiQr/Wdwnhx7u12tEnnHO+Cuu5TAWoyfbjKh/g0qFW0B0GZTh8Wh2BT+ZASvpbRjgs2mzF5vfKPKUYbpaAubR31fBstTywVMR1v818njuGxm3n1ljbbQZlGqkPxL4Macny+m77sT+HPgGWAK1VwLgBDCBbwJyK6NeBi4TQiRvd7t7UAYeLLE/as4mquo3PEWCwXrX7G2kY/fuYUmt51//NUp3vX3z/Ovz+cPN/3sjw9gNgn+5I1buH1bO1s7fPzFIyoQtZIZcbdta2df3+SMpbB6MDBZw0Jydx2nR0O6Db40InE12NIj2gJgR3c9Y8HYjFnmc2MhTo0EyxprobG22c1oMMZkqHzLzM6NhXDbzFx7uZV774Vf/3W47jpY3aq+p4Hk4pZqJWSSqWRkVgZzOfk/f2ni7s+9zr4RdcZds0Z/IbmuTZ3UL+6ZHleZzWrQPFtILuzYkErBqVNgbQhxQxnzt5cKIcR6IcTXhRCvCyGSQogn8mxzWgghc35mzcELIbYKIR5PZz72CyE+m2cgXJO47DNdnYNTkcwFusbqdCHYXDnJhy5MMRmOZ4QygJ2rlPvgwb19mWidfDS6bZkM14uXcT4yTAsJgTkGxf7obEfP6iZ1rNLO6X3jYboanBmnZ/Z5azwYn1FuZjIJNrZ5ii4N9i8TR7JXx6XgUkoCsZnRFsqRXF6BIhTTT5Rv8zlY1+LO5A9vzhGSTSaha0Hh7ExprVxz5kRIKqUtL047ktuzhOQlcCSD6mbo6jDxxfsuYtgf5ZM/3E8imcJuh3XrJc+/nOTibnW+XKywNxacHW0BKt5irsn3ZEoyFlRmlrEx+OEP4V3vUsJFDXMI5UjORQDa7ETNGqf0jp7JZdBfe+M0rXS03DENGUdyDSyf76xfKkfy7InwQtnW6eNg/1TRq4+0OK/GElZ+a5+toanCVqR0d8Ptt6vj9KWXFlbON5kIYULgNVfuc5VduBdIROct2iuE9nYV93HppWBBXQNYver7Um5Hcn2D5KdH+nnH5auWbFK6kpQkJEspR6SUT2T/MH0SfFpKeURKGQG+AHxMCPEhIcQe4Pvp1/xK1tN9DYgCPxBC3CyE+CDwaeDLOc22y5ruBidNbltZhWQpJaMLOJItZhP//bpevvPBK3n1k7fitVs4keei8PFDgzx2aIj/cfMGOuqcmEyC379t44wG9Upxx/YOAH66X79vdyollThQYzPdGlqR3QGdXcl6RluAck7DzDznJ4+qrLfrNpZf6OtNLy0/ObK4PMH5OD8eoqfRlXHUuVywdSvccp36nm66OEpvb+m5VdrscCUdySYTXLOlgX19ygG1GCF5JBDlhVPTxZCRiJq1NdcHsZrFrEKy7dunoy0a3TacVnPBjuTz5yEeNdHcGWPdHLECVc421GTtEeDoPNt9G3hD1s+d2XcKIRqAxwAJ3AN8Fvgo8Bn9d3n54c5yJMcSKcZD8Vmt8T0NLkwCzozmF1WeTecjv6G3OXPblg4vNrOJYX+U9a2eOWOVhBB0N7hwWs1sbFven9OFhFHtdl/WQEyL+jgzGiSeTDEwFaG73pkRjCeyJvYmwrFZnQwb27wcGSj8mB1NJIklUssjI9mp31LwUCyJlMxyJJe/bC+JS8f38qp16juyqtGVV6D2Oay6lu158wrJMz+//kiClJzO5tZWD1jNIvOYpeLinnp+d88GfvhqP+/+h+cZ9kdxtPkJD3r45JuUCXYxJoJEMsVEOJ43v3Fts4f+yXDeFQhjwRgpqVYSfvvbEIvBBz5Q8m5UCz8GdgghmrNuuw61Kve19P/XrHFK+75OlSkjeXAykhHHaoWOOqXWlV1IThfKN88Td1ktOKxmmj12+qsk2gKUkByMJTlTpAlucY7k9CTFPI7kfHg8auXIe94De/YooXUuJhNhvBYHJrGYGrXi8JodOE1WTkdGSJLCU6IjORuzWQnJ995jAimQlgROZ/mFZHt9BAH8t2vWlu+FlhHl/pR8AVXK98eok7EPuEVKmTGWSynHgT2o2dyHUAPZvwQ+VeZ90xUhBBf31PNaGYXkqXCCWDJV8DIWt91CR70j74H5Oy+cpaveyfuvnv6g37iplUvSy2xLCYEvlVVNLrZ3+fjJ/gu6PedoMEYiJWtupltDE2j36Swka4MHp02fQ8Pmdi8Wk8jkOUsp+f7L51nd5GJduiG8nKxNl8folZOcj3Nj4UyWbzZa5qqtLsqtt8L736/a1zdvVvENhTISU868Bkv5369srlrXRErC8ydHWbMGzp5Vjt9i+dR/HuBdf/9cZiB/6pRqew87p9jQ6sVmmflZ274d+vpUiY8S3JwFO5IPH1E7ePlOa81lo6d5SErZI6V8K3Bgnu0uSCmfy/p5Jef+BwAn8BYp5aNSyq+hzr0fEULUfCZIds7scHp5aGuOI9lmMdHV4OTUHNEWTx8fobfFPWNZrt1iZks6UmXDHLEWGpeuquf6jS1YzJW7WC8Fr31+YTTj6LFPXzO0eOy4bGbOjIUYmIyQkirvPJ8jWeXUzrze2NTuZSQQnTefOhvt33J5RFvotxRccx5n/11um2VGUWQ5CEQTeHTKSIbpeIstOUV7Gj6nRTehKhhN4s7ad1c6oiO3cG88nTGpOZJdNgurGl3UOW3L4tzxP27eyJfeejF7z05w11eept80QGLSxfr6BkxicQ7R8VAcKfMvie9tcSNl/mumjHDlsfNP/wSXXAIXX1zyblQL3wBGgYeEEG8SQrwT+BfgMSnlLwFq2ThlNgm8dktZMpL9kTjBWHLWaqBqp71Esa9YRjKO5NpwPXY1OJcsI7mUKKdtnWlDV5HxFtq5p5SCyRavHSHmj7aYD5NJrXx585vhrW/NX843mQhXNNYC1FivzVbH6bCKhVusIzmbhgawm8y4fUna28sbbXH6TIqAxc89O7syLvtaR7cRjJTym1JKIaUMZN0mpZR/KqXsllI6pZTXSin35nnsQSnlTeltOqSUn8jTfrvs2dlTz/HhQNlKCbQB73xle7l01Dm5kGdW9NxYmC0dPqxZg1ghBB+/cwtrmlxzts2Xizu2d7D37IRus5HaQbbWsrc0Gt02Vbi3zB3J04V7aj8fPzTEa+cm+K0b1lVksLaq0YXZJMqWkyyl5Nx4iFWNs0+6WubqsF99b81mWL0abrgB3vteuPtuVVLjWeCrdi46jkWYaLNXVt/buaoeh9XEMyeUkByLFT+TOxKI8siBAeJJmZlMOH5c3TcqRvLmGOcW7nU1ODNZqwvxixfVdrdfvbxdnqUipdSrzfUO4Gc5g9fvosTl63V6jWVLds6sdq7IN5hd0+TOG20RjiV57uQoN2xsnXXfJemYq7nykTX+7P6L+eq7Ly121yuOtuQzMIfQF8jj6BFCsKrRxbmxUGY1wVzRFpPh2UKylldbaLyFtg+eInMOy4Ge5VT+fEKy3VJ2R3JIx4xkgCt7m7CaBRfNEeOipyO50GiLjJCctbx4R1cdHcvomvG+Xd08+FtXY7eYMTerQ/WhQwLvIt8vbYImb7RFeoI/3zXTiF89buyck1deUZPjtU76HHkTKsP4u6g+oMeBt+VsWrPGKW+6PE5vanWcpk1KD1Yg2sJjt5S9a6ZSdNU7Kp6R7E93K5hLKHvc0ObBYhIcKLJwTzv+NpQwAWA1m2hy2xksMNpiPpqaVDnfr/+6yhXWMoUnE6GKFu1ptNl8xNPSn55CMoDVZCaOEpLL6Ug+eVoiPGEeuL63fC+yzFjeVpgq4+KeeqSEfef1L0GD7GD9YoRkBxcmZx+Y+9PlN7nsXtPIE39wY1GvoQd3bFfrLB7WKd5CW1JUq45kgIu69S/ci+gsJMN0MWAqJfnSo0dZ0+TiLZd26/b882GzmOhpcJbNkTwajBGKJelpnP1d8jks2CymjJCcjRDQ2alO3u9+N9x3H+zaBY2NszblfGSMTns9lgrH19otZi5b08izaSEZio+3+P5L54knVX7Yy2dUl4wmJAcck2zNIyRv365+a0Ly7tUNHLwwxfMnR2dtm8uzr0QRliR3X5XnjVxZ/DchREwIMSmE+HchRG7jQ252I1LKs0CInAzHWsRlmxbjtKy53GgLUCsaTo8GZ5WFPntyhFgilTeHW+tLKGQydjk4Hxci47BdINoiN2Owp9HFmdFQZjVBV70zE2ExkdU4Ph6KzVriqeXVFiok+6OaK3rpHck+HTOS8zmSc4si9SaVkgRj+kZbNLpt/OR3r51zqafPoW9GsienbA8gmPOe5Ytx+9ybt/P19+zSZT/0Ymunj5/83rV85w/VYXnfvsU7uDVncT4heXoV1+xoGW0M8viPXNhs8M53lrwLVYWU8riU8k4ppVtK2SClfF9aFM7epmaNU00ee+YzoycDk+o5ay3awmE10+Cylt2RnK8ws5rpqleO5NzrrXISiMZLirUANUba2OYtWkieCMUxm8SMOLBiaPPZS3Yk58NmU6amX/s1uO3OJIFktKJRihpaTjKAx6KvBmUVZiLxJG1t5ROSA0FJyG9mU6+ZDW35V1/VIoaQrCNaCcar5yfK8vyaIFWckOxkJBAjmshuSY/jjyZmNMcvNb0tHja3e3l4nz7xFhdqdKY7m+1ddZwZDelaJJeJttBRSN7eXcd4KM7fPX2SQxem+PAtG2c44ctNb4uHE8PlyUjWyqR68kRbCCFo8djzCsm5tLTAZZfB296mmnavvBLa2iCaijMYm6TH3rTgc5SDq9Y1c2TQj69FCT/FCMmplOS7L57l8rWNrGtx80qWkOzxpTA54pmlYdmsWqVc2lrh3n+7ppeueief/NEB4smZhtzcC84jRyXelugMl9kK5EfAb6GcT3+Aykh+WgiR/WY3ABN5Hjuevm8GQogPCiFeEkK8NDw8rP8eVxi3zZyJBxj2q3NFa56VPqub3PgjiVkRC08cGcZpNXP52tkTFrdvb+eTd23lmvXNs+6rRrRoi/nK9oQAT46DdXWji7NpR7IQ0FHvmOVIjsSTROKpWY7kVq8dn8PCkYHiHMmlDgj1RHMk6yGMau+5O8eRHE/KGdd0ehKKazEh+k5cbmjzzjlB7XPq43iUUhKc5UjOH20xEU7nVGYV6zW6bctyOarHbuH6XR48HiUk1zn1cSTnG0u4bBY66hz5HcmBKDIpeOgHVu65RznaDGqfFm9h17HFogmttWj4afM5dBX78jESiNZMrAUoITmaSGUiOyqB5kguFVW4N1mU+D0WitHgKj1+r6yfLZd63juuc7JrV2HlfHrRZpseonj0diQLC9FEeaMtXjmsTJuXba28CL+UGEKyjtS7bKxtdvPq2YmyPP9IKdEW9bPbY/uylpouJ+7c0cFLZ8Z1KSgYnIxgNomKO6sryUXpiYv9ReYzzYfe0RYAF6XznP/ikSNsbPNw10Wduj13IWiuwmKbdQvhXPq71JMn2gLUErehIi/A6+pg507VOLvp6nEkcElPI6YlOFpflc627E8oN/CDT41z9Rd+ztk5cmOzeebEKGdGQ7zrilXsWt3Ay2fHkVJy/Dg0dsQQIn9mphDq73/2WfX/TpuZT71pK0cG/fzzM6cBJRh869nTXPanj/H4IXVVMBaMMdpvY3WvXukP1YmU8veklN+RUj4tpfwGcBvQCZS8EFlK+Q0p5W4p5e6WlvKXZJYbl91CKJ5Ml7JGMQnlusplbbP6Xp/O+rxLKXniyDBvWNeU9zjpsJr5wDVrKzpZVk6my/bmzkj22CyYcpaGrm5yEU2k2HtuglavHbvFjNdhQQgyIpgmKOeW7Qkh2NTuLTzaIo9zd6lYqJywGPIJ5JmohmiZhOT0e+nSMdpiIfRyJEcTKRIpOcvBDXmiLYLq9RqqpFXdZFKrdfbtW/z7NRqYO9oCVLzFiTyruEYCMWIn2xkbFSuhZM8gTau3+OvYQqjVaAtQf1PZHcmBWN7rlmqlK23IqWROsj+SWNQE9LZOHyOBWFHfj4k8q7CKQQnJ+n8fgcwKsnXtTi67TJXz3Xzz/OV8etFgdWMVZlwmG2adi/6sJhPhtJA8MgLxMiTQvnxIvXfb11fHNYVe1MZIZxlxcXcdr5XJkTwSiGI2iRkOioXoTLfH9k9kCcnpg/RyciQD3LlDHal+dmDx6w4GpiK0eOwl5R5VC9s79S/ci8SVCKenI3lTunAvnpR85JaNFf836W1xE4mnMi51PdEcyfliYoCCHclzsW9gDItJ8Ftvq+e971Vtu729s8sRysW2Th9eh4UXzg3h8iX46XN++ibCvHx2bMHHfvuFMzS4rNy2rZ1dqxuYCMU5ORLk+HGwNYRY3eTKuPdyueMOePlluJBeoHDL1jZu3NTCXz12jPPjIf7kh/v55I8OEI4l+dC3X+HlM2M8eWSE+ISLS7YvvZi0nJBS7geOANmBvOPAbDu4ciOP57m9pnDbzEgJkUSSIX+E5jnOFaub1DLv7JzkUyNBzo6F8sZa1CKeBYRRfyQxK9YCpifXXjw1likjNZkEPoeVibSArOXU5jqSQeUkHxnwF+T0yQjJy8CR7LCasZlNugijWhxDriM5+z69WQpR3ue0EoolZ604KRYtCsRtm75+0a5lZjmSQ2oy01fE9fRSs2OHEpK9duuiHNyjQfW3zyWi9zZ7ODkcmPXdGwlEiR7ppr0dbrml5Jc3qDJavHZGA1GSOpsxhqYi+By1k/GbTUedQxdT1HyMBGJ5CzOrFU2TqGROsj+amHMcUgjbuoov3BsLxkoq2tNo86momcWeL/OhdVp0N2rXbLB+/XQ539at5Rt/moSgzeYrSz6z5khua1P/PzSk+0uw75i6nr1kc+1NjM2HISTrzM6eeganonlziRfLiD9Gk9s2y/kzH5ojOXt/+rTMwmXmSF7f6mVjm4ef6BBvMTgVoa0GZ7mzaXDb6Gl06prJrQ229BSSHVYzO7rruKi7jtu2VWBaMwct8+9kGeItzo+HaHLbZgz0s2nx2jMlmaXwwqkxtnfV4bJZsNtV2+6tt6qSm9tvh02bwFHGj7nFbOKKtU18/+XzJNwB2kQjJgGnRuZ3JA/5IzxyYJD7Lu3GYTVz6SqVlvDCiXHOnIGYeypv0Z7GXXep3z/5ifothODTd28jlkxx+189zb8+f5YHrl/HL/7gBtp9Dj7wzZf4x59dgKSZqy6pHYeGjsj0j8ZhcrKQhRA9gIuc7ORaRMt/DUaTDPmjmXKcXHoaXNgsJn5xZPqq84kjKtojX9FeLWI1m3BYTXNGWwTmcPRoInw4npwxaV3ntGacyJmc2jxi3qZ2L1ORREHOG03k9i4DRzLoF9WgOZLdWTETWglersNWL4Jpp/Nc57RyoFeutLbv2aWL2t+Rmys9HopT57RWldlgxw4YHQVzxLGoiYqxYJT6ef723hYV6TOaE+lzYTTO5NEm7rtPlQcbrAxavXZSEt1zkv2RRFVN5BRDm8+hHPyJ8qyQS6UkY8EoTe7aud7VNIn+ijqS44uagN7S4UMIONBXeE7yRGh2wXAxtPkcSElZ4mb6xsOYTYK2PCvfm5rguutUOd8110DDrBC8xXNH00Xc0XyR7s9rSWcka87qcsRbHD+jrjF6Vy2P69BKYQjJOnNxumjntXMTuj/3SCBadFSD5ki+MDnTkWy3mJZlttLt29p54fTYonN/ByYjdNRg7lYuO7rq9HUkp3MX7VZ9Dw1//+u7+ZcPXLEk5VLrWlTpVTkK9/b1TWZazvPR6nUwFiztYjIST/Laucm8OaxmM6xZAzfeCO99L9x9txpkehbu9yqa27e3Y7OY2LXNhjnkobPeOcOhmY9/f/k8iZTkHVesAtS/gc9h4cmXgySTELRPsLVjbiF5xw7o6YEf/3j6ttVNbn5vzwZiyRRfeuvF/NEdm2n1OvjWB67AajbxwmvqmLFpU/UIA5VACLEdJRq/nHXzw8BtQojsbJG3A2HgyQru3pLgzix3V0JlW56iPVBlnQ9cv44fv34hIyY/cXSY3hY3q5pWTg6a12GdO9oiGs/r6Omqd6LpVNmT1nmF5DzunI3pspIjBcRbLCdHMsz/fhVDIC2MajnVAK60qBycQ9hfLBkXtK1ySqEmJi0m9xey3dTT+56JtojnRFuEYlUTa6FxUXp8HRzwLDojeb4l8dOT7zPP84dfcJOKm7n//pJf2qAK0eIU9RauQrFk5vtZa2i5z0P+8riSpyJxUlIZimoFn8OCx26paLRFIJIoufQO1MqdNU3uogr3xoKxOWOFCqEtbXwoR06yPxLHY7dgmSeazWZTMUtvfzu86U1qlaxe0YtNNg+ttrnHhqViM5kJJxIZIbkchXvn+lIIIamB9L+iMIRkndmaXgr+g1f6dH/u06PBootAnDYz9S7rTEfyRJiueueybIy/ZkMLUsJzp0YX9TwDk5GazN3KZXtXHWfHQkyE9CkniMSSCAF2i76HhiaPnbpFzMAuhlavHa/dUnDeZqEcH/Kzv2+K27d3zLmNdgFeipPjtXMTxJIpLl8zW0jORgjo7ISrr4Z3vxvuuw8uvVS/2eL7Lu1i36dv5ZpLXJw5A2saVeb0fPzy2Ag7uuoyIr7JJLh0dUNG7LU0hPIW7WX/TXfdBY8+CpGsa6UP3bie1z55K/ft6s7ctqrJxT9/4DK8UfUHr19f6l+6/BFCuIQQ9wsh7ge6gBbt/9P3vVEI8R0hxLuEEDcKIX4T+BlwFvhm1lN9DYgCPxBC3CyE+CDwaeDLUsriKqirEC3/NRhNMuyPzOlIBvjQjetY3+rh4z/Yx7A/ynMnR1eMG1nD67AwNV+0RR73qs1ioiM9kZ0d/VPvsmYE5IkFoi0AjhUiJEcSmIS+K2kWg9dh0ScjORrHJMCRNbFbfkfy7DiNcuPTqaAwXzmh3WJCiNmZ0pPheKb8sVrYsUP9nuxzEYwlSZS4tHkkML+QoZ23c1dxnX6pEVddnGuvLellDaqUFq8miuorJAdjiYpmsVcSbUVsuUrRtPPLYkTQ5YYQgq56ZyZeoRIstmwPlO5z4EJhhi4pZdqRvLiMZKAsOcmhWLKo66iuLrVK9l3vgl27wLVM/RUWYZ4RbaG3kByJJxkdNuFpSK641TqGkKwzdouZ/35tL48cHOR1HbOSJ0IxTgwHuWRVfdGP7ahzcmFGRnJk2cVaaOzsqcdpNfPsidKF5GA0gT+ayBxsa5mLuuoB+I9X+opqjZ2LcDyJw2JelpMMpSKEYEuHj4NFzBgXwoN7+zCbBHdfPHd54GKcHC+cGkMIuGwBIXnWa7bA5Zer2eJ3vAOuuILMybMUhBDYLWbWrIFoFJrNdZwaCc77eRv2R2dlsO9a1cDxl71YrClsLf55oy1ACcnBIDyZ44915nGwbOus4+61m3A6lahew7QC30//XAlszfr/VuBc+vdfAY8AnwIeBa7JFoillOPAHsAMPAR8BvjL9PY1jxYVMBmOMxqMZQbK+bBbzHzxvou4MBXhff/0ArFEasXkI2t47ZZMzEIuc0VbgCrcg5l9DD6nNeOm1LKS8wnJjW4bLV47RwYKcyR77JZlc97y6eRIDkaTs/4uzcE3V9TIYsknxpabaUfyYqMtZu+7EAKX1Ty7bC8Uo2GJJrdLpbFRnd+Gz6rjVamTFWPB2LwrEjvrndgsJk5mrTwKBiXjh5vYfnVgxQ2UVzqtZXIkh1eAI3lgsjylaNqk22KK4pYjXQ3OijmS405J3YwAAQAASURBVMkU4XhyURnJoLpkzo2FMyut5iMYSxJLpmh0Ly7aAsozSRGOl/addLvhssuUmemWW6Bjbn/VkmBNR1toY2G9oy2ODwVIBOy0tOibI18NGEJyGXj/1WtocFn50iNHdXvOvWcnADJZo8XQWeegPzvaYjy87Ir2NGwWE5etbeSZEyMlP8dApgm4drKj5mLX6gYu6q7jcz8+yJv/9hleOLVwCdp8ROKpvEJdtbO108ehC37dykJSKckP9/ZzzfrmjFicD+0CfKiEmeMXTo+xqc27KCd3XR1ccgnce69q3732WujuLm0Z0po16rcr5sMfSTAWnNsFPxKI0uydOVDd0d5A8GAndZuHaW0yzfu+gYrtcDpnxlvMx7Fjyo2s1xKr5YiU8rSUUszxc1pK+bqUco+UskVKaZVStksp3yel7M/zXAellDdJKZ1Syg4p5SeklOWxOS4zNBfU2bEgUk4vFZyLXasb+PUrV3Ogfwqn1Zw3bqaWmS+qYSoyd1mNJiR3zxNtYbOY5nTAbGrzFrSSxD/PPiwF8zm4iyGfW8ozR+avXmiCa3Yuc7nxOdXfpJcjOfc9c9oshOM5GcnBeNVFW4ByJV84pY5Xpb5fCy2tNpsEvc1ujg9NO5J/8J9JZNzCNbdUzi1osDwoV7RFMJasWUdyRkgukyNZm9hdTuc9Peiqd2Z6nMqNNvG4WDF+S7syxRSyemo8qK3CKv3c0+iyYTWL8gjJseSiNACTCdatg3vugbe9DbZtA+sy+IjaTGYiiSQuF/h8+juSjw76SQbtdHctDzNDJanhIffS4XVYeeD6dTx5dJgXTy9O2NN4+cw4ZpPg4p65l4PPRUe9IxNtEYknGQnMdgsuJ65a18TRwUDJ2VKDadF8JTiSnTYzD/7W1fz5/RcxOBnhbV9/lv94+XzJzxeOF7espVrY1ukjHE/qlpP84ukx+ibC3HtJ17zbZS7AiyzcSyRTvHxmXFfByu1WJ/W77lK5yjfdpHKIC0UTkk1BlZ84V7xFPJliPBSfled+7rUGUhEb5s2n2dpZt6B70OmEm29WQnIhZvtjx1QZoYHBQmgimVYa2TqPI1njD27fTFe9k+s3ttRky/x8eOyWucv2ovE5B2JbO+vw2C101U+vd6x3WpkIx5FSMhmOUe+0znksWN/q4cTwwsfsQDS+6OWpeqKiLfRwJCdm5T5PZyTXYLTFIjOS59p3l222I3kiFFvUYH6p2LEDzp+yIlOiJAd3MiUZD82fkQywIWcS5/v/LjE5Y7zh6vKUhxksXxxWM16HpQyO5ETNOpLrXVbsFhMDk+WZeMkUzNagI3kqktDl/LkQ2nu42GuHje0qhutwAaunxtNxXo2LOPeYTIJWr6Ns0RZ6fScbG5V5qZzlfIViEWYSKUk8maKtTX8h+ciAn1TQwdpVtXk8mw9DSC4Tv/6GNTR77PzFz47oEjnw8plxtnb4Spq97ahzMhGKE44lM22oyzXaApSQDJQcb6EVC2r5jLWO2SR46+4efvH7N9DssfH8IvKlI/Gk7kV7ywEtj/fgBX3iLR7c24fLZubWbfNnRmhiarEX4Af6pwjFkmVzPtrtsHGjyrQqlNWr1e/ouBLdNBEul9GAulDKFZK/8//MOOqjONaMLBhroXHXXXD6NBw8OP92ySScPGkIyQaFoeXMaqWRrQu440ENNn7yu9fy5bdfXNZ9W47MlfkbT6aIxFN45xiIveOyHp78gxtmOFzqnFaSKUkwlmQ8OH97eZPbRiCaWLCsNJBHcF1KVLTF4h3DwVhilig6nZGsjyP5wb3nufoLPyeaLtrVBGp3BZ2CWrRFIUuD5yPjSLbNLyTHEimCsWTVRVuAEpLjMUF81F2SI3k8FENK9d1KJOA//3NmD4HGpjYP58fDBKIJIhF4/GcWXBsGaKuv/ZV+BrNp9dp1L44LxpIVXflQSYQQtNc5GCiD2Adzr76odjSTWyXiLfw6ubo76xx4HZaCYri0lZwNi4i2ALWKrr8M71EonsSp87nfap0u57v7bn3L+QrFYVLv93goRnu7/tEWhy/4SQZtdHYYjmQDnXDazPz2jet4/tQYvzxeekwDKHfiq+cm2LW6tOmcznol/PRPhjMH5+XsSN7WWYfXYSlZSM5EW6wAR3I2TpuZrnrnoi5cIjXqSF7f6sFqFhzoL6wQYT4i8ST/te8Ct29rX3Bix2Yx0eCyFn0B/shBNV26UNFeJXG7obkZJoZsmE0iI8LlMpJ2X2cLyX198LOfwa6bJxEm2NpRmJD8xjeq3wvFWzz6KMTjKsbDwGAhNMeFtkKh0NUrdS5rzS7FnQ/vHMJoxtEzh4hrMZtmOR/rskTDiXCMeufczhxNZF5IYAzoUJijJ16HlVAsSbzEMjSNfNEW2vlZL0fyi6fH6ZsIc2xQxRgEYwkcVhNmU+UGRG6bGbNJ6Fi2N/MaxmUzE84SkifCc5c8Lneuvlr9jpxtKsnBrQkZjW4bX/6yWoL8gQ/MXvWTXXb5s59BKChwbb4wa4LYYGXQ4rWXJSPZaV0+x229afM5Mitk9cafyUiuvmPYfHRqQnIFCvf8OuVMCyHY1OblSAHRFlrR8GJjlbobXGUR28OxBK4yagCdndPlfLt3q3FlJaizTH+u2tv1dyQfOBlBpky0t+v7vNWAISSXkXdcsYqueie/+529PHeydJfo4QE/4XiSS0sUktt96gt0YSKSOTh3LmMh2WwSXNnbxDMlCsmDUxF8DktNZv0uROsiL1wi8VRNLtu2WUxsbPPqUrj388ND+CMJ7r10/lgLjWIvwMeCMb75q9O8cUcHrctsMmTNGjh3VtDd4OTUHNEWWoxHS1ZG8re+BakU/LcPCKxmUXBpaFeXEod/9KP5t/uzP1Pb3ntvQU9rsMLRXJ6nR4MIAc2e6lviXkk8DhVtkcrJmC8lp1ET7yZCsXR7+dyPrUsPtibDc+exA/iXmSNZG5jOVVBYKMHobCHZZBK4bOZMjMNiOTuqVpbs61OTrIE8r1luhBD4HBZdyvYcVhMW88yhjctmIZjl4NYG89UYbbFuHaxekyJyurkk4V1bMRSfdPCZz6iB/Xe+A5///MztNqWXax8d9PPd74Lbm8SxatQQklcorV4HQzoKyVLK9IqL2htvaLT7HGXLSJ6q0WgLrU+hHG7bXPSMB9nY7uXIgH/BFegZR/KihWQn/RNh3Xp/NPSMtpgPt1sJye96lyrnK3dJus8y7XTXO9piMhSnP/18y61ksBIYQnIZsVvM/OtvXEGj28a7//55vvPC2ZKe55Wz4wBcWqD4kkuuI9kkoL1ueQlUuVy1romzYyHOjRUfuj8wGVn2f1+5WOyFS61mJIPKST7YP7XoqJkH9/bR6rVz1brmgrYvVkj++pMnCMeTfPiW5ZfTsGaNippY0+Se25Hsn+lIlhL+6Z9UVtb7bm/mxY/fTHeDK+9j8/Gud8Gzz8KvfpX//hdfhF/8Aj78YbBVny5gsATYLSZMAqKJFE1u2yzhyWAmPk0YzYlTKKU5PjvGYCEhWYseGA8t7EieK15jKdD+xlLiLX51fIQfvdrHj17tYyQQzSvquu0WgmmHbSyR4qVFdHGcGVPHcU1IDkVnx2lUAp/TqosjOd/75cxxJI/rNJhfKvbcrBzJY/7iP1+akPG1L3qRUp1X3/lO+PjH4cEHp7fraXDhsJp48UCEf/93uHTPJCaLrMo4EIPFo7cjOZpIISU1bfhR0RYRXeItcwlEE1jNArultq5dWjx2bBYT5yrgSA5E9Ym2ANjc7mUyHF8wt3giFMMkpq8RSqW7wUUiJXUv3AvHkjgq+J3Uyvnuvru85XyaI/l82pE8OZk/0qkUjg75SQbUeNdwJBvozppmNz/4rau5an0zf/yDfXz50aNFP8fLZ8Zp89lLjqPQRNULExH6JsK0+xxYl/nAWRPpni3ByT04FVkRRXv5aK9zMBmOE4mXtuw1HEviqMGMZFCRKaPB2KIKCpIpyS+PjXD79vaCl/4W4+QYmorwz8+e5s2XdLG+1VvyfpaLNWvgzJlpITnfBfJITkbyr36livA+8AHlPCvWBfbAA9DaCp/6VP77//zPoa4O/vt/L+ppDVYwQohMBmwhRXsrHU0ozhVGM46eIoRHLdpiSou2mOd4oMVeTCwkJC+Bi3Y+tPerWGF0cCrCu/7+eX7vu6/ye999lfFQnI48131umzmTkfyXjx3l/q89W9KkezyZon9CjaYOZBzJySWJb/E5rIsu25uKJDLFfdnkZiSPZxzJ1SmK3nm7QMas7N9b/L/TaDBK+EQLj/7Eyic+oc7pf//3cPnl8J73wL59ajuTSbCxzctPv+cmmYRttw7R6DIm3VYqrV47oVhyztLVYtG+j5XMYq80bT4HsURqwfNXKfgjcbyOuYtqqxWTSbC2yc3J4UDZX0uLttDj2kGLAloo3mIsFKPOaV10dJTm3D6vs+AeiiXLGm0xH9nlfNdeq/5fL+wmK167lfPjoYzYq1dO8uEBP8mgGu8ajmSDslDntPKP793NGy/q4GtPnGCyyJPKy2fG2bW6oeQTht1iptlj48JkmL7x8LIu2tPY2Oah2WMrKSf5wmSEjhXqSNYE9FJnKSOJZE1GWwBsTRe8LSYn+cRwgHA8ycXd9QU/RnNyFOJK+NsnTpBISn5vz/JzI4MadEYi0Ci8BGPJTIxFNiOBKC6bOeNq+9GPVLnf/feX9ppuN/zRH8Hjj8OTT8687/hx+I//gN/8TfAVFrtsYACAK72kttVnLNVeCI9dCW65UQ2lOHo04XhwKkoknppXzMuOwZiL8+MhQrFkRqBeDpQqJA+kY6n+9N7tPP7R6/n5R6/Pey5w2SwEo0mG/VG++avTAAUV/eSiLY1t9tg4NOAnnkyl4zQqfw3gc1oyy7VLxR9J5HXH5wrJ2uepwV2ljuQ9AoRk3wvFX+eeH4ky9tg2Nm2SfPSj6janE374Q/B4lJgcS3/d1tb7OPxEC29+MyTdASPWYgXT4i2tOHoutGieWnYka+PQcsRb5MvPrxV6W9ycGM6/4lFP9IwH2ZyOAjoyMH984ngorst5Z1pILn4CeS6klITjlYm2mA+rVTmT3/Y2leG/bp0+5XztXmcmIxngwoXFPyfA0QE/lqj69zAcyQZlw2I28cB164glU/xkf+Gf3sGpCOfHw1y6qrR8ZI2OOif9k8qRvJyL9jSEELxhXTPPnBgpallQIpliJBBdcUV7GtrfPVBiTnIkVrvRFls6fAgBBxaRk7zvvBKhL+quK/gxLR470UQK/wJOjr6JMN9+/ixv3d3D6qYKNRAUyZo16rcl5AHg9Mjsi5iRQHTGgPPIEdiwQQ1SS+WBB9QJ+pOfnFkK9KUvgcUCv/d7pT+3wcpk2pFsiCMLMe1InimMllJWowm+Z9LZvIWU7c3l6JJS8ic/3I/LZubNlxSWWV8JNFdssdEWo0El0mzrrGNdi4feFk9e55LbrhzJX33iBNGEEkiPl+Dg0v4Nbt/eTiyR4uign1BsiaIt9HAkh+N5lwy7bBbC2RnJ6depX0aTD8VQXw/enimOvVL8dcITP3aRmHDzN38jZkRBdXTA178Or70GX/iCum301Q6SYRu/8UCckUCUJiNLfsWirdwZ0kkUDadXTS61aFVO2hY5HpuPwByTZrXAuhYPZ8dCxBKLK6tdiEA0gc1s0sU8Ve+y0eazc3iBCd3xYEyXSCWt50pPR3Ikrt5v5zJaJdDRoTKU3/1uuOyyxZXztXudnB8Ps3q1+v9Tp/TZxyMDfrwpL2734sa51YohJFeQ7V0+1rW4efCVvoIf88oZlY+8q8SiPY2OOgd94yEGJiNV4UgGlZM8OBUtamZyOBAlJaFtxTqSlShS6gx4JFGbZXugli+taXIvqnBvX98kLpuZ3pbCzxaa43FogUiNf3handV+56b1Je9fudm0Sf0ODamzeb6cZCUkT18oHT+uhOTF4HTCxz4GTz2l8pAjEfj3f1fZy+9978qcBTZYHJojeaXGIBWDZ45oC82RXEzRndtmxmwSnEmXdc7nSPbYLZhNgok5yvZ+9Go/TxwZ5vdv3URPY+G56+VGE5KLFUa1WKCmBRxLLpuFM6Mh/t/zZ7h/VzetXjvHh0oQktNxGG/coZpu9vdNEogmlmS5uc+x+Ixktdx7DkdyPJkxJYyHYtjMpqoWsdq3TjB4wsX4eHGPO3XIjtUVZ8+e2ffdcw+84x3wuc8pQfnpBxuwtU/QuG6KkUDMcCSvYDKO5Dyr0EpBcyTXcrRFe5kdyTUrJLe6SaYkZ8fK60r2R+K6lvRubPNydIFoi/FQXBch2WE10+q16+pI1uKyluN50eWCXbtUZ86tt6py9WJp97o4Px5m7Vp1HXDixOL3S0rJ4YEpbDHXioy1AENIrihCCN5yaTcvnB4rOM/u5TPj2CwmtnUW7oDMR2e9k5MjQRIpmZnJWu5c2dsEwPOnCo+30GZ+V6ojWRPQS422CMeSNb3UbGunjwMXSo+22Nc3ybZOX1H5Vi2ewpYEvnB6lMvXNi7r7+fatUrU7Ttpw2ISnBqdfaE37J92JCeT6mS9WCEZVAZyV5fKz2prg7e+FVpaVOyFgUGxuKyGI7lQtLK93FUVpbSeCyGod1o5rQnJ87hCtW3zOZJHA1E+89ABdvbU896r1hT8+pVgrkzphRjVhOQFnJ8eu4W+iTBSSn7npg2sb/VwrAQh+dxYCLvFxOVrG/HYLezvmyIYTeJeqmiL8PT7FU+mePTgYFGt9P5IAq999ufJaTMj5bTjaiKoSh6rOV909Y4AUgp+/vPiHjd4yknr2jBz/el//dcqm/LWW+HsSQve3ac5NuRnNGelkcHKQjtPLmSIKBSt/LKWxxutXjtClMeR7I8mMpFTtUZvszLqHB8qr5Cst6t7c7uXY4OBec9ZypGsz79bd4NTV0dyqAq+kyYT9PbCm94Eb387bN9eeMl6u9dJOJ4kSpyODn2E5MGpKFORBKmgY8UamgwhucLcfbFyfvzo1cJcyS+fHeeirjpsi2xm7ahzZJaEV0O0BcCaJhdtPjvPnSy8kVw7Ya9Ul5nXbsFlMzMwWfzFnpaP5KixFuBstnb4ODcWZrKEJbSJZIoD/ZNs7ypuUkdzyn3vpXNzxrRE4kkOX/Bzcc/iJozKjdkMW7fCoUOCVY2uORzJMZrTg45z51Te4nodTNYOB3z+8+r57rsPHn1ULU3q7V38cxusPDRHcotRtrcg3kxUw8zj5lQkjs1iwm4pbuBR57RmWtkXKt+sd+UXkj/344MEogn+7P6LFl1cozelC8kqX36hsjvNMfRrl62ip9HF+lYPJ4YCRcWAAZwZDdLT6MJsEmzt9LGvb5LgEkZbhOPJzHLmnx0Y4L9/6yU+9+ODBT+HP5LA58zjSE6vstIcV+MhfZYXLyVrtkQw2xM88kj++8Ox5KzS5VgMAv1uVm+c+/qwuRm++lUYGoKODknbziFePTdJMJak2Vvd75lB6dS7rFjNQj9H8goo27OaTTS57SUbe+bDH4lnJnhrjd4WteLx5Eh5C/f0zpne2OYlmkhlJslzkVIyHorRqFM2f3eDS1chudriZhoa4JprVK7/ddctXM7X7p3OlV63Ti8hWX23gxMWw5FsUBl6Gl1cvraRH+ztW/Ci3x+Js79vkl1rFhdrAcxo/u6ukmgLIQRX9jbx3MnRggdI2hKilVq2J4Sg3eco6cIlmh7AOarkJFIK29KFe4cuFB9vcWI4SCSeKiofGdR3/iO3bOTBvX184aeH825zoH+SREoWVeK3VGzbBvv3w5pmN6dyhOREMsV4aHoJ7PHj6nY9HMmgLhiGhuAf/xFuvlnlIxsYlEImI9ko21sQbbA1q2wvksBbwkDM57RmBMP5oi3U/bZZ0RYnhgP88NV+fvP6dZm29OWEJR2bUGxUw2gwVlAObaPbht1i4kM3qhm69a0eAtEEg0W6Bc+Mhlidnujc0VXHoQtTBJcq2sI5c7Li9XQfwTefOc03f7VwmGE8mSIcT+YtftSEec1xNRGKL/i5W+40eC14147zyCMzewM03vtPL/CR770647ZXXksiUyY2bU/OfkAWb3kLfPGL8Hd/J9jS6eGZEyMANLtX3rFSCPE+IYTM8/NA1jZCCPExIcQ5IURYCPGUEGJnnufaKoR4XAgREkL0CyE+K4SoigtuIQQtHrtujmRtUmc5ux/1oKPOUb6yvRoVkr0OK20+OyfK7EjWOx5kc7saXx6dIyc5HE8STaQWnDwvlO4GZ6YwVw8yjuQqi7e0WpXBSSvnW78+fzlfW1pI7hsP6yYkaxE94yMmw5FsUDnuvaSLk8NB9vXNv8T+qaMjxJOSmza1Lvo1O7OE1eW8dD6XK3ubGPZHOZnH+ZiPgakINrNJtxm/aqStRCFZa31vq2GHnhYRU0rhnvZ93VGkIxlU7vF7rlzN1588yT/8cvageO/ZCQB29tQX/dyVZvt26O+HNruXM6OhGZM8Y8EYUkJLWgw5dkzdrpeQbGCgF5rrYqWuXikGVzrXONdhW+pALFvEW1BIzhNtcTYdDXbD5sVfG5ULr8Myy8G9ECOBKE0FiHW/dcN6fvw712QyONe3akuBC3dwSSk5NxbKrJjZ0VVHNJEiJVkaR3LaSTyV/oztOz/Jjq46bt3axmd/fJCfHx6c9/HzxaxoYpXmuJoIx6peSPY5rNjXDHP69OwB8fGhAC+cGpvVB/HUM+o9uvSShZ//D/8Q3vhG2Nju5UJ6pd8KdyTfBLwh6+cHWff9EfAJ4IvAm4AA8JgQIiMtCCEagMcACdwDfBb4KPCZSuy8HrR47bo5kjXRailidCpJm8+he7SFlJJAtHYzkkHFW5wooUC2GPzRRN6Jx1LZ0OZBCOYs3BtPX8c0uvWKtnCRSEndHO+1MLnT0aFMRvnK+dq96lrnfFpI7u+H8CIN3cFYklTcRMBvCMkGFeTOHR3YzCZ+sEDp3uOHBqlzWhddtAfTjuRGt23BZZPLiSvWqrUKzxcYb3F+LExnvaOqs+8WS5vPXtIM+IN7+7BZTNy8ta0Me7U8aPHaafHaefrYcNGzuPvOT+CymVnbXHwtqxCCT9+9jTu2t/O5Hx/ksYMzB8WvnZ+ks85BaxWIWtu3q9/myTrC8eQMF5w2yNCKWY4dU5nKK3XJj8HyRRPLWozczwURQuCxzxZGSy2rqUu7T20W04Lul7o80RZa3vxy/rfzOawlZSQ3F+BIrnNZ2ZDlxJ4Wkucv+pnxWsEYwViS1U1qcLW9y5e5z7MUGclZBYVSSvb3T3JRdx1/9Ws72dZZx29/ey8n5xEWtM+mL48woIlVmnilV+HRUuJzWjH3qOuIn/505n0P7j0PQF+OW+3FlyXCFueirYV/Zzdlfc5WeEbyi1LK57J+hgCEEA6UkPx5KeXfSCkfA96KEox/O+vxDwBO4C1SykellF9DicgfEUL4qAJavI4Fuz4KRfsual0FtUp7XWnjsfkIx5MkU1JXEXS5sa7Vzcnh4uOaisEfiZe0omouHFYza5rcGVNWLuNBtbJKT0cyoFu8RSQTbVH930mtnO/d74bbblP9Ol67Fa/DwvnxUCZu8eTJxb1OMJogGVTnxZU6zjWE5CWgzmllz5ZWHnqtf86DZDIl+cWRIW7c1ILFvPh/plavHZOonnxkjbXNblq9dp47WVjh3vGhAOtaihf6aom2OgdDU9GiTsDxZIqHXuvn5i2tmUF+rfLOy1fxxJFhPvitl4pyjO3rm2R7Z13JeZxmk+Av376TVY0u/vnZ0zPue/XcODtX1Zf0vJVm2zb1OzKkvmfZ8RYj6bKo7GiLuZYZGRgsJXu2tPLeN6xedP/ASsFjt8wq2wtE85ebLYR2jql3Llx41uCyMRGaGW2REZKXcVGi12EpIdqiMEdyLi0eOz6HheNFOLjOjCpXtyYkr232ZFz6SzGQ1KItpiJxzo6F8EcSbO+qw2Wz8JV3XEIoluRXx0fmfLxW1JfXkZwWq77/0jm+/uQJxoMx3QbzS0Wd04q1McS69ZL/+q/p21MpyYOv9GExCeLJmW61fa+ZsLVO0VFf+GcsOzqmaWULyXNxFeADvqfdIKUMAg8Bd2RtdwfwMylltk38uyhx+foK7OeiafHaGfbr5H6MVr/7sRDafQ4mQvFZeeWLQZug1DPfd7mxrsXDVCSRGVOUg3K4uje1eTk6OJcjWf0teq2Y1lYTnR8P6fJ8mcmdGvpOCqFK4t/0Jli9WmlgfRPKkQyLj7cIxhIkA8oAZjiSDSrK7jWNjAZjc5Z+vXJ2nPFQnD1b9HGHWs0m2n2OqslH1igmJzmZkpwaCWbcOSuVdp+DWDLFWLDwE/Avj40wGoxx7yXdZdyz5cGHb9nI5+7ZxhNHh7nvq89wdnThk3AimeLghamii/ZycVjN3HVRB8+cGM3MTo8GopwbC1dFPjJATw94vTByTp08ZwjJaYFHE5KPHdOnaM/AQG+u3dDCZ+7ZvtS7UTWoqAadoi00IbmAeIF6p5VgbLqEDZSQ7HNYcCzjLD9vkY5kKSWjgcIyknMRQrC+1VNUtMW5dDzIqvRg1GwSmQ6BpSrbAyUI58ZIdaWvW8fzlC5qaJPC+Vx6PY1O7BYT//r8WT7/8GESKcmWjuWXrV0MWhTIDTcn+PnPIZD+p3/u5Cj9kxHecmkXMP3vnEzCySMWbG1TtBXRIbKxbfp6umkFR8YBJ4QQCSHEESHE/5d1+2YgCRzL2f5Q+r7s7WaUZEgpzwKhnO2WLa1eO6PBGIlkauGNFyAUT2I1i5qfyNWis/SMt5gvxqdW6E0bwsoVbyGlLEvO9MZ2L6dHg3knDrQxeYNOsUqd9eqzpZcjuVozkotBKyjUhGStx6dUgtEEKcORbLAUaE6auZYJPXZoEItJcP2mFt1e88tv38lHb92o2/NViit7mxjyR2cVe+VyfjxELJla8Y7kdu3CpYjlVD/Y20eDy8r1G/X7vC1n3vOGNXzrA5czOBXl/d98YcHtjw8HSiray8edOzpIpiSPpuMtXjs/AVRHPjKoGd7t2+HMcQseu4XDA9MGm5F0tEWz164GrieNfGQDg1ogX+ZvqQMxX8aRvLAwpYnN2YV7w/7osnYjg/obixGSp8IJEilZsuuzWCH5zGgIIdTASkPrEFgKp5smjE6G4+zrm8RqFhk3rNVswmO3ZBxd+dCylbXnyaa7wcW+T9/Gwc+qn8Ofu517dnaV4a+oHJrwfsUNUWIxePxxdft/vNKH127hA9esBeBcWmQ4cgTiUROeLn9Ry7mbPHaaPTa8y3zipoxcQOUfvweVf/wc8DUhxIfT9zcAASllrnI0DriEELas7SbyPP94+r5ZCCE+KIR4SQjx0vDw8OL+Ch1o8dqRUsXiLJZQNFETS+gXordFhbTqKYjOF+NTK6xLv28nh8tTuFeueJDN7V5SEg7mKXTXIrr0ilWyW8y0+ey6OZLDNehIzqW7wcn58TANDZK6Oh0cydFkJtrCcCQbVBQtB2+u4oLHDw1x+dpGXU8UV/Y2sb61+lwYV/aqnOTnFshJ1k7U61rd825X62g5u4W2K/sjcR45MMBdF3XWvDsgm6vXN/N7ezZwYjhI38T8M7r70g3yi3UkA2zr9NHT6OQn+y8A8Oq5SUxCn+euFNu2wb59gs3t3hnFhcP+KA6rCbfNzLlzEIsZQrKBQS3gdVgJRHMdyfGSrlHqinEkpwddk1lu1CF/ZNkLycWW7Y0E1fm6VNfn+lYPI4HYrBiQuTgzFqTd55ghDmoTpXq7tAoh40iOxDnQN8Wmdu+M65H6PFnZ2UwtIK7YLCZcNgsuW20IotpkzPrtEXw+eOghVZb08P4L3Lmjg95mVfykOZJfeUU9rmt9pOgOkU3t3mX/fSsXUsqfSSn/l5TyESnlw1LK96JiLP5ECFHWC2Yp5TeklLullLtbWpbe5NG6gAGqGEKxZE0LVhraZNhcBWylkIm2qGFHcmedE4fVVDZHcqBMru6r1jXhtJr5f8+dmXWf5kjWMz5Sc9jqwXS0Re1+rrobnASiCfyRBOvWLV5IDsUSiLADkwmWwSF6SVg5qtEyQyuJyZf/c2Y0yPGhgG6xFtVOoTnJmhunt4QytFpCa3Iv1JH80/0DRBMp3nxJdTt0SuGyNWqS4qXT809S7O+bxG0z09u8+EkKIQR3bu/gV8dHmAzFefXcBBvbvEuynLhUtm+H0VFY427k0IWpTKHPSCBKs8eOEIJj6YWeRrSFfggh1gshvi6EeF0IkRRCPJFzf4cQ4s+FEK8JIQJCiHNCiH8WQnTmbHeDEELm+flCRf8gg6ohN9piMc3xmjhcmJCsOZKnRcRhf5RW7/IuJvU6LJnc3kIYTV8LlhJtAbAhbRIo1JV8biyUyVjUuHNHB//73h1ctASTmi6bGbNJZBzJO3L2IV9WdjYrYbl3NppgHk7Fuf12+K//gof3DRCKJblvVzc2i4qzOzc+LSSbrCnWrCs+q/Vjd27hf9+7Q9f9r3L+HWgE1qAcxR4hRK4q2gCEpJTah3YcyPfFakjft+zRJhOGdMhJDsVXhpDsdVjpaXRyKI9DtVS0Cd1aPtaZTIK1zZ6yCclTZcqZrnfZePtlPfznq/2zDErjoRh1TqsuvVcamsNWD8Ix9Z7Ya9hQpsW7nhsP6SIkB6JJRNhJayuYa/9wlpfa/bQsc+aLtnjs0BAAN29preg+LVeEEFzR28Tzp+bPST4xFKTJbaNhZee40eq1I0ThmVwP7u1jdZOLS6uk7E1PtnR4cdnMvHxm/uv41/sm2dZVh6nEor1c7tjRQTwpeeTgAK+dm6iaWAuN7eloWVewkVAsyZlRtfxsJBCbkY8MhiNZZ7YBdwJHgKN57t8F3At8B7UM9w+AK4BnhBD5ZtjeBbwh6+f/lmGfDWoAj92ScfGAcq+kZGkDsWlHcgHRFun4i4kZjuQqiLZwWIklUwWXLI0GNEdy6dEWULiQfGY0xOocIdlhNfPOK1bpdp4rBiEEPoeFg/1TTIbjs1bo1LusBWUk13IBVTZahMdUOM5dd8HAAPzDDyfoaXSya1UDH/wgDP90G+dGlcjwyivg7vDT0VD8BMy2zjqu7G3Sdf+rHJn1+zBgBnKnzHMzkQ+Tk4UshOgBXDnbLVu01Y66OJJXSLQFwJZ2n65C8ko51q1rcZct2kIT48sRD/Ib165FAv/w9KkZt4+H4rrlI2t0NzjpnwhnzDyLIRRL4rSal+T8Xym0KC8tJ/n0aUhkzffv2wdDQ4U/XyimMpJXaqwFGELyklHntGI1i0ymaDaPHxpkQ6uH1U0rO6Ihmyt7GxmcinJ6nmK0E8MB1q3woj1QeYJNbvuMtu65GJiM8OzJUd68s6vo5Y61gMVs4tJVDbx4em4hOZFMcejC1CyH1GK4uLuOzjoH33jqJJPhOBdXmZC8bZv6HR9WLjgt3mIkMC3wHD8OTid0duZ9CoPSeEhK2SOlfCtwIM/9vwQ2Sym/IKX8hZTyu8DdwGrgvjzbvy6lfC7r51wZ992gisktj5t2gJY72kJto+XjBqMJQrFkZpn1csWXdosVmpM8kl722lyiI7mrXi0FLkRIDseSDPmjmaK95UKd08qL6dVBpTiS3Tazrm6v5Ux2FMgdd4AQkmefsHPXRZ185SuCv/s7OPFUOy/8ZzOpFOzdKzE1T9DmW97fmyrhfmAEOAM8A0wBb9XuFEK4UBO5D2c95mHgNiFEdr7g24Ew8GS5d1gPtGNTobF58xGKJXGuAEcywOYOH6dG8hewlcJizr3VxLoWD+fGQ7q9b9lMl7PqL8Z3N7i4++JOvvvi2RnnrPFgTHejW3eDi0RKFtWJNBfhFbBKoKteOZL7JsKsX69E5HPpUU84DFdfDb/7u4U/XzCaIBG0r9iiPTCE5CVDCEGzxz5rZtcfifPCqTEj1iIHLYLg1XNzC34nhgMrvmhPo73OXtCJ5dVzE0gJN21eue733WsaODwwlclYzGXIHyUST2UcX3oghOCOHR0cSw/6q82R3NYGTU0wfM6B1SxmCMnZjuT161U5n4E+SCnnrUuXUk5IKRM5tx1FNcMbkr5ByXgdlhkO28UMxNp8dmwWEz0NCwuZmpCsZSRr10zL3ZHszRL6CkFzJJc60DSZBL3NHo4XsBT4bDo3d1XT8hKSfU4roVgSi2m6aE9jIUfyVDhe88JKNloUyFQ4QXMz7Lg0Qeh4C15/C3/4h3D33XDxtX7O/mw9X/16iqkpgbl1kjbf8o6EWW4IIf5DCPE/hRB3CCHuEkL8C0oA/qyUMiWljABfAD4mhPiQEGIP8H3U+PorWU/1NSAK/EAIcbMQ4oPAp4EvSyn1s6uWEbvFTL3LOme3TzGEYkncNS5aaWxJF7AdG9QnpsFfpliG5UZvixsp4fSo/q7kcudM/3/X9xKKJfnWs9NZyeOhmG5FexpaVMP5scUX7oVXwOROvcuK22bmfDraAqbjLR5+GPx+FRMVLfAQF4wmiftthiO5WIQQ9wshnhFCjAohIkKII0KIP8lqp0UoPpbOaAwLIZ4SQuzM81xbhRCPCyFCQoh+IcRn82RN1STNHvssR/KpkSCJlOSSFRgzMB+a+2g8mH8gMRaMMR6KZ5peVzptXkdB0RbaCbp3Bb9vu1c3IiXsPTuR934tu1ITSPXizh3qzOO0mtlQZU56IVS8xaGDgg2tXg6mc5LHgjFa0q6VY8eMWIvlgBDiItTy2XxRGD9PZy2fTp/DV8S516B4NMFYWxLqj5Y+EKt32XjqD27kjTsWtnF47BbMJsFEWB2Hh6pGSC7OkTwWjFHvsmJdhKN2faunIEeyJiQvt1Vvmst2Y5t3ViFevcvGVCQ+5xJef6S0vO5qRYsC0SYqei+dIjZQz//+SCPt7fBP/wQf/V9TWBsD/M6H1Gyurc0QkkvgCPAB4D9QAvFW4NellNki8ReAPwX+GPgx4ANukVIOahtIKceBPagYjIeAzwB/CXyqAn+DbrR47Do5kldOtMXmDh+AbvEW2uoLcw1HEAAZY1g54i0CZXZ1b273ceOmFr75zGke3HueD337FY4O+mksgyMZ0CUneSUUYAohMgWFmpB8/Lj6/b3vqbFtIAA//3lhzxeIJIj4rYaQXAJNwM+B3wDuAP4R+Djw5axt/gj4BPBF1BKfAPCYECLzdgshGoDHUDlT9wCfBT6KOsHWPM0e2yxHcv+EEv8665xLsUvLFu1gPxnOLyRrgycj2kLRVufIDLjn4/RIkGaPbUU5eXLZuaoes0nMWbinTfaUuuR4Li7paaDd5+Ci7rqqXI67bRvs3w9bO3wc7J9kLBgjJaHZayeZhJMnDSF5qUm3yv8f4Bjwn1l3TaIGv+8DbgN+iDrvfpk8CCE+KIR4SQjx0vDwcDl32WCZkiuMar99JYp37XWOgrL4hBDUO6fdqNo103Iv2/Ol4zv8BTuSYzQtcpC5vtXD+fEwodj84rWWab/coi203N98MVINLitSKudxPvzReOY9Xyn4nNbMNbGtdwCAgQuC734XGhthY7eDlre8jMstsVgltuaAISQXiZTyY1LKTVJKl5TSKaXcJaX8l5xtpJTyT6WU3eltrpVS7s3zXAellDelt+mQUn5CSqn/uv0y0uqz61O2twJEK43VjS6cVjOHBvQRkgPRlbH6QjM4nSgw978YpiqQM/3A9esYC8b48L+9xvMnx7jv0m5+84Z1ur5GZ706nusiJMeTOFfA5E5Xg5O+8TBdXWC3K0dyKAQPPQTvex94vfDDHxb2XBPjApk0rehoi5I+MVLKr+fc9AshhA/4kBDidwA7Skj+vJTybwCEEM8Cp4HfBv4k/bgHACfwlvTSnkfTz/NpIcSfVctyn1Jp8do5mDNDeWFSHQy0g4OBwmwSeO2WOYVkrdl1vRFtAUC7z8FYMEY0kcRumfti7dRIkDXLzJVUaTx2C1s7fLw0R07ycEZI1tcBZzIJ/vF9l+GwVp+IDMqRPDUFHdYGRgLnOdA/Caj36exZiMdVtIXBkvJ5VIne9VLKzMEzPcjNHug+JoSIAh8RQnxOSjmS/SRSym8A3wDYvXv34ls9DKoOj32mMFpuR0829S5rVrSFEjGqxZE8FS4wIzkQpWmR5xgtfunkcHBWWV02Z8dCeO0W3Yt/FovmSN7e5Zt1n7YkeDyUP2dyKpygSefJ3uWOz2HNCOtnUwOsubSL3/9APVddpe7vaXRhbQzy4b8YYuCUjUdJ0W4IyQaLoLfZww9eOU88mVrU6omVJCSbTIJN7V4OX/Dr8nwrZfWFy2ahs85RUFxTsVQiHuTytY187d2X0uJ1cElPfVlK7OwWM20+O+fH9Yi2SOCy1v53srvByUunxzCZYO1aJST/5CdKTH73uyEYhB/9CP72b8G8wNsxOao+P4YjWR9GAe0q7irU0p7vaXdKKYOo5Tx3ZD3mDuBnOYLxd1Hi8vU67tuypNljZzQQI5W1VK9/IozdYtJ9+UMt4HNa53SjnBgKYLeYMkHqKx1tsLDQErTTo0HWNK9sIRlUTvLec+PEk7MjaLVoi3IMUrd2+uit0skPrXDPMtkAwJNHlVO12WPn2DF1n+FIXjqEEL8F/AHwXinl8wU85N9Rk8sXlXXHDKqSTLRFxpFcueb4epdtRrSF1axcyssZTWAv2JEcjC161cvGNnUuOTIwv2BxeMBPb6tn2RXsao7ifCL4dOniHI7kyMpw6WXjc1qYiiQYmopwYSrCx/9qjA99aPr+Np/qMPCsnmDnbWrFVatRtmewCK5a10QwluT185OLep5QLIGrxjN+s9nS4eXwwBRSLn4e3h9JlC3bd7lxUXc9z50c1eV9y2YkEKXBZS1rPIgQgtu3d7BrdUNZRGQNLaphsayUyZ2ueidTkQRTkTjr1ikh+fvfh9ZWuO46ePObYXAQni9g1DQ5rK45Vq8u7z4vZxYlJAshzEIIlxDiGuB3ga9K9W3fDCRRy2mzOZS+T2MzcDh7AynlWVQxUPZ2NUmL104iJZnIEkf7JyN01juX3QX+cqAuaxlfLieGA/S2eMp6sK4m2uqUkDxf4V4olmBwKspaQ0hm9+pGIvFUpjQum5FAFJfNvGLy3Apl+3b1e/K8Wh79VEZItmUypwwheWkQQtyHKvr5QynlvxX4MJnz28AggyZyagOW6eb4CgjJTmumH2HYrwo9l/u53ldkRvJoIEqTe3Ei35omN3aLad4szmgiyWvnJrhsdcOiXqscrGp0Uee0sqVjbkfyRCiW97H+SKLkmJVqRXMk7z03ATCrW8VsEnTVOzk3FmJgMkK9yzore9rAoBiu6G0C4NkTI7PuK7RYNJZIEU/KFeF+1NjS4WM8FGdQh3xpfzSxYibNbt7axuBUlP19+i5Q758I09VQG8azngYnJ0cCixbbw7EkjhUgJGdypcdUTvLx4/DjH8Nb3gIWC9x5J1itC8dbSCkJjiitZe3aMu/0MmaxjuRg+udp4EmU+wmgAQjkyX4aB1xZpXwNwESe5x1P35eXWslr1JbKZxfuXZgI01FnLD3Lx3xC8vHhgFG0l0Vb2nUyX+He6RG1FGalR1uAciQDeXOSRwNR3WMtaoHGRnXy3P+6mdVNLk6kCzGavcqR7HKxonOjlgohxA3AvwJfkVL+RREPvR9IAK+XYbcMqpx1LR466xw8clBlsfqjCYQAdwUm2Opdtsy5f8gfXfaxFqDeFyEKE1cSyRTjofiiV71YzCY2tXvnzeLc3zdFNJHKnPOWE++4fBVP/88b84qd8zmSpZRMrURHssPKVCTOa+cmsJgE2zpnO7l7Gl2cGw8zOBWhbZnnihssfxrdNrZ0+Hj25OiM2x8/NMiln300EzM4H+GYkgZWkiN5c3u6cE+HnGR/JI53hbx3N25qwSTg0UODC29cBP0TkZrporpqfbMuYns4nlwRkztbOrwAvHxmjPXrVaRFKARve5u6v64ObrwRHnwQ5tPmo4kUsXEnNkeK5uYK7PgyZbFC8lXAtaiCvHuAv1n0HhWAlPIbUsrdUsrdLS0tlXjJsqANhrIL9/onInTUyMFNb+YSkiPxpGrgrNKIgHKgRVsMzuNIPp0u3FnTvLwKd5aCNp+DVY2uvDnJI4HYisteLJTdu+Gll2Bbp7pItltMeO0WjhxR+cjGwgp9Sa8Aul8IcT/QBbRo/5++bwuqOO8w8G9CiCuzftZlPc9XhRCfFUK8SQhxmxDi/6Amgv9aSjma77UNVjZCCG7b3s5Tx0YIRBP4I3E8NktFnMH1LmvGiTrsj9JaBUKyySTw2C0FOZLHQlp80uL/ri3tPg5d8M/pTtImS3etblz0a+mN2SQyOcm51M/jSI6mHY4rITc0G5/TwlQ4wavnJtjc4c0rwHc3uDg/FmLQHzViLQx04ap1Tbx0epxIfNor9p0XzpJIyczKtPkIxdUxcSUso9fY1K7EKz1ykgMrJCMZ1Dlx1+oGHjuot5AcprNGojBv2dKG2ST4yf4Li3qelRJtsbbZTU+jkyePjrAuPSrSYi003vxm5VQ+dGju5wlGEyQmnbR2Jlb0WHdRQrKU8hUp5S+llF9GRVv8ZnqwOg54hBC5n8gGICSl1K4Ex4F8jSAN6ftqmlxHcjyZYsgfocso2svLXELyqZEgUk4XzRio98puMc0rJJ8aSQvJhiMZgN2rG3jpzNisAfiI4Uiek8sug1OnYLVbuduaPXakFDz3nLrPQHdage+nf64Etmb9fytwBeqcejHwDPBs1s8nsp7nEPBm4NvAfwI3oyaEf78Cf4NBlXLH9g5iiRRPHBmq6GC23mklGEsSS6QYDlSHIxlmlqHNh5bD36xDN8aWDi9jwRhD/vxLqF88Pc7aZnfVvIcaPocFs0kwkceRrLm+fcs8N1tvfA4r4XiSV89NsLOnPu82PY1ORoMxTo8EjaI9A124al0T0USKvWcnABgLxnjiiBKQnzu58Dx0MJp2JK8A0Uqjzmmlq945b+xQoayUsj2NW7a2cfDCFH0Ti88BBnW+8EcTNdOp1OC2cdW6Jn66f2BR8RbhWBLnCohwFEJw3YYWnj0xQs9q1Yt0330zi/Xuvlv9ni/eIhhNkph00daVG76wstCzbO+V9O+1KDeUGVifs01uJvJhcrKQhRA9gCtnu5qkxTPTkTw4FSEloaNGDm56U+fKLyRrS6kMR/I0Qgja6xwMzJPHdWokSKvXjnuFLJFaiJ2r6hkJzB6AjwQWX4JUq+zerX6LUeVua/baOXAAxsfh2muXcMdqFCnlaSmlmOPntJTym/Pc/76s5/lrKeVFUkqvlNIupdwmpfwrqXejiUFNsWt1A80eGw/vH6ho4Y8WazAWjDEaiNJSJUv0exqdHCxAOJgudNXBkZzOF873ulJKXj4zxu5lmI+8EEKogsXxPI7kqbByOK64jOS0cB6KJdnZk//fVMuDnAzHaTOEZAMduGxtIyYxnZP849f7SaQkF3fX8fypsRkF8vnIRFusANEqG61wbzHEkynC8SQe+8qZNLt5Sxug4lP0oD8tSNeKIxng9u3tnBoJcmSwNMd7IpkilkytmMmd6za2EIwlmbKN8+lPwx/+4cz7u7rg8svhRz+a+zkCaUdyV0+qrPu63NFTSL46/fsUygk1BbxVu1MI4QLeBDyc9ZiHgduEEN6s294OhFGZyzWNz2nBZjYxnHYkX0jn2dbSwU1P6pxWoonUjOVUAMeHAgiBURqXQ6vXztB80RYjQdYY71mGHi2AP6v9NpmSjAUNR/JcXHqp+j1+Wn2OWjw2nn5a3WYIyQYGtYXZJLhlazu/ODzESCBasUxaLdbg5HCAlKRq3LS3bm3n8IA/s/pnLkaD6hpQjwilzWkhOZ/z7cRwkPFQnMvWLL9Yi0JQESezzQT+tCN5Jbn0QI0hNOZ0JGcVSrUZ0RYGOuBzWNnRXZ/JSX5wbx+b2738+hvWMBGKLyhmBWNq4se9QkQrjc3tPk4MB4kmSncwBqOVK7ldLvS2eOhtcfOoTvEWfeOakFw7E2u3bm1HCHh430BJjw/FV9YqgavWNWExCX55YphPfQrWrJm9zR13wIsvwtjs6iQALgwlkTErPatXtv+mJCFZCPFTIcTvCyHuEELcKoT4DPAl4N+klCeklBHgC8DHhBAfEkLsQS29NaGa5DW+BkSBHwghbhZCfBD4NPBlKaW+FZ3LECEEzR4bI37lsMjMkhlle3nR3Be5S0VPDAfpqnfiXCEHwEJpcNnyDro0To8GWWvEWmTQJnD6s5ZPTYRipCQ06bDkuBapq4ONG+HwfiurGl2saXLz9NPQ2bmyW2wNDGqVO7a3E4oleeXseOWiLdKO5KNpgaKlSib2btveDsBP988/uBvJRFss/u+aXkI9W8zR8pGXY9FeIdS7bHkdyVoO9Vz5yrWK9vd6HRZ65zAF9DROd2AYjmQDvbhqXRN7z05woH+SvWcnuPeSLq7oVRNUC8VbaI7klTZm29zhJZmSHB9auJBwLrRjXaVWAy0XbtnSxnMnRzOThotBG+PVSrQFqMn1y9c08nCJOckr7TvpdVi5dHUDTx6ZO9P91ltV2d7jj+e///gJ9XvtGkNILoUXgfehxOHvoZzGfwy8J2ubLwB/mr79x4APuEVKmZlSklKOA3tQMRgPAZ8B/hL4VIn7VXW0eO0ZR3L/hHKPGtEW+alLC8m58RZnR4OGGzkPTR4bo8HZgy5QDp6RQMxwJGehzU5nC8mZAX6VOOCWAq1w74cfupqP3rqJp59WbuSVXD5gYFCrXNnbhM9hISXBU6FYpHqnmsg7mh6AV0tpWFe9k4u66/jpgfmF5NFAFItJzHCYLoYtHb68juQXT4/T5LZV7fVSg8vKeF5HsubSW2FCcvqaeGdP/Zyll01uG850CZ8hJBvoxVXrmkikJJ/44X6EgLt3dtLd4KKn0bmgkBxaodEW2ztVJdSvjo+U/ByZPPgVJiTfvLWNeFLy1NHS3zuNvokINrOp5laa3rG9naODgUzcZzFo30lnnsLWWuX6jS0cvDCViZfN5fLLweeDRx7J//izp9XvtWtX9mC3JCFZSvkJKeV2KaVHSlkvpbxUSvkVKWU8axsppfxTKWW3lNIppbxWSrk3z3MdlFLelN6mI/3cKya5utljZ8SvRVuE8TksFRucVRtzCcnD/uop36kkDWn3Tr7Y09MjIQDWNrtm3bdS8Tqs+ByWHCFZfTdr7YJDT3bvhvPnIea3MdBnpq/PiLUwMKhVbBZTJrOwctEW6nWOD6oBUrU4kgFu29bOa+cmZpxXchkNxGh02xA6zb5t7fBycjgwKwbspTNj7FrdoNvrVJp6l43JfBnJKzXaIv39u7i7fs5thBD0NCpziiEkG+jF7tWNWM2CV85OcNW6Jjrq1GfsyrVNC+Yka9EWK2UZvcaaZjdXrG3kH395mliitFzVwAqdNLt0VQMNLiuP6ZCT3D8RpqPeMefkW7Vy+/YOYHoF1HgwxnMnRwsq4AutwO/k9RtbAHj6WH5XssUCe/YoITnfW3j2rPr8bNqgZ0pw9bGy//plQLNnpiPZyEeem3xCspSSkWCsqgaWlaLRbSOZkkylLzyyOTWqMhsNR/JMOuudM5qBp4VkI9piLi67TP1+6SWMfGQDgxXA7enIhkq5ojLRFkPpaIsqmji+I/1e/WweV/JoMKpL0Z7Glg4fKTkdBQIw5I9wZjRUtfnIMJ8jOe3Sc64scWV1k4s9m1u5e2fnvNv1NLgwCeM6xkA/nDYzl6QLHt+8sytz+5W9TQvmJE+X7a0c0UrjgRvWMTAV4Uev9pX0+Ey0xQoznJlNgpu3tPHowcHMxGGp9E+E6ayrPa2lvc7Bpavq+fbzZ3nb159l1/96lF/7xnM8cXTu+AYNbdLZuYJWCWzt8NHssfHkPO/PrbfC2bNw9Ojs+/rPmTA5YrQ3r7zjWDaGkLzEtHjtjAVjJFNSzZIZ+chzkk9I9kcTxBIpXUpqao3GdK7vWJ54i9Pp8p/VjYaQnE1XvZO+iemCwky0hTFRMSc7d4LJNC0k19fD9u1LvVcGBgbl4rqNLXTWOVjf6qnI63nsFiwmwUQojs9hwVFFyy97WzxsbPPMm5M8EojpKvJtyVO49/LpcaB685FBOZLD8eQsp7U/ksAkVl55l8Nq5h/edxkb27zzbrdrTQM7uuqwmI0hn4F+7NnSSr3LmplYBLhyXRMwf05ypmxvhYmhADdsbGFzu5evP3VyXtf2XARWYNmexnuvWkMgmuBfnzu7qOfpnwjXrGnv3ku66JsIMxWO81s3rMdtM/NYASWFoRU4uWMyCa7d0MLTx0bm/C7edpv6/eijs+8b6DNjqQuvyONYNsZVxRLT7FGu0fFQjAuTtXtw04N8QvKoIfTNScMCQnJHnWPFBOsXSleDc8YS5Ex25QpbRlYMHg9s2TItJF9zjRKWDQwMahOH1cyv/ugm3rq7pyKvJ4TIuJKryY2scfu2dl48PZZZ4ZLLaDCqa6HrqkYXbpt5RuHei6fHcVhNbEvndFYjDS71HuWWCE+F43jslqqN7Cg3v3XDen7029cs9W4Y1Bi/cW0vv/yfN82IWeiqd7Kq0TWvkByOJREC7JaVd6EohOCB69dxfCjA44eHin68PxPjs/LGJNu76rh2QzP/+KtTsyYTCyWRTDEwFaGrvjZNe++6YjV7P3ELP/0f1/H7t23img3N/Pzw0ILxFisxIxlUvMVYMMb//cVxvvPCWb77wlkuTE5rAGvXwvr1+XOSRy5YsNSHV+RxLJuV/dcvA1q86mB2bizEeChuCMnzoC2jzRaStYGZnstCa4XG9KBrPI+QfGo0yJomw42cS2e9k8lwPDPrPxKI0uSx1VyWlt7s3g1PPQVHjhixFgYGK4FKi3baRHKrt/oGgLdtbycl4dE5nEGjgZiu1zAmk2BTu5eD/cqRHI4l+cWRIS7ursdWxYMebTJhPCcn2R9JrLhYCwODpcZsEnkjFq7sbZw3JzkYTeK2rdyJn7su6qC7wcnXnjxR9GOnIivXkQzwwPXrGPZHeXBvadEgA1MRUpKa1VpMJpExkQHs2dzGhcnIjEnlfKzUuJlrNzTjtJr50qNH+eMf7OOPfrCP//XjQzO2ufVW+MUvIJZ12SEljA1acTWGV+xxTKN6ryhrBG05476+SQA6a3SWTA8sZhMeuyXHkWxk2M7FQtEWRj7ybLSLC82VPBKI0eQ2JikWYvdu8KevUwwh2cDAQG/q0xOj1ehI3trhY1Wji289e4aXTo/NcAeFYglCsaTu8VxbOnwcGpgimZL8j3/by+nRIP/f9b26vkal0YTkWY7kSGJFOvQMDJYjC+Ukh+OJFb0a0mI28d+v7eXlM+O8eHqsqMcGogmsZrFiXZBXrWtiR1cd33jqJMkSokH609GFtSok53LDZlUo94sj87vfp6MtVtYERZPHzgsf38Nzf6x+3nJpF08dHZ5RhnnrrRAIwHPPTT9uYAASMROe5tn6ykpjZR6JlhHaoOi1c0pI7qjBAHg9qXNaZwjJw0a0xZxkhOQc985kKM54KM7aZtdS7Naypit9caEV7o0GojRXoXBRaXbvVr+dTti1a2n3xcDAoPaod1ZvtIUQgt/bs4Gzo0Hu/9qz7Pnyk3z9yRMM+6PT8Vw6T1hu6fDhjyT48L+9ys8ODPKJN27lps1tur5GpZmOtph5TTMVia9Yh56BwXLjqnXNmAT852v9ee9XjuSVKyQDvG13D80eG//rxwdJJFMLPyCNP7KyY3y0aJBTI0EemafAdi40k9BKEZJbvQ4u6q7j8UPz5ySH0rnlKy3aAlRMTHudg/Y6B3ds78AfTfBS1gTPjTeC2Twz3uLUKfW7rs0Qkg0heYnRRKrXz08A1GSTqJ74nFam8jiSG3XMF6wVXDYzNotpVrTFqVFVtGdEW8ymK48judn4bC3IxReDxQJXXAE24+0yMDDQGc2R3FqFQjLAfbu6eeHjN/Nn911Eg8vG5x8+zBs+/zgf/rdXAcriSAYl5rz3Dat5/9VrdH3+pUATksdzHMn+SMLoMTAwWCZogsz/e+5MJtM3m1AsiXOFOR9zcdrMfOpN23jt/CT/9KvTBT/Ob6y+4Pbt7axpcvG1J08smP2bS19GSF45q79v2tzK3nMTGb0kH1q0xUpeKQBw9fombBbTjPxynw/e8Ab42c+mtzt9Wv1ubDWEZENIXmK8dgs2i4njwwGEgLa66hwkVYo6p2VWRnKDy4rVaKOehRCCJreN0Rwh+fSIEpLXGtEWs2jx2rGYBH3jYaSUjBiO5IJwOuETn4CPfnSp98TAwKAWqeayPQ233cLbLuvhP37zKh77yHW8/+o1nEqfj3sa9V0htLndi91i4sZNLXzirq014WCbOyM5nunQMDAwWHoeuH4d/kiCbz9/dtZ9oVhixTuSQWUl37yljb945EhmXLYQgUhixa++MJsEv3FtL6+dn+SVsxNFPbZ/IkyDy7qiIhz2bG5DSnjy6PCc24TjSSwmUdUdCnrgsll4Q28Tv8gpwrzrLlUof/Cg+n/NkdzUUVrpYy2xsj8xywAhBC0eO1KqeAa7xTi5zkdutIXeJTW1RoPLNsuRfH48BOg/cK0FzCZBR72D/okwgWiCaCJFk+FILohPflKdbA0MDAz0pr6Ky/bysb7Vy8ffuJVn/3gPj3/0eja2eXV9frfdwiMfvo6vv2c3lhqZaHdYzTit5lnRFn5DXDEwWFbs6K7j6vVN/MMvTxFNzBRblCPZGOsKIfjTe7djs5j4n//x+pzlhNn4I4m8BYcrjXsv6cJjt/Cvz58p6nH9E2G6GlbWyu9tnT5avfYZLttcjO/kNHu2tHJyJMjJ4UDmtg98ABwO+Ou/Vv9/6hTYvDHqvLVxbbUYjHdgGaA5HldKZs9iyBWSRwJRo2hvHpo8tlkZyf2TERrdNhwrMAupEDrrnPRPRBgx8rcNDAwMlgX17uot25sPm8XEuhZPWZ57dZO75hxG9S7rjLI9KaVyJDtX9nJvg/IjhOgSQgSEEFII4cm6XQghPiaEOCeECAshnhJC7Mzz+K1CiMeFECEhRL8Q4rNCiJq9EH/g+nUM+aP8cG/fjNtDsQQuQ7QCoM3n4ON3buH5U2P8y3MLi6L+qBFtAWqi9N5Luvjx6xdmTSzOR/9EZMVFiJpMghs3tfLUkWHic+Rxh2NJ4zuZ5sZNrQD8PEt4b2mBd78bvvUtGB1VQrK9IYzbbrxntXWFWaW0pIWqzrracNqUk9lCsuFIno8Gl42xHEfyhYkw7T7jszYXXfVO+ibCmTwpI9rCwMDAYGm5cVML77lyNb0tRiTTSqbeZZuRkRyMJUlJDEeyQSX4cyCQ5/Y/Aj4BfBF4U3qbx4QQ7doGQogG4DFAAvcAnwU+CnymzPu8ZFyzvpltnT6+/tTJGW7bUCyJewVFCyzE2y/r4YZNLXz6oQMLislGjM8077xiFbFEin9/+XxB20sp6ZsIr0jT3k1bWvFHE7x4aizv/aF4ckXFfcxHT6OLjW2eGUIywO/9HoTD8I1vqIxkS10Yt7E6wBCSlwMtXuW06Vhhs2SlUOe0EomnMkulRgLRjBBvMJtGdx4heTKyoooGiqWrwcnAVITBKSUkG9EWBgYGBktLd4OLz715u9GHsMJpcFlnONC0Mi/DpWdQToQQ1wG3A3+Rc7sDJSR/Xkr5N1LKx4C3ogTj387a9AHACbxFSvmolPJrKBH5I0IIXyX+hkojhOCB69dxcjjIIwcHM7eHjWX0MxBC8NV37eKmTa184of7+crjx+YskfNHEngMIRlQhbK7Vjfw7efPFlS6NxVJEIgmMqXqK4lr1jdT77LypUeP5o1QCccSOI1Vyhlu2tzGC6fGZpSFbt8ON98Mf/M3cPYsmLxBI+sdQ0heFmhL5w1xb2Hq0ssXJ8NxIvEk/kjCEPrmodFtwx9JzFjO0j8RNiYt5qGz3kkyJTl4YRKovaXUBgYGBgYG1UiDyzajbG8qnADAZwjJBmUiHT/xFZSLeCTn7qsAH/A97QYpZRB4CLgja7s7gJ9JKaeybvsuSly+vgy7vSy4Y3s7jW4bjx+aFpKDsYTh5MvBaTPztffs4i2XdPGlR4/ypUeOztpGSkkgauTBZ/OuK1ZxciTIsydHF9y2fyIMrMwYUbfdwifv2srLZ8b51rOnZ90fMqItZnDT5lYSKcnTx2Ye7j/8Yejvh0QCpDdoHMcwhORlQYuRkVwwWg7eVDiecdoa0QNz05AW2bWBVzCaYCqSoMOYtJgT7Xv4+nklJDcaExUGBgYGBgZLTm5G8rQj2RjQGZSNBwA78H/z3LcZSALHcm4/lL4ve7vD2RtIKc8CoZztagqL2cTmdi9Hh1QiSDIlicRThvsxD1azib9468XcurWNf37m9Kz7w/EkyZTEYzcmzTTu3NFBvcvKvz5/dsFtp4XklTn+vfeSLq7f2MKf/ewI58ZCM+4zyvZmcumqeuqcVr75zGlePjOecXHffjts3Ki2sdSHjIgeDCF5WaC5Q1c1upZ4T5Y/2Y7kES3D1oi2mJNGlxJBNdH9wmT6RGo4kuekK32R8dq5CepdVmMptcGyQQixXgjxdSHE60KIpBDiiTzbGMU/BgYGNUm9y8pEOJ5ZyuyPKEeyISQblAMhRBPwOeAjUsp4nk0agICUMplz+zjgEkLYsrabyPP48fR9+V77g0KIl4QQLw0PD5e0/8uBjW1ejg36SaUk4bh6m4ySqvyYTIKdq+rxRxOEYokZ9xnHutk4rGbuv7Sbn+0fYNgfnXdbTUheidEWoCJU/vdbdiCAjz24b0YcSCSeNCZ3srCYTXzwul5eOTPOfV99hsv/92N86ZEjmEzw+78PZrPE2hTAZRzHDCF5OXDT5lb+5b9dzvauuqXelWVPtpA8GlDiaJPHcIzOheam1YTk/okIAB1GseOcaI7kKSM2xWD5sQ24EzgCzF77qDCKfwwMDGqSBpeNZErijypRZSrtSNZWqxkY6MyfAs9JKX9S6ReWUn5DSrlbSrm7paWl0i+vG5vavYRiSfomwhlx1Gk4+eakzavGZ0NTM4VRQ0jOz5su7iSRkrx8Jn+RnEbfRASrWaxo81lXvZM/unMLTx8b4cG9fZnbjWiL2XzoxvW8/Ilb+D+/tpOeRhd/84vjxBIpfuM34Km9ISzeKB4j2sIQkpcDZpPg2g3Ve5FQSbKF5OG0I9ko25sbTUgeD6rBVsaRvEJnZAvBZbPQ4FKfs5V8wWGwLHlIStkjpXwrcCD3TqP4x8DAoJapT6+ymkhf00wZ4opBmRBCbAM+AHxWCFEvhKgHtKWjdUIIJ8pR7MmzmqcBCEkptUDvcSCfW6ghfV/NsrHNC8DRQT+haNqRbIhWc9LmU0Ly4FRkxu1GjE9+1rd6ADgxHMx7fyyR4uljw/zy+DAddU5MJlHJ3Vt2vOvyVaxucvHT/QOZ21S0hfG5yqXOaeWenV288/JVSKk0FCHA26CuO1zGe2YIyQbVRUZIDhmO5EJocKv3ayyoRPcLkxGEmL5QMciPJrQbQrLBckJKmVpgE6P4x8DAoGbRJnm13gdNXDHK9gzKwAbACjyLEnvHmc5JPo8q4DsMmIH1OY/NzUQ+TE4WshCiByVMz8hOrjU2timh78ign1BMCcmG+3Fu2nxq3DGYE9WgjXkbXMaYNxu33UJHnYMT6RzubP7sp4fZ9blHec8/vMDxoQD3XtK1BHu4vDCZBFvafRwfnn6/wrGE8Z2ch+4GNX94flyZ8YLplRVGRI8hJBtUGb6MIznBSCCKy2Y2ZoTmoSGTkZx2JE9EaPbYsVmMr/58dGWEZOOCzaCqMIp/DAwMahbNkawJyVPhBDazCbtxTWOgP78Ebsz5+WL6vjuBPweeAaZQK38AEEK4ULFSD2c918PAbUIIb9ZtbwfCwJNl2v9lgddhpaveydEBfybawhi3zU2rT4u2mOlI7k+vKO1qMFaU5rKuxcOJkZmO5Hgyxd8/fYrNHV7+7td3s/cTt/LhWzYu0R4uLza0eTgzGiKaSCKlJBQ3oi3mozv9nTs/rkoKg+loLaNsD4x3wKCqsJpNuGxmJsNxxoJRw428AFazCZ/Dkhl09U+G6TTykRfEcCQbVCkLFv+kl9oWVfwjhPgg8EGAVatW6brDBgYGBoWiOZInQmpy3B+J43VYEGJlL1c20B8p5QjwRPZtQog16f98WkoZSN/2BeATQohx1ATtR1BGra9kPfRrwO8CPxBCfBHoBT4NfDlnZVBNsqHNw5HBgOFILgCfw4LDapoVbdE3EVYZv25jXJJLb4ubB1/pQ0qZORecGgkSS6Z41xWruWVr2xLv4fJifauHZEpyeiTE6iYXUoLT+E7OSUedA7NJZDmStdJQQ0Y1pvANqo46p5XJcJyRQMwQ+gqg0W1jNF22d2EyQkedMZu9EJojucn4fBkY1Ezpj4GBQXWTyUjORFskjMxQg6XmC6hSvj8GfoyKl7pFSjmobSClHAf2oGIwHkJ1Evwl8KmK7+0SsKnNy4mhQKYc03Akz40Qgjafg8Gcsr0LExEj43cO1rV48EcTDGfFgRy6oOZnNnd453rYikXLlT4+ND2547QaQvJcWMwm2n2OaSE5akRbaBhHcoOqY1pIjmZyawzmptFtYzwYQ0rJhYkw16xvXupdWvZoS8eMaAuDKiNT/JPjSjaKfwwMDKqeOqcVIeCXx0ewmE0cHfRnIs8MDMqNlPKbwDdzbpMoIflPF3jsQeCmcu3bcmZjm5dYMpUR9wxH8vy0eR2zHMn9E2E6640VpflY1zJduKdFgxy64MdqFvQ2e5Zy15Yl61o8CAHHhvxc3KOGAsZ3cn66G5yzoi2MCTHDkWxQhficVqbSjuQWryH0LUSj28ZYMMZUJEEwljQuRApg9+oGLl/TyM6e+qXeFQODYjCKfwwMDGoWs0mwttnNY4eG+JMf7ufwgJ81Te6l3i0DA4N52NSuXKGvnpsADNFqIVp9doZyyvaUkGysKM1Hb4s6B5zIKpA7PDDFuhaP0QmUB4fVTE+Di2NDASLxtCPZEEXnpbvBleVITkdbGMcxw5FsUH3UOa2cHgkyFowa0RYF0OCysb9vigvpogYj2mJhWn0OvvfAG5Z6NwwMiiW7+Od/wYzin29kbfcw8AdCCK+U0p++bUUU/xgYGFQ3P/ndazNL5AGajMxQA4NlzfpW5YB8/dwkAC4jW3Re2nwOfn54KJP5m0imGPRH6TTGb3lp9zlw2cwzheQLfq5a17SEe7W82dDq4URWtIXLiLaYl55GJwN7I8QSKUKxBHaLCYvZmKQwjuQGVUed08rZsRApCU1uw5G8EI0eG2OhGBcm1DIpw5FsYFCdpEXhO9P/2wX4hBD3p///J1LKkFH8Y2BgUMs4rGYcxqDXwKBqcFjNrGlyc2okCBh5rAvR5rMTiiUJRBN4HVaG/FGSKWk4kufAZBL0trg5Oaw+X+PBGANTESMfeR7Wt3l4+tgIgYgW02B8J+eju0GVEl6YDBOIJvAYk2GAISQbVCF1TivRRAqAZq/hRFmIRpeNWCLF8SE1U2s4kg0MqpZW4Ps5t2n/vxY4jSr+MaGKf5qAl8hT/COE2AP8Dar4ZwJV/PPp8u26gYGBgYGBwUpkQ6uHUyNBHFYTZqMwbl7a0jm/g1NRvA4r/RNqRalhBJqb3mYPr5xVFR+HBtJFe+2+pdylZc36Fg+xZIrDA2pRotMQkuelO92ddH48TCiWxGUU7QFGRrJBFVKXVaxiLGlcmMa0a/tA/yQmAa2G+G5gUJVIKU9LKcUcP6fT20gp5Z9KKbullE4p5bVSyr15nuuglPKm9DYdUspP5BT0GRgYGBgYGBgsGi0n2SioWphWrxKMh9KFe31pIbnLcCTPyboWD30TYSLxJIcvKHHUcCTPzYY29d68fn4CML6XCzEtJIcIRhO4jfcLMIRkgyokW0g2yvYWRhOS9/dP0eZzGJk+BgYGBgYGBgYGBgYVYWObJiQbTr6FaPMpw8+gXwnJFybV7w5DSJ6Tda1upIRTI0EOD0zR7LFlBHmD2axLFxS+fl7llhtxM/PT7nNgNgnOj4cJxhK4jWgLwBCSDaoQw5FcHA1pIfnkcICOOuOkamBgYGBgYGBgYGBQGaYdyYZgtRCtWdEWAP0TYXwOi5HLOg+9zR4ATgwHOHTBb8RaLIDXYaWjzsFJLbfc+F7Oi8VsoqPOwbmxEMHo/8/efcc5Vtf7H399kkmm7rTtfRcWWKp4XRAQCyJVkSLNey1cf1cEKzZsoAio2LChclGvgIo0UaSJIqBUYamybKFt7zt9kplkku/vj5NkMjOZcmZnJpnk/Xw8zmN2Tk4y3/lsJt/kcz7n803odSxFiWSZdNKJ5LKA9UkqS27pBQmTTmezRURERERk4iyaWk0oaLqEfgRqyr2k8bZUa4vNLVEttDeMxdOqMYM12zpYs62dpbPU1mI4S2bUZP6txOjw5jVUehXJWmwvQ4lkmXRqU8njqTVhAlqwYVjpimSAOapIFhERERGRCRIuC7Dn9BqmVCgBMxIzasvZnqpI3tTSpf7Iw6gMB5lbX8n9q7bR3ZNk6WxVJA8nO5Gs1hbDm9dQ1bvYnk6IAaNMJJvZGWb2ZzPbZGYdZvaUmb03x3EfNrOXzKwrdczROY6Za2Z/NLN2M9tpZleZWdVoxiWlIV2FrLYWIzOlvIxQ0Eu4z67TGxEREREREZk43zn9IL50wr75HsakMHNKRaYieUtrlNn1KgQazh7Ta3hhUxsA+2qhvWHtNcOLUUUooMK8EZjXUMm29i5aIjFqypV4h9FXJH8G6AA+DbwbeAC4wcw+kT4glVi+GrgeOAFYAdxpZgdkHRMC7gUWAmcDnwLOAK4Z5bikBKQTydOmKJE8EmZGQ5VXlaweySIiIiIiMpEOmlfPfnNUKToSM2vL2dbeRWd3Dy2RuFpbjEB6AblgwPpU20pu6RipunZk5jVU4Rx0xhJUqbUFAKONwknOuZ1Z399vZnPwEsw/Se27BLjOOXcZgJn9A3g98EXgfaljTgf2BZY4515LHRcHbjSzrzvnXhrl+KSIZRLJWS0bZGiN1WG2t3erR7KIiIiIiEiBmllbwba2bja3RAHU2mIE9pxek/paTXmZKkaHs1cqkay2FiMzr6H3b1A9kj2jqkjul0ROewaYA2BmewB7Azdn3ScJ3IJXnZx2AvBkOomc8icgBhw/mrFJ8QuXBZhTV8GeOts4YumKZPVIFhERERERKUwzaiuI9SR5cYvXqkEVycPbI1WRvHSWqt5HoqE6zLSasBbaG6HsRLJi5hnLdPrhwJrUv5emvq7qd8xKoNHMpjvndqSOezH7AOdczMxeyXoMkQHuueAtOoPmQ2NNmFDQmFajdiAiIiIiIiKFaGat93ntmfUtgFoTjsReM6ZgBgfMVSJ5pJbOqqW7J5HvYUwKs2orCAaMRNJRrYpkYIwSyalF9E4BPpTa1ZD62tLv0Oas23ekvvY/Jn1cQ4796Z93LnAuwIIFC0YxYpns0u0tZGQO32Mqzjk10xcRERERESlQM2u9xPEzG1oIWO/3MrjpU8q59bzD2W92Xb6HMmlc8Z4DSSRdvocxKZQFA8yuq2Bjc5Rq9ZUGxiCRbGaLgBuA251z1+7u442Ec+4aUgvyLVu2TM9+kWG877CFvO+whfkehoiIiIiIiAxi5hQvcfzi5lZm1lYQCo6qG2nJecPCxnwPYVKZ11CV7yFMKvMaKtnYHKWqXFfFwyh7JKeZWSNwD7AO+K+sm9KVx/1PCTX0u705xzHp45pz7BcRERERERERKTozUq0t4gmn/sgiBSKdeNdie55RJ5LNrAq4EwgD73LORbJuTvdG7t/neCnQlOqPnD6uzzFmFgb2YGB/ZRERERERERGRolQRCmbaOKo/skhhSC+4p8X2PKNKJJtZGXALsBdwvHNue/btzrlX8RbeOyPrPoHU9/dkHXoPcIiZZV9z/26gHPjLaMYmIiIiIiIiIjIZpRfcm6uKZJGCsM/MKQQMpteU53soBWG0Fck/A04ELgOmmtlhWVs6spcA/21mF5nZUcD/4SWer8h6nFvxKo9vM7MTzey9wFXADc65l0Y5NhEREREREZFRMbPTzexRM9tlZl1mtjr1uTacdYyZ2ZfNbIOZRc3sn2Z2cI7H2s/M/m5mETPbbGaXmpnK2mRQ6QX21NpCpDAcf8AsHvjc25ihxS+B0S+2d2zq649y3LYYWOuc+72Z1QBfAC4GVuC1wHghfaBzLm5mx+Mlj28GuoEbgc+PclwiIiIiIiIiu2MqcD/wXaAFOBSvUGoW8PHUMV/E+5z7ebziqM8A95nZAc65rQBm1gDcB7wInAzsCXwfr6Droon5VWSymTFFiWSRQmJmLJxane9hFIxRJZKdc4tGeNwvgF8Mc8xG4JTRjENERERERERkLDnn/rffrgfMrBb4mJl9Aq8V4xeBbznnrgIws8eAtXiJ5nSS+DygEjjNOdcG/C31OJeY2XdS+0T6SLe2UI9kESlEo15sT0RERERERKRE7MJbaB7gCKAW76paAJxzncAdwAlZ9zkBuLdfwvhGvOTyW8d1tDJp7TNrCtXhIAumVuV7KCIiAyiRLCIiUiTM7EEzc4Nsh6eOWZvjtq35HruIiEihMbOgmVWZ2ZHAJ4GfO+ccsBRIAP3X9VmZui1tKV7biwzn3Hog0u84kYyTDprDo186mtqKUL6HIiIywGh7JIuIiEjh+ShehVS2S4HXA09m7bsB+EnW97FxHpeIiMhk1InXxgLgenrX8mkAOpxziX7HNwNVZhZ2zsVSx7XkeNzm1G0DmNm5wLkACxYs2K3By+QUCBh1lUoii0hhUiJZRESkSDjnXsz+PrW6/DLgJudcT9ZNW5xzj0/o4ERERCafI4AqvMX2voq3SPxHx/MHOueuAa4BWLZsmRvPnyUiIuKXEskiIiLF63i8iqff53sgIiIik41z7unUPx82s53AdWb2fbyK4hozC/arSm4AIqlqZFLH1eV46IbUbSIiIpOKeiSLiIgUr7OBjcBD/fb/PzOLmVmrmd1qZgvzMDYREZHJJJ1UXozX9zgILOl3TP+eyKvo1wvZzObjVTn36Z0sIiIyGSiRLCIiUoTMrAp4N3BzamGgtNvxLss9Gq/X4+HAQ2aWq2IKMzvXzJab2fIdO3aM97BFREQK1ZtSX18DHgXagDPSN6bm3ZOAe7Lucw9wnJlNydp3FhAF/jGuoxURERkHam0hIiJSnE4CqunX1sI596msbx8ys0eBZ4H/Bn7Y/0HUq1FEREqNmf0FuA9YASTwksifxVtz4JXUMVcAF5tZM1518WfwCrWyF7O9GvgkcJuZfRvYA7gEuNI51zYxv42IiMjYUSJZRESkOJ0NvOycWz7UQc65F8xsNfAfEzMsERGRgvckcA6wCOgBXgW+hJcYTrsCL3H8JWAqsBw4xjm3LX2Ac67ZzI7GW6TvDqAF+AFeMllERGTSUSJZRESkyKTaVJwAfGeEd3GpTUREpOQ55y4GLh7mGAd8I7UNddyLwNvHbnQiIiL5ox7JIiIixedUoJx+bS1yMbMD8BYCemq8ByUiIiIiIiKTlyqSRUREis/ZwHPOuZXZO83sncD7gDuBzXgJ5IuA9cC1EzxGERERERERmUSUSBYRESkiZjYNOJrcl+RuAGbgLapXD+wC/gJ8WYv+iIiIiIiIyFCUSBYRESkizrmdQGiQ257HSzKLiIiIiIiI+KIeySIiIiIiIiIiIiIyJCWSRURERERERERERGRISiSLiIiIiIiIiIiIyJCUSBYRERERERERERGRISmRLCIiIiIiIiIiIiJDUiJZRERERERERERERIakRLKIiIiIiIiIiIiIDEmJZBEREREREREREREZkjnn8j2G3WJmO4B1efrx04CdefrZk5Vi5o/i5Y/i5Z9i5k92vBY656bnczATLc9zLuj56pfi5Z9i5o/i5Z9i5o/mXc27k4ni5Z9i5o/i5Y/i5d+w8+6kTyTnk5ktd84ty/c4JhPFzB/Fyx/Fyz/FzB/FK78Uf38UL/8UM38UL/8UM38Ur/xS/P1RvPxTzPxRvPxRvPwbSczU2kJEREREREREREREhqREsoiIiIiIiIiIiIgMSYnk3XNNvgcwCSlm/ihe/ihe/ilm/ihe+aX4+6N4+aeY+aN4+aeY+aN45Zfi74/i5Z9i5o/i5Y/i5d+wMVOPZBEREREREREREREZkiqSRURERERERERERGRISiSLiIiIiIiIiIiIyJCUSBYRERERERERERGRISmRLDIBzEx/az6ZmeV7DJOFYiUi0pfmXX80j/ijeImI9KV51x/NIyOnWBUe/bGLjDMzCznnkvkex2RiZjVOK4H68SEzWwJ6EycionnXH825o6J5V0QkRfOuP5p3fdOcW2BK+j/BzCrN7EAze5+ZLTGzsnyPqdCl4nW8mdXleyyTgZmdAPzUzKryPZbJwszeDvzZzN6V77FMBqk4/QL4NIDexA3NzKab2bvN7Btm9l4zW5zvMZUSzbv+ad71R/OuP5pz/dO864/m3fzSvOuP5lz/NO/6o3nXH825/k3EvGulfCLEzH4BnABMAxzwVefcd1O3mc4SDWRmG4AG4KfA74CVzrl4fkdVuMxsB/C/zrmL8j2WycLM1gCPA1c5557I93gKnZmtA5qAhXh/k19xzrXpNSw3M7sHOBCoAmqBa51z/5PfUZUOzbv+ad71R/OuP5pz/dO864/m3fzSvOuP5lz/NO/6o3nXH825/k3EvFuyFclm9iXgrcC3gH2BS4CLzWxO6kytmVllHodYUMxTB2wGeoD/B/wN+JSZLUif3Taz8jwOs6CY2VeBKHBN1r6Qmb3NzN5gZrMUr77M7GNACLg4PbGa2X+Y2cVm9hkz+39mNjO/oywcZvY1vNfx9wM3Ah8CTgbQxDqQmX0R2BP4sHOuES9WHzKzg82s3szmmdm0/I6yeGne9Ufzrn+ad/3RnOuf5l1/NO/ml+bdkdOcOzqad/3RvOuP5lz/Jmzedc6V3AZMAXYA52ftmws8CnwV+DfwLPAd4ODU7ZbvcRfCBhwN3AscjPemJA48CZwO1AH/BI7P9zjzvaVi0Qn8v6x97wb+AXQDSeBF4AJgSur2kn+OAZcCvwEqU99/BO8N3S5gK7AauBM4rtRjBtTjvXH7n6x91wFdwP+UcmwGiVcFsAL4PBDI2n8H3uVSW4FXUq9vZ+V7vMW2ad7drdhp3h1ZnDTv+o+Z5lx/8dK86y9emnfzG3/Nu6OLm+bckcdK867/mGneHXmsNOf6j9mEzbulWpH8YWAbcH96h3NuE7AAeC9eYJ8GzgO+obL5Pv6JN6F+zDn3JeAwoBm4OXXbf+BdelDqvg9UAhsBzCwM/BpoAT6B9ybleeBK4Cugs2oprcCbnHPRVIXEj/Be9PYF5gA/wHsTfJGZhUs8Zr/Ee3N2k1lmJdtLgAeBL+D9LUqvCqADKHd9e2sdDOwPXAT8DO/v9stmtueEj7C4ad4dPc27I6N51z/Nuf5o3vVH825+ad4dHc25I6d51z/NuyOnOde/iZt38501z0OW3oAT8V74GrP2fxbYCRyYte9IvDNp/5XvcRfSBhyOdybjHVn7PoA36XYB3wX2A8ryPdY8xujdeC98bcDFeGceHwfm9jvuC3hncg/P95gLYcObELYAZwF7Aw8B8/sds3fquXZBvsebxzjV452RfVOO2/YBVgGvAa/P91gLZcO7jOwevDOxbwD2An6S+n5R1nHz8c5+X5HvMRfLpnl3TGKoeXf4GGne9R8zzbkjj5XmXf8x07ybv9hr3t29+GnOHVmcNO/6j5nm3ZHFSXPu6OI2YfNuyVUkOy9yDwDfc841pfohGV6QP+2c+3fWGY/VwEt4mX1Jcc49BtwCnJu1+03Aq3hnHD8K/AXvTEdJcs79Ge+P95t4lxb8F3A93qUrmFkodeh9eH245uZhmAXHOfc08CvgauBreGfOFgFY70rAL+NVBMzPwxALgnOuBe/DwKPZ+1PVJKuB/8SbHL5tZgtSt5Xc63025y2UcgHeG48ngUeAI4B/AZtT/dzMObcB7++ywcyC+RpvMdG8u/s07w5P865/mnNHTvOuf5p380fz7u7RnDsymnf907w7MppzR2ci592ysRny5OKciwLRfpfwnJcOYta+WrzS8GSOhylJqYUGEsBvgb+b2X/j9df6MPA+59wNZnY1cKhzrt3MAq5vWX3JSD3PrjCz3wEfBDakn1uud/XfLmA7evOWvXL0T/H6uh2X+nqOmT3unIukDp0KzAYe7ne/kuKc2wl9f/+sr0+b2TfxLgn6tpn9V6n+HWZzzq02s/Px/t6SwAF4K//G0seY2QxgHrDcOZco1efXWNO8O3qad0dO8+7Iac71T/Ouf5p380fz7uhozvVH8+7Iad71R3Pu6EzUvGsl+JzEzKY459qzvg865xKpf5tzzpnXs+aTwKfxLs8o6Tc2/WOW2vf/gJOAhXiXaLzXOdfa75iSjNkg8Uo/t8qccz1Zz7HPAzP1HOuNmZnVAv+N94bkYLzFQn6Cdzb77Xhnbxem4liSMcv1HMtxzKl4K9z+3Dl3wYQMrECZWa1zrq3fvj3xzsb+C/gx0I7X0+0EYHEpP7/GmuZd/zTv+qN51x/Nuf5p3vVH825+ad71R3Ouf5p3/dG864/mXP8mct4tmfJvMzvUzL5tZi8BvzOzj5tZA0B6Uk39Ox3A/8IL8NdSL3hlpfYHPFTMUv6Kd4nU64Dv9J9YobQa6g8Sr8b07Vln0HpSu/4b743bRXqOZWL2CTOb5pxrc879CHgP3mUtDwPn4y0IshHvjVxPqcVsBH+T6ePSlyv+FW9xkCf67S8J/eL129TzqzF1WwBYC/wvsBRvNdvn8F7PPlWKz6+xpnnXP827/mje9Udzrn+ad/3RvJtfmnf90Zzrn+ZdfzTv+qM51798zbslUZFsXun2P/Gy70/jBW4+8A3n3M9yHP8O4GPAZufcxyZyrIXCT8zM7FDgBdd7OUbJGcVz7Ei8/jVNzrlz+99eCnw+x6qAbrwz2ZsneqyFwO9zrNT5fH4dDswCgsAjzrktEzzcoqN51z/Nu/5o3vVHc65/mnf90bybX5p3/dGc65/mXX807/qjOde/vM67rgBWFxzvDa/c/R5SKxXiVWL/FK9fz+tS+yzreAMOAupS3wfz/TsUaMxC/e4TyPe4Czxe/Z9jBwD1qe/1HMsds7J+99FzbITPsdT34XyPu8DjVdKrbRdA/DXv+o+Z5l1/8dK86y9emnP9x0zzrr94ad7Nb/w17/qLl+Zc/zHTvOsvXpp3/cVLc67/mI3LvFv0rS3MbAleZv4Xzrm1ZmbOa8R9KV7T91P6HR90nudd6vIVl3UpUCnwEbOe1PEG4Eq0wfluPMdecN6KpHqODR6zTC830HOMkT/H0vGK9X+sUjCK55dWiR9Dmnf907zrj+ZdfzTn+qd51x/Nu/mledcfzbn+ad71R/OuP5pz/cv3vFv0iWS85vjTgDj06duzDbgBeJeZlaf3A8eb2bdS/URKld+YnWhm3yzhmOk55p+eY/4oXv6M5m+ylOM11vSa6J/+xv3Rc8wfPb/8U8z80bybX3pN9Ed/3/7pOeaPnmP+KF7+5XXeLYXAL8dbnfD+9I6s4N2Dt0rmEan9s4Af4l1SkEyf6ShBo4lZsFTPoKHn2GjoOeaP4uWP4pVfek30T89Zf/Qc80fPL/8UM38Ur/zSa6I/er76p+eYP3qO+aN4+ZffmLkC6O0x3hv9+htl7wdeBL6f+v4SvGbw6dttvMdWqJtipngpZoW1KV6K12TaFH/FTPEqrE3xUswUr+LeFH/FSzErrE3xUryKOWalUJGMcy4+xP4bgRPMbB/gU8DnAMyszKWiXIoUM38UL/8UM38UL38Ur/xS/P1TzPxRvPxRvPxTzPxRvPJL8fdH8fJPMfNH8fJH8fIvnzGzEo47AGb2ZuDPwGagxzn3ujwPqeApZv4oXv4pZv4oXv4oXvml+PunmPmjePmjePmnmPmjeOWX4u+P4uWfYuaP4uWP4uXfeMesbCwfbJJ6BugA9gXeAJlVRktmVdFRUMz8Ubz8U8z8Ubz8UbzyS/H3TzHzR/HyR/HyTzHzR/HKL8XfH8XLP8XMH8XLH8XLv3GNWcknkp1zHWb2YWBf59wzZhbQE3Joipk/ipd/ipk/ipc/ild+Kf7+KWb+KF7+KF7+KWb+KF75pfj7o3j5p5j5o3j5o3j5N94xK/nWFpBZ3dA551wqwKW8+uOIKGb+KF7+KWb+KF7+KF75pfj7p5j5o3j5o3j5p5j5o3jll+Lvj+Lln2Lmj+Llj+Ll33jGTIlkERERERERERERERlSIN8DEBEREREREREREZHCpkSyiIiIiIiIiIiIiAypKBPJZlY/yH5LfS35RQb7U8z8Ubz8U8z8Ubz8UbzyS/H3TzHzR/HyR/HyTzHzR/HKL8XfH8XLP8XMH8XLH8XLv0KKWdElks3scOBHWd+ng2qpJtN7A583s5mp/UUXA78UM38UL/8UM38UL38Ur/xS/P1TzPxRvPxRvPxTzPxRvPJL8fdH8fJPMfNH8fJH8fKv0GJWjP8h+wDvN7Mvg7dEYfZX4CzgG8Alqf1a7VEx80vx8k8x80fx8kfxyi/F3z/FzB/Fyx/Fyz/FzB/FK78Uf38UL/8UM38UL38UL/8KK2bOuaLbgE8DrwLvTX0f6Hf7KcC/gU8AZfkebyFsipnipZgV1qZ4KV6TaVP8FTPFq7A2xUsxU7yKe1P8FS/FrLA2xUvxKqWYFVXfETMLOucSwO+Bo4Dvm9mLzrnn+h36Z2AhUOGc65nocRYSxcwfxcs/xcwfxcsfxSu/FH//FDN/FC9/FC//FDN/FK/8Uvz9Ubz8U8z8Ubz8Ubz8K8SYWSpzXXRSPUP+DlQCH3bOvWBmZdkBNbMq51wk3Vckb4MtEIqZP4qXf4qZP4qXP4pXfin+/ilm/ihe/ihe/ilm/ihe+aX4+6N4+aeY+aN4+aN4+VcoMZvUPZIt1UDazOaY2dlmdryZVZrZrFTAPgNMBT4GkA5u+n7OuUjqa8k8IRUzfxQv/xQzfxQvfxSv/FL8/VPM/FG8/FG8/FPM/FG88kvx90fx8k8x80fx8kfx8m8yxGxSt7ZwvQ2kLwI+ADQBtcDT5i1ieAvwIvARM+sCLnbOdQAl8yTsTzHzR/HyTzHzR/HyR/HKL8XfP8XMH8XLH8XLP8XMH8UrvxR/fxQv/xQzfxQvfxQv/yZDzIqmtYWZHYCXGN8HOBioA94ObAAOSn3/X865P+RrjIVGMfNH8fJPMfNH8fJH8covxd8/xcwfxcsfxcs/xcwfxSu/FH9/FC//FDN/FC9/FC//CjVmRZNIHoyZLQGaga8BHwROdc7dn99RFTbFzB/Fyz/FzB/Fyx/FK78Uf/8UM38UL38UL/8UM38Ur/xS/P1RvPxTzPxRvPxRvPzLd8wmZSLZzALOuaSZ1QP/AcwBmpxzd6duNyDknItl3Wcq8FfgXufcl/Mw7LxSzPxRvPxTzPxRvPxRvPJL8fdPMfNH8fJH8fJPMfNH8covxd8fxcs/xcwfxcsfxcu/yRSzSdcjOSu4dcD1wJHASmA/M/sXcIlz7nEgZmZlQNI5l3TO7TKz9anjS4pi5o/i5Z9i5o/i5Y/ilV+Kv3+KmT+Klz+Kl3+KmT+KV34p/v4oXv4pZv4oXv4oXv5NtpgFJvKHjbGfAbOAw4Bv4TWf3gO4z8x+ambTnHM9LtWo2symAeHUsaVKMfNH8fJPMfNH8fJH8covxd8/xcwfxcsfxcs/xcwfxSu/FH9/FC//FDN/FC9/FC//JkfMnHOTZqO3Fcf+wFbg2NT3/wBuBg4H7gKSwHbgsn733zvfv4NiVtib4qWYKV6FtSleiv9k2xQzxUvxKqxNMVO8JtOm+CteillhbYqX4qWYDdwmVWsLl4oScATwOPComR0HvB54m3PuaTN7L/Ao0ApU9bv/mokcbyFQzPxRvPxTzPxRvPxRvPJL8fdPMfNH8fJH8fJPMfNH8covxd8fxcs/xcwfxcsfxcu/yRizSZFINrMpzrn21L8DwJNAwjnXYWbHAo8Br2bdZRvw29SW6TcywcPOK8XMH8XLP8XMH8XLH8UrvxR//xQzfxQvfxQv/xQzfxSv/FL8/VG8/FPM/FG8/FG8/JvMMSv4HslmdgrwfTN7q5mFnNdQ+lngj6lDtgP7AlNT31cB04Gocy4OUIJPyFNQzEZM8fJPMfNH8fJH8covxd8/xcwfxcsfxcs/xcwfxSu/FH9/FC//FDN/FC9/FC//JnvM0r04ClIqK98BVAD3AfcDdzrnXsg65njgFrwS8OeBQ4BFzrkFEz/i/FPM/FG8/FPM/FG8/FG88kvx908x80fx8kfx8k8x80fxyi/F3x/Fyz/FzB/Fyx/Fy7+iiJkrgObSuTbA8LLudwIJYC2wCy/I5wCzs45dhtcvZBvwB+Co1P6yfP8eilnhboqXYqZ4FdameCn+k21TzBQvxauwNsVM8ZpMm+KveClmhbUpXoqXYjayraArkgHMbCpwKV7G/l/AZ4ADgDvwVjB8yDnXkjp2gXNufZ6GWjAUM38UL/8UM38UL38Ur/xS/P1TzPxRvPxRvPxTzPxRvPJL8fdH8fJPMfNH8fJH8fJv0scs35ns4bL1qa/HAZuB76e+/3/ARrzs/beBw4FgvsdbCJtipngpZoW1KV6K12TaFH/FTPEqrE3xUswUr+LeFH/FSzErrE3xUrwUsxH8DvkegI9gvx54Drgk9X0d8DOgBa9vyMXAjHyPs5A2xUzxUswKa1O8FK/JtCn+ipniVVib4qWYKV7FvSn+ipdiVlib4qV4KWaDjDvfAxgkmHvj9Q6p77f/g8BW4MNZ+w7E6yeyFajM99gVs8mxKV6KmeJVWJvipfhPtk0xU7wUr8LaFDPFazJtir/ipZgV1qZ4KV6K2ci3MgqMmX0S+CFe0F41s3LgVmA7cH3qsB+aWQ/wO+fcv4G3m9mezrmomQWdc4l8jD1fFDN/FC//FDN/FC9/FK/8Uvz9U8z8Ubz8Ubz8U8z8UbzyS/H3R/HyTzHzR/HyR/Hyr9hiVlCJZDMrA05OfbsMeAZvRcNf4fUJWQiswFvd8APAvWa2zTmXcM69AlBIwZ0Iipk/ipd/ipk/ipc/ild+Kf7+KWb+KF7+KF7+KWb+KF75pfj7o3j5p5j5o3j5o3j5V4wxSzd5LghmFgSOBY7GazxdA3wSuAvYB1iA9x8wBdgAXFxoAZ1oipk/ipd/ipk/ipc/ild+Kf7+KWb+KF7+KF7+KWb+KF75pfj7o3j5p5j5o3j5o3j5V4wxK6hEcpqZTcML8ll4AX8Y+LJz7unU7XVA3DkXMbOAcy6Zv9EWBsXMH8XLP8XMH8XLH8UrvxR//xQzfxQvfxQv/xQzfxSv/FL8/VG8/FPM/FG8/FG8/CummBVkIjnNzBYDJ+CVd+8H/BG40Dm3LXV7mXOuJ49DLDiKmT+Kl3+KmT+Klz+KV34p/v4pZv4oXv4oXv4pZv4oXvml+PujePmnmPmjePmjePlXDDEr6ERympm9HjgF+E+gFvi+c+47eR1UgVPM/FG8/FPM/FG8/FG88kvx908x80fx8kfx8k8x80fxyi/F3x/Fyz/FzB/Fyx/Fy7/JHLNJkUgGMLNK4EjgdOB9wHPAm9xk+QXyQDHzR/HyTzHzR/HyR/HKL8XfP8XMH8XLH8XLP8XMH8UrvxR/fxQv/xQzfxQvfxQv/yZrzCZNIjnNzKYD7wY2OOf+Wui9QwqBYuaP4uWfYuaP4uWP4pVfir9/ipk/ipc/ipd/ipk/ild+Kf7+KF7+KWb+KF7+KF7+TbaYTbpEsoiIiIiIiIiIiIhMrEC+ByAiIiIiIiIiIiIihU2JZBEREREREREREREZkhLJIiIiIiIiIiIiIjIkJZJFREREREREREREZEhKJIuIiIiIiIiIiIjIkJRIFhEREREREREREZEhKZEsIiIiIiIiIiIiIkNSIllEREREREREREREhqREsoiIiIiIiIiIiIgMSYlkERERERERERERERmSEskiIiIiIiIiIiIiMiQlkkVERERERERERERkSEoki4iIiIiIiIiIiMiQlEgWERERERERERERkSEpkSwiIiIiIiIiIiIiQ1IiWURERERERERERESGpESyiIiIiIiIiIiIiAypLN8D2F3Tpk1zixYtyvcwRESkxDz11FM7nXPT8z2OiaQ5V0RE8kXzroiIyMQZbN6d9InkRYsWsXz58nwPQ0RESoyZrRujx1kCfB44HNgfeMg597Yhjv8BcAHwfefc5/rdth/wk9RjtQC/BL7unEtkHWPAl4DzgWnAk8AnnXPPDjdWzbkiIpIvYzXvTiaad0VEJF8Gm3fV2kJERCS/9gdOBFYDa4Y6MJUo/n9AW47bGoD7AAecDFwKfBb4er9DvwhcDHwbOAnoAO4zs1m79VuIiIiIiIhIUVMiWUREJL/ucM7Nd86dAawY5tifAD8CmnPcdh5QCZzmnPubc+5qvCTyZ8ysFsDMKvASyd9yzl3lnLsPOAMv+fzxsfl1REREREREpBgpkSwiIpJHzrnkSI4zs9OBpcAVgxxyAnCvcy67WvlGvOTyW1PfHwHUAjdn/fxO4I7U/UVERERERERyUiJZRESkwJlZJfB94IupxG8uS4FV2Tucc+uBSOq29DEJ4KV+912ZdYyIiIiIiIjIAEoki4iIFL4vAVuA3w5xTAPeAnv9NaduSx/Tkb34XtYxVWYW7n9nMzvXzJab2fIdO3b4HriIiIiIiIgUByWSRURECpiZLQY+B3zKOecm+uc7565xzi1zzi2bPn36RP94ERERERERKRBl+R6AiIiIDOkK4B5gtZnVp/YFgPLU962pBHMzUJfj/g30Ls7XDNSYWbBfVXIDEHHOxcZh/CIiIiJSoNra2ti+fTvxeDzfQ5ERCIVCzJgxg9ra2nwPRUqUEskiIiKFbR/gdcBp/fZ/PLXNBzbi9Ufu0+fYzOYDVfT2Tl4FBIElwOqsQwf0VxYRERGR4tbW1sa2bduYO3culZWVmFm+hyRDcM4RjUbZtGkTgJLJkhdqbSEiIlLY/gc4qt+2Dbg59e904+J7gOPMbErWfc8CosA/Ut8/CrQBZ6QPMLMq4KTU/UVERESkRGzfvp25c+dSVVWlJPIkYGZUVVUxd+5ctm/fnu/hSIlSRbKIiEgepRK5J6a+nQvUmtnpqe/vds4tz3GfLmCDc+7BrN1XA58EbjOzbwN7AJcAVzrn2gCcc11mdgVwsZk141UhfwbvxPJPxvp3ExEREZHCFY/HqayszPcwxKfKykq1IpG8USJZxs2GpgjvvuphbjnvCJbMqMn3cERECtUM4JZ++9LfLwbWjuRBnHPNZnY0cBVwB9AC/AAvmZztCrzE8ZeAqcBy4Bjn3Db/QxcRERGRyUyVyJOP/s8K34/ue4lnNjRz7X8fmu+hjDklkmXcvLCpleZInHW7OpVIFhEZhHNuLeDr3aBzbtEg+18E3j7MfR3wjdQmIiIiIiIiY2jV1jae39ia72GMC/VIlnGzqSUKQKwnmeeRiIiIiIiIiIiIjL9oPEFrNI5Xw1NclEiWcZNJJCeUSBYRERERERGRsXfzzTdz7bXX5nsYORXy2GT8RGMJEklHJJbI91DGnBLJMm42pxLJ3apIFhEREREREZFxUMjJ2kIem4yfrriXQG6NFt+iiEoky7jZ3NIFQFwVySIiIiIiIiJSwJxzdHV15XsYUgSiSiSL+KceySIiIiIiIiIyXs455xz+8Ic/8I9//AMzw8y45JJLuOuuuzjmmGOYMWMGtbW1HHbYYfz1r3/tc99LLrmEadOm8fDDD3PIIYdQUVHBLbfcAsAtt9zCXnvtRWVlJUcddRTPPPMMZjaguviXv/wl+++/P+Xl5SxcuJDvfOc7w45Nil86kdxWhInksnwPQIpTNJagqTMGKJEsIiIiIiIiImPv4osvZv369bS0tPCzn/0MgHnz5vGnP/2Jk046ic997nMEAgHuueceTjjhBP75z3/ypje9KXP/SCTCBz/4QS688EL23ntv5syZw/Llyzn77LM5/fTT+clPfsLKlSs566yzBvzs7373u3z5y1/mwgsv5G1vextPPfUUF198MVVVVXz84x8fdGxS/KIxLw9WjBXJSiTLuNjcGs38W60tRERERERERArf1+9YwYub2/Lys/ebU8vXTtrf13323HNPGhsbSSaTHHbYYZn9H//4xzP/TiaTHHXUUaxYsYJf/epXfRLJ0WiUK6+8kpNPPjmz74wzzmDfffflxhtvxMw4/vjjicfjfOELX8gc09bWxte//nUuuugivva1rwFwzDHHEIlEuPzyyzn//PMHHZsUv5LukWxmZ5jZn81sk5l1mNlTZvbefsc8aGYux1Yxgsd/k5n9y8y6zOw1M/vk7vxCUhjSC+2BKpJFREREREREZOJs3LiRD37wg8ydO5eysjJCoRB//etfWbNmTZ/jzIwTTjihz74nn3ySk046CTPL7Hv3u9/d55jHHnuMzs5OzjjjDHp6ejLb29/+drZt28bGjRvH75eTguac621t0dWT59GMvZFUJH8GeA34NLATOBG4wcymOed+knXcA8CX+923e6gHNrMlwL3AncCXgEOBK80s4pz75ch+BSlEm5p7E8ndqkgWERERERERKXh+K4ILUTKZ5N3vfjft7e1ceumlLFmyhOrqar761a+yffv2Psc2NDQQDof77Nu6dSvTp0/vs6//9zt37gRg//1zx2vDhg0sXLhwd38VmYTiCUci6YDirEgeSSL5JOfczqzv7zezOXgJ5uxEcpNz7nGfP//zwGbgfc65ntRjLwC+Zma/cs45n48nBWJzS5SAQbgsoIpkEREREREREZkQL7/8Ms888wz33HMPxx9/fGZ/NBodcGx21XHarFmz2LFjR599/b9vbGwE4M4772TmzJkDHmOfffYZ1dhl8ktXI0NxLrY3bGuLfknktGeAOWPw808AbkslkdNuBOYBB4zB40uebGrpYmZtBVXhMvVIFhEREREREZFxEQ6H6erqynyfThiXl5dn9q1bt45HHnlkRI93yCGHcMcdd5Bd2/jnP/+5zzGHH344lZWVbN68mWXLlg3YpkyZknNsUvy6Sj2RPIjDgTX99h1rZpHUdq+ZHTTUA5hZNTAfWNXvppWpr0tHObYx9Y81O/jnmh3DHyh9bG6JMqe+knBQFckA29q6+NXDr6Eie5lordE41/zzFZJJPfdERERERKT4LF26lH//+9/86U9/Yvny5dTX1zNv3jw++9nPctddd3HjjTdy7LHHMnfu3BE93he+8AVWrlzJ2WefzV/+8hd+8IMf8Itf/AKAQMBLo9XX13PJJZfwqU99iosuuoi//vWv/OUvf+HHP/4xp5566qBj27x589gHQApKNNabSC7G1ha+E8lmdjRwCvD9rN3/AD4FHAecCywAHjKzRUM8VH3qa0u//c2prw1DjOFcM1tuZsv7X14w1r59zyouuWPFuP6MYrSpJcrc+kq1tki5+99buOzOF3lxS35Wv5XSdf+qbXzz7lWs2tqe76GIiIiIiIiMuY9+9KMce+yxfOhDH+KQQw7h17/+NbfddhtlZWWcfvrpXHzxxXzpS1/irW9964geb9myZfz+97/nqaee4pRTTuEPf/gDP//5zwGora3NHHfhhRdyzTXXcM8993DyySfz3ve+l9/97ne8+c1vHnRs11xzzdj+8lJwsltbFGMieSQ9kjNSieEbgNudc9em9zvnvpZ12ENmdh9epfEFqW1MOeeuAa4BWLZs2biW2W1ujdISibOro5upNeXD30FIJh1bWqOceOBsXtzSRjyhSsjObq97y/K1zew/py7Po5FS0tHtTWLNkVieRyIiIiIiIjL2pk2bxh//+McB+5944ok+359zzjl9vr/kkku45JJLcj7mmWeeyZlnnpn5/re//S0Ar3vd6/oc9773vY/3ve99vscmxSudSK4IBWjrKuFEspk1AvcA64D/GupY59xWM3sE+I8hDmtJfe2fVUtXIjeTZ53dPbREvP/0J9c2c/wBs/I8oslhZ0c38YRjbn0FoWCAblUk05m6tOGJtU188IhF+R2MlJRI6iRGU6cSySIiIiIiIiNx/vnnc8wxx9DQ0MDTTz/N5Zdfzjvf+U4WL16c76FJgetK5X9m1laUbkWymVUBdwJh4F3OucgI7uZSW+4bnes0sw0M7IWc/r5/7+QJt6W1d0XP5WublEgeoU0tXtzmpFtbaLG9TDJv+domnHM5V4YVGQ/pkxiqSBYRERERERmZXbt28dGPfpRdu3YxdepUzjrrLL7zne/ke1gyCaQrkmfWVvD8xpb8DmYcDJtINrMy4BZgL+AI59z2EdxnFnAk8H/DHHoPcKqZXeScSzcROQvYALww3M8ZbxubvYRodTjIk2ub8jyaySOdSJ7bUEl5MECsJzHMPYpfur3AtrZuNjRFWTC1Ks8jklLRqYpkERERERERX26++eZ8D0EmqXQieVZtBU/Ek3T3JCgvC+Z5VGNnJIvt/Qw4EbgMmGpmh2Vt5WZ2kJndZWbnmNlRZvZB4EEgCfww/SBm9lYz6zGz7O7m3wXmAb9J3fdC4CPApc65vDfW3dzSBcBx+8/ihc1tRGI9eR7R5LA5qyI5VGbqkQxEYj2Ey7w/N52UkImUft1qViJZREREREREZFxFM60tvHXW2qLFlUscSSL52NTXHwGP9dtmA7sAA74F3AtcCazAq15en/U4BgRTXwFwzr0MHA8swatO/ijwWefcL0f/K42dzS1RggHjnQfNJpF0PLO+Jd9DmhQ2t3QxpbyM2ooQ4WCAmHok0xlLsHTWFGorypRIlgnVmaqG36VEsoiIiIiIiMi46spqbQEUXZ/kYVtbOOcWjeBxThzB4zxIVhI5a//DwKEj+BkTbnNLlFm1FRyyuBEzr5L0TUum5XtYBW9jc5Q59ZUAXo9kJZKJdPdQU17GskWNSiTLhMpUJKtHsoiIiIiIiMi4yrS2qPMSyW1dxZVIHklFcsna2BJlbn0ltRUh9p1VqwTgCG1uiTK3IZ1IDmqxPbyK5OryMg5Z1MgrOzrZ1dGd7yFJiUhXJDd1FtfkJSIiIiIiIlJoojEvB1asFclKJA9hc0uUOfXef/whixp4Zn0LcSVFh7W5tTduoaCpIhmvKrQ6HOSQRQ0ALF/XnOcRSalQj2QRERERf8zsdDN71Mx2mVmXma02s4vMLJx1jJnZl81sg5lFzeyfZnZwjsfaz8z+bmYRM9tsZpeaWfGsuiQiIn1E4wnCwQANVd6U0aZEcmlIJB1bW7syLRoOWdxIJJbgxc1teR5ZYevs7qElEs/ErbwsoIpkvKrQqvIyDpxXR7gswJOvqbpdJkZnqtF/UyRGAaxhKiIiIjIZTAXuB/4HOAH4P+AreOsBpX0RuBj4NnAS0AHcZ2az0geYWQNwH+CAk4FLgc8CXx//X0FERPKhK56gIhSgrjIEKJFcMna0d9OTdL2J5EWNAGpvMYzNLVEA5qZ7JGuxPaC3Irm8LMjB8+p5UhXJMkEi3V5FcqwnSSSVVBYRERGRwTnn/tc5d5Fz7o/OuQecc9/GSyK/L1WJXIGXSP6Wc+4q59x9wBl4CeOPZz3UeUAlcJpz7m/OuavxksifMbPaif2tRGSs3HnnnZgZa9euBWDt2rWYGXfeeWd+ByYFIRpLUBkOUlvpLUun1hYlYlNLBCDT63dmbQULGquUSB7Gpv6J5LJAybcDSSYdkViCqrD3InLI4gZWbGrlpW3trNvVyYamSM5K0XgiWfKxy6VHcfGlM5agOuxdPdmk9hYiIiIio7ULSLe2OAKoBW5O3+ic6wTuwKtgTjsBuNc5l31Z6414yeW3jutoRWTCzJ49m8cee4wjjzwy30ORAhCNe/mf8rIgFaEAbV09+R7SmFIieRCbWrqA3oQowBsWNvDshpY8jWhy2NrqxS29OmVIFcmZFTury71k3qGLp9KTdBzzg3/y1u8+yJu/8wA3PLF+wP2++Id/8/+uWz6hY50MLr79BT7ym6fyPYxJwTlHZ3cP8xurACWSRURERPwws6CZVZnZkcAngZ87rwJkKZAAXup3l5Wp29KWAquyD3DOrQci/Y4TkUmsvLycww47jPr6+nwPRQpANJ6gIuTlf+oqQ7RGVJFcEtItGuZkJZIbq8N0FNmZhLHWnopPuhdMuCxAT9KRTJZub9bOVGuBdEXym5dM4+r3vYErz3wdV575OmbXVfDQmp197uOc44HV29nYHJnw8Ra6dbsivLqjI9/DmBRiiSQ9Sce81JUVTRElkkVERER86ExtDwH/AD6f2t8AdDjn+vcNawaqshblawBacjxuc+q2AczsXDNbbmbLd+zYsZvDFykN55xzDsuWLeOuu+5iv/32o6qqine+8500NTXx8ssvc9RRR1FdXc2yZct4/vnnM/dLJpNcccUVLFmyhPLycvbee2+uu+66Po/tnOOSSy5hxowZTJkyhQ984AO0tfVdOytXa4vrr7+eI488ksbGRhoaGjjqqKNYvrxvoVh63H/729846KCDqK6u5sgjj2TFihXjECWZKF3xBJUhL91aVxlSa4tSsbklSl1liJryssw+LRw3vM5Y36RpuMx7ipVy3NKLnaUrkgMB4/gDZnHaf8zjtP+Yx+F7TmX5uqY+7S1e2dFJU2eMLvW0HSAaT2ROWMjQIt3e82deg1eR3KyKZBERERE/jgDejLdA3snAVeP9A51z1zjnljnnlk2fPn28f5xI0Vi/fj1f/epXufzyy7nmmmt49NFHOffcczn77LM5++yzufXWW+np6eHss8/OfPb+xCc+weWXX865557LXXfdxamnnsqHPvShPgnhH//4x1x66aWce+653HrrrVRWVnLhhRcOO561a9fygQ98gFtuuYUbbriB+fPn8+Y3v5lXX311wLg///nP85WvfIXf//73bN++nbPOOksLpU9i6R7JALUVIdq6iiuRXDb8IaVpU3O0TzUypPv9etW1gYDlaWSFLRJLUBkKEkzFJxzsTSSnS/tLTf+K5P4OXdTIbU9v4rWdnewxvQboXdQx3RZDekVjSiSPVPrETqYiWYlkERERkRFzzj2d+ufDZrYTuM7Mvo9XUVxjZsF+VckNQMQ5l37T1QzU5XjohtRtIgXnggvg2Wfz87MPPhh++MPR3bepqYnHHnuMPffcE4Dnn3+e7373u1x33XV84AMfALzq4ne+852sWrWKUCjEz3/+c37961/zwQ9+EIB3vOMdbNmyha9//eu8613vIpFI8O1vf5uPfOQjXH755QAcd9xxHHPMMWzatGnI8Xz1q1/N/DuZTHLMMcfwxBNP8Nvf/rbPbU1NTTzyyCPstddemWNPPfVUVq9ezdKl6oAzGUXjCeqrvKv06ypDbG3ryvOIxpYqkgexqSXK3PqKPvvKy7xEaClX1w6ns7snU3kLWRXJJdwnOZKuSB4kkbxsUSNAn4Ucn3xNieTBdMUTxBJJuhSbYaWfe7PqKggGjGa1thAREREZrXRSeTFe3+MgsKTfMf17Iq+iXy9kM5sPVPU7TkR206JFizJJZIAlS7w/z7e//e0D9m3atIm///3vBAIBTj31VHp6ejLb0UcfzbPPPksikWDDhg1s2bKFk08+uc/POu2004Ydz8qVKzn11FOZOXMmwWCQUCjE6tWrWbNmzYBxp5PIAPvttx8AGzdu9BkBKRQDeiQXWWsLVSQPYnNLlEMXN/bZV55KinbHS7e6djid3T19Km8zFcklnEhOV4VmJ9iz7Tm9msbqME+ubeasQxYA8OQ6L5HcFU+qAr6fdHK9rSuuv8NhpKvhq8vLaKgKqyJZREREZPTelPr6GrAJaAPOAC4HMLMq4CTgmqz73AN83symOOfaU/vOAqJ4PZdFCs5oK4Lzrf9Cd+FweMD+9L6uri527txJIpGgri7XRQOwZcsWtm7dCsCMGTP63Nb/+/7a29s59thjmTlzJldeeSULFy6koqKC//mf/6Grq2916mDj7n+cTB5dqSv1AWorQ7QpkVz82rvitHX1MDdHawuA7kQCCOVhZIWvM5agKjywIjlewlXc6T611eW5/9zMjGULGzIVyVtbu9jQFGXGlHK2t3fT3ZPM9NcRr7UFeAs7zpiS58EUuOxq+MbqkBLJIiIiIiNgZn8B7gNWAAm8JPJngZucc6+kjrkCuNjMmvGqiz+Dd8XvT7Ie6mrgk8BtZvZtYA/gEuBK51zf1bpEZEI1NjZSVlbGI488QiAw8GL9GTNm0NPjFeZs3769z239v+/vscceY+PGjfztb3/r056itbV1DEYuhS4az+qRXBmivbunqAoElUjOYXOLd+anf4/k7IpkyS0S6+mTMA2pIjlrAcLBk8GHLm7kry9uY3tbVyah/Oa9pvOHpzf2eRESr0obUJ/kEejtzx2koSpMc2dxnQkVERERGSdPAucAi4Ae4FXgS3iJ4bQr8BLHXwKmAsuBY5xz29IHOOeazexovEX67gBagB/gJZNFJI/e/va3k0gkaG1t5Zhjjsl5zPz585k1axa33347xx9/fGb/bbfdNuRjR6NRAMrLyzP7Hn30UdauXcsb3vCGMRi9FLJovLciua4yhHNe/qKuqjgKUpVIzmFzi/dHn2uxPYDuEk6KDqezO8GUiqzWFooZkXR7gUF6JEN2n+RmnlzbRFU4yBsWNmQSyeLpSSQzPcrbi2zl0/GQqUguL2NqTZg12zryPCIRERGRwuecuxi4eJhjHPCN1DbUcS8Cbx/qGBGZePvssw/nnXceZ599NhdeeCHLli2jq6uLFStWsGbNGn75y18SDAa58MIL+dznPse0adN485vfzB/+8AdWrlw55GMfdthh1NTU8OEPf5gLL7yQjRs3cskllzB37twJ+u0kX5JJR1dWO9zaVH6srSteNIlkLbaXw6ZUIrl/a4vMYnslnBQdTiTW0ydhmllsr4RbW3SmknlVg/RIBth/Ti2VoSBPrm3iidea+I8FDdSkXnCiMVXepnVl/e2pInl4Hd29/bm9imS1thAREREREQH46U9/ysUXX8z111/PiSeeyDnnnMNdd93FW97ylswxF1xwAV/+8pe5+uqrec973kNHRwff+c53hnzcmTNncsstt7B161ZOPvlkfvjDH3L11VdnFvuT4pUuokxfVV5X6SWPi2nBPVUk57C5JUooaMyYUt5nf6a1RY8qRAfT2Z3okzBNL7YXL+HkeyTWQ1nAMrHIJRQM8PoF9TywejvrmyKccMBsqlJnsKKx0o1df5GspLoqkoeXjpfXIzlMcyRWVL2ZRERERERErr322gH7zjnnHM4555w++xYtWoR3MYHHzLjgggu44IILBn1sM+Oyyy7jsssu67P/P//zPwd9XIDjjz++TzsMgBNPPHHYced6LJk80leUZ7e2gOJKJKsiOYdNLVFm1VUMSLakE8mqSB5cJNZDTbkqkrN1dnsLEJoNnbw7ZFEj63ZFcA4OWdSQOYOl1ha9umKqSPajs7t3EmuoCpN0xTWBiYiIiIiIiBSK/onk2lQiua2IPocrkZzD5pYoc+oqB+wvD6nf73A6YwmqsltbaLE9Orv7LkA4mENSfZLLAsbrFzRkeuookdwrOxZtSiQPKxLroSocJBAwGqvDADRF1N5CREREREREZKxFU61NK4q4tYUSyTlsbuka0B8ZIBxUj+ShxBNJYj1JqsNZrS1SFcnxEq5IjsS8iuThvH5BPcGAccDcOirDwcwZrPQLkfRLJBfRC/F4yT6x05BKJKtPsoiIiIiIiMjY6yqB1hbqkdxPTyLJ1rYu5uRIJKsieWiR7vSicr1Pq1BQMevs1+5jMNXlZfzPkYtZOnsK0NucvUsVyRnZSXW1thhepLuH6lTP8qnpimQlkkV226aWKM2dMQ6YW5fvoYiIiIiISIHo39qiKhwkGDDaimiNJ1Uk97OtvZtE0jG3IVdFshbbG0pnZmGv3upb9ZX2EuzZ7T6G8qUT9+XU188Del941NqiV3ZSXYvtDS9nRbJaWxQcM1tiZv9rZs+bWcLMHux3+2wz+66ZPWdmHWa2wcyuM7M5OR5rrpn90czazWynmV1lZlU5jvuwmb1kZl1m9pSZHT2Ov2LRueKeVXzshqfzPQwRERERESkg6eK3yrCXCzMz6ipDRVWRPGwi2czOMLM/m9mm1AfYp8zsvVm315rZ183sCTNrNbOtqQ+xe4/gsc8xM5djO293f7HR2twSBRiyIrmUk6JDiaQSyVVabK+PzlhvVagfam0xUDqpPqWiTBXJIxCJ9WRO7DRWpSuSi2cCKyL7AycCq4E1OW5/A3Aq8HvgJODzwBuBR82sJn2QmYWAe4GFwNnAp4AzgGuyHyw1h18NXA+cAKwA7jSzA8b0typir2zvYFeHTsqIiIiIiEivdM4iveYVkEokF0/+YiRlkp8BXgM+DezE+7B7g5lNc879BFgAfBj4FfAVoAr4EvAvMzvIObdhBD/j7UA06/tXR/4rjK10Ijl3j2S1aRhKZ6q1RXZFcrq1RbyEYxaJjbwiOVtF6gyWKpJ7pZPqM6aU096thOhwOrsTmVViK8NBKkIBVSQXpjucc7cDmNmtwLR+tz8MLHXOZd59mNnTeInn9wDXpXafDuwLLHHOvZY6Lg7caGZfd869lDruEuA659xlqWP+Abwe+CLwvrH/9YqLc451uzrpjCWIJ5KZeU5EREREREpb/x7JALUVZUW1xtNIslsnOed2Zn1/f+py2s8AP8FLMu/pnMskgs3sIWA98CHg6yP4GU865zpGPuzxsylTkVwx4LbykBbbG0q6tUV20lQVydDZPbqK5HAwQMDUIzlbOqk+Y0oFm1ujwxwtnd09zK7rfS1rrAqrirIAOeeGfIF0zrXk2LfGzCJAdnuLE/Dm09ey9v0JiAHHAy+Z2R7A3njVypmfb2a3ZO+Twe3siNGZOqnVGo0zraY8zyMSEREREZFC0NvaIiuRXGqtLfolkdOeIfXh1TnXmZ1ETu1rAtbR9wPupLCpOUpDVShnBal6JA8tvdhe9sJy6ZiVcvJ9tBXJZkZlKKjWFlnSSfUZteVqbTEC/Z97jTVhVSQXCTM7CO8KoOxWGEuBVdnHOediwCup28j62uc4YCXQaGbTx360xWXdrs7Mv1sixfOGUEREREREdk//xfbAa21RTBXJo70e83By93EEIPVBdMlQx/Tzipn1mNlqM/vIKMc0Jja3RHP2RwYIBQ2z0k6KDiVTkVye3drCgNKNmXPO65Ec9l+RDN5ZrIgqkjP6tLboiuOc63N7UxN0d+djZIWpM9ZDTdbfY0NVmKZOJZInOzMLAD8CXgL+nHVTA9CS4y7NqdvI+tr/uOZ+t2f/vHPNbLmZLd+xY8coR1081u6KZP7dGtXfk4iIiIiIeAbrkdzWVcKJ5NTK7qcA3x/isO8DHcC1wzzcFuBi4P14Cwg9DlxtZp8eZgzj9qF2c0tXzv7IqZ9LeVlAPZIHEYmleyT3VkCaGeFggFjCDXa3ohaNJ3Cu7wKEflSGg3SpIjkjEk8QChoN1WHiCUdXvO/f4ooVcN118Oc/w/PPQ1tbngZaICLdiT7PvcZqVSQXiW/hndB9v3Nu3N+ROOeucc4tc84tmz5dBctrd6oiWURERKSQ/OlPf+Kggw6ivLycxYsXc+WVVw44xjnHN7/5TebPn09lZSVvectbePbZZ0f0+LfffjsHHnggFRUV7Lffftx00019bm9vb+fMM8+krq6Oww47jDVr+tZUNjc3M2PGDJYvXz7q31Emh65YAjMoL+tNt6ZbW/QvhJusfGW3zGwRcANwu3Pu2kGOOR9vsZ73OOd2DfV4zrl78VaYT7vHzCqAi8zsR4P1jXTOXUNqFfply5aN2f+Ec45NLVEO33PqoMeEg0okD6aze2BFMnh9kku1IjnXAoR+VIaCWmwvSzSWoCIUZEqFt4Bce1e8T+8hgGQSNm/2tkcfhcZGWLgQFi+GGTPyMer8iPUkiSWSfZ57qkie/Mzso8Dngfc65/7V7+ZmoC7H3RqA57KOIXVcS79jsm+XQazd1Zk6QZpUIllEREQmvauvzvcIhnbeeUPf/sgjj3DaaafxoQ99iO9973v861//4gtf+AKBQIALLrggc9wVV1zBZZddxne/+12WLl3KlVdeyTve8Q5eeOEFZs2aNejjP/zww7znPe/hox/9KD/+8Y+5++67ee9730tDQwPHHnssAN/4xjdYs2YNN998M9deey3nnHMOjz76aOYxLrnkEt71rnexbNmy3YqFFL5oPEFlKIiZZfbVVoQyhXD98xeT0YgTyWbWCNyD1/v4vwY55t14C/B9wTn3x1GO6VbgTGAR8OooH2NU2rp66OjuGbQiGbwF95RIzi2dNK0K5UgkJ0ozGRrJsQChH0ok99UVT1AVDlJb4cWzrauHGbVD36epydueeQaqqryk8qJFMG8eBCf/a/ig0m1A+vRIrg7T3tVDPJEkFBxtZyPJFzN7D94ce6Fz7qYch6yitwdy+j5hYA/g6qxjSB23LuvQpUCTc069K4axbleEfefU8tyGlqJaNENERERkMrr00kt505vexC9/+UsAjj32WFpaWrj00kv56Ec/SjgcpquriyuuuIIvfelLfPzjHwfg8MMPZ9GiRVx11VVcfvnlgz7+ZZddxlve8hZ+/OMfA3DUUUexYsUKLr300kwi+b777uMrX/kKxx13HAcffDCzZs2is7OT6upqVq5cyW9+8xtefPHFcY6EFIJ0IjlbRah3vbViSCSPKJNgZlXAnUAYeJdzLpLjmDcBNwJXO+e+uxtjcv2+TpjNLd6agYP1SIZ0RbISe7lEYj2UlwUo65egCgcDxHuKo4Tfr0xF8ihbW1Rosb0+0i/KU1KJ5HaffYYiEVi5Eu65B379a7j3Xli1CqLR4e872aR7lldnXSHQWB0GoFlVyZOOmb0N+B3wE+fc9wY57B7gEDNbmLXv3UA58BcA59yreOsXnJH12IHU9/eM+cCLjHOOtbs6OXBuLWbQokSyiIiISF49++yzHHPMMX32HXvssTQ3N/PYY48B8Oijj9LW1saZZ56ZOaa6upqTTjqJe+4Z/C1wd3c3DzzwQJ/7AZx99tk89thjtLa2AhCLxais9PJIVVVVmX0An/nMZ7jwwguHrHqW4hGNJfv0RwavuBIomqLUYRPJZlYG3ALsBRzvnNue45j9gTvwPqh+cjfHdDqwk76VUhMinUie2zBURXLptmkYTmesJ2fCNFRmxBKlGbNIjmSeH5XhIF2qSM4Y2NqiZ9SP1dMDr70GDz4I118Pf/oTPPsstLSMxUjzL1c1fDqR3KQ+yQXFzKrM7HQzOx2YC0xPf5+6bV/gT3jVxDeZ2WFZ255ZD3Vr6pjbzOxEM3svcBVwg3PupazjLgH+28wuMrOjgP/Dm+OvGPdfdpJrjsRp7+ph8bQaaitCtOpvadLpiif49SOvkUiW5gluESlNT61r5k/PbMr3METGRVdXF+FwuM++9PcrV64EYNWqVQSDQfbaa68+x+27776sWrWKwbzyyivE43GWLu1z0R/77rsvyWQy0wv5DW94A7/4xS/YtWsXP/rRj9hjjz1oaGjgrrvuYs2aNXz600MuAyZFpCs+sOq4vMz7vlhyiSMpk/wZcCLwKWCqmWU3EH4Gr8/iX/AW1/sxcGhWL5A259yLAKkKqVeADznnrk/t+wPwBPA8EATOSm2fHKw/8njalKlIrhj0GPVIHlyk22s70F84WLrJ984c7QX8qAwF2axEckY09aLcW5E8+kRyNudg61Zve/xxqKvz2l8sXgwzZ0JWe6NJo7cavm+PZEB9kgvPDLwTttnS3y8G3og3174OeLTfcdcB5wA45+Jmdjxe8vhmoBvvSqHPZ9/BOfd7M6sBvoC34O0KvKuNXhij36dord3lLbS3aGoV9VUhVSRPQg+u3sHX73iRA+fWsWxRY76HIyIyIf70zCbufH4zp7x+br6HIjLmlixZwpNPPtln3xNPPAFAU1MT4C12V1NTQ7Bfb8OGhgYikQixWGxAMjp9P4D6+voB98u+/Wtf+xrveMc7mDZtGjU1NfzhD38gHo/z2c9+lu9973uUl5fv/i8qk0Ku1hbFVpE8kuzWsamvP8px22K8XsbzUt8/0O/2fwBvS/3b8JLF2VXQq4EPAfNTt78IfMA595sRjGvMbWqJEg4GmFY9+B95eShYsknR4XTGeqjOkTANl5VuX+lI925WJKtHch9dmdYWvYvtjYfWVnjuOW+rrIQFC7zE8vz5UDa6cwITLrP4ZdbfZEO1FzctEFZYnHNr8ebAwVyb2kbyWBuBU0Zw3C+AX4zkMaXX2p2pRPK0auorQ/pbmoS2tXUB0DZO84eISCFqrA7TEo2TSDqCgUlYISEyhPPOO4/zzjuPX/ziF5x++uk88cQTXHnllQAEAhOzLsyiRYtYvXo1r7zyCvPmzaOqqoorr7ySuXPncuqpp/LQQw/xsY99jC1btnD66afzox/9KGfiWia/aGxgIrm8rLdHcjEYNiXinFs0zCFrGfoDcPpxBhznnPsy8OXh7jtRNrd0Mae+gsAQk2t5mXokDyYSS+RMmIaDRrxEW1ukK5JzJdhHoiIcJBorzdjlEo0nqK0IZRbbG6uK5CF/ZhRWr/a2YNBbpC+9YF+q/VVByvXcS/87or7bIqOydleEgMG8hkrqqsKqSJ6Etrd7ieSJmD9ERArF1JowzkFzJMa0GlVGSnH50Ic+xHPPPcf555/PueeeS1VVFd/+9rf5xCc+kelL3NDQQEdHB4lEok9VcnNzM1VVVYMmddOVx+leyNn3y74dIBgMsvfeewOwY8cOvvnNb/LAAw/Q3d3NmWeeyY9+9COOPfZYjjvuOK655prMon9SXKLxBLWVoT770hXJxVKUOjGnZyaJzS3RIRfaAy+RXCz/+WOtszt3j+RwCcest0/t6CuS1SO5VzSWoCIcpDpchtnEV5QlErBuHfzzn15f5dtug6efhtQVUwUl89zLOrmTbvqvKneR0Vm3q5M59ZWUlwWpr1SP5Mloe1s3AG1KJItICVF7MylmwWCQq666ih07dvD888+zbds2DjvsMIDM16VLl5JIJHj55Zf73HfVqlUD+h9n23PPPQmFQgP6KK9atYpAIJBJHPd38cUXc8YZZ3DggQeyatUq4vE4Z555JvX19bz//e/ngQf6X8wvxcK7irpvqrU8WFytLZRIzrKpeWSJ5GL5zx9rkdggPZLLAiW72F5HprXF6HskR+MJnNOiQABd8SSVoSCBgFFTXpb3irLt2+GJJ+Dmm+GGG+DRR2HTJkgWwNM93SO5Juu5l27636WKZJFRWbsrwqKp1QDqkTyMeCKZWcS4kGxr9xLJ49UaSUSkEE2tViJZil9DQwMHHnggNTU1/OxnP+OII47IJImPOOIIamtrueWW3mVJIpEId9xxByeccMKgj1leXs5RRx3V534AN910E4cffjh1dXUD7vPcc89x6623ctlll2X2xWIxEgnvM1hnZ6c+3xexXD2Sy0PFVZE8Sbp9jr94Ism29q5hE8lhJZIHNWiP5GAg7wm/fIl0JwhYb08cvyrDQRJJRyyRzKz0WcqyX5RrK0IF1eOyrQ2ef97byst7+yovWACh0LB3H3O5quErUs9DVSSLjM66XZ2888DZANRXhmiLxkkm3ZAtsUrVjU9u4Ft3r+Spi44ZsHJ1Pm1vU2sLkf6aO2PUVYb0WlbEGmuUSJbi9fjjj/Pwww9z8MEH09bWxu9//3vuvfdeHn744cwxFRUVfPGLX+Syyy6joaGBpUuXcuWVV5JMJvnEJz6ROe7666/nQx/6EK+88goLFy4EvOrit73tbVxwwQWccsop3H333dx999385S9/yTmeCy64gIsuuohp06YBsM8++1BVVcWFF17I29/+dn7605/yuc99bhwjIvkUjSUGvPcNp9qpKJFcZLa2duEczBu2IlmL7Q2mszvR5zL6tFCwdFtbpJPrZqN7Y55uRdAVUyIZ+r4oT6nIf0XyYLq74aWXvC0QgLlzvaTyokVQXT0xY0hXJGcvtlcWDBAOBpRIFhmFlkiMlkg8U5FcWxki6aC9u4e6yjycLSpwG5sjRGIJtrV1sWjaBL3wjcB2VSSL9BGJ9fDm7zzA54/bhw8esSjfw5Fx0piqSN6lRLLkcN55+R7B7gmFQtx0001ccsklBAIB3vzmN/PII49w4IEH9jnui1/8Islkkm9961vs2rWLZcuW8be//Y2ZM2dmjkkmkyQSfa8IPvLII7n11lu56KKL+PnPf87ixYu54YYbOPbYYweM5bbbbmPLli187GMfy+yrqKjgxhtv5Pzzz+dXv/oVp59+OudN9qDLoKLxRCaPk5auSC6WolQlklPSl18OW5Ec1GJ7g+nsHqQiuZR7JHcnRt3WAnqrSaPxBHWUdqIimXR9XpS9RHLhJwKSSdiwwdseegimTetNKqdOUo+LSKyHilBgwMrcFaEAUbW2EPFt3a4IAAuneqts1qf6TbZG4kok59Aa8V6ft7d390kkd/ck+MhvnuJzx+7DAXMHXg46nmI9yUw1XkeBnogUmWjrmyJ0dPfwzzU7lEguYpkeyR1KJEvxecMb3sCTTz457HFmxle+8hW+8pWvDHrMOeecwznnnDNg/ymnnMIpp5wy7M847bTTOO200wbsf9vb3sbKlSuHvb9Mfl05WluEUz2SY4ni+ByuRHLKpkwiuWLI48pDpZsUHUpPIkl3T7JP9WNaKbcD6Yz15KzSHqlKLY6WkX4OVWYSySG2pS5Rnkx27vS25cuhpsZLKC9c6FUtB8awa/1grWYqw1rAUWQ01u7qBMgkRetTyeOWaIwFVOVtXIWqJZVI7v86vXZnhAdX7+CQRY0Tnkje2dGd+XehXtEik9MTrzURDMAbFjbmeyi+rU+dJFu+rlmteopYKBigtqKMZi0SKyIybuKJJPGEG5hITrWY7I4XR15MieSUkVYka7G93CKpxFR1jqRpOBggXqKL7UViiZzJvJFKV9+qgrQ3mZ6u0q6tKOPl7ZM7EdDRAS+84G3hMMyf39tXubx89x47MkirmcpQkIieTyK+rd3pJVsWNKYrklOJ5EjhXxmRDy1RL1mRbiWRtjWVWN7aOvEnArOT2koky2jc9fwWjlo6fUDhxGV3vkgi6bj7U2/O08hGb32T99rWGo3z0vYO9pk1Zcwe+5I/ryBcFuDLJ+47Zo8poze1plytLURExlG6YKt/j+T0mlmxIsmLjWH92+S2qaWLaTXhAb1M+ivlNg1DiXSnE8mDtLYokj8Yvzq7e/osduZXZVgVyWnpGGRXJE+G1hYjFYvBK6/A3/8O110Hd9wB//43tLeP7vE6Bmk1Uxku0/NJZBTW7epkdl1F5n1CJpEcLZ7XobGUTrBv71eRvLXVO3G/JQ+J5HRSe05dRUEt1iqTw/pdET52w9P88ZlNA27b2Bxhzbb2SXnFz4amSKYN1pNrm8b0sR99ZSdrd3aO6WPK6DVWh2nq7B7+QBERGZX05+z+ecV0RXKx5BKVSE7Z1BIdthoZvMX2epKOnhJNjA6mM+ZV9uRKmoZLeLG9SGz3eiSnk6aT8YPJWEtXZVdkLbbX1tXTZyGEYpFMwqZN8Mgj8Lvfwc03wxNPwPbtI3+MSCyR8++xMhTQ80lkFNbu6sz0Rwaoq0z3SFZ1Vy6t0d4eydm2tnrfb0kllCdSOqm954waVSSLb7tSCbgNTX2fu5FYD82ROD1Jx6qtozz7m0frmyLsM3MK06eUs3yME8lbW7uYVTd020CZOA1VYXapR7KIyLjpivVtx5lWXuZ9XyzdDZRITtncEmVO3fCJ5HCRlaSPlUxFshbb66MztpsVyWptkdGVoyI5kVqAr9g1NcHTT8Ntt8FvfgP//CesXw9D9ervjPXkPIlRGQ7q+SR5F+tJcvuzA6v6Ctm6XREWTe1dNC69wF6rKpJz6k0k96tIzmNri+3t3QTMWzCxmK5okYmRvvpgY3Okz/7NLb3P5X9vap3QMY2F9U0RFk6t4pBFDTy5tnnMHjcaS9DW1cPMWiWSC8XU6rB6JIuIjKPoIK0tQkHvyh8lkouIc85LJI+oIrm4StLHSqYiOUdP1lAwQE/SkUwWX+XocCLdu9cjuTLsPd9KIVk6nIGtLby4llpVWWcnvPgi3H03XHst3HsvrF4NXf1yMpHuwSqSg3o+Sd7d+OR6PnXjs9z4xPp8D2VEOrp72NUZY0FWRXK4LEBVOKgeyTl09yQyvdi3tfWvSPaqOXd1xib86ojtbd1MqymnvjJMR3dxXtEi46cllYDb2Ny3Ijm9YDfACxsnVyI5mXRsaI6yoLGKZQsb2dQSzawbs7vSPcmVSC4cjTVhmjpjeu0TERkn/XMWaWZGuCxAd09xfA5XIhmvaiYSSzC3YeQVycVyJmGsRFKJ5MEqkqE0q7g7u3tyJtdHKrPYnhJ/mSradHK9N5FcukmceBxeew0eeMDrq3z77fDcc9DaOnhFcoUSyVIA/uuNC3nzXtP46u0reHr92FXAjZf1u/outJdWXxlSj+Qc0tXI4WBgYI/krMTytraJrUre1t7FjNpyplSUkXTQqaszxIf0SaNN/RKt6cTrntOrJ11F8rb2LmI9SeY3VnHo4kZg7Pokp68+mKVEcsGYWh0mnnC0d5dWEYaIyETJtOPMsfZaeRFdqa9EMl6S7q17T2efmcOvUpzubVIsT4Cx0pFZbC/3HwyUXiLZOecl83anIlk9kjP6N66vrfAuK28rsYrkwTgHW7bAY4/B738PzW0JOprLeOABOPJIL7kM3nOqS8kTybNgwPjJe1/PzLpyzvvNUwOSjYVmfZO3WNTCxuo+++uqwqpIzqE1FZM9plfT1tXTZw7b2hpl8TQvjtktASbC9rZuZk6pYEpq/ijlE5HiX/pvfUd7d5/n9KbmKMGA8Y79Zk66BfeyT5ItnTWF6nCQ5WPU3iJ9omhWXfmYPJ7svoYqr7d/k/oki4iMi65BWluAEslFZ3ZdJdd96FCO3GvasMeWZyqSJ8+bxIkQ6U4vtjd4RXK8SP5oRqq7J0nS5W73MVLpF6CIEn8DeiTXVpZma4uR6k720LoryA9+4C3a98tfwtq13skwVSRLIaivCnPN+5fR3tXD+b97uqDfWK1LJ1umDqxIbo3qA3l/6SrtvVMn6LenqpC74gmaI3FeP78egK1tfSs7H31lJw+/tHPcxrW9vTtTkQyaP8SflqzestlVyZtbosyqreD18+sn3YJ765t6E8llwQD/sbBhzCqS04nkGapILhiNNalEsvoki4iMi8FaW4B3pV6xdDZQItkntbbILX15aK7q21CwNCuSO1PJ9Zoc7QVGqqJMi+2l9ba26F1sD1RRlkvSJelxScKBMjZu9Pb961/wl7/AK6uDdHQlWLkSomPTBlFk1PadXcsV7zmQp9Y1c++KrfkezqDWNUWorwplFthLq68KqSI5h3RM9pmVSiSnFtxLJ5Rfv6AeGFiR/I27VvLde1eNy5h6Ekl2dXYzfUoFNUokyyhkt7HZlNUneWNLlDn1FRwwtw6YXAvubWiKEDAy68QsW9jI6m3tY7KI6NbWbqrCQabsxvvgfDKzM8zsz2a2ycw6zOwpM3tvv2MeNDOXY6vod9xcM/ujmbWb2U4zu8rM+p6ZnABTq1WRLMXp2muvxcwGbFdffXXmGOcc3/zmN5k/fz6VlZW85S1v4dlnnx3R499+++0ceOCBVFRUsN9++3HTTTf1ub29vZ0zzzyTuro6DjvsMNasWdPn9ubmZmbMmMHy5ct3+3eVwpbJWeRqbREKFnThjB+Tc2bPo3IlknPKVCTnqL4NB0tzgcJ0FXGuKu2RCgSMilBgUl0mOV4i/V6Uc1WUPfggvPwy7L03TJ064UMsGDHnxSpkQTZs8PZtTeXoAi5IPJnkwQcds2cbp5ySnzGKpJ144Gw+f8vzvLC5lZNeNyffw8lp/a4ICxsHfuavr1KP5FzSSai9ZtQAvQvubUkttLd4Wg11lSG2tvYmkhNJx8vbO5hROzaXwd/34jbWNUX4f0cuBmBnRwznYGZtObXqsS+j0BKJM62mnJ0d3X0W3NvcEmXZwgbm1lfSUBWaVAvurW+KMKe+MlMoc8iiBpyDp9c1c9TSGbv12NvauphVW4GZjcVQ8+EzwGvAp4GdwInADWY2zTn3k6zjHgC+3O++mWbwZhYC7gViwNlAPXBl6uv7xmnsOTWmE8mdSiRLX2efne8RDO3GG0d23P33309lZe+6V3vssUfm31dccQWXXXYZ3/3ud1m6dClXXnkl73jHO3jhhReYNWvWoI/58MMP8573vIePfvSj/PjHP+buu+/mve99Lw0NDRx77LEAfOMb32DNmjXcfPPNXHvttZxzzjk8+uijmce45JJLeNe73sWyZct8/uYy2WTacYYH1ux6FcnFkddRItmnTEVyvLSSosPpjCUIlwUy1cfZMovtlVgiuTOzAOHoW1uAlzhVK4KBPZLTFcltWUmcjg5YscLbpk6FvfaCPfeEyuHX0SwqsaT33HPdIXamrhJPJ5JDAS9+cZdAU4AUglAwwN6zanhxc1u+hzKodU2dHDy/YcD+usowrZE4zrnJnCwZc+kWAHvN7FuRvDWrZ+rsuopMYhm8Cs/uniTNnWOT3L1p+Qb+uWYH7ztsAeVlwd7L7Pv0SFZFsoxcSzTO0llTePzVGBubvZYQiaRja2sXc+orMTMOmFs3qSqS1zdF+iwievCCesoCxhNrm8YkkTxzcre1OMk5l91r534zm4OXYM5OJDc55x4f4nFOB/YFljjnXgMwszhwo5l93Tn30lgPfDDpRPIuJZKlSB1yyCHU1NQM2N/V1cUVV1zBl770JT7+8Y8DcPjhh7No0SKuuuoqLr/88kEf87LLLuMtb3kLP/7xjwE46qijWLFiBZdeemkmkXzffffxla98heOOO46DDz6YWbNm0dnZSXV1NStXruQ3v/kNL7744jj8xlJo+rfjzFYeUo/kkpVZbK/E2jQMJxLrGTRhWrqtLVIVybt5SV9lKKjWFngvygHrvSqgOhwkYIMnAnbtgscf9xae++tfvf7AyRJ5CsaT3vOlbav3Aa6hwVuID7wqZYAep+eUFI79Ztfy4uY2nHP5HsoA8USSzS1dg1YkxxJJulInlzc0RTj9549mFrAqVa3ROAHz+q6GgpapSE5XIM+srUglknsrkl/a7vWV7ejuGZNqjZZIjO6eJC+kknrb27tTP1s9kmV0WiIxGqvDzK6vyPRI3t7eRU/SMbfBO2N94Ny6SbXg3vqmaJ9EclW4jP3n1vHka7vfJ3lrWxczx+gKg3zol0ROewbwe+nMCcCT6SRyyp/wKpSPH93oRqcqXEZFKECzeiRLiXn00Udpa2vjzDPPzOyrrq7mpJNO4p577hn0ft3d3TzwwAN97gdw9tln89hjj9GaWs08FotlKqGrqqoy+wA+85nPcOGFFw5Z9SzFI523qRikR3Kx5MSUSPYp09pikrxBnCid3YlBWziUl2hFcmSMKpIrwqpIBu9FuTIUzFT9mRk15WXDXpqcTML69XDffXDDDfDYY7Bjx0SMOH9iznvuNW32PsAtW+ZVa7e3Q5llVySLFIb9ZteyqzPGjvbu4Q+eYJuaoySSbsBCe0CmZ3JLasG9v724jeXrmvneX1dP6BgLTUskTl1liGDAmF5T3qciuaa8jCkVIWbXV/ZLJHf0uf/uak49xr9SCbH0GPpWJKu1hYxcSyROfVWIefVVrNvexTXXwB1/8Z5D6R7DB86tmzQL7nV297Czo5v5/U6SHba4kec2tuxWMtw5x/a2bmbWTeqK5FwOB9b023esmUVS271mdlC/25cCfZq/O+diwCup2ybU1OpydqlHshSpPffck7KyMvbZZx/+93//N7N/1apVBINB9tprrz7H77vvvqxaNfjaDK+88grxeJylS/v+qe67774kk8lML+Q3vOEN/OIXv2DXrl386Ec/Yo899qChoYG77rqLNWvW8OlPf3oMf0spZNF4glDQBr1Sv1g6GyiR7FMmKVokZxLGSiTWQ3WO/shQwq0tune/RzJ4FcmTpbJlPEXjicxCe2lTKkK+Ksq6ury2F7ffDrfdBv/+d3EuOBdLVSTv2hymthbS7322boVwurVFUs8pKRz7zfEWqVqxpfDaW6xr8qqLc1YkpxPJqaTlU+ubAbjj+c2sLMDfZaK0ROPUV3mXUE+vrcicINja2luhOLu2gqbOWGZ+e2lbbyJ5LKrl0u010pWV29q6MYNpNeFhr2gR6S+RdLR1ec/reQ2VbG7r5Ktfhet+6b0GzEslkifTgnsbUu05FvR7bTt0cSPxhOPp1OvZaDR1xoglksya3K0t+jCzo4FTgO9n7f4H8CngOOBcYAHwkJktyjqmAWjJ8ZDNqdty/axzzWy5mS3fMcbVD43VYZo6C++krcjumD17Npdddhm/+c1vuOOOOzjssMM477zz+MEPfgB4i93V1NQQDPb9LNnQ0EAkEslUD/fX3Oy9DtbX1w+4X/btX/va11ixYgXTpk3j29/+Nj//+c+Jx+N89rOf5Xvf+x7l5ZP36oxCsaklyt3/3lLwOaVoPJGzGhm8XGKx5BGHTSSPZMXa1HEfNrOXzKwrdczRIxmAmb3JzP6Vut9rZvbJ0fwiEyXd2qJYziSMlc7Y4BXJ6URyPFF4lyyPp0xF8iAJ9pFSj2RPrhfl2soQbaNMBDQ1wb/+5bW+uPdeeO01SBRJmOOpiuTtm0LMmwfpK6m2bOmtSO5xeg2TwrF0ttdLtxD7JK9PJ5KnVg+4ra6qbyL56XXNvGXv6dSUl/H9v/YvWisdLZFYplp75pTyTH/irW1dzK7zEm6zU4m39G0vb2+nIuS9X9jdhaCcc5mK5OXrmkkkHTvau5haXU5ZMDDiK1pE0tqicZzzTh7NbahkR2c3p5ya5MmHyknGgpmK5HkNldRPkgX30i14+ieSly1qxAz+9ero21uk29kUSyI5lRi+AbjdOXdter9z7mvOuV875x5yzv0WOApwwAW78/Occ9c455Y555ZNnz59dx5qgIbqsBbbk6Jz3HHHcdFFF3HsscdywgkncN1113HmmWdy+eWXk5yA3oaLFi1i9erVrF69mm3btnHsscfyk5/8hLlz53Lqqafy0EMPcdBBBzF9+nTOP//8QRPX0ldHdw9X/m0NJ/zoId50xf189HdPc+fzm/M9rCF1xRM5+yND6VUkfwbowFux9t14K9PeYGafSB+QSixfDVyP1wdqBXCnmR0w1AOb2RK8VWxfw1sJ93+BK83sf/z/KhMjrIrknDq7B69I7u2RXCRZuhHq7PaSebtdkRxWj2TI/aI8pWL3EwHJJGzYAH//u9f64tFHJ3/ri1gygUsYO7cFmD/f65FcXu5VJIfU2kIKUG1FiAWNVbxYgFW863d1Ul4WYMaUgdUk9ZVe1W1rNMbmlihbWrt4+z7T+chb9uC+ldt4Zjcq+vp7dkMLbZMk8dkajWcSyTNqyzP9ibe19i6+NTt1yfvmli6cc7y0vYP/WJCq8NnNBffaunpIJB37z6mlvauHVVvb2N7W3ef/0O8VLTJ5bG/r4qcPvDymPddbUgv71leFmNdQhXPwtuO7iXcHCGyaTXVqPQwz48C5dTxf4BXJyST88TbDJW1AIrmuMsR+s2t5Yjf6JKdPEL36XA3//vduDTXvzKwRuAdYB/zXUMc657YCjwD/kbW7GajLcXhD6rYJNbU6TJN6JEsJOP3002lqamLt2rU0NDTQ0dFBol8+orm5maqqKsLhcM7HSFcep3shZ98v+3aAYDDI3nvvTVVVFTt27OCb3/wmP/zhD+nu7ubMM8/koosu4qWXXuLpp5/mmmuuGctftWj9dcVWfvz3l6gKB/nSCUupDgd5dkNLvoc1pGhs4FXUaeVlwaLJI44kkXySc+4/nXM3O+fud859Dvg9XoI57RLgOufcZc65B4BzgJeBLw7z2J8HNgPvSz32FcA1wNesQJc/V4/k3Dq7ewavSA6WaGuLVPJ3dyuSK0JBokVy5mp35HpRrq0oG9NEQHc3vPii1/riD3+A556DyCRcMyvueojvnEIiYcybB2ZeVfKWLUokS+Hab3YtKwuwInndrggLGqsIBAa+LanPqkh+ap33oeINCxv57zctZmp1eMx6JW9sjnDazx7hW3cP3sevkLRG45nYzJxSQUskTjSWYFt7dyaBPCv1dWtblM2tXURiCQ5d3Aiw20mOdFuL4/b3Lsd48rUmtrV3MaM2O5FcNuorWqSw3fH8Fr5772o2NI1d76r0c6qhKszcVPXx7H06qayN072679pre8+cwms7Owpy8dC0hx6Cq786E7d2TuZvNdsbF0/l6fXNo174cmtbF8nuIJd+roaPfAQKOBRDMrMq4E4gDLzLOTeSd4UutaWtol8vZDMLA3vQr3fyRGisDtOkHslSArLX1Vm6dCmJRIKXX365zzGrVq0a0P8425577kkoFBrQR3nVqlUEAgH23nvvnPe7+OKLOeOMMzjwwANZtWoV8XicM888k/r6et7//vfzwAMP7OZvVxrSV0/83zmH8JG37smB8+p4rsCv+IkOU5FcLDmxYRPJw61Ya2Z7AHsDN2fdJwncgledPJQTgNucc9nv5G8E5gFDVjPnS7oiubtIngBjJRJLDLqoXKnGLNLdgxmDvpCMVGUoSDSmD7u5WltMqQjR3j0+FXrNzfDkk72tL159dfK0voglE8S21QIwf763L51ILlOPZClQ+82p5bVdnZmrOQrF+qYIC3MstAdZieRonKfXN1MZCrJ09hSqy8v46FFLeOTlXfzr1V27PYabn9xA0sHtz26io8Dik0tLJJ7pH51O3r64pY1E0mUW38quSH5pm7cw2SGLvERy825edp1ua7H/nFrm1lfyxNomb+GvKb2X2ddWhNTaokhtT1XDtkbH7v83XZFcVxViXoOXSN7aHmHagTvYsbKRzs7eY2dMKacrnizov9V0TqRs1zRy1e4curiR7p4kz4/yA/vW1i5aH1vC9m3GD37gndCebMysDO/z7F7A8c657SO4zyzgSOCprN33AIeY2cKsfe8GyoG/jN2IR6axOkxnLKH1V6To3XrrrUybNo2FCxdyxBFHUFtbyy233JK5PRKJcMcdd3DCCYOnrMrLyznqqKP63A/gpptu4vDDD6eubuDFBs899xy33norl112WWZfLBbLVEN3dnYW9InGQtIajWMGU1JX/bxuXj0rN7cVdDI2Gk8O2iM5XBYY9QnaQjPaxfayV6xNn8Lpf0Z1JdBoZjkbO5lZNTB/kPtlP25BKS/RheOG4y22N3RFcqn1SO6MJagOl+V8g+6HeiR7ovFkztYWbdHx/aDmnNf64v77vdYXjzwC24f9KDHx2nqirO7cwurOLWyJtRDbXku43JFurTd7NrS2QqIr3SNZzykpLPvNrsU5WLW1Pd9DyXDOsb4pwoLGgf2RwXt9DgcDtEbjPL2umdfNr8u0c/qvNy6gLGD886Xd65XTk0hy0/INLGisIhJLcPuzm3br8cZbelGyutRiezNSydvnN7YAvT1Tq8Jl1FWG2NraxcvbvYX29ptdy5Tyst1ebC99//qqMIcsauCJ15rY2dE9oCJZrS2K07bxSCSnn1OVIWbXVRAMGBubowT33EgiFuSuu3qPTT/P0i1dClG6KK9rU66OC2SuDhhte4tVq5O0L9+Dc86BN75xVA9RCH6G13rxMmCqmR2WtZWb2UFmdpeZnWNmR5nZB4EHgSTww6zHuRXv8+5tZnZiqiXkVcANzrmXJvQ3wkskw+73ohcpJO95z3v49re/zT333MOdd97J+9//fm666Sa++tWvEggEqKio4Itf/CLf/OY3+elPf8rf//53zjjjDJLJJJ/4RKZjK9dffz1lZWWsW7cus+/iiy/mwQcf5IILLuDBBx/kwgsv5O677+arX/1qzrFccMEFXHTRRUybNg2AffbZh6qqKi688ELuuusufvrTn/K2t71tXONRLNKt0tJXBR40r55YIsmqrYV3BWNaV2zwiuTyskDRFFf6bt6atWLth1K70o1hWvod2px1e65PUfUjuN9gYzgXb2VcFixYMPSAx1hZMEDASq+6djid3YnBE8klmnzv6OqhapAqbT/UI9nTFUtQ2W/RlnSPZOfcbifsR6K7G1au9Lb6ethrL1iyBKpz55gm1F07n2NdV2/lY8+2RcybawRSpwtnz/a+Nm0rg5BaW0jh2W+OV0X/4uZW3rBw0LcAE2pHRzeRWIIFjZU5bzczalPJ0BWb2/jIW/fI3FYRCrJkRs1uLyB4/6rtbGvr5ur3vYEf3reG3z+xnv9648Lh75gn3msyAyqS/52qbExXIqf/vaU1SqwnybSaMA3V3ra7Fcm9bQhCHLp4Kn961luYpW+P5DJe2q5EcjFKL/Q2tonkdI/kMGXBALNqK1i5pY3kzB3UNvZwyy1lnHmmd2z65MmO9m72nF4zZmMYSy+95ABj59pqenqgrN9b+MbqMPvMnMLjr+7iY0ct8f34d/9iFsGyJN/61mhrlgrCsamvP8px22JgF2DAt4CpQDteIvkU59z69IHOubiZHY+XPL4Z6Ma7Avfz4zbyIWQnktOLRIrceGO+R7B79tlnH/7v//6PDRs24Jxjv/324/rrr+f9739/5pgvfvGLJJNJvvWtb7Fr1y6WLVvG3/72N2bOnJk5JplMkkgk+lQMH3nkkdx6661cdNFF/PznP2fx4sXccMMNHHvssfR32223sWXLFj72sY9l9lVUVHDjjTdy/vnn86tf/YrTTz+d8847b5wiUVyy19wAOGied/LzuY2tHDSvPrP/tqc3MrWmnLfuPbaLk45GNJ5geo51VSBdkVwcOTFfieTBVqydaM65a/B6KbNs2bIJL3MtpibZYyGRdETjiUGTpr2J5NJKXDVHYpk3a7ujIhSkSz2SvX5D4YGtLZIu1VplkBMZ46WlxWt9sXw5zJkDe+8NCxcO/DA2ERIuyabuZg6smcchtYtJJuGKnVOYn1UFNMtrFcqubUGYp9YWUnhm11VQXxUqqAX31u/y2mEunDr42aL6qhAPvbSTnqQbkADfb04tj7ycq0PYyP3+ifXMmFLO0fvOYHt7F1+9fQX/3tjKgfNyVxLmW2/CLZVITiXVnktVJM+s7Z9I7qKpM8aSGV7CraE6TFNk9xKA6cX6GqrCHLq49/9kRtbPrhmDxVqlMG1rH4+K5FRri9QH2rkNlTy5thkLwJuP6eauP5fR2emdWE5/gCzkiuRVaxwEHPHuAC++CAcdNPCYQxc38oenNxJPJDNXWozE3XfDxufrOeSs9cyaNbEFP2PJObdoBIedOMLH2ohXiJV3U1WRLEXom9/8Jt/85jeHPMbM+MpXvsJXvvKVQY8555xzOOeccwbsP+WUUzjllFOGHcdpp53GaaedNmD/2972NlauXJnjHjKUlkjfRPK8hkoaq8M8v6EFDvOKKqKxBBf96QUOXdxYEInkSKyHynDulnjlZUFiPckJK4IbTyN+VzDEirXpCuL+n2ga+t3eX8so75d34bKAFtvLkm67UD3YYnvpRHKJJd+bIzEaqnY/kVwV9k5c9JRY/PqLxAb2SK6t8CaWfF6e7Bxs2gQPPOC1vnj4Ydi2bWLHsLW7lR6XZEnlDGaEawm01dLd5S20lzZtmpfk3rEt1WpGFclSYMyM/WbX7nYF71hal0okLxikRzJ4lbc7O7yE0evn90skz65lW1t35na/NrVEeXDNDs46ZD6hYIBTXj+XilCAG57oveSyNRJneypxVgjSvWTTieSp1WGCAePVnZ2EgpZJYgDMrq9kS2sXL23vYK8ZUwBorAqNSUWyGdRWhthzek3mpG7fiuQQ7V096lO4m/79b3jmGW+h2ldf9ebDnTuhowPiecrT70hVJLeN4YmClkiM2ooygqnLa+c1VGYS1SefmiQaJdPeIv08S/dqLjTJJLz2qlG5p9en64knch/3xj0aicQSvLDJX5/kz38eyqd1ctRphfNaLr0alEgWkUmif0WymXHQvLo+/fsfXL2dSCxB2xiePN4dnd0JagbJi6Xb5BZDy9cR1c4Ns2JtusfxUrwkM1nfNznncjYHdM51mtkGBvZCHqzncsEoLwuUXFJ0KJHUYiJV5bkrkkNB7013MfzB+LGrM8a+s2p3+3HSPXa6epLU+KgIKTZdOVZAnVLhvYS1d8WZVVeR624TKhbzFrBZtQrq6npbX9SM85WtG7u9HobzKryehhs3evvTC+0BBAIwcyZs3WIY6pEshWnf2bX89vF19CSSlBXA6936pghmZBbXyiWdMN1zenXmA3paul3Hyi1tvHkv/1USNz25AYCzDvH+mGsrQpx00Bxuf3YzXzh+Kbc+tZEf3fcScxsq+csFb/H9+OMh3VYi/cY/EDCm15Szta2LGVMqMn3uAGbXVmSSGXvPTFUkV4VZs61jt8bQnKpgSSf9DlnUwL0rtvWpSJ5SUUZP0tEVTw642kVGbuVKaBqijW4gABUVUF7ubbn+nWtfeJTn4Tu7e2hPvS8d68X26rOKA+ZltQR413EhZs6EP/wBzjzTe+6HgwF2jPIE0njbvBli3Ubj4h2U75zJv/5l/M//DDwuu0/y6xeMrN3Qzp3eSYWGo9YxpzH3pb2SX+mTebuUSBaRAtcajQ94D37QvHr+ueYlIrEeqsJl3PXvLQC0Fci6F53dPYPmxdJrh3X3JDLFlpPVsInkfivWHtF/xVrn3KtmtgY4A7g3dZ9A6vt7hnn4e4BTzewi5zJZjbOADcALfn6RiVQeCtCtVgMZnbFhKpIzfzClFbPmzjFqbZH6gBuNJaiZ4PYNhcK53O1T0onkQpk4srW2em0vnnrKa32xZAksXjw+rS82dDXRWFZNddD70LZxo/fhfc6cvsfNng2vvWY0WlAVyVKQ9ptdS3dPktd2drLXzCn5Hg7rmyLMqaukvGzwRGNdpfc6n6uv836z032f/SeSexJJbnpyPW/dezrzGnorov/zjQu45amNvPW7D2YqNV7d0Uky6fokafMlnbxLxwW8Pslb27oGnPDL/n5JqiK5oTqcSUaPVnMkRmNW0u/EA2ezemv7gIpk8E5EKpE8fpJJiES8zY9AwEsmD5dw7v/vbVntJMa6tUVDVfbltd7fZDgYYGZtOUcfDf/8p3ebmTF9SnmmMrrQvJRa3q1yWpQDDh28InnGlAr2mFbNv15r4iNv3XNEj71ihfc1NK2dWXWzx2C0MtZqK7yTbLt75YeIyHjrX5EM8Lp5dSQdvLCpjYPm1XH/Ki89WQgVyc45OmM9g+ZsykPFs3bYSFIa6RVrP4W3Yu3UrNuecc51A5cAvzWztcAjwAfxEs//mT7QzN4K/B042jn3j9Tu7+K1yfiNmf0COAT4CHC+K+BrDcPBAN2qSM7oTFckD/JBzMwIBwNF8QczUomkoyUaH1CdNhqZiuQSbqcSTzgSSZezRzJQ0H0u060vNm2Cxx7zksl77dXbs3j3H9+xsbuZvat6H3D7dpg6FUJ9511mz/YS29PjYfVIloKUWXBvS1tBJJLX7epkQePgbS2gtyI5VyK5virM3PrKUfV9XrW1nW1t3Xz5xLl99h88v543LGxgV0c3PzjrdWxoivK1P6+gKRJjWk3+KwBb+7W2gHSf5NYBieTshZ72SlUkN1aH6Ywl6IoPbGc0Ui2ReJ+ff/LBczn54L5xrM06ETlj9y8ekjGWTEJXl7e1+uissL6rt53EijVx7rpr+ORz+t+BIYqDWiIx6rIrklMVUnPqvSr7Zcu89lZbt3rz+7Qp5QVbkfzyy97XxXskeeMS4/LLyfR37u+IJVO57elNI/57fCFVBhSa3s7M2sVjOGoZK4GA0VAVVkWyiBQ05xyt0b7v54DMInvPbWihqdNbFPuAubW8vH33rmYbC13xJEnHoGs3FVOB5UgSycOtWLvWOfd7M6sBvgBcDKzAa4GRXVVsQDD1FQDn3MupVWyvxKtO3gp81jn3S9+/yQQqLwuqIjlLOpE81GJn4bIA8RJKvrdGvVXrG/u98I1GOpEcLeFEcvp3H9gjOd3aovAqknOJxWD1am+rrfUSynvttXutL3bGO+hKxplX3pvE2r4dpucofpw1y0ts9zTXEK8r3eeTFK4lM2ooCxirtrZzcr4Hg1eR/I59Zw55TH3l4Ilk8Np1jKbvczoJlV2NDN7J2ZvOPYxgwDAz7l2xFYAtLV0FkUjuvygZeBXJALNqc1ckN1SFMpdbp9cWaInEmVU3ukRycyQ24Gf1l90aSYpHR4+XSC63MlqjcTZsGPl9Q6HBK6C3tcRpCFXz2mve/mrzEsmz67yvy5Z5j/HUU/DOd3p9ktOLdRaal18GCyZZuqSMQ6d5Sfunn4Y3v3ngsUcvnclvH1/P46/u4m37zMj5eG1dcS648VkueMderFhRT/WUJMGa7oJoOSa5NVaHaOoszBMdkh/FsPhXqSngussx0dHdQyLpBlQkT59Sztz6Sp7b2MLzm1pprA5zzL6zeGHTGrp7EkNeRTjeOtJ5sUEKLEuqInmEK9binPsF8Ishbn+QrCRy1v6HgUNH8jMKRbgsQHePkjBpkVRri8EqksHrk1wMfzAjle75OCYVyWHvBScaK93nXLoae2CPZG9iGcsFdSZKW5v3gfPpp71K4b32gkWLBlYRD2djl9eccn6qP7JzsGMH7JnjKtSZqXxYormGnoXR3Ri9yPgIBQPMqa9kQ1P+EzDxRJKdHbE+VbO5nHDgbGKJJHtMy31GaL/ZU7h/1TbfFbZNHd48MjXHPJLdP3pOKpG1pTXKgfP6r1888VoicWrKywhljTHdUmJ2v8RS+vu9ZkzJfIBtrPZeBJs6Y6NORLVE4iwdZo2CKQWwWKuMvY6ElxybGq6hK+nvvUE87m0dOYqaWiJx2naGuPde7/uE8/7uOrZX8stfenOvGfzud14Lq572cjY3N/PMM32T0vX1uSt/J9KaNY6y+gh7zqjh0FQC/F//yp1IPnzPqVSGgvx95fZBE8k3P7mB+1dtZ0d7N60vvInZi2LEDWZOUSK5UDVWh7XYnmSEQiGi0ShVVUNfgSWFJRqNEvL7wXES6W2VNvB3PGheHU+ta6Y1Gufkg+dm3ju2d/VQXpO/RPJwBZbhoDe2YlhvbXJ3eM6T8rLSatMwnM6Y9wczVP/ecInFLP3mbEx6JKsiOZNETyfV06ZMsorkXJzzFr75xz/g97/3eixu2eLtH4mN3U1UB8upL/Pe/LW3e5cC56pIbkgVTCY7KtQjWQrW/MZKNjTn/0RH+nUl1xvYbEtm1PDZY/cZtD/xfnNqSTpYvbXd18/PzCM1Q88j6WTrltauIY+bKC3R2ICYzUxVB8/sVyVcFS5jdl0FB8ztTYCnK5Kbd6NPcnMk1qefbS7FMH/IQB2JLsosQH1Zle9E8mCSztGVjFMZ6P1bDFqAI+qWcED1PHp6IJHwrvr597/htdcg3l5OeyzGo48n+ec/4a9/hTvu6G39kE+r1jjKGjrZY1o106d7LbcG65NcEQpy5F7T+PvKbTmr3xJJx/WPraO+KsTzG1t55vkkDXOjhMsCAy5HlsIxtbpciWTJmDFjBps2bSISiRR9lWsxcM4RiUTYtGkTM2bkPsFXDHKtuZF20Lx6trR2EYkleOeBs6lNve/Md5/kdF5s0ERyaoG9YuhuUJord+2mcFlAHzyyRLpTFcnDJZKL4MzLSI1lIjnT2qKEK5Kjg1QkV4WDBANWNJcmx2KwZo23TZniVSkvWeK1wRjMhq5m5pc3Zqr5duzw9ud6X1FZ6VU897RXqEeyFKz5DVX87cVt+R5G5s1obeXuvVXab7aXJH1xSxuvm18/4vvt6owRChpThllkdWp1mFDQCiaR3BoZ2M8u3Wd64dSB1U5/OP+IPonn9JU8o01ydMUTRGKJYa8Imgw99sW/jkQ3NcEKKgKhMUskd6cepyLY93n9loZ9+ny/cCG8+KJ3Irgm6J006Ux0U1s29FUNE8k5eO1VI3xAJ4um1QNw6KHw+OOD3+fopTP424vbWLmlPdPHPu2BVdtZ3xThqv98PVfduZF7W4MEp7Yxq7ZCl8kXMFUkS7ba1AeNzZs3E49rTixkzkFPj1dFPmPGzMz/XTFqzdEqLe11qSvwGqvDHLZHIw+9tBPw1r3Ip85UXqw6PMhie6lEciwx+T+HK5E8CuVlQXb1aPJNy5x5GbK1RWklktOVVGOSSA6rInmwHslmxpSKsqI8sdPe7rW9eOYZr8ppr728qqHsK5hae6K0JaIcWtG7oE06kZyrItkM6uog3lFOjyqSpUDNb6xiV2eMzu6eIXvvj7d0y5wp5btXVTevoZIp5WW++yQ3dXYztbp82GRMIGDMqqtga2v+q7gh9wrbR+w5lT9+9IjMAinZ+rcO6e2RPLr3WekezcNVQ6YrktP97KQ4tPd0UROsoDxQRncyPiZ9P6OpRHJlYOjn1MKFXkK2pQWqy712LoWWSN68Gbq7jOqGCIuneQtQHnoo3HQTbNvW2wIr29uXemem71+1bUAi+dpH1zK7roLj9p/FhhemcC/wamILb6nNf792GVxDdZiWaJxE0hEc5GoaKS21tbVFnZQsFrEY/N//9X5fWeldcVpf723pf0/J/3rVuy3X4s1pB8yrIxgwjtt/JmXBQKboI+8VyZnWFrnzYqpILnHlIfVIztbbI3mIiuRgaba2aKhSRfJY6IrlrkgGijaRnOac1+piyxZ49FEvmbzXXl5f5XR/5HnljZnjt2/3EsZTp+Z+vLo6aOoIq7WFFKz5qerVjc1R9pmVv3fCbVHvdaV2mNYWwwkEzFtwb4u/RPKujtiIT0bOrq1kc4FUJLdE4+w9s2+/aDPj9QtyL0bYX/oDQ1Pn6D4MpE/kDjf/1oTLMMt/9YqMrY5ENzPDtVQEQjgg5noot937G+5Kes+p7NYWuSxY4H1dtw5m7lueGU8hefll72vtjC6mpdrmvPGN3r4nn4R3vWvgfWbUVvC6eXXct3I7H3/7Xpn9L21r5+GXd/L54/YhFAzQvd17vQ5Pa2dm7SBvQqQgTK0O45z3elkIi7SKyOhEo962eXPf/WVl3me+7ORyeiubJBnAoXok11aE+O3/e2Pmc0JtgaybNFzL13RFcncRFFhOkqdRYSkvsera4XR29xAKWuYMSy6l1le6uTNGVTjoa2GlwVSqR3Jva4scVe9TykMlc2lyTw+89JK31dRAz8FNhCrKmBHurSDYscNLIg/2JqG+HrauDSmRLAVrfoNXvbehKZLfRHLX2LS2AK9P8i3LN5BMukF7Kfe3qzPG1GH6I6fNrq/gmfUtuzHCsdMSiefsZzdSoWCA2oqyUfdITt9vuIrkQMCoCZeVzPxRKjoTXdSUzaAiVT3clYxTPkwl8XCiiVRri2EeZ948CAS8RPIeB/RWJBeSdCJ5zyW9ldqvf713tdPDD+dOJAMcve9MfnDfGna0dzM9tXjmdY+tJVwW4L2Hehn0FSugcapjSkOCxdPyvKKgDCn9f7izo1uJZJEi1NMDu3Z5W381NQOTyw0NUGhrLbYMkUgGbzHYtHTRR2uBVCQP1vI1nS8rhryYEsmjUB4KFEU5+ljp7O7JWSmaLVwWIJ7H5Puujm4+dsPT/OCsg5ldN/glhr9+5DV2dcT43HH7DHrMSDRFYmNSjQy9ydOuEk4kR4apSC7FirKODmiONxPorOfuFyzT+mLHjtxtLdJqa6GrPaQeyVKw0hXJG5ojeR1Hpkdyxe4vGLXf7Fo6YwnWN0VYNMIES1NnLGdP4Vy81hZdvhLV48E5R2s0ttuLbO1O/850a4uRzME1RX5FS6npTvYQcwmmBMt7E8mJOHW7+Wknmq5IDg79vA6HYc4cWL8eqoPpiuTCuFIg7aWXwIJJ9t27NyhVVXDYYfD3vw9+v6P3ncGVf1vDA6u2c+Yh89na2sVtT2/i5NfNyVw58cILcNCBxg2ffeuYvQeW8ZFOJG9v62bprDwPRkQmVEeHt23Y0Hd/ODwwuVxf71U2BwavFxw3rdE4oaBRNUT71LRMRXI0v+/pOlI9kmuG6ZHcXQSJ5Dw8JSa/cDBQFP/5Y6U1Gqd+mDeMoTy3tvj3plYef7WJJ15rGvK46x9bx90vbNntn9fko5JsOBVqbTFoj2TwFkzKdz+kfEmWdxOMVLF1Kzz0EPzud96lTVVVXkuMXOrrIRELEiusz7YlzcyWmNn/mtnzZpYwswdzHGNm9mUz22BmUTP7p5kdnOO4/czs72YWMbPNZnapmQVH81j5MrU6TGUoyIam/Pb8TScYd7e1BZDpK+qnvUVT58hbW8ypqySWSNI0yiresRKJJYgnHPW7GbP6qvBuVySPJJHltUYqzfnDj5uXb2Clz9Ys+ZBO2qYX2wPGZMG9rkyP5OGfUwsWeBXJAQJUBsIFV5G8eo0jWBdhzxl9T2i94x3w1FPQNMjb5P1m1zK7roKblm/gk79/hjd/537iiST//SZvjQbnvIrk/feH2XWVY3JFnoyfGalE8o72wnp+ikj+xGJei8Q1a+CJJ+Dee73++b/8Jfz+93DPPd46AKtWwdat0D3OLx/pNTdGss5BRShAKGj5b20xTI/k8jJvfzFUJCuRPArloWBR/OePlaZIfNjV0cNl+W0Hkv5gubll8OzZ9vYuXtvZSaR79xO2zZ1jV5EcCnovjKXc2qJriNYWtaVcURZIQLI3Jt3dEI97C+bcdBMsXw6trX3vUuctcktXRwg3WLZZJtr+wInAamDNIMd8EbgY+DZwEtAB3GdmmVoiM2sA7gMccDJwKfBZ4Ot+HyufzIz5jZX5r0juihOwoReSHaklM2ooCxgrNrcOfzDQ3ZOgo7tnxJccz6qrAGDLEHPcRGgZYmEUPxqrR59IHulie+CdiCzZ+WOENrVEufDW57nu0bX5HsqwOnrSieTyMU0kp1tbjKRFxsKF0NnpJWRrguV09BRWom7VmiShhs4BrSeOPtpLBj/4YO77mRlH7zuDp9Y188Dq7bzvsIXce8FbMifJNmzwFgk+4IBx/gVkTKTnlh0dhfX8FJHCk0x6nyfXrYNnn/XmiT/9CX79a7juOu/f//gHPPecd0xb2+AFTX60RuIjLuYwM2oLoLisM9ZDeVmAsmDuNGtmsb0iWG9NrS1GwatInvz/+WOluTOWWbBjMPlebG9XRzqRPHiF2/K1zUDvmaTd0RSJscf0muEPHKGKULCkE8nRzIKOgy22V5oVZS6QxJK9E1VXKodUXu5dsvTss942c6a3QN8ee/Qmkns6ykm4JKCqoQJwh3PudgAzuxWYln2jmVXgJX+/5Zy7KrXvMWAt8HHgotSh5wGVwGnOuTbgb2ZWC1xiZt9xzrX5eKy8mt9QxYam/Le2mFIxskqI4VSEguw5vYZVW9pHdHy6rYOfimSALa1RDpxXN7pBjoGWVPJ3d3okg1dNvHrryGLVX3NnjMrQyNYomFJRlnl/ILn96ZlNAGyfBJWL6YXtaoIVlKWuwx2TRHIyRnmgjMAIXgsWLvS+rlsH1XPKC6oi2TlY+6oR2r+TPab1XQzv0EO9vpn33QennZb7/p9+x94cvsc0jlo6fcAC2ytWeF/33388Ri5jrbq8jOpwkO1thfP8FJHCtL5rF/PKGwjYwORoerG/rVv77g8G+y72V1fX2yojNMJag9Zo3NcVbrWVoby3u+zs7qF6kP7I4OXEoDgqkpVIHoXysgBJBz2J5KBnG0pJU2eMvWYOnTQNFUhF8qYhEslPrvWu5+uM9eCc263kQXNnfEz7w1WGgiXdIznT2qIsR0VyZYiO7p5UdW3+eoNONGdJCDisX0UyQEVF32O3bfO2xx/3JnGAREcFsaQSyYXAOTfci+MRQC1wc9Z9Os3sDuAEepO/JwD3ppLIaTfiVR6/FbjDx2Pl1fzGKv71WtNuvxbvjraunjFZaC9t6ewpmROWw0knN0eaSE5XJG9ty29F8lArbPvRWB0adY/k5kichhFWRE+pCLF2Z+eofk4pcM7xx0wiufD7IWVaW5T1VvJ3JXf/Q2VXMj6ithbg9UgOBlOJ5PnlNMUL5/m1dSt0RQNUNURYNG1+n9tCIXjrW4fukzy1ppx3HjQ7521KJE8+06eUqyJZRIa0I9bODVsf5z0zlrFX1cwR3y+R8K7MydUuqbq6bw/m9L+r+y0h0hqND1qsGI/Df/83nHUWnHSSt6+2oiz/FcndiUHbWoC31hookVyy0k+A7h4lkiHVx3GYpGl5niuSmzq9F5WhKpLTieSk8/5vR9vfLX1JcmP17vfVTKsMB0u+R3J5WSDnIlJTKspIOuiMJSillzQXSP09JXpfg9KJ5PAgf449Pb1njHvaK3jq2QT/efrYPU9l3CwFEsBL/favBM7qd9z92Qc459abWSR12x0+Hiuv5jVU0tHdQ8sIWieNl7ZofEwW2ktbOquW25/dnOn5NpRdqSTq1BH+7lOrw4SCNmT7ponQ6qOtxFAaqsNE4wmisUTOlkZDaYnEhl23IW3KJGmNlD4JPrd+8MWCx8MLm9p4eXsHNeVlk6JysSPRTciChO3/s/eeYW5cZ5bwuVUFFHLoHMlmFJMoUSKpaGUHSbZlK1jBeb3j9UTv7HyTPNkT1utJO3ns8c44zEhOcla2LVtWJClRpsRMNpuhc0A3cqiq+/24uAU0GqEKKADdTZzn6YdsoFCoLhTq3nve857D5gIEQMoij2SnAVsLgBGy/f2MSL7sRqZIbmZBLB+nTrF/2/vS8Ba5t916K/DYY8ymYnBwydNl8eabQG8v0NZmwYG20BB0eR2YXgEFohZWDvaPzKHb68Aag0HBLSx/zCusOzChWte9FYuxn9HRxY/bbIvD/mbCaQz43VBVVqDNxz//M8sGevxx4MgRoKeHK5KbTSQrcJcI2gNyiuTVkLfWYkGrwGqSpNeKRFpFIqOirZK1hdRcIjkUK69IjqYUHBkL6yqmWuwtQlnS2kryw3mRW1sky5AJfDF00dlbCOx6KFQk2+3lk3UFgSW2qzEZp85cvNfUCkMQQJRSWviBhQC4CCH2vO3mi7w+lH3OzL50EEI+Tgg5QAg5MD09Xe3fYAqDbWwR0kyf5HDSYiK51wsAhiwb5mKMtDOqSBYEgh6/AxMLzQ0otMwjOUsEV+OTHIqnETRYyF0pRPLvPHoIv/PooYa/77cOXoBdFHDPFf2YiaagasvbVz+qJOERHSCEgBACWbBZ5JGchsOgIhlggXsXLjCLDRWaJcdgBTiRvHFD8edvu439W06VXAqHD7f8kVcaOr3yirCsaWHl4JOPHMRfPX282YfRgoWIKGxemVmybLAemQwwPQ2cPAns38+EgFPn7fjCF4CHH2ak8YsvAi+9BPzRHwFXXgnE48Cv/Ap7/XLxSC5nbSGJAkSB1JUX++unj+Ol07N12z9Hi0iuAnJWqboaKgm1gi/yKimSmx22x5PsI0mlaKXqtbMhaBS4YXMnAJY8X/V7mVSSGYHDJtZ0TCsdiYwKZwmFuNfBbtYrgQywElyRXOiRLFfI5iIEsMka1KgMVbh4r6kWjINS+nlK6W5K6e7Ozs6GvOdgMEskzzWPGI1YbG2xtYeFUh2fCFfYMmdt0e42FrYHAL0+J8YWmhy2xxXJNXokc0VxNfYW8/GMYUWyz2FDWtWWvXXU6HwCMw32clZUDd//+Rhu3dqFjV0eaBSYjS1v0imipuARc98Zh1VEspaBUzReHOnsZGorKc0sZ6LLxCd5eBiAoGH75uL3tR07gK4u5pNsBprGFGEtW4uVhU6vjOkWkWwY//XKWXzv52O6hVMLSxGKZ3BqKtrsw2jBQoSzllGNIJLzoVGKlKbAIdhAKQvwO3cOOHQI+NSnWLjrHXcA73wn8OijwJ/8CZCOSQjFFCwsWBP2Vw2iKbUskQzUN28tmlLwDz8+hYPnjVnp1YKLpw/cQuQk6ct74dEI8EVeJfWtTRSQabIiWRIIFI1ibD4BX8/iBcGBkTmIAsF1Gzvw3dfHEEvXoEjOktYtj2TrkMhoZYjki1ORTMXs9aAuViRzD+RykOwa1KgDGrl4r6kVhhAADyFELFASBwHEKaXpvO2KJa0Fs8+Z2VdTMdjGWvibqki22Nqi2ycj4LLhqCFFMhuzzBDZvQEHDp6br+EIa8d8Ig27JMBhq02nwJXYnJg2g7l4ZbstDl6IjKaUqu2sGoG5WFo/1kbhZydnMBNN4727+sGFyFPhFLq8jvIvbCKiahK9ckD/3SoiOall4DBobQEAHdm4VCXsBEQgpqbQCW/Nx1ErTpzSIHqS2NDjLvo8Icze4kc/Yotwo24cw8NMFdYiklcWOr0yIkkFyYy6rO9/ywEXQnH83rffBABIAsGeoTb8r7dtxp6hlpcLR0bVkMioODMTg6bRonaELaw8RBRGJKctyBswA25LVTj2jo8Dzz0HXH89yyTo7gb27QP+5m+AW35NRljJ4JFHWAcuD/vbs6dxtkvxlIL+QPl5Uj079XlQ+Zq2+tvLtBTJVWA1mWTXCl2RXIFIbroiOZbG5m42iS/mk7xvZA7ben3o8jIlSyxVuyLZaEuyETjtF7e1RSJdepLLF9fhxMWlSC60tlAUFmxQGLRXDDY7hRqVW0TyysExsFTEjQWPb8k+l7/dlvwNCCGDAFx52xndV1PhddgQcNn0CVEzEE4qRX1EqwUhBJd0e3FsvLIieS6WRpvbbspXlVlbJKE10X5gIc4Stmv1g+UZA3MmrS1UjWIhYSZsb/l3tCiqhvl4BtEGH+O3Do4i6LLhpku60OVjc6PlHLhHKUWsmCJZrY1I1ig1FbYHAO3t7N9kiB0LDwFsNo6f1CAFEljXUZxIBhiRPDHBFMZGceAA+3f37hoPsIWGojO75mmpkivjyBgbt//0PTvwCzesxxujC/jiiyPNPahlBj5GJTIqJpfxWNGCOUTUxllb5IMXgR0F3UCPPsq6b3nAnigCH/wgEI0Cx37cDYVqUDQVmgaEQsCZM0y93CjEUgpcZTySAUCuIy92rkUkL2+sJpPsWqErkitZW4gCMiptygJX0yhC8TR29LO24tGCMKK0ouH18/PYPRTUWxHiViiSrfZIvoitLZKZ0h7JPk4kX2yK5AJrCx60V8naAgBsdkCNOqC2iOSVghcBhAHcxx8ghLgAvAvAE3nbPQHg7YSQfOnb/QASAH5qcl9Nx2DQhfOh5lhbKKqGaMpaawsA2Nrrw/GJSMWxcCaaNl2M7PM7kVY10+SrlVhIZOCrECRoBHxOETJpbRFOZEApjIftycu/oyWUVWVHUwpog3o1F+IZPH14Au+6rA92SUC3j1Uol3PgXooqyFAVHjFXTbVCkcxVUWasLbgiORZi12FsmVhbnDtLIPnjWF+GSOY+yU8/bXy/+/axInZLkbyywInklk9yZRwdj4AQ4J4r+vHb79iCbb0+zLTO2yLkF2SHp2NNPJIWrEQ4q0jOaE0ikvMUyadOMT/+O+4APJ7ctoODwLZtwOQwI09TtHnigGhKgaeStYUkIJVpKZIvSrQ8knMwqr61S+xSy2iNP2fhZAYaBTZ3e2ETCUYLiIk3xxaQzGjYO9QGV5asrEWRzL0tAxYspjkcNhHJOt1wVgLKeyRzImD5KsrqAd3aIqtINkUk2yhoRmqq3UwLORBCXISQewkh9wLoB9DJfyeEuCilSQCfAfApQsgvE0JuBfANsDH8H/J29a8AUgC+RQi5jRDycQB/DOBvKKVhADCxr6ZjsM2JC01SJEezgatWWlsAwJYeL2JpFRcqEORzsRTaK4TYFqLHzwi08fnmKYHCyQz8Fox9fqcNhJj3SM4VclePIpmfg4xKGzbv/Nxzp5FWNTx01RoAQKdn+RNO0exi12uxR3KiRHttObhcjFidnxVgI+Ky8EhOJIDQjAhbIK6HmRbD2rXAzp3Mg/Iv/5J1O1XC/v3Arl2AzdrbZQt1Bv9etxTJlXF0PIx17W5dadjhtWMm2jpv+Yikcvfa4emWT/JqAKVUt7ZomiI5b+zdsAH4H/8DuOmmpdv39wMLUzZQRWhawC2lFLG0Crdc3ipIlgSk6qhI9jokS+bildDySK4CstTySOYIxdIQCCperFzFnVY0yFJjfbj08DuPHb1+5xJriwMjcwCA3UNtiGXJg1oVyQGXDZJoXZ3GdZFbW8TTaknVuy+PSF63jlUooxfD/IUrklV2nSWz3JEhIllibefx5uWYtbAYXWBkbj747+sAjICRvwKA3wXQDuAAgLdSSif5CyiloSwx/I8Avg9gHsDfgpHJ+ai4r+WAwaALPzwy1RSvPW6VY4W6Nh9bellnzNGJMNa0lyZz5mJpXBoMmNp3n5/5So8vJHDpQDGr7PojnFDQYZIALwZJFOBz2HRi2Ci4eteoItmjE8nLV5E8m0dWNMLLeTqSwn+8MIJ37ezDlmxApF0SEHTZlrW1BSdr3fmKZJERyZTSqu1Wkhq7Bs1YWxDCVMmzswRuUV4WiuRz59i/XX2Vr6EnnwR+6ZeA3/ot4BvfAH73d5nfZCYDDAwAV1+d21ZRgNdeA37hF+p48C3UBdyyZrpFiFbEkfEwLu3PjasdHhkvRGebeETLD4sUyTMtRfJqQELLQAVbb2YarPLlZLAzj0gmBLj88uLbDwwAmkaQmfUgNdicOV1K0aBqtKK1hV0S66ZIPjcXx5o2V80Wc0bQIpKrAFfXtjySmX9hwGWHWGGR38xzlvNxltEfWEok7zsTwroONzq9MihY2ygnlKvBXMx40I9ROO2Nsbb40dFJjC3kFoo3X9KJgeBisiMUS2N4Joor1zYuYKKctYXDJkASCCLJDK7ZDtx/PzA6Chw7xhZOTRDBNwS0wCM5lWJqIMFA/cKeJZJTiYsrCOPVsyGcmIzgwb1rmn0oi0ApHQFQ9sOgrKf9z7M/5bY7AuAWK/bVbAy0uZBWNUxFUrratlHgVjk+iwPONnd7QAhwbDyCt2/vKbndbCyNdpPWFvwcTYSbq0he31m6bd4M2tx2nRg2inmTYbe8EBlexork2TxVdiyloMNjoFpYA/7p2VNIqxp+/a2bFz3e5XVgchlbW3AfYq+0WJGsgSJDVdhJdd/lUCau78sM2tuBqSlgvSgvC0XymTPs3/XrKo/7vb3At74FfP3rwK/8CnD33bnnJImFHXH7jiNHWNDenj11OOgW6op2twyBANNNHDNWAiLJDM7NxfG+3QP6Yx0eGQuJDNKKpq9xL3ZwItkmkpa1xSpBWMlxJo22tkio5rqBBrJfz/SUF8kGBwNycP7IiLVFPT2SL+luTLhv685XBXKK5FXKUJlAKGYs1EYnkpsQuMetJtpcdvQVEMmaRvHq2TnsXhsEALizFaRYDaRtKJ621B8ZYIrvREbFQqJ+FbZIMoOPfekA/uA7b+o/f/vMySXb/ccLZ/DQv73SMK9GfmyeEm0ihBB4HZI+gSGEDSa33QY88ABb3Ph8DTvUhoGKiz2SCWHttEbAOwSSyYuLSH7yzXH86Q9MJAi10FQMBpnC9nyo8fYWnEi2MmwPAFx2CUPtbhybKB24l1Y0RJKKaSK53W2HTSQYa6a1RSJjmR1I0GUz7ZHMiWejYXt8rDZrodFI5B9bvS04RucTePiVc7jvyoElgWxdPnl5W1sUUyRnF6DVtrlGlSR+NHcEHTYPumVzEwmmSAZcgozYMgjbGx5mc7atm40p2glhhflTp4CXX2aq4299iymQH388t93+/ezfFpG88iAKBG1uuaVIroDjEyypa2tv7h7AC3qzsda54+CdPdt6fRieuRhaQ1c/Itmxy06kZWFtUQ5dXcy6MT3lqzlkt1pwa1R3BSJZlgSk6+BsoGkUF+YSDfFHBlpEclVoEck58GT5SrBliauM0viwvXzPxP6AAxPhJDJZQvv0dBSheAZ71jF1LffhjdekSM4YVkMZxa7BAADgtXMhS/ebj3iWPP/d27dg/+/dhu19vqL+X5PhFFKK1jDP5mRGxUw0rbdtF4PXYSvamuxyAZddBtx3H3D77cD69SzddVUgq0iGyv6goSFg40ZjL7Vl7WVS8YtrCIil1YrtRi0sH3Afz/NN8EnOWVtYf71c0u3VF6bFoGcPmLSIEASCHr8DEwvN8ayhlCKctC6gsM1tN03wckWyUWsLt12E0yYu69CkfEVytIa5iRH8/Q9Z8fjXbt205Lkur6OocjG9DDh4SilGUyHIRIIs5K6/WohkjVJ8b+YgMlTFezqvgETMTR7a29m5kZKuZaFIPnxcBUQVl202p2j3+4GrrmIeyO95D9DXB3zve7nn9+8HAgHj848Wlhe6vHLLI7kCjo6zwu+2vnwimY0xM5FlcANcJuCFzp0DAVwIJVoWoKsA3B+5zeZGuglEskQESIKxsVcQgJ5eisy0Tw/JbTRiWWtUd4kuag5ZEurCI05GkkirWtkcBCthiEUghGwkhHyOEHKIEKISQn5S8PxNhBBa4uepCvv+YonXbanh76oruMdvy9qCLXiNkKY5RXLjB5W5GLuZtLmZIlmjwGR2MbR/hBGze4YYkSwIBG67WJMieS6WQpvBoB+juHxNAJJAsP/MnKX7zUcy68Hc7pHR6WU/xfwp57KPxWrwkTaD8azVRl+gHJEslVVqEcJM+G+5hamUr7qKLY5WMqiwWJFsBqJAQGzKRUckx1NKxQCEFpYP+gNOEAKcn2s8MZqztrA+rGJLrxdnZmO6XdHITAxPH57Qn+cKJ7OKZADo9TkX2RM1EvG0ClWjFiqS7VV4JKchCsSwJQkhZNmHJs3lKd6idVQkn52N4ZuvXcD7r15TdLzt8jHlYmE30je/CTz9NDAy0jwrqUPRCzgZn8Qe//pFj9dCJL8wfxLnknN4W/sOdNjNt4ly6we64EFKUxreFlyIoydUSP4ENnR5Km9cAoQA734381DmuQz79gG7dxuz1Wph+aHTu7w7DZYDjoyHEXDZ0OPLdTt0eFlBZjmPHY0GF/TsHPCDUuDsbHPCklc7Mhng9ddZx0u9EVETEEAQkFwNH8OSWtq0pdTAAJCe8um2GI0Gt7Ywpki2fsJ0LvudW26K5O0A7gBwHMCJIs+/BuCagp/7s889YWD/x4q8fsTgsTUc9lbYno65uDFFMm+lb4aKOxRPQ5YEOG2ivjjirb/7R+bQ4ZExlBd65JKlqsP2KKUIxTJoc1vrYeiyS9je78eBkfopkvln47Cxz6rNZddtQfLBFWLxVGOuf25FUolIDhsMS3I6gUsvZSrlO+9kCbArUaVMxcUeyWZACCC6U0gnVuAfXgNaiuSVBYdNRLfX0Rxri6yNkNVhewCwpccHSoETkxGcm43jvs+9hF/8r9f0CaiuSK5iHOkNODDRJCJZJ98tOmftHhkz0RQ0zXgnUyieQcBpMxUy0uGRMVNkrFsumI2mYRPZ31NPRfJr50JQNYqHSnjId3llZFS6xLda01gewQ9/CDzyCCMWFxbqdphLMJ2O4Jm5N7HW0Y5r/YtlsdUSyeeSs3hh4SQu9QzgUs9A5RcUQXs7+zczz+aXzQ7cGxkBJH8c62r0MH/3u4FYDPjJTxiZ/MYbLVuLlYzOliK5Io6MR7C1x7doXOn0tIIKCxFJKpAlQQ9pHZ5u2VvUA4oCHDgAfPvbbMz92c/Y/T1TB+40rCThER2wC1JTwvbMEsmDAwRawo75+focUyVEDRLJ9jopks/NNZZINrqi/j6l9LsAQAj5JoCO/CcppWEAL+c/Rgh5CwANwNcN7D9GKX258mbLA3IrbA8AJ02N+QHzc5ZRG29twe03CCHoz3pujs7HAbRh/8gc9gwFF00O3HZR97gxi1haRVrVLFckA8DeoSC+9NJZpBRVV8VbCa5IdmT3HXQXV4Nxz8pGKZJHs0Ryf1ki2VZV+3tvL/tJJpkP4PHjQKh+XL21yCqSUYUiGQAkdxrpmPXX6XJGPK1UbDdqYXmhr0nEaDipgBDAW2EyWA229jJ1489OTuPrBy4gFEtD1ShePz+P6zZ25BHJ5hXJzNoiCU2jECqE4FoN3Q7EIkXyQNCJjEoxGUmit4y1UT7m42kEDPojc3R45KbYpxjFbCyNwaALwzOxuhLJvMBeGLDL0eVlarzJcLLktZlIAIcOsZ+eHmDzZmDdOhYEWw+kNQXfmX4VMrHhXR2XQygoIOhEskl10uHoKGRBwlvbtld9bG3ZPOL0vAysYWGAAVtjFnfFMDEqQt6URK+vs6b93Hwz4HYze4tAgJEae/dac4wtNB6d3lzBrtFjxkqAqlEcnwjjob1rFz3OPZJbiuQcwkkFXodNL1YNz7QC9+qNWIytXY8fZ6Konh5gcJD9WNF5G1GT8EkO2IjYBEVyBg7B3Dx4YIDdw6bHJWBdPY6qPDh/VDFsT6yPIvn8XBwCKS++sxKGGAhKaTV/6YMAfkopHavitcsanMS72D2SIykFikYNtd9yj+RmkO+hPB9n7rM7Np/E+EICF0IJ3daCw2WvXpHMSVarPZIBYPdQG9KKhjcu1Efqwz2PZa5IdtsRT6s6wczBrS2qPUdmMRpKgBBGkJRCJWuLSnA4gB07gHvuAd75TmDTJpZMvpxBBRXQCAitjkgWXWmkY8v8j7QY0ZRasUrcwvJCs9RS4UQGHlmqy8J6MOiCyy7ir54+gZloCl/86F4IhHXIALmA2A6THskAsL7DjbSq4cxs4xdwOUWyNd8x7vF2IWTc2iRURUZBR1b5vFwxF0tjTbZrqp5E8vhCAkGXDc4SxbYuHyNOjLbBT0wAzz3HFFPPPw9MTVl2qDqenj2M2UwM7+q8HB5p6RyhWkXyaCqEfjkIu1D9texwAB4PEJtn12MzfZLDYSARkdDdp9R8T3M4gLe/nRHJr7zCHmspklcueKfBfB3DvFcyzszEkMxoegGYw2kX4baLLY/kPESSGfgcEjyyhC6vjOHpFpHcSKgqMDrKwlG/8Q3g618HXnoJuHCBPVcNIkoCXtEBuyA2PGwvoZpXJA9kG4hmx5ojlOIiO1dFj2SxPtYWc3H0+p26e0K9UZd3IYRsBrALwCMGX7KNEBImhKQIIc8TQm6sx3FZBXtLkQzAHGnazHM2m0ckO+0i2tx2jM4nsC/rN1xIJLvl6hXJtSjJKmH32iAAYN9IfXySuVWLIxs4yP+GfFWyompYyE42ow20tujyymVvij6HzbC1RSX09AA33gg8+CBw7bU5VdFyAxW1qmwtOCRXBpm4DbTxTQJNQ8sjeeWh09ucRPlIUqmLPzLAvPi39HhhEwk+98Ercf2mDmzp8elE8lyM+/yaf//d2fGsnn76paDbgVgsHEtrAAEAAElEQVSoSAbMhS3OxdKGg/Y4Oj0s1E81YaHRSMzF0ugPOCGQ+nokj82XV353ZT1Bp4oE7pVDOg0cO8aIx0cfBd58M+evWwuOxsbwZuwCrvVvxJCzo+g2PHgvpRk/b0ktg5lMFP1ysOZj7OgAInPsGKJqcyxnANb2DLBQXivw7nczwuILX2BdXf391uy3hcajM/u9btlbFEexoD2ODu/yLkI2GpGkAk82n2B9p7tlbdFkhMPA4cPM0/4rX2FZBkePMhWzEVBKEVGT8GYVyRoo1Kq0pdUhVYW1hdMJ2P1JzE+UFp/VE9yirqIiWRLqYpF7bi7eMFsLoE5EMoAHAGQAPGpg24MAfgPAuwC8H4AI4BlCSMlGKULIxwkhBwghB6anp604XlMQBQJJIBe9R/KsCdK0mWF7ofjiQMC+gANj8wkcGAnBbReXVJlrUSRzItmI3YdZtHtkbOh0180nmSuSdWuL7Dmby0uMX0hkdOIxXuf0eI6xhUTFFg2fQ0I0pUCzkBWVZWDbNuDuu9mi6ZJLlplKWVCrtrUAAMmpgCoiwmELj2mZI97ySF5x6PQ4MBdLI6M2tggZTmbgNRjYVg0+fdcOPPILV+Mtm1ib+Z6hIA6em0dG1TAbSyHoslelHFzf4UaHx64XShsJqz2SuZ2R0bBFTaNVTaI7vDI0mgs5XE5QNYpQPI12tx0eWaqztUUCfYHSiy9ubVFLMFcoxNRSjzwC/PjHTClVzbAdVhJ4cvYN9NkDuC6wqeR2hBDIgmRKkTyemgcA9MkB8wdWgPZ2IDRLIIA0VZF84hS7f27ZZE0h9Y47WLjem2+21MgrHbrXb4tILoqj42FIAsHGIiGVy72bpdGI5M2b1nd6cKZlbbFsoCgsy+CFF9j4+61vAfv3s86hUiG5SS0DhWrwSk7YCPtc0yaKsrUiqWXgFM3PJ709CUQnG2PtUIimh+3NJRpKJNdrlfQAgKcppRVXMpTSv8v/nRDyOIDDAD4F4D0lXvN5AJ8HgN27dzdFQmKXBKQyLUUyYIw05UExaaV5Hskc/QEnhqdjmFhI4oq1QUjiYjLOLYsYna9RkVwHawsA2LuuDY8dGq+Llxm3sMi3tgBYqzBHvjo5lm6UIjlZVAmQD6+DKWtTigLAehVhVxf7ueoq4PRppq5qRFpuOVBBA1FrUCQ72GA3NmaNj9ZKQKzlkbziwNVSs9F0WXsbqxFOZOoStMexo3/xl273UBu+9NJZHB0PYzaaNmQZVQyEEOwZaqtb50o55DySrZlaOmwiun0yLhgMWxwPJ5HIqNjQZS5MTPe6jKR1snS5IBRPg1I2HnsdtposnCphfCG5pEMrH067CK9DsoRwUlVgeJj9eDzMS3nzZvb/SqCU4gczP4dGKd7VeTlEUr6g6hBspojkUQuJ5I4O4OBBgh4iI6o0j3B6/UgGgIxd2625p3V2so6t559v+SOvdHT5eIGoeYr55Yyj42Fs7PIUzabp8NhbZGkeIklFH0PXd7gRimcMZym10FjMzbGfn/+cCaf6+3Peyo7sNCissCK+V3ToY2iGqmgERatSDWmqmlYkA4C/J4nZEwGk04C9wZdeLK3CJpKK1hL1CNuLpxXMRFO6FVojYLkimRByGYCtMG5rsQiU0jiAxwFcYeVxWQ1ZEpBusEJqucEMaaoHFDb4nGVUDZGkUqBIduLsXBzHJyNFF00uu1S12pYTrW1VeFsawe61bQgnFZyYili+b35D44pkHhiYr9KazUu2b4RHsqZRjM4nMFBBkcwr4HGlvsdktwNbtwLvfS9w113Ali2NH6Q4qKCC1KJIdrBCwNiqc7EvjXhKhavlkbyi0Ky223AdrS2KgY9F+87MLSl+VrOvC6EExuaNewtbAW5t4bXwvA0EXThvkEg+PcXaaDd0GmAj87CcQ5P4PKvdI2cVyfXxMY2lFCwkMhW7f7q8MiZNWltUQjQKvPYa8LWvAU88wcjlcs1r+8LDOJecxW1t2xC0VS4amCWSx1IhdNq8kKtYwBaivZ2pvewxf1OtLQ4fV0HsCnZutI4CePe72b8tRfLKRsvaojyOjIextbe4mIUpklseyRyRpJKnSOaBey17i2pxejoK2gD/wVSKjbs//SnwX//FbKgOHgRGQ2zM4mF7ABoWuMfH7GqI5PbeNEAJxsetPqrKiKUUQ1k8dkmAolFoFlqqncvawK10a4sHACQAfLeGfdDsz7JFS5GcI02D7spfcrvIbkCN9kguRuz2B5xIKxooBXYPLfXAc9vFqttH52JpSAKBt05k1d519fO/5IpkR1aRzMn3UJ61xSJFcgM8kmdjaaQVreLilhMX9SaS89HZCVx/PfNSvv569ntDIWpADR7JtiyR3IyBthlIKxrSqtZSJK8w6IvcaGNJGKZIblzRocfvwGCbEwdGQpiLpdFeQzFSHycarEoOJzNw2kRLQz4Gg07D1hanp6slktm5Xo5EMi/etrvt8Dikuo274wvsHJeztgCYvUUt1hblQCnz3f3xj1nr7UsvMcVUIV5aOI31zk7s9Awa2q8ZIplSitFUyBI1MsAUyQBAIt6mEsnDwxSSP276u1EO//2/A5/+NHDTTZbtctmBEHIfIeR7hJBRQkiUEPIqIeTBItv9AiHkJCEkmd3m1iLb9BNCvk0IiRBCZggh/0gIadyKvwTcdhFOm9gikotgLpbGZDiFbWWI5FA8DeUiF5ZxMGsLth5b38HuNa3AvepwejqK2/7mp3j2eB1SasuAUhaM++qrwAsH2Zh15IAToekskdygwL1aiOSOPvbaCxcsPSRDiKYUuA1YKPIOBysFludmVw+R/H1KaVUlKEKIE8CdAF619KgshiyJLUVyLAO7KFQ0FAdyHsmN9rkspprmpKQkEOwaLEIkyxLiabWqKmAozlp4CLHWdoJjIOhEt0/G/jr4JOvWFtmbW8BlByHAXDy3AJvLs7lohCKZK+oqE8lZRXKm8anTNhtTJt91F1Mqb9vWGJUyFVQQtQZFssy+i6OjVh3R8kYia8XS8kheWWieIjnTUEUyAOxZ24YDZ+cwG6ve2gIAtvb64JUlvNJgn+RwQrGcfB9sc2EinDS0UD89HYXPIenEsFHwa2w5Esn6HMbDPJIjdfJIHptnC8ZyYXsA0OWTG9ICn0yykKBvfQv47neZnVQ6DWhUQ1LLoE8OGp5nmSGSZzNRpDTFkqA9gCmSAYAuuJvqkTx2QYCrLQW/y7p7WjAI/MEfNK8rq0H4XwCiAH4dwLsBPAvgYULIr/INssTyvwL4MoDbwewZf0AI2ZG3jQ3AUwDWgq2TPwngPmRtGpsJQgg6vXLdCkQrGbw4uam7eAGmwyuD0sVZMhcrVI0illb19dhA0AmbSDDcsv6oCm+OLoDS5hLxmiMBaARnjso4dJB9rs+9pOCNN4D5+fq+d1KtgUhuB4hdwfnzjefp4inVUKg758WsFKU2Q5FsaMafrZjekf21H4CPEHJv9vfHs3YUIIRcDWAIbMAttp8PAfh3ABsopWcJIX4APwDwnwBOAejIvrYPbIBdtpDrlLa4ksB8j2yGJvM5j+TmEMn5qmke4LOj3w9nEXWiW5agaBRpVSvqiVUOs9F03fyRgZz/5f6ROVBKLSWsubUF90gWBYKA01ZUkWyXhIYokjmR3G+QSE5kMnVwSDaO9nbmG7hnD3DmDHD8ODA5WZ/3YtYW1atrRYFAkDM4f76ZZ6xxiKV5AEJLkbySwEnBRhLJmkYRTSmWef0axe6hNnzrIKvstLnlqvcjCgRXDgXr0rlSDvUg3weCTqgaxfhCEoMVJsenp2LY0OUxPS56ZAmyJCzLFuW5rLVUWzZsz6hftFlwRXJvBR/yLq+MqXDK8vlHOUxPs5+XXwYGNijAIOAQjH83zRDJ3B/ZKiK5rQ0gBMgsOFlwkaaCZYo3DpQCoUk7hq5pfKF9FeBdlNKZvN9/TAjpAyOY/yH72B8D+BKl9E8BgBDyUwC7APwOgA9kt7kXzPZxI6X0THa7DICvEkL+hFJ6su5/SRl0eeWWIrkIFrJCmlJWU518fhJN6V7TFyt4Jy9fj0migDVtLpxpKZKrwslJVsSw2krKDDQ5CSHlAAHRM3lmQipeOQW88grg9eZ8lfv6ANHCoY2P2dWE7TkkG+wdEZwfbXwAUCxtzNqCW76mVBVWZTudn4vDK0sIWFgwrgSjM7EuAN8oeIz/vg7ASPb/DwBYAPBEif0IYDMoPvtMAZgG8PvZ90gCeAnAjZTSAwaPrSmw1yltcSVhNpZe5D1cDg4bu7v82WNH8JknjgEAPnnbJnzixg11Oz4gFxS3KGwvyEhJ3v5bCFeWXI6nVNNEMlMk1/cLvGeoDT84NI6xhWRFgtUMUroiOadyDbrtmMuzs5iLpeHKBu40QpE8aphIzllb+AHE1RQenngZ7+y4HD1y4weSGW0ejzv2Qd3JLFQ0jS3mKABCAffRS+GY7K/tTQQNyFRPdBFVhOSP4/TpiyNpjyfpthTJKwuyJMLvtDV0kRtNK6AUdQ3bK4a963LkVa0++3uG2vCT48dr9ls2g3DS+oDCwSAjj8/PxSsTydNR3LDZvMcQIYR5XS5DIoWT20GXPeuRXJ9xd3Q+CUJQMdCy2+dAStEQTirwN/j7oSjA6XMZYBA49KoNtjYW0OesMA1yCDakDBLJY6kQHIINbQa8l41AkoBAAEjOs/PKVMmNdTOYmQHUlIg1Q8vaMXBZooBE5jgI4B4AIISsB7AZTGHMX6MRQr6R/xiYUnk/J5Gz+A6ANIB3AGgqkdzplXFyquVlW4hI1pO+VOdtzl9/+RUhG41Ikp2r/GLy9j4/nj02hfGFRMVulxYW42Q2C2ky3Lx5ieZgRDIAnUimYk5EFokAR46wH0kCenuBNWsYsWwkOLccEhr7TlWjSHYIEmydEUycCtR2EFUgmlJMdepbrUgebHM1rMgPGLS2oJSOUEpJiZ+RvO3+J6U0QCktetVTSr+Y/xpKaZJSejeldJBSKlNK/ZTSd1BKX7bij6sn5DqkLa40hOLGF6huWcKf3rUdH71uHT54zVoEXDa8cKrY/MxacBI0XyXc4ZHx2Xt34mPXryt+rFmiKVYFURpO1H9xtbnbCwAYsbhdKKVokCVh0Q2ozWVfrEjOkhJuWUIsXX9F8uh8Am67WLFdmj/PPZJHEjOYyURxPtVYRR7HVDqMpJbBdnc/rvCtxe4A+9mEtYCgQfUt1PweVKxNkUw0EVIwjuHhi2Nxya/XliJ55aHTK2O6gbYDPDSu0dYWGzo9CGaVBLVYWwDAVU3wSQ4nrFdxc/L4Qqi8T3IkmcFUJFW1B2xHg68xo5iLpeF32mATBXgcEqLJ+hDJ4/MJdHll2MTyywJuAzLVJJWUJrHvZmLBhv37mZfyM88AZ8+ygm0xOAQbFKpl1cDlMZaaR58csHQh1tEBxOfY97oZPslvHmPXzOYN9XAzvChxDYAT2f9vyf57rGCbowDaCCGdedst2oZSmgZwOm8fTUNnS5FcFJEkV9kWnwu0cyK5de7yzlVuDvAbb9sMRaP43W+90ZDQuNUErkieaKIiWZWTEJKlieR8KApw/jzwwgvAV78KPPoosG8fy+EpNTaXQy0eybJggxSMIR4jSDQ2cxqxlKILEsuBi/Ys9UieizfU1gIwrkhuoQD2FpGMUCyNrX3FAwiK4YPXDOn/vxCK49hEpA5HtRicBA0UKKfft7t0SIsrSzTFqyBKw3lBA/UCV+dyta5VSGZUXTnOEXTbcX4u10o7myWSKc0pPOuJsfkE+gLOios6Tvgksh7JF1LMQzqsNHgEySKlsXNzU9uWxYNgO/D35y5gaJOKbgdw8iTzgqwGVNBq8kiGKkIKxDFyEFBVa1uSliPiLUXyikWnp7GL3HCCXSuNDNsDmDL2yrVt+OHRyZpVxJcO+GGXBOw/M4e3b++x6AjLI5zM6EntVqHH74BAgPMVLB24j+CGKt+/02PH6HzzFmylkB+86MkWcDWNQhCsVZyMLyQNKca6vGxRORVJYVO2qN1IUBv7bgoKG1c1jZHIZ88CLhewaRNTKfvzGm34GJzUMvAIpQe6pJbBdCaCLe5eS4+5vR2YOCqhDWiKT/KBN1MAJFy27eKwsaonsiF67wHw37IP8TaS+YJNQ3nPT2f/LdyGb1fUR4UQ8nEAHweANWvWVHnExtDllbGQyBRdB1zMKEaO5mM5B7U2GsVI97Xtbvz2Oy7BH3//CL756gXcV2bt3UIOKUXFyCyb0zSraEtBoTkSEGe6AABEZd8BKhpb+4dC7OfQIUCWgf5+YGCAqZUrdREBQDK7jq5OkWyDFGBzxpkZ9p6NQiylmrK2sMrdQNMozocSuHVrtyX7M4pWebpKyJJ40RPJc/Hq/YD7A06MzSfqXqGci6XhdUimUuR1RXIVRGkkqZSccFiFHr8DhOT8g61CMqMtsrUAmCpursAjOeiyw2UXG0QkJ3UrknKQJQE2keiK5PNJpsJrFpHMK6kyWXotSESEYNNw1VXAgw8CN9/MvKVMC6AEFahFkZwlktNpclEE7nFFspGWoxaWFxqtlgoXadFsFPYMMU6Bt8xWC1kSsWswgH0NVSRb75FsEwX0+p2LCprFwEOR1lerSPbIy5IMmI2ldHU6n1tU0y1VCWMLCfQFKnt8dvmyiuQGBO4VA80qkkkRW6d4HPj5z4FvfhN47DFWqFUUpk4CUNEnedxif2SO9nYgsiCAKkJTFMlvZBXJV++s7Z5ysYMQMgTgYQDfpZR+sd7vRyn9PKV0N6V0d2enecseM1hOgaMZVcMXfjasB4A3E+EkC5UvRa7n/PWbf96aDW5tUbgG/tA1Q9g71IZP/+AIJhaWX7F2OWJ4OgaNAj0+BybCyaaouaktA4gahCRbg1dSJJdDKgUMDwPPPQc8/DAL0H3tNZZ9UOpPS6hpyESCQMxTlbIgwRZkRPz0tOmX14RY2qS1hUVc4lQkhbSiVbSAsxotIrlK2CVB95S9GKGoGhYSGQSrVE31BZxIZjSE4vUN/6jGH1L3SDapSFazAU31ViTbJQFdXtlyIjmlFFckh+JpfRCby7O2qEaxbRajWUVyJRBC4HXYkMhkkFSZqggAwkpzJi0pTYFMpKJKapsgQqHs3IkisGEDcMcdwL33Ajt3GqvUAgAVNRCt+ls40URIATbQDg9XvZsVA+7pbaTlqIXlhYYTyQm+IGo8kfzgVWvwp+/ZUbWyNh9717Xh8Fi4br66+aCUIpxU6qLiHmxzVrS2OD0dhSQQrG2vbhLd4ZExG01B1ZZX+23+HIYvTqz+PCmlrPvHkCKZW1s0hzjRiWSl9HeTUtZO+9OfskXr8DFjRDIP2uu1OFehvZ39q0WcTVEknzxFITjS2DbU2AXmagIhpA0s/+csgPfnPcWVx4UXTbDg+VCRbfh2oSKPNxScSF4O9havng3hzx47ip8cbzADVASVxEG6v37LI1lXJHsKzpcgEHz23p3IqBp+7ZGDeP7kzEWfMVUJJybZGvb6TR1IZjS9S66R0GS2fuYeyaiBSM4HpYzcfe01Rig//DAbq4eHgXTe1yihpeEUq+OYHIINkp+JDxpOJKcUQ52v9mwbsFXfBW6B0tvg0M+WNKtKyJJgqa/JSsN8IgNKq/dx5OTgaChR1yAgrqA1A96SYFZxyxd3VntEFkNfwFkHawsNDttiYrLNZUdGzRHkoWzAYkbV6qKKykcirWIuljYcKOh1SIgrCi4oTIEXkFxNtbaQS6TK24iIDF06EPv9wN69wO7dwMgIcPw4MDZWulpLBVWvEFcDrkgG2AB+001V72pFIJbiHsmtYW+lodMrI5ZWEUsZS0OuFeFkc6wtAKaC/uDVay3Z1xVrglA1iqPjYewZKh4uaxXiaRWqRuui4h4IuvCzk+VXA6enYljT7qro8VsKHR47NMrmDLWqwa3EbDSNK9eyz44v0KNJpTglVSXm4xkkMxp6DYy1HlmCyy5iqkmEk2ZjZLBQhkjORzoNXDjpADqAJ16bxbX+NmzcyFptC3EhOYdOm1dXMFsFbrNhT3gQVRp/3s4Oi/B0JyBLF0ewrtUghLgA/ACAHcA7KaX57RHc93gLGMmMvN/nKKXTedst8kImhNgBrAfwr/U4bjNY284Kl0fGw9i1xlpFvlksZAu5FyrYGTUCRrpMO7zLs5ul0SilSAaAoQ43Pv3uHfj9776JD/y/V+CVJVy1vg3OLOFmEwl+8+2XtAL5sjg1FYVAgGvWt+Obr17AZCQJv6uxwgZNZutn3SMZBFAF1g1rIRIJ1j108iQgCEB3N7OiWGhLw1UDkSzIKhweBdPTjZvHpxUNGZXCYyCLR7ZxRbI155MLYBp9nbQUyVWCKZIvXiKZew9Xq0iul89vIRqpSC6WWFsv9AWcGLPYzzGpqJClpYpkAAjFmHdaLK2i3WOH2y4hnqqvInlsgV0bRtptgSyRnMngQjIEAQRb3L2IaSlDATtWI0UzJRejUgkimUMQgPXrgdtvB+67D7jsMub9mA8KCogaUIsiWRUgeZMQRYrTp6vezYpBS5G8ctHpaWzbbSPv5fUEL9hONsBjT7cDqUPY7GDQhclwqmyr8+npaNVBewAjA4Dl0drNoWkUoXhaL9jzIkrEYkWyPtb6K4+1hBB0eeWGXFPFQKUMoBFdHWUEUswL+2QPZrtP4fmDcTz8MPDss8DoaK5Qm9FUnE/OYcjZYfkx+7JRIlLc0xRri5kLdvQPNV7RthpACJEAfAPAJgDvoJRO5T9PKR0GC967L+81Qvb3J/I2fQLAHkJIfpXw3QBkAE/W5+iNY32HG31+B547sTxUwAAq2hk1AhEDuTedHvuyUHI3G3oBvsT5et+eQbz+h2/Fv31oN+7c2Yuzs3EcHl3A4dEFfOfgKP7r5XONPNxljROTEQy1u7Em22HVDEsQzZ4t2mZyVVeiSoY9kqt6T411E+3bB0yEUpifkPHCCyzETzHxtpIgQoQAd1u6oYpkLkA0Inixi9Z6JDfLkq8lzaoSsiRe1Ipk7ptbi0cyYL3PbyFCsTS29BgPBASqbx+tFMpgJfoDTjxzZBKUUsvSxVPFFMludkOajaVgk9j7BF12zERTdVck82ujP2CsHdMr2zAbVzCbmkOP7Ee7jZEKETWJoGBtAFQllFMk2wURCdWYpYvPB+zZA1x5JXDuHFMpX7gAUMLuPaQGj2RoIohI0d2nYXh49ZOrXJHcCttbechvu+XKqXqCtxE24l5eT3Q20IZADyiswyR2sC1XeC5GFiuqhpHZWE0hI1yFPBNJA43JJqyI+UQGGoUetueV8xTJFmI8W5Q2okgGgC6fo6nWFkSxMXWUCbhPbEO6YxqxzUcgHtqN06eB06cBr5eF8zmG5qBCwzqn9V60nEgmCSei6qTp1785uoAn35zAb7xts+n53ukLSWSiDmzdEjP9vi0AAP4ZwB0APgmgnRDSnvfcQUppCsAfA/hPQsgIgBcAfBiMeH4ob9tvAvg9AN8ihPwBWE/B3wJ4mFJ6st5/RCUQQnDD5k48dmgcGVWrurPDCoR1RXJzOgrzYUiR7JHx+vmFBh3R8kUkqcAmkiVZO/lw2SW8dVs33rpt8Vj9/i+8jMffGK/qHrcacXIqik3dHnRnw22bUbilWeVxfqg7UcWarS0Mv789DTUcwNGjwNGjgCQBvb1MrTw4yMbucnAINqSDKcycb5ylU9QEkcwVyZYRydk5uL8OYo5yaCmSq4R8kXskh+JckVzdBRtw2eC0iXUnkufiaZ0MNQpX9gYQN0mUFkusrRf6A06kFQ2zMet8uZLFPJKzhYJQPJ0rHrhtTJGcVusaADAaMq9IXkilMJ5awIDcBp/IXrfQBHuLlJYpSSRLJOeRbBSCAAwNAW9/O3D//cCll3MiuRZFMvusewfUi8Yj2WETIAqtSepKQ6P9G8PJDNx2EVITF9NWIOC0wSYSTDdAZZtTJFtPvg8E2UKgFLFwPpRARqU1+UqbCZv6+fl5vOefXtD/5nphLsaORfdI5mF7TVQk8+3q3U1WCtSmgCjmrzEx5YRreCPSXZNIt+dEpZEI8OqrwNOHpkE0AepEGzSLNSIeDxvDaaw6j+TH3xjHPz57qiqfzCdeYATy1btWdndFE/G27L9/B+Clgp9eAKCUPgLgEwA+AqYu3glmgfEm3wmlNAPgHQDOA/g6gH8E8CiAjzfijzCCGzZ3IpJS8Pr5+aYeh65IXhbWFhlDRPJcbPn56zcaXL1dDRF8x6W9GJ6J4dhEpA5HtrKQUlScnY1jc7dXD7dtSgcQJ4zzun8aRSRTUGi2NIR0TqyoKEyZ/OKLwNe+xkJ1X3mFWUAWG7NlQYIcTCAUAjL1narp4AI7tyGPZGvD9uo5By+Hlb1KaiIudo/kuRi7YKv1NyaEoC9Q38VIPK0gmdHQ5jbnd+jMkqkxk9YN5fyhrEa+x7RVSGa0JZXk9uy5m4tlEMp+5kGXHS5ZhKpRy26AxTA2n4BAgG6DxvE+pw2T8ThUaBh0tMEvMfKhGT7JTJFcfOFWyiPZKDweYMdO9vqtm0WsWQNUU8DnRHJnf+aisLaIphRDg3sLyw86kdwg24FwIlMXi4ZGQxBYEFBjFMn1a6vjiuRSrc6np6IAgA1dNVhbmLBPee1cCK+fn8fLp2erfj8jmM0GOPFx2FMva4v5JGwiMewN3R90YiKchNKEObAmZSBkqrvGnOfWQ4y5Eb3ksK624ki3zUAKBfHTH4l45BG2QA1ZFIEmCEw9pcZkJLUM0qq58Z8XDsbD5ucyL77GrqFbr24F7VUDSukQpZSU+BnJ2+7fKKUbKaUypfQKSumPiuzrAqX0PZRSD6W0nVL6ywV+y03FdRs6IBA03d6CEyLn5xJ1FasYAVMkl7/f5PvrX8wwot4uhbdv74FAgMcOjVt8VCsPZ2ZiUDWKjV0eOGwiAi6bHqTWSOiKZK0JRLKkAAKFkCnNMc3PA2+8ATz+OPCf/wn86EfAiRNAPHtHdQg22IJxUArM1jhV+8nxKfzhd9+suF0ui6dyl69dslqRnIEkEJ3DahRaRHKVkCUBKUVr+iDXLOiK5CqtLQDu81s/ki9fQWsGYvaLaFaRHG4okczIVSvPX0pRIRcqkrPnLhRLYy7Oz6ddJ+TM+kibweh8Et0+h+EWu/zzPiAH4ZHYojisNotINhe2ZwYKZQNPd4eIt70NeOAB4IorGMlsFHxy0NGbwewssLDKO/PiaRUuA4N7C8sPQZcdokAaqkhe6bYWHF1eucGKZOuJ5G6vAzaRlFSonZ7OEskd1RPJPocEuygYOlfzcfa3vjw8V/X7GcFsLDfmAsy+CaiDtcVCAj1+BwSD3Rr9ARdUjTYlcI9bW1QDQgW4j2+H5oojMTiiP67Zk1C9EdjmmK1FIsEWqI8+Cnz/+8xSqlZFk88HpCPsc5xPmjtv0ezidLyKXIw3j2gAodi+pTX2tVAefpcNlw8Gmk4kc1FOIqNa2nVZ3bEYC9sDlpe/fjNgRL1dCh0eGVevb8fjb4xftLwKx4lJNp/Z3M28G3p8Dkw2wUqKihrLI6C5eUHDiGQ7+3tJ2hjHlE4DZ84Azz0HPPII8J3vAKmoDdTD5oy1+iQ/fWQSj+yr7OHNi74eI9YW2Uwqy8L2kkwA02hrmBaRXCXskgBKgYx6cd7wZqNpuO3iEisEMxgIOjFqcWBcPvIVtGbhlkXETIftNdbaArA2rDCV0eAoCNvzyBJsIsFcPL0oYJH7/1jdYpuPsfmE/ncaAT/vHTYPnKIdEhHhEeWGK5IppVlrixJhe4JYcwAgt8aQCLuFu92MSL7/fmZ/MTTEVFDlwBXJwR72PTlzpqZDWvaItRTJKxaiQNDublygTTihrPigPY5Or4ypRoTt6R7J1n/HBIGgP+AsaW0xPB1Dh0euKa2aEIIOj515JFfAQoITyXVWJGfHXO6RzFUuZvMbKmFsPoFev/Gxlheym2FvQW3VE8kAYJ/rhG2mE4m1p/XQoHTbDHtudmnQ3uQk8LOfAQ8/zP6dNG9xDADw+4FUlH03Qklz38doil1v3ILEKCilOHdGRKArDdlcY14LFylu2NyJQ6MLuhCnGci3cGmmT7KqUURTRhTJef76FzEiSUUvdlaDlr0Fw6nJCAQCrOtgVl3dPscSawtRBILB+h4HFVQQTVicR1DnsD0Ozca+S0La/MBFKTAzA0TmJCTs7Fp66SX2WLWYi6aRUSkyFbqwOCdiJIuHK5Its7ZIKHWZf1dCi0iuEryScLHaW4TiaQSrtLXg6PM7MRMtn8ReC/IVtGbhskuIL+OwPb/TBrddxJiFRHwyo+rm7xyEEARddqZIjqVBCPPddNuz9h91DNwbnU/oFh5GwG+gA3Jb7jHRibDS2JYghWrQQCGTUopkwTJFskQWE/+EsBCC225jKuXdu8sEEmSJ5EA3I+dWu71FPK3CZW+pslYqOr1yQxXJq8HaAgA6vY6GKKW4tUW9CqmDbS5cKGVtMR2tyR+Zo8MrGzpX/G89OhHGfB3bmeeiizu/JFGAwybUgUhOGvZHBpgIALDWWssoNEkBydQ2x3INbwK1Z5AYOAsAyLTPgKTtEKOlg5kzGaZM/v73mTfjG28w5bJR+HxAPMLGn5BJRTJvl51YMDeXOT+XQHzKhbUbLt48lxbM4YbNnaAUeOFUDaxLjYikMnqwaCk7o0aAr28qkTNmbJFWM2qxtgCAd+xg9haPv3Fx21ucmIxiqN2tC/W6ffISItluB+65B3jf+4Crrwb6+iqLh0xDVIGCQHeiijnv5DpCs2eJ5DLWFpUgpB1AIAJBoLhwARiv4bLifFIlvooLEI0pkrPWFhbxiM1at7SI5CrBKwn/8KOT+NtnTuBffnIaiQoK1qPjYbxSZwVLRtXwhZ8N42+fOYG/feYE/uFHJ+ti0j4XS1ftj8zBScJxk5Njo8hX0JqFy25ekRxOZmAXhZpU2kbBPKadGJ23bpKVUpYqkgFGxM9miWS/0wZJFPRAQrM+0oUIxdL4/s/HljyuaRTjC+aIZD6BGXDkyrQ+ydnwsL2UxkiGch7JGihUWv3gkSlQJBeDywVcfjmbaNx+O7Bu3eKJBre2OBJlo+sXn5zGz4uErMxGU/hekc+oUTg1FcHzJ2tf1MTSiqEk3RaWJzobZNEAsAVRMyr79UCXV8ZsLF13P9twMgOnTdTnRlZjIOjC+SLEZUpRcWo6WpM/MkeHxxiRPJ/1oqMU2HemfvYWc7EUs9zIO6ce2aYXra2AqlFMhpOmxtq+OnREGQWVMhBqUCQDgC0c1FXJmqgg3TYD+2zHYuVVGczPMw/lRx5hvoznzzMVVDn4/UAsQkA184pk7oltVjhw8Nw8lJAbO7e3CqgtGMPOfj98Dqmp9hbhhIKtvayo08zAPaPioM4WkQwgF7ZXLTo8Mq5a147HGmBv8e2DF3D3P7+wLG00Tk5FsKk7N5/p8TkwHUkVncP5fMCOHcAddwDvfz9w883A+vWMaK4VVFD1zlUOojXK2oLxN0atLYpBTDhBJBWygyJV41eT80nJjDFFsiGPZB62V2GfRhFOZJrSSdkikqvExi4PbCLB554bxt/96CT+z5PH8MSb5csdf/y9w/itRw/V9bjeGF3Anz12FH/3o5P4ux+dxF8/cwLffPWC5e8zHUmh3SIiuV4+yVwpFKiiQuOWJdMeyZGk0tC0TOYxba0i2WFbektoc9t1j+S2rDKKK5LNnqNCfPf1UfzqIwd1j0uOs3NxZFSKte3GA2K29frR4XRiyJFrT/VJToSVxgZ2pDR2Tkp5JHMVcS2qZLWEIrkYCAH6+4FbbwUefBDYs4dNPggV4Ex7cWB8CoIjjZ8ciONPvn94yev//YUz+LVHDuLsbKzq460Ff/7YUXziP1+tORE7nlJb1hYrGJ2eliK5GnR6ZRY2UudW5XCivuPfQNCJuVh6kSozmlLwsS8ewHw8gxs3d9b8Hh0eY/YpC4kMLh8MQJaEmn2Sx+YT+Oh/7CvaSj4bS6O9IADP65AstZSaiaagaBS9Johkl11C0GVrOJFMBRUQtZqsLTi4Kjm29Q1QOaX7I5uBpjFLqKeeAr76VeDVV4FwuPi2Ph9AKQGNy1UokrNheyatLZ5/PQqqiLjq8tVxL2uh/pBEAddv6sBzJ6ebRrJFkhn0+B0IumxNtbbgXs2eCnYNPqdxf/3VjEiqNkUyANyxsxfD0zEcnzRnb2H2Wt13JoTXzs0jbHHeQK1IKSpGZuPY1JVrJe3yOaAZmMPJMrBhA3DLLcAHPsAERNu3l+lKrQAqaiBaQZdygzySNRv7Lgk1EMlCks1p7G6ldiLZoCI5qhPJlb8HgkBgE4mFiuTcHJxS1p38N39jya7LokUkV4nrNnbg5J/fgZHP3Inhv7gDXoeE/SOlFxQpRcXr5+cxNp+AViMhUg7xrEL0ax+/GiOfuRN2SdDbMK3EmEm1aDHo7ZF1WoxwRXE1KkSXXTSttjWS7mslrAwrVFQNikZ1y5Z8BN123SOZq7u5/0+timT+Ge0vUHXx79LutcZNoC4d8ONvb7kFHinXouuTHFChIa41zrssRbkiuYS1hcDOcS0+yUYUycXgdAKXXQbcdx+rYL/XcQNGPnMnrrzUjl7SgTdGF5YMlPvPsOj6eirvSkHVKA6cDSGaUnB0vMQK3SBiaaUVtreC0Zm1Hajn+AmwBUmzKvv1QFc2CGiqzmEt4WR9z9m1G9ohCQRv/duf4v89fwZT4STe/28v46XhWfzVfZfh7dt7an6PDg9Tb1e6xhYSGXT5ZFy5NlizT/KLp2fx7PFpPH14Yslzs9GlnV8eWbLU2oLPv8xYWwBAf9DZcGsLKrGxlWRqv864KjnVw7ptbEX8kc0gFgMOHgS+8Q2WIn/6NKDmDaV+P/tXTnpNh+3liGRzwoF9r7PXbd/WWuq1YBw3bOrEZDilh341GuGsRcJgm6up1hZGFcmEELQb9NdfrdB0P+naiOR3bO8BIcDTh42b0Z+YjGDbHz6F4Wnj1ytXj5u1C6oHKGUduKPzCRwYCUHV6BJFMmDuWAWBCYiuuYZl59x9N3DllUBnJxMXGTouQdUtEDmIKjWGSLanQRQJhFa/ZhOzRLLNm0Y6vXg8NnUsGkUoG7BciUiOpxWIAtFtKypBlsS6KJInJoALF9CQbITW7MICCALB7rXBskTLm6MLSCkaMiqta/sLv8i5vYLPIVlecYulFMzHMzUTyd0+Bwipn8+e2S90Ptz2ahTJ1SfWVoOBoBOzsbQlHtPc7L2oIjnPI5l7NfK2jVoVyansse8fCS16fP+ZOQRdNmyssV3ZLzFFcyMD93KK5NLWFkBtiuRc2F51gywhzFNr7172+/r1QGxWRkaleD3P3iKlqHj9Avu9XKGsXjgxGdEn8wdqfP94uqVIXsno9LLrc6EOhdF8xNIqNNoYr/tGoJMTyZHSi5DHDo3jOwdHa3qfequ4d60J4sn/eQN2rQniT39wBNd+5sc4NhHB5z5wJe69csCS9+jwyFA1ivkK19h8PAO/04ar17fX7JN8Idu6/bMi9j3FLMQ8soSohXO68WxXk5mwPYAF/jZakaxlieRarS04XMObAABi1AMxbY5ILwVKgbEx4NlnWUDfiy8Cs7NMkQwAUtxjPmwvmVMkG1XeqRrF8RPs/5dcYurtWrjIcUO2u+PZ41MNf29KKSLZsWQw6FoWimQjcwGjtkirFbG0AmrBvKnTK2N9hxtvjC4Yfs3Lw7NIZFSMmOia5J1HZgNM64F//slpXPO/f4zrPvNjvP8LrwAAtvTk/Pq7OZFcg01pWxuwaxdw110sP+e665hiVSy3hBRV3QKRg6giIGigpL5WadSWrsnWAgCEBFv/23wJ1pVXZc0/nMzoHbGJSh7JKRVuuwhikK23SwLS1TLcBcifg/PMow0bLNl1WbSIZIuwZ10bTk/HMFtiIMknyi7UcfKdIwTZl9/rsOmDoVXg7XVcUVwt7JKALq9cN2uLWIqFaxn9QufDLUtVKpIbaW1hXXI6J6OLke5Btx3ziQxmomm0udlNSlckm/SRLgS/XgtJygNnQ7hybVtVn10+fCI7R430SeZEsqMEkWyFtUUubM+aW/j69cDUmAhQskgd/saFBaQVDR5ZwoECsr8R4NeFR5aWFBvMIpZqKZJXMjghWu/2Ud7Bs1qsLbqyi5Bylg1ffPEM/uUntaVtNiIxemOXB1/66B584UO7ce3GDnzlY1fhtm3dlu2/w1vZ61JXrGeJ5Fp9kjlR8vypmUX2PZRSTEeXWoh5HJLumWsF+HyOzyeMgndENbL9ndrY300Ua64zWzgI58h6OM/WZ7WVSgFHjgDf/jbzVAYAEnNhLmGcEKCUIppW4LaLSGY0zMeNzeeHp6OIT7ngdGvoqV2s38JFhL6AEzv6fXjizaVdEvVGMsMEV16HhIFs10O9u5BKIadIrjwX6DQY1LpaYeZcVcK2Pj+OjBnvQOTbmlmz8/nQclAk//T4NDZ0uvHZe3bis/fsxOc/eCUu6cn5UXT7eVeZNcfqdgNbtwJvfzuzwLjtNmDTJtaxmo+iHsnZ3+utStbs6ZpsLQA2TyCKBDHICgzVhu3l245V8kiOpsxl8ciSgLRSOymfUlQkM5o+Bx8eZo+vX1/zriuiRSRbhD1DbQAYAVYM+8/M6SRdvYhTYCkh6HVIlgazAMBoVsFSqyKZ76NeFcFYSqlageiWRT2x1yjCiQy8Fby0rESf3zqP6cICRD7aXDZQyhbXbW42oOmK5BoXtPx6PTcX10MhpyJJnJmJYe8647YWpeCT2DlqrCK5grUFJ5JrsLaoVZFciA0bAEUhWGPvwL48Up////1XrcHwTKxhHrUc+0dC6PE5cOvWLuwfmauatFBUDSlFaymSVzB4oE29r0FO1KwWa4sOD5uMT5U5b+GEUvM43ChfaUIIbtvWjS//t73Yu67N0n3roUllzlUyoyGtagg47bhs0A+HrTaf5AuhOAhhdhn5KqyD5+cxF0vjijWLx0FmbWGdOGB8IQmnTYTf5GfXH3AinlYNE5tWwEprCw73qa1wjFujaC+HaLbreuacCzMx4/eweFoFpcDGbkYsGP2e/vzCAjJzbmzYSA23MrfQAscdl/bi5+fn9Y6JRoELn3wOGwbaXEirWtmxq57g3bxGCqTdPhmTdbaPWs4wagNiBFt7vRidTxjuPuO2d0azAyjNdYabtQuyGrzr85YtXXjfnkG8b88g3lZg09XhliEKpCZFcinYbMDQEHDjjcBDDwHvfCewcycQCHCP5II1ZiOJ5EyNRDIIhIQTUie7PiaqrIuF8jrOKiuSzRHJdknQ+ZdawL9/fA4+PMw6j9eurXnXFdEiki3CzgE/7JJQtP1ay/p83raVKWfqSSQvVSRLliuSuRWFFURyv8WBcfmIp9WqFYguu6T7TRtF4xXJ1hHJhZYo+WjLC/vhimSHJIIQ6xTJQE59+mpWecqLM7XAIdhgIyLCauMmC8lKRLJggSJZs16RDABrbJ147WxITwc+MBLCxi6PPrF59Wzj7C0opdh/Zg571rVhz1AbpiIpnKvSL49fpy57S5G8UqErkuu8qOQp8bV23CwXyJKIgMtW9rxFkhlEkkpN3rurwVe608sWLuVU7/MJtqjwO22QJbFmn+QLoQSu38j8eZ8/Oa0//u3XRiFLAm6/dPGi0mpri4mFJHr9DtPdP/XOuCgGbm1hRdheoyEI7EeJyEhqGcOWZJwc2ZS1+TKqoDt0YR5qyIOd21vLvBbM485LewEAT7zRWFVyOM9OYjB7jznfYDKbI2dtUfl+0+V1YDaWQsai4KyVBjPnqhK29jJbh2MGclFUjerBfEbnL5GUoq89xxtsz1SIQ9muz3LrXUEg6PLWv1BBCNDTwywP770X8PhVtAcE9PTkfJV1hbJY35BCakvVbG0BsMA90jYPQmpRJOc4tErjdiytmiOSRWsUyXonpSNnbTEw0PJIXlGQJRGXDfixr0j79cmpKBYSGdy8pQteWaobcQrkE4JZRbJss1yRPDafgCgQdHtrv0K5z149WpdiaQWeKoL2AMBtF5FWNVNfcOaR3LgFTo/fAYHkFOK1gLdrFLO2aHPlbubcI1kQCFw2seb0+GRGRX/ACZdd1C0V9o3MwWETsL3PX9O+AaZe80vOpngk20l5RbLSRI/kQnAi2a8EEEurODYRYQWwkTnsGQri0n4/ZEnAvjONs7e4EEpgIpzEnqGgPsmq1t6Ce3m7WorkFYuOBhHJIzOsDW6o3V3X92kkurxyWY9krryqdlFFKV2UGL1S0cEVydHSnsdcJcUVvFevq94nWVE1jC8ksXPAjx39PjyX9UlOKxq+f2gMb93WvWRO4XGYt90qh4lwEj0mg/aAXCG7kUQytVnrkdxo2GyAGs8WKwzex6IFRPKYUSJ5JIrMghNbtrTkyC2Yx9p2N7b3+fDYG1WyL1UinKesGwgyj9NmBe5FkgokgRTNjilEj98BSus/P1musFKRvC1LJBsJ2D4zE9PXr0bHxfzPqB4qXzPgtli7Kwinun0OvWu3UaBERUdQxDvfCbz//Uy13NPBPt96KpIpaFaRXDvHJCadoK4E7PZaiOTc9VKRSE4xGyqjkG3WKJJz982ctUUj/JGBFpFsKfYMteHw6MKSADKutNw71Ib+oLOu4QFJhVtb5CuSrSeSe3wOSGLtl09fwIm0omE2Zn3abTzrkVwNXFkCOmFQcatqFLG02lBFsk0U0O1zWBJWmFJKK5KD7tyiLT/4xyWbDyQsRDKjwWUXsWtNQCcJ94/MYddgEPYqQhL37AHe8hagO88209cEIlkmUkmFlzVhe9YqkgcG2CKXRNhidf/IHE5MRRBOKtgz1Aa7JODywQAONFCRzO+be4basKnLA7/Ttsi/2Qz4BPM7XwigsxPQLk7RyIqGV5YgS0LdPZJHZuMIumzwu1YmWVUMnV655AJXzaatA9WTgvG0ClWjK16R7HfaYBNJWTJgIWvlEMheH3vXtYFS4LVz5otcE+EkVI1iIOjCWzaxbpBoSsFPjk9hPp7B3Vf0L3mNR5aQVjV9zK4VEwtJPRXeDPo5kdzAMKyctcXKLFjYbICSYMderrCTD/7dHOpwQxKI4WLP8Gk2/2gF7bVQLe7c2YvXz883tFiUU9ZJetdDswL3eIC6kW6Nbh8jvZpNTDYL4WTuc6sVXV4Z7W47jhggkvO3Mboe5dZVPofUdGuLAyNz2NjlWRKqW4hun9xwP+cM1fT1qsPBfJSvvIz9vvdaFVu3Mr9lq0ElBRBozR7JACAknKA2BbJTq9raIl+RXIkTMm1tUSdF8vBwY/yRgRaRbCn2rGuDolG8fm5+0eP7R+bQ5ZUx2ObUA0rqhVSBstTntOk3eKswOp8wHcxSClbaMxQilq7BIzlLQBv1SY4W+NM0ClZdT7oiuUjlPX+AC+b931NFIGEhUooKh03EnqE2HJ0IY3whgSNjYewZqs4f2eEAtm8H3vte5ve0Zw/Q4Ww0kZyBXCJoD8gL26vRI1mEUHMYIYcoMp+sifM29Aec2D8yp5O2XA28d10bDo+Fa1ahG8X+kRC8DgmXdHshCAS71waxv0oim08ww7M2yDJrMW5hZYEQUpYQtQojMzEMdaweNTLA2m5L+Uzm2yRUu6jSF5ErPKCQEIJtfX488ea4bu9TiPkCRfKmrHftmRnzqjlOkAwEnXjLpg4oGsXLp2fx7YOjaHfb8ZZNnUtew4vVVthbaBrFZJWK5Da3HQ6b0FhFsqQAqgBCV6ZFkc0GKEn2+RntJONEstchodvnMEQmKKqGyfPs+mwRyS1Ui5y9ReNUybrXp8MGh01El1duqiLZaJdpd7YYZ1Ug2kqDlWF7hBBs7fXh6Hik4rZHx8OQBAKvQzJsbcHFCJcO+DHe4MDYfKhZ21MjNo49TVAkK1RdIlbixHKgQ8V11wEPPgjcdRewaxfQ3m7N+1IbExZaYW0hJllXg92dwfg4UM1Hne+RXNnawlwnvCyJ1hDJeXPweJz5QS8rIpkQspEQ8jlCyCFCiEoI+UmRbUYIIbTgxxD/Twi5ixDyBiEkSQg5Qgi53+TfsSxwxZogCMGisCoAus8nIQR9AUfdwuUApki2SwIEgRFMXoeEeFotuSiqBoxItsY/sr+ORDLzSK6OSOavM1rhzPf1aiSsCissVLLnI5hnbZFvc+Gyi5YokmVJwJ4hpur6ws/OQKOsKFMrfD7gyiuBG3Y7ENfSuGSbuiSVth5IaUpJf2Qg55Fcm7WFBsliNnTnTuC11xhhvO9MCPuyQXdcFbJ7qA2qRqtS3lWD/SNz2L02qN/L9qxrw/B0rKpkbF7wmJ8R0ddn6WG20EA0gkg+OxtbVbYWADtvU5FU0QVTfqG5WmuLcCK3+F/p+OWbNuDsbBzfeX2s6POF1hZBlw1eWcK52Zjp98oRyS5cuTYIp03EDw6N4UdHp/Cuy/pgK9L1xRcptfhZc8zEUlA0it4qiGRCSDbjIoG+PjQk0E2zZVasrQWQJZLT7EQZvV54wcAr29DrN7Z+mI6mkJph97BNm6o82BYuejTD3qKQkBwIOpvokWw894YTyY1WjS4XWGltAbDAveOTkYrcxdHxMDZ2eRBw2QyLXPgc8tJ+ZuUXaZA4phDHJyKIJBVDwfJdPgfCScVwl3StoJQiQ9Ul9om5sPjcOevsZGvt974XeOAB4Nprgf5+JlCqBpqdfT61hu0BzCMZAOyBJBIJ4OhR8/uYi6URzHagJTLlr8dYSoXbRDYXC9ur/TNdyFMkDw+zx5abtcV2AHcAOA7gRJntHgZwTd7PHZV2TAi5HsCjAJ4FcDuAxwA8Qgh5m8FjWzbwO23Y0uPDgTwfz9H5BMYWktizlt0o+gJOzMczdVP1pbLEHAcfjK1YdACsgjaxkLScSK6HqsWsV00+dEWyQcVtxES6r5XoDzgxPp+s2WOaK9mLeYE5bKJ+Pto8uRu72167IjmZVSTvWhOAKBA8/Mo5CATYtaY6RXIx9GeJ0LVbE/jQh4A772SLK6lOH1WKllckW2Ntoer7sQpXXQWcOQNs8rVjJprCD49MYvdQUFc9X7EmAIFU71NsBnOxNE5NRRcVFLhK/UAV788LHnPTLSJ5JaPTU97rt1YkMyrGFpKrjkju8spIK5ruo5aPfCLZqP9qqX2sdI9kAHjrtm5s6/XhH358sugilrcQcusTQgjWtLtwtgrV3IUsQdIXcECWRFy1vg3feX0MaVUramsBQG+btMKyjJMe3VVYWwBsPjs6n8Att7AF5K5dgMtV82GVBJUyIJmVTSRrGoE97cLZWWPXC++Kc8siegNOQ10D4wtJKHMedPWqdf08Wlj9uOPSXhw8N1/XTtp8FI4lg22upltbGEGbyw6bSDB50XokZyAKBM4i9ojVYGuvD2lFw5mZ8gW3o+NhbOv1sfWoQZJ1JpqCJBBs7WXdRM0i/7l93+61xhTJABqmSlbB5j6F60x7ViRVav3q8QDbtgG33858lW+5Bdi40Vzom2ZnCmAhbYFHcoKt/z2DCxAE4GtfM7+PuVgaPX62n0qK5GjKXCc8I5KtsLbIeSRzInlZKZIBfJ9SOkgpvQ/A4TLbjVNKX877ec3Avv8AwHOU0l+jlD5LKf1NAE8C+EODx7assGcoiNfOhfQFiN4eniVE6qnABXJWARx8ELTKJ3k6whQs/RYRyT6nBLddrAuRHE+rVYdr8dcZtbawMrHWDPoDDqRVrSqVZj7KeSQDzNJCEgi8eQpvl1y7IjmV0eCwCXDZJezo8yGRUbG9z191SGIx9PlzxQpCgMFB4NZbgY98hA1yg4PWqqkqKZJ1awta/eChUA2iRf7IHFdfzf4VZ1h/UiKjYm8eket12LCtz1e1T7EZHBhZbKsBADuygX/7R8y/P59gTk8KLSJ5BaPX76irp925LBk41LG62JdOPahw6bnjcwNCqp+XFPqzrWQQQvA/b9tUUpU8H89AIIAnb26xtt2FcwaJwXxcCCXQ7ZP1TiBuZbGh041L+4uHzfIx2AoxAv8u9fqrm88NBJ26R7LbzVRJDzzAxtf+futVylTKgKxwRTIAOON+w4WHaLZY73FI6Mve/yq1Yk8sJJEJubFhY3NatltYPeD2Fo83SJVcSEgOBl2sMGJhV63xYzFubSEIBF1eByYvYkWyUT9pI9jWxwL3yvkkz0ZTmAynsLXXl7VaNK5IbvfY687HVMK+kTn0+nNdn+XA7aca5cGtaDyHp5QiuTJpb7czMvOmmxipfOedwI4drFu4HKy0tiAZO7PDCkSxYwfw1a+at7eYi6XR4bFDloSyRLKiakgrmineSZYs8khOZiBl75vLkkimtAbGowwIITKAmwF8veCprwK4hhBSfCa9jLFnqA3xtIrXzs0jllLw8vAsvLKELT3sm1NPBS7ArALyVaVcIWuVTzI/bquIZGb3Yb1vNKWUeSSbaDHIBycy4wYVt2GL23qMgivDT0/HEEspVRO7/OYolwi4a3PbEXTbF00SzFSAS76vouqLaE4a7q7SH7kUSvlwSxKweTMb3D70IeC661iLTq1Iahk4yhDJAiEQIUCp0SPZakXylVeyVqRzx5x6kFRhpXz32jYcPB9Cps6T+gNnQ7BLAnYO5IYAWRJx2WAA+87MIZZSEEsphluCYikFVBEwHyLoLy70a2EFYCDoQiSp6IFnVoOrX1abIpkTycV8kjmRvKbNddF7JHOUUyUvJDLwO2265Q4ArGlz43woDtVkZ9CFUBwDwVzR4sbNbAC658qBkgtyj8M6awuubqrGIxlg88DZWHrRolIQgHXrmCLp3nuBSy8F7DLFwuX7kG6fqul4qU0BUVau6p0TyVLMZ7jwwK0tPLKEHr8DaUXDXIVw6rH5BJSQC1suaYDfSAurGkMdbly5Noh//elphOoQil6IcEKBL4+QHGxzQtVoU0LRzFhbANlAtIvWIzljqQBoQ6cHdlEoSyRzD+WtvT64TRDJM9E0Or1yjpxtwrVFKcWBkTnsGWozFebYKEUyVxwXWihya8a0yY5aQQB6e5lg6X3vA+65h2UYdXcvLTjrimQLrC0ICMSEC5ozgRtuAE6cAF5/3dw+QvF0NhNCLEskJ7LPuUx0wlunSM7A57SBEILTpxlZb5VndSVYHTn0MUJImhCyQAj5JiFkbYXtNwCwAThW8PjR7LFttvj46g5Ohr3vcy9h+x89ha/uP48r1gYhZhcdOVKrPjeDZEZd5HPLq6nVKJLn42lc+afP4IVTM/pjnEi2ytoCYNYD5+aWEsmvnQvh8k8/XdVNPpFRQSmqVyTL5sL2mqVIHmxji9AH/+1lbP+jp7DtD5/Cl14cMb0ffiMrpUju9Mjo9CxuM3HZRcRrXMymMpoe8MfVr3sNBA+YQY/fAYGUT5d3OtmC9557WHjAlVdWrpqWAlMkl78ObIJYs7WF1Ypkl4udg337CPYMtcHnkHBJj3fRNnvXtSGZ0XBkrHKaci147WwIO/v9Szy7r1rXhjdGF7D9j57C9j96Cpf+0dMVW98ARiQrUXb9rmRFMiHkAULIa4SQKCFklBDyZUJIX8E2hBDyKULIeUJIghDyHCHk8iL72kYI+REhJE4IGSOEfJoQi6sTFoMrN+rlmXh2dnUSyV26InkpkczVxJd0ezFWZfBMziN55ZJ8+SinSp7PEsn5WNPmQkalGDeZV3AhlFikRtrY5cGjv3gt/vv1paUkhR7JqkZx1EC6fTGMLyRhEwnaKyTGlwKfB4bSxf9uv59ZJt19fwaZjmlo689W9T4cmpSBsMKtLQBAjLsxEU5WbJMF2NglEMBpE3XleCVSbfhCGlrSjm2XtFJlW6gdf/aeHZiPZ/DH3y/XkGwNmJ1E7jvOC23NCNyLJDOLujArocff+EA0jm8fvIBXzzYmv6QYzKi3jcAmCtjY5SkbuMfHva29Xrhl0bCwaTqSQodHRrfPAULK30+//NIITk5WDv0zi/NzCUyGU4bzgLj91L8/fwb/6+uv47e+9TpOx2srzJYDz/ApFCzZSHlrC6MIBoHLLgPe9S7goYeAt7wFWLuWCbw0expEEUE0a5YjQtIJ1RHHNdew/X/1q+ZezzyS7XDaRJ0sLgb+nMMEkSxLAtIWCLPCSUWffw8PMzVyI3IrAGuJ5O8C+CUAtwL4TTCP5J9VUBVz6eF8weOhgucXgRDycULIAULIgenp6eqPuA7o8TvwTw9dgU/dsUX/+YN3btOf7/LKEAVSR2uLxYrkWqwtTk1FMRtL4+nDuczEMZ1Irk7BUgw7+vw4MRlZUk185sgk5uMZHJswv0ji3r2eKhXJ3OPGrEdyoxXJm7o8+Oy9O/Vrrc1tx8/Pz5veD1/QlCKSf/eOrfjsvTsXPeaWa1ck51ux3Lq1G3//4C68bXtPTfsshE0U0O1zGPb/9PtZpfShh4D3vAfYvh1wGLzcKaUVrS0ANjjXRiRrliuSAbbo37cP+L3bt+HfP7JHL4BxbOj0AMhZANQL09FU0WLVR64dwh+8cxs+dccWfOTaIaRVDSMGQoviaRVqlH2IK5VIJoS8G8AjAF4EcBeA3wZwA4DHCFlUVfgdMMuo/wPgXQCiAH5ICOnJ21cQwA8B0Oy+Pg3gNwD8Sf3/kurBC2f18kw8MxNH0GXT/W9XCzq97NovRiTzIuiWHi9SioZQFWpvTkY3upBaT7x1Wzc2d3vw9f3nFz2+UIRIXtvOrksz9haKqmF8IbmkrfXKtUHYS3QGATlFMp9zfOWlEdzx9z+rquA+sZBEl9exSF1tBrwzbb4EkcyRIez6SAZm8K73qNiypbqMgtVibYFotiBmYByNphS4ZUkP6wYqt2KfOMn+3bixpUhuoXZs7fXhV2/ZhO++Poan8taD9UA4qSzy2h8M1nfMLwVKKaIpc+Rol9eByXBzPJI//f0j+MLPhpvy3oB59bYRbO31LSqSPntsCv/yk9N6sfvoeBhdXhntHjmb2WPc2qLTI8MmCuj0yCULwNGUgj/87mF849ULtf8xBdin2/cZ68D1yBJuvqQTs7E09p2Zw1OHJ/D8/EnLj4tDVyQXrDN5R21+2F6tcDqBSy4B3vpW4AMfALrXpCBDtszfX0w6oTkS8PmAt73NnL1FRtUQSSpZRbKAZJmwPR6E6DLhEy5LIlIGCsqVEM6bl3IiuVGw7FtPKf1k3q8/I4S8COB1AB8F8H+tep/se30ewOcBYPfu3cvOBOzOnb0ln5NEAT0+Rx2tLVQ48lR8Pl2RbH5xyI9xX1641dh8Aj6HZOmCcc+6Nvzjs6fw+vl5XLexQ3+ce7FWc664xUOtimSjVhE5RXJjiWRCCN63e1D//YdHpnChivPFb46lrC02dnmWPOayi8wygNKqfbGSeeGQokDw7svqw/L1BZxlFcml0NPDfq67Djh/nrXFnD0LKCUuiwxVQUErKpKlmolkVa8MW4mrrwY+9zkgPu3C7m1LR3G+kK3X/YsjUrCY4Gj3yPjY9esAAKemIvjiiyOGimSxtAISZ4v3FWxt8RCA1yilv8IfIISEwYq4lwA4SghxgBHJ/5tS+o/ZbV4CMALgVwD8fvalnwDgBHA3pTQM4BlCiA/AHxNCPpt9bNmBk24X6qhIHupYXWpkgCmFZUkoam3BbZk2Z7sPxuYTaDOpUA0nM3DaxLIE6EoDIQQ7+v14+fTsoscXEhn4XYvPz5psgePsXBzXGtz/RDgJVaOLrC2MwCsvDlD+waFxUMpsWcxaVEwsJNFbpa0FkAuyDaUT6Cjz0Sc1Nj9SqIaIawbXX9+NvXuBU6dYinrIgJCOgoLaVjaRzFPs1RjrEDg7G8embm+ZV7DPmavQjfpknhth87GNG2s52hZayOGXbt6Apw5P4Pe+/Sb2DrUhWGUXQyUwFXDuO97t57ZMjVX6xtIqNGpuTdfjdyCaUhZ9ZxuBdLYA3CyvXwCIpBT0WygwA5hP8qOvXcB0JIXzoTj+x3++irSigRDgEzduwJHxsO6l7JYlQ3ZPmkYxG0vpdl/lcjdGst2OVmVM5ePAyBz8Ths2d5W//3MQQvAfH92r//4n3zuCL794Fmod8nIANlYDgFRk37V21JaDJAHEkUabZseDDwLT02zNfe6csXlCMQgJJ6g9g5Sq4P77JTz+OPDyy8A111R+LbfzCWatLYwokp0mrS2sUSQzawtNA86cYUrvRqFus35K6ZsAjgO4osxm/LIoVC0HC55fVejPJl3XA8mMqlsFALlBkCuGzIAf47GJMBayrx+bT1hqawEAV6wJQCDAvrwQr2RGxaELC/p7mgVXElfrkcwrSmYUybIkLGnFbzT6Ao6qzldKUSEKBDbR+C3BLUtQNFrTTTCZUUuqoK1EX8CJMZNtx/kQBNZ289a3Ah/+MHDzzcXDhFLZKq1cgeS1CaKhsIJSyNRp8nDVVezfV14p/rzXYYPPIdV1wkopXdLeWOpYAGNFsnhKhZBN712pimQwG6iFgsfms//yK/FaAD7k5Q5QSmMAvg/g9rzX3Q7gqQLC+Ktg5PKN1h2ytfA7bfDIUt3USSMzsVVnawGwRUinVy6pSHbaRJ0Mrea7HU4UL/ysdPQHnJgILw56WoinlyiS+wJO2ESCsyYUyfwaNhK0kw+HTYBAmHfuVDiJV8+xaXI1c8qJcLJqf2SAtdsKpLIiOaHl7tGnsu24djtLd7/nHpZTsH59jmgtBioqAAFIZuVeZ4QwVXImykg4I4F7sTxSqsMtwyaSitZ44+fZ9o1UJbWwumETBfzVfZdhPp7GXzx+1NRrP/vkMbw8PFt5QywdS2RJhMMm6GvQRqEau8KerP1Ao+0tZmNsXK+3wKMcjMzZzWJrLyNZf3xsEh//8qvo9Tvw9u3d+D9PHsMTb4zj1FQUW3s5kSwinlYrWnMtJDLIqBQdHk4kO0t28/BuRyvyCApxPhTHhk531d1AO/r8UKFhNhO1+MgYSllbAIC9RiFUJcS1NJyiHYQAXV2sQ/iee5i38tVXszWcYGL5KybZ3HYumcBddwGyDHzta8ZeOxdnRHK7EY/krCLZaUqRzDySq7GUy0c4kYHPYcPYGJBKNXbsr7d8hGZ/SuE0gAyALQWPbwGgAThRp+NqKqol+4wgpWiLFMm1eCTzY6SU+RUDbPFjVdAeh9dhw9ZeHw6czRHJhy4s6ARlNX7StSqSJVGALAmGFclhi/2hqkV/kA2KZkN/8pXBRsEN5Y0GEhZCUTUoGl10vdYL/QEnxueT0Eyel2Kw2VgbzrvexdpwrrkG6MgK6VPZBXNFj2Qi6gN1NVDrELYHsL/L7y9NJAOoSzhmPlKKhoxKKypBzNj2xNIKEHNClpk31wrFvwN4CyHkQ4QQHyFkM4A/A/BjSumR7DZbAKgACnvejmLxOLsFBdkElNJzAOJYOh4vGxBCMBB01kWRnMyoGFtIrkoiGWC2WsVUXeEEa0k16r9aDOFkRu9+Wk3oCzihUWAyj4Bn1haL702iQDAQdJny8cwRyeYUyYQQeLLqq6cOT+gtmmY7bihlns6c/KgGtmyHXSmPZI6kysbFDpsHpxKTSxZNvb3ALbcADzzAFo3eIiItKrH7vLCCFckAmz/EowK8soRzZWyZDh4EfvSjnLUFAAgCQY/fUdaLW1E1zE/K8LVnLGsNbqEFgClE79zZi5+dnKm8cRaxlIJ//slpPPmmMUuMYoSk32lrApFs3q6wy6JAtCffnMBfPlUYHVUavEA8E00b8l2vB+phbbEtSxL/3rffRCqj4v99eDf+7/27cGm/H7/6yEEoGs0jkiWoGq0YXDYdZeeKK5J7DCiSo1V0dFdCPK3q9/VqcNka9nd3XxLGli3MHsJKcKFTobUFULsQqhISahoucWnHg88H7NgB3HEH8P73M0HX+vWsKF0OQpKdnLlUAn4/e/3Xvw6oBv4EHmzLPZINEclmFMmiAEoBpUZuglsCDWfdbVYFkUwI2QG2IH211DaU0hSAZwHcV/DU/QBeopQWqq9WBaol+4ygUOFplxghGqmiojY2n8T6Djckgeg2E2PzCb2d0UrsGWrDa2fnkcmSx/uz/kGbuz1VVVm5d2+1imT2WslU2N5yCBrqCzihaLSo8qwc8r2KjYIPgkbP0dL3zNpp2OrfDt0fcCCtapiJWutf5nazwIB772XV0rWbsorkOnskZzStaMtRrRAEtpAvRySzjor6KS7CBpUgTpsIUSCGFclazFFURb5SQCl9DMBHwGydFsA6fkQA9+RtFgQQpXTJxRUC4CKE2PO2my/yNiEUySZYTrkEjLCzvpDBfb+HOlYn+9LplTFVxL8xkmItce1uO+yiUFXnBm+rW23IhSOzc6JpFAuJDALOpSuXNW0unJ2r7NfOwYnfavImvA4boikFj78xgfWdbnR5ZdPFlXBCQTKj1aRIBth8tiKRnC2w7vAMIKqmMJku7pzjdLLx9H3vA97+dmDNmtz9mtrYPlaytQXAiORolGCwzVU2a+BTnwLuuw8IxxcTNL0+VhQvheloCpmQC72DzSGUWljdWNfhxmQkiZRi7PriYchmRDmFRcnmEMnm7QqtUiR/df85PPzKOcPb54/r1RSCa0XOT9raNXDAZUev3wGNUvz9Q7uwscsLp13E5z+4W7ff2pZVLReG0JbCTHZtzBXJfQFmR1JsHXFmJm5on9UgkVZNKVcLsa7DA6dNxHhqATfdBHzoQyzT5/LLmRioVnChkyQUIZKJhAy1/pwA7FqKqSm4BbnsdrIMbNjACtAf+ABw++0sz8iz1IUTYrYbdTbFPs/77wfGx8uvczlCMXZdtLntcNoNWluY+Fy5HVy6QgGkErgi+fRp9vuGDTXtzhQMMRGEEBch5F5CyL0A+gF08t+zz91JCHmEEPJ+QsjNhJBfBPAUgHMAvpi3nw8RQhRCyNq83f8pgJsIIf+XEHITIeSzAO4AC/9ZleBkXz08n4opS70OW3UeyaEENnR5sKPfjwMjIUSSGYSTiuXWFgAjkhMZFUfG2AJj/8gcNnV5sL3PX5W3bTxVmyKZvVY0rLatRzW2GvDPZnTe3KIymdHgMKlI5oGE8SoD9ziRbPZ9q0HuvNRPSdvWBqzZwK67226UsHUrG+yKwQqP5GKVYitw9dXAoUNArAQn0h90YrROHrVATglSqTBDCIHXIRlWJCsRx0q2tQAh5GYA/wrg7wDcDOABAG0Avk1InS6GLCiln6eU7qaU7u7s7KznW1UEVyTX2gpWCL7gXb2KZIeuxskHVyQLAkFvwFFVB1A4oSyLQqrV6C8IN4umFWgUS6wtABa4d3bW+HV5IRRHt0+uyg7LI0s4NxvHK2dmcfuOHgwEzduljYfZ9lyJXi36As6K1hacSN7mZjfgk/HJstsTAgwOsmCc++9n5LLNnSWSM6uBSM5eL2WI5NOnmSfk6DG3PtcCgN6AQ//simF8IQll3oV165ddfEwLqwADQRcoNd4pOqwTyZXnu6pWnJBsBpEc1hXJxu833VkieWKhNsHK8YmIqSDz/HG9mvVyrYinVagarUtX7v/3tkvwt/dfjpsv6dIf6/E78MWP7sUv3rQB6zsYc8jX+pUC95Yqktn4V8zegltb1MMjOZFRTSlXCyEKBNv6fDg8xvSWhLA8n6uvBh58kI2bV10FdHdXt3/ukVys89VGRKTrpEhOUQUaKJxFFMmlIAjMavKaa1hX0913A1deyTqFCQFIWgY0AXNJ9t246Sb2updfrrzvuaxtTNBtqxi2x+9xroLP9bnngFtvZQXyQnC+rpKSvhySGRUpRYPPacPwMDsfa9ZUvTvTMDrz7wLwjYLH+O/rAJzPbvN/AQQAzAJ4EsCnCjwYBTAFla4Jo5Q+nyWo/wzALwI4A+AhSunTZv6QlYR8lUutk/hCpBQNckE1xOeQ9EHRDMbmE7hmQzuG2l340ktndf+/+hDJTAS3f2QOO/r9eHUkhHde1oc2t00PpRFNeAnpiuQaiGS33bgiOVwHf6hq0K8TpklcubbCxnlg3trmBjUeSGg0KbfYewJomEcywCa/u+p4g+Ve5OsGbNjcDVx/PQsJOHGC/ctbaWyCCKWGFjSV1keRDLDJh6YBr74K3HDD0uf7Ak6Ek0pdPNEAcy2FXodkyP89nlaRWrCjb1fNh9dM/DWA71FKf5s/QAh5Hcyi4i4A3wJTFHsIIWKBKjkIIE4pTWd/D2FpNgHfbllnEwy2uRBLq5iPZywN/Dk7u7qJ5E6vjPl4BilFXUReRpK58LhevwPjVRTb5mJpbCoSyLrSwednnKRdiLN7TTEieU2bC5GkYvi6vBBKmLa14PA4JD31/fYdvTg3l8ChC/Om9sGVaz3+8sqfStjS48N3Xx9DVEnCIxVXNye1NCQiwCc50S8HcSoxibcENxvav8fDumR80Qy+PQN0BWyYX9Z3qPKw2YDZWaA/4MKPjk4VnduqKjAywv4/digI943z+nPM03McmkaL+muOjKegRoO4ZFPjlYktrH4MZjtSz8/Fsc5AMO3wNPNwNUIkR0vM/fxOW1274IrBqKAhH25ZgleWalIkL8Qz+r1ZUTVIBnJr8jtQmxG4lztX1q8H7rlyoOjj2/p8etAeAHj09Wj564yfq/ywPQAYW0guCT6tZ9hePK0uIRzNYkefD9949ULRsSAYZD+7dgHxOBtPRkaA0VFjlg5c6FQqbC+uppc8bgUS2f0Ws7YwirY29rNrFxNEnTtH8KTiRCjDvhvd3SzzyIgieS6rSA66smF7Ze5jiQJO49Ah4P/7/4BnnmGEtiAAySTgyJsm2bNz8VoUyfn3qheHGYlsayAdZYiJoJSOUEpJiZ8RSukhSumtlNJOSqmNUtpDKf0IpXSsYD9f5K8pePw7lNIdlFKZUrqFUvpVC//GZYd8ss9qpDIqHLZCRbIx1V4+wskMIikFfQEH9gy1Ia1oeOLNcQCwPJkVALp8Dqxtd2HfmTkcmwgjklKwd10QfQEn1CrU27pHcg3WFq6seb8RLDdFstnJREox75FcqyKZE8kNsbYIVndezKKQBBVFYN061qb7oQ8BN97I/CBtRKjN2oKqRVuOrEClwD1+jdWrhY4Tw0ZIap/DZujeFk0qSCzYV7QiGcwq6vX8ByilxwEkAPBGpmNgxdqNRV6bb7p3DAVeyISQQQCugu2WHXg42XmLVfFnZuIIumzwu5pfEKwHurILp5no4gVAJJlTE/f5naa/15QyK6VOX22E5HKEW5bgd9p0KwGuiit2jazNFiCMBKgBwIX5uOmgPQ7exjvY5sT2Ph8Ggsy33kwGwKROJNcmDHjLJhYQMJIs7Zua1DJwZHMDNjq7MJkOI6KYu87SyHb73GDDPfewNtZK3ojLETYbyx0Jwoe0qmGiCOl0/jyQybCF5+yRDv3zBhjxkVEpZmLFVY+HjrJrdOe25s9HW1h9GMyGshodf4enGRlnRHDCbc0KbZJ8TltVgfG1oJqwPQDo9jtqIpKPT0b0/8cNik2mIyl4ZQmEABeaQCTnPrfm3XOMWi1OR1Owi4I+5+FE8kSBpVc4mcFsLA1C6mltUdv52t7vRzyt4kwZr30AcLlYsO0ddwAf+Qjr9Nm8uXTHLFA+bK9Wa8Zy4AS1W7BmcHe7ga1bmSVUArnPeO9eg9YW8TR8Dgk2UYDDJpa19OGchtMuIpFg5/ngQeCv/gr40pcYgf/mm4tfk1MkV38+8++bw8ONtbUA6h+210IR6G32dWhBYYRggSLZad7aghNufQEndg+1AQC+c5DVBfoD9fGQ3DPUhgNnQ7of856htqqJUV6VrEWR7JElw2pbps5s/sTdk134mj1fhd7aRsCrqdUqknPWFvVXJPscNnhlqe6pxuUmn7LMBrS77gJ2bBFBRRVtbebfQ6MUGmjdFMmdnYz8LjXI8kKSledSVYG3vhXYvRv4/V/1IPTTSzBxtvJEwmiRLByhUFIi+vutONqm4SyAK/IfIIRsBeAEMJJ96EUAYeTlDhBCXADeBeCJvJc+AeDthJB8Ccb9YKT0T60+cCvBybcLFo+fZ2djGDKgsFqp4EFAUwWL3Pxumt6AQ+8AMopwQkFa1dDpWX1EMrA4XFQnkktYWwA5ZXs5KKqG8flkzUTy7Tt6QQhBf8CJjEoxZSIbYXwhyVLRvbV9btt6fXBLdpxJGCSSXazX9nRiytT78MA+WZAQDLI21gcfBN7yllzY7UoAVwo5lNLXC/c5vOceivScG/Hp3HXC2+eL+Z0DwIlszOrObfWfV7Vw8aHb54BNJIbHX24ZVc5blEMnRJaBtUU1YXsA0O2TrSOSDVorTkWS6PE70O11NEWRzEn+Zgbuug16JE9HUuj0yiBZ8/0urwOELBXGcDXyhk4PoinFUis1SiniacUCRTJrKnxztHScWGFx2WZjQWy33AJ8+MMsNP7SS5cG3HJri6Jhe0SqW9heTGPjmku0dj7pl5wYDcfw+edO432fewnPLxzH2bPAZHmXLczF0roft7OCIjnf2uI//oPt+5vfBH7jN4Brr2XbHDy4+DVWeCTnf/9On25s0B7QIpKbgmrJvkpQNYq0qhVVJJut5nKSuz/gRJvbjo1dLPROEojeEmI19gwFMRdL42sHLqDX70B/wImBQHWkQSylQCBYci7MwGU3p0heLqn1fQGn6SJFqoi3diXwgbtWRXIjrC2A7HlpgCJZIIC7wgTB62apt+97Hwvqu+wyVjk1Aj0EoY62uNdeCzz7LBAukonEC0lWFsJ++lPghz9k7T8nj0oI71uPX/qgC6kKvIjXYdMXH+UQnskqLle2IvlfAdxPCPlrQshthJD3A/gOGIn8OABQSpMAPgPgU4SQXyaE3ApmQyUA+IeCfaUAfCu7r48D+GMAf1NgR7XswO0AzIaLVcLITAzrVqmtBQB0ehgBVRjEytOeAVTVATQdZdvWa17QbPQHHDlrizJE8mD2ujw3W/m6nIykoGi0emuL7Nj7jh097BiD5rMRJhaS6PDIsBlonS4HQSDY5O3ASGKm5GKbEclsMdZh88AnOnEmYS60k/ssy0Lu3NtswCWXsJChu+5iKiup+fX8suBEcnyq9PXCk9c/8UtscXlqf86FiH9XS417I2cYQbJx4wpNlW1hWUMUCPoCTpw30HlBKdWtLYwITkpZJPidLFxUUWsLpDKDSDIDUSCmyb5unwOTJYo8RnB8Ijf9MmqtOB1Jocsnoz/obAqRzMfFZgbu6h2yFcj3mWgaHXlzFbskoMMjLwkw5QWQnf1+qBot641rFilFg0ZRk0cyAGzq9sAuCjg8VnzK/sQb47jyz57BC6eKF3m5t/B11wHvfz8Ld92zhxVmOVFcTLBkF8S6he1xawszHslGEJBcWEhm8BePH0M4kYHUw/yx9u0r/7pQPK1blTlsApKKVnKew0lmCSL+8i9ZsZvbQ65bx8j6119f/Bq7BR7J3LpWVCVMT7eI5IsG+SoXq8Cl8YXEnFc21v6dD35s3IaDexj3+B2mvIrNYE9W+Xx0PIw9Q20ghKA3z9vWDGJpBW67pFcdq4FRj2RF1RBPq8vCIxlYvPA1ipRiXpHMydJq2374wGyWwK4WfYH6V+u5b3Cl685pE9lkQqPo6GADzgc+wKrDl1xSvmU3Vymu33n75CeBuTnWklOITq8MSSCWnsuvfpUR6T/9KfDp/zyPrnv348J5AZ//fPnXGVYkz7Hv5gonkv8ewC8DeCuA7wL4LJjVxa2U0nxZ22cA/DmA3wXwAwA+AG+llOq1d0ppCMCtYDYY3wfwJwD+FsAf1f2vqBF+pw0+h4Tzc9Zdf8mMirGFpG5PsBrBFcmTeURyMqMirWj6wr3Pb368nSrwHFxtKKZIDhSxtnDaRXR5ZUPWFhey21SrSN4x4MflgwFcPhAAkPMtNVNwnwgn9bbeWrHJ14GYlsJ0JlL0+YSaUyQTQtAnBzCRLq2iKoaUloFMJAglxtbOTrZoe/BBFjgUCJjafcPgcrGx7vkf2WETSdHr5fRpRjhvvTwDe/cCDr+cuy/x72qpcW/8vAS7O7Ns//4WVj4Ggy6cN3CvmYqkEEurIMSY4KSUrRkv3FWT9VMtokkFHtn8GrLb58BUJGnKZigfxydy99By6sd8TEdT6PTIDRHLFEMpJXkj4TaY2TMdSaHTs3iB1ed3YDxcqEhm92XuwxxJWaeI1y0QahRR2UQBW3q9RRXJb44u4Ne//jpC8Qx+65uHDK3T29tZSN299wKbt6mwiwIGBwmEgqVmI6wtXBZZW3Bc7l2D37v1Mjz/2zfjyf95A+57uxsgGp57vvzfMRtNo82VUySrGkVGLVEwz6iQJQFf/zrByAjwu7/LxFEAI+0vv3ypItkSa4vsfXNhis3BW0TyRYJqyL5KSJUg5qrxSB6dT8IuskodkCN5++sQtMexrsONjuwNnhPX1aq34ym1Jn9kgHkkVzLuB3JE6nKwtgCqK1IkM0uV7JXg0hXJ1VpbcI/kxiiS+6tItjcLo17ZfAKRzBs8CGHV4ZtvZi1Hb30rCwQoHMQboUjes4clzP71XwPj44ufEwWCHr91pHw6DTz6KFOUuVyMjHeum8HNN1P82Z+xhPtSYB7J5Sd4qkaRmGf3lZVsbUEZ/oVSupNS6qaU9lNK76eUDhfZ7s8ppQOUUiel9C2U0oNF9neEUnpLdpteSukfFAT0LVsMBF2WKpLPZcmcoY762DYtB7S77RAIMJ23YCoMFOrN2taMLxj/bnOFc60WCcsVPFw0mmJBekBxRTLA7C2MKJI54VutIvmDV6/Fd375Oj1gp6+Kzq2JhSR6fBYRyV7mLVHK3iKVZ20BAD2yHwtKQlcfGUFSyyxSI5eCLAM7drDF8B13MCVQ4RjaTBDCisVPPEHQ53UXvV5On2bHnVRUODdO4tQbMqazAm4+vyg1pw9N2NDWW58gpBZaAJg3+6iB8Zf7I6/vcBsikvXxyLnU2gJAQ+0tqs296fExD/O5uPnvIKUUxyYiWJ+12DKi4qaUYirM7Br6Ag6Mz1dPYleLcIJ/bs0TU3lMWlvko8fvWOKRPDIbQ5/foW9rZeBevgVCrdje58ebowuLVLJT4ST++5cOoM1lx+c+eCXGFhL4348fNbVfFYxDeec72Xr01luZ967Nlg2Lpxo0C+0+OOJaGnYiwmZxBpBTtONtmwf0Odd/u2kNbJ0RPP5s+e9pKJ6ztnAUWbfnI55W4ZREfOYzbA5y552Ln7/8chbAlx92yK9bI1xTKfBCzvwU+/4NDVW9q6qwjKZXFxf661A5TJZSJDtsSGRUZEy0BY3OJ9AbcOgLlUYQyYQQ7F7L3mfPupx5bDVVVq5IrgVuO7ME+dS331jy88ffO6y3/1brpVUv9GcXvmZ8sZOKusRbuxI4GVrtDZArkmuxHzGDvoAT8/FM1Z7OxfDi6Rk8cyRnshROKoaU6bylqdTkWhTZoH377Syk7y1vAXpYF3NDFMkA8Bd/wQJ//viPlz5nhfJBUTX8y09O47uPKZibY0oygJ9DCX/xFwRTU8Df/V3pfXgdEqIppezEOZ5WoEazCc29NR1yC8sEg21OSz2SuR/e0CpWJEvZwnB+2224wNO9V1ckmyeSO73Wh/AuB3DV7vh8AguJDGwiKakkWtPm1osS5XBuLg5CYJki2GWX0O62m7onjy8k0GPR+wfsTnTYPBgpYVeR1DJwiHlEsp1ZNUymjbvoJDVlERltBH19bAH8wANMaWXUPqre2LoViEQAaaIHZ+eKeySvX8+IJNemSVBK8Nhj7DmvrkheOr9TVA2xaSd6B1dEPbCFFYqBoAsz0XRFEcnwDFMBXNrvNyQ4KRyPOBpBJKcUFaFYjlQyOpcvBPcwn6gijHoinEQkqeDyNQEAxlTckZSClKKhy+vAQMCJtKqVDOKsF3JK8uatgV32ysImVaOYi6V0gRxHr99Z1Npibbs7R1DXgUiu1doCAHb0+xBOKvp8OJlR8QtfeRULiQz+7cO78fbtPfjv16/Df71yrqTFRTEkM6qeXyTLwKZNTNz00Y/m/PdtTus7BOJqynJbi2LY3udH/+YEjr9hg6IUXz9SShd5JOtEconvZSKjInm6G4cPA7/zO0sL2Lt2AbEYcOpU7jFPhcKwEfBCzswE29eaNVXvqiq0iOQmodMrI5JUapKzF6IUMcdv7mZuhGPzCb3NFWAtmG/b1o2btnRZcKSl8d4r+vGWTR3Y3JVzfu+vQmEbT9euSL5ibRDtHjuePjy55OeLL47gW6+NAig9+WkW+qqwA0lVoUgWBbagrlmR3ICwPSBXBDGjtquEP/vBUfzet9/Qq8FGQxf5gGSkdc3hYAn173kP8NBDwCXb6q9IBhiR/YlPAP/v/wHHji1+biDgNG03U4gXT8/i/zx5DP/0hRSCQZZwC+T8xq++Gnj3u4G//Etms1EMXocEjZb3kounVahRB5xuDR5PTYfcwjIBUyQnLAtAmYmyBWS3RQrN5YpunwOTkaWKZH7P8jkkeGTJ1Hd7OpKCXRKa2tZaT/BxYzRLJPud9pLtzmvbXZgIJ/XW1VI4OxtDn99paT5Af9B4cSWeVhBOKpYRyQAw5OjA+dTckhAelWpIUxXOPBK4287ahc3YW6S0DGShumvM5WKLuPvvZ4vhgYFcy2kzsH494PEAoSOdODsbX3Qfo5QRyRs2sO+nrSuMrh4V3/see76cInl0LgUl7MTaocZ5ybZw8cFo4O3wdAwOm4ANnR5kVFoxUKqUKKfeRPLYfALv/Pvn8c5/eF4XJUSSGXhl8/ebbh5qayJngONY1tZi1xrWkWuESJ7Os5biaz8r80uMIJzMwGETGraWKwa7JMAuCoiWETbNxdLQ6FIbrl6/A5HUYvHVSDZ82ajS2Qz4uq9WawtgceBeJJnBx760Hz8/P4+/vf9ybM8+9xtvuwTrO9yGLS6A0l3KggD0drFzctfdKu6+G7jiClQVHF8MYSUJt8VBe6Vw5y12qEkJX/1hSH8sHge07G0qkVGRUjTdI5l/XqWCQxMZFeM/G8K6dWyuUYjLL2f/5vskc94oWoN1SjjJBA5jFwjsdqCrvjTdErSI5CZBDyqrQc5eiFLEXKVWuGIYm0/ogxLA1MKf/9BuvPuy+pqMvn17D77ysat0JTRQnQ1ILKXoFcpajuWVT92GA7+/9Gd9hxsHRhi7pbf1LJOFdI5INn7OklV4JAPsOo5VGbaXaoIiGWC2LVYgnMzg6EQYU5GU7tcaTiqGrgPe0lSJcCiEzwds2MzO243XC7j0UsBZvyYB/MEfsEX47/7u4sf7Ak5MhJM1hZ/sH5mDlhHw8rNO3HNPzhc6n4z/8z9ngX+f/WzxfXgr+EUC7F6gRhxo72qptFYLBoJOJDIqZmPWtHDzBURhS+1qA0uUz6mVcn93zr+21+8wbW3R6ZFryiNYzsgvzC4k0vCXuUbWtrO2yUpBVGdm45bbqPQHjLWbAzm1nFWKaABY5+yEQjVcSC2u+vGQvHw1sVO0wy85MZEyTiQXqpqrgSAwu6h3vIMFC+3cyQq1jYYkMduNUwd8CMdzlikAK5qGw4xIjqUUEALc/DYFTz3F1Ew2UYDDJhRVJL92OA1Qgks2r87vYgvLA4NtBu9zMzEMtbv19W4l4UQ4kYHTJi4JAOVE8nwVdhEAcGBkDk8fntB/8u1kTkxGcM+/vIiTU1GMzif04LKqrS38XJHMxllVo/j5+XlDr+X+yLsGAwCMhe0VI5JrFXmYRTixPMLm3bJYtuNUP1cFimR+PR8dZ+d/Pp7GfDyDdR0uSxSjheBEZK0cBQBc0uOFKBD85Pg0Hvj8y3h5eA5/fd9lehAvwIRLn713J8YWEvidRw8ZEmAkMqU5AZct11Hb1QXs3cusEB96iAW19/ZWV6hVNBVjqXn0y0HzL64CH7ubEe1f+Babh8zMMOX1/fezgu5sVmDCPZJ1RXKJ4MX5OSB81o9f+IXiob/btzNrkHyfZF6oqE2RnIHPYcP58wRr1jTeyqtFJDcJ3HbBaCqrEZRWJPOgAmMVj4yqYTKcRH9geaiz+gJORJKK4eMH2A3ObUHbSCnsGWrD/pEQNI3qE/rlokjOV1AZBTeJNwu3LCJebdhekxTJVlXrXzsbAh+P92WLCjxsrxIqVTbLgZPP3e0irruOWV/ceWd9Eus7O4Hf/E3gO98BjuZZbPUFnFA1qgdtVYP9I3NInO5CKiHggQdyj4fziOQdO4B77mGq6GJzn0rBQ0BOkdzR3VJprRYMZn3OzNpbpBWtaPEjnE1ot0IhspzR5XNgKs8jmRdB8xfMvQEnxk205U5Hl3oOriZ0eWWI2XDRhUQGAVfptss12QXp2Qo+yWdnY5bbqAxkMwCMLBI5kWylAn/Q0QYBZIlPcjEiGQC67X5MmlQkm7W2KAefjy2AH3wQuOkmoLvbsl0bwnvfC0RCElJjwUV2KKdPs383bMip4N59t4p4HPjud9lzXkfxAO03jrC5wY6tq7sg1kJzYXT8HZ6OYkOnJxeEVmG9G0kqRYu5etheFYrk83Nx3PuvL+HjX3lV/7nhL5/FW//mp/j094/gvn99CYpG8eX/thcA8NxJZs8TSRnrLixEh0cGIcBkdpz9m2eO465/egH7R0q01eXh+EQEPT6HTggbWVvlh932B/naz7r8CCMIJzNN9UfmcNmlstfYTJSdq46C+cqNmzvhlSU8/MpZAKwAAjCrM6/MFaNWWluwfVlhbeGwidjU5cHXDpzH8HQMX/jwbtxz5cCS7XYPteG33r4FPzg0jn/48akie1qMZDkiuYQ1o8/HirN33cV8lW++mXn9G12XjqbmoULDGke7sRfUiJ07RMhOFa+9SjA6n8AnPwmMjQHf/CbwpS8xf2QAurWF0844klLr9slzbLvLLiv+fnY7sG3bYkWyJURyUoHPacO5c423tQBaRHLTwG0XjLSuGAUnmBwFxBwfmI0SsRMLSWgU+qDUbFSjsI2lFT0Mrh7YPRTEQiKDU9PRZeeR3OWVWZuDwfNFKUVK0apSJLOBu1qPZO7p3ZjbUD4hYAX2j8xBFAi8DklXp5sN2zOaypwPft7k7HkjBBgcBG65BfjIR5gn5OCgda27H/84mwh88Yu5x/qyRaZqfZLTioaD5+YRP9oHdyCDm27KPRcp8Ka76SZWKb5wYel+ct0Wpe9t0ZQCJSqjp6exASQt1A8DbWxMqKSIygelFB/70n584j9fW/Ic/96uVlUtR7fXgdlYWm8x1hXJed+3Pr8D5+fihgN7ioXXrCZIooAen0MnkksF7QHA2iw5fLbMdcnVTlYTyf0BJ5IZzZBKfyLMFcnWzfHsgoQBRxvOFPgkJ9XiRHKP3YeQEteJ5kpIaoqhsD2zEEVg40bgXe8C7r6b+Rfb62/RiDvuAGx2iviJnkXXy3A2OnX9+hx5cfONAtauBb78ZfZcqQDtoyfY93rvzuaTOi2sXnR47HDYhLLjb1rRcD6UwPpON5y6f235+S4jb5deu74arC14UfTP37sDP/jV6/HdX74Of/DObej0yvjySyNod9vxrV+8Fjds7sT2Ph9+eiJLJFfpkWzTswiSOHRhHv/6U/aF/uaBIhPYAhybiOCSHm+OqDMgNMkPu/U5bPCatKayAuFkZll05HpkqSpFsluWcM+VA3j8jQnMRFMYmWVE8roOd541qHW2KgkLw/YA4PqNHWhz2/HwL1yFmy8p7WvwiRvX4+4r+vE3z5zAE2+Ml9wOYB3DpYQVnABPZEqfa4eDhcq+/e1sXfqOdwBbtpTvoD2bnAEBK0o3AqIIXLkbSI8F8aE/Oo+HHwb+8A+BG24Afu3XgCPH2d/HrS04t1aqk3hmlK2Lt24t/Z67djFFMq/3iwKB2y7WVKhgimQJZ8+yjqtGo0UkNwm6ItnCKlcquziUC4g5I6q9fHCira+OwXpmwAltMwRgPKXCY0HbSCnszYYB7jszt6Q9uNkQBIIev3E7kLSqgdKlIY1G4LbX4JGsK+gbowLMJwSswP6REHb0+bB3qA37RuZAKUU0ZYxIdtirVyTr3/MiSm5JYq05d97JlMrXXVe7X1J3N9vfl78MKNmPeqCK72Q+3hxbQCJGkBjuwro9IYh5f0qkwB7kiivYv/ntQBxGbHuiSQVq1IHe+rrytNBADFShSH7u5Ax+dnJGXyTkg7eGrXZw/8bprDIn5++f+75dt7EDoXgGTx2eMLTPqVVOJAOscDa2kMB8vDyRHHTZYBcFfcFaDCNZtfJQh8VEcvY7YaTjhpMrPRZ7gq9zdGA6E0FczZHZpRTJeuBeqnLgnkY1pKn5sD2zaGtjY+aDD7J/rfJ9LAafjym2Eie7cXYmd0/iimQetgcwMcgHPwg88wxTTHkdNkSKrB3OniEgNgUb167+e1mjQAjZSAj5HCHkECFEJYT8pMg2I4QQWvCz5AZKCNlGCPkRISROCBkjhHyakDqHXdQBhBAMBF04X8ZK59xcDKpGsa7DrXeHVlorMIuEpfNnh02ELAlVEcmz2bHuijVB7Oj347LBAD52/To8/AtX4+d/9DY8879u1K0N3rKpE6+dDSGSzFRtbQGw++r5UBy/+Y1D6PDY8Y7tPXjsjfGywhFF1XB6KopLeryQJQECMWZ9OR1JwSYSfVwqF4SdVjQ8dXjCsmwJjnBCKTsuNgrM2qL0OZsuoUgGgA9cvQZpVcPXD5zHmRkWhjvY5tJtWay0tohb6JEMAL99+xa88qlbdW/tUiCE4C/eeymuWBPAr3/9dRweK90RxKwtilOELoOFIQ5JAoaGmCjoQx9ieT+XXQb4/Yu3O5ecRY/dX/dxPh83XCdCmfbhp/++Bt1DSfze7zE1MgD82W97QWlOkVxp3T4/6oBoV8uSuZdfDkxNARN5owPrMKrNI9lts2N8vKVIvqhQqjWgFuhKxRo9kscWlhmRXIW3bSyl1By2Vw5r2lzo9Mo4MDK37BTJANDnNx5QyC1RqrG2cMlS2YG77PsqKgQCSELjVIB9AQcuWEAkpxQVr5+fx+6hNuweasPwdAwXQgmoGjVESDlt5Sub5ZBTcpe/vp1O4NJLmcrqwQdZar3PZ/rtALCk3okJ4Mkn2e9cyVatInn/mTmkJ/2giojgltlFzxXag+zcydTVxYnkyrY9E5MU0AT0t4jkVQOPLCHosuGCQU9YSin+6qnjAIqrmmpZNK4kcCsD3nYbSSoQSK6wDQB3XNqLdR1u/OOzpyouODOqhrlYGl2rnEju9TuzHsnliWRCCIJuG0JlVMEjetustR7JA0Hj9+SJhSQCLpslrbX5aLezNNMFJfe91InkAn/jbjlLJBuwt0hpbI7lqDJszyxsNqYquvtuplTeuBGLip1W4d57CJR5N157Pfc9O32aeUy6XEyRTAhbL3zwgywE6OGHWR5HsYXn2DkJro7kooyRFmrGdgB3ADgO4ESZ7R4GcE3ezx35TxJCggB+CIACuAvApwH8BoA/sf6Q64/BoFPPBimG4Wl2n1vf6dHvM5XWCuWs4fxOW1VEMrczaPcsbTNwyxLEvO/KDZs7oGgUPz42BVWjVdsVdvtkvHBqFscnI/jfd1+KD187hGhKwdNHShdnR2ZjSKsaLun2ghACt10yxA9MRZKLMgr6g86SxcTvHBzF//jKqzg9Ha3q7yqF5WJtwTJ7ylhbRFJw2sSitpcbu7y4Zn07/uvlczg9HdXDcO2SAFkSrA3by1irSLaJwhJf8VJw2ER87oO7YRME/OfLZ0tuV421hREQAvT0ANdcw9al998PXHUV4G9XMJaax1pHh+l91oKrrgJUlUCLyyA3HMC3f34OQ0PA3/0dcPhVGZH963IeyVluLVVi3R6ecKKtN1XWo3jXLvbvIp9kh1SzIlmMu0Bpi0i+qMCrXFYqkksRTLlAKmODMG+L6bOw7bEWdHrMWzXE0sqixbHVIIRgb9YnOZJS4LAZv5E3Av0Bp+H2Jj2ksQmKZIdNbGg7OTsvtRPJb44uIK1o2DPUhr3rWBX42eNTAIx5ZdfikZyqgvj3+4E9e1gYwnvfy0z/zYQM3XEHUzb/x3+w392yhIDLVvW53D8Sgj/F5F7UnyMSKKVLSD23m7VEvbbUkUBXr5Qrko2NsUX64GBrcb2awBRRxa+/l07PYi6PzHvq8ATeGF1Af8BZ1GeRtWY2fyFUb3TxRPkskRxOZOCRpUXEkygQ/OKNG3B4LIyfnJguuh8OHkay+hXJTowvJBBJVlZeBV12zJUJhTozE9PVTlaCd25VKq5QSvHKmVmst1gRDQA+kR1DWMnNPUopkt2iDK/owIQBIvnFBebp2GbzWHWohtHdzZRUDz7IFp3VFmOL4d3vBkAo9v0ody2cPs3UyAAjkj12ZrmzeTN7/698hRXSio15s+M2BHuqzy1ooSi+TykdpJTeB+Bwme3GKaUv5/0Uzlg+AcAJ4G5K6TOU0n8FI5H/FyHEwquqMRhsc5W91wzP5OwB+FqsXCs8kPP6LIbqieQ0CMkFZpXD7rVtcNlFPHaItf1XW1zmBdt7rhjALVu6cdW6NvQHnHj0tdGSrzmWDdq7pMcLgNkHGFlbTUdS6MzrLOHdM8VwMBv6NxO1JqSYY7l0dLntFawtsnkOpdacH7pmLUbnE3jmyCTW5Y2PXodUtAOkWnBlutWFXKPo9Mro8sl6RkYxJBW1pGKaE8nVWDMWIhhk5Gr/ZSFooLhzTzvWrKlP4bYYrrmGFY5/8/8Dbn2LDb//nTfx7LEpfOQjwKZdMYQPrNPvA84KiuTYpAuda8p/t7h/cmHgXq0eyWqEzb1a1hYXETiRbKUiOdfyXhi2Z06RfCGUQLvb3rSbXCF0qwaDbcwpRYNGUVdFMgDsGQpidD6B4xORZRO0x9EfdGIinCwaLFWIaohJDpe9NkVyo2wtOPoCTkwsJKEa9P8shX1nQgCYV/aOfj/skoAfHeVEsgGPZH0gNh8Ax4n/as9ddzfwlrewFqPrrzf2GpsN+OAHge99D5jOckt9/tLKh3LQNIoDZ+fgTbXBJmuI2yL6c8mMBqWIEoT7ShXCiCJ5bIxNGocGW8PdasJA0Fl0ITuxkMSD//Yybv+75/DK8CxUjeKvnj6BDZ1u3L9nEClFW9IJcPEpkhnZVMoH8j27+tHnd+CfflxelVzKc3C1oT/gQEZl56ESkdzmtpdVJJ+djelqJyvhc9jgdUgV78k/OzmDE5NRvP8q61ccPoldXxE1dwyliGTAWODea+Gz2B8+gyu9Q1jv7LTwaM3B4WAdPvfdx/weh4ZqzyHo7gbWXhbGqRc6oGZvScPDLGgPYLZM7rysjw99CDh0CEhMeJYIQzIZIDbjQM8a6wiPFgBKqVUpvbcDeIpSmu/l8lUwcvlGi96jYRgIOhFOKiXJ3eHpKDo8dvidtlzYniFFcvFxuFoieTaWQtBlh2RA6GOXBFyzvl0voFY7J9gz1IYtPV784Tu3AWBr2Luv6MfzJ6f1bqBCHJ+IQCDAxi5WLGPqWmPWFvnjb1/Aifl4piiheujCPABgPm6d3y+lNFsAaP78yV2hQ3Y2mi6qTOe4bVs3un0y0oqGoY5ccc8jS4guY2uLauCRy6tgE2mtpLjMrLWFEbx4ehaSQHD3DUHccQfzVX7b21iIvFzH6WV3NxtzP/MZgn966Aqs63Djo1/cj09+9SB6r5yCGnHi5z9nAz23+uBd3PmIxYD0vBM9FYhkv58VivMD90plHhhFOJFBZoERyS1F8kUE3lpRKcXWDFIlFMk2UYDDJphQJCeWja0FhxklKR9A66lIBlgKKgC8NDy77EiIvoATqkYxWcarkaMWYtIti1Vfw8mMVhV5XQv6Ak4oGi3rYWkE+0fmsL7TjQ6PDFkScflgAC8NM4sGQx7JNSiSk7q3dG3nThCADhNdRB/9KPNI/q//Yr/3B42r3vNxajqK+XgG6pwHnQNpzCczerBXpIhnK8B8ks+fZ6F7+XDYBEgCKTsIT02wScD6tcujMNaCNRhsc2E0lFhCdA7PsLbNeFrFg//2Mv7HV17FqakofuNtl+ihGYWq5EgZJdRqQpvLDkkg+mK2VEuqXRLw8RvW48DZEF45UzptfjrK9nMxKJI5Aq4KimR3BUXybHzRItVKDARdFa0tvvD8GXR6ZbzrMuu9fpyCHSKERYrkhJaBnYgQydLxqkf2YTYTQ1orfv8+HZ/CM3NvYoOzC7e2bbP8eKsBIcDAAHDbbcADD7Aip6uGj/Omd0WRDjvw2OMakklgdDRHJMfSik7CAawN2GYDTr7QsWTMO3mSgqoC1m+ybnHfgil8jBCSJoQsEEK+SQgprNRsAXAs/wFK6TkA8exzKwqDWU/2UoF7Z2ZiWN/BSNFc2J4Rj+RyimTza42ZSBrtbuPpmTds7tTDaKtV2b5nVz+e/J83wJ83Vrx3Vz80yuwliuHoeBhDHW59beCyi0gYWFvNRBdnFPSXCKdPZlQcz6qei3VlVYt4WjVs6VdveOTyoWWheBrBMsp0myjgwb2MicsPw63VeqAQ8YwCuygYKm7UC5X+plQZj2SnQc9zM3hpeBaXDwb0wqnNxgjXW24BPvxhZjF16aWA12vZW+oYGGDjut9lw/d+5Xp88tZNePLwBIYdpwBC8YMfsO30TuIiBPqxY2wd0r+u8nfr8ssXC6O8NVxfyYyKlKIhEWL3gMHBqnZTE1pEcpPg4orkKtWcxaB73Rb58jMzb+Nhe30Ba0NYakWfCSI5bnEiails7fXBI0tIK9qyUyT3lZhMFINOTFapSK72Gk4pWsMVyTm/bWPeqsWgaRQHRuawZ20uiWfPUFCffJqytqhiIC7lhV5vbN8O7N0L/Pu/s8TZam1C9o8wYmr6gozB9QpUjer3pmLhX0BxXymAWcx4S/hFckxPset6zUBruFtNGAw6kVI0TBQofM5lw8y+8YlrcOfOPvzw6CS29/nwju09upq0UMEeTpRWQq0mCAJBl1fWFcnhMkrsB/auQYfHjn969lTJ/U1l93MxEckVFcmuyork/EWqlegPOMsGUJ6YjOC5E9P48DVrYa9DEZcQAq/kQETNs7ZQMyXDc/TAvfTSwL0FJY7vTr+GTrsPd3XugtBACyyjcLtZ9sADDwC33gr09ZlXKb/tHRoEVwr//DkNZ86wsZVbW0SSCjx584n2dhZ8+8ZzfsSS2qKOs/0H2bxg85YWkdwEfBfALwG4FcBvgnkk/4wQkh8nFQQwX+S1oexzS0AI+Tgh5AAh5MD0dHmboUaDW/OUsrcYno5hfSe7z7kNeKomMyrSqlZWkVwNATobS5VVoRbihs25rgcr5wTrOz3YtSaAR1+7sKT4/eSbE/jh0SncsCn33i57+eA4gAX0zcbSRYnkwoLikfEwlKxgoxpldymEl1HYvEuWypKb8/FMxULwQ1etwa41AVy/Kaey8co2SxXJybTa9I7vSjYgjbK2ANg19MaFeVyzob3o84IA9PezANz3vx+4915g925zQiijcNhE/PpbN+OZX78B77q6DWsuSepEcjkB2BuH2XdrzfrK18muXczCan6e/e6Vqw/b49+/6Kwd3d3mLCutQmtl3STwL6iVVS5dWVqEYPI5pLLt3xyUUozNJ9AfqI9iplr0B4xbNXCFbH5LYD0gCgRXrGXzv2JJw81Ef7YQYIxIrs0jOa1qOolqBsmM2nBFcr8eSGReSctxYiqCcFLBnnX5RHLu/0auBZtIIAqkOo9kRYNA2D4ajY9+FHjjDdZe2xdwIJJSDN1X8rH/zBzaZCdGzwtYt5H9/bOxHLEFLFWCcCK5mE9ypSLZ3JQI0ZWG3fhaooUVgHVZtdOZrBcjx9m5OGwiwaYuL/7+gcvxbx/ajX966AoIAtG/m/kLKU2jiKaLWzysRnT5HJiK5ML2SimJHDYRH7l2CD87OYPxEp6LvLOjY5VbW5ghkoNuO+YTmaL2SfPxNObjmboRyQNlgpYA4N+fPwOHTcBDdbC14PBJDkSUxdYWcgkiuVsnkpfaW4wmQ0hTFXe074S9QSF71UIQgHXrWJbAvfcCO3YYb8dd1+2CZ8cF/PApES++yB7TFckpBZ4Ci7aHHgIicxJSY4FF64eDr1OAUGxZcdrWlQ9K6ScppY9QSn9GKf3/23vvMMfO8u7/86iXkaZu78Vr77qsy67tdccYjAnVmNAhCYFASAiQkAReSBx4SSAEUoCEAPklhOQNnSQQWkw32HjXNja2d9drb+/Tq7qe3x9HR9Jo1J4ZzehIuj/XpWt3jqSZM985Os859/N9vvengNuB1cCvL/D7fkprvUtrvWvZsubFupRjbT6Tfe75ZmwmyfB0Mp8zW89S+FoFyegCMpJNxqeN/aH879boa4KXXLmWJ89N8e3HCk33njg9wTu++At2ruvhj+8ofHhDvupFUYDh6SRaM6vZ7ZoKTVcfyeUjA4zFGpeRbOfsOsOR7CGV0flaSCm1HMkAyyMBvvbb13PRykJseVed9ZN6mUlmFt3oVotq0RbpTJZURlc0enndLsI+N8NVJsxN2HtkhKymYiG5lIEBq5B8113w6ldbEY1r1lC1yZ0pG/rD/P2rruINrwrywANw7pwV/6lU+WZ7jz+uQWVZt7F2LeSaa6x/H3jA+rcrMP/oFPvzNz7obUqsBUghuWm4XYqgd/6NysoRT1UuMNXrSB6PpZhOZhzpSM5q5rjPymHP4i7FifrqjVYh2WluNvvGt5o7ycbO1p6XIzlXrJ/PzGQ8lZlX8XohrOquv8Beib1HrXzk3RsLJpIrN/TmnUj1XHwqZX3+55ORbBXgl7ZJoc3zn2/9+4MfFI4x05zkvUdH2epfCcCFF1rbRnNLwe1zVOnnqbfXyqQsl5McDVbPlxod8uDvlgZE7camnNuptJB8fHiGtb0h3C6FUopn7VjBxtwNbd6RXLREdjKRRmvnTQYuFiui/kK0RSxV9fe+YIW1jnC4QnOewakE3UHvkq8sWWqiAQ9dubGulqOpL+RF6/Kur6M5t/zGRWh0B1ZxZzJRPrd0aCrBVx8+xZ1XrqXPYKm3KRF3cE6zvUqO5IgnQNjt52xibiF5Jmsdc90eZ8Ws1aK7G6691ir43nQT1Kr/resL0nXZCTJpxQc+YG0rFJIz+ePO5vrrrX+TZ7pnjXu/fFzj6Z1mRa/MmDYbrfVjwEHgyqLNo0B3mZf35p5rKbqDXiJ+T9loi6/l4hvs+D+fx4ogq+aAnMybCCo7kqcS6brMRMUMTSWMCslKqbwrudH3dS+4fDVbl3fx5n9/iDd97kEeOTHGb352L91BL59+zVWzxtGw310zgzbfo6CokLw8EsDtmtuc/tGT4yyP+OkL+xbJkdz866d8ZGgZJ3cinWEmmaG3xvhdjkiNPGFTZlLNdyRXi7aIp2vHJ67pDdaM0aqXnz09jM/j4sr1ZRdmVKWry5q4ff7zrQiMZz7TGj+9DZrXsO95v/lN69wQ8LjLGsCe2A+e3hmi4dp/12uusVYu3Xef9XUkYOWhz6d3k/35Gz7raVohufmf/A7GypdtZLO9ygWmSMCTd/tVwz4xrHFgRjLA6bE4a3uru6VnlsiRDIULJSfMxhYT8nnoDXmNHMnzKQbYbpknz0/OmhUHcCnFmp4gLlf5gmcinZ1X8XohRAJeogEPT56d5Njw9Jznu4NeemrMWO89MsLyiJ/1fYXjMBrwsn1llCfOTNR9QRX0lR+QyjGTTOddHVaTwubMAa5ZYxV0f/pTuPnOQnzK9lX1NR0/PRbj1FiMS4PWmqRLdyg4AyPT1mA4WcWVcsUVFRzJNZYFjZ7xEV42CSxCuJbQNFZFA/g9Lo4MljqSp2d9Nouxj6viG6n8Meewc/hisSIa4P7DVrzMZIWMZJtojWaWg5OJto+1AOsGYlV3gEPnp2ou4bVzuEemk3MKtkdzkx4b+xdnxdea/ATyDN3B2TWrf7v/GMl0lt+4ftOi/GybaC7aIqs1LqWIZ5P0eSsXzlf4omWjLWYySRSqYhHa6bjdVqOgbdusbP8DB+Cpp6w+A8Ws6g4SXDbDxh0zHHkiRDhcKD5PJdJzrmNXr4b+5RliZ3tmfS6f3O/CNzBJb9hZJpAORuceNgcoyUJWSq0DQpRkJ7cCSinW9oU4UWIkSKazfPrHh9m9sZerNhQKQyFf9cKoHVtRLSMZrFVr9U6EJdIZJuNpBgyiLQBeu2cDqXQ235y2UUQDXv7nrTfwmZ8c4WPfP8S3Hz9LwOviy2+6juUlPyvo9dQsJNsri4rHYLdLsTI6tzn9IyfHuGxtD08PTtXMmv7Uj59Ga/itm7fU/J1q/d2WEtvYNJ2Ye4zYDQa7a9zflaPRGcmxZOXYiKXCakxYoZCcqt0McG1vaF7N1stx39PDXLW+d8GGBL8fLrjAemSzVr+BI0fg2DGrGd58uOwyK0P561+3VuQGvK6yzfYOHlB4B6bq+rtGo1bx216BZE8WTyXSNVe8lTIRS6E1nD/jZsPiLTSrihSSm4iVL9tYR3KlAlM04K1r9sieXbaXxzgF2yFdaYltMfZs5GI32wO4fF0PAa/LKINrqVjVHeTMeG0Hd7Vs7Vp0B63f+6WfvK/s8+941jbe+swLyj6XSGVqFm0Xgw39Yb768Cm+WqbpRdDr5sH33pYv2pbjFyfGuGpD75wJm2s393N0eLruC4Sg150fsKux/8wEz/vYvfzXW67nkjXdJFJLny1dzA03wD33WMcXwOk6jjEbOx/ZNR5FKbjsYg98j3ymaCVHMlgN9772NZiYsAZim0jAw/EKDV+SSRg/52frZefr3kehNXC5FJsGwrMcyVprjg3PcMW68s6G7jKF5PzSTAc4apaCFdEA47EUsWSGyUTljGQoaDJR4caztGN8O7O6J8ih81O1M5JzN7CjZRruHR2eRqlCvmijsZ3ODx8f4+LVhUJyPJXh3+4/xjMuXMbW5V2L8rNtIu4gGs10JkHEE6jqSAaIuoOcKedIziQJuXxNWXnTaAYGrHHz6qutYnJ/0Qpet0uxpjeI54ZBjj6xgS1bCjnLU4k0kTKGiB2XpbnvoW4m45YjMRaD08fdRPZM0huSCdNmo5S6BKto/Kmizd8C3qmUimitJ3PbXgbEgB8t8S42hHW9QY6WGDL+8xenOD0e5wN3Xjpre7hGfm21az+YPXbXW0i2V9L0G45RF62M8uGX7jR6T734PW7e8oytvPDy1XziB0/x7B0ruWTNXKN6PY3MbUdyqYlnTW9w1jXxRDzF4cFpXnz5GoamEoxVaQYL8NmfHePUWIy+sI+X7qrevctJGcl2Qa6cbvZ4PB9Hcpffih7QWjdkPIo5JNrCjgEp7bdjrzCutmJ4TU+QfUcrN2Kul6lEmv1nJ3jrreXrBPPF5bIaz9nN586fh+A8ylpKwfOeB5/7HCQS1n17qQEslYJjRxSh3VMEvPVdX+3ZA1/4glXwts95k/GUcSF5PJYiG/OSiCtxJHciYb+noY7keCpTscBkNaSqXbR+6PgYPreLbSucdTFqFyzrWZJTcCQv/ok64HXz1Tdf7zgHN1hFgHpyd6pla9fi1ouW84lXXlk2k+rvf/g0Pzk0WLGQHE9llzwjGeCvX7aTR0/OvXHde3SE/3jgBMNTSUJ9lU+N5yfj3N67Ys7237vtAu68ck3dFxpWtEV9heRMVvOjJwe5ZE038XRzdLO5/nr4t3+DkTN2TED9y+T2Hh2hy+9h+IifTZtgzUDOvZePtrCb7ZV3JAM88gjceGNheyRQuQnL00+DzipWrGvcUj7BOWwaCHPw3GT+6/FYisl4mg0VHJ95h20ZR3LHZCTnbjoPD03lIj1qO5IrOf4HpxLsXNvT8H10Imt7g4R97ppNTu0MxpEy+YFHh6ZZ3R1ctInAi1ZGuGRNlH/52VFeefX6/Gqg//7FaYamkrzhxs2L8nOLiXqsSf/JTKyuQnLY7SeWTZLVWVyqMK7NZBOE3M6boF8IPh/s2FEYy2zW9YYYvfA0kcgGLshdLmmtyzqSAXZekeUn93Rx9vwMbLbcztmswjswuaixJZ2IUioEPDf35RogqpS6K/f1N4FnAK8GvgGcxiogvwc4DvxL0bf6JPBW4KtKqQ8Bm4G7gY9qreda8luAtb0hfnxoMNegPUgmq/nkj55mx6ootxQ1rQNrBV61+91aBclyk8C1yBeSHfiZWNsb4i/uvKzi81ZGcn3RFqXRHXs29/O33zvEoXOTXLAiwmO5+52d63rYd2y0aiE5lsxwaiyGz+Pi/3ztMTYNhPMrb8tRyEhufjkpXORILmU0t+qxVkZyOboCHtJZ3bAG8TOpjHHBsNEUx4CUXtPkawJVHclBJuJWj5yFuNEfOTGG1uT7TS0Wy5fP/73Pex588pPwox9ZmpQawKyVRgpv/xQhX7n0orns2QOf+hTs31+495iP6/2hY6O4ZywDQbMcyXVVI5RSW5VS/6iUelQplVFK/bDk+VVKqQ8rpR5RSk0ppU4opT6rlFpdx/e+WymlyzyeM8/fqWUI+xqbkZyoUmCyCsm1B+AHjoywc1234zIPCzM2tfWyB5FqrtJGsmN1lO55zHIuNl1+T80ZbSg4kufzN/d5XPzKZau488q1cx7PuHAZj5wYr+i6TaQrT3wsJluXR8rur90xudoxFktmiKey+eXLxXQHvWWdBZUI1BltYS8fst28iSoTRkvBDTdY/+57wI3P4zJqQrHv6ChXrO/h4EHFRRdZxXS/x5UvukzG07hU4SKnmCtzaYOlOcnVJskO5BaMrtvUuPOs4Bw2DYQ5PjyTz008lsugrRRt4fO4CHrdJdEWzmkWsxTYy3WfOj8FVM+BLERbzP38aK05P9EZ0RYAb7p5Cx975RU1X2ePDeVu1o8Mz7BxYPEaGSuleP0Nm3jq/BQ/OjQIWH+nz9x7mO2ronU3s1kIkVym8UQ6TjqbIa2zNQrJll4zmdl6zWSSBNuskFyJdX0hzk5P8Z3vwAc/aG1LpLNksrpsIXn3bmuC4JFfWP8+9pi13b98smPOY0vIcuBLuce1wI6ir5cDJ3L//g3wXeBPgf8FbiguEGutR4FnAm7g68CfAX+de31LcueVa/C6XLzkH37GoXOTfOfxsxwenOa3n7FljqEi7PNUNU7UdCSHzAvJQ1O5QmsLjlEhn5tkOls1E3pwMkE04JlzP/C66zYS9Lr5hx89DcAjuULyZWu76a7RtNBe4fUnz9vB6p4Av/W5B8vmYNvYk/JOmIivlpE8nmswWKvHQTkiNSK+TIkl04SaXGPpsouXZa7t7JpAtdW1+aaOC4y3eOiYFQ9/+bqeBX2fxeTWWy038ze+Ub6QvH+/9a+3f7Lu7OvrrrP+ve++omgLw4Z7Wmvu2X+erSHL2Ob0ZnsXY83IHgSeLPP8VcCLgf8Ang+8E7gG+JlSqh6f9ziwp+RRfq18GxHye8qe8OZLdUeyl3gqS6rKoDSTTPPYqXF2V5l9bBYBb65oVcdFhD3rvRSOZCdTz4w2FPKQGu1y3b2xj2Qmyy9PzXX/Wj+3chRLM4jUcN9BwTnb14BIjqDXVVch+XQuzuXBo6NkstpyJDfxImTHDujpgXvvtVwIlZa9lzI+k+LguUl2re/j4EG46CKr8NEX9s0qJHf5PWVd3atWwYoVc3OSowEPU8k02TKNCuxC8uat5k0MBOezaSBMOqvzTUWP5W54NvRXzmTtDnpn3RBM5B3JzXfULAVzC8mVb6y6Ana0xdxz4nQyQyyV6ZhC8rq+ELdeNHclSil9eUfyXM2ODU+zscqx2Qh+5dLVrIj6+f/uPQLATw4N8eS5KX7zhk1LEhMRdeccyek48aylQcBVebwMua3jZzozuyHqTCZJuMr72ol1fUGGp5NcdmWarVutbbY7qdx56dqrrb/jE49a1wG//CW4PVkGVqUq9qQQ5ofW+qjWWlV4HNVaP6q1fqbWepnW2qu1Xqm1/jWt9eky3+sJrfWtWuug1nqV1vq9WuvG3QQuMZes6eYLv7WHdFZz1yfv48PfOcimgTB3XLJqzmtDPnfVZnv2NWBPsPxnfj6O5HwhOdx6Y5QdfTBT5R7h/GRiTrYyWPFKr7h6Pf/1i9OcGJnh0ZNjbOgP0RPy0RPyMlZHIfmK9T185nW7SWayvOOLv6j4+ol4imDu/rzZVHUkz8zfkRyZZ6GvEjNJBzTby9VHyrlgY/m+SZX/pnavqgUXko+PsnV5V9Md2tUIBq0mfl//ulUnKc1IzheS++qPtrzgAivi6r77zIySxRw4O8mpsRir3ZZBwOmF5K9rrddprV8KPF7m+XuBi7TWH9Ra/0Br/XngBcAG4CV1fP+01vr+kkf56lMb0WhHcrUCU7SOA/UXJ8ZIZ7UjC8mQK1rV8UGbSaRRan5RDe1E2F/9ws0mkZ6/I7ka9nKovRVylOJlspmaiZ0HWu0zYmf5NmL5aL0ZyafGrAziyUSag2cniacyTY22cLms2dR777WKUPWsdAB48PgIWsM63wDxuFVIBuvCztZ1IpaqWti68spyjmQvWsNUmXPp409kcXfFWLWsM4qEncbmZVZRzr75OZ7La6zkSAbrc17WkezgC9lGsiJq3VQfOmcVkqtlQ7tdiojfU9aJUymfsdMJ+twEvK45GcljM0nGZlKLXkj2eVy87rqN/OTQEAfOTvBP9x5hWcTP83fWXCDYEAIuLx7lYiITKyokV4+2AJjOljiSsx3kSM7dlJ8YLTj/7KJFuV4f61d78PRM8+Tjlj6PPQY9q+P0RTvjHCY4hx2ro3z1zdfRF/ZxZGiaN928GXeZyYxazfZGp5MEve6KBbZyheS/+s5B/uBLj1T8nsO568qBSOudR+wVtTNVzGbVehS84aZNuBR8+ieHeeSE1WgPchPpsVRZ4wXA4UHrumDTQJity7t42a51PHpyHK3Lv34ilnZMf4nipmWlFDKS5xFtUeX7zod4qvmF5HCVPOl4qr5oC7Aa+xbzyR89zZv/7cG69kFrzcMnxrhyfU9dr28md9wBR49CZjw0xwD2xBOwbFUal6/+v6tScO21JYVkw+Pre/vPARBKRQiFZvdeWErqqkZorSvbWK3nx7TW6ZJtTwIzwNJcvbYgIV9jHcmJKgWmSJlsyFL2HhlFqcXPqpkv9RatppMZQl53xzszmu1I7gv72Lq8i71HyheSEw51JFdbvjTSyEKyr76M5NNjMS5ba0Vm7D060rCcroVwww3WLKw/E6h7FvWBI6N43Qr3hNUpzy4k94V9eaf3RLx6868rroDHH4d4UX+/arO5T+wHb//0vC4eBeezacBa8HQ4V0g+NjzD8oi/6sVc6dLOwtJMZ9wMLTbdQS8+j4unBms7ksEqsJdbdWAXkjvFkWxCX8g3JyP5aC52xW6It5i88ur1BL1u/uQ/H+dHTw7yuj0blswxppQi6g7OdiS76ygkFzmSMzpLPJvKu5XbHXvi6/hwUSE5d1PZVea8FPC6Cawa5+h+S5/HHoOulTLOCc1hXV+IL79pD3/5kst4yZVry74mVKPZ3sh0sup1tV1ILr6H/c7jZ7nv6eGK7xmaTBD0upcs5rCR2Ctqq8UTDk5VjpZa1R3kzivW8vkHTnB6PM7O3D1Ed9BLVlcuWh0emmZVdyCv2YpogEQ6W9HEtdCM3EZiF0fL3feOzaTwe1zzKuDa5+BGOpKbHm1RxWVdT7RFf9hHwOvi1NhsR/J3Hz/Lzyvc85dyZGiasZkUV653Zs2pmGc+0/p3+GDvnPv2/fth9UbrvFSvIxmsnOT9+yE1U3s1dDnu2X+enet6GDrrYf36QpPepWbRriyVUpcBIcpHYZTSo5QaUkqllFIPK6XuXKz9chL1dGU1IV6lwFSPdX7fsREuXBFx7BKDehsGziTThMrkynUaYZ91fFWaSbaJpzP43K5FKbzv3tjLvmOjc2a/tdaOcyTX8xmxiwPlMpJNCZTp/lqK1ppTozF2b+xjVXfAKiSnMgSavIzMzkmOneype/Dbd3SES9Z0c+Rp629eXEgezUdbVL8o3b0bMpnZrmTbSVq6H1rDoSetBgh9YWee04SF0Rvy0h30cmTIKooeG5mp2GjPprukMDqZSBPwuvC6nTOptZgopVgR9XM0V3yv1SQnEqjuSJZC8lx6i85pNrbeG2scn42gJ+TjrqvW8sDREQJeF6+8Zmm7sEQ8ASYyMWJ1OZLtjORCITmWy0sOdUy0he1ILtyU5wvJFa5lu9dPMTbo5dAhOHECfMumpJAsNI3+Lj+/unsdngrjaLiGI3l4Okl/V+Xj1443tCeBE+kMR4amGZ5OVHxPre/pZOxCbjWzyeBk9R4Fv3XzZlJZqyi4M5dBW64gX8zhoen8Si+A5bkVTIOT8bKvn4inHLOay44DKetInk7O+/xon4NNHaPl0FoTS2Xy+9osqrms64m2UEqxpieYj5UD63d78twUk/FUzboDwEPHxwC4ogUKydu2wdq1cO5AN/F04TOZzVoRiivWW9csJoVkOyf5wKOV86orcX4yziMnx7jtouUcO9a8WAtYpEKyUsoF/C1wCPjvGi9/CvhD4KVYMRinga9UKyYrpd6olNqnlNo3ODjYoL1eekI+T9VlK6ZUKzDVyn9NZ7I8dGyUqzc5M9YC6m8YOJ3IlG3W1WmE/B60pmaxMpHK4l8kZ/DujX1MxtMcPDc5a3sqo9G6+kC11BQKyXU4khuSkVzbkTw2kyKWyrCmJ8jujX3sPTpiRVs0eTZ71y7wemH8SE9dkzvxVIZHT45z9cY+DhyAvj4YGLCeK81IrrZM7pprrH/vv7+wrdIEwNmzMDWp8PTJDXa7opRi40C4KNpihvV91R2f0cBcR7JTHDVLxYpIgHRucq+mI7nCSiD7xrLS0tpOpniVhc3R4WmUKhQNF5vfuMFa2vySK9c2ZAWNCZESR3KwSiHZpzx4lGuWI3kmF3MR6pBoi96Ql7DPPauplR1LVq7ZHsDARuuc99nP5jb0jdPrwKbPggD2CtwqsXEztQt93UEv47ms28OD06SzmngqW9HpPDSVYKBFx6dQvnFc+d9tOpFmJlm9R8HmZV0899JVeN2Ki1dbKwGrZU1rrTk8OMXmgUJrK/v7n58oX7CfiKVrTkYvFX6PC49LVcxInk+jPSg0HW6EIzmeylr3vk6JtiijVWGVcvV9XNMbmuVIPjUWYyqRJpXR+cjMajx8fJSI38MFy+tppdZclLJcyaeeiBCLF+7bjx6FWAz611ifDxPH++7dVlTkQ3tduJRZdMoPDpxHa3jm9hUcPw4bltYrMIvFquL8BVbDvNdoratW/rTW/6a1/mguW/m/gecB9wN/UuU9n9Ja79Ja71q2bFlDd3wpCfvcJDNZknV84OohUSUj2S62VFqesv/MJNPJTD7X1olE/N66HcmVLr47iWodbItJpCs3aVwodt72vpKcZHtGr9kRDcX4PZbjoWpG8kwSl6Ihrv1gHY5ke5Be3RNk98Zezk0kODUWa7ojORi0islDT0Xq+kw+enKcZCbLrlwh2Wq0Zz3XG/IxEU+TymSZTFTPSF61ypp5/fnPC9sqxfbYjfa8/VMt60oRarN5IMyRwWniqQxnJ+I1HcnRkmZ7kzXiVNqRFUUNemr97tFg+Yaa5ycTuF1KJmnKUJz7bnN0aJrV3cElG/M2DYT5z7dcz7ufu31Jfl4xUU+AqUw87yyu5khWShFy+ZnOFPSayXRWIVkpxbq+0KxCci1H8qotcVA6X0hORceWfMJAEOol5Kt+vTs8laS/xvFbHEt18GzBnDI8lSz7+qGpJAMteu2Xb7ZXwWxiX8PUuhf58xddyuffeG3e4dyTG6/HZuaWZoamkkzG07MdyRHrWuH8ZIVCcjzlmFXMSinC/vITFmMzyXkXkrvqMBnViz3p0exoi3AVR3Ii9zmtVRRd2zvbkVz8mawWEWnz0PExLl/f0zIxpLfdBvEpD6MnC5+PL37R+nf9JVMoZRYR2tUFl10G99+v6PLXt+Le5p7951nTE2RjT4Tz59vMkayU+m3gncDrtNY/r/X6UrTlh/8qcJlSyjlVpkXAjl+oJye1HuJVHMnRGo7kB3KFvt0bnbvEIBqs74NmOZI7qzBQjnyzhhrxKYlUdtGat63tDbIyGuCBo6Ozti9WLvNCqdXQcSS3PKoRA18wd2FdbQmQXUhe0xNkd261QCqjF81BbsINN8DZp4OMT9U+f9kNF3dt6M0Xkm3s2InRmWRdRb1rr63PkZwvJPdJdmQ7s2kgzOnxOE/mVj1Ua7QHViF5Mp4mk3PkOmlp5lJhL1f1eVw1C5vRgLditMVAV2POhe1G8SoLm3piVxrNZWt7lmRS/bbbYMcO8OR+VNQTRANDKesz6a9SSAYr3qI42sL+f6dEW4DlVJ/VbK9GIbm3RxFZGePkSejq0mTD0/kikSA4jZDPTSqjKxqnamUkQ0khuWiV4/B0+ULy8FSC/nBrOpKr5f1C4Xq31vVyd8jLVRsKBrFqjmR7ZdemgbnRFucrRVvEnHX9ZEU6ztWsHsd7xe/prxyZYYo9mdLs3O76oi1qOJJ7goxMJ/M1hgPFheQy5oNiphJpDp6d4Ipc5EorcOut1r8jh3oAK9biM5+Bm2+G8LI4Ia8bZRhUfN11ljGqy1efURKs+sm9h4Z45vblnDxp/by2KSQrpV4CfAz4Q631FxbwrXTu0dZ01RGmb0I8VdlZWiv/dd/REdb2BlnVHWzIviwG9TbbszKS23oOoi7yzRpqOJLji+hIVkqxa2Mve4+MzCqYJnJh/s2OaCil1jE2OpNsSD4yWIO01lRdAnQ670gOsG15JL+ELOCAbOnrr4dM2sXo8S7SmeqrKvYeHbGWLyV9nDs3u5Bs6zkyXV8h+Zpr4NgxK7oCKkeSHDgAvkAWTzTuGMeE0Hjsm54fP2nFXK2vIyMZCseL1eCxs44P25Fcz5LUaK7LeymDU4m8W0mYTfEqC5tjw0tfSF4q+vrgppvgta+1xgX7+DqfnMSvPLhq3FyF3CWO5Fy0RbhDmu2BNQF2YiSWv06artJsD6xxr2vNBADbLsqiFNILQHAs1YwtsWSGWCpDXw33cKkj2Z2bxBwpk5OczWqGp5MMRFpzcsXOWq1UH7CvXypNNFWiWiH5cK4B75ZlhaiBiN9DwOsqG22htWYinnZUNFhlR3Jq3hNt+dWqjSgkJ+tz+y42bpci6HVXiLawrltqrXxd22vVi07lXMlPFk3u1KrVPHpijKyGKzY417xYyurVsGJ9gsnD/Wit+cEP4Omn4Q1vsIrv8/mb7tkDk5PAaHfdjvefPT1ELJXJx1pAm0RbKKVuAf4d+JjW+q8W8H0UVlbyI1rrxgUIO5B6HaP1kkhXdpZWKyRrrdl7dISrHRxrAdbvMJ3M1CxaTSXS4kim/uMrvoiOZICrN/VxdiI+awlMwoHRFmAVVmo122tEPjIUlq7Fqyz3Oz0WI+B10Re2nH929IwTdLMbBSRP91Sdqc9kNQ8eHWX3pj4OHrS2zXYkW3qeHouRyeqaRb1rr7X+teMt7IvYUif5gQNWblVPyFuxAYzQ+tiF5B/lCskbajiSC81mrOPFavDYWePFipzLqJ4bwGjAw2QiPadhaq1GP52MXdCzlw9PxlOMTCfZ0F89v7vV8fng0kvhFS+0CsnD6UkC7trHWNjtZzpb7EhOolBVIzHajXW9QWKpDEO5Zfp2HmelJdCRgBf/qnEANl1gXUOII1lwKraxpZzD1s6Tr3VtXVpIvmxtN1A+2mI8liKT1a3vSK5wbV1wJJudI+14h7HYXM0OD03j87hY3VMwlCmlWB4JlI22mElmyGR11b4mS03Y75lzP6K1ZiyWWlCGfMTvaUhGsn38N7vZHthazf08xlIZvG5V877JLiSfzBmeDp6dzF9L13LXPnxiDIAr17VOIRngoqtiJE70MTGd5dOfht5eeMlLIJ6cnyHvllusf6cO99fteP/2Y2fp8nu4dnMfTz1lbdu40fhHN4y67q6VUiGl1F1KqbuANcAy++vcc9uB/wQOAF9QSl1b9NhS9H1uVkqllVI3F237kVLqrUqpZyulXgz8D3ANcHfjfk1nUq9jtB601lUdyR63i5DPXXaJ6tHhGYamko7OR4bCgFnrwzaTbH5HVCeQD9OvEZ2ymBnJALtyy6r2HSvkJNsznk6LtqjlSB6ZTtLbINeP7Tiolht3aizG6p5gfrmMnTntBN2WLYNIT4bUSFfVi4aDZyeZTKTZvbGXb3/b2nbppYXn7ULy0SFrWW8tR/IVV1hLqO14C7/HhdetykZbdK2MNazwLzgTu5D80PExuvyemstj7Qtd+4Z0ItaBjuSck7iebOho0IvWMFUyITk4mZBGexWwV1mM5gokx4atc1utSY52wV7ZlspmWdXvZedO8Fc5VKxoi2TejTuTSRJ0eY2XibYydhNGO95iKtc0ulJ0TCTgwbXMigxbtdE6ziTCSXAqwSrGlpFcIbieaIuJWIqJeIpTYzGu32J1bC4XbTE0ZRU+B1p0sjOfkVzh/sC+3jWdBA94LXdteUfyNBv7Q3mnt83yiL9stIVdT3CWI9k9Z7JiMmFFmS3k/NgVmFugng/2vgUdYAaKVPidrJjU2vu3ttcas06Oxkhlsjw9OJWvI9UqJD90bJQty8J0t1iD2EuvTqDTbv7rvzRf+xq85jUQCMy/7rR2rRULNnSwt67jK5bM8M1fnuWOS1bi97h56CGrmN3MaIt6z0DLgS+VbLO/3oRV+O0GdgI/K3ndZ4Ffy/1fAe7cvzZPAW8DVgFZ4CHgV7TW36pz31oW2zFarZNtvaQymqyGQJXs1EjAw3cePzuroQcUQvSv3uTsmaFiV3Wx8+K/fnEKr9vFcy9dBVh6SrO9IgdAjeMrnspWPW4WyoUrI0QCHh44MsqLr1gLONeRHAl4ODtRPgsMYGQ6xVUbGnOzZi+DqZaRfmoszpoid4CdYe4U3dZvzvDU+XDVxgp2PvLWaB+v+yi8+MWzZ0/tQu/xEbuQXP3CIhiEyy8vOJKVUnMmAKan4fhxuPTyaWlA1OaE/R5WRP2cm0iwvi9Us/iUdyTHC27RTnMkL7ejLeqIfMk36o2l8jeMmRZfNrzY2Oc0OyfZLiTXil1pF6IBDyGfdUPf1+Vlzx6rQ/mhQ/D44zA0NPv1YbcfjSaWTRJy+5nJJjoq1gIK2e4nRma4cn0v04l0xVgLsMbJzLJhPvIRzfKrJvj6tyTaQnAu1Zp/D+eiKWo1RY4GvUwm0hw4Yy2hv3xdD36Pa04ePZB39g+06PWf3+PCpWCmgtHMLtRVO0dUortCXNXhoSm2LY/M2b486p+Vf2tjF6OdlZHsYXhqdo1jbNraz/k22wPrOsikGVol4nU2slsKwv7K0Rb1xE4u6/Ljc7s4NRrj8OA0qYxm18Zevn/gfFVDltaah0+McetFyxe0/81g5+4kKM0fvdNNMmnFWkAu2mKe9+W33w5/9/EIYxPVV9sDfPeJs0wl0tx5pVVLefBBuPLKQvP6ZlBX9UhrfVRrrSo8jmqt/6XK879W9H1+mNv2w6Jtr9dab9ZaB7XWYa31jZ1QRAby8Qu1HKP1YBfm/FVmkV54+Rq6/B6Oj8zMesRTGZ5z8Uo2D3RVfK8TsG/2S4tWn/zRYf7qO9aaea21OJJz1Ht8xVOZqsfNQnG7FBetjOTzt6yfWV8G01JjXSyUHwC11gtq2FBKoA5H8umx2KxC8mVre3j+ztVcu7m/IfuwUDZtydZ0JB8enCLi9/C5fwwyNQXvf//s5+1JoaPDVqOPelyS114Le/dCJiddaSTJk09a/7p6JxuWaS04F9uVXE8GbbQoIzCRzpBIZx11I7QU2NEWdTmS8416C5+v0ZkkmawWR3IF8o5ku5A8Yp3b2j3awkYpxapua7LCnrjxeGD7drjrLnjRi2DLFnDlhn+7aGznJM9kkgTdnXXett1d9z09zEe+e5DvHThfdVLVvh7+zd9Ok/ZYhTiJthCcSiFqr0y0xbTtSK4+ntjnEtuccOHKCP1hX9loi0JxujXHKKUUYZ+nYkbyVMK6T5nPaqqeoDcfu2STymQ5PjzD5mVzx6jlkQCDZTKS7XgwJzmSu8pEW9grgxbkSG54tEXzzQthX2VHctBX+97c5VKs7glwcnQm3/zSjkitZi46ORpjZDrJ5S3UaM+mr1fhWzXG2TOKa6+FSy6xtseqJALU4vbbIZNycebg3EmcUr7y0CnW9AS5ZlMfiQT88pdw1VXz+rENo/lHcgcTymdGNWKWK1eYq+Isffdzt/Pu525f8M9qFpEyN7Rg3aydnYgzOJkgGvSQzmpxJFNYGlXL8Z5IL64jGawla3ZHYCjMyjqz2V55vSbi1vKoRjlc7dnLShnJiXSGwcnErLwyn8fFx15xRUN+fiPYtk3zjS8FOH1uHDaXf83ITIqubBcf/7jila+Eiy+e/bzP4yLi93A859qr56L0mmvg4x+HJ56wYjIiAe+sC5cDB6x/09Fx+kKdUbzpZDYNdHH/4ZG6HJ/FzWbq7XzebnT5PYR97rqaUEbzmdKFz1erLxtebOwxws7+PD48w0CXz7gxUiuzuifI04PTZV1gK1daj5kZ6xx+bq9dSE6wjAgzmSTLfdGl3uWmEvS5WRbx8/m9J3Ap2LOln9ffsKni6+1jaTKeZjRXFOrpsAkxoXXIRzWUi7aYrj8jGeCBIyN0+T2s7Q3S3+Uv22xvKLfSdqCGy9nJBH3uiisWJ+NplCo4vU0ozpq2OTkaI53V+Un5YpZF/Ewm0sSSsxuKTeQdyc4Z18J+z5zJinwheQErNrr8Xk6NxWq/sAb28e8Es1uXv/wK3HqjLQDW9AY5NRbj4NkJPC7FJWu6Uap6tMXBnLt9+6rWG+ODXjeBDUMkT/fm3chgrSye77nmppvA480ydKCn6uvOTcS599Agb3nGVlwuxWOPQSolheSOJu8YbUBGct6R7LDCXCMp1zBQa52/WXvw2AjXbLKcmk44STebQkZyrWiL+geN+dIX9vHgsbH814l07YmPZhAJWBch6Ux2TqOB0en6ctzqpRBtUX45y5kxa4AvLiQ7je3brfU0Tz4J7Cn/mtHpJOd+solkEu6+u/xr+rp8+WzIemIG7IZ7999vF5JnO5IPHACXSxMPjtMbdnZkj7BwNtuO5L7akwbdRYXRQs5gZxVglFJ85Fd3snlZ7VVI5ZpZDk3mlg23qNtrsck3NMoV+I4OT+ejCzoF25Fcze0fCsGuXRBd6+Of/wa8kQSkYSabJNRhjmSAD7zoEganEtx+8cqan62CsSLF6EySaMAjTWUFx5LvCVTBkexxqZoFSXvsfvDYKNtWdKGUoi/sK5uRPDydxKVa26Uf9nsqriidjKfp8nvmlSPfE/JyZnx2AdFeMVrummB5bsL4/GR81qoaJ2Ykh/zuOS5bexxeyLFg5QlXdtnWi70C1QnxhF0BD1ODFTKS69y/tT0hvn/wPAfPTrJpIEzA66bLXz0GxHYvb1vh7FXw5Qj43HRddoJbN6zn5S8vjNGxVGbecSXBIGy5LMbhpwdIprP4KqzU/s+HT5HV8OIr1gBWrAU0v5AsVx1NZDEcyU5owrVYRIsunG1mkhmSuaLkA0dG80VTcSTXztiysfKQFve46Q35GJ0pNNOxXbiLXcA2pVpDx5H8rHZjHcmVoi1O52a/V/cEGvLzFoPLLraOm6eerHz8nDqhOHbvSl7/eti6tfxrekM+Uhnr2Khnqd6WLdDfX8hJLo0kOXAANm6CtMpIbmQHsHW5dUFazk1TSsjnxu1SjMdSeUdNpzmSAZ5zySq2rai9lM6+uS/rSJZCcln8HutmynbaHR+eYWOHxFrYrMw13KvH9b48F7Wy4cIEL3pxlng2RZe3846tZ1+8kldds6Guz1WxsWJ0JiW9AARHYy/lj1VwJPeGfXX3N5hKpLlwpeVmrBRtMTSVpC/sm9M4rpUI+dxl9QLrcz/fAm60TLTF4UFrxeiWctEWuZ4Kdj8lmwkHZiR3+Twk01lSmYJBx0nRFrF8tEXz733Dfk/ZFcsmeb9reoMMTiZ49OQ4F660riejJStESzlwdpI1PcGWbHId8Ljx9sR45/+dJFTkDYgl5x9tAXD5tXFSwxEOPl3+GNNa85WHTnLl+p78ZM+DD0JPD2yusBp4qWjfqmML0EhHctxBs1yLRTlHcnGThX3HRvJLWsIOyB9qNrUytmwS6cXNSAbLxZvJ6ryrLT/x4UBHMpRflpPvLN3gjORKE0n2Mqq1Pc51sl1ykQdcWY4drvx3fPyba1AueO97K3+f4pvgeop6SlnxFvffb79ndiTJ/v2waUsm9707ryDRady8bRmffu0urt3cV/O1Simr2Uy8yJHsoBshpxHJO5LnFpKXSbRFRXrDXkank8RTGc5MxDum0Z7N6pKM5Gp0B7143YqhqSSuoDXOPmOPjz17IFJ7rqMjKVyrpBibSba081Jof0JVm+0l67quLj6XXJQrWvWFfRWa7SVafqIz5HNXrA9MxlPzngAv12zv8NA0vSFv2fNI3pFckpM84cBoMNtEVmygsqN/FtJUuStg5QnbZqj5Ytco5tuYrZGUy5MGM3PZ2l5rwvj8ZCL/mazVmPDg2Yn8a1sN23VcGkkZSy2sN9fVN1rH6Le+Xf74euzUBE+em8o32QN46KHmN9oDKSQ3FbdLEfC6GuJILkQFNP/ktFjkb2iLBkB7pnHHqiiPn55gMDdjaru9O52Q313TkZxIZRf9uOkraT5kR7E4zZEcLVM0sbEdyY2OtqiUkXxqLIZSsKLbuRfDoYALX98Mp46VLxYcOqQZfHAVV98xxtq1ZV8CFJwCbpeqezC+5horX3NiYvaFy/79VgOCCy+z/obiSG5/XC7Fs3asqHuZZzTgYTyWzn/OnXQj5DRsbezGOgCDkwl8bteCbszanb6Qj5GZJCdHZ9C6vkaQ7cSqXCRTT7D2eKmUoj/sZ3gqkV+mvrLHx86d8MpXwh13wLp1i7q7LUdxz5CR6SS9ZbKoBcEp5B3JZa53R6eTdV1XFxeS7dU0/V1+YqnMnPvo4akE/S2cjwyWZpXqA3a0xXzoCfqYTKRJF7l2Dw9OVYy6Ko62KGYiliLkc+N1UKSOHaEyVaTbWAOifyIBD6mMztda5ovVlM2FywFO+S6/h3gqO+s4gFyzvXodyUXRi/YqgWhg7kSFTTKd5fDgdN693GrYcZy2Gc4mlqxfs3Js3wHurhjfv6f8cfGVh07ic7t4/mWrAUgm4dFHmx9rAVJIbjr1OEbrIWE3L2vjaAufx4Xf42KyaAbNvul49sUryGQ19z41BIgj2abW8ZXJapKZ7KIfN70lzYcKzSGdVkieWzSxaXhGsh1tUSED7fRYjGVd/kV3iy+U0LIZzp8ofxN7959plFvzwtdNVP0edrHXJPPthhtAa/jqV62b6qmE1Qzxox+FQACe+WIrh2shy9mE9sRuNjOZLyRLEaYSXreLkM89KzpmcCrBQFftpcidTE/Ix+h0kmO5JqLr68jvbicuX9fDs3asYNfG+jLq+7t8DE0l8svU7XFWKdiwAX7lV+AVr7Ay8X1ySi9cq8TTjM2kGha5JQiLgc/jwutWZZfSj0wn6auj6FvOkdyfO+5L4y2GppIt70gO+91zGsfZTCYW4kgunDtsDg9N53tNlNIb8uFxqbnRFvGUo/KRoag3UNFxNtqA82PEX3m1qgkzybQj3MhQrNXsY8woI7mo98OFK2o7kg8PTZHO6pYtJJe7b89mdS4jef51p+6gh8CmIX72Ew+ZMh/57x84z03bBujOTRg//rhVTL7yynn/yIbRvlXHFqEex2g9xNPtH20B9hL2Ikdyrrh32/YVuBT88OAg4Iz8ISdQroNtMcklcrLby9bseIi4Qyc+ImVyuG1GZpL4PK6GHVuFjOTyM9ynx+KObrRnE10ZY/SMj3TJdcOBA/D5/1BErjjGpnXVNbPjJ0wujG+5BXbvhve8B/xYf7fDx9N87nPwutdB1t/Ywr/QPkRzSzvtCSNx1lanNPNuaCrJgMRaVKUvbDmSj+YKyRs7zJHcHfTy6dfuYkW0voz/gS4/Q1NJhqetYkU5N2F3N1x/PbzmNVan877aSTZtS/G1iuVIlnFOcDZBb/nC6PB0Ml8QrkbA68LndrE84s8XBu3ru9J4i+GpBP0tHmsW9Fa+f5uKp+c9AW4Xo8ZzrtHxmRSDkwm2LC/vSHa5FMsi/rnRFrF0zQaJS025QnIjon+6cteI5aIgTIgls3l3frPpKuPeBsvoFagz2mJFxJ9fSWrHXEQCHiYrNCY8eNYy+LRqIdmuldg1NygkAixkgqAr4CG4aZDJcRd7985+7uToDMdHZrhuy0B+m1Ma7YEUkptO2Fc+o8aURN7h2d5/0mjAM2sW1b54WNcXYvuqKPvPWM5HabZnYWVsVT6+Ctnai3vc9JU4khPpLD63M5b3FFMtI3k0l+PWKBeerXm1Zntrep1fSO5bnSCbcXHkyOztf/Zn4A9A9Nqna7oBbEeyyYWxywUf+QicOgU//orlevvE31uztG9/e2GSSZxaQil2IXkynkIpWcFSi2jQM2uVxtBk6+dPLja9IR+j0ymOD0/T5ffIhFYNrEJyIn9NV60I5PXCjh3wq78KL3gBbNrU/JzApSbgdeFxKYYmk8RSGTm+BMdjGVtmX1unMlnGY6m6JkKUUkSD3llFKHvCqbiQHEtmmE5mWj7aIux3V1xROhlPz9uRbMcNjeXuxw6cte6bqxX3lkf8c6MtnOhILtN7amwmteDony5/rtHjAh3JsVQ6H2vYbMoV3cEqktZbFPW4XazqDrBtRSR/P1/as6aYA2cn8bgUmwfKT1o4nUAZR7J9Dx9cQB0lEvAS2DiEy6X5xjdmP3ff08MAXLe1P7/twQchGrUazzeb9q46tgAhX+WlKybYsyNOXwa/UEqXTIzOJHG7FNGAh90bC/aUsENO1M2mliN5qY6b3pKM5Hgq4zg3MsxuYFPKyHRjl48qpQh63WUzkrXWnBqLzcqfcior1llaHThQ2PbYY/CFL8CLXz2DO5SsmVNs30SYOkNvvBFe/GL473+NkhoL8tnPuHn+8+HCC61JC69b5ZekCYKNHW0xEU8T8XscN6HlNOY6kq1oC6EyfWErbufQ+SnW94UkBqQGAxEfw1NJhqYSuF2qriZ9AKtXw+23w6teZS3zDDp/yGwISikiAQ8nRi3He49kJAsOJ+hzM11yPzKWa4RWb9H3rc/cyutv2JT/2p5wGi4qJOebwbb4ZKeVkVyp2V4675I1xW4ubDuSnzxnuUSrNUBbFgnkexDZTMRTjmtUnM9ITsyuEyx0xYadR13JaVsvM8mFNWVrJF0V4jpiyfqjLQB+99atvOnmQkUzGrTqNOUaEx48O8mWZV34HHj/Xw+FjOTC59KeHFuI07zL78EdTHHh5XG++tXZz913eJi+sI9tywufzwcftK53XA6Q0QG70NmE/Y3JSI53iCO5NNpiZNqayVZKcfWmQiE5JMUjoLYjeamc7GGfG5/HNcuR7HdgDEtxA5tSRqYTDW/cFvS5y2YkD08nSaSz+c73Tmb1RuvzePBgYdv73w9dXXD7y8eBQnRFJWw31XyW6n3oQ5BKKc79x7WMjbr4/d+3to9MJfPnBkEoxi6MTsRTko9cB5GAJ19IzmY1w9Otnz+52NiTjo+eHGfjQGfFWsyHZV1+kpksR4dn6A15jSd3urrg6qvh1a+GW2+F5csXaUcdRCTg5cSIVUjuk2gLweGEfR5mSu5HRgx7j7x2z0ZuubDw4bazlYenCkVOu6jc6o7kkM9NMp0lVdIMLZHOkMxk5+0G7i4pJB84O0k04GFllRii5VH/3IzkWNpxsWBdZaMtUgueaKu2WtWEGcMi7WJSTiuttfH9+ct2r+c5l6zMfx0JeMlkddlJkINnJ1s21gKwVlKr2c328iu7FzBBYB9fl9wwxf79VtN4sP4e9z09zLWb+/LXRKmUcxrtgRSSm07I15iMZLvZXqDNHcn2TJfNyHQin61V3NQl5JATdbOp1WxvqRzJSin6cs2HwDpenTjpUa6ho83oTKpmQdSUoNddNtri9FgMgDW9zi9ALOt34Qkn8o7ko0fhy1+GN78ZUl7rwrPWTa5ddJnPRekFF8DLXpskMxHiwktS3HijtX1kpr5O4ELn0R30kspozk8kHOeocSJWFIh1ThyLpchktRSSa2Cf86YS6Y5rtDcf7OPp4NnJBWWbut2wbRvceaf12LbN2taORAKefDPHhWaACsJiU24Frp2JPt9rtbxJpdiRPGnnrLf2GGU7V0s1s++B5x1tUZKRbBf3qpkulkf8jEwn8311wHIk17tyZKkI+2evKk2ms0wl0gt2JNtaLzTaIp5yjiO5XLRFI/J+KxXdJ+MpTo3FWrqQbK8kLr5vjyUXrpk/14x0627LfGW7ko8Nz3BmPM6eonzkxx+HREIKyUKOWo7k85Pxskvf46lMfvkOQDz34fc7sDjXSCL+0mZ7KXpzLtHlkQAb+0OEfG5ZqpyjXDPHTFbzyIkxHjw2wiMnxoClcbL3hn2MTFt/u3jamdEWYBVNykdbJOlr8PLRgNdVtpB8atQqJK/ucb4jORLw4O2fzjuSP/YxK6/yd37HijJxu1TNC97+vCN5fhfG7/jDFL6VY/zqm8byWZmjbdiASCnlUUr9sVLqkFIqoZQ6qZT665LXKKXUu5VSJ5RSMaXUj5VSl5f5XjuUUt9TSs0opU4rpd6nlHLGFe4iY9/8nBydmfcx10lEi1YC2dcd0myvOsUxSBs6rNHefLALyUeGphs2Abh8ueVOfs1r4JprLNdyO9Hl9+SvH3obvFpKEBpNuUKyqSO5FKUUA2HfrGiLpwanANjU39oTePZS+dJVi3aBrmueK2/zjuSZFFprDp6r7RJdHrHuRezxX2vNRMx50RZ9IR8DXX4ezt3bjsVyvVIWnJHcmGZ7joy2KPqd7GNtITWBSk3r7QiVC1e0biEZrJzk8tEW8/+7KqWseIuuONdeWygk/yyXj7xn8+x8ZJBCspAjXCUDKZ3J8py/+Ql//b9Pznnug986wIs+8dP81/ZB3QkZycVNf0pdh9dvHWCZ3ODmsR3JxVlFX3noJC/8xE95yT/cxx995ZfA0rhZ+sJeRnLug0Qq65jlPaVESho6gvVZHI81NiMZrIF8tKTbNMDRnMtobY/zCxCRgBd37xQHDmgmJ+Ezn4GXvhTWrbOWGNazTDka8BIJeFjZPb+Ay81rfax63U9Zd+lkflubOpL/BXgr8FfAs4E/BmIlr/lj4L3Ah4DnA1PAPUqp/NozpVQvcA+ggRcC7wN+H/izxd19Z2B3Gj89FndcsxgnEg1a50Stdd7t1er5k4tN8blnQ5/zz+PNZiBi6ZXJ6vxy9UYRCMAVV1g5yrffDmvWNPTbN43iWB6JthCcTqiMcWp0gYVksOItih3JT5yeYE1PkO4Wzw23835LNZvKO5Ln9/t53S7CPjfjsRSnx+NMxtNcuDJa9T3Lc/fVdrzFdDJDVuO46yeXS3HjBQP85NAQ2azOZ3B3LzQjOdCYQnIsmSHodYZ5oVy0hb1KeSH357Y5o/Q++sDZXCG5hR3JYGkzy5GcWrhmUIhuvfNOeOgha3XvfYeHWR7xs2VZYVLsO9+B3l7YunVBP65hOONo7mBC/soZtvvPTDIyneQnh4Z4V8lz9z41xMnRGDPJNCGfh0Q6i9etcLe5EzcS8BJLZUhlsnjdrjmuw3c/d/uspkCdTsjvJqut5Sr2Se5kzu362d+4GoV1sXLl+p5F35fekI/TY1Z34HjaOTlRpUQCXiZis4+hsdzXjS5MXrKmm//6xWkyWT3rs/vgsVE29oda4kI4EvDg7Zti6BHFX/0VTEzA295mPVevK9jlUnzr926c93L53rCPNT1BHj4xmt82Op1sK5eWUuo5wMuAnVrrJyq8JoBVSP4LrfXHc9vuA44CvwO8J/fSNwFB4E6t9QTwv0qpKHC3Uuovc9vaFtuRY+UMymVQLaJFmXeDdiOjiBSuqlF83tsw0NrOuKWg+Nw/sEgTgErBpk3WY3TUagr75JNW5mArUnzukmgLwemEy/QEsZ3EC1k91hf2z8pI3n9mgu2rWrtYBQVHcumqUtvpuZDVVN1BL2OxFE+erd1oD6yMZIDzE3GA/D2SPSnvJG7aNsDXHj7F46cn8m7RhTqS/R43PrerARnJaYI+Z3g4y0Vb2Nm/C4lpiFZyJJ+dJOxzs7a3tTviBryufH8pKBg5F+o07/J7mEqkufNO+MM/hK98RXNfbJjrt/bnY2dOnLDcym97mzMa7YE4kptOOFcETpeE6QM8cHQEgANnJ2YVR0emkzx13lq6c3rMOqnHU5m2z0eG2TlF2axmtMR1GPZ7WDVPV2M7EvbNHShGp5P0hLzcvG0ZN21bxlUb+pakIVlfuOAaiKeyzo22CHjmXCyMNuBitxy7N/YxlUiz/0yhbpfNah48NsLujX1V3ukcIgEPnv5pwGp8t2ePtYwYLFdwvS7utb2hBU0uXL2pjweOjKK1JpPVjMUan2ndZH4D+H6lInKO64Ao8EV7g9Z6Gvg6cEfR6+4AvlNSMP48VnH55obtsUMpdtFItEVt7OWrE/EUQ1PWuVAykqtj51D63K6qTYwEi96QD3sudSnO2729cOONVuzFDTdAT8+i/8iGY5+7uvwefA69nhIEm5DPM8c4NTKdpDvoxeue//HbXxRtEU9lODw0zfZV1R22rUAhI3m2ZhMLjLYAa0wfj6XyLtFtNeIGVuTGMNuRbNcknOZIBrjxgmUA/PjQIKM5R3Ij7t26Ah6mEgubdYylMvkJgmbj87jwuV1MJYrzfhcebRGt4kjeViOLuxUI+mY7ku1UgYUU38EazyfjabZsgZ074f990YqwvW5LIdbiE58Ara3oSKcgVx5Nxh4opsvEW+w7OoJSkNXw0LHRWdtt7KZc8ZRZl81WpTjEfTyWIqsbX9xrJ8o1axiZSTZlGWRf2Md4LEU6kyXhaEeyZ85Mar4LdIOdUrs3WcXi4s/004NTjM6kWqiQ7MXbZ01sJRLw9rcXnhudTjZcs0rs2tjL0FSCY8MzjM0k0ZqGZ1o3mWuAJ5VSH1dKTeSyjb+qlFpd9JqLgAxwqOS9+3PPFb/uQPELtNbHgZmS17UlxQ1inJbx50TySxVjaYamEnjdynFNdpyG1+0iGvCwti/Y9ivFGoHbpfIF5EZHW1TD54NLLoGXvxye9zzYuBFa5T7XXtre017jnNCmVMpIXuhKv/4ik8qT5ybJZHWbFZJna2bHKyykiNsTsgrJB89OsKo7UHM87w/7UKpQSD48aJlHnLhqcqDLz8Wro/zoyUHGZqzjohHnyEgZk5EJ2awmnsouuODYSEqL43a0xULqSeUyku0s7lrO91Yg4JmdkWwXlYMLdCQXH1933gkP73WTnvKzZ7PVaG96Gj71KXjxi63rFKcgheQmYy8tKJ1x1Fqz9+gIz96xArdLse9ooZC8t6jodCpXSE44uHlZI7FPUBPxFCO5AaJ/CW86Wo18BlJytiO5Gdmx9s8ci6WIp7JL0uBvPlgNHSs4khus25qeIKu7A+yd9fm2/m8XmZ1ONODB0z2D16tZv94a5GxGDRzJC+XqXOH9gaMjjM4szt+ryawEfg24HHg58OvAVcDXVGGKvxeY0lqXzkyOAiGllK/odWNlfsZo7rlZKKXeqJTap5TaNzg4uMBfo/kU3zSJI7k20aJxd2gyQX/Y3/KukqVgIOJv+YZPS8lA7lpusaItarF2LTznOfDKV8Lll1vZyk7GPne1YS8AoQ0J+z2ks5pkurACtxGF5L4uHzPJDLFkJr+6b0cbFJIL9YHFibYYn7EcyfVk1nrcLvrDfgYn46QzWf76f59k00CYXRuceZ9y07ZlPHRsNB/l2AjDWTTgzTuc50OsQREIjSTsdzNd5Ei2C6QLKXYXG/5szk8mGJtJtXyjPZjrSLZd3AsvJHvzk0QveQlorfAe2cC6PmuV/ec+Z0Vy2dGRTsGZlZwOIu9ILslAOjI0zdBUkpu3Lefi1dF8zAVYhaYr1vfgUgVHcsLBhblGYucxTcbTixY30E6E8hlIRY7k6aUr7hVj/51Gp5PEUxnHNoYsN+tsT1osxg3b7k197D06km+IuPfoCANdPjb2t0aDpmjQi3LBy984xd/9HXhy17ZW9ExqydzvW5Z10RPysu/oCCPTi5Np3WRU7vFCrfU3tdZfAF4DXA3cupg/WGv9Ka31Lq31rmXLli3mj1oSim/AnLg002nkoy1iKYamEvnGaEJ1/uqlO3nXc7c3ezdaBjsupdnn7UgErr3Wir245RYYGGjq7lSk4EiWz6PgfOziVLFxqlGOZIDh6QT7z1g5rOvboMGprVdpsz37/qRrgYXk4ekEhwen625+tjzi5/xEgi89eJJD56f4o+dc5NhInZsuWEY6q/nWY2fwuV0NKd5uXhbm0LnJ2i+swEyDCo6NJOzzzGogGG9A47iQz43bpWY5kg+ds1atbmsDR7LfMzvrPdagaIsuf2E19JZtGULrRjn2ra186EOKbBb+9m/hqqvg+usX9GMajjPPAB2EnWFb6ki2HchXb+pl98Y+HjkxRiKdYSaZ5rFT4+zZ3M/KaGCWI9mpUQGNpDjEfaQB3X7bnXB+oqLIkdzEaAuwYiKs5n/OPP1Eg4WGjjb2pMViLCHdtbGP85MJjo/MAFYheffGpcmtbgR2Ue4Fvz7OC19Y2D4RT5HJ6iWbtHC5FLs29LH36Gj+3NBmk0yjwC+11sNF2+4FksCOotd0KaVKB4NeYEZrnSx6XXeZn9Gbe66t8bhd+dUa8+183klEixwmg1MJyUeukyvX97J1eVezd6NlsB3JTlll5nbDRRfBXXfBi15kdUl3SoMbKHIkO3B5uSCUEvbPjXIcnl74/YgdiTMyneSJMxNcuDKCqw3ihPKO5JJc6alEmoDXtaBc6Z6Qj6GpJMlMtu64geVRP0eHp/nId59k14Zebr94xbx//mJz1YZeQj43Tw9O0xPyNuR+aseqKGfG4/m4DFMaVXBsJJGAh6n43GZ7C7k/V0rliqKF73ti1Lq/bYsJHp+bRNGqilgqg8elFvR5BDtmJI3Wmh8ePE//XT/n5uckeNe7rN5DBw5YbmSnlQYcdEnUmYT85R3JDxwdoTfkZcuyLnZv7CWRzvLYqXF+cWKMdFaze2Mfq3uCszOSHToz2EiKl0y06fL1hhIqmajQWosjuQbFDR1tRqZTdPk9i7LPdiTD3qOjnBmPcXI0xq4WyUeG8nlYQNFEz9Ld5O7e2MuRoem8a6DNJpn2YzmSS1GAfVVzAHADW0teU5qJfICSLGSl1DogVPK6tsUujjqx67jTmNVsbzIphWRhUbCPq34HNklduRJuuw1e/WrYvRvCDkgssa9VxJEstAL2/Uis6H5kdDq54Ex0e+JpeCrJ/jMTbZGPDEUZyam50RYLnQAvjveq1WjPZnnEz9OD0wxNJfg/v7Ld0WYXn8fFns1Wk7JGGUrs4+qJMxM1XlmeQrSFc645w37PLMd7I6ItwLqunogV7glPjcZwu1RbNB4Oel2zHMkzyUxDXOaRgIdURpNIZ/nyg6dY2e/hu//t48Mfhn37rGuQX/3VBf+YhtP+lUeH01UhI3nf0RF25VyJu4oKTXuPjKIUXLmhlzW9wbwjOZ7qDEdyZJYjObd8XS6iKxIumaiYSqRJZfSSFvds7KLeyEySRCqL36GO5MIxVuLiXqSi5AXLu+gOetl7ZCSfj3x1SxWS5+ZhAYWJniX8fNq50t994hzQdoXkbwCXKqWKF1rfBHiBR3Jf/wyYAF5qv0ApFQKeD3yr6H3fAm5XShXfQbwMiAE/avyuOw+7OCqO5NrYn/HxmRTD0+JIFhaH67cOcOMFA45u5BgKWctLX/UqeNazYNWq5u2Lfe5qs5U3QptSGuU4EU+TzuoFN2S23//oyXEm4+m2KST7PS5cCmZKjGYT8TQR/8KKkfb1j9ul6l41szxiFQGfd9kqrlg/p5WG47hpmxXD1qiVpPlC8un5FZLtOo+zMpJnR1vEGhBtAXN7DZ0cnWFlNIBnga5dJxDwuvNNCcGqvzXCZW5/po+PzPDDg+d50RVr8Hpc/MEfwM9/Dt/8ptUc2GnU9RdVSm1VSv2jUupRpVRGKfXDMq9RSql3K6VOKKViSqkfK6Uur/P7v1Ap9UulVFwp9YRS6mVmv0brYs9MFS/1OT8Z5+jwDLs3WifqgS4/m5eF2XtkhH3HRrhwRYTuoJfVPUHOjsfJZHUuKsA5J6fFIt89Pp5mZDpB0Ot2VN6Q0yh1JI/ms2OXvhDQmyteD+eWUwUc7kieKHLYDi+ii9uKZOhl77ER9h4ZIexzs31V6+RIed0uAl5XGUey9fVSussuWd1NwOvil6fGCfnc7XZO/BQwDHxdKfV8pdQrgc8B92it7wXQWseBDwLvVkq9RSn1TOBLWGP9x4q+1yeBBPBVpdRtSqk3AncDH9Vaz+8qucXozheSneMOcSp+jxu/x8WJ0RlSGc2yiBSShcbzjIuW87nXX9MSy9JdLtiyBV74QnjpS2H79kJ/gKUimm+259zCuyDYFO53rfuRRsUT2u//6VNDAOxY3R6FZKUUYZ9nTkbyVDy94OuWntz1z6aBcN0rLS9cGaHL7+EPb7+o9osdgF1IbtRE27KIn4EuP/vPzC8n2XaxOum+pMtXIdpigffnpb2GTo3FWNsbXND3dApBb0lGcqpRjmTrM/nv9x8jndW85Mq1+ed27YIrrljwj1gU6p0auBh4LnAQeLLCa/4YeC/wISz30xRwj1JqZbVvrJS6AfgK8APgDuB/gP9QSj27zn1raWzHaHEGkp2PvLvIlbh7g9WQ66Fjo1ydc92t7gmSymiGphK5qIDWn+mpRXHRamQ61W6Ow4ZTmklWaBq39Dcefo+bLr+HM+NxwFmDaTHlCsmj08lFzSHctbGPw4PTfG//Oa7c0Ntys7aRgHeuI9nOKV7CY83ncXH5uh7r57aZSytX4L0VK8P488AngO8BpYudPgh8AHgXlos5CjxLa32u6HuNAs/EisH4OvBnwF8Df7q4v4VzsB050myvPqJBL4cHp4FClq0gCNDfDzffbDXnu+46iC5RHWtDf5g7r1iTL5gIgpOx70fsIszIdAJYeDxhl9+Dz+PioePWit16M39bgaBvdtEKGhttUW+jPYDn71zNg++9jfUt0gh8Y3+Iy9Z2c1EDjTk7VkfZP89oC7vZnpMcyV0Bz6weSvlme76F3YNGAt5Z99AnR2OsaZNCst9rZSRnsxrIRVs0oJ5hJxR8+cGTXLw6avTZbCb1Tml9XWv9XwBKqS8Ds3oYK6UCWIXkv9Bafzy37T7gKPA7wHuqfO/3Aj/WWr819/UPlFIXA38CfLfO/WtZyjmSHzgyQsDr4uLVhV5Iuzf18YV9JwDyURdreqxlJqfGYsQ7pNkeFIpWozPJJS1StSIBjxulChMVo01uQtYb9nJ23IpjcerER7RMtMXIdJILVixe06SrN1mrD06Px3n51esX7ecsFqWzz1A8abG0x9rVG/u4//BIW04yaa2fwprUrfYajVVI/kCN1z2BVZjuSMSRbEY04OHIkFVIXibRFoIwB78fLrvMehw/Do89Zv27WPg8Lj76sssX7wcIQgPJR1vkC8n2qrWFXasppegP+zgzHmfTQNhRGbQLxcqwLS0kp/MxE/PFjnu4sM58ZBun9rYph1KK/3rL9Q3Nct6+KsI/Pz1MMp3FZ3gPW8hIdo6G9vGVzWpcLkU8lUEp8C3QzBQtuidMprOcm4iztrc1JiBqYReNE+ksQZ/birZowN+0K1CoBxa7kZ1OXUeK1jpb4yXXYbmevlj0nmksp9Mdld6klPIDzyh+X47PA3uUUuW6yrcVhcyoIkfysRGuWNc76yRlx1wU/39Nj/WhPDUaI5HKLqjLZithF61GppNt5zpsNC6XIuR1F124Nae4Z9MX8rWMI3lORvIiHmuXrOnOF9Z3bXR+9lgppbPPYB1rfo9ryTsU2xNt0oRTqEZ/l49w+8WfLBrRoJfh3PgxINEWglCV9evhuc+FV7zCKiz75SPTkjQy2lEptUMp9T2l1IxS6rRS6n1KqY4ZgPJRewk72sJyJDfifsT+Hq0UC1cPIZ971oplsHrdLHQCfENfmE0DYW5u89UMjW4IuGNVlGQmy9ODU8bvtZ3lTorj7LJXxeeK3GfH4/SFfAvWLRr05uMOz47HyWpY29MejmS71ma7t2PJTEMmB+zPtMeleMHlqxf8/ZaKRlUeLwIywKGS7fsp6QxfwhasRkGlXeL35/ZtW4P2z7F43S58Hlc+A2kqkeaJ0xOzCscA6/tCLI/4WdsbZFW39WFcnXMknx6L5aItnHNyWkyiuaLVYjZAayfCfk8+I3kkHzfQLEeyL98g0qmO5OKGjmANFjPJzII7S1fD73Gzc10PXrfiinWtV0iOBjxMlDqSp63P51J3dr5yQy8utXCXi9De/OYNm/nsb1zd7N1oGYojQKTZniDUR3e3FXfxmtfATTdBX+v00RUsGhLtqJTqBe4BNPBC4H3A72PFSnUEdrHFXuJvT0w2oo+GfS+4o00a7dmEfO68XjaT8fTCoy1CXn7wB7ewMxcFJ9SH3XBvPvEW9n34UptrqtHlt44jOyf54RNjDTkmIgEPk4k02azm5NgMQFtlJEPBYd6oaItI7m9xy4XLWuoau1HrP3qBKa11pmT7KBBSSvm01skK7wMYK/O+4udnkWsM9EaA9etbbxl4KWGfO9+V9aFjo2R1wVVno5Ti95+9DberUHyLBLxEAh6rkJzO4u80R/KUOJLrIez35Lskj8wk8brVgjv+zpe+kC/v9HWqE7DUkWxfMGzoCy/qz33TzZs5eHbKUbPV9RINePMTBDajTVox0OX38Ae3X8ila9p+QYuwAJZF/NI0zoDiLu92ox5BEOrD44EdO6xHPN7svREMaFS045uAIHBnrt/B/yqlosDdSqm/7IQmt6XNv4enkgS8roZc89qFl+1tV0j2MDZTKJ9kspqpRDq/DF5YWjYPhPF5XPMrJOejLZzzt7Nzy6cSacZnUjx1fooXNcANGwl40NpqrHlq1Lo3bJeMZPv3ePTkOKt7gsRTjYmWXdHt5+qNfbzhxs0L/l5LSUtWHrXWn9Ja79Ja71q2rPWXZYSKurLuOzqCS1muulJetns9d101OzdlTU+QU2MxkunsgrtstgrRgJeR6SSTibS4Dusg5HPno1Ps4t5Su0Rtih3kTo1i8bqtOAbbkZxvfrlpcZ3Ct160gjffsmVRf8ZiUSkjub9JTbl++5at3HhB648NguAU7Am2/rAPl6s544cgtAOBhcWbCktIA6Md7wC+U1Iw/jxWcfnmxuyts/F5XHjdiulkhsHJBF996CQ71/Y05HsXoi3aq5Ac9s92JNu1gqgUkpuCx+3iwhUR9p+ZNH5vPGnlDzvp3tdu8DadSPPwCete94r1C7/XjRT1Gjo5GkMp8qvpW509m/tZFvHz1YdOApYjuRHRFn6Pmy++aQ/XbO5f8PdaShp1NI8CXWWynnqBmQpuZPt9AKXWsd6S59uaLr8n70h+4OgIF6/uzn+4a7GmJ8jhXAOcTnIkn865HyUHtTbhookKO26gWRT/vZwcxVJcGH3g6Agb+0MLbm7Rzlh6zc5IbpYjWRCExmNHW7TSkjtBEIRFpt5ox4soiXHUWh8HZqgeAdlWBL1W5u97//MxppMZPvDiSxryfW/bvoJf3bWWVd3tdZ0e9HpmFZLt+xJpEtw8tq+K8MSZCay+1vVjRyA0y8hVjnCu1jSVSPPw8TFcioZFW4B1vJ4ai7EiEjBuTuhUPG4XL7p8NT84eJ6R6SSxVGOiLVqVRv1VDwBuYGvJ9jkDZwlPAynmDqIXAVkq51G1FSG/m+lkmmQ6yy9OjBk121rdE+T4sJU/0ymO5EjAQzprncAlI7k2oaIZ7dGZ5hb3WsGRDNYxNhFPobVm39GROVEzwmwiAS/xVJZUpmDeafakhSAIjSMatG4MpNGeIAhCnprRjkWvGyvz/lGqxDgqpfYppfYNDg42an+bStjv4btPnOPbj5/l7bdtY+vyxjTH27Oln7+8a6ejinSNIJyrD9jYhg0721ZYeravijIyneT8ZMLofTOpxjhXG0lXUSH5oeOjbFsRqdvIWI1oUa+hk6MzbRNrYXPnlWtJZTRff+Q0sVSGgMP+rktJoyo5PwMmgJfaG5RSIaymA9+q9CatdQL4QfH7crwMuE9rPd6g/XM0YZ814/jY6XHiqSxXGxStVvcE80VVp2bONpriJgPieKxN2OfJR1s0u7hX/Pdy8vEaCXiZjKd5enCK0ZmU0WeyEynNlU5lskzE0/L5FIQ2wb4xWCaOZEEQhEWn3WIcwYraOzMeZ+fabt5w46Zm747jCflmO5KnxJHcdOz4lCcMc5JjycZk6TYSu2g8GU/zixNjZWNV54N9fE7EU5wai7VNoz2b7aui7FgV5Yv7TpBMZwl5O/fzWFchWSkVUkrdpZS6C1gDLLO/VkqFtNZx4IPAu5VSb1FKPRP4Uu77f6zo+7xWKZVWSm0o+vbvB25RSv2NUuoWpdRfYnXIfV+DfkfHY2fY7js6AsxttFeN4lkef5ssG6hF8QAqjsfaFHf9HZlO0htu3kx236xoC+cer5YjOc3eXD6yySqBTiRSNPsMlvMdoK+Jx5ogCI3DbrY3EJExVxAEIUe90Y6jzI1xtF/XETGOYDmSfW4XH37pTjxu594DOIWQz00yXVjtJ9EWzccuJJs23Is1KEu3kdjRFo+cGGMynuaKBsRaQOGecGwmxZmxOGt62quQDPCSq9by+GnrGAj6OvdcVu+ZaDlWYbgY++tNWN1pP4hVOH4X0A/sA56ltT5X9B4XVgRGfu2J1vreXIH6/wJvBo4Ar9Raf9foN2lhwn4rw/aBI6NsGggbdZJf01PIg3LaTNdiES12JEuhqiZhv+VIzmQ1Y7EUfeHmOcqKC4tOPl6jAS+nxmLsPTLCQJePTQPhZu+So4mWOJJHp62CsmSYC0J7YH/GxZEsCIKQpzja8WDR9tJoxwOUxDgqpdYBIapHQLYVb7p5C1rDthWNibRod+zC43QiTU/Ix0TOrCGF5ObRHfSypifIE6fNCskzqQxBn7P+bvZx9JNDVnROoxzJ9vXiU+enSGc1a3tDDfm+TuIFO1fz59/cTyarHfd3XUrqKqFrrY9qrVWFx9Hca7TW+gNa67Va66DW+kat9cMl3+dfit9TtP0/tdaXaK39WuuLtNafb9Qv2AqEfG6m4mkePDbCbkPn4+qiWR4nZ842kuIBVJbO18Z2JI/NJNEa+kLNdCQXihBObg4ZDVrN9vYeG2H3xr62y11rNPbs80TMusgdmbYdyfL5FIR2ICLN9gRBEEqpN9rxW8DtSqniCurLgBjwoyXYT0fw3EtX8SuXrWr2brQM6/usAtzTg1NAsSNZTFTNZPuqKA8eG83HRtZDLJkm5DADld/jwu1SHB2eoSfkZXODTFP28Xng7CRA22UkAyyL+LllmxU5JM32hKYS9nsYnUkxOpMybuq1PBLA47KKXP6OabZnnaCiAQ9eWRpVk7Dfak54bsJqDNBMl2h30Itdk3Xy8RoJeBmaSnBiJCaN9uqgkIeVcyTPSCFZENqJi1dHec21G7jxgoFm74ogCMKS0KhoR+CTQAL4qlLqNqXUG4G7gY9qrc2sjULHcHkuauAXJ6yWUVMJibZwAq+7bgPnJuK844u/IJvrU1WLmWSGoMOiLZRShHP7dMW6noaZpgJeFx6Xysd/tFtGss2dV64FyGvYiUgVzgEUZ+aYNvVyuxQru614i05zJEuRqj7sE9zJ0Rmgubq5XYqeXNamk4/XiN+Dzl0bSKO92kRLMpLzjmRZMSAIbUHA6+b9L7qEfnEkC4LQOdjRjl8CrgV2FH29PPeaDwIfwIp2/AYQpSTaUWs9CjwTKwbj68CfAX8N/OmS/BZCS7I8GmBlNMCjJ8cA6xrb7VId7YB0AjdesIx3P3c733n8HH99z5N1vSeWcl4hGQoN965Y37heQEopokEvZ8bjAG2ZkQxw+8Ur+Is7L+XmC9ujGep8kCktB2B/iAe6/GzoN8+RWd0T5ORozNGZs43ELlpJ/mp9hHLH14nRGND8OJDesI+xWAqfg93k9mRF2Odm+yrJcqtFpCQj2S4k90ghWRAEQRCEFiQXxVjVpqe11liF5A/UeN0TwK0N2zmhI7hsbTePnrQcyZPxNF1+j8TtOYDX37CJQ+em+Nj3n2JdXyi/Wivk9dBdEiEZT2UYnkrS5cAs3a6AB8bhygYWksG6LxyZTjLQ5W/b+pTH7eIVV69v9m40Fecd0R1IKHdiuXpT77wGB3umx+9xbmGukeQdyVKkqotw7vg6MWI5kvu7mqtbX8jHaU/M0RdCdnzKlRt6pbN0HXSVKSRH/B58HXJOEgRBEARBEIRGsnNdD9994hzjsRRT8bTEWjgEpRTvf9ElHBme5g+//Gh+u9et+IdXXcVtO1bkt/3rfUcZj6V4/s7VzdjVqoT9HpSCneu6G/p97eO0HfORhQJyNnIAYb81U7Nrw/yW0NuF5Had8SnFLlqJI7k+Qn472sI5jmSnH6v2ADjfz2Sn4XW7CHrd/PLUON9+7Az7z0zI51MQBEEQBEEQ5slla60C3y9PjjMRT0ujPQfh87j4p9ft4ruPnyOVyQLwLz87yru+9kt2beylJ+RjdDrJx77/FM+4cBk3OLDHxECXnx2rog0/riJ+6/u1az6yYCGFZAewpieI26Xm3cRm+6ooAa9rzlKKdsXrdrGmJ8jmZY3pLtru2I7kk6MzhHzuphdxtyzr4lSuqO1U1vWFUApu2ua8Qd+prO4JcM/+c9yz34oFvGGraCcIgiAIgiAI8+GyNT0APHJyjMl4iohfSjdOIhLw8pKr1ua/vmRNNy/8xE953zee4KO/ejl/9/1DTCfSvOu525u4l5V5/wsvyRfBG4ltyFrbpvnIgoWcjRzAro197Ps/t83bwffcS1dy/dZn5rODO4Fvv+3GphdEW4WQr+BIbrYbGeAdz9rG7966tdm7UZXtq6I89J5niavWgK+8+bp8YwWwivGCIAiCIAiCIJjTHfKyaSDMIyfGmEqkWRkNNHuXhCpcsqabt9yyhb/7/lNcvLqbz913jJftXs+2Fc7st7Oye3GOp2hQHMmdgBSSHcJCClZKqY5raiVLe+onnJu9nkqk2TTQfBe3z+NqiexcKSKb0RPyddx5SBAEQRAEQRAWi8vWdvPzwyP4PC4uWC6lG6fzO7dewHefOMf7v/EEIZ+btz/rgmbv0pIjGcmdgfOrOYIgLIiwr+Dc7pPiqCAIgiAIgiAIguO5bG0PZyfinBmP5fsECc7F53Hx4bt24vO4+J1bt7I80nkuctvwt7ZXVqe2M3I2EoQ2J1SUpyWFZEEQBEEQBEEQBOezM9dwL5XRsiK3Rbh0bTf73nNbR8WOFrNlWZjuoJd1Ukhua6SQLAhtTqgoS9oJGcmCIAiCIAiCIAhCdS5e3Y3bpchkdT4yQHA+nVpEBnjBztXcfvFK6WfV5ki0hSC0OS6Xyjfc6wt37qAmCIIgCIIgCILQKgR97nyztohfCsmC81FKSRG5A5BCsiB0ACGfdeEhDeQEQRAEQRAEQRBaAzveQqItBEFwClJIFoQOIOzPOZIl2kIQBEEQBEEQBKEluGxtD4BEWwiC4BikkCwIHYDtSJZme4IgCIIgCIIgCK3BzRcu4+LVUbavijZ7VwRBEABpticIHUE4n5EshWRBEARBEARBEIRWYE1PkP95643N3g1BEIQ84kgWhA4g5JeMZEEQBEEQBEEQBEEQBGH+SCFZEDoA25HcE5QmDYIgCIIgCIIgCIIgCII5UkgWhA4g5PPQHfTicctHXhAEQRAEQRAEQRAEQTBHMpIFoQN4zZ4N7NnS3+zdEARBEARBEARBEARBEFoUKSQLQgdw+boeLl/X0+zdEARBEARBEARBEARBEFqUhq1zV0r9UCmlKzz2VHjPxgqv/3yj9ksQBEEQBEEQBEEQBEEQBEFYGI10JP82EC3Z9j7gCmBvjff+AfDToq+HGrhfgiAIgiAIgiAIgiAIgiAIwgJoWCFZa/1E8ddKKR+wC/iC1jpd4+0Htdb3N2pfBEEQBEEQBEEQBEEQBEEQhMbRsGiLMjwH6AX+YxF/hiAIgiAIgiAIgiAIgiAIgrDILGYh+eXASeAndbz2n5VSGaXUGaXUR5VSwUXcL0EQBEEQBEEQBEEQBEEQBMGARmYk51FKhYAXAP+otdZVXpoAPgF8F5gAbgH+CNgCvLDK938j8EaA9evXN2anBUEQBEEQBEEQBEEQBEEQhLIsSiEZeD4Qpkashdb6DPA7RZt+qJQ6B/y9Umqn1vqRCu/7FPApgF27dlUrVAuCIAiCIAiCIAiCIAiCIAgLZLGiLV4OPKW13jeP93459+9VDdwfQRAEQRAEQRAEQRAEQRAEYZ40vJCslOoG7mD+TfZ0yb+CIAiCIAiCIAiCIAiCIAhCE1kMR/KLAT/zLyTflfv3wcbsjiAIgiC0F0qpNUqpKaWUVkp1FW1XSql3K6VOKKViSqkfK6UuL/P+HUqp7ymlZpRSp5VS71NKuZf0lxAEQRAEQRAEQRBaisXISH458IjWen/pE0qpp4Afaa1fn/v6biAC/BSr2d5NwDuBr2qtH12EfRMEQRCEduDDwBRWP4Ji/hh4L9ZYegB4B3CPUuoSrfVZAKVUL3AP8ARWY9stwEewJpffsyR7LwiCIAiCIAiCILQcDXUkK6UGgGcCn6/wEg9Q7Hg6ANwM/DPwTeCVWDfHr2zkfgmCIAhCu6CUugl4DvBXJdsDWIXkv9Baf1xrfQ/wUqyoqOLGtm8CgsCdWuv/1Vp/Evgz4B1KqehS/A6CIAiCIAiCIAhC69FQR7LWegjwVnl+Y8nXn6dy0VkQBEEQhCJy8RMfA94HjJU8fR0QBb5ob9BaTyulvo7Vu8B2G98BfEdrPVH03s8DH8Ka3P36ouy8IAiCIAiCIAiC0NIsRkayIAiCIAiLw5uw+hB8osxzFwEZ4FDJ9v2554pfd6D4BVrr48BMyesEQRAEQRAEQRAEIY8UkgVBEAShBVBK9QPvB96htU6VeUkvMKW1zpRsHwVCSilf0evGyrx/NPdc6c99o1Jqn1Jq3+Dg4Lz3XxAEQRAEQRAEQWhtFqPZ3pLy4IMPDimljjXpxw8AQ0362a2KaGaG6GWG6GWOaGZGsV4blvhnfwC4X2v9zaX8oVrrTwGfAlBKDTZxzAU5Xk0RvcwRzcwQvcwRzcxo5rjbdJp8rwtyvJoiepkjmpkhepkheplTc9xt+UKy1npZs362Umqf1npXs35+KyKamSF6mSF6mSOamdEsvZRSFwO/AdyklOrJbQ7l/u1WSmWwHMVdSil3iSu5F5jRWidzX48C3WV+TG/uuYo0c8wFOV5NEb3MEc3MEL3MEc3M6HS9ZNxtLUQvc0QzM0QvM0Qvc+rRrOULyYIgCILQAVyA1cz2vjLPnQT+Cfh/gBvYChwser40E/kAJVnISql1WIXpWdnJgiAIgiAIgiAIgmAjhWRBEARBcD73As8o2fYc4I+A5wKHgWPABPBS4P8CKKVCwPPJRVPk+BbwTqVURGs9mdv2MiAG/GixfgFBEARBEARBEAShtZFC8sL4VO2XCCWIZmaIXmaIXuaIZmY0RS+t9RDww+JtSqmNuf/+RGs9ldv2QeC9SqlRLHfxO7Aa636s6K2fBN4KfFUp9SFgM3A38FGt9cTi/RYNQY5XM0Qvc0QzM0Qvc0QzM0Sv5iL6myF6mSOamSF6mSF6mVNTM6W1XoodEQRBEAShgSilfg34ZyBSVEhWwLuBNwP9wD7grVrrh0veuwP4OLAHGAM+A9xdkq0sCIIgCIIgCIIgCHmkkCwIgiAIgiAIgiAIgiAIgiBUxdXsHRAEQRAEQRAEQRAEQRAEQRCcjRSSBWEJUErJZ82Q3BJ9oQ5EK0EQhNnIuGuGjCNmiF6CIAizkXHXDBlH6ke0ch7yYReERUYp5dVaZ5u9H62EUqpLS+6OCb+hlNoKchEnCIIg464ZMubOCxl3BUEQcsi4a4aMu8bImOswOvqPoJQKKqUuVUq9Wim1VSnlafY+OZ2cXs9RSnU3e19aAaXUHcAnlFKhZu9Lq6CUuhX4b6XU85q9L61ATqdPA28HkIu46iillimlXqCU+oBS6hVKqU3N3qdOQsZdc2TcNUPGXTNkzDVHxl0zZNxtLjLumiFjrjky7poh464ZMuaasxTjbkc321NKfRq4AxgANPAnWusP555TMks0F6XUCaAX+ATw78B+rXWquXvlXJRSg8A/aq3f0+x9aRWUUk8C9wMf11o/0Oz9cTpKqWPACLAB6zP5f7TWE3IOK49S6lvApUAIiAL/orX+zebuVecg4645Mu6aIeOuGTLmmiPjrhky7jYXGXfNkDHXHBl3zZBx1wwZc81ZinG3Yx3JSql3ATcDfwFsB+4G3quUWp2bqVVKqWATd9FRKItu4DSQBl4P/C/we0qp9fbstlLK38TddBRKqT8BYsCnirZ5lVK3KKWuUkqtFL1mo5R6C+AF3msPrEqpK5VS71VKvUMp9Xql1Irm7qVzUEr9KdZ5/DXA54HfAF4IIAPrXJRSfwxsAd6gte7D0uo3lFKXK6V6lFJrlVIDzd3L9kXGXTNk3DVHxl0zZMw1R8ZdM2TcbS4y7taPjLnzQ8ZdM2TcNUPGXHOWbNzVWnfcA4gAg8Cbi7atAX4G/AnwS+AXwF8Cl+eeV83ebyc8gGcC3wEux7ooSQF7gbuAbuDHwHOavZ/NfuS0mAZeX7TtBcCPgASQBZ4A3gZEcs93/DEGvA/4HBDMff1bWBd0w8BZ4CDwDeD2TtcM6MG6cPvNom2fBeLAb3ayNhX0CgCPA+8EXEXbv461XOos8HTu/PayZu9vuz1k3F2QdjLu1qeTjLvmmsmYa6aXjLtmesm421z9Zdydn24y5tavlYy75prJuFu/VjLmmmu2ZONupzqS3wCcA75vb9BanwLWA6/AEvYh4E3AB8Q2P4sfYw2ob9Favwu4FhgFvph77kqspQedzkeAIHASQCnlA/4ZGAN+F+si5VHgo8D/AZlVyzEOXK+1juUcEn+LddLbDqwG/hrrIvg9Silfh2v2GayLsy8ole9kezfwQ+CPsD6LQoEAMAX49exsrcuBi4H3AH+P9bl9t1Jqy5LvYXsj4+78kXG3PmTcNUfGXDNk3DVDxt3mIuPu/JAxt35k3DVHxt36kTHXnKUbd5tdNW9ClV4Bz8U68fUVbf99YAi4tGjbDVgzaa9q9n476QHswZrJuK1o22uxBt048GFgB+Bp9r42UaMXYJ34JoD3Ys083g+sKXndH2HN5O5p9j474YE1IJwBXgZsA34CrCt5zbbcsfa2Zu9vE3XqwZqRvb7McxcCB4AjwBXN3lenPLCWkX0Layb2KuAC4GO5rzcWvW4d1uz3B5u9z+3ykHG3IRrKuFtbIxl3zTWTMbd+rWTcNddMxt3maS/j7sL0kzG3Pp1k3DXXTMbd+nSSMXd+ui3ZuNtxjmRtKfcD4K+01iO5PCSFJfLbtda/LJrxOAgcwqrsCzm01vcBXwLeWLT5euAw1ozjbwPfxprp6Ei01v+N9eH9c6ylBa8C/hVr6QpKKW/upfdg5XCtacJuOg6t9UPAPwGfBP4Ua+ZsI4AqdAJ+CssRsK4Ju+gItNZjWDcDPyvennOTHAReiTU4fEgptT73XMed74vRVqOUt2FdeOwFfgpcB/wcOJ3Lc1Na6xNYn8tepZS7WfvbTsi4u3Bk3K2NjLvmyJhbPzLumiPjbvOQcXdhyJhbHzLumiPjbn3ImDs/lnLc9TRml1sLrXUMiJUs4XmTLWLRtiiWNTxb5tt0JLlGAxng34DvKaV+HStf6w3Aq7XW/08p9Ungaq31pFLKpWfb6juG3HH2QaXUvwOvA07Yx5YudP+NA+eRi7fiztGfwMp1uz33768ppe7XWs/kXtoPrALuLXlfR6G1HoLZv3/Rvw8ppf4ca0nQh5RSr+rUz2ExWuuDSqk3Y33essAlWJ1/k/ZrlFLLgbXAPq11plOPr0Yj4+78kXG3fmTcrR8Zc82RcdccGXebh4y780PGXDNk3K0fGXfNkDF3fizVuKs68JhEKRXRWk8Wfe3WWmdy/1daa62szJq3Am/HWp7R0Rc2pZrltr0eeD6wAWuJxiu01uMlr+lIzSroZR9bHq11uugYeyewQo6xgmZKqSjw61gXJJdjNQv5GNZs9q1Ys7cbcjp2pGbljrEyr3kxVofbf9Bav21JdsyhKKWiWuuJkm1bsGZjfw78HTCJlel2B7Cpk4+vRiPjrjky7poh464ZMuaaI+OuGTLuNhcZd82QMdccGXfNkHHXDBlzzVnKcbdj7N9KqauVUh9SSh0C/l0p9TtKqV4Ae1DN/d8W8FVYAv9p7oTn6bQPcDXNcnwXa4nUTuAvSwdW6KxA/Qp69dnPF82gpXObfh3rwu09cozlNftdpdSA1npCa/23wEuwlrXcC7wZqyHISawLuXSnaVbHZ9J+nb1c8btYzUEeKNneEZTo9W+546sv95wLOAr8I3ARVjfbR7DOZ7/XicdXo5Fx1xwZd82QcdcMGXPNkXHXDBl3m4uMu2bImGuOjLtmyLhrhoy55jRr3O0IR7KyrNs/xqq+P4Ql3DrgA1rrvy/z+tuAtwCntdZvWcp9dQommimlrgYe04XlGB3HPI6xG7Dya0a01m8sfb4TMDzGQkACayb79FLvqxMwPcY6HcPjaw+wEnADP9Van1ni3W07ZNw1R8ZdM2TcNUPGXHNk3DVDxt3mIuOuGTLmmiPjrhky7pohY645TR13tQO6Cy72A8vu/i1ynQqxnNifwMrr2Znbpoper4DLgO7c1+5m/w4O1cxb8h5Xs/fb4XqVHmOXAD25r+UYK6+Zp+Q9cozVeYzlvvY1e78drldHd9t2gP4y7pprJuOumV4y7prpJWOuuWYy7prpJeNuc/WXcddMLxlzzTWTcddMLxl3zfSSMddcs0UZd9s+2kIptRWrMv9prfVRpZTSVhD3+7BC319U8nq3tnhU55av6KKlQJ2AgWbp3OsVgO7QgPMFHGOPaasjqRxjlTXLZ7mBHGPUf4zZeiVLv1cnMI/jS7rENxAZd82RcdcMGXfNkDHXHBl3zZBxt7nIuGuGjLnmyLhrhoy7ZsiYa06zx922LyRjheMPACmYldtzDvh/wPOUUn57O/AcpdRf5PJEOhVTzZ6rlPrzDtZMjjFz5BgzQ/QyYz6fyU7Wq9HIOdEc+YybIceYGXJ8mSOamSHjbnORc6IZ8vk2R44xM+QYM0P0Mqep424nCL8Pqzvh9+0NReJ9C6tL5nW57SuBv8FaUpC1Zzo6kPlo5u7UGTTkGJsPcoyZIXqZIXo1FzknmiPHrBlyjJkhx5c5opkZoldzkXOiGXK8miPHmBlyjJkhepnTXM20A7I9FvtBSb5R8XbgCeAjua/vxgqDt59Xi71vTn2IZqKXaOash+glerXSQ/QXzUQvZz1EL9FM9Grvh+gveolmznqIXqJXO2vWCY5ktNapKts/D9yhlLoQ+D3gDwCUUh6dU7kTEc3MEL3MEc3MEL3MEL2ai+hvjmhmhuhlhuhljmhmhujVXER/M0Qvc0QzM0QvM0Qvc5qpmepg3QFQSt0I/DdwGkhrrXc2eZccj2hmhuhljmhmhuhlhujVXER/c0QzM0QvM0Qvc0QzM0Sv5iL6myF6mSOamSF6mSF6mbPYmnka+c1alIeBKWA7cBXku4x2TFfReSCamSF6mSOamSF6mSF6NRfR3xzRzAzRywzRyxzRzAzRq7mI/maIXuaIZmaIXmaIXuYsqmYdX0jWWk8ppd4AbNdaP6yUcskBWR3RzAzRyxzRzAzRywzRq7mI/uaIZmaIXmaIXuaIZmaIXs1F9DdD9DJHNDND9DJD9DJnsTXr+GgLyHc31FprnRO4k7s/1oVoZoboZY5oZoboZYbo1VxEf3NEMzNELzNEL3NEMzNEr+Yi+pshepkjmpkhepkhepmzmJpJIVkQBEEQBEEQBEEQBEEQBEGoiqvZOyAIgiAIgiAIgiAIgiAIgiA4GykkC4IgCIIgCIIgCIIgCIIgCFVpy0KyUqqnwnaV+7fjmwyWIpqZIXqZI5qZIXqZIXo1F9HfHNHMDNHLDNHLHNHMDNGruYj+Zohe5ohmZoheZohe5jhJs7YrJCul9gB/W/S1LarKhUxvA96plFqR2952GpgimpkhepkjmpkhepkhejUX0d8c0cwM0csM0csc0cwM0au5iP5miF7miGZmiF5miF7mOE2zdvyDXAi8Rin1brBaFBb/C7wM+ABwd267dHsUzUwRvcwRzcwQvcwQvZqL6G+OaGaG6GWG6GWOaGaG6NVcRH8zRC9zRDMzRC8zRC9znKWZ1rrtHsDbgcPAK3Jfu0qefxHwS+B3AU+z99cJD9FM9BLNnPUQvUSvVnqI/qKZ6OWsh+glmole7f0Q/UUv0cxZD9FL9Ookzdoqd0Qp5dZaZ4D/AJ4BfEQp9YTW+pGSl/43sAEIaK3TS72fTkI0M0P0Mkc0M0P0MkP0ai6ivzmimRmilxmilzmimRmiV3MR/c0QvcwRzcwQvcwQvcxxomYqV7luO3KZId8DgsAbtNaPKaU8xYIqpUJa6xk7V6RpO+sQRDMzRC9zRDMzRC8zRK/mIvqbI5qZIXqZIXqZI5qZIXo1F9HfDNHLHNHMDNHLDNHLHKdo1tIZySoXIK2UWq2UerlS6jlKqaBSamVOsHcA/cBbAGxx7fdprWdy/3bMASmamSF6mSOamSF6mSF6NRfR3xzRzAzRywzRyxzRzAzRq7mI/maIXuaIZmaIXmaIXua0gmYtHW2hCwHS7wFeC4wAUeAhZTUx/BLwBPBbSqk48F6t9RTQMQdhKaKZGaKXOaKZGaKXGaJXcxH9zRHNzBC9zBC9zBHNzBC9movob4boZY5oZoboZYboZU4raNY20RZKqUuwCuMXApcD3cCtwAngstzXr9Jaf6VZ++g0RDMzRC9zRDMzRC8zRK/mIvqbI5qZIXqZIXqZI5qZIXo1F9HfDNHLHNHMDNHLDNHLHKdq1jaF5EoopbYCo8CfAq8DXqy1/n5z98rZiGZmiF7miGZmiF5miF7NRfQ3RzQzQ/QyQ/QyRzQzQ/RqLqK/GaKXOaKZGaKXGaKXOc3WrCULyUopl9Y6q5TqAa4EVgMjWutv5p5XgFdrnSx6Tz/wXeA7Wut3N2G3m4poZoboZY5oZoboZYbo1VxEf3NEMzNELzNEL3NEMzNEr+Yi+pshepkjmpkhepkhepnTSpq1XEZykbjdwL8CNwD7gR1KqZ8Dd2ut7weSSikPkNVaZ7XWw0qp47nXdxSimRmilzmimRmilxmiV3MR/c0RzcwQVPqsZgAABxZJREFUvcwQvcwRzcwQvZqL6G+G6GWOaGaG6GWG6GVOq2nmWsof1mD+HlgJXAv8BVb49GbgHqXUJ5RSA1rrtM4FVSulBgBf7rWdimhmhuhljmhmhuhlhujVXER/c0QzM0QvM0Qvc0QzM0Sv5iL6myF6mSOamSF6mSF6mdMammmtW+ZBIYrjYuAs8Ozc1z8CvgjsAf4HyALngfeXvH9bs38H0czZD9FLNBO9nPUQvUT/VnuIZqKX6OWsh2gmerXSQ/QXvUQzZz1EL9FLNJv7aKloC51TCbgOuB/4mVLqduAK4Bat9UNKqVcAPwPGgVDJ+59cyv11AqKZGaKXOaKZGaKXGaJXcxH9zRHNzBC9zBC9zBHNzBC9movob4boZY5oZoboZYboZU4ratYShWSlVERrPZn7vwvYC2S01lNKqWcD9wGHi95yDvi33COfN7LEu91URDMzRC9zRDMzRC8zRK/mIvqbI5qZIXqZIXqZI5qZIXo1F9HfDNHLHNHMDNHLDNHLnFbWzPEZyUqpFwEfUUrdrJTyaitQ+hfA13IvOQ9sB/pzX4eAZUBMa50C6MAD8kWIZnUjepkjmpkhepkhejUX0d8c0cwM0csM0csc0cwM0au5iP5miF7miGZmiF5miF7mtLpmdhaHI8lV5aeAAHAP8H3gG1rrx4pe8xzgS1gW8EeB3cBGrfX6pd/j5iOamSF6mSOamSF6mSF6NRfR3xzRzAzRywzRyxzRzAzRq7mI/maIXuaIZmaIXmaIXua0hWbaAeHS5R6Awqq6fwPIAEeBYSyRfw1YVfTaXVh5IeeArwDPyG33NPv3EM2c+xC9RDPRy1kP0Uv0b7WHaCZ6iV7OeohmolcrPUR/0Us0c9ZD9BK9RLP6Ho52JAMopfqB92FV7H8OvAO4BPg6VgfDn2itx3KvXa+1Pt6kXXUMopkZopc5opkZopcZoldzEf3NEc3MEL3MEL3MEc3MEL2ai+hvhuhljmhmhuhlhuhlTstr1uxKdq1qfe7f24HTwEdyX78eOIlVvf8QsAdwN3t/nfAQzUQv0cxZD9FL9Gqlh+gvmoleznqIXqKZ6NXeD9Ff9BLNnPUQvUQv0ayO36HZO2Ag9hXAI8Ddua+7gb8HxrByQ94LLG/2fjrpIZqJXqKZsx6il+jVSg/RXzQTvZz1EL1EM9GrvR+iv+glmjnrIXqJXqJZhf1u9g5UEHMbVnZIT8n21wFngTcUbbsUK0/kLBBs9r6LZq3xEL1EM9HLWQ/RS/RvtYdoJnqJXs56iGaiVys9RH/RSzRz1kP0Er1Es/ofHhyGUuqtwN9giXZYKeUHvgycB/4197K/UUqlgX/XWv8SuFUptUVrHVNKubXWmWbse7MQzcwQvcwRzcwQvcwQvZqL6G+OaGaG6GWG6GWOaGaG6NVcRH8zRC9zRDMzRC8zRC9z2k0zRxWSlVIe4IW5L3cBD2N1NPwnrJyQDcDjWN0NXwt8Ryl1Tmud0Vo/DeAkcZcC0cwM0csc0cwM0csM0au5iP7miGZmiF5miF7miGZmiF7NRfQ3Q/QyRzQzQ/QyQ/Qypx01s0OeHYFSyg08G3gmVvB0F/BW4H+AC4H1WH+ACHACeK/TBF1qRDMzRC9zRDMzRC8zRK/mIvqbI5qZIXqZIXqZI5qZIXo1F9HfDNHLHNHMDNHLDNHLnHbUzFGFZBul1ACWyC/DEvxe4N1a64dyz3cDKa31jFLKpbXONm9vnYFoZoboZY5oZoboZYbo1VxEf3NEMzNELzNEL3NEMzNEr+Yi+pshepkjmpkhepkhepnTTpo5spBso5TaBNyBZe/eAXwN+EOt9bnc8x6tdbqJu+g4RDMzRC9zRDMzRC8zRK/mIvqbI5qZIXqZIXqZI5qZIXo1F9HfDNHLHNHMDNHLDNHLnHbQzNGFZBul1BXAi4BXAlHgI1rrv2zqTjkc0cwM0csc0cwM0csM0au5iP7miGZmiF5miF7miGZmiF7NRfQ3Q/QyRzQzQ/QyQ/Qyp5U1a4lCMoBSKgjcANwFvBp4BLhet8ov0AREMzNEL3NEMzNELzNEr+Yi+psjmpkhepkhepkjmpkhejUX0d8M0csc0cwM0csM0cucVtWsZQrJNkqpZcALgBNa6+86PTvECYhmZohe5ohmZoheZohezUX0N0c0M0P0MkP0Mkc0M0P0ai6ivxmilzmimRmilxmilzmtplnLFZIFQRAEQRAEQRAEQRAEQRCEpcXV7B0QBEEQBEEQBEEQBEEQBEEQnI0UkgVBEARBEARBEARBEARBEISqSCFZEARBEARBEARBEARBEARBqIoUkgVBEARBEARBEARBEARBEISqSCFZEARBEARBEARBEARBEARBqIoUkgVBEARBEARBEARBEARBEISqSCFZEARBEARBEARBEARBEARBqMr/D2wIHiPAdTiGAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize=(20, 15))\n", - "date_formater = mdates.DateFormatter('%b, %d')\n", - "plt.rcParams.update({'font.size': 15})\n", - "\n", - "for idx, (forecast, ts) in islice(enumerate(zip(forecasts_pytorch, tss_pytorch)), 9):\n", - " ax = plt.subplot(3, 3, idx+1)\n", - " ts = ts.copy()\n", - " ts.index = ts.index.to_timestamp()\n", - "\n", - " plt.plot(ts[-5 * prediction_length:], label=\"target\")\n", - " forecast.plot()\n", - " plt.xticks(rotation=60)\n", - " ax.xaxis.set_major_formatter(date_formater)\n", - " \n", - "plt.gcf().tight_layout()\n", - "plt.legend()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "And we can compute evaluation metrics, that summarize the performance of the model on our test data." - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:32.301796Z", - "iopub.status.busy": "2022-06-13T08:52:32.300915Z", - "iopub.status.idle": "2022-06-13T08:52:32.303115Z", - "shell.execute_reply": "2022-06-13T08:52:32.303539Z" - } - }, - "outputs": [], - "source": [ - "evaluator = Evaluator(quantiles=[0.1, 0.5, 0.9])" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:32.308120Z", - "iopub.status.busy": "2022-06-13T08:52:32.307195Z", - "iopub.status.idle": "2022-06-13T08:52:35.607100Z", - "shell.execute_reply": "2022-06-13T08:52:35.607747Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "Running evaluation: 0%| | 0/2247 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
FeedForward
Coverage[0.1]6.380730e-02
Coverage[0.5]4.978861e-01
Coverage[0.9]9.207462e-01
MAE_Coverage1.968427e-02
MAPE1.494815e-01
MASE9.570891e-01
MSE2.694219e+06
MSIS8.838813e+00
ND8.676283e-02
NRMSE6.881427e-01
OWANaN
QuantileLoss[0.1]5.474081e+06
QuantileLoss[0.5]1.116056e+07
QuantileLoss[0.9]5.698981e+06
RMSE1.641408e+03
abs_error1.116056e+07
abs_target_mean2.385272e+03
abs_target_sum1.286330e+08
mean_absolute_QuantileLoss7.444540e+06
mean_wQuantileLoss5.787429e-02
sMAPE1.361614e-01
seasonal_error1.894934e+02
wQuantileLoss[0.1]4.255582e-02
wQuantileLoss[0.5]8.676283e-02
wQuantileLoss[0.9]4.430421e-02
\n", - "" - ], - "text/plain": [ - " FeedForward\n", - "Coverage[0.1] 6.380730e-02\n", - "Coverage[0.5] 4.978861e-01\n", - "Coverage[0.9] 9.207462e-01\n", - "MAE_Coverage 1.968427e-02\n", - "MAPE 1.494815e-01\n", - "MASE 9.570891e-01\n", - "MSE 2.694219e+06\n", - "MSIS 8.838813e+00\n", - "ND 8.676283e-02\n", - "NRMSE 6.881427e-01\n", - "OWA NaN\n", - "QuantileLoss[0.1] 5.474081e+06\n", - "QuantileLoss[0.5] 1.116056e+07\n", - "QuantileLoss[0.9] 5.698981e+06\n", - "RMSE 1.641408e+03\n", - "abs_error 1.116056e+07\n", - "abs_target_mean 2.385272e+03\n", - "abs_target_sum 1.286330e+08\n", - "mean_absolute_QuantileLoss 7.444540e+06\n", - "mean_wQuantileLoss 5.787429e-02\n", - "sMAPE 1.361614e-01\n", - "seasonal_error 1.894934e+02\n", - "wQuantileLoss[0.1] 4.255582e-02\n", - "wQuantileLoss[0.5] 8.676283e-02\n", - "wQuantileLoss[0.9] 4.430421e-02" - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "metrics_pytorch, _ = evaluator(iter(tss_pytorch), iter(forecasts_pytorch), num_series=len(dataset.test))\n", - "pd.DataFrame.from_records(metrics_pytorch, index=[\"FeedForward\"]).transpose()" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/docs/tutorials/advanced_topics/hp_tuning_with_optuna.ipynb b/docs/tutorials/advanced_topics/hp_tuning_with_optuna.ipynb deleted file mode 100644 index 0901c8f181..0000000000 --- a/docs/tutorials/advanced_topics/hp_tuning_with_optuna.ipynb +++ /dev/null @@ -1,2131 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Tuning models with Optuna\n", - "\n", - "In this notebook we will see how to tune the hyperparameters of a GlutonTS model using Optuna. For this example, we are going to tune a PyTorch-based DeepAREstimator.\n", - "\n", - "**Note:** to keep the running time of this example short, here we consider a small-scale dataset, and tune only two hyperparameters over a very small number of tuning rounds (\"trials\"). In real applications, especially for larger datasets, you will probably need to increase the search space and increase the number of trials.\n", - "\n", - "## Data loading and processing" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:38.247535Z", - "iopub.status.busy": "2022-06-13T08:52:38.246281Z", - "iopub.status.idle": "2022-06-13T08:52:41.579660Z", - "shell.execute_reply": "2022-06-13T08:52:41.580472Z" - } - }, - "outputs": [], - "source": [ - "import mxnet as mx\n", - "from mxnet import gluon\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import json" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Provided datasets" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:41.586007Z", - "iopub.status.busy": "2022-06-13T08:52:41.584885Z", - "iopub.status.idle": "2022-06-13T08:52:42.070697Z", - "shell.execute_reply": "2022-06-13T08:52:42.071284Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.repository.datasets import get_dataset, dataset_recipes\n", - "from gluonts.dataset.util import to_pandas" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:42.076426Z", - "iopub.status.busy": "2022-06-13T08:52:42.074044Z", - "iopub.status.idle": "2022-06-13T08:52:42.080354Z", - "shell.execute_reply": "2022-06-13T08:52:42.079571Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Available datasets: ['constant', 'exchange_rate', 'solar-energy', 'electricity', 'traffic', 'exchange_rate_nips', 'electricity_nips', 'traffic_nips', 'solar_nips', 'wiki-rolling_nips', 'taxi_30min', 'kaggle_web_traffic_with_missing', 'kaggle_web_traffic_without_missing', 'kaggle_web_traffic_weekly', 'm1_yearly', 'm1_quarterly', 'm1_monthly', 'nn5_daily_with_missing', 'nn5_daily_without_missing', 'nn5_weekly', 'tourism_monthly', 'tourism_quarterly', 'tourism_yearly', 'cif_2016', 'london_smart_meters_without_missing', 'wind_farms_without_missing', 'car_parts_without_missing', 'dominick', 'fred_md', 'pedestrian_counts', 'hospital', 'covid_deaths', 'kdd_cup_2018_without_missing', 'weather', 'm3_monthly', 'm3_quarterly', 'm3_yearly', 'm3_other', 'm4_hourly', 'm4_daily', 'm4_weekly', 'm4_monthly', 'm4_quarterly', 'm4_yearly', 'm5', 'uber_tlc_daily', 'uber_tlc_hourly']\n" - ] - } - ], - "source": [ - "print(f\"Available datasets: {list(dataset_recipes.keys())}\")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:42.084850Z", - "iopub.status.busy": "2022-06-13T08:52:42.083937Z", - "iopub.status.idle": "2022-06-13T08:52:42.091009Z", - "shell.execute_reply": "2022-06-13T08:52:42.090406Z" - } - }, - "outputs": [], - "source": [ - "dataset = get_dataset(\"m4_hourly\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Extract and split training and test data sets\n", - "\n", - "In general, the datasets provided by GluonTS are objects that consists of three things:\n", - "\n", - "- `dataset.train` is an iterable collection of data entries used for training. Each entry corresponds to one time series\n", - "- `dataset.test` is an iterable collection of data entries used for inference. The test dataset is an extended version of the train dataset that contains a window in the end of each time series that was not seen during training. This window has length equal to the recommended prediction length.\n", - "- `dataset.metadata` contains metadata of the dataset such as the frequency of the time series, a recommended prediction horizon, associated features, etc.\n", - "\n", - "We can check details of the `dataset.metadata`." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:42.095918Z", - "iopub.status.busy": "2022-06-13T08:52:42.095029Z", - "iopub.status.idle": "2022-06-13T08:52:42.098125Z", - "shell.execute_reply": "2022-06-13T08:52:42.098721Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Recommended prediction horizon: 48\n", - "Frequency of the time series: H\n" - ] - } - ], - "source": [ - "print(f\"Recommended prediction horizon: {dataset.metadata.prediction_length}\")\n", - "print(f\"Frequency of the time series: {dataset.metadata.freq}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To keep the example small and quick to execute, we are only going to use a subset of the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:42.103704Z", - "iopub.status.busy": "2022-06-13T08:52:42.102842Z", - "iopub.status.idle": "2022-06-13T08:52:42.116115Z", - "shell.execute_reply": "2022-06-13T08:52:42.116735Z" - } - }, - "outputs": [], - "source": [ - "from itertools import islice\n", - "train_subset = list(islice(dataset.train, 10))\n", - "test_subset = list(islice(dataset.test, 15))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is what the data looks like (first training series, first two weeks of data)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:42.123663Z", - "iopub.status.busy": "2022-06-13T08:52:42.122781Z", - "iopub.status.idle": "2022-06-13T08:52:42.332847Z", - "shell.execute_reply": "2022-06-13T08:52:42.333290Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEQCAYAAABLMTQcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB5/UlEQVR4nO29d5glZ3Xn/3lvTp17uieP0swoWREJCVmiQZhsxDrgADb2stba4LBrzAp2Hdbe37L2srvexTZgkg1rYMFggmUJCSQ1QqCcR2E0QRN6Zno6h5vT+/uj6q17u/veW/VWVc90t+r7PPPM7brV51bXrTp13u8553uElJIAAQIECLCxEDrbBxAgQIAAAfxH4NwDBAgQYAMicO4BAgQIsAEROPcAAQIE2IAInHuAAAECbEAEzj1AgAABNiAiZ/sAAHp7e+UFF1ywavZzuRzpdDqwH9gP7Af2N5T9xx9/fEpKuanlm1LKs/5vz549cjVx3333BfYD+4H9wP6Gsw88Jtv4VUe0jBDi94QQ+4QQzwkh/p25rV8I8T0hxAHz/z5zuxBCfFwIcVAI8YwQ4iqfHlIBAgQIEMAhbJ27EOJS4DeAa4HLgbcLIS4APgzcI6XcDdxj/gzwFmC3+e9W4JOrcNwBAgQIEKADnETuFwEPSynzUsoq8APgZ4BbgC+Y+3wBeKf5+hbgi+aq4SGgVwixxd/DDhAgQIAAneAkoboP+K9CiAGgALwVeAwYllKeMvcZB4bN19uA402/P2ZuO4UGKpUKY2NjFItFnV9riZ6eHl544QXPdjaq/UwmQ6VSIRqNrtpnBAgQ4MxCSAfCYUKI9wHvB3LAc0AJ+DUpZW/TPrNSyj4hxO3An0spHzC33wPcJqV8bJnNWzFoGzZt2nT11772tSWfmclkGB4epqenByGEhz8RarUa4XDYk42Nal9KyezsLJOTk2Sz2VX5jGw2SyaTWRXbgf3A/ivZ/ute97rHpZSvavlmu0xru3/ARzEc/X5gi7ltC7DffP23wC817W/t1+5fq2qZ559/XtbrdV8yygsLC77Y2aj25+fn5fPPP79q9tdzNUJgP7C/lu3jQ7XMkPn/Tgy+/cvAd4D3mru8F/i2+fo7wK+aVTPXAfOyQd9owWvEHsAZgvMcIMDGg9MO1W8IIZ4H/hn4gJRyDvhz4KeEEAeAN5g/A9wBHAYOAp/BiPLXHebm5vjEJz7h6nff+ta3Mjc35+8BdcBrXvOaM/ZZAQKsd3xy9BB3PTd+tg9j1eGoQ1VKeWOLbdPAzS22S+AD3g/t7EI59/e/f+WzqVqtEom0P3V33HHHah7aiuP48Y9/fEY+L0CA9Y7v7jvFX3z3RUICDv+3t53tw1lVBNoybfDhD3+YQ4cOccUVV/ChD32I0dFRbrzxRt7xjndw8cUXA/DOd76Tq6++mmuvvZZPf/rT1u+ec845TE1NceTIES666CJ+4zd+g0suuYQ3vvGNFAqFFZ/1j//4j1x66aVcfvnl3HTTTYCRRP3Qhz7ENddcw/XXX8/f/u3fArQ8juZkzcc+9jGuueYaLrvsMv7kT/4EMNqf3/a2t3H55Zdz6aWX8tWvfnV1TlqAAGsc//PulwCQQLFSO7sHs8pYE9oyaxF//ud/zr59+3jqqacAw6k+8cQT7Nu3j3PPPReAz3/+8/T39zMxMcHrX/96fvZnf5aBgYEldg4cOMBXvvIVPvOZz/Cud72Lb3zjG7znPe9Zss+f/dmfcdddd7Ft2zaLzvnc5z5HT08Pjz76KFNTU7z5zW/mjW98I8CK41C4++67OXDgAI888ghSSt7xjndw//33Mzk5ydatW/mXf/kXAObn5/0+XQEC+Ianj8/xmR8eZmTvED939Xbf7FZrdY5M57hgKMPBiSzPnpjnmnP6fbO/1rAunPuf/vNzPH9ywfXvtyolvHhrN3/y05do2bn22muXONSPf/zjfPOb36Rer3P8+HEOHDiwwrmfe+65XHHFFQBcffXVHDlyZIXdG264gV/7tV/jXe96Fz/zMz8DGI76mWee4etf/zr1ep3FxUUOHDhALBZbcRwKd999N3fffTdXXnklYJRgHThwgBtvvJEPfvCD3Hbbbbz97W/nxhtXsGwBAqwZ/O7/e5Kj03n2nZj31bmfmi9SqUn+1ZXb+Nhd+3n86Gzg3AMYaFZ2Gx0d5fvf/z4PPvggtVqNn/7pn27ZcBWPx63X4XC4JS3zqU99iocffph/+Zd/4eqrr+bxxx9HSslf/dVf8aY3vYnFxUW6urqsz22nMCel5CMf+Qj/9t/+2xXvPfHEE9xxxx384R/+ITfffDN//Md/rP33Bwiw2siWqhydztOXinJkOs+JuZX3i1scnc4DcOXOXs4ZSPHksVnfbK9FrAvnrhthL0ezc3SKrq4uFhcX274/Pz9PX18fqVSKxx9/nIceesj18R06dIhXv/rVvPrVr+bOO+/k+PHjvOlNb+KTn/wkr3/96wF46aWX2LZtW0c7b3rTm/ijP/oj3v3ud5PJZDhx4gTRaJRqtUp/fz/vec976O3t5bOf/azrYw0QYDVx4LRxz/2bG8/jY3ft54EDk1bru1ccnckBsGsgzcVbu9l3wj0bsB6wLpz72cDAwAA33HADl156KW95y1t429uWZtbf/OY386lPfYqLLrqI888/n+uuu871Z33oQx/iwIEDSCm5+eabufzyy7nssss4cuQIV111FbVajeHhYb71rW91tPPGN76RF154geuvvx4wEq3/8A//wMGDB/nQhz5EKBQiGo3yyU8GWm4B1iZeMp37235iC1/48REeOjzDLT5592PTeWLhEJu7E1y0uZs7nh0nW6r6Y3wNInDuHfDlL395yc8jIyPW63g8zp133gmsXBkoXn1wcJB9+/ZZ2//gD/6g5ef80z/904ptQgg++tGP8tGPfnSJ/ZGRkSXHASyRDfi93/s9fu/3fm/J++effz5vetOb2vyVAQKsHewfz5KIhtjZn2LXQIrx+SJ+he5Hp/Ns708SDgku2tJtft7Gjd6DUsgAAQKsGRyYWGT3UBehkGAgHWc6V/LN9rGZPLv6UwBctNVw7i+cak+9rncEzj1AgABrBvvHF9kzbKxS+zMxprNl32xPLBbZ3JMEYGtPgu5EhBdOrc/I/bEjMxya7Cz0F9AyAQIEWBOYzZWZWCyxd7PRlDeYjjGTL1OX3t1UrS6ZyZUZzMQAg/bcOZDi5FwB+jybP6Oo1Or83KcetN1vTUfu0oEccQDvCM5zgLUAlUxVkftAJo6U4EfwPpsvU5cwmGmUJven48zk/FsZ/ONjx/nxoSnf7LXDk8fmHO23Zp17IpFgeno6cDyrDCkl8/PzJBKJs30oAV7hWOncjSh7oezdB0xlDe6+2bkPpGNM++TcpZT8l9uf56/vPeiLvXa4+7lx/vt3XyQcEnz7Azd03HfN0jLbt29nbGyMyclJz7aKxeKqOq/1bj+Xy3H55Zevmv31iH0n5omGQ+zdrNcfEcA9XjqdpSseYUuPca0PpA1HvOiDc1fcvXpgAPSnY2bk7v3ems6VWShWeWZsnnpdEgr5L6O9WKxw6/99HIA9wxku39Hbcf8169yj0WjLFns3GB0dtVryVwMbwX4wYm8pfv9rT9GViPKN3wrklJejXpc8cWyWbX1JtpgJSj+w//QiezZ3WfMFBlc7cs/EyJdrlGre7b88ZTRIZUtVDk9luWDI/6Dge8+fBuC1ezbxGzeeZ7v/mnXuAQKcLeTLVQ5OZElEw9TrAS24HB/48hPcuW+c1184xOd/7Rrf7B6fyXP9+Q1tpgHTEfvh3CcXlXNvRO4DaeO1HyuDw02VK08dn18V5/7PT59kW2+Sv//1axwN2FmznHuAAGcLL5xapC4hX65xbCZ/tg9nTWE+X7EGXTx+dNa3nFi9LplcLLG5u0GR9CajhIQ/zn06VyYaFvQkGyvUfh9pn8OTOWLhEJl4ZFU0a6SUPHZklpG9mxxPTguce4AAy/DcyYYk8nqtg14t/PjQFHUJP335VuYLFcYXVorlucFMvky1Lhlucu6hkKA/HWOx5AMts1hiIB1f4hj7fYzcD03mOGcwxavO6ePBw9Oe7S3HZLbEYqnK7iHng7YD5x4gwDLsOzFPjxk1vjDufwfj/3vkGP/89Enf7Z4J3H9giq54hHe/eieAb+Jbp82HxHB3fMn2/nSMxYo/kXtzMhX8pWWOTOc4dzDNjbs3cXgyx9isvyu+w5MGp3/epsC5BwjgGo8dneWKHb2cO5j2PXKv1SUfveMF/ua+1S2ZWy08emSGa8/t57LtPQhhPAj9wMSCwYkPdS+tXOlJRsn74NynsqUlyVRoLrX0bJ7JxRLD3Qlu2j0IwAMHpphcLPkmTNZw7q3lvlshcO4BAjTh5akchydzjOzdxLmDaY77zLk/MzbHQrHKgYnsuhvzVqtLjk3n2T3cRSoW4TwfH36NyH2pc+9ORMn74B+nsysj90w8Qiwc8hy5V2t15gsV+tMxLhjKsLUnwbefOsk1//X7/KZZuugVhyezxCMhtmpUJwXOPUCAJtzzglFu9oaLhtnam/R1WATADw8YHYy1umT/KlA+q4mTcwXKtTrnDBjiWzv6U5yc9+f8nDYj903LouvuZJScx8hdSslktrTCthAmp+/Ruc/mK4BB8wgh+KVrd1q8+wMH/elYPTxl0D469fOBcw8QoAmj+yfZO9zFjv4U23qTLBarvtACDfsTDHUZTmbfydWZZXtsOs/Eoj+JzmaoWu5zBg1qYEtPklNz/nzO6cUiA+kYschSl+QHLbNYqlKu1ldE7pb9qlfnbvA6fSaH/57rdpGMGmM9uxMRXyqKjpjOXQeBcw8QoAnHZ/PsMbtSt/YaS+Dpoj/O/eRcgSeOzfEr1+2iOxFZlUlAX398jJv/1yi/9Q9P+G77yLTh3JWT2dqTYDpXpuxDE9DEQnEF3w6GcyxU8dRvoLpTl3PuAKl4GK+0uLKvqm/60jG+8K+v5d2v3slCsUq24s0+GAnhTV0rj78TAue+RlGq1qjU6mf7MF5RkFIysVCyImvLuRf8+R7+5ZlTgFFGeNGWbktLxU984r6D1KVRg+437fPyVI5ULGydny3m+Znx4eF3uum8N6M7GUUC2bJ7D9yqO1UhFQtT9PhwUuJjyrkDXHtuP6+/cAiA0zlv10+9LlksVpbU6DtB4NzXIP7fI8fY+4ff5dYvPna2D+UVhWypSqFSs5zM9j7/nBfA9184zcVbujlnMM25g2mOmDSHX5BScnK+wC1XbCUaFnztseO+2j8ylWPXQNqqFd9qasD4cX7mCuUlzlGhO2E4tPm8+/B32nTurWiZVCxCyWNeeya/0rlDg746nffm3LPlKnWJtnMP5AfWIP7aLJN76PDMWT6SVxYmFlU5nuHcN2XiRMOCqYI/zn1ysWRNADpnMG2KTfmwZjcxm69QrNS5ZGsP4/NFHjvi7/UzNltYwvs2InfvK5tssUomvtIddZsOzct5mjRpk+UJVYB0LOxZW2bGtN+XWurcd/SlCAk4nfdmXz3Y1IPOKYLIfY1hbDbP2GyBrT0JCpUa8wX/bv4AnWHVWncZEWkoJNjSk/TFeQHMFxpLa1VxcnTKv1LLk2Zlz7beBLuHMhyazPkqmb2c993iU+QupSRbqpJJtHLuxraFgntaRkXufS1WBslYhKJHzn0mV6I7ESEaXupOY5EQW3uTTHqM3NWDrTugZdY3Hjaj9V+81ugA9HvpHqA9VIVJM/e7uTvBrA+0g5RyqXM3I+CXp/37fk/NG8e/pSfJBcNdZEtV3+QBanXJbL5sdXUCJKJhBtIxZjyubErVOpWapKuVc1e0jIcgZypboi8VXeF8wYjcvSaEZ/IVS+RsOQYzcRY9Nkmpv1096JzCkXMXQvx7IcRzQoh9QoivCCESQohzhRAPCyEOCiG+KoSImfvGzZ8Pmu+fo/m3+IJqrc7f3HeQf3jo6Nn4eNd46PA0vakob7zEGPl+xMebP0BnKOVAFbkD9Ka811kDFCo1qnVpOatd/YZz9/PhfcqsOd/Sm+ACs039wOnOczadYi5fRsqVvPJQd4I5j9ovi2bo3NWClunxgZaZWiy3TKaCkVAt1bxV48zkjIdHKwz4IJ+wYDp33xOqQohtwO8Cr5JSXgqEgV8E/gL4SynlBcAs8D7zV94HzJrb/9Lc74zjz25/no/dtZ8//Na+s/HxrnF4Kmck3QbSCAFHfFy2B+iMicUSsUhoSYTUl4r5Uso2v+wGTcbCbOlJ+OrcT84ViYYFg+k4F5gCUwcn/HHuamJR//Imo0TEc524atFvTcuYzt1D5D6dK7VMpgKk4hEkUKy6z6rO5CqWwuRy9PnQJLX82nEKp7RMBEgKISJACjgFvB74uvn+F4B3mq9vMX/GfP9m4VSj0kd83xS2bxUNrGWcXiiyuTtBIhpma08yiNzPICYWigx1LVUO7E1HyZalZ+661Q26vc/fDthT8wU29yQIhQSDmRi9qSgHJ31y7mqS0bLIvSsRxQMdDhjJVIBMfKXz6opHEHh17uW2tEk6ZjQb5cvunftCoX2Z4oDp3L1cPyrf4DvnLqU8AfwP4BiGU58HHgfmpJTqax0DtpmvtwHHzd+tmvsPcAZxcq7AyfmiwXeVqlTWycAFq87abObYNZDiaODczxgmFlfWWvelYlSlt5sfmm/QRrAxmIn7NsMTjOteaY8IIdg14J82jqrlXh4BdyciPnSQGo67VbVMKCRIRGDBQ9ZzoVBtW2mSjBmfmfdQD5krV8nEwy3f60vHqNS9XT/zhQohAZmYXqBqu7cQog8jGj8XmAP+EXizi2NcbvdW4FaATZs2MTo66tWkhYdPGRfCpX01RrMwPpvz1f5yZLNZX+xny5Jyrc7i6eOMjo4j80WOz9XJZuvr4vjXu/1jp/MMpUJLbJ0+bjieO++9n8Gk+/qDJyeMa/Lg889QO2E4gtJ8iVOzVbJZ6cvxHx7Ps6e/cfyhUpEjc5LscM2z/YeOGefhxacfY/zFxnlYmC6Rr3i7Pp84bZyb/fueonR8pZNMhSX7jxxndNTdPOWFfInZiVOMjq7UWX953PjsH/z4IXZ0uft+s4UKU+MnGR1dqSMzOWactzvuuZ9NKXf2nz9UIhmB++//gdbvOXkUvAF4WUo5CSCE+CfgBqBXCBExo/PtwAlz/xPADmDMpHF6gBVnVUr5aeDTAHv37pUjIyNaB94Jo995jmT0OL9w02WMfukJapEkftpf8Xmjo77Yf3F8Ae79Ia+56lJGLtvCA9nneerhY2QyqXVx/OvdfvGB77H3nGFGRi5rbNs3zt899zgXXnY1l27rcW176vExeOJpXv+T17FrwEimPlV9iXuPHyCRSns+/lpdMn/3nVy55xxGRi4E4LvTzzD24gSZjPfr/6nvvwTPH+BtbxhZUnXyeHk/9xw7yE03vdb1UOiZJ8bgyacZueE6q4qoGd0P3kkk3cfIyKu1bVdqdcrfvZNLdp/LyMjuFe+Llyb5m6ce4eLLruTqXX3a9svVOtXv3slFbexXnz/N5/Y9xp6fuMp2oHU7fHP8SQayc9rfoZNHyTHgOiFEyuTObwaeB+4Dfs7c573At83X3zF/xnz/Xulnsa0D7Dsxz09s67GaUfwY03UmoJTx1MCCwa44hUqNkseEVQB71OuS2XxlRTWIqoJQ4lBuoTjjZnpAVXD4MSxiKluiWpdWY5GyP5MrU/fh9pvJlelJriwn7EoYCcmcB3kAlVBtVQoJ0J8QVg2/tu1i+2QtGNUyYMzNdYOCSbek2lAm/SaNNePh+pnvwOl3ghPO/WGMxOgTwLPm73wauA34fSHEQQxO/XPmr3wOGDC3/z7wYe2j8gAppTlFPcOAjzMSzwSWa1qr5NX8Ojn+9Yz5QoVaXVrXjIJqfJn10P6u7MPSpNigNSzC+/ernJ+SBACDH6/VJTk/hKta6KGDkVCFRjmjGyzaOOD+hODUfNFVUtIqs2zDuSvnnnPJuauHWroN595vdq2qLlY3cOvcHTH0Uso/Af5k2ebDwLUt9i0CP699JD7h9EKJxWKVvcNdvk5aOROYMJ276gIc7FpfK4/1jOk2CcNeM3Kf8xi5zxcqdMUjhJuoCxW5L/gwI1Q1MG1dFrn7ZX86V1pRKQONlYhX5x4Lh4hHWjvIgUSIfLnMQqFKT5t68nZQ9fHtVgVpM+IuVNwdv4r4bSN3D4nzhULF6gbWwYbrUN1vKu3tGe4yJq1EQuvGOZ5eKNGbipIwtaAH0/7dnBsN09kSDx2etlrLvaKVsh9Ab9KM3D2GvwvFyopSNlWe52/k3nDuAz6uDObylRXaKdBwmosemoyypUrbqB2gP2k8EN0MBrEonzYl0Z4jd/P32kXuXfEIYeGNllksVulqUSZqh/VVBO4AL403nLsQgsF0jAWf5hiuNk4vFBlu6o4c7PLv5txo+J2vPMmPD01zxY5e/t0l3u2ph8Ry5x6LhEiE/eHclzv3QR9XlifniqRi4SWllkooyw9ar9XxQ8O5e+kgbScaptCfMJ37XIGLtnRr2balZczPdcu552widyEEXTHhKQjJl2ukXfTrbMjIfVNX3OJKBzLx9cO5L5asJDBg8b+Bc1+J/eOLRMOCp47PcWzB+yxSRcu0alPPxIQvtEzPMm0QtbKc94WWKbClJ7GkAWvAR1pmoVhtSW34wblnS52d+4By7vP6OjlZVUPfZmWgJia5rUO3IvcONej9CeG6WU1KSa5cbbsy6IQN59yPTeeXyJIOZLy3/54pTCwUlwwIjkVCdCcivtz8GwkLxQrTuTLv+8nziEVC/GDM+8pM0TItqYeoYMZjQrVVI40Qgk0+BR+n5otL+HaA3mSUcEh4Dg5qdUO1sVX0a6k2euTcO9EyPXFBJCQ45cJBNiL31vbDIUEs5N65W5x7B+c7nBKuZUSKlTpStl8ZdMKGc+4n5gpsb7rIuxLeZySeCdTrksnFklUGqTDYFQ8i92VQeixX7Ojlqp29HF3wLsk7kyvTlYismOEJ0JsQnHYRNTajXcXDQCbmy/c7X6jQu+zBFAoJBtLe7SveuruDaqM3zr3a0rZCSAiGuxNW0lgHds4dIB6BnEvq1knkPpwOcXK+QLGi/wCxq8bphA3l3Ku1OuMLSyOYTDxM0fuqfdUxky9TrcslioRgJFWDhOpSqEHN5w6m6UlGKfjw8J7OlVtWg4BBC5yYK3jSB2nn3HtTMbI+qE4uFistHeRAxvv1oxx3qxb+eCREWHjTW1+04dzByIW4ocbsKnEA4mGxypF7CCnhmAspCCWL8IqP3E8vlqjV5RLnno5FfLn5VxuNGvdlqnvJKPn1kQ8+Y1BL3F0DKbp9EK4CI6HaTlxqIBkiW6q6ph7K1TqFSq1lQrI36Y+k8EKhNW0y6MPKoFP0K4QgFfEeuXeiZcDIT2RdRNeLxUrHqB1gU1JYAYMuVOSeinZw7mkjZ+DmM6zIPfYKj9ytSTR9TZF7IkK5ZvCGaxnWFKBlE+C7EhGK6+DhdCZxdDrH1h5DObMrEfUsXAUGj99W2c8sxTsx6y4ppipJWtnvSxmqk15QrNQo1+otndhgxjutp7pr21acRIW3hGqx2lIRshmZRMTVZzh5cOzqDvHCqQWqLgbS58tV4pEQkRaDQBSGTU0ZNyKAjZXBKzxybx4zpqCWe17ao88ElnenKqTj4cC5L8PRmTw7zTF13ckIxRqubsxm5Erty80Gm0rx3KCTHndPKka+6i34UE6vFS0zmImxUPImOWvZbzMJqCcuXE98KlXbP5ia0ZVwG7m3rvJpxq7uMKVq3ZU8slHJ0tl+OiroT8d42UVStcHpv8Ij9zEzslpCyyjnvsZr3ZWuzPIhvul4hMI6yBmcSZxeKLLFbNZR0aSbG78ZBu/bpoXcQxMNdHbuSrvGyxi5xWL7yHogE6dch5wHyVklydsuch9OhTg86Y7WaGi52zj3uMvI3UED0K5uww3uO7GgbT9fqlmNUJ0wkI4x66JL1a4DthM2lHM/OVegLxVdciLWjXNfLDKQjq2o1sjEIlTrBm8boFnz3ngIqmjVS0IPjOujXcVDd0wQi4Tc0zIdZmD6IW/QiRNXdftemmjsKk62pAVT2ZKrRiZrCpONc8+YkbvuCmSh2Ln7FWBzWpCKhdl3Yl7LNpiRuwPHm0lEXLEHdh2wnbChnPv4fHEFraHajr1wgmcCEwvFJZPlFdSFudYfTmcKc/kK5Vrd6uRV0aSXDslaXVKotKdlQkKwtSfhuhGlU+SuyhfnPETu6m9vlbBVEgRTq+jch9OGG3ETvduJhilk4lFqdUmxohfkGIM0OtsOCcGOvpQ1g1YH+XKtY6WMgtuEcBC5m5grrJRsbUTua5vbmC+01u5Qx++VdtgoOL24NDfRaKJx7xxVRNXJCWzqirt2kAstFCEVepOrG7krmm/KgyrhQqFCPNK+nHCL6dxfntLnrJ3UoTe/r1uVUyjXSDqgTdLxsCsfkbPprlXIxCMWBaVlvxxE7kDrWmJ1Uta6c2yX+FkvCeEzheWa936oEuY6DGhWSMcjlna3LhashGcrzt2M3D10wHbi3Act5+4+cjekB9rz1kMpQTgkXEXuDWGvzry45dw17+N8udaxTFEhk4hq27bsO3p4RFytvnOlKkI0ZBJ0sKGc+1y+YnGYCpl1wrkvtrmB1kvO4ExheVWRcpheBiirc9up6iEdi7hOSs6bkW+ixQ3aaw0D8eLc20e/aiU7tehlZdC6QUohEhJs70u6quO2035RUPexTvQrpUG3OXG+mXjYnfMtVx053kw84urhkSvVSMciSzSDnGLDOHcpZUvluvUS+S4UWjdbZKyVh3+00nS2xOSiP1K5ZxrLNe8VLeNNuMo4t+2qZcCQhs27fMDO59vX0Hcnoghg3gMts1A0ortWA5RjkRDpqKHH7hZOygmNDlIXCVWn1TIuqqKULkvSAV+djrmjTYqVesuH9nJkzMhdNyGcL1cdPZxaYcM494LZyKH0txXS6yChWq9LsuXW+hqqucPPyP3W//s47/ybH3niqc8WJhaXat4rp+CJc1eRewcnkI67j9xbabkrhEKCVNRb5L5QqJCJR9rOMO2KCU8P807Hb32GS1pD/Y7dwyMT1+fcCxXVuu+ElnFHm5QqNWfOPRGhLhvH5BQ5l3K/sIGcu6pIWE7LKO2LtUxrZMtVpGzNmVo5A58eTsdn8jx+dJYTcwX++3df9MXmmcRyzftI2NBb9yo5C51pmVQs7Frz225MWiYqPFXLLBZXKk42YzAZcqVrotCpTFTBqEN3F7lHQoJ4C8G2JfYT+kGa+r6cJFQz8Yh5H+pF1sVqnXjU3o26LYzIl4LI3VoSLr+JhBAkPKi+nQl04kwzPlfL3P7MKQAu3tLNIy/P+GLzTGJisbSiZDQZEb5w7p2ogXQ8QqUmXfUb2NEa3TFh0U1uYKefsiVtaKe47VLNlezL/boS7mgNJfdrxymrv0/nPmgMr3bm3KXUk/6V0rgeOomSKXS5yBmA8zr6Vtgwzt2K3FtESImw8JWz9hudqh38Tqje9+IEl23v4VXn9FmVJ+sJ09myNcFIIRX1iZaxidyb99Wyb3ODDqdDroWrwP7hsTkdIl+uuf6+nSQluzxov9hRMuCOXs1rOHc3kXXJfNAnNCJ33XJLp3X0rbBhnLuK3Ftxg8l1HLlHwyEiIYO68QopJS+cWuDy7b0MdyeYL1RcaUyfTbRSb8xEBdMe6rgXnUTuMfeJ+YJNudzmtGBiseRaWXGxVOlYqrjFajLSr0MHldSzbzIqVGpUNDV+Fh2IhoFxHySiIS3nq5x7Mmr/8HCzMlD3TsJB5K7oVSXl4BROKLF22DDOfaEN5w6QiIg1XS2zaDOh3a+H09hsgcVSlYu2dDNkUhsT6yh6L5Rr5Mo1q+tSYVtXiP3ji9Rdim/lSlVConMEpqInN7rfORvetNEE5C56t9M32WxKzh5yYb9udoXalft1ueykzpYqbYdXr/yMqFbkXqio7k4HzjemT5uoyN0J595lFUboR+5OcgatsGGc+1zBiNxaJa4SYW+SpKsNuyG+ibDwJaH6/ClDGOnCLV2WtPDEorcJQ2cSqpxvML00ct/VHWKxVHWdNFSKkJ14Xytyd/GQLVRqHcvxNqfct++DOUC5g/2+uKGd4iZyd1pxknGR8ARnkrwKuklbK3J3WC0Det+vm8g9qxm5O63Tb4UN49znCxXCIdFyad2bEIzN5j3Jnq4mGh2MrS/yRMSfnMGLpxYRAi7c3GV1eK4n3l1RL8sj93OUqt9JfeEnsB/QDA3nphu5l6t1KjXZUbJ1KC0ICTjsdmBEudrRgQkh2Nmf4ti0i0lADnnrbpfOPV9yHpkmY2GtLuEGLeMsoQp6HbBK58ZpKSTo96sEkTsG596TjLaMvnZ1h5jKlplYo407ix2En8A/Wub5U/OcM5AmFYtY5YSnPVRpnGmoyH05574tEyIaFq4kW8HkNe00uV0mtgsOosdoSLC9L+UqspZSUijXbLVHelNRV0nnRsWJPecO+tovxUrNUeRrHENY6+GqWy0Det9vqWrYtyvjbLavswKv1Y1qHDfSA7CBnPt8odKyUgaaIjsXkp5nAovFKtFw+1rfdFQw40ILuhlSSh4/Osvl23sA42aPhUOWENd6gBK/Wj7rNBIS7B7q4sVxd84968C5u43c8xX7ShyAoa64q++4XKtTrUtb56vLVyvkHfLWburQwagTd1JtAkanqU4TUN7hgwncVcvoRO7JaJiQZr+NThNWK2wY577QoRxsR1cIIeDZNevcjWqHdpzvpqTguEda6dBkjqlsmevOGwCMpfpQd3xdJVTb0TJqm9uBF7lS1TapZ0Xumol5a8amA87aTS+D0+i026VzV8dvRw24qTYB5x2eAMloSIuWKZQNWQYnDw8v1TJOEqpCCNKasr8FDVqpFTaMc88W25eDJSKC8wbTrpftqw27OuWhlFGnPOlB2e+hw9MAvNp07mCIb60rWiZbIhkNt4zE0rGINSleF0ZCtfMNZEXump/h9AbVvfEVcg6de1ci4qrRyzEt41KSVydyT8Ui1krCCfLlGslo2JHoVjwSIhwSmrSMGbk7pJV0Nd2thO1qOXchxF4hxFNN/xaEEP9OCNEvhPieEOKA+X+fub8QQnxcCHFQCPGMEOIqV0emCbtmiPM3ZTg2475RZDVh79yNi9NNQsywX+HbT51guDvOOebsUTCSYGu5img5pnPlllE7GKWKbstdndEy7iJ31QJvZ7/Lpd53weEwh+6E0V6vWy7aGBZhvzIAvYRkpVanVpeOOjxBJVSd19HnNSpNhBDamusN5+v04eQuIexmUAc4cO5Syv1SyiuklFcAVwN54JvAh4F7pJS7gXvMnwHeAuw2/90KfNLVkWnCaIbo0OKdjPqmz+I3FouVjnrWQ9b0dHfO/Y+//RyPH53ld16/e0kUk4pFXOulnA1MtWhgUtBNtjXDybSecEiQiIb0OXeH5Xhu9b6dVrN0JaJIqd8Mp3hfu+OPR0JEQnolxzodnmCsfgoax+90UIeCriyvRcvoPJw0cgaNc++OYNH9rZuBQ1LKo8AtwBfM7V8A3mm+vgX4ojTwENArhNji6ug0kC12rpd1q6d8JmAXuQ8mjVK5oy7ruA9P5bjhgkHec92uJdt1S8vONjolzdMxd85RSumoWsbtZyjna9dlmDFVJ3Uj6wan73SSkbvjt3t4CCFMCQLntIwu7ZCKhclXao5zT/lylZSD7lQF3fvB3cNJJ3I3hc80/oZm6P7WLwJfMV8PSylPma/HgWHz9TbgeNPvjJnbTjVtQwhxK0Zkz6ZNmxgdHdU8lAbqUpItVZkZP8Ho6OSK97PZLDOny2SLVe697z5CLoTvOyGbzXo6/sm5PAOhQlsbxXyOvniIR58/zGj0pLb98ek88e7QCvuzkyXm81WyWenp+O3g9fwoTMzkSVRX/h3ZbJaJ8TKlap177r2PcBvp21Yo1ySVmmTixDFGR8db7qOOP1SvcPj4CUZHpx3bf2LMcHbPPPEop1KtnUA2m2V88igAd907SjLi/PifmjAcwAv7nqJ0vLWTzGazHB9/CYB7f/ggO7qcx3TPHDGO/4lHHiIdbX1c6vxEZJVDR52fn6mC4RyPHDrAaOlI2/2U/VNjZaSE7907Sixsf45OjBepVO2vbWW/Wixw4nT7+3A5njPPzaMPP9j23DTbLywWyTs4HgXru322/XfbCY6duxAiBrwD+Mjy96SUUgihFXJIKT8NfBpg7969cmRkROfXlyBbqiLvuotL917AyE3nrXh/dHSUS/fu4DuHXuTa19zoaOahDkZHR/Fy/OX77mL3OdsZGbmkrf09WxOUa3VGRl6jbb/6w++xe9dmRkZ+Ysn2hwov8sMTL5PJJD0dvx28nh+F2o++z/k7hxgZuWyF/Uv27uSbB1/gmtf8ZEf52+WYzpbge9/nJy7czcgN57bcRx3/wFP309WbYmTkVY7tH/3xEdj3HK+76QZr5F0r+1cMncdX9z/LFddcx5aepGP7i0+fhCee5Kbrr+WCoa629q/bewl/89Qj7L30Cq49t9+x/X33HoAXX+KnXvdaYm1KddX5GXz6h6R7E4yMXOPI9sGJLPzgB1x+6cWMXLGt7X7K/svRl/n6S89zzXU30JdunXtpxl+/8GO6IyFGRq7ruJ+yv+nFHxMJ2e+v8Nx9B+HF/dw8clPH1Yey/+Vjj3FsJs/IyE2O7GefMb7bn7z+WvYMt/5uO0GHlnkL8ISU8rT582lFt5j/T5jbTwA7mn5vu7lt1aCWgp1pGXOSyxrj3TsN6mhGfybGrItpPVLKtsMWUrEwZTOptR6w2KEiStESutUsitZwQsu44fWd0jLem6ScTTLSrWbJl2tEw6KtY2+G7vlpNAE5p2XASJQ6gdP5pgqJqB4nXqrUEMJZExO44NzPYCnkL9GgZAC+A7zXfP1e4NtN23/VrJq5Dphvom9WBU5Gdbkt1VptdBrU0YzuRJSFgjtdk0pNtoxm1YW/htWQLVRqdYqVetvvOG0Je+lrm4D9mDcwbn5dFc28w1prVWevy4mr6p1O8gbgjXN36lx0nXujCch5ExPgOKla1KihN45D7/stVuvEIyHH8011q2WKDpPZ7eDorAoh0sBPAf/UtPnPgZ8SQhwA3mD+DHAHcBg4CHwGeL+rI9OAk1Fdbqen2+GRl2d4bsq9d+wk99uMnmSUhUJFu5FJPRBaCaolLee+9iP3nM13bEXumpF1zmGpIpg3f9WFHreDWmsvet9g7wC6XUfu9nK/CroJw5JmQlU9ZJyWQ5YcDtJQSETDVpLUCYqVmrZ9Nx22biN3R9+alDIHDCzbNo1RPbN8Xwl8wNXRuIQTB+l2EkonjM3medffPgjAB37OnQ07XRmF7mSEshm96jzJFyz7K8/NeorcF21WZ26HaTgZsaeQ0OyQBCX8ZG+7MXFL3/lGQoJY2NmYugUXkbtTaiOlSTsUNbRZlH3jmJz9DSWHI/AUdDtgSxXnDViGfb2VgVUK+UruUG3QMh3mVLpsj+6Ej92137MNncgd9CcOqa7EVrSMKrFaD5G73Xlyq/3iZMSeQiIStqgEp3A6vb7h3N2pBtqtDBLRMLFwSPv60akVT8Yiepy7hjaLYV+Pcy9Xa7YPvWborsyKVT3aJxkNU6lJxwNNCuUa8Uio7eBzO2wM517qPOzCeM/dsrQTHjsya712O9Go04i9ZijnrqufovZvRcsop7MeSt3tzpN77RcVudvfpPFo2EoCOoXTyNcKPnRpk1JnLfdmuBmFpx25a5x/5Uh1aZmiwwtWN3LX5dxLlbrjVQc0Hk5OVzfGHAB3UTtsEOduLdltmpia9/WKmVyZE3MF9gxnAPcTjZxG7iry1nXuCx1oH+XQ1kPkbpf4dKv9oiLlTh3CCsayenUid/Vd5HRpH40We1fO3WbQSDN0m4x0E6o6qzMpJeVanbhu5F6pOz9+zcg9oflwUvkat9hQzr1TBNNY9vrj3J8zB0O8/kKjd8utdO6CLi2j69wL7QeBKFpmjVWHtoTl3NucJ7czTnUi90Q05KJapuaIz49HDNpEf9hF1fEA5Uwior0yKJSrjh1MMhZGShwnJXUmGSn74IyWqdQkUhqrLadQDxmd43d67NCUENaI3BOv9MhdTdLp1JkYDhmjxvyK3JXC5OsvHALcD72wEqqrTMu0q3OH9RG52z0E3c44zZWqhi6KgwgvEQ1TrTvnTMHkrB06mHQ87ErewGmLvbuVh/OVgfo7nX4HOjNIm+07iXzL5nekQ5soR+30Aa6dsNWlZTTr9JdjYzh3G9Ewha6EO+W9Vnju5Dzb+5IWLeN2XJ3doA6FbpfOfaFQIRULE23hvNZTtYz63trRJ7GwIVylW+e+6GDEnoKK7HSi95xDWgbcabrnbUbsNUO3FA9MB+NwZaBbzaIbueuUu6oySyfNVwrqPDp9ABYreqWWjVJO587dbaUMbBDnvliqOFpW6+opd8L4fJGd/Sl6klEiIfeDpu0GdSgoWkW3kWmhWGm7KkiuJ+deqhAxlRlbQQhBMhbWrhN3KhoGTZypRvRrOEdn9tMx/etTZ4CyuyasmvM6d6vJyNlnFCt1YmHn1SDhkNEp60TT3VoV6ETu5rXl9AFoDBrR4/R17NsNVrfDhnDu2VKNjAM9kUzC3RzJVjC0xeMIIeiNC08JVTu+HSASDpGJR1xE7tWWlTLQiITK64CWWTRVPzs9BNMuJIy1nLvmst2w7zwplo5HtOvoCxXn0Z1unXW9LrXspzRpmWKlpkVrgLE6cETLmM5dJ3J3RcvoRO4xPftG5O7eRW8I554vVck4iNy7XY4ya4WpbMma5dkVFXzzyRP87lee1Lbj1LmDcfzade7FSlv7KhJaF5G7A+rNGNihWy3j7NoBrOSW03JI5RydRu5G+76utkzdcdLNSAhrrDo0Z3jq9hroOkcwHlCOaBkrctdIqGo636Jm5K7bYWusyl7xkbuzFulULOx6FFszStUai8Uqg+ZUoJ/cbnz2AwentG3ptHd3J6PakXu21FnnPhULr5uEql0vgDFqT194y+nSNxFRnLtDTraq5xwNTlwv4VnSjNzdDZjWq2YpOByFp0trqM9wUi1jRe46pZARPdpEV35At1omX9YrtVyODeHc8+Wac+EnzSaUVlBT6vvThoTrzTuj3HrTeeRKVW3tF52MeI8b524T8aZjkfURuZcqtkOskzH9yL1QcU6bNDh3Z5/hdDi2gm4TEOjRMgm3qoSO69z19H1068SNz3CmX2MpTmpx4mYppMMHbElj/ivoV8sUNfIprbAhnHuu5KwiIRHxZ/LQdNZw7s3zPDdl4pSqdW1hMp2bs8vFBHu72bLJdRK52/0dYERGJc2EoU4XoG5C1elwaQXdyLpSq1OtS8cOJhEJU67WHU97UonL1aJlipraLOBcnMxN5K7DiVetc++Cc3fYhJUvV4NqGSczMME4uW5lApoxlTWSp4PNzr3LiOJ1E6tKG8QJujXHmEGjB6AdUrEwa3T64BKohGon6ApXgZ6D0a2m0HWOCYd8soI6Dl1tFqerV6eKk8vtOw2gSlU9WsP4jIgjWqZRQ6/BuWvQMkU31Tjmvk6+43KtTl26l/uFDeDcq6ZSopPoKB4NWV+KF1iRe7oxWUc598lFPeeuU8uqWwddq0vbDslkdJ1E7g4SqrqRLxhRlFPneCZoGS09cU3nq5szsFYeGnrusLqRe8rhkOySG85dY2WmK1cMRsVbLBxy9vAwk66v6MhdPcUdtY+by1Kvk4emc4YDb6ZlhpRzz2o6dxfaIE55fSeDKNLxCMV1wLkvluwTqolY2HElgoJuKSHolbKBHi2jpRqoKQmry/laU6Q0S0W1hmloR+7OHuBuOHed77eoORxbwamEhVr1vaIj94Y2iDNaBpyXsrXDdLZMLBJa4jTdRO5S6tURdyWi1OrSceRlN+ACTOdeXduRe6lao1ytO+LcdSLfiiZvqhyF09Wf0rnRrzZx3uQCzp277spDlWU6dTChkHBcqqiOQzehmnSYUHXDuTe+XwfOvaK06Ffn+AualUqtsAGcu/PoQndZ2g5T2TKD6diShpqeZJRoWGg591K1jpTOqxEaypbOeHcngygy8fCaj9ydjFGEBi3jXJXQnXN0mrTVvUF1OWu1n/M6dz37uqWQal+neuulqp5kLhi0jFadu0ZkbYzMc5bwLGkqWio4pQ7V3/iKLoW0Incn1TKadaYKTx+f48FD09bPU9kSA8sm2Qsh2JSJazn3xhgtZ1+D7jQdu+lFYJRCrvXI3akscjIWplaXlmiUHayEpGPOWjfy1aNlUprOXQUpurSS05WrdfwOhcnAeWQKpjaLm8jdwQNcRe7xsHP7QghjIIuDlZk1RUrz+J3q+6hr7JUduVtLX+e0jG7FzF9890X+6Nv7rJ9PzhXY2ptYsd+mrrgW597oAHQ+bAGcyxZnHdIypRqOy+POBpwOsW7oZTtsMtJMWkXDgpDQ4az1aA1dVUW3Kw/HHZKaxw96XbZum5icyAq7idzBOSfeoGX0j98R5+5xfipsBOdu0jJOSiHjLrRBAE7MFRibzSOlREppOvfkiv0GMnGmdZy7eRM4jRx1p0k5yUeo86arg34m0YjcOydUdTsAG5OAnN0GQghroIMT6Hd4msJbmpy79oBpjZVHxJSocIpMPOJYvM1VE5PDB6Banehw7mBG1hq0j3bOwKF9K5/ySo7cVZTgRJbUTeRer0tOzRUpVupM58rMFyrkyjW2tXDuusJPKoJyWmpmRe4OaRknXLU1nm4Nt6k2RuzZ0TJ6degFF9GRjrJirlwlFg61lFtuBbfVOM6rZfQki3V6MBQyiaijRr5aXVKpSVeRr3FsnT+jXK0bKy3N+aNOOXGrFNKFNo4T+26uzeVwr0qzRuB0yQ7uEqpT2ZLF4Y7NFoiGjYulpXOPhbUiYN1lu+6oQHWTdRohp0pI/Rwc7jecfsfaetkupsvrDLzQ0UJvPg6ntEwjZ+DMQcY1tVPcDIvoikc4MZu33a+kOT9VQa1u7B5QpWpdO2o37Dt7eLumfRyWcupStq2w7p27oh4cyQ9oRkYAY3OFxuvZvHXBbOtb6dxTsYiWMJnu0kvREk6VIZ2MkLNomXXg3O0idzd62eCcFgPVCOc88tWZgelGewT069ydVvvkXagSOp2ZYM1PdVEtA/YPwHJVP1kLhh9xsootalJilv2oM8niIHKnuQvQeUJVp1rm5BLnXrAuxlace8qM3KWUtsM3QP8L1J0Dmy1VSUQ7j5BLrwPn7mQAOujTGm6W1omIc/0anSlJ0FwK6ey7KGiWy2k//DSmSClkHE47c+scG7SMPefuLnJ3NjPB7cPJaRNWwLljOKVkNNxxfqpCo5TNOS2jnHsiGmJsNs+JuQLxSMjScm9GKh6mrjEgWFcvOxwSpDXmwC4Wq2Q6UDLg/+Dw1cBi0eCu7RpGtOvEXdxAiaiz9nFwPhxbIaVJKxWrNaJh4ZjT16UldeanKmTiEXLlmm0XuFtaw2mAVtacb6rgXN7AXSmk0yavQrlGOCQsGtgN1n/krnED6Qo/AZyYLdCViLCzP8XYbIFYOMTW3mTLyDwda0TBTiISN+VOXYmo84SqAyXF9Lqolmk/cKQZKc2VWcGFfodWtUxJbwamFZVqHP9qaZuAcW+1m+LVDup7ypWrHYe+685PVXDaC+CWczdKOZ3QMu4i90Q0TMlU5uyU7M2bmlNOGIB22BCRuxNdGWiapKNDy8wX2dqT5KIt3Tzy8gyjL03ymvMHWu6rK5zU0Mt2foFnEhEWS845d7tz00iort1qGbuBIwq6tIMuZ60+w3E1i6Yet06HpLKvS2vEHdZxg0nLaNq3VoI2AYhrWkaLc3eXUHWycipWjDLRTpRnO/tgL3GgI0XdDo6OTAjRK4T4uhDiRSHEC0KI64UQ/UKI7wkhDpj/95n7CiHEx4UQB4UQzwghrvJ0hDbQmWTkZgbmfL5CfzrG+0fOp1ytU6nVed9PnttyXxUF61Y76EXuEce0TK5Ute0uXBcJVYejCLVLCVUjiqa4lI59nRtUCH1tFt2Em87xu6JlHDbaqch3tWgZt5F7Oh5xLG+gW8YJziu6Ch613MF55P5/gO9KKS8ELgdeAD4M3COl3A3cY/4M8BZgt/nvVuCTdsbnS+67I3OlmuMZmLodhmBUpnQnI5y3KcMH37iX33zt+Zy3KdNyX3UjOKU48mUj6aPz9M/EnTv3YtV+vmYyGkawtp37ogO5X9Dn3IuVGkLodRnGNeaQulI91JAt1pGLVnDapGPZd8G5g325rsVZa9MyZqOXgzp3XdvQOP92HdtuRM+UfbD3QbqrvlawvWOEED3ATcCvAUgpy0BZCHELMGLu9gVgFLgNuAX4ojTEHx4yo/4tUspT7T5jsezeuefLVXpTK5ObraAiI52E6nyhYnGHvzVyfsd9rTFjTjv0XLRfZ+IRxueLzuyXawx3xTvuY+hprPGEaqnasq9gOXRnYBZc8JoGZ6rx/WreoDraLAU39jUeHm4id6cSGUUPwlvq2DqhVK059gvNSDXRJp0YgWLFXeTudAh3oaKXT2kFJ0d3LjAJ/J0Q4kkhxGeFEGlguMlhjwPD5uttwPGm3x8zt7VFVepLAigYCdXV4UwBFgoVuh0mlfQjd+eUkkI6HnEcZRerziKvRFis6cg9W6rQ7YCWCYUE8YjzhKGb9nedUY3FSn11I/dKzbHonGU/5mwId71uylFr17kb94od5+62iSlsyiE4Sai6cb7WPWwToJVcXDvQTMt0/g7clKEuh5NvLgJcBfyOlPJhIcT/oUHBACCllEIIrfBbCHErBm1DbPMFfOO7P2Bbl/6XMbOQZyFaZHR0tO0+2Wy28X6twpHjJxkdnba1XatLcuUaM+NjjI5O2Nofzxlf2ONP7yM++aKt/aNjRWS13vHYlx//7GSJ+XzV9ncA5rMFZqfKtvvGQnVeHjvF6OisrU03WHL+XWBmscD89Om2NprtR0Sdgy8fY3T0tK3dl4+VELWa1vmfOFWmULH/HTAe3hOnOl87y+1XSwVOjBcc2Z+cLtAVE1rHX84XOLWI7e+UTKXQ8eNHGB096dj+dMG4Bx57Zh/pmf1tf+epMaMo4KnHHuF4svN9v/z6iYo6B490/o7nFvL0kHd0HpvtHz1hHNd9P/wRQ6n2x3VivEilJLXtvzRlPDR+/MhjTB9s77wnZgr0xu2/205w4tzHgDEp5cPmz1/HcO6nFd0ihNgCqCv4BLCj6fe3m9uWQEr5aeDTAPEtu+Wm8y5m5JLN2n9A7Qd3c/7OrYyMXNp2n9HRUUZGRgDofXyU3oFuRkbs87yzuTLc/T0uv2g3Ize0TqI2259YKMIP72HnebsZuW6Xrf1/OPooA6LIyMiNHfdrPv5Hii/yg7HDvPa1r7WlE+qjd3Hujm0dzw1A6sE7SXX3MzJyre0xu0Hz8etCSknp7ju58PxdjIxcaGu/+8F7GBgaZGTkclvb/3jiCXorC7bH1mz/mdoBbj/8EjfceFPH+vJKrU79u3ey9/xzGRnZ7dj+J/c/iARGRq63Pf7/74kfsH04w8jI1Y7tf/nYYxybyTMyclPH35nKluD73+fSi/Ywcv05ju3PFyrwg7vZtut8Rm48r+3vHHvwCOx7jtfeeAODmc7U4fLrp/vBe+jb1Pk7Dj90L9u3Dji6Dprt5589Bc8+wWVXvYoLN3e3/Z3PHXoYGa8yMnKDlv2uozPw2INceOllvHbPpvbH//goO7Y481PtYBsqSynHgeNCiL3mppuB54HvAO81t70X+Lb5+jvAr5pVM9cB8534doUj0zndYwdMakOjUUSHllGdao5pGataxmGHoYtyp3Q8QrUuHTVKOUmoAiTXMOderBjTkuyasRR0qk3cnH+nFTlWmaWmfZ05qkbOQJ/Wc9pEYxyPvvwAOOHc3dEyxjHZywqXPJRCggNO38X8V3A+MMWNrs9yOP3mfgf4khAiBhwGfh3jwfA1IcT7gKPAu8x97wDeChwE8ua+HRES8PKUvdjQchilidLRoA4Fp2L50NBwcdrIoSv8lC/XHFWBNKO5dLHTjVGvS8pVZ5xvd0xwSnP265mCqul3UucOeg9vN9Us6oYuVup0rZT0t9Aos9RPqOZnncsb6DoAp3rruiMCFcIhQSoWdlDn7q4JCEzlSQecvqsmJofOt1it0d+iS90OToODbLGq1d3cCo5+W0r5FPCqFm/d3GJfCXxA5yCiIbjvxQn+6Ykxfuaq7Y5/z5L71YgujMjOWZS6UDD2cxq5h0OCRDSk1cRktyRdjuZGqdatVAaKGgmrnpjgmem16dyVk3CSUAXn2h1gnEMn9fPNiDu8OUtutUeizmWj85qqk6AS8vb2re5pF9GjE/Ewt01AYFwLds7dbROT016VYqXmMmFrr9kvpSRbrtLl0bmviQ7VdFQwvlDkf33vJa3fy1nT2XUi95CjagFoomVshkQ0Ix1zXs3ippbV+bJXtdbbf8U9cUG+XFuTFTNORgU2w+kwBHC39LXmqDroMAR955iMOav2qZnUnM4IPDCCg0LFXvvFomVc0CYZB863VHVf6mc08rXv0pbSODdxl5K/YE+tFl2WKjpZ3efLNaR0Nhe6E9aEc++OCW696TwmF0uOhxsD5Ev6kXsqFnGsuqdome6khv24Bufrwrk4VXHU4TR74kZiVmf+65mCjl4/OC/1A8hX9EtRVSRuV8rmVjtFd1KP9vUTc5YX0p3/uvwz7J2ju8gXjPkEnR4elZrhQ9xK/oI9LWP0AOifm4SDgSnq3nZKRbbDmnDuAENdcUrVukWFOEHeReSejoetiN8OCwU9zh00I/eyfq1sQ+jLWeSo5dzXIO/udMSeglZ7fcl95G6rDeKS1kjGIo46JFVg4yYhD/a0g+4gmWY4SWq7jXzBCLY6OXe3I/agMQzc7v5yk+9QxxQSnR8ei5oBTTusGec+3G1kp04vOuu+BL3h2ArpWMS6MeywUKwQCQmtFm+nqnLgjpZRDzJ/I3fjMphYWIvO3dmIPQUdWibn4gZ1OvClWPXWgWlXDaU7n1XB6fVTcGkfnOU9itWaK04cjAd9oVKjUmt9jsou5YTBmaa+avDSKeRQUF3ync5PbsM69wXnzj1f0r8AU/EIeQeREZjSA8moVnt62uEkmnLVKPHT1QZRy2o/27sbtIzzc3+m4HQKk4LThGqtLilW6tpL60a1g0NaRndSj0PO161ztyQyHNAObuyr37HtIHXRvaugroV20bt6MLqJ3GOREJGQ6Hh+ilWDE9cpwW6G3TWqigjOSLXMmcBwt1E1clojenQXuYeR0oia7U7eQqHquEpDIRULO3pANZbt7kshO0HHuWSiRqWP37TMF358BCFgpwcbi5oXutNSV7WPDqVn2Hc2ZNqrpK29sJSiTTTr3GMOI3cPk4CSDlavJY+ROxirulbliF4id7A//pyLoLIZduJtunmmdlgzkftQl4vI3QXnnrI4a/voeqFY0R5WkIlHHZWauZH7Bb1SLaf2Q0IwmIn5mlCt1yX/554DfOHHRzzZUaMCnU4bSkbDlKt122qQBqesmVDVbWJyOUbOSUIPXETuGpx7JCRcD7ywpWVc9BgodDuO3N3Zt1t5uG3wUuiyqdPfcM49GQvTnYgYLfwOkXNRLaMiFyfKjfMaomEKmXi4Y5mWQt5lk0gsEiIaFhq0jDP7m7rivjr3508tMJMrc3ymQF2jAmo5FotVx8lUMEoJwd75qu9flzeNO4zcdeebKjiN3N0694w1nKXz9ZMrGd27biYBOeklKbrs8AT7QfFW5O6yGicdi3QM/tR7bjh3MB5OnYbcNwbbbxDnDjDUndCiZdxc4OpB4Chyb5L7dYpMwpghaVfSqVPNshxOlCF1VwaDmThT2bL2sbTD/QcmASjX6kwXvDj3ilYzx2o7x4RTzr2qP8IPnEfubqPHlMNSSC/t78lYhGKl3jGv5VZVERqce7vKOqtaxqVzzyQ6582swMyl8+1ORq1KvFZY1MwztcOacu7D3XHtahkjknX+ZygKx0lFy0Kxqh25p+MRK1nXCV6qEdIxZx2A4Lxaoy8VYzbvn3N/6PAMEXNG5Om8e+fuZA5sM5xqd7jpbgbn07zU5+tGj07nqLqulrHm/NrYr7ir424+pk7lom710KHRVNhuhew1crebduYl2QzG8XeynytVCZvy1V6wppx7fzrOXN7ZfFAwlta6SyMrcndQ0WJouetd4F0OO0i9JKwy8YgtraScj9NGjt5UVOvc22FsJs+VO3sBOJ13PhxlOXQ1NqwZlTbO0U13MxjTvMIhYVvnXqwaTTqdhiC3glWNs0p16E47ML2MeXMyS9jtJCPQqJZxG7nHIx21cbwmVLuTkY6Re9acPOZlODasMedujJBz7mByroZdOIvci5UapWpdm5ZJO3TulnaHmy66eNiWVtJN6PWnYmRLVSvq8QIpJafmi1y2vZdkNMzpXJ1sqepKedIYxuI/LaPqmHVVFY3JVfaj9koum3ScDlm3okfNz4hFQsTCIQdNOu5pGSerpzPh3N2M2TPsRzv6obzFubukZRJRFkvVtkn/bElfULAV1pRzdyII1Ix8SW8KEzQvSzt/TkN6QDehqleq6DZytztPxUqdkDAiTSfoNUvK5nygZhYKVQqVGlt6EuwaSDGel1z2n+9i5GOj2rby5arW6szpAGIVfeleP+BMedLNfFPQyxnozt9VSMXDttdn3sX8VMu+gyHWbiV5ASLhEKlY+8IFr5x7VyJi8d6t4JmWSXaeVpUtVTaec+9KRChV646jRzeRu9PISCVr9EshnQ0I9nKB9NgkZKARGTld2vWb8yZnfHDupxYKAGzpSXLZ9h4OzNaoS3MAhCZypZqeXr9TztrDw9VJLb0xws9Lh6T9ysOt8zUkMuwfTm6dl909Zgl7uYysoTMvXvLKuZuNiO0Swl4TqlZCuM3DKeciaG2FNeXcnSoeKuQ156dCszZL589oKELqD0MA5+3dbqK73lSUORvnbszXdG67L2U8xGZz3nn3U+YA7809CW7cvQkNuaAV0I3crWSeHe1Qcr+0jkdDlqRvO7jRDYImSsNB5O7W+abj9qWKbkTVFBTV1e4zSi6lGZrRnYha9+hyeE+oRpGyvY9QD0a3OYlum1LOxVKVjCYd3Apryrl32WTBlyNX0r8A4xFDuMcuIemalnE4/d1LQrU3GWMuX+5YaqYrzNRn0jJ+VMyMm859S0+CGy4YpHnt0E4PpBXqdamtvqdbCunmBk1E7GmZoktJ22jY6GOw5dxdTJFSSMUi9sJzPkTu7VYfbhUzm9GXbl/d5ZVzt7uHCxVjVRbWTJYrqCKNdqWcuVLV6kfwgjXm3J1RGgr5sn61jBDCqBO3iVwWXGi5g/PVR6FcIyTc6V/0pqLUJWQ7/A26wkx9Kf+c+6n5IiFhNEb1p2Oc19M4jmmNWno3EgHOnbtRDaJbzQLOxOGKZXe0DDhTtiyUa64Teul42FY8L+dCMVMhacO5NyJ39w6sv0PpbtljtYydH8qVqq7PPdhH7guFCl0Ox0p2wppy7hlt5643P1XBUIa0i9y9ce5OqmVSMXflTr2mI57vULpY1Ezo9Zq0jB/lkOPzBTZ1xa3+g9++Ms6fvuMSQI93d6MdlHDIWedcUHoKXTZNLqBPizUj6WAUXt4D556y6ZNQqoe60gwKdgMprDJdD3XcfekYM20oRO8JVcUgtD5HbiZgNUP5lFZ5Myklc/mKtZL2gjXl3O2aE5Yj56LOHYxqgU5RLzROvG6XWCoWRggnwkydZ6B2Qq95cXSKsguapWaJaJhULMxMzp/IfXN3Y8BoXyLEJVuNSfI6zj3voqLF6YzKgodqkIxNqRwYDya37eOpWMR24IgXzj1jMyRb1fCvHi3jQ+SejjKbL7fsBC9X60RCwjVt0iiKaP0d58tV7QlYzWhE7it9RK5co1yrWzkwL1hTzl0noVozowvXk2LsSiELFeKRkPYFKIQg46CD1Aun6STKdqMV71eX6sGJLOdtyizZpmbF6tAy6hzqfMfRsCHZakfLeFlaO4ncjQY7d/YN1cDO9rOlqutyObsh2V5L/exkhXW7p1uhLxWjVpctHaRRieMlWduZQfAauWcs+YSV9++sGVwpmtQL1pRz1+Hc3Uq2gnHR2iWU3ChCKqRtOtzArCN2G7kr596hYsZNnXVfOmpdXG6xUKxwar7InuGuJdsHuwznrhW5m9+RrhMzBnbYVLN4SEh2xSMtnUozcuWqaweQiYdtHx6GoJpbzr1zKaSXSi5o0C2ryrmrAoAW12u5WndNyYB9QtUr5x4OCfMaauHczeBqw9EyDc7dgaqii6hOIR23n/G4UNDXlVEwxMMccLIunUtPUnHu7R2xm2X7QNq7eNiB04sA7BleGrmnY2HikZBLzl1T3MuB5KzXyL1crbcdki2lNCseVkcSFowGGB21zGbYDcn2Mj8VIGROL2u3+vCDc1fOvVVfRqla81hD35ke9tLgpdCdbF3KOWuuxjccLROPhIlFQh27wxTcaoOAs2ECC0X3XWJpBx2kXm5+J7SMcQHq2d/el+T4bN7VMSnsH88CrIjchRAMZuJatEyDc9eP3G0lfz3coOrmb7c6K1Xr1KUXve/O10+lVqdQcd+ibjck260cdTM6VRS5HWTSDLvI3W33KxiSDkK0ZxCyJb3ei1YYyMRa3gsWLbPRIndwLkHgRstdwcmcTU+Rl4NRe15KzaLhEJl4xHrKt0LBxXzQnf0p5vKVjlrTdnjp9CLpWJhtvckV7w12xbWmPbmN3J18v27KaBXsupAbetzuq3E6rV7VQ8UtLZOy0VdyO9y7GckOAy/czpdthuKkWxUAlKp1VyXGCqGQ6CjxMV+oWBVrbrEp03p+gkXLbDTOHewV2RSsKUwunLuTOmUvLcB2qm9gOC4v+hE9yShzhdZRsJTSlGzVO/4d/SkAjs+4j973jy+ye7irZf14X8peNqEZbrtIE7GwI8lcr+3j7TlZfyb1tJsJ4HVSj53+kZd7S8HIa7VZ2Vi0jPfIvZVz9xq5Q3tZ3lpdsuhCCnw5NrUJdGZzZYTQL8FuhTXn3O0U2RSsqM4lLWPLyXooZetJRpm36bnPldwn3MCgZtrVuZeqdaTUj7x29CnnXnB1TFJKnjs5b5U9Lkd3ImqbiGyGot50z1M6Zt+kY5SzeetgbKsNUlbO133kXu0wE0B9rnvOvXM1izp+L5F7p/xN0eOMUzAeHrFIqA3n7i1yB8WJr7StgpNeH5z7dLa0Iu8xmzcKOdyWcTZjDTp3e0oDmsekuYjcoxHbOZteEm49yRgLhUrHaUy6UrbL0Ulfxm1r/U4zch9zybsfnymwUKxy6baelu93JexXNM1wO8fT7hqyZA3cTtKx4dzdDgJRsEvoeaVl7IZkexkkozDUHWeizeCdkg+cuxDC6FJtF7l7WBUADKRjLVcFKgnqNbIe6opTlytXHrP5siXi5xVrzrk7kbMF93wsNOZsdqqYMWgZ95F72Ux6tUKlZihfeln29qZibeV53SbEelJRuhIRjrmkZfadnAfg0q2tnXt3MspCsfNDrxkqL6HbxZuJd6428dqkY1eym/UgJwyNgS/tVjmLnjn3zpG71zp3MJzXxEKp5XdtlUJ6dMD96dZJyVK15qkUElQH7ErbKqDq9VjNssksDV7Ou8/my55tKzg6A0KII0KIZ4UQTwkhHjO39QshvieEOGD+32duF0KIjwshDgohnhFCXKVzQE4mp0MTH+vCAasqknYJn3K1TrlWd72sVl9OO9U6t1UgSz6jTSkVNCfE9O3v7E+55tz3nZgnEhLs2Zxp+X53IkqlZj+CUCHvkhqzS0jmXA7HVrBrtvNybULzw6OdamBlyXHoQv3dnYSxwBstM9SVoFStt3xAFSs1rVkDbT+jO85Ei6Sk1yYmMCL36VWM3C3nvox3n81VfEmmgl7k/jop5RVSyleZP38YuEdKuRu4x/wZ4C3AbvPfrcAndQ6oU5a9GTkP0UXKRlzKmrTiIXKH9qWKSvrASzmVGovXKjJyO6UHYLg7oVXR0oxnT8yze7ir7ZLYUsNzKi/hsotX0TLtVgheHn5g34+R85iQtEot2zjfBi3jknO3Ivf2tFLYBR3WjKFuFZmupGaKFaMO3esYuaGu1tSPMQjE26qgLxVjsVhdoWKqVsueI/eMIc8xsbD0+GdyZV/KIMEbLXML8AXz9ReAdzZt/6I08BDQK4TY4tRoMhpx5NzVBejmCW03TCDrskpDQSVb2kfu3h4exmfEqNZlSwfgZVndm3Q3S7VSq/PE0Vletauv7T6WpoZD3j1fche5Z+IR6rL9wzvn8eFq14/RKNNdHdpnwSMtk7EZkp0v18xab/fOV0WmEwsrAwVDjto7IzzUlWAqW16RO8v5UIfen2ldR2+pxa5C5F6vS6ayJYbM97zC6RmWwN1CiMeFELea24allKfM1+PAsPl6G3C86XfHzG2OkIyFHNEybvlY4zM6O/ecR9qkx6bJKOuxDtruMwoV99UOPR2qcDph34l5cuUarz6vv+0+6oZwHLm77AWwUxe1Hn4eHq6d+jFyHld+drRMtlQlGnYX2ID9kGwvomoKQ11mZNqSNnE/P3XJZ3THqdXlCm68oDkDoBUG2nTAqvvNKy2TjIXpikeWcO4z+TLVuvTNuTs9Az8ppTwhhBgCvieEeLH5TSmlFEI4y5KZMB8StwJs2rSJ0dFRAE6NGX/g9++9j0iHcqBDR0tEZM36vU7IZrNL9ts/Y9zcDz36BIsvr7zIDs4a7x/a/xyjM/u17U8VjKXcI089S2LqxRX7Pz9t2D/w/D5C4y9o2wcYO23cmPf88EHO6Vn6Nzx2ynjvuaefZP6wvQNotj97usxiqco9996nVY51x2HjJqid2s/ozEst7R+aM/7uBx55gsWX7S+9U9MFNiWF7Xe8/PwcP2mem/t/zNbMyr9/35RxHPufewZ50t7JtDr/4XqFQ0dPMDo6vWL/F14qExLw4AP3Owo+ltvPVYxb6cl9+xnOHV6x//5DJeIhyQ9+8ANb2+2OPyLghQMvMxo6sWL/I2NFRK3u6N5qZz9v/g0PPvU8vfMHlrx37ESResWbfYCJceN7vuO+B9jVbXyPUhqr2clTY4yOTri2f9S8R+/90aOMDzSukX0HSsTC8OADP3Rku9PxpyM1nj14nNHRSQCOLRifOXn8EKOjRx3bbwsppdY/4D8DfwDsB7aY27YA+83Xfwv8UtP+1n7t/u3Zs0cqfPaHh+Wu226Xc/my7IT3f+lx+br/cV/HfRTuu2/pfs8cn5O7brtd3v3ceMv9739pQu667Xb5yMvTruwvFity1223y7/9wcGW+3933ym567bb5bNjc67sSynlIy9Py1233S5/+NLkive++ugxueu22+Wx6Zy2/b97wDj/09mSo99VePdnHpKvb/N9KPsHJxblrttul996csyRzdf8t3vkB7/2lO1+y8/PvS+clrtuu10+eWy25f53Pmuc/30n3J//t3/8h/K9n3+45f7/+Tv75KV/8l1HtlvZr9bqctdtt8v/eff+lvv/7leekDf+xb2u7Usp5eV/epf8o28923L/9/39o/It//t+T/br9brc+4d3yP/yz8+teO83vvCofNNf/sCTfSmlfOzIjNx12+3y3hdPW9sK5arcddvt8m/uO+DJ/v7xBbnrttvlPz99Ysn2D37tKXndR7/v2HY7+1JK+Z7PPiTf8dcPNPZ70bhuH3Xod6SUEnhMtvGrtmGdECIthOhSr4E3AvuA7wDvNXd7L/Bt8/V3gF81q2auA+Zlg76xhVM97sVi1SoZ04XdsjTnkXNPx8KEQ6I95+5x2Q6dNd29tI+rtup2ZZatcHKuwI8OTfGWSzunVnQ594VCRXsSFtgnPBVt5WXprhLareCHaqBREty+zt1LdzN0HpKddyFdsRxCCIa6Ei1pmaIPCU/Aoi8mm3h9r/euQjt5g/mCe7XY5djWm+TkXKNhUJ0rRWl5hZMzMAx801xeRoAvSym/K4R4FPiaEOJ9wFHgXeb+dwBvBQ4CeeDXdQ5I1aDbJVVnc2WrBVkXdsMEVJ2y2xtICNExMZn1WIoHTZx7C0fpJaHaY5MMXo6nj8/xydFDSAm/cM2Ojvs2pr470+tfLFWtChsdWKWKbbVfvJ///nSsbT+AlylPCp3Ew7zI/Sqk4+GO8gNe7UOHapZKjYTHUkVoSto2fYYfNfrQUGVc4dzz/jn3rb1JJhdLFM3BOop/V5VGXmH7DUopDwOXt9g+DdzcYrsEPuD2gOxGdCnM5sucvym9Kp/hVfgJlATB6lXLWE64ZeRu2HfTJNLpobEc9brk/V96ghNzBX7q4mFLm6YdElFD9tdJQlU5ZjeRu5WQtOnA9JI07Eu1bnIB91U+zehUq79QrLC9r/O5tkMnbaJcqbpkkpZbDHXHeXF8ccX2YrXuuX0fjOupJxldsjrwmsxWiIRD9CSjLSP3cwa9nXuFraa43vh8kXMG00wsFOlKRHxJNsMa7FC1GoxsaJm5vHtlNrsBvn5cID2p9s5dPTzcDkMAoxwvFQu3XB2oQSBuhj9bZZwOKmYeODjFibkC/+tdl/PpX7nakf3uZLTt1PdmqAeAm5IzNVzYrprFCy3Tn25dBw3eFD8VOgUHCz5QA5u6WqsSgqFv0pf27nyHuhJLKBOFUsX98PDlGO6OMz7fiNwbom3eHeRAJrZk/oCUkpNzBd9oE6WcesKkZiYW/SuDhLXo3B1w7uVqnWyp6pqWiUdChER7WiZXcl9Dr9CbjLYdWZcz5WbdON9m9KVirWkZF4qQCjqc+9cfH6M3FeVtl21xXJLanWg9gWY5lGNzQw+oFVc7WqZQNpyLF3Em1WjS6jteKFZcNxgpGPIS7SJ3d3RVMwYzrYW9pJTM5cueJW3BeIAslqor7rPFYpVM3B9qY3tfiuOzDd7aj3yWwrbeJCfmGg+OyWyJxVKV81wyBq3sw3Ln7s+DA9awc+9Ey6jlpNtpJUIIUrH2Q4LV4G0vTRyDmThTi+2XvV5qrBV62vD6XuqU1fxIO1VLMGalXrWzT0ukyYjc7Z27Fbm7cJKRcIhkNEy21F610WsdtBJ3ms2t/IypbJnBjDfn2N+G9qnWjMDGa+Q+mIkzX6ismCaVLVWp1qUvk4CGWnDi4G9Scmd/irGZvNWN7BfnDrC1Z2nC8+XJHMCK+cBusbkngRBwYrZApVbnyFSOLT0b2bnbUCbQuKG8RBeJaNiqmlgOL8OHFYa640xlS9RbKE/myu6n6DSjN9V6deBl+HYkHKIrHmnLxzZj0kU3nVNhOEXduI1QOyUk3YwgXA5FWyx3wPW6ZCZXYiDtbXndm24tL6GS0X44d1g5sFwFC35E7kPdKxuZKj49nBS29yVZLFWtlZ5XRc5mbOtrJDwBDk+Zzn3Qn8g9Fgkx3JXg6HSOf376JNO5Mj99+VZfbMMadu7FDpG7H9NKUh00bPJl75H1pkycal22pE1yJe+lZgCbuxNL+EaFfEV/xF4znHSp1uqS6WzJqlhwCqeSzl4idzDKIdslVPM+cOL9bWiZuUKFujT4Wk/2UzHKtfqKQe5W+7tH2mdTm4Hlfk4CGmohQbBgCW95d77QGDCjKpf8qIRSaE54AhyezBKLhFpOGXOLa87t54GDU3z6/sPsHsowsneTb7bXnnO3aJn2DsAP8Z5O05jm8hWLnnCLTSZ31m6Ulh+yntv6kowvFKkuS+oZ9eFepzx1du4zuTJ1ibZzz8QjbUvwmuFVw6OrwwrBT1pmeeQ+kzO+74GMt8i9L9Va28QvVUJFG6107v4NaG5Fy1jH75Os7U5rephBn1iRuw8r4629xj2sOPHDkznOHUh7zpU14w0XDTGVLfPi+CK/cdN5nsXUmrHmnLtVg95BFta6AD2op3WaxjTlIiJdjnZ6zaBq9L1nxbf2JqnVJaeXfcZC0V3zj0Jvh0ofBfV3bdJ0Ypl41NEYxYViFSFw3ajWSe8+V6p6rkPvbeN8VZJy0KOyX7uErV/OUdEyy69Pv1QPwXhARUJiCS3j18NJoV3k7qUSTWF7r2FbOfeXp3Kc6xMlozCyZ4hwSDDUFeeWK/yjZGANOndVodKRczcvQC8TSzpF7kZCzCfnnl1Jm0znyvT7cPOoZWNz0gfMyN3DzdObbO8YFVQ0pttwkYmHyZarLXMRzVgoVMjEI66jJCOh3brUz4/vNxYxchPLhaUUh+09clcdyEsfsl7pKoUGLbNsElBOOXcfBjSHBJvMoR0KDefuj6xtJh6hLxXluDk9LF+ukoyGfRlT15zwrNUlY7MFdvlU467Qk4ryoTft5c9uudTz9Kjl8If48hFCCJLRcMdSyLl8hXgk5KkJJR2LMLW4ssOwUqszm/fRuS9zMJVancVi1ZfI3Sqlmi1wzTnGNiklCwVvCatONfoKjchdL7ufSUSQ0sgLdEoqe119DGZiTOXKSCmXLHWllJxeKDLsQ5NObzq6InKfNmkZt2W6CipyX/6Q9SvyTURXqhJC06QhH1vsm4e/+B25A+wZ7uKZsTnAn+5ghVgkxFBXnOOzeU4vFCnX6tacYT/xm68933ebsAYjd1BRdful+0yu7DnhM9ydYHxhZVQ9kysjJQx6pGXSsTDJaHiFnrVyBv0eE26wkhMEQyu7XKt7qoNWDTTLKzWaoXSoB7v0/g5V32zHuy8UvE2YH8zEKVfrK5KqC4UqpWrdl2aR/nR8xbSeqawxvd4rZ91J2wT8cY6DXfEVg1nm8hW6EhEiHgdMK1wwlOHgZNb6eWEVnPtrzh/kuZMLzOXL5Eve8ynNuHRrD08dn7MeUHZd2GsJa9K5J6JhCuX2nPucDwnJLb0J5guVFQ8Rt1zycgghGOpeefPM+EApKaRiEfrTsSXO3Y+bvzdpjMPr1GswuVgiE49o30gqqrIrh/SaFFbVKsupmdMmneRH5L69N8nY7FJKbDpbMrhmj86xJxlFiJW0zHyhQjQsfOnw3NKT4MSy45/New+cmnHBUIaZXNl6SK1G5H7DBQNICQ8dnnY9vasdXn1eP4cnczx+bBZoJHDXA9akc0/GOtMys3nvcwZVs8CpZaWEqnpgk2ZE2gqbMnFOLx+jZXKcXpftClt7l96gipP15Nwd6MtMLrpLOquOU7tyyMlsydPqyarjXhb5qu/DD+e+oz9l8bEK09myNejBC8IhQU9yJe2jKDc/qip2DaRXiJ8Z95Z/jveCIaPh5+CEEb3P5Ssko2HPA6ybcfmOXlKxMD86OO2px6MVrjtvAICvPzaGEI3V8nrA2nTu0c60zGy+7Fn7YkuPwVefmlvqfFXk7pVzB/iJ7T08dmSWw03LUhW5e62DVtjVn+bIdM76ed6HOujGDNj2SdWpbMmVE1O0jF3FzMRCkWEPrdhtI3eTJhv2QXlvR3+Scq2+5AE+nSv59uDuT8VWVMt4TZY3Y9dAiplceYlAmV/SAwrLnbuf3akK0XCIa8/t50eHpsi5HKreDhdv6SYTj3B4KseW7oTvSc/VxNp07h3KFMF4+vsVuZ+cX7ostUrZfHDu7x+5gFgkxP/+fmMSjVqe+rX03TPcxbGZvNWQNe/DGDBVydApqbpQqLqixiw53g6Re7ZUJVeueXLAilabahO5+6HhoZJrzQnDk3NFq4rJKwYysRV66PMuNe5bYZdJMRydbhz/+HzRV/GqrT1JktHwqjp3gBvOH+TwZI6j03lfyiAVIuEQ7371TqD1yMC1jLXp3KPhtnXu9bohbOTVOW42nfvyDs+pbIlULOzL039TV5yfuniYJ4/PWttUqZxfS9+9mzNI2YiM/KRlOnWpuhXHcuLcLQfswbmr6Hl55D6xUKQ7EfE8IxQa/KuiNsrVOifnC74l3bb3pVZw4qfmC75dOzsHVh7/ZLbEFh87MEMhwSVbu/nxoSmklKvm3K8/36BPZnJl67Vf+Pc/tYdzB9P81sjqVLWsFtakc88kIm3FpRaKRnu314RqPBJmMBPj1LLIfXKx5EvUrrC9L8mpOaOL9O7nxvnE6EF6U1HfqhF2D3cBsP+0oZs977GzE5xx7ovFqquEp5qSlO2gDKkqjLzQMpFwiL5U1CpNVDi9UPKFbwejz0AILFXCk3MFpIQdff44x+3LOpD3nZjn0GSOkb1DvtjfNWA05KjI/fRCESlhm8+88r+6ahsvji/y9Ng8pxeKvnWnNuPiLd30paJs70vyy2ak7RcS0TD3fvC1fPCNe321u9pYk859e2+SE7OFlo0ujfZo77TG5p7EioTq+HzRl0EFCtv7UlTNLtIPfPkJKjXZVsrVDXb1p4hFQrxkOndLcMuj/ADQ9jillCwW3XG/lhxvh8jdbYPUcrRS5hz3qcYdjDroLd0JxszIV0XAflVUbO8zOpDVNfrVR48Tj4R45xXbfLGfiUcYSMc4NmPkbNTnqHyUX3jH5VtJRsN8+BvPcGQ676t+ikIoJPjEu6/mM7/6qlXhxf2UBThTWJvOvT9FuVZvyXFZwkY+DBPY0pNckVA9Pptne79/F/d2M4o7PJmlaj6s3nOdf5FFJBzigk0ZXji1ABiReyburU45GQ0TC4faDxsp16hLd1rr8YhRKZFtM78TGpH7kEcnPNyd4NSyaqUTcwXrO/EDO/pTllNXXZJ+0TLbzPZ3VW75o4NT3LRnk6+R766BFIcnlXM3PsfvipCuRJTfvXk3L44vMpCO8bNXbffVvsL15w9w0ZbuVbG9HrHmOlShSQxoNm9x4wpzPqrWbelJ8NDhaevnUrXG+ELR1y40NQ7t3hcnkBL++pev5O2X+ashcf35A3zxwSN8YvQgn//Ry2z1qAkthDC7VFtXy3hVJszEI2211sGgB5JmB6UX7OhP8d19jdnsxUqNycWSr6p+O/pT/PDAJGCIV8XCId9WBuohdGLOKLc8PpvnjZds9sW2wgVDGe59ccL6HPA/cgf4zdeeRyIaYkdfyrcxcgE6Y01G7oqzPDadX/Ge0nL3x7knWSxWLYrgxKzBmfrZqKCioLv2jQNGx5vf+IVrdlCpSf77d/cDcLKFDLAu2g0CgUYDkttpQ5l4pGMp5OnFEkPdcc9L4V0DKWbzFSvJrJyXnyuznf0pTi8Ymt/HZ/Js60v6omsCRqOdEDA2m+fUfIFKTbJrwN8mmguGMkxly8zmypyaK9KTjPpaSqgghODXbziXN1w87LvtAK2xJiP3bX0qUdXCufscuQOMzxe4YKjLSoz52WIcj4QZ6opzcr5IVzyyKh1ue4a7uOacPk7NF7lpzyZfmmh6Ozj3xnxTd5ePEbl34Nw91rgrqFK/Y9N5Lt3WY9EbXodLN2OH+aA4PpPn6bE5dg/5M6UHjGtnuCvB2GzBCnR2+Xz9WHXok1lOzRd8nQQU4OxiTTr3eCTM5u6EpdHcjNl8mZBwx/cuR3OX6gVDXb4nxBRUN97rLhzyVQu6GZ/91WuoS+lJBrkZfenYkvrtZihaxnXknohYE4VaYWKxxCVbvXOnqtTvqOXcjb/HV87dfFB87oGXGZst8JG3XOSbbYBzBlO8dHqRo+ra9Dly3z1kVFsdnMhycCJrOfsA6x9rkpYB46Zp5Vxm8xV6UzFfnOTyLtWxmbylBOcn/ujtF/Mf3ryX//Hzl/tqtxk9qahvjh1MVcUWA5ShQcu4rcgZSLeeD6pweqHoS5ORVepnVoOMzRaIhoWvQ4hVIPDVx46zsz/Fmy/1lxO/amcfz59cYP/4ItGw8J0P39abJBEN8dVHj3NkOs8bL/b3+AOcPazJyB0MaubRIzMrtvshGqYw3GM4cdWlemwmz/bepO/R9Zt8ToKdCQyk48zkjBmwy89Hg5Zx9z0MZGI8dLh1t1+2VCXvsTtVwSr1MymNE7MFtvT4x4mD0agWj4QoVev8mxvP9dU2wNW7+qjWJbc/c5LtfSnf7YdCgsu29fLIkRnSsTBvu2yLr/YDnD2s2ch9qNsQ+V8uO3vKxzp0o5EpbnWpHpzI+jbZfL1jIBOjLls3MjUSqu5ig8FMnNl8hUptZReyH92pzThnMG2V+h2ZzlkcuV8QQrCjP0VfKsrPX73DV9tgRO5gyGKsFmXyV798JW+6ZJj3v+6CVUmmBjg7WLPOfbgrQblWX1FrfXKu4Gsp25aeBCfni5SqNV6eyrF3c+DcoTFJaDq7MsJeKBjDUtw2iyjbyxUPwZ/u1GZcvr2XZ07MkStVefHU4qpUK33oTXv5n++63BdJg+XoS8esprKPvOVC3+2D0Q/wt7/yKj7wugtWxX6As4M1+5hWtcKnF0qWSl25ajQ2+SXMBHDepjQ/eGmS508uUK1L9pjt/K90qBmgU9kyu5dVry0Uq66TqQCbTMXGyWxpRaNSozvVH+d+9a4+Pv+jl/mnJ8Yo1+pcvqPXF7vNWG3a7Zvvfw3RcGhdDYoIcPbhOHIXQoSFEE8KIW43fz5XCPGwEOKgEOKrQoiYuT1u/nzQfP8cNwemONdmOdXxeVP7wsdqh3e/ehdz+Qr/7c4XAdi7OXDu0IiuWyU+F4oVT5OeGquClbb9pmWu3mXQGp//0RGAVXHuq43zNmUCxx5AGzq0zO8BLzT9/BfAX0opLwBmgfeZ298HzJrb/9LcTxuqoqHZuY/NGYkxP2mZa87p44odvTzyspG8PW8woGWgoYe+XHgLDM7dS+SuhNmmWlA+EwslX7pTFTb3JNjWm+TlqRxdiYjn7t0AAdYLHDl3IcR24G3AZ82fBfB64OvmLl8A3mm+vsX8GfP9m4WLVkMVuTXry5w0Sxb9dO5CCKtEsSsR8XVCzHpGXyqGELQsh5zNlT3Jzg6qQRotnLtf3anN+I9vvYjtfUluuWLruhSAChDADZyGR/8b+A+A4iwGgDkppepEGQOUVN024DiAlLIqhJg395/SObBENExPMrokcj9pto8v15vxiguGMtz/oddRqrYXs3qlIRwS9KViLROqM7kyu4fdr3AyceMh2oqW8as7tRlvu2xLUOIX4BUH0WnCPYAQ4u3AW6WU7xdCjAB/APwa8JBJvSCE2AHcKaW8VAixD3izlHLMfO8Q8Gop5dQyu7cCtwJs2rTp6q997WsrPvs/PZBnczrE71xp3Oyf31fi6cka/+d1evxjNpslk1k9umWj2v+PD+TZ0nT+wZD7vfV7eW7eGeEXL3TGi7ey/8HRPBf2h/mNy5bauO3+PLu6Q7z/CucOfqOe/8B+YN8Or3vd6x6XUr6q5ZtSyo7/gP+GEZkfAcaBPPAljEg8Yu5zPXCX+fou4HrzdcTcT3T6jD179shWeM9nH5Lv+OsHrJ9/9hM/kj/7iR+13LcT7rvvPu3fCexL+UufflDe0nT+pZQyW6zIXbfdLj85etCT/Z/+qx/KX/ncwyu2X/RHd8o//c5zjm23s+8nAvuB/bVqH3hMtvGrtgSzlPIjUsrtUspzgF8E7pVSvhu4D/g5c7f3At82X3/H/Bnz/XvNg9DG+ZsyHDi9SLVWp1aXPHdygZ/Y7n+dcoDW2DPcxf7xRWpNQ1NU9YzXIdBDXQkmlmmt+9mdGiDAKx1esoe3Ab8vhDiIwal/ztz+OWDA3P77wIfdfsCVO3vJl2u8dDrLockshUqNywLnfsZw6bYeCpUaL09lrW3TpnP3qjy5pSfB+DLnrvIrfumhBwjwSoZWvZmUchQYNV8fBq5tsU8R+Hkfjo0rdxg1yk8cm7UE/n9iW+DczxQu3WYoM+47scAFpnqgSrB6jdw39ySYy1colGtWZ6dV4+6zcFuAAK9ErOm6vx39SQbSMZ48NsezY3OkY2HODerQzxgu2JQhHgmx78S8ta0RuXtzwJaWflP0Prnoz3i9AAECrHHnLoTgyp29PHl8lmdOzHPJth7fVfECtEckHOLCLd080+TcFeeumpzcYrOlpd/Q7Pe7OzVAgFcy1rRzB7hyZx+HJ3M8d2KBywJK5ozjml19PH18jmLF6AGYyZWJR0KkPIpkKV3y8aaRgH53pwYI8ErG2nfuphZIuVYPKmXOAl593gClap2HX54hX64ylS0xkI557vRUss2nmpz76cUSwz53pwYI8ErFmg+RLtvRixAgJVy2vfdsH84rDtee0w/Aez//CIOZOMlYiH6PlAxAMhamNxVdQsucnCsEfHuAAD5hzUfumXiEvcNddCUivg8HDmCPnlTUqowZSMfIl2r88rW7fLG9uTthjTis1uo8d3Lel9mpAQIEWAeRO8C//slzmVwsrdpw6QCd8fXfvN7SupdS+kabnDuY5vlTCwC8OL5IsVLnSnPyUIAAAbxhXTj3d73K//FlAZyjefSgn3z45Tt6uXPfOLO5Mk8enwMaOZYAAQJ4w5qnZQJsXKhu46fH5njy2CyDmTjbfRzEEiDAKxmBcw9w1vAT23oQAp4+Ps9Tx+a4cmdvUCkTIIBPCJx7gLOGrkSUCzZluHf/BIencly5s/dsH1KAABsGgXMPcFZx055NPG3x7UEyNUAAvxA49wBnFW83JySFBIHiZ4AAPmJdVMsE2Li4YkcvO/qTdMWjpAPZgQABfENwNwU4qxBC8Ml3X322DyNAgA2HwLkHOOu4NBCECxDAdwSce4AAAQJsQATOPUCAAAE2IALnHiBAgAAbEIFzDxAgQIANiMC5BwgQIMAGRODcAwQIEGADInDuAQIECLABETj3AAECBNiAEFLKs30MCCEWgf2r+BE9wHxgP7Af2A/sbzD7e6WUXS3fkVKe9X/AY6ts/9OB/cB+YD+wv9Hsd/KdrxRa5p8D+4H9wH5gf4Pab4m1Qss8JqV81dk+jgABAgRYT+jkO9dK5P7ps30AAQIECLAO0dZ3rgnnLqX0zbkLId4shNgvhDgohPiwue1L5rZ9QojPCyGiPtv/nBDiaSHEM0KIrwshMn7ab3rv40KIrFvbHY7/74UQLwshnjL/XeGzfSGE+K9CiJeEEC8IIX7XZ/s/bDr2k0KIb/ls/2YhxBOm/QeEEBf4bP/1pv19QogvCCFcq7Wa1/eEEGJf07Z+IcT3hBAHzP9dj7xqY//nhRDPCSHqQghPK/A29j8mhHjRvL++KYTo9dn+fzFtPyWEuFsIsdVP+03vfVAIIYUQg27tL0dH37maiYQz/Q8IA4eA84AY8DRwMfBWQJj/vgL8ls/2u5v2+V/Ah/20b773KuD/AtlVOD9/D/zcKp7/Xwe+CITM/Yb8Pj9N+3wD+FWfj/8l4CJzn/cDf++z/ePAHnOfPwPe5+E7uAm4CtjXtO2/q2sS+DDwFz7bvwjYC4wCr/J4DbWy/0YgYr7+i1U4/ub793eBT/lp39y+A7gLOAoMejlHTv+d8ci9TeTy2+bPXp9q1wIHpZSHpZRl4P8Bt0gp75AmgEeA7T7bXzD/DgEkAbeJjJb2hRBh4GPAf3Bpt6N9jzad2P8t4M+klHUAKeWEz/YBEEJ0A68HvuWzfQl0m/v0ACd9tP+zQFlK+ZK5z/fMba4gpbwfmFm2+RbgC+brLwDv9NO+lPIFKaUvpcxt7N8tpayaPz6E+/u3nf2Fph/TuL9/251/gL/EuH/PWJLzjDp300n9DfAWjIjll4QQFwM/At6A8VTzgm0YUZDCmLlNfX4U+BXgu37bF0L8HTAOXAj8lc/2fxv4jpTylEu7dvYB/qu5NP1LIUTcZ/vnA78ghHhMCHGnEGK3z/YV3gncs+xm9cP+vwHuEEKMYVw/f+6j/c1ApInO+DmMKM9PDDddO+PAsM/2zyT+NXCn30ZN2vA48G7gj322fQtwQkr5tJ927XCmI/d2ke+TUsojZ+DzPwHcL6X8od+GpZS/DmwFXgB+wUfTKeDncf/AcIKPYDyUrgH6gdt8th8HitLI6n8G+LzP9hV+CYN28xv/HnirlHI78HcY1JtfkMAvAn8phHgEWARqPtpf+mHG6vXsl8i5gBDiPwFV4Et+25ZS/icp5Q7T9m/7ZVcIkQL+Iz4/MJzgTDt3u8jLK06wNOrZbm5DCPEnwCbg91fDPoCUskZjqe2X/UPABcBBIcQRICWEOOij/RNSylMma1XCcF7X+mkf43v+J3PbN4HLfLaPSeddC/yLS9vt7J8GLpdSPmxu+yrwGh/tn5BSPiilvFFKeS1wPwbH7ydOCyG2AJj/u6XFzhqEEL8GvB14t/mAWi18CQ+0WAucD5wLPG3ev9uBJ4QQm338jJZYE9UyPuJRYLcQ4lwhRAwjIvqOEOLfAG8Cfknxvj7bvwAszv0dwIs+2v+WlHKzlPIcKeU5QF5K6bZao93xqxtfYFAbKzL9XuxjcOCvM/d5Le6dVzv7YNAZt0spiy5td7LfI4TYY+7zUxirM9/sCyGGAEw67DbgUx7+hlb4DvBe8/V7gW/7bH9VIYR4MwZf/Q4pZX4V7DfThLfg/v5dASnls1LKoab7dwy4Sko57tdndPrwM/YPuB64q+nnjwAfafr5CB4zyRiVMS9hRLz/ydxWNX9+yvz3x37Zx3hA/gh4FsMpfomm7Lsfx7/sfdfVMh3Oz71Nx/8PQMZn+70YEfWzwIMYkbCv5wejUuPNPlyjrY7/X5nH/rT5Oef5bP9jGA+M/cC/83j8XwFOARUMR/I+YAC4BzgAfB/o99n+vzJflzBWOnf5bP8gxopf3b9eqlla2f+Gee0/g9FNus1P+8veP8IZqpY5ox2qZv3uS8DNGEvUR4FfllI+Z75/BKOUauqMHVSAAAECbECcUVpGGuVMv41R7/kC8DUp5XNCiN81KxG2A88IIT57Jo8rQIAAATYa1oS2TIAAAQIE8BcbLaEaIECAAAEInHuAAAECbEic6Q5VT6JXAQIECBDAGYLIPUCAAAE2IM6GcFhGCHGPKXH6rKm7gBDiHGHIwX7GlA+9WwiRPNPHFyBAgAAbAWe6zj2L0dCSklIumC3jDwG7gV0YzQqvklI+JYT4GoZY1j+csQMMECBAgA0C10MBPEAAHxVC3ATUMbRllErdy1LKp8zXjwPnnPGjCxAgQIANgLPh3N+NIeB1tZSyYnalJsz3Sk371TC00QMECBAggCbORkK1B5gwHfvrMOiYAAECBAjgI85Y5G7qypQwhLX+WQjxLPAYPiqwBQgQIEAAA2csoSqEuBz4jDQ0qwMECBAgwCrijNAyQojfxJDC/MMz8XkBAgQI8EpHIBwWIECAABsQQYdqgAABAmxArJpzF0J8XggxIYTY17Ttq0KIp8x/R4QQT5nbzxFCFJre+1TT71xtdrIeFEJ83BwFFyBAgAABOmA1q2X+Hvhr4Itqg5TyF9RrIcT/BOab9j8kpbyihZ1PAr8BPAzcAbwZuNP/ww0QIECAjYNVi9yllPcDM63eM6Pvd2EkWdvCHNzcLaV8SBrJgS9iDHAOECBAgAAdcLY49xuB01LKA03bzhVCPCmE+IEQ4kZz2zaMIbMKY+a2AAECBAjQAWdDfgDgl1gatZ8Cdkopp4UQVwPfEkJccnYOLUCAAAHWP864czc7VX8GuFptk1KWMHVlpJSPCyEOAXuAExhDsxW2m9sCBAgQIEAHnA1a5g3Ai1JKi24RQmwSQoTN1+dhSAAfllKeAhaEENeZPP2vAt8+C8ccIECAAOsKq1kK+RXgQWCvEGJMCPE+861fZGUi9SbgGbM08uvAb0opVTL2/cBnMbTeDxFUygQIECCALYIO1QABAgTYgAg6VAMECBBgAyJw7gECBAiwARE49wABAgTYgAice4AAAQJsQATOPUCAAAE2IALnHiBAgAAbEIFzDxAgQIANiMC5BwgQIMAGxP8PfHueWNWph5wAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "to_pandas(train_subset[0])[:14 * 24].plot()\n", - "plt.grid(which=\"both\")\n", - "plt.legend([\"train series\"], loc=\"upper left\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Tuning parameters of DeepAR estimator" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:42.337810Z", - "iopub.status.busy": "2022-06-13T08:52:42.336967Z", - "iopub.status.idle": "2022-06-13T08:52:45.179959Z", - "shell.execute_reply": "2022-06-13T08:52:45.180518Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/stellalo/.virtualenvs/gluonts/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", - " from .autonotebook import tqdm as notebook_tqdm\n" - ] - } - ], - "source": [ - "import optuna\n", - "import torch\n", - "from gluonts.torch.model.deepar import DeepAREstimator\n", - "from gluonts.mx import Trainer\n", - "from gluonts.evaluation import Evaluator" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We will now tune the DeepAR estimator on our training data using Optuna. We choose two hyperparameters `num_layers` and `hidden_size` to optimize.\n", - "\n", - "First, we define an `DeepARTuningObjective` class used in tuning process of Optuna.\n", - "The class can be configured with the dataset, prediction length and data frequency, and the metric to be used for evaluating the model.\n", - "In the `get_params` method, we define what hyperparameters to be tuned within given range.\n", - "In the `split_entry` method, we split each time series of the dataset into two part:\n", - "- `entry_past`: the training part \n", - "- `entry_future`: the label part used in validation\n", - "In the `__call__` method, we define the way the `DeepAREstimator` is used in training and validation." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:45.194307Z", - "iopub.status.busy": "2022-06-13T08:52:45.193238Z", - "iopub.status.idle": "2022-06-13T08:52:45.195964Z", - "shell.execute_reply": "2022-06-13T08:52:45.196525Z" - } - }, - "outputs": [], - "source": [ - "class DeepARTuningObjective: \n", - " def __init__(self, dataset, prediction_length, freq, metric_type=\"mean_wQuantileLoss\"):\n", - " self.dataset = dataset\n", - " self.prediction_length = prediction_length\n", - " self.freq = freq\n", - " self.metric_type = metric_type\n", - "\n", - " entry_split = [self.split_entry(entry) for entry in self.dataset]\n", - " self.entry_pasts = [entry[0] for entry in entry_split]\n", - " self.entry_futures = [entry[1] for entry in entry_split]\n", - " \n", - " def get_params(self, trial) -> dict:\n", - " return {\n", - " \"num_layers\": trial.suggest_int(\"num_layers\", 1, 5),\n", - " \"hidden_size\": trial.suggest_int(\"hidden_size\", 10, 50),\n", - " }\n", - "\n", - " def split_entry(self, entry):\n", - " entry_past = {}\n", - " for key, value in entry.items():\n", - " if key == \"target\":\n", - " entry_past[key] = value[: -self.prediction_length]\n", - " else:\n", - " entry_past[key] = value\n", - "\n", - " df = pd.DataFrame(\n", - " entry['target'],\n", - " columns=[entry['item_id']],\n", - " index=pd.period_range(\n", - " start=entry['start'],\n", - " periods=len(entry['target']),\n", - " freq=self.freq\n", - " )\n", - " )\n", - "\n", - " return entry_past, df[-self.prediction_length:]\n", - " \n", - " def __call__(self, trial):\n", - " params = self.get_params(trial)\n", - " estimator = DeepAREstimator(\n", - " num_layers=params['num_layers'],\n", - " hidden_size=params['hidden_size'],\n", - " prediction_length=self.prediction_length, \n", - " freq=self.freq,\n", - " trainer_kwargs={\n", - " \"progress_bar_refresh_rate\": 0, \n", - " \"weights_summary\": None, \n", - " \"max_epochs\": 5, \n", - " }\n", - " )\n", - " \n", - " \n", - " predictor = estimator.train(self.entry_pasts, cache_data=True)\n", - " forecast_it = predictor.predict(self.entry_pasts)\n", - " \n", - " forecasts = list(forecast_it)\n", - " \n", - " evaluator = Evaluator(quantiles=[0.1, 0.5, 0.9])\n", - " agg_metrics, item_metrics = evaluator(self.entry_futures, forecasts, num_series=len(self.dataset))\n", - " return agg_metrics[self.metric_type]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now invoke the Optuna tuning process." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:45.204180Z", - "iopub.status.busy": "2022-06-13T08:52:45.203146Z", - "iopub.status.idle": "2022-06-13T08:55:04.923675Z", - "shell.execute_reply": "2022-06-13T08:55:04.924236Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m[I 2022-06-13 10:52:45,201]\u001b[0m A new study created in memory with name: no-name-781c374d-63af-4db8-93f6-5f1c4154a864\u001b[0m\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/stellalo/.virtualenvs/gluonts/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:91: LightningDeprecationWarning: Setting `Trainer(progress_bar_refresh_rate=0)` is deprecated in v1.5 and will be removed in v1.7. Please pass `pytorch_lightning.callbacks.progress.TQDMProgressBar` with `refresh_rate` directly to the Trainer's `callbacks` argument instead. Or, to disable the progress bar pass `enable_progress_bar = False` to the Trainer.\n", - " f\"Setting `Trainer(progress_bar_refresh_rate={progress_bar_refresh_rate})` is deprecated in v1.5 and\"\n", - "/Users/stellalo/.virtualenvs/gluonts/lib/python3.7/site-packages/pytorch_lightning/trainer/connectors/callback_connector.py:168: LightningDeprecationWarning: Setting `Trainer(weights_summary=None)` is deprecated in v1.5 and will be removed in v1.7. Please set `Trainer(enable_model_summary=False)` instead.\n", - " \"Setting `Trainer(weights_summary=None)` is deprecated in v1.5 and will be removed\"\n", - "INFO:pytorch_lightning.utilities.distributed:GPU available: False, used: False\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:TPU available: False, using: 0 TPU cores\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:IPU available: False, using: 0 IPUs\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/stellalo/.virtualenvs/gluonts/lib/python3.7/site-packages/pytorch_lightning/trainer/configuration_validator.py:122: UserWarning: You defined a `validation_step` but have no `val_dataloader`. Skipping val loop.\n", - " rank_zero_warn(\"You defined a `validation_step` but have no `val_dataloader`. Skipping val loop.\")\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:Epoch 0, global step 49: train_loss reached 9.39540 (best 9.39540), saving model to \"/Users/stellalo/gluon-ts/lightning_logs/version_37/checkpoints/epoch=0-step=49.ckpt\" as top 1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:Epoch 1, global step 99: train_loss reached 8.32613 (best 8.32613), saving model to \"/Users/stellalo/gluon-ts/lightning_logs/version_37/checkpoints/epoch=1-step=99.ckpt\" as top 1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:Epoch 2, global step 149: train_loss reached 8.20673 (best 8.20673), saving model to \"/Users/stellalo/gluon-ts/lightning_logs/version_37/checkpoints/epoch=2-step=149.ckpt\" as top 1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:Epoch 3, global step 199: train_loss was not in top 1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO:pytorch_lightning.utilities.distributed:Epoch 4, global step 249: train_loss was not in top 1\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "Running evaluation: 0%| | 0/10 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_prob_forecasts(ts_entry, forecast_entry)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also evaluate the quality of our forecasts numerically. In GluonTS, the `Evaluator` class can compute aggregate performance metrics, as well as metrics per time series (which can be useful for analyzing performance across heterogeneous time series)." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:26.746297Z", - "iopub.status.busy": "2022-06-13T08:55:26.745482Z", - "iopub.status.idle": "2022-06-13T08:55:26.747907Z", - "shell.execute_reply": "2022-06-13T08:55:26.748450Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.evaluation import Evaluator" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:26.753053Z", - "iopub.status.busy": "2022-06-13T08:55:26.752399Z", - "iopub.status.idle": "2022-06-13T08:55:27.054738Z", - "shell.execute_reply": "2022-06-13T08:55:27.055336Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "Running evaluation: 0%| | 0/15 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
item_idMSEabs_errorabs_target_sumabs_target_meanseasonal_errorMASEMAPEsMAPENDMSISQuantileLoss[0.1]Coverage[0.1]QuantileLoss[0.5]Coverage[0.5]QuantileLoss[0.9]Coverage[0.9]
00.0437.562215831.17297431644.0659.25000042.3713020.4086750.0264660.0265980.0262663.726400449.9491760.020833831.1730040.500000437.2194641.000000
11.097690.07291713926.902344124149.02586.437500165.1079881.7572970.1156980.1084030.1121798.3853068763.2406980.72916713926.9030761.0000004754.8249021.000000
22.067993.07291710637.66503965030.01354.79166778.8890532.8092370.1515170.1667640.16358154.2040082873.0453370.00000010637.6649170.00000012917.2737180.083333
33.0148313.97916714045.286133235783.04912.145833258.9822491.1298460.0577100.0583710.0595697.5409847728.9853520.08333314045.2858890.1041676085.2829590.625000
44.029790.5208336731.618164131088.02731.000000200.4940830.6994820.0516690.0532410.0513523.9177952796.2445560.0000006731.6180420.1458332637.3510740.687500
\n", - "" - ], - "text/plain": [ - " item_id MSE abs_error abs_target_sum abs_target_mean \\\n", - "0 0.0 437.562215 831.172974 31644.0 659.250000 \n", - "1 1.0 97690.072917 13926.902344 124149.0 2586.437500 \n", - "2 2.0 67993.072917 10637.665039 65030.0 1354.791667 \n", - "3 3.0 148313.979167 14045.286133 235783.0 4912.145833 \n", - "4 4.0 29790.520833 6731.618164 131088.0 2731.000000 \n", - "\n", - " seasonal_error MASE MAPE sMAPE ND MSIS \\\n", - "0 42.371302 0.408675 0.026466 0.026598 0.026266 3.726400 \n", - "1 165.107988 1.757297 0.115698 0.108403 0.112179 8.385306 \n", - "2 78.889053 2.809237 0.151517 0.166764 0.163581 54.204008 \n", - "3 258.982249 1.129846 0.057710 0.058371 0.059569 7.540984 \n", - "4 200.494083 0.699482 0.051669 0.053241 0.051352 3.917795 \n", - "\n", - " QuantileLoss[0.1] Coverage[0.1] QuantileLoss[0.5] Coverage[0.5] \\\n", - "0 449.949176 0.020833 831.173004 0.500000 \n", - "1 8763.240698 0.729167 13926.903076 1.000000 \n", - "2 2873.045337 0.000000 10637.664917 0.000000 \n", - "3 7728.985352 0.083333 14045.285889 0.104167 \n", - "4 2796.244556 0.000000 6731.618042 0.145833 \n", - "\n", - " QuantileLoss[0.9] Coverage[0.9] \n", - "0 437.219464 1.000000 \n", - "1 4754.824902 1.000000 \n", - "2 12917.273718 0.083333 \n", - "3 6085.282959 0.625000 \n", - "4 2637.351074 0.687500 " - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "item_metrics.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:27.100857Z", - "iopub.status.busy": "2022-06-13T08:55:27.099909Z", - "iopub.status.idle": "2022-06-13T08:55:27.246420Z", - "shell.execute_reply": "2022-06-13T08:55:27.246854Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAWR0lEQVR4nO3df5BdZ33f8fd3rc1KYUWsSO7a1RoEsacpNULEO+CMaGZlho7jeORMRVO7JSFMOspkYOJ0YKxAO1Dc5g9UBgoxxaNiB7sFK5Q1sUo0oZ7gjWEmcZGMLP8iRCmkWsXYeJGwryMtK99v/7hH5Or67t6VtOfevfe8XzM7Or929/vYd85nz3nOeZ7ITCRJ1TXU6wIkSb1lEEhSxRkEklRxBoEkVZxBIEkVt6rXBZyrDRs25KZNm3pdxrJ68cUXecUrXtHrMrqqam22vYOtH9p78ODB5zLzknb7+i4INm3axIEDB3pdxrKanp5mcnKy12V0VdXabHsHWz+0NyL+ZqF93hqSpIozCCSp4gwCSao4g0CSKs4gkKSKMwj61GxtjkePnmC2NtfrUiT1ub57fFRw/6Fj7Jo6zPDQEPP1Ort3bGb7lo29LktSn/KKoM/M1ubYNXWYU/N1Xpg7zan5OrdOHfbKQNJ5Mwj6zMzxkwwPnf2/bXhoiJnjJ3tUkaR+ZxD0mfF1a5iv18/aNl+vM75uTY8qktTvDII+s350hN07NrN6eIi1I6tYPTzE7h2bWT860uvSJPUpO4v70PYtG9l6xQZmjp9kfN0aQ0DSBSktCCJiNfAQMFL8ni9m5odajhkB7gGuBmaBf5mZ3y2rpkGyfnTEAJC0LMq8NTQHXJuZbwC2ANdFxDUtx/wGcDwzrwA+DnykxHokSW2UFgTZUCtWh4uvbDnsRuDuYvmLwFsjIsqqSZL0cpHZem5exh8ecRFwELgC+FRm7mrZ/zhwXWbOFOt/Dbw5M59rOW4nsBNgbGzs6r1795ZWcy/UajVGR0d7XUZXVa3Ntnew9UN7t23bdjAzJ9rtK7WzODNfArZExMXAlyLiqsx8/Dx+zh5gD8DExESu9AkgzlU/TGqx3KrWZts72Pq9vV15fDQzTwAPAte17DoGXA4QEauAn6LRaSxJ6pLSgiAiLimuBIiINcDbgG+1HLYPeGex/Hbgq1nmvSpJ0suUeWvoMuDuop9gCPhCZn45Im4DDmTmPuBO4L9HxBHgB8BNJdYjSWqjtCDIzMPAG9ts/2DT8ingX5RVgySpM4eYkKSKMwgkqeIMAkmqOINAkirOIJCkijMIJKkPzNbmePToiVKmpXU+Akla4e4/dIxdU4cZHhpivl5n947NbN+ycdl+vlcEkrSCzdbm2DV1mFPzdV6YO82p+Tq3Th1e1isDg0CSVrCZ4ycZHjr7VD08NMTM8ZPL9jsMAklawcbXrWG+Xj9r23y9zvi6Ncv2OwwCSVrB1o+OsHvHZlYPD7F2ZBWrh4fYvWPzsk5Va2exJK1w27dsZOsVG5g5fpLxdWuWfb5yg0CS+sD60ZFlD4AzvDUkSRVnEEhSxRkEklRxBoEkVZxBIEkVZxBIUsUZBJJUcQaBJFWcQSBJFWcQSFLFGQSSVHEGgSRVnEEgSRVnEEhSxRkEklRxpQVBRFweEQ9GxJMR8URE3NLmmMmI+GFEHCq+PlhWPZKk9sqcmOY08N7MfCQi1gIHI+KBzHyy5bivZeYNJdYhSVpEaVcEmfl0Zj5SLL8APAVsLOv3SZLOT2Rm+b8kYhPwEHBVZj7ftH0SmAJmgL8F3peZT7T5/p3AToCxsbGr9+7dW3rN3VSr1RgdHe11GV1VtTbb3sHWD+3dtm3bwcycaLev9CCIiFHgz4Dfy8z7Wva9EqhnZi0irgc+kZlXLvbzJiYm8sCBA+UV3APT09NMTk72uoyuqlqbbe9g64f2RsSCQVDqU0MRMUzjL/7PtYYAQGY+n5m1Ynk/MBwRG8qsSZJ0tjKfGgrgTuCpzPzYAsdcWhxHRLypqGe2rJokSS9X5lNDW4FfBR6LiEPFtg8ArwLIzDuAtwO/FRGngZPATdmNTgtJ0o+VFgSZ+XUgOhxzO3B7WTVIkjrzzWJJqjiDQJIqziCQpIozCCSp4gwCSao4g0CSKs4gkKSKMwgkqeIMAkmqOINAkirOIJCkijMIJKniDAJJqjiDQJIqziDQwJmtzfHo0RPM1uZ6XYrUF8qcmEbquvsPHWPX1GGGh4aYr9fZvWMz27ds7HVZ0ormFYEGxmxtjl1Thzk1X+eFudOcmq9z69RhrwykDgwCDYyZ4ycZHjr7Iz08NMTM8ZM9qkjqDwaBBsb4ujXM1+tnbZuv1xlft6ZHFUn9wSDQwFg/OsLuHZtZPTzE2pFVrB4eYveOzawfHel1adKKZmexBsr2LRvZesUGZo6fZHzdGkNAWgKDQANn/eiIASCdA28NSVLFGQSSVHEGgSRVnEEgSRVnEEhSxRkEklRxpQVBRFweEQ9GxJMR8URE3NLmmIiIT0bEkYg4HBE/V1Y9kqT2ynyP4DTw3sx8JCLWAgcj4oHMfLLpmF8Eriy+3gx8uvhXktQlpV0RZObTmflIsfwC8BTQOh7wjcA92fAXwMURcVlZNUmSXq4rbxZHxCbgjcDDLbs2Akeb1meKbU+3fP9OYCfA2NgY09PTZZXaE7VabeDa1EnV2mx7B1u/t7f0IIiIUWAK+J3MfP58fkZm7gH2AExMTOTk5OTyFbgCTE9PM2ht6qRqbba9g63f21vqU0MRMUwjBD6Xmfe1OeQYcHnT+nixTZLUJWU+NRTAncBTmfmxBQ7bB/xa8fTQNcAPM/PpBY6VJJWgzFtDW4FfBR6LiEPFtg8ArwLIzDuA/cD1wBHg74B3lViPJKmN0oIgM78ORIdjEnh3WTVIkjrzzWJJqrhFgyAirm1afk3Lvn9eVlGSpO7pdEXw0ablqZZ9/36Za5Ek9UCnIIgFltutS5L6UKcgyAWW261LkvpQp6eGXhsR+2j89X9mmWL9NQt/mySpX3QKghublj/asq91XZLUhxYNgsz8s+b1YsiIq4BjmflsmYVJkrqj0+Ojd0TEPymWfwp4FLgH+GZE3NyF+iRJJevUWfxPM/OJYvldwLcz8/XA1cCtpVY2AGZrczx69ASztblelyJJC+rUR/CjpuW3Af8TIDO/1xhTTgu5/9Axdk0dZnhoiPl6nd07NrN9S+u8PJLUe52uCE5ExA0R8UYag8j9CUBErALWlF1cv5qtzbFr6jCn5uu8MHeaU/N1bp067JWBpBWp0xXBbwKfBC6lMbHM94rtbwX+uMzC+tnM8ZMMDw1xivqPtw0PDTFz/CTrR0d6WJkkvVynp4a+DVzXZvtXIuIHpVXV58bXrWG+Xj9r23y9zvg6L6IkrTznNPpoRLwuIv5jRBwBPl1STX1v/egIu3dsZvXwEGtHVrF6eIjdOzZ7NSBpReo4H0Ex8fzNxdc88GpgIjO/W2plfW77lo1svWIDM8dPMr5ujSEgacVaNAgi4s+BVwJ7gR2Z+VcR8R1DYGnWj44YAJJWvE63hp4B1gJjwCXFNgebk6QBsmgQZOYvA68HDgL/ISK+A6yLiDd1oTZJUhd07CPIzB8CfwD8QUSMAb8CfDwiXpWZl5ddoCSpXOf01FBmPpOZv5+ZW4G3lFSTJKmLOnUW71tsP7B9GWuRJPVAp1tDPw8cBe4FHsbpKSVp4HQKgktpDDZ3M/CvaAwrcW/TiKSSpD7X6amhlzLzTzLzncA1wBFgOiLe05XqJEmlW8qbxSPAL9G4KthEYxC6L5VbliSpWzp1Ft9DY2rK/cCHM/PxrlQlSeqaTlcE7wBeBG4BfrtpMpoAMjNfWWJtK9Jsbc7xgyQNlE7DUJ/TewbNIuIu4Abg2cy8qs3+SeB+4DvFpvsy87bz/X3d4KxjkgbReZ/ol+CztJnLoMXXMnNL8bWiQ8BZxyQNqtKCIDMfAgZm8pozs441OzPrmCT1s8gsbzDRYi6DLy9ya2gKmAH+FnjfQu8nRMROYCfA2NjY1Xv37i2p4oW9VE++9b0XqDf99xqK4GcvXctFQxf2nl2tVmN0dPRCS+wrVWuz7R1s/dDebdu2HczMiXb7Oj4+WqJHgFdnZi0irgf+CLiy3YGZuQfYAzAxMZGTk5PdqvEsLx46xq0tfQRvXYY+gunpaXrVpl6pWptt72Dr9/b2LAgy8/mm5f0R8V8jYkNmPtermjpx1jFJg6hnQRARlwLPZGYW8xsMAbO9qmepnHVM0qApLQgi4l5gEtgQETPAh4BhgMy8A3g78FsRcRo4CdyUZXZYSJLaKi0IMvPmDvtvB24v6/f32nK+eOZLbJLK1MvO4oHSfLL++pHnlu3FM19ik1Q2g2AZNJ+sf/RSnZfqdU7X4RR1AG6dOszWKzac81/zzS+xXejPkqSFlPlmcSW0vnE8d7oRAs3O98UzX2KT1A0GwQVqd7JuNV+vM75uzTn/7PF1a5ivn50q5/uzJGkhBsEFaneyHr4oGFkVrB1ZxerhIXbv2Hxet3LWj46we8dmVg8PXfDPkqSF2Edwgc6crFvfOF6uF898iU1S2QyCZbDQyXq5Ttq+xCapTAbBMvFkLalf2UcgSRVnEEhSxRkEklRxBoEkVZxBIEkVZxCcg9naHI8ePeGE9ZIGio+PLpGjgEoaVF4RLEHrwHKn5uvcOnXYKwNJA8EgWAJHAZU0yAyCJbiQUUDtV5C00hkES9BpFNCFTvb3HzrG1o98lXd85mG2fuSr7Dt0rBflS9Ki7CxeooUGlluoE9nZxST1C68IzsH60RHecPnFZ10JLNSJbL+CpH5hEFyAxU72zi4mqV9UPggupDN3sZO9s4tJ6heV7iO40JfEFpqd7MzJ3tnFJPWDygbBcnXmdjrZO2GNpJWuskFw5v7+mRCAv7+/f64nbk/2kvpZZfsI7MyVpIbSgiAi7oqIZyPi8QX2R0R8MiKORMThiPi5smppx85cSWoo89bQZ4HbgXsW2P+LwJXF15uBTxf/do2duZJUYhBk5kMRsWmRQ24E7snMBP4iIi6OiMsy8+myamrH+/uSqq6XncUbgaNN6zPFtpcFQUTsBHYCjI2NMT093Y36uqZWqw1cmzqpWptt72Dr9/b2xVNDmbkH2AMwMTGRk5OTvS1omU1PTzNobeqkam22vYOt39vby6eGjgGXN62PF9skSV3UyyDYB/xa8fTQNcAPu90/IEkq8dZQRNwLTAIbImIG+BAwDJCZdwD7geuBI8DfAe8qqxZJ0sLKfGro5g77E3h3Wb//Qp0ZStrHSiUNur7oLO62Cx2MTpL6SWWHmFjIYpPNSNIgMghaOLOYpKoxCFo4GJ2kqjEIWjgYnaSqsbO4DQejk1QlBsECHIxOUlV4a0iSKs4gkKSKMwgkqeIMAkmqOINAkirOIJCkijMIJKniKhcEs7U5Hj16wkHkJKlQqRfKHF5akl6uMlcEDi8tSe1VJggcXlqS2qtMEDi8tCS1V5kgcHhpSWqvUp3FDi8tSS9XqSAAh5eWpFaVuTUkSWrPIJCkijMIJKniDAJJqjiDQJIqziCQpIorNQgi4rqI+MuIOBIRv9tm/69HxPcj4lDx9W/KrEeS9HKlvUcQERcBnwLeBswA34iIfZn5ZMuhf5iZ7ymrDknS4sq8IngTcCQz/29m/gjYC9xY4u+TJJ2HMt8s3ggcbVqfAd7c5rgdEfELwLeBf5uZR1sPiIidwE6AsbExpqenl7/aHqrVagPXpk6q1mbbO9j6vb29HmLifwH3ZuZcRPwmcDdwbetBmbkH2AMwMTGRk5OTXS2ybNPT0wxamzqpWptt72Dr9/aWeWvoGHB50/p4se3HMnM2M8/MDPMZ4OoS65EktVFmEHwDuDIiXhMRPwHcBOxrPiAiLmta3Q48VWI9kqQ2Srs1lJmnI+I9wFeAi4C7MvOJiLgNOJCZ+4DfjojtwGngB8Cvl1XPbG3O4aclqY1S+wgycz+wv2XbB5uW3w+8v8wawEnrJWkxA/9msZPWS9LiBj4InLRekhY38EHgpPWStLiBDwInrZekxfX6hbKucNJ6SVpYJYIAnLRekhYy8LeGJEmLMwgkqeIMAkmqOINAkirOIJCkiovM7HUN5yQivg/8Ta/rWGYbgOd6XUSXVa3Ntnew9UN7X52Zl7Tb0XdBMIgi4kBmTvS6jm6qWptt72Dr9/Z6a0iSKs4gkKSKMwhWhj29LqAHqtZm2zvY+rq99hFIUsV5RSBJFWcQSFLFGQRdFhF3RcSzEfF407afjogHIuKvin/X9bLG5RQRl0fEgxHxZEQ8ERG3FNsHss0RsToi/k9EPFq098PF9tdExMMRcSQi/jAifqLXtS6niLgoIr4ZEV8u1ge9vd+NiMci4lBEHCi29e1n2iDovs8C17Vs+13gTzPzSuBPi/VBcRp4b2a+DrgGeHdEvI7BbfMccG1mvgHYAlwXEdcAHwE+nplXAMeB3+hdiaW4BXiqaX3Q2wuwLTO3NL0/0LefaYOgyzLzIeAHLZtvBO4ulu8GfrmbNZUpM5/OzEeK5RdonCw2MqBtzoZasTpcfCVwLfDFYvvAtBcgIsaBXwI+U6wHA9zeRfTtZ9ogWBnGMvPpYvl7wFgviylLRGwC3gg8zAC3ubhNcgh4FngA+GvgRGaeLg6ZoRGGg+K/ALcCZyYHX89gtxca4f6/I+JgROwstvXtZ7oyM5T1i8zMiBi4Z3ojYhSYAn4nM59v/NHYMGhtzsyXgC0RcTHwJeBne1tReSLiBuDZzDwYEZM9Lqeb3pKZxyLiHwAPRMS3mnf222faK4KV4ZmIuAyg+PfZHtezrCJimEYIfC4z7ys2D3SbATLzBPAg8PPAxRFx5g+vceBYr+paZluB7RHxXWAvjVtCn2Bw2wtAZh4r/n2WRti/iT7+TBsEK8M+4J3F8juB+3tYy7Iq7hffCTyVmR9r2jWQbY6IS4orASJiDfA2Gv0iDwJvLw4bmPZm5vszczwzNwE3AV/NzH/NgLYXICJeERFrzywD/wx4nD7+TPtmcZdFxL3AJI1ha58BPgT8EfAF4FU0htj+lcxs7VDuSxHxFuBrwGP8/T3kD9DoJxi4NkfEZhodhRfR+EPrC5l5W0S8lsZfzD8NfBN4R2bO9a7S5VfcGnpfZt4wyO0t2valYnUV8PnM/L2IWE+ffqYNAkmqOG8NSVLFGQSSVHEGgSRVnEEgSRVnEEhSxRkEUgcRkRHxP5rWV0XE95tG2hyLiC8XI44+GRH7i+2bzowyGxE/GRGfK0asfDwivl68bS31nENMSJ29CFwVEWsy8ySNl8Sa35S9DXggMz8BP36XoNUtwDOZ+frimH8EzJdbtrQ0XhFIS7OfxgibADcD9zbtu4zGwGoAZObhNt9/GU3hkZl/OSgvWKn/GQTS0uwFboqI1cBmGm9Gn/Ep4M5iAp5/FxH/sM333wXsiog/j4j/FBFXdqFmaUkMAmkJir/yN9G4Gtjfsu8rwGuB/0ZjpNFvRsQlLcccKo75zzSGXfhGRPzj0guXlsA+Amnp9gEfpTFW1PrmHcWYMp8HPl90Iv8CcLDlmBpwH3BfRNSB6zl7Vi+pJ7wikJbuLuDDmflY88aIuDYifrJYXgv8DPD/Wo7ZemYO22L+3tfRGJhM6jmvCKQlyswZ4JNtdl0N3B4Rp2n8cfWZzPxGMSPbGT8DfLoYlnsI+GMaczRIPefoo5JUcd4akqSKMwgkqeIMAkmqOINAkirOIJCkijMIJKniDAJJqrj/D2zfsLRy+Ch1AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "item_metrics.plot(x='MSIS', y='MASE', kind='scatter')\n", - "plt.grid(which=\"both\")\n", - "plt.show()" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/docs/tutorials/advanced_topics/trainer_callbacks.ipynb b/docs/tutorials/advanced_topics/trainer_callbacks.ipynb deleted file mode 100644 index 5588eb8066..0000000000 --- a/docs/tutorials/advanced_topics/trainer_callbacks.ipynb +++ /dev/null @@ -1,525 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Trainer callbacks\n", - "\n", - "This notebook illustrates how one can control the training procedure of MXNet-based models by providing callbacks to the `Trainer` class.\n", - "A callback is a function which gets called at one or more specific hook points during training.\n", - "You can use predefined GluonTS callbacks like `TrainingHistory`, `ModelAveraging` or `TerminateOnNaN`, or you can implement your own callback." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:29.915836Z", - "iopub.status.busy": "2022-06-13T08:55:29.914796Z", - "iopub.status.idle": "2022-06-13T08:55:30.872067Z", - "shell.execute_reply": "2022-06-13T08:55:30.872732Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.repository.datasets import get_dataset\n", - "\n", - "dataset = get_dataset(\"m4_hourly\")\n", - "prediction_length = dataset.metadata.prediction_length\n", - "freq = dataset.metadata.freq" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Using a single callback\n", - "\n", - "To use callbacks, simply pass them as a list when constructing the `Trainer`:\n", - "in the following example, we are using the `TrainingHistory` callback to record loss values measured during training." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:30.879528Z", - "iopub.status.busy": "2022-06-13T08:55:30.878629Z", - "iopub.status.idle": "2022-06-13T08:55:34.171888Z", - "shell.execute_reply": "2022-06-13T08:55:34.172380Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/50 [00:00= 0\n", - " ), \"EarlyStopping Callback patience needs to be >= 0\"\n", - " assert (\n", - " min_delta >= 0\n", - " ), \"EarlyStopping Callback min_delta needs to be >= 0.0\"\n", - " assert (\n", - " num_samples >= 1\n", - " ), \"EarlyStopping Callback num_samples needs to be >= 1\"\n", - "\n", - " self.validation_dataset = list(validation_dataset)\n", - " self.predictor = predictor\n", - " self.evaluator = evaluator\n", - " self.metric = metric\n", - " self.patience = patience\n", - " self.min_delta = min_delta\n", - " self.verbose = verbose\n", - " self.restore_best_network = restore_best_network\n", - " self.num_samples = num_samples\n", - "\n", - " if minimize_metric:\n", - " self.best_metric_value = np.inf\n", - " self.is_better = np.less\n", - " else:\n", - " self.best_metric_value = -np.inf\n", - " self.is_better = np.greater\n", - "\n", - " self.validation_metric_history: List[float] = []\n", - " self.best_network = None\n", - " self.n_stale_epochs = 0\n", - "\n", - " def on_epoch_end(\n", - " self,\n", - " epoch_no: int,\n", - " epoch_loss: float,\n", - " training_network: mx.gluon.nn.HybridBlock,\n", - " trainer: mx.gluon.Trainer,\n", - " best_epoch_info: dict,\n", - " ctx: mx.Context\n", - " ) -> bool:\n", - " should_continue = True\n", - " copy_parameters(training_network, self.predictor.prediction_net)\n", - "\n", - " from gluonts.evaluation.backtest import make_evaluation_predictions\n", - "\n", - " forecast_it, ts_it = make_evaluation_predictions(\n", - " dataset=self.validation_dataset,\n", - " predictor=self.predictor,\n", - " num_samples=self.num_samples,\n", - " )\n", - "\n", - " agg_metrics, item_metrics = self.evaluator(ts_it, forecast_it)\n", - " current_metric_value = agg_metrics[self.metric]\n", - " self.validation_metric_history.append(current_metric_value)\n", - "\n", - " if self.verbose:\n", - " print(\n", - " f\"Validation metric {self.metric}: {current_metric_value}, best: {self.best_metric_value}\"\n", - " )\n", - "\n", - " if self.is_better(current_metric_value, self.best_metric_value):\n", - " self.best_metric_value = current_metric_value\n", - "\n", - " if self.restore_best_network:\n", - " training_network.save_parameters(\"best_network.params\")\n", - "\n", - " self.n_stale_epochs = 0\n", - " else:\n", - " self.n_stale_epochs += 1\n", - " if self.n_stale_epochs == self.patience:\n", - " should_continue = False\n", - " print(\n", - " f\"EarlyStopping callback initiated stop of training at epoch {epoch_no}.\"\n", - " )\n", - "\n", - " if self.restore_best_network:\n", - " print(\n", - " f\"Restoring best network from epoch {epoch_no - self.patience}.\"\n", - " )\n", - " training_network.load_parameters(\"best_network.params\")\n", - "\n", - " return should_continue" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can now use the custom callback as follows.\n", - "Note that we're running an extremely short number of epochs, simply to keep the runtime of the notebook manageable:\n", - "feel free to increase the number of epochs to properly test the effectiveness of the callback.\n", - "\n", - "```python\n", - "estimator = SimpleFeedForwardEstimator(prediction_length=prediction_length, freq=freq)\n", - "training_network = estimator.create_training_network()\n", - "transformation = estimator.create_transformation()\n", - "\n", - "predictor = estimator.create_predictor(transformation=transformation, trained_network=training_network)\n", - "\n", - "es_callback = MetricInferenceEarlyStopping(validation_dataset=dataset.test, predictor=predictor, metric=\"MSE\")\n", - "\n", - "trainer = Trainer(epochs=5, callbacks=[es_callback])\n", - "\n", - "estimator.trainer = trainer\n", - "\n", - "pred = estimator.train(dataset.train)\n", - "```" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/docs/tutorials/data_manipulation.zip b/docs/tutorials/data_manipulation.zip deleted file mode 100644 index a16b7bd25c..0000000000 Binary files a/docs/tutorials/data_manipulation.zip and /dev/null differ diff --git a/docs/tutorials/data_manipulation/synthetic_data_generation.ipynb b/docs/tutorials/data_manipulation/synthetic_data_generation.ipynb deleted file mode 100644 index 63f4780657..0000000000 --- a/docs/tutorials/data_manipulation/synthetic_data_generation.ipynb +++ /dev/null @@ -1,1021 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Synthetic data generation" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:53.418631Z", - "iopub.status.busy": "2022-06-13T08:51:53.417359Z", - "iopub.status.idle": "2022-06-13T08:51:54.797859Z", - "shell.execute_reply": "2022-06-13T08:51:54.798436Z" - } - }, - "outputs": [], - "source": [ - "import json\n", - "from itertools import islice\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "from matplotlib.ticker import (AutoMinorLocator, MultipleLocator)" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:54.803930Z", - "iopub.status.busy": "2022-06-13T08:51:54.802713Z", - "iopub.status.idle": "2022-06-13T08:51:55.182041Z", - "shell.execute_reply": "2022-06-13T08:51:55.182564Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.artificial import recipe as rcp\n", - "from gluonts.core.serde import dump_code, load_code" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.196456Z", - "iopub.status.busy": "2022-06-13T08:51:55.195071Z", - "iopub.status.idle": "2022-06-13T08:51:55.198649Z", - "shell.execute_reply": "2022-06-13T08:51:55.198068Z" - } - }, - "outputs": [], - "source": [ - "# plotting utils\n", - "\n", - "def plot_recipe(recipe, length):\n", - " output_dict = rcp.evaluate(recipe, length)\n", - " K = len(output_dict)\n", - " lct = MultipleLocator(288)\n", - " minor = AutoMinorLocator(12)\n", - "\n", - " fig, axs = plt.subplots(K, 1, figsize=(16, 2 * len(recipe)))\n", - " for i, k in enumerate(output_dict):\n", - " axs[i].xaxis.set_major_locator(lct)\n", - " axs[i].xaxis.set_minor_locator(minor)\n", - " axs[i].plot(output_dict[k])\n", - " axs[i].grid()\n", - " axs[i].set_ylabel(k)\n", - "\n", - "\n", - "def plot_examples(target, length, num, anomaly_indicator=None):\n", - " fix, axs = plt.subplots(num, 1, figsize=(16, num * 2))\n", - " for i in range(num):\n", - " xx = rcp.evaluate(\n", - " dict(\n", - " target=target,\n", - " anomaly_indicator=anomaly_indicator\n", - " ), length)\n", - " axs[i].plot(xx['target'])\n", - " axs[i].set_ylim(0, 1.1*np.max(xx['target']))\n", - " axs[i].grid()\n", - " if anomaly_indicator is not None:\n", - " axs[i].fill_between(\n", - " np.arange(len(xx['target'])), \n", - " xx['anomaly_indicator'] * 1.1*np.max(xx['target']), \n", - " np.zeros(len(xx['target'])), \n", - " alpha=0.3,\n", - " color=\"red\")\n", - "\n", - "\n", - "def print_dicts(*dicts):\n", - " for d in dicts:\n", - " print(\"{\")\n", - " for k,v in d.items():\n", - " print(\"\\t\", k, \": \", v)\n", - " print(\"}\\n\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Data Generation Recipes\n", - "\n", - "To generate realistic artificial data, we describe the data generation process through a symbolic graph (this is akin to how mxnet symbol graphs work).\n", - "\n", - "Your graph can contain python values as well as operators that correspond to random variables or random processes. The output of a recipe can be a list, dictionary or a value:" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.208239Z", - "iopub.status.busy": "2022-06-13T08:51:55.207175Z", - "iopub.status.idle": "2022-06-13T08:51:55.211123Z", - "shell.execute_reply": "2022-06-13T08:51:55.211678Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 1.09011751, 0.04582359, -0.30879158, 0.36234547, -0.45457739])" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rcp.evaluate(rcp.RandomGaussian(), length=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.217700Z", - "iopub.status.busy": "2022-06-13T08:51:55.216584Z", - "iopub.status.idle": "2022-06-13T08:51:55.221321Z", - "shell.execute_reply": "2022-06-13T08:51:55.220704Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'var1': array([-0.54635298, -1.11448726, 0.32567069, 0.56784008, -0.45826187]),\n", - " 'var2': 3.0}" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rcp.evaluate({\n", - " 'var1': rcp.RandomGaussian(),\n", - " 'var2': 3.0\n", - "}, length=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.226382Z", - "iopub.status.busy": "2022-06-13T08:51:55.225490Z", - "iopub.status.idle": "2022-06-13T08:51:55.230263Z", - "shell.execute_reply": "2022-06-13T08:51:55.230824Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[3.0, array([0.22607576, 0.4375824 , 0.02716331, 0.38102183, 0.37640134])]" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rcp.evaluate(\n", - " [3.0, rcp.RandomUniform()]\n", - ", length=5)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.237009Z", - "iopub.status.busy": "2022-06-13T08:51:55.235926Z", - "iopub.status.idle": "2022-06-13T08:51:55.239051Z", - "shell.execute_reply": "2022-06-13T08:51:55.239599Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\n", - "\t myOutput1 : [ 0.42151209 -1.00661509 0.20625425 0.20666595 -0.61857058]\n", - "}\n", - "\n", - "{\n", - "\t myOutput1 : [-0.40078741 0.33110249 -0.53316541 0.56169378 -0.38260157]\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "recipe = dict(\n", - " myOutput1=rcp.RandomGaussian()\n", - ")\n", - "\n", - "# multiple evaluations lead to different results, due to randomness\n", - "print_dicts(\n", - " rcp.evaluate(recipe, length=5),\n", - " rcp.evaluate(recipe, length=5),\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Referencing variables\n", - "\n", - "Each time you create a random variable such as `RandomGaussian` the variable refers to a new independent RV.\n", - "You can re-use and refer to previously created random variables." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.247738Z", - "iopub.status.busy": "2022-06-13T08:51:55.246852Z", - "iopub.status.idle": "2022-06-13T08:51:55.249874Z", - "shell.execute_reply": "2022-06-13T08:51:55.250433Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\n", - "\t x1 : [-3.94810714 0.92523896 -1.18017073 2.32449885 -0.26686527]\n", - "\t x2 : [ 0.31829819 0.30103276 1.09221714 -0.36075908 0.76565555]\n", - "\t x3 : [ 0.63659638 0.60206551 2.18443429 -0.72151816 1.5313111 ]\n", - "}\n", - "\n", - "{\n", - "\t x1 : [-1.2290257 2.43602476 5.85091652 4.18485991 2.48448249]\n", - "\t x2 : [-0.41392585 0.43105209 0.14964795 -0.03055409 -0.21716438]\n", - "\t x3 : [-0.8278517 0.86210418 0.29929591 -0.06110818 -0.43432876]\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "stddev1 = 2.0\n", - "stddev2 = rcp.RandomUniform(low=0, high=1, shape=(1, ))\n", - "x1 = rcp.RandomGaussian(stddev=stddev1)\n", - "x2 = rcp.RandomGaussian(stddev=stddev2)\n", - "x3 = 2 * x2\n", - "\n", - "recipe = dict(\n", - " x1=x1,\n", - " x2=x2,\n", - " x3=x3\n", - ")\n", - "\n", - "# multiple evaluations lead to different results, due to randomness\n", - "print_dicts(\n", - " rcp.evaluate(recipe, length=5),\n", - " rcp.evaluate(recipe, length=5)\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that you may create and use intermediate random varibles such as `stddev2` in the above example without including them in the output." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.256661Z", - "iopub.status.busy": "2022-06-13T08:51:55.255804Z", - "iopub.status.idle": "2022-06-13T08:51:55.259664Z", - "shell.execute_reply": "2022-06-13T08:51:55.258851Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\n", - "\t random_out : [-0.97446994]\n", - "\t fixed_out : [-0.01612317]\n", - "}\n", - "\n", - "{\n", - "\t random_out : [0.83518873]\n", - "\t fixed_out : [-0.01612317]\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "recipe = dict(\n", - " random_out=rcp.RandomGaussian(shape=(1,)),\n", - " fixed_out=np.random.randn(1)\n", - ")\n", - "\n", - "# note that fixed_out stays the same; \n", - "# it's evaluated only once when the recipe is created\n", - "print_dicts(\n", - " rcp.evaluate(recipe, length=1),\n", - " rcp.evaluate(recipe, length=1)\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Length\n", - "\n", - "Most operators in the `recipe` package have a `length` argument that is automatically passed when the expression is evaluated. The idea is that these recipes are used to generate fixed-length time series, and most operators produce\n", - "individual components of the time series that have the same length." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.265225Z", - "iopub.status.busy": "2022-06-13T08:51:55.264217Z", - "iopub.status.idle": "2022-06-13T08:51:55.267961Z", - "shell.execute_reply": "2022-06-13T08:51:55.268519Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\n", - "\t random_gaussian : [-1.29960485 0.6004166 -0.28741941]\n", - "\t constant_vec : [42. 42. 42.]\n", - "}\n", - "\n", - "{\n", - "\t random_gaussian : [-1.41924117 -1.88469093 0.76382044 -0.11253277 -0.73872854]\n", - "\t constant_vec : [42. 42. 42. 42. 42.]\n", - "}\n", - "\n" - ] - } - ], - "source": [ - "recipe = dict(\n", - " random_gaussian=rcp.RandomGaussian(),\n", - " constant_vec=rcp.ConstantVec(42)\n", - " \n", - ")\n", - "\n", - "print_dicts(\n", - " rcp.evaluate(recipe, length=3),\n", - " rcp.evaluate(recipe, length=5)\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Operator Overloading\n", - "\n", - "The operators defined in the `recipe` package overload the basic arithmetic operations (addition, subtraction, multiplication, division)." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.275114Z", - "iopub.status.busy": "2022-06-13T08:51:55.274227Z", - "iopub.status.idle": "2022-06-13T08:51:55.277828Z", - "shell.execute_reply": "2022-06-13T08:51:55.278377Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([72.62161111, 63.3546109 , 83.61042208])" - ] - }, - "execution_count": 11, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x1 = 42 * rcp.ConstantVec(1)\n", - "x2 = x1 * rcp.RandomUniform()\n", - "x3 = rcp.RandomGaussian() + rcp.RandomUniform()\n", - "result = x1 + x2 + x3\n", - "\n", - "rcp.evaluate(result, 3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### SerDe\n", - "\n", - "Recipes composed of serializable / representable components can easily be serialized / deserialized." - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.287188Z", - "iopub.status.busy": "2022-06-13T08:51:55.286399Z", - "iopub.status.idle": "2022-06-13T08:51:55.289914Z", - "shell.execute_reply": "2022-06-13T08:51:55.290377Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "gluonts.dataset.artificial.recipe._LiftedBinaryOp(left=gluonts.dataset.artificial.recipe._LiftedBinaryOp(left=gluonts.dataset.artificial.recipe._LiftedBinaryOp(left=42, op=\"*\", right=gluonts.dataset.artificial.recipe.ConstantVec(constant=1)), op=\"+\", right=gluonts.dataset.artificial.recipe._LiftedBinaryOp(left=gluonts.dataset.artificial.recipe._LiftedBinaryOp(left=42, op=\"*\", right=gluonts.dataset.artificial.recipe.ConstantVec(constant=1)), op=\"*\", right=gluonts.dataset.artificial.recipe.RandomUniform(high=1.0, low=0.0, shape=(0,)))), op=\"+\", right=gluonts.dataset.artificial.recipe._LiftedBinaryOp(left=gluonts.dataset.artificial.recipe.RandomGaussian(shape=(0,), stddev=1.0), op=\"+\", right=gluonts.dataset.artificial.recipe.RandomUniform(high=1.0, low=0.0, shape=(0,))))\n" - ] - }, - { - "data": { - "text/plain": [ - "array([73.39210847, 57.14837092, 83.35762422])" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dumped = dump_code(result)\n", - "print(dumped)\n", - "\n", - "reconstructed = load_code(dumped)\n", - "\n", - "rcp.evaluate(reconstructed, 3)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simple Examples" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.295359Z", - "iopub.status.busy": "2022-06-13T08:51:55.294681Z", - "iopub.status.idle": "2022-06-13T08:51:55.883424Z", - "shell.execute_reply": "2022-06-13T08:51:55.884452Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7gAAAF1CAYAAADC0EYYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXhcVfrHv2csLk3SpO4ulLohxV0WbYtLi8MK+1vYXVjYZZfFF4fSQmmhgmsNSt2betq0jbvruJ3fH/eeO3cmM0maTDKR9/M8edqxO+feOfec833tMM45CIIgCIIgCIIgCKKzowl1AwiCIAiCIAiCIAgiGJDAJQiCIAiCIAiCILoEJHAJgiAIgiAIgiCILgEJXIIgCIIgCIIgCKJLQAKXIAiCIAiCIAiC6BKQwCUIgiAIgiAIgiC6BCRwCYIgCIIgCIIgiC4BCVyCIAiCIAiCIAiiSxAUgcsYe40xNjYYxyIIgiAIgiAIgiCIlhAsD+4JAIsYY3sYYw8yxuKCdFyCIAiCIAiCIAiCaBaMcx68gzE2EsA9AOYB2AHgI875pqB9AUEQBEEQBEEQBEEEIGg5uIwxLYBR8l8FgMMA/sgYWxWs7yAIgiAIgiAIgiCIQATFg8sYewPA1QB+A7CEc75X9dpJzvnIVn8JQRAEQRAEQRAEQTSCLkjHOQLg75xzk5/XpgXpOwiCIAiCIAiCIAgiIMEKUb7dV9wyxjYCAOe8NkjfQRAEQRAEQRAEQRABaZUHlzEWDiASQBJjrAcAJr8UC6BvK9tGEARBEARBEARBEM2mtSHKDwD4PYA+AA6onq8D8E4rj00QBEEQBEEQBEEQzSZYRaYe45y/HYT2EARBEARBEARBEESLaJXAZYxdyDn/jTF2g7/XOefftPjgBEEQBEEQBEEQBHEGtDZE+XxIWwNd4+c1DoAELkEQBEEQBEEQBNEuBCVEmSAIgiAIgiAIgiBCTWurKP+xsdc556+35vgEQRAEQRAEQRAE0VxaG6IcE5RWBJGkpCQ+aNCgUDejUUwmE6KiokLdDIIgOhk0dhAE0RJo7CAIoiV05LEjNTW1gnPe099rrRK4nPPnW/N5xtjHAK4GUMY5H+fndQbgTQBXAjADuJtzfsD3fWoGDRqE/fv3t6ZZbc7mzZsxZ86cUDeDIIhOBo0dBEG0BBo7CIJoCR157GCM5QZ6rbUeXPEF4QDuAzAWQLh4nnN+bxMfXQppv9xlAV6/AsBw+W86gPflfwmCIAiCIAiCIAjCi6AIXADLAaQDuAzAPwHcBuBEUx/inG9ljA1q5C3XAVjGpUpYuxlj8Yyx3pzz4iC0mSDaHbvTjdNl9citNKOw2oLCGgvqLA7U25yw2F0AAI2GwaBliI80ICHKgJ7RYRiYGIlBSVEYmBiJMJ02xGdBEER7Y7G7cLK0HnlV0thRXCuNHUabExaHCwwMGg1DmE6DhEgD4qP06BUbjkGJ0rgxICESOq0m1KdBEEQ7U2d14GRJPfLlsaOkzop6qxMmmxNWpwsaxsAYQ4Reg4QoA3pEGtA7PgKDEiMxKDEKfeMjoNGwUJ8GQZwRwRK4wzjnNzPGruOcf8oYWwFgWxCO2xdAvupxgfycl8BljC0EsBAAUlJSsHnz5iB8ddthNBo7fBuJ4FBtdSO9yo30Kheyat0oMrrhUhUuD9cC0QaGCB1DmKxb3RxwuAGTg8Po4JB1LwBAy4ABMRoMjtdgZA8txiRqEWOgiae7QGNH94BzjnILx4kqF9KrXMipdaPExKHe8yBSB0TppbHDoBo77C4OowMw2jmcqg8YtMCgWA0Gx2owKlGLUQlaROho7Ogu0NjRPXBzjiIjR7o8duTWuVFu8d4tJVovjR3hOga9BuBc2tfTpho71OuUCB0wOE6DIXHSmmNYvAYGLY0d3YXOOnYES+A65H9rGGPjAJQASA7SsZuEc74IwCIAmDJlCu+oseKCjhzPTrSejLJ6rDlagrXHSnCi2AQAiAnXYdKARFzdJxaje8diaM8o9IuPRGyEDlKqeWBqzQ7kVJqQU2nC8eI6HMmvxd7CWvyWZwNjwLg+cbhsbAquHN8bQ3pGt8cpEiGCxo6ui9vNcSCvGuvTSrDheClyKy0AgKToMEwcGI9bektjx+CkKPTtEYHosManb845qkx25FSakFVuQlpRHY4U1GBzYR3W5zqh0zBMGtgDl4/thSvH90avuPBGj0d0bmjs6Lo4XG7szKzEhrQS/HK8FGX1NgBA3/gITBsejzG9YzG6dwwGJEje2AhD41FgnHOU1tmUseNYUS0O59dgXU49fspyIFyvwfTBibhyfC9cOqYXekQZ2uM0iRDRWceOYAncRYyxHgCeAfADgGgAzwbhuIUA+qse95OfI4gORbXJjq9SC/DF/nycLjMCACYP7IGnrxiF2cOSMLp3LLQtDPGJi9RjQmQ8JvSPx3Vn9wUAuNwcRwpqsO10BTafLMOrG07h1Q2nMKZ3LOZO64/rJ/ZFbLg+aOdHEETbUFhjwVf7C/Blaj4Kqi3QaxlmDU3CfecMxqyhiRjaM7pJI5g/GGNIjA5DYnQYJg9MwM3y8zanC6m51dh2ugKb0svwz5+O458/Hce0QQmYO60/rhzfG+F6SoMgiI5ORlk9Vu/LxzcHClFpsiNCr8WckT1xwahkzBySiP4JkS06LmMMveLC0SsuHDOGJCrPm2xO7MmuxNZTFfgtvQx/+foo/vbtMZw7PAnzpw/EhaOSW7zOIYhgw6T01hA2QMrB/SlAFeWrADwKqYrydABvcc6nNXa8KVOmcKqiTLQXqbnV+Gx3Ln4+Wgy7043JA3vg2gl9cNnYXu3qESmutWDN0RJ8d7AQRwtrEWnQ4rqz++D2GQMxtk9cu7WDaFto7OgacM6x7XQFlmzPxtbT5eAcmD0sETdP7o8LRye3q3Eqs9yINUeK8c3BQmRXmBAfqcfNk/vh9hkDMTCxY24NQZw5NHZ0DZwuN9YeK8EnO7JxIK8GOg3DRaOTceOkfjhvRM92M05xzpFWVIcfjxThu4OFKK2zoU9cOOZOG4C50/ojOYYiQroKHXnsYIylcs6n+H0tGAKXMRYG4EYAg6DyCnPO/9nE51YCmAMgCUApgH8A0Muf/UDeJugdAJdD2iboHs55o+qVBC7R1nDOsTOzEm9tPI092VWIDtPhhkl9MX/6AIzqFRvq5uFIQQ0+352H7w8XwupwY87InnjswuGYPLBHqJtGtBIaOzo3YnH6wZZMpBXVITkmDHOn9sfNU/q32NsSLMS49vmeXGxIK4Wbc1w7oQ8euWAYhqd0uC3viTOExo7OjdXhwlepBVi0NQt5VWYMTorCvGn98buJ/dAzJiykbXO43Nh4ogyf78nFttMVMOg0mDe1Px44fyj6xEeEtG1E6+nIY0djAjdYIcrfA6gFkArA1twPcc7nNfE6B/BI65pGEMFjy6ly/O/XUziYV4OU2DA8e/UY3Dq1P6KayIdrT87qF4+zborHX68ajc9252LJ9mzc+P5OzBqaiD9cMgJTByWEuokE0a3gnOPno8V4df1J5FSaMaRnFF6+8SxcN7FPh6mKzhjD7GFJmD0sCaV1Vny8PRvLd+fi+8NFuGJcLzxx0QiM7EVClyDaE4fLjVV78/DmxgxUGG2Y0D8ef71yNC4dk9JhKhvrtRpcPq4XLh/XC9kVJnywOROf78nDir15uGlyPzx64XD0JaFLtDPBWpX345xfHqRjEUSH42RJPf695gS2nipH3/gIvHD9ONw8pV+HWZz6Iy5Cj0cuGIZ7Zg/Cij15+HBrFm7+YBcuH9sLT10xCoOSKPyQINqaXZmV+O/aEzhcUItRvWLwwe2TcOmYXh1mceqPlNhwPH3laDxw/lB8siMbS3fkYN2xEtw6dQD+eMmIkHuMCKKrwznH2mMleGX9SWRXmDBtcALenjcRM4YktCgnv70YnBSFl246C49dNAwfbsnC6v1SjvCCc4fgwTlDmyyORxDBIlg9bSdjbDzn/GiQjkcQHYIKow2vbTiF1fvyEBOuxzNXj8EdMwbCoOs8+0lGGnS4/9whuG36QCzeloX3t2RiY3op7pw5CI9fNBxxEVSMiiCCTX6VGc//eBy/nihF77hwvHLTWbhhUr9OVYQlIcqAP106EvfOHoy3fjuN5bty8cOhQjx8wTDcd85gKkZFEG3A8aI6PPP9MaTmVmNESjSW3DUFF45K7tDC1pd+PSLxr+vH4cE5Q/HKunS8sykDq/bl40+XjsAtU/p3qnGQ6JwES+CeA+Buxlg2pBBlBinC+KwgHZ8g2hXOOb7cX4B/rzkBk82Ju2YNwhMXDUd8ZOcthx9h0OKxi4bj1qn98fovp/Dxjmz8cLgIz10zFleO79WpJk+C6KjYnW4s2Z6NNzeegoYx/N/lkkDszGKwR5QB/7hmLO6YMRAvrk3HK+tP4uvUAvz7d+Mxc2hi0wcgCKJJjDYn3vjlFJbuzEF8hB4v3TgeN03u3GKwb3wE/jd3Iu6ePRgv/HQcT39zFF/sz8eLN4zvEDVLiK5LsATuFUE6DkGEnKxyI/767VHszqrCtEEJ+M8N4zAsuevkniXHhuO/N56F26YPxNPfHsEjKw7golHJ+Of14yhPhiBaQWpuNZ76+ghOlxlx2dgU/OOasV2qyMqQntH46M4p2HqqHH/77ijmfbQbt07pj6evHNWpjX8EEWp+OV6KZ747htJ6K+ZNG4C/XDYKcZFdJ7rq7P7x+PLBmfjuUCH+9dMJXP3Wdjxw/hA8duHwTm38IzouQRG4nPNcxtgEAOfKT23jnB8OxrEJor1wuzkWb8/CqxtOIUynwYs3jMetU/p36Fy51jC+Xxy+e3g2lu7MwWsbTuGS17fg71eNwbxp/cmbSxBngM3pwhu/nMairZnoHReBJXdNwUWjU0LdrDbjvBE9seH35+N/G09h8bZsbEwvxX9vOAsXj+m650wQbUGtxYHnf0zDNwcKMapXDN67fRImDeiaOx4wxvC7if1w/ohk/PvnE3h3UybWHC3B67dMwMQues5E6AhKIiFj7AkAnwNIlv8+Y4w9FoxjE0R7UFhjwfzFu/GfNemYM6InNv7pfMybNqDLiluBTqvB/ecOwYY/nIeJA+Lx12+PYsGy/agwNrsYOkF0a9KKanHdOzvwwZZM3DKlP9b/4bwuLW4FEQYtnr5iNH54dDZ6xoTj/mX78fQ3R2GyOUPdNILoFGw/XYHL/7cV3x8qwuMXDsMPj57TZcWtmoQoA167ZQI+v3867E43bvpgF9745RScLneom0Z0IYJVKec+ANM5589yzp8FMAPAgiAdmyDalO8PFeLy/23F0YJavHzjWfjwjsndbpPy/gmRWH7vdPz9qtHYKk+6G0+UhrpZBNFh4Zxj8bYsXP/uDlSa7Pj47in4741ndbsqoWP7xOG7R2bhgfOGYNW+PFz11jYczKsOdbMIosNid7rxwk/HcfuSPYg0aPH1Q7Pwx0tHdqrilcFg9rAkrP39ubh2Qh+8ufE0bvxgF7IrTKFuFtFFCNbdxAC4VI9d8nME0WGxOlx46usjeGLVIYxIicHaJ87DLVO7b3iuRsNw/7lD8OOj5yApOgz3fbof/1lzAg6yqhKEF7VmBxYuT8ULP5/ABSOTseH35+HCUV3faxuIMJ0WT185GisXzIDDxXHzB7vw8fZsSFvZEwQhKKg245YPd2Hx9mzcOXMgfn78XJzdPz7UzQoZseF6vHHr2Xhn/kTkVJhwzdvbseZocaibRXQBgmVq/gTAHsbYt5CE7XUAlgTp2AQRdHIrTXj48wNIK6rDIxcMxR8uHgGdtntZTwMxslcMvn90Nl746QQWbc3CobwavD1/IlJiu5dXmyD8cSi/Bo98fgBl9VY8e/UY3DN7ULc1ivkyY0gi1jxxLp788jD++dNx7M+twks3noWY8K5TLIcgWsrGE6X44xeH4XJzvDt/Eq46q3eom9RhuPqsPpg0oAceWXEAD39+APfOHoynrhjV7bzaRPAISs/hnL8O4B4AVQAqAdzDOf9fMI5NEMFmQ1oJrn57OwqqLfj47in482WjSNz6EKbT4l/Xj8Obc8/G0cJaXPXWNuzMrAh1swgiZHDO8cmObNz8wU4AwJcPzsK95wwmcetDXIQei+6YjKevGIX1aaW47p0dSC+pC3WzCCJkOF1uvLjmBO77dD/69YjAT4+dQ+LWD33iI7B64UzcM3sQPt6RjbmLdqG41hLqZhGdlGAVmRoKII1z/haAowDOZYzFB+PYBBEsXG6Ol9alY+HyVAxKjMJPj53TrcMKm8N1Z/fFD4/ORlyEHrcv3oP3N2dS2CHR7bA6XHjyyyN4/sfjOH9EMtZ087DCpmCM4YHzh2LF/dNRb3Pi+nd34PtDhaFuFkG0OzVmO+7+ZB8+3JqF22cMwNcPzcKgpKhQN6vDYtBp8I9rxuKd+RNxsqQeV721nYzrRIsIltvqawAuxtgwAB8A6A9gRZCOTRCtxmhz4oHl+/H+5kzMmzYAXz44E/0TIkPdrE7B8JQY/PDoObhyfG+8tC4df/riMKwOV9MfJIguQFmdFfM+2o2vDxTgDxePwKI7Jnep/SnbkulDEvHz4+fgrH7xeGLVIbyyPh1uNxnIiO5BRlk9rn93B/ZmV+Hlm87CC9ePpz1fm8nVZ/XBD4+dg4QoA+5cshef78kNdZOITkawBK6bc+4EcAOAdzjnfwZA8RdEh6Cg2oyb3t+JTSfL8c/rxuLFG2iSOVOiwnR4e95E/OmSEfjmYCHmf7Qb5fW0lRDRtTlSUINr39mB9OJ6vH/bJDxx8fAuv3VYsEmOCcdn903H3Kn98e6mTDz0eSrMdtpKiOjabEovw+/e3QmjzYmVC6fjlin9Q92kTsfQntH49uFZOGd4Ev727TE890MabSVENJtgCVwHY2wegDsB/CQ/RyZuIuSk5lbh+nd3oLDGgqX3TMWdMweFukmdFsYYHrtoON67bRKOF9fh+nd34EQx5dYRXZOfjhTh5g92Qath+PqhWbhiPNlsW4pBp8GLN4zHM1ePwS/HS3HT+7tQVEO5dUTXg3OOj7Zm4d5P92FAYiS+f/QcTB6YEOpmdVpiwvVYctdU3HfOYCzdmYN7P92POqsj1M0iOgHBErj3AJgJ4N+c82zG2GAAy4N0bIJoEd8fKsS8RXsQHabDtw/PxrnDe4a6SV2CK8f3xpcPzILLzXHj+zvxWzrtl0t0HTjn+HBLJh5dcRBn9YvD94/Oxpg+saFuVqeHMYb7zhmMJXdPRV6VGde9uwNHC2pD3SyCCBouN8ez36fh32tO4IpxvfDlgzPRNz4i1M3q9Gg1DM9cPQb/vWE8dmZU4Ib3diK/yhzqZhEdnGBVUT7OOX+cc75SfpzNOX8pGMcmiJbw0dYsPLHqECYOiMd3j8zGsOToUDepSzFeXvgP7RmNBctSsWpvXqibRBCtxuXmeO6HNLy4Nh1XndUby++bjqTosFA3q0txwchkfPPwLBi0Gty6aBe2nCoPdZMIotVY7C48+Fkqlu/OxQPnDcE78yYh0hCsnTgJAJg7bQCW3zcdZXVW3PD+TqQVkYGMCEywqigPZ4x9xRg7zhjLEn/BODZBnAluN8e/fjqOf685gavG98ay+6YhPtIQ6mZ1SVJiw7Fq4QzMHpaEp745ijd/PU0VlolOi8XuwkOfpeLTXblYeN4QvD13IuXqtxEjUmLw7cOzMCgxCvct3YevUwtC3SSCaDGVRhvmfbQbv54oxfPXjsXTV46mXP02YubQRHz10CzoNQy3frgbOzKowjLhn2CFKH8C4H0ATgAXAFgG4LMgHZsgmoXN6cLvVx/Cku3ZuHvWILw9byLCdLRAbUuiwnRYctcU3DipH9749RT++u1RKgJBdDqqTHbMX7wbv5woxT+uGYO/0gK1zUmODcfqB2ZgxpBE/OnLw3h3UwYZyIhOR06FCTe+vxMniuvw/m2TcdesQaFuUpdnREoMvnl4Nvr1iMDdn+zFdwdpCzKiIcESuBGc840AGOc8l3P+HICrgnRsgmiSeqsD93yyDz8cLsJTV4zCP64ZQwvUdkKv1eDVm8/CIxcMxcq9+Xjws1TaRojoNBTXWnDLh7uQVlSH92+bhHtmDw51k7oNMeF6fHz3VFx/dh+8sv4k/vFDGm0jRHQaThTX4aYPdqHW4sCKBTNw+bheoW5St6FXXDi+eHAmJg/sgd+vPoRFWzND3SSigxGsBAEbY0wD4DRj7FEAhQAo6ZFoF8rrbbjr4704VVqP12+ZgBsm9Qt1k7odjDH8+bJR6BUbjmd/SMNdH+/F4rumICaciqkTHZecChNuW7wHtRYHlt07DTOGJIa6Sd0Og06D1285Gymx4fhwaxZqLQ68evME6LXBsr8TRPBJza3GPZ/sRaRBh1ULZ2JYckyom9TtiA3X49N7p+GPXxzGf9ako9biwJOXjgRj5NwggidwnwAQCeBxAP+CFKZ8V5COTRABKa614LaP9qC41orFd03BnJHJoW5St+aOmYMQG6HHn744jNsW78Gn90xDjyjKgSY6HieK63DHkr1wud1YuWAGxveLC3WTui0aDcPTV45GXKQeL687CZPNhXfmUw400THZdrocC5elIiU2DMvvm47+CZGhblK3JUynxVtzJyI2XI93N2XCaHXiH9eMpQg+IjgCl3O+DwAYY27O+T3BOCZBNEVupex9MTuw7L5pmDqI9prrCFx3dl9Eh+nw0OcHcMuHu/DZ/dOREhse6mYRhAJ5XzomD88ZhpgwHZ75Pg33Lt2Hj+6cgqgwqkRLdBzWHi3G46sOYmjPaCy7bxqSY2huCzVaDcN/fjcOMeE6LNqahXqbEy/feBZ0FAXSrQlWFeWZjLHjANLlxxMYY+8F49gE4Y+Msnrc8uEuGG1OrFgwg8RtB+Oi0SlYes9UFNVYcPMHu2jPOqLDsO10OW5fvAcJUQZ8+SCJ247GHTMH4Y1bJ2BPdhVuW7wHNWZ7qJtEEACAL/bn45EVBzC+bxxWL5xJ4rYDwRjD01eMwp8uGYFvDhTikRUHYHNSLZDuTLDMG/8DcBmASgDgnB8GcF6Qjk0QXqQV1eKWD3fD5QZWL5xJoYUdlFlDk/DZ/dNRa3Hg5g92IaOsPtRNIro5v6WX4r6l+zEwMRJfPDiTQgs7KL+b2A/v3TYJx4vqMHfRbpTVW0PdJKKbs3x3Lv7vqyOYPUya1+Iiqb5ER4MxhscuGo5/XDMG69NKcf+n+2G2O0PdLCJEBM1/zznP93mKTCdE0DmQV415i3YjXKfBlw/OxMhe5H3pyEwc0AOrH5gBp5vj1g93I72kLtRNIropG0+U4sHlBzCyVwx5XzoBl43thY/vnorcSjPmfrgbpXUkconQsHxXDp757hguHp2MxXdNQaSBwuY7MvfMHoxXbjoLOzIqcPfH+2CykcjtjgRL4OYzxmYB4IwxPWPsSQAngnRsggAA7MqsVEILv3hwJgYnRYW6SUQzGNUrFl88MAM6LcP8j/bgeBGJXKJ92XiiFA99dgCjesfgs/vI+9JZOGd4EpbdNw2ldVbMXbQbxbWWUDeJ6GYs35WDZ75Pw8Wjk/HubZMQpqPCZ52Bm6f0x1vzJiI1rxp3fbwXRhK53Y5gCdwHATwCoC+kLYLOlh8TRFDYmVGBe5buRd/4CHzxwEz060GhhZ2JIT2jsXrhTITpNJi/eDeOFdaGuklEN2HjiVI8+FkqRvWOwfJ7Sdx2NqYOSsCy+6ahvN6GWz/cjcIaErlE+7BMJW7fu20yidtOxtVn9cHb8ybiUH4N7lyyB3VWR6ibRLQjQRG4nPMKzvltnPMUznky5/x2znllMI5NEDszKnDvp/swMCEKKxfOQDJV5O2UDEqKwuqFMxFl0GH+R7txtIBELtG2CHE7uncslpPnttMyeWAClt83DdUmO+Yu2oWCaipaR7Qty3bl4Nnv03Dx6BS8d9tkGHRUkbczcuX43nhn/iQcKajFHUv2otZCIre7EKwqyi8zxmLl8OSNjLFyxtjtwTg20b1Ri9vPF0xHUnRYqJtEtIIBiZFYtXAGYsL1mL94Nw7l14S6SUQX5dfjPuI2gsRtZ2bigB5S0TqzA7d+uJsqsxNthre4nUTitpNz+bheeP/2yTheVIs7lkhbSxJdn2DdtZdyzusAXA0gB8AwAH8O0rGJbgqJ265J/4RIrH5gBuIj9bhj8R4cyKsOdZOILsavx0vx0OepGEPitksxoX88Pr9/Bow2J279cBdyK02hbhLRxRDi9pIxJG67EpeMScEHt09GenE9bluym7Yf6wYE684VJeWuAvAl55xiD4lWsYPEbZemX49IrF44EwnRBty5ZC9Sc6tC3SSii/CLStwuI3Hb5RjfLw6f3z8dZocLcxftRnYFiVwiOHy60yNu351P4rarcdHoFHx452ScKjVi/kd7UGUikduVCdbd+xNjLB3AZAAbGWM9AVBNf6JF7MiowH0kbrs8feIjsGrhDPSMCcOdS/ZiXw6JXKJ1/HK8FA9/nooxfeJI3HZhxvWNw4r7Z8DmdGPuol3IKjeGuklEJ+fTnTn4xw9puJTEbZfmgpHJ+OjOKcgsN2L+R7tRabSFuklEGxGsIlNPAZgFYArn3AHADOA68Tpj7JJgfA/R9VGL2xUkbrs8veMkkZsSG467PiaRS7ScDWklHnF77zQSt12cMX1isXLBDDhdHHMX7SaRS7SYpTuyFXH7DonbLs/5I3piyV1TkV1hwm2L95DI7aIE7S7mnFdxzl3y/02c8xLVyy8F63uIrouvuE0kcdstSIkNx6qFM9BLFrl7s0nkEmfGhrQSPLLiAMb0icPy+0jcdhdG9orBigUz4HJLIjeTRC5xhnyyIxvP/Xgcl40lcdudOGd4Ej6+m0RuV6a97mTm90nGLmeMnWSMZTDGnvLz+t1yReZD8t/9bd9UIhSQuO3eJAuRGxeOuz8hkUs0H8lzewBjZXEbG07itjuhFrnzSOQSZ8AnO7LxPInbbsvsYZLIzak0Yf5He1BBIrdL0V53M/d9gjGmBfAugCsAjAEwjzE2xs9nV3POz5b/FrdxO4kQQOKWAGSRu8Ajcvdk0VbaROOsl8XtuL5xWEbittsyslcMVi4kkUs0n4+3e4tbvZbEbXdk9rAkLLlrKnKrTLiNRG6XIpR39DQAGZzzLM65HcAqqPJ2ie4BiVtCjRC5vePCcc/SfSRyiYCsTyvBI58fwPh+JG4JYESKJHLdnMKVicb5eHs2/vnTcVw+theJW0Ly5Moid/5Hu0nkdhHa667O8fNcXwD5qscF8nO+3MgYO8IY+4ox1r8tGkeEhp0kbgk/JMeGY+VCErlEYNYd84jbT+8lcUtIjEiJwcoFM8BlkZtRRiKX8GaJSty+PX8iiVsCADBLFrl5VWYSuV0ExnmD6OGWHYixWQAGwbMnLjjnyxp5/00ALuec3y8/vgPAdM75o6r3JAIwcs5tjLEHANzKOb/Qz7EWAlgIACkpKZNXrVoVlHNqK4xGI6Kjo0PdjJByotKFN1KtSI5k+L9pEYg1+E3TJroxNTY3XtprRaWV40+TwzEyQRvqJoUcGjuA1FIn3jtkw6BYDZ6cGo4IHY0dhDeFRjde2msBYwx/mRqOPtEkYmjsANbnOLAy3Y4pKVo8OCEMOg2NHYQ3Ym3aM5LhL1MjEBtGfaQjjx0XXHBBKud8ir/XgiJwGWPLAQwFcAiAS36ac84fb+QzMwE8xzm/TH78tPyhFwO8XwuginMe11hbpkyZwvfv33/G59CebN68GXPmzAl1M0LGrsxK3LN0LwYkRGLFghm0FRARkLJ6K+Z/tAeF1RZ8cs9UzBiSGOomhZTuPnasO1aMR1cclMKS752GGPLcEgE4XVqPeR/tAWPAygUzMCy5Yy7Q2ovuPnYs3paFF34+gSvG9cJb88hzSwRmZ2YF7l26D/17RGLlQlqjduSxgzEWUOAG6w6fAmA25/xhzvlj8l9AcSuzD8BwxthgxpgBwFwAP6jfwBjrrXp4LYATQWovESJ2Z1UqAweJW6IpkmPCsWLBdPTtEYF7PtmH3RSu3G1Ze1QSt2eRuCWawfCUGKxcMB2cg8KVuzlC3F45nsQt0TSzhibhk7unIb/ajHmLdqO8nsKVOyPBusuPAeh1Jh/gnDsBPApgPSTh+gXnPI0x9k/G2LXy2x5njKUxxg4DeBzA3UFqLxECdmdV4p5P9qFfjwgSt0SzSY4Jx8oFMxSRuyuTRG53Y+3RYjy2UhK3n5K4JZrJ8JQYrFo4HYAQufUhbhHR3qjF7ZtzSdwSzWPm0ER8cvc0FFRbMP8jErmdkVbd6YyxHxljPwBIAnCcMbaeMfaD+Gvq85zzNZzzEZzzoZzzf8vPPcs5/0H+/9Oc87Gc8wmc8ws45+mtaS8ROvbI4ravLG57xpC4JZpPz5gwReTeu5REbndCiNsJ/eNJ3BJnzLBktcjdQyK3GyHE7VXje5O4Jc6YmUMT8fHdU0nkdlJae7e/CuA1AM8BuB7Af+TH4o8gsDe7Cvcs3Yc+8VK4KYlboiUIkduPRG634ecjxXhUFrdL75lK4pZoEb4i93QpidyuzodbMhVx+7+5Z5O4JVrEzKGJ+OQeSeTO+2g3yuqtoW4S0UxadcdzzrdwzrcAuFL8X/1ccJpIdGb2Zlfh7k/2onectPVLckx4qJtEdGJ6xoRhhSxy71m6l0RuF+b7Q4V4fNVBTBpAnlui9UgidwYYA+Z9RCK3K/Pupgy8uDYd10zogzdJ3BKtZMYQSeQWVlsw/6M9JHI7CcG66y/x89wVQTo20UnZlyOJ215xUg4liVsiGPSMCcPKhTPQv0ck7lm6FzszK0LdJCLIfHuwAH9YfQiTB/bA0numITpM1/SHCKIJhiVHY+UCIXJ3k8jtgry18TReWX8S153dB2/cMgE6ErdEEJgxJBFLZZE7bxF5cjsDrc3BfYgxdhTASMbYEdVfNoAjwWki0RnZl1OFuz+WxO2qBTOQHEvilggeSdGSyB2QEIl7l+4jkduF+Cq1AH/84jCmD5YWFFEkbokg4hG5jERuF4Jzjjd+OYXXfzmFGyb2xeu3nE3ilggq02WRW1xrJZHbCWjt3b8CwDWQtve5RvU3mXN+eyuPTXRSdmZU4M4le5FC4pZoQ5KipXBlReRmkMjt7HyxLx9//uowZg9Nwsd3T0WkgcQtEXyGJUfL4cqSyD1FIrdTwznH67+cwpsbT+Pmyf3wys0ToNWwUDeL6IJMH5KIT+5Widw6Erkdldbm4NZyznM45/MAxMMjcPsHoW1EJ2TzyTLcs3QfBiREYvXCmSRuiTZFiNyBCVG491MSuZ2ZlXvz8H9fH8E5w5Kw+K4piDBoQ90kogsztKckcjWMYT6J3E4L5xwvrz+Jt3/LwNyp/fHSjWeRuCXaFMmTO00SuR+RyO2oBCV+gzH2OIDPASTLf58xxh4LxrGJzsOGtBIsWLZfCgFbSFsBEe1DUnQYPl8wXRG5O0jkdjo+252Lp785ijkje+KjO6cgXE/ilmh7hvaU5ioNY5i3iERuZ4Nzjv+uTcf7mzMxf/oA/Od346EhcUu0A9MGJygidy6J3A5JsBIU7gcwXd7D9lkAMwAsCNKxiU7AT0eK8PDnBzC2TxxWLJiBhChDqJtEdCMkT64kcu8jkdup+Hh7Nv7+3TFcOCoZH94xmcQt0a4IkavVkMjtTLjdHM//eBwfbs3CnTMH4t/XjyNxS7QrQuSWkMjtkARL4DIALtVjl/wc0Q345kABHl95EJMG9MBn909HXARt50G0P4kqkXvv0n34Lb001E0iGoFzjjd/PY1//nQcl41Nwfu3T0KYjsQt0f6IcGWthmHuot04Vlgb6iYRjeB0ufF/Xx/B0p05uO+cwXj+2rFgjJacRPszbXACPr1XErm3LtqNgmpzqJtEyARL4H4CYA9j7DnG2PMAdgNYEqRjEx2YVXvz8KcvD2Pm0EQsvXcqbedBhJREubryiJQYLFyWih8OF4W6SYQfOOf4988n8Mavp3DDpL54dz6JWyK0DOkZjS8emIkIvRbzFu3GnizaY7sjYnO68NjKg/gqtQC/v3g4/n7VaBK3REiZOigBy++bjkqjDTd/sAsZZcZQN4lAkAQu5/x1APcAqAJQAeAezvn/gnFsouPy4ZZMPPXNUZw/oieW3EUVT4mOQUKUASsWTMekgT3wxKqD+HxPbqibRKhwuTme/uYoFm/Pxl0zB+LVm2ivSqJjMCgpCl89NBPJsWG48+O92JReFuomESosdhcWLEvF2mMleObqMfj9xSNI3BIdgskDe2D1AzPhcHHc8uEuigLpAARzVeECwOU/dxCPS3QwOOf4z5oTeHFtOq6Z0AeL7qCiMETHIiZcj2X3TsMFI5Pxt2+P4b3NGaFuEgHA4XLjiVUHsWpfPh69YBieu3Ys5c0RHYrecRH44oGZGJESgwXL9lMUSAehzurAXR/vxbbT5XjpxvG475zBoW4SQXgxuncsvnyQokA6CsGqovwEpCrKSaAqyl0ap8uNJ788gkVyYYc3bz0bBh15X4iOR7heiw/vmIzrzu6Dl9edxH/XpoNzHupmdVvMdiceWJ6Kn44U4+krRuHJy0aS94XokIh8fooC6RhUGG2Y/9FuHMirxtvzJuLWqQNC3SSC8MtgigLpMARLmdwHqYryP6iKctfF6nDhgeWp+PpAAf5w8Qg8T94XooOj12rwxi1n4/YZA/DBlkw8/c1ROF0UYNLeVBptmP/RHmw+WYb//G48Hjh/aKibRBCN4hsF8vbG02QgCwE5FSbc+P5OZJQZ8dGdU3D1WX1C3SSCaBTfKJBvDxaEukndEqqiTDSLWosDdyzZg99OluFf14/DExcPJ+8L0SnQaBj+dd04PHbhMKzal48Fy/bDZHOGulndhrxKM276YBdOFNfh/dsnY/508r4QnQMRBXLDxL547ZdT+Ou3x8hA1o4cyq/Bje/vRL3ViZULZuCCUcmhbhJBNAsRBTJtcAL+sPow3t2UQQaydiZYVYFEFeVv5cfXg6oodxnyq8y479N9yK4w4e15E8mCSnQ6GGP406Uj0TsuAn//7ijmLtqNJXdPQXJMeKib1qU5WlCLe5buhdPNsWLBdEwemBDqJhHEGaHXavDaLRPQOz4c727KRGmdFW/Pm4go2jGgTfktvRSPfH4QSTEGfHrPNAzpGR3qJhHEGRETrsfSe6bh/746jFfWn0RhjQX/vHYsFVVsJ9qiinIVqIpyl+FQfg1+995OFNda8ek900jcEp2a+dMH4KM7pyCjzIgb3ttJ5fzbkM0ny3Drol0I02nx1YOzSNwSnRbGGP582Si8cP04bD5ZhrmLdqO83hbqZnVZVu3Nw4JlqRiaHIVvHppN4pbotBh0Grx+y9l4aM5QrNiThweWp8Jspwiy9iCYZoRsAJsBbAfAGGOTgnhsIgSsPVqMuYt2IVyvwbcPz8KsYUmhbhJBtJqLRqdg1cIZsDpcuPH9ndhNlQ6DCuccn+zIxr1L92FgYhS+eXgWhiXTApXo/Nw+YyAW3SEbyN7fgdOl9aFuUpfC5eb498/H8dQ3RzFraCJWLZyJnjFhoW4WQbQKjYbhL5ePwr+uH4dNsoGsrM4a6mZ1eYJVRflfAI4AeAvAa/Lfq8E4NtH+cM7x4ZZMPLziAEb3jsV3j8zGsOSYUDeLIILGhP7x+Oah2UiMNuD2xXuwYk9eqJvUJXC43Pjbd8fw/I/HcdHoFHz14EykxFIYONF1uHhMClYunAGL3Y3fvbcTG0+UhrpJXYJ6qwMLlu3HR9uk/bE/uXsqoikMnOhC3DFjID6UDWTXvLMdh/NrQt2kLk2wPLi3ABjKOZ/DOb9A/rswSMcm2hGrw4UnvzyCF9em48pxvbFywQwkRZMFleh6DEiMxLcPz8bsYUn467dH8ez3x+CgAjItpsZsx10f78WKPXl4aM5QfHj7ZMpTJLokZ/ePxw+PzsagpEjcv2w/3t+cSQVkWkF+lRk3vb8LW06V41/XjcXz142jPEWiS3LJmBR89eAs6DQa3PLhLnx/qDDUTeqyBGsEOQYgPkjHIkJEYY0FN3+wC18fKMATFw3H2/MmIlyvDXWzCKLNiIvQ4+O7p2LheUOwbFcu7vp4L6pN9lA3q9NxurQe17+7A/tzqvHazRPwl8tH0RZiRJemT3wEvnxgFq4c3xsvrUvHH784DKvD1fQHCS/2ZFXiund3oLjWgk/vmYY7Zg4KdZMIok0Z0ycWPzw6GxP6x+OJVYfw8rp0uN1kIAs2wTKvvwjgIGPsGACl8gLn/NogHZ9oY3ZmVuDRFQfhcLrx0Z1TcMmYlFA3iSDaBa2G4a9XjsaIlBj89ZujuO7dHXjvtkkY1zcu1E3rFHx/qBBPfX0UUWFarFxIlZKJ7kOEQYt35k3E6F4xeHXDKWSVG/HO/EnonxAZ6qZ1eDjnWLQ1Cy+vP4mBCZFYfNcUKiZFdBsSo8Pw2X3T8Y8f0vDe5kykl9Tj9VsmID7SEOqmdRmC5cH9FMBLAP4LTw7ua0E6NtGGcM6xeFsW7liyFz0i9fju0dkkboluyU2T+2HVAzNgd7pxw3s7sXx3LoUdNoLN6cIz3x3DE6sOYVzfWPz8+LkkboluB2MMj144HIvumIyschOuemsbNqSVhLpZHZpaiwMLl6fixbXpuGxsCr5/lColE90Pg06D//xuHP513VhsO12Oq97ajgN51aFuVpchWALXzDl/i3O+iXO+RfwF6dhEG1FtsmPBslS88PMJXDQqGd89MhtDaZIhujGTBvTAmifOxcyhiXjmu2N4bOVB1FsdoW5Wh6Og2oxbPtiF5btzsfC8IVixYAYVkyK6NZeO7YWfHj8HAxOjsHB5Kl746Tjl9PvhWGEtrnl7Ozall+HZq8fg3fmTEBOuD3WzCCIkMMZwx8xB+OrBWdBogFs+2IXF27LIuB4EgiVwtzHGXmSMzWSMTRJ/QTo20QbszqrEFW9uw5ZTZXjm6jH48I7JNMkQBICEKAM+uXsq/u/ykVh7rATXvrMDaUW1oW5Wh+HnI8W46q3tyCo34YPbJ+OvV46GngrCEAQGJkbhq4dm4q6ZA7F4ezZu+XAXCqrNoW5Wh8DtlrYPu+H9nbA73Vj9wAzce85gMEa5+gQxoX88fnrsXFw0Ohkv/HwCC5alosZM9UBaQ7BWJRMBzADwH9A2QR0au9ON1zacxPyPdiPCoMW3D8/GfTTJEIQXGg3Dw3OGYeWCGTDbnbj+3R14b3MGnN3YI1NndeCPqw/hkRUHMCgxEj8+dg4uH9cr1M0iiA5FmE6L568bh3fnT8LpUiOu+N82fLk/v1t7ZEpqrbjrk714/sfjmD00ET89fg6lMxCED3ERenxw+2Q8e/UYbDlVhsv+txWbT5aFulmdlqAUmeKcXxCM4xBtS1pRLZ788ghOFNfhxkn98Px1Y2mfOYJohGmDE7D2ifPw9++O4uV1J/Hr8VK8dsvZGJwUFeqmtSu7syrxpy8Oo6TOiscvGo7HLhxGXluCaISrzuqNs/rF4U9fHsafvzqC9WmlePGG8egZ03223eOc4+ejxfjbt8dgd7rx79+Nw/xpA8igThABYIzh3nMGY9rgBPxh9SHc/ck+zJ8+AH+7cjRtu3eGBGWFwhh7gjEWyyQWM8YOMMYuDcaxidZjd7rx+i+ncN07O1BhtOGjO6fgtVsmkLgliGaQEGXAu/Mn4c25ZyOz3IQr3tyKxduyuoU3t9bswNPfHMHcRbuh0zJ8+eBM/PGSESRuCaIZ9E+IxKoFM/D3q0Zj6+lyXPa/rfjuYGG38OYW1ViwYFkqHl1xEIMSI/Hz4+fgtukDSdwSRDMY1zcOPz52Dh44bwhW7s3DFW9uw7bT5aFuVqciWKuUeznndQAuBZAI4A5IFZWJELMjowJXvLkVb208jWsm9MEvfziPqiQTxBnCGMN1Z/fFhj+ch1lDk/DCzydwzTs7umzFQ845fjpShIte34LV+/Kx8LwhWPvEuZg0oEeom0YQnQqNhuH+c4fg58fOQf+ESPx+9SHctngPMsuNoW5am+Byc3y6MweXvL4F2zPK8dcrR+Hrh2ZRlWSCOEPC9Vo8feVofPHATGg1DHcs2YvHVh5EWZ011E3rFATLhSdMclcCWMY5T2NkpgspxbUWvPDzCfx8pBgDEiLx8d1TcOEoErYE0RpSYsOx5K4pWJ9Wgud+OI4b39+JedMG4MlLRyIhqmvsX3eypB4v/Hwc205XYFzfWCy9ZyrtCUwQrWR4Sgy+eWgWVu7Nw0vr0nHF/7bhwfOH4ME5QxFp6BrRVHuzq/DCz8dxpKAW543oiX9fP472BCaIVjJ1UALWPnEuPtiSifc2ZWJzehn+dOkI3DZjIEVTNUKwRtVUxtgGAIMBPM0YiwHQ9eP3OiD1Vgc+2paNxduy4HJz/OHiEXjg/CEI12tD3TSC6BIwxnD5uN44Z3hPvPHLKSzdmYMfDxXhwTlDce/swYgwdM57rbzehtd/OYXV+/IQHabDM1ePwV0zB0JHEyhBBAWthuH2GQNx6dgU/OfnE3jrtwys2peP3188ArdM6ddp77WcChP+uzYd69JK0DsuHG/OPRvXTuhD4cgEESTC9Vr8/uIRuO7svnj2+2N47sfjWLYrF3++bCQuH9eL7jU/BEvg3gfgbABZnHMzYywRwD3iRcbYWM55WpC+i/CD1eHCsl05eG9zJmrMDlw5vheevmI0WU8Joo0QInDu1P54ad1JvLL+JJbtysHvLx6BGyf1g0HXORarVSY7Pt6ejaU7c2B1uHDXrEF4/MLh6NFFPNIE0dFIjgnH/+ZOxB0zB+LFNen467dHsXh7Fv586UhcNrYXNJrOsVgtqDbjwy1ZWLUvD3qtBk9eOgL3nTOk0xr5CKKjMzgpCsvunYaNJ8rw0rp0PPT5AUwcEI8/XzYSM4ckktBVEawqym4AB1SPKwFUqt6yHADti9sG1JjtWLE3D0t35KCs3obzR/TEk5eOxPh+FFJIEO3B8JQYLL5rCvblVOHFNSfw9DdH8eavp3H/uYMxd9qADlvMrazeisXbsvHZ7lxYHC5cMa4Xnrx0JOXKEUQ7MXlgAr58cCZ+OV6qLFaH9ozCA+cPxfVn9+2wRrKcChPe25yBbw4UgjHg5in98fuLhiM5NjzUTSOILg9jDBePScGckT3x9YECvP7LKcz/aA/O7h+Ph+YMxSWjUzqNkawtaa+VF13pIJNVbsTSnTn4cn8BLA4XzhmWhLfnTcT0IYmhbhpBdEumDkrA1w/NwtbTFXh/cwZe+PkE3v4tA/OnD8Dcqf0xMDH0WwtxzpGaW43P9+Th56PFcLrcuHZCHzxywTAMT4kJdfMIotvBGMOlY3vhwlHJWHOsBB9szsT/fXUEr284hTtnDcRNk/p1COHocnNsPV2Oz3fn4bf0Uui1Gtw+YyAWnjcEfeIjQt08guh26LQa3Dp1AK47uy++TC3AR1uz8MDyVAztGYW7Zw3CtWf3RVyEPtTNDBntJXC7fk38dqDGbMdPR4rxzYECHMirgV4rVXa9/9zBGNUrNtTNI4huD2MM54/oifNH9MTBvGp8sCUTH27JxPubMzFjSAJundofl43t1e5FZUrrrFhztBir9+UjvaQe0WE63DqlP+49Z3C329OXIDoiOq0G107og2vO6o2tpyvwweZMvLzuJF7bcAoXjEzGrVP74/wRPdvdq5tTYcJPR4qwal8+CqotSIo24KE5Q3HXrEFIjgm98CaI7k64Xos7ZgzEvKn9seZYCRZtzcQz36fhhZ9P4MrxvXHzlH6YMTix23l1Qxo7xxi7HMCbALQAFnPO/+vzehiAZQAmQwp5vpVzntPe7QwlhTUW/JZehk3pZdh+ugJ2lxsjUqLx1BWjcMPEvh3CsksQREMmDuiBD++YgpJaK74+UIAv9ufjD6sPI1x/FOcO74nLxvbCucOTkNIG9zDnHBllRmw9XYH1aSXYl1MFzoGxfWLx4g3jce2EPrRpPEF0QNRGsqxyI77YX4CvDxTg1xOliAnX4cJRybh0TC/MHpaI+Mjg58m73BxpRbXYeqoc69JKcKywDgAwY0gCnrpiFC4d06vDhk4TRHdGbSQ7VliH1fvz8P2hInx7sBBJ0WG4ZEwKLh2TgmmDE7rF/N9eZ2j3fYIxpgXwLoBLABQA2McY+4Fzflz1tvsAVHPOhzHG5gJ4CcCt7dHgUFBrcSCjrB4niutxILca+3OrkVdlBgD0T4jA7TMG4oZJfTG2TywlkhNEJ6FXXDgeuWAYHjp/KPbmVGHdsRJsSCvBL8dLAQBDkqIwfUgCxvWNw5jesRjZK+aMPLycc1SZ7MgoM+JIQS0OF9Rgf041SuS98oYnR+OJi4bjqvG9KQyZIDoRQ3pKxuw/XTpCEpzHSvDriVJ8f6gIjAGjesVi+uAEjO0TizF9YjEsORphuuYXeOKco6zehlOl9ThSUItD+TXYn1OFarMDADChXxz+duVoXDG+F/r1oIKVBNEZYIxhfL84jO83Hn+7cgw2HC/BhuOl+OFQIVbuzYNOI70+bVACxvSJxdg+sRiUGNVpq7gHgnHe+uhhxtg3AJYAWCsXnGrOZ2YCeI5zfpn8+GkA4Jy/qHrPevk9uxhjOgAlAHryRho9ZcoUvn///pafTBuzam8efks9gaRefWB1uFBjdqC0zorSOhsqjDblfUnRBkwe2ANTByVgzshkDO0ZRaKWILoInHOkFdVhV2YldmVVYl9OFeqtTuX1xCgD+vaIQHJMOGLDdYgO10Gn0SAvPx+9+vRBvdWJKpMdVSY78irNqLd5Pts3PgJnD4jHucOScM7wJFqYEkQXwuly41B+jTJ2HMirhtUhLbsYA5JjwtA3PgI9Y8IQHaZHdJgWGg1DXn4BevXugzqrE9UmOyqMNuRWmmFxuJRjD0mKwsQBPXDeiCTMGpqEnjFhoTpNgiCCjM3pwt7sKuzOqsSuzEocLayFwyXJKa2GoVdsOPrGRyAx2oDoMGndcdX43jDmHMGcOXNC2/gAMMZSOedT/L4WJIF7MaRtgWYA+BLAJ5zzk0185iYAl3PO75cf3wFgOuf8UdV7jsnvKZAfZ8rvqfA51kIACwEgJSVl8qpVq1p9Tm3FmwesOFHphEHLoNcwRBsY4sMY4sIYekUx9InSoG+0BkkRjAQtQXQTOOeosHDk1btRZHSj0iI9rrVzWJ0cZieHmwPgHFoNQ4SOIcYgjR89IxhSIjXoFcUwKFaL2DAaNwiiu+DmHKUmaewoNomxw416O4fFCVicHBwAA4eWMUTqpbEjxsCQHMGQHKVB7ygNBsZqEKWnsYMgugtON0exiSOvzoUSM0elhaPS4obR4Rk7bh1pwJQeNkRHd8zdFS644IKAAjdY2wT9CuBXxlgcgHny//MBfATgM865Ixjf08j3LwKwCJA8uB3V0gAAc+YAmzdv7rDWEIIgOi40dhAE0RJo7CAIoiV01rEjaAHXjLFEAHcDuB/AQUjFoyYB+CXARwoB9Fc97ic/5/c9cohyHLz31yUIgiAIgiAIgiAIAEESuIyxbwFsAxAJ4BrO+bWc89Wc88cABPJr7wMwnDE2mDFmADAXwA8+7/kBwF3y/28C8Ftj+bcEQRAEQRAEQRBE9yVYVZTf4pxv8vdCoNhozrmTMfYogPWQtgn6mHOexhj7J4D9nPMfIBWuWs4YywBQBUkEEwRBEARBEARBEEQDWlVkijF2Q2Ovc86/afHBWwhjrBxAbhAOFQegNgjH8UcSgIom39Uy2qrdbXk9qM1tf9zOemxqszdtNXZ0xuvclsemNrfPsTtjm9vy2DR2tM+xO2Ob2/LY1Ob2OXZnbDPQsceOgZzznn5f4Zy3+A/AJ438fdyaY4f6D8CiNjz2/s7W7ja+HtTmTtxmuh7t2uY2GTs643XuxL8htbkTt7kTXw8aOzpxm+l6UJtDeOxON3ZwzlsXosw5v6c1n+/g/BjqBrSQtmp3W14PanPbH7ezHpva3D50xuvclsemNrfPsTtjm9vy2DR2tM+xO2Ob2/LY1Ob2OXZnbHNb0qZtbm2I8u2c888YY3/09zrn/PUWH7wLwxjbzwPkJhMEQQSCxg6CIFoCjR0EQbSEzjp2tLbIVJT8b0xrG9LNWBTqBhAE0SmhsYMgiJZAYwdBEC2hU44drfLgEgRBEARBEARBEERHISjbBDHGwgHcB2AsgHDxPOf83mAcnyAIgiAIgiAIgiCaQhOk4ywH0AvAZQC2AOgHoD5Ix+5SMMYuZ4ydZIxlMMaeCnV7CILoGDDG+jPGNjHGjjPG0hhjT8jPn80Y280YO8QY288YmyY/H8cY+5Exdlh+f1cu+kcQRCMwxnIYY0fFOCE/t1p+fEh+/ZDq/WcxxnbJY8dR2VFBEEQ3gzH2B3kcOMYYW8kYC2cS/2aMnWKMnWCMPe7zmamMMSdj7KZQtbspghKizBg7yDmfyBg7wjk/izGmB7CNcz6j9U3sOjDGtABOAbgEQAGAfQDmcc6Ph7RhBEGEHMZYbwC9OecHGGMxAFIBXA/gfwDe4JyvZYxdCeD/OOdzGGN/BRDHOf8LY6wngJMAenHO7SE6BYIgQgRjLAfAFM653/0qGWOvAajlnP+TMaYDcADAHZzzw4yxRAA1nHNX+7WYIIhQwxjrC2A7gDGccwtj7AsAawAwABcAuJtz7maMJXPOy+TPaAH8AsAKaUvYr0LU/EYJlgfXIf9bwxgbB2nz3uQgHbsrMQ1ABuc8S16ErgJwXYjbRBBEB4BzXsw5PyD/vx7ACQB9AXAAsfLb4gAUiY8AiGGMMQDRAKoAONu10QRBdHjkMeIWACvlpy4FcIRzfhgAOOeVJG4JotuiAxAhG74iIa0xHgLwT865GwCEuJV5DMDXAMp8D9SRCJbAXcQY6wHg7wB+AHAcwEtBOnZXoi+AfNXjAvk5giAIBcbYIAATAewB8HsArzDG8gG8CuBp+W3vABgNaTI6CuAJMRkRBNHt4AA2MMZSGWMLfV47F0Ap5/y0/HgEAM4YW88YO8AY+792bSlBEB0CznkhpHVFHoBiSFEeGwAMBXCrnBa1ljE2HFA8vr8D8H6o2txcWlVkymf/W5H/9a78bxQIgiCIM4IxFg3JOvp7znkdY+wFAH/gnH/NGLsFwBIAF0OqeXAIwIWQJqNfGGPbOOd1IWo6QRCh4xzOeSFjLBnSWJDOOd8qvzYPHu8tIK39zgEwFYAZwEbGWCrnfGP7NpkgiFAiOyevAzAYQA2ALxljtwMIA2DlnE9hjN0A4GNIhrL/AfiLHLYcmkY3k9Z6cGPkvymQ3Nl9AfQB8ACASa08dlekEEB/1eN+8nMEQRCQ6xd8DeBzzvk38tN3ARD//xJSqgMgGRW/4RIZALIBjGrP9hIE0TGQPTEilPBbyOOEHHZ4A4DVqrcXANjKOa/gnJsh5dzRmo0guh8XA8jmnJdzzh2Q1hqzII0RYt3xLYCz5P9PAbBKzvm/CcB7jLHr27XFzaRVApdz/jzn/HlIQm0S5/xPnPM/AZgMYEAwGtjF2AdgOGNsMGPMAGAupJBugiC6OXKe3BIAJzjnr6teKgJwvvz/CwGIMMM8ABfJn00BMBJAVvu0liCIjgJjLEouTAfGWBSkHNtj8ssXA0jnnBeoPrIewHjGWKQsgM+HlFpGEET3Ig/ADHksYJDWFCcAfAepyBQgjQ+nAIBzPphzPohzPgjAVwAe5px/196Nbg5B2QcXQAoAdeVOu/wcoYJz7mSMPQppctFCqj6WFuJmEQTRMZgN4A4AR1XbefwVwAIAb8oLUSsAkV/3LwBLGWNHIVU8/EugCqoEQXRpUgB8K4cM6gCs4Jyvk1+bC+/wZHDOqxljr0MyunMAazjnP7djewmC6ABwzvcwxr6CVFXdCeAggEUAIgB8zhj7AwAjgPtD18qWEaxtgv4GqULft/JT1wNYzTl/sdUHJwiCIAiCIAiCIIhmEBSBCwCMsUmQEpABKbfjYFAOTBAEQRAEQRAEQRDNIGgClyAIgiAIgiAIgiBCSbD2wSUIgiAIgiAIgiCIkBKsIlMdhqSkJD5o0KBQN6NRTCYToqJom2CCIM4MGjsIgmgJNHYQBNESOvLYkZqaWsE57+nvtS4ncAcNGoT9+/eHuhmNsnnzZsyZMyfUzSAIopNBYwdBEC2Bxg6CIFpCRx47GGO5gV6jEGWCIAiCIAiCIAiiS0AClyCIVmOxu/DahpOwOV2hbgpBEARBEATRjSGBSxBEq1m0NQtv/5aB5bsCRosQBEEQBEEQRJtDApcgiFZjd0meW7OdPLgEQRAEQRBE6CCBSxBEq9FqpKHE6aZ9tQmCIAiCIIjQQQKXIIhWo9MwAICbBC5BEARBEAQRQkjgEgTRanRaSeCSB5cgCIIgCIIIJSRwCYJoNcKD63K7Q9wSgiAIgiAIojtDApcgiFajYeTBJTom3x8qxG/ppaFuBkEQBEEQ7YQu1A0gCKLzQzm4REflwy1ZSIkNw4WjUkLdFIIgCIIg2gHy4BIE0Wq0GvLgEh0Tl5tTvyQIgiCIbgQJXIIgWo3QDy4SEkQHw+l2w+6k3HCCIAiC6C6QwCUIotU4XJKAIE8Z0dFwc+qXBEF0PNxuDqvDFepmEESXhAQuAafLjSe/PIyMMmOom0J0UoTnlnJwiY6G0+2G00UeXIIgOhb//Ok4Rj2zjiKfCKINIIHbAeCc45X16citNIXk+8vqbfgqtQC7MitC8v1E50d4yMhTRnQ03G7A4aJ+SRBEx2Ll3jwAgM1JXlyCCDYkcDsAp8uMeHdTJh5feTAk3y/y02gRSLQUYYEmSzTR0XC63XDS/swtpqTWilqLI9TNIIguh9h9wOqg8Ykggg0J3A6AyeYEAIRKGoj8SQeF8REtRHhu7dSHiA6Gy83hJONdi5nx4kbMeWVTqJvRLPKrzNidVRnqZhBEs9AqApc8uIR/jhfVUYpNCyGB2wEQ1rtwvTYk329zUoEgonWIAZiq1RIdDZebw9EOHlyny40qk73NvycUVJs7hwf33Jc3Ye6i3aFuBkE0C51WWoJbSOASfsiuMOHKt7bhv2vTQ92UTgkJ3A6A8OCG67VYviun3a155MElWosITSZLNNHRcLo5HE7/xjvOOQ7mVQfle57/8Tgm/esXWOx0D3Q2SmqtWHO0ONTNILoZ5MElGkMYTPfnBmeO6m6EVOAyxi5njJ1kjGUwxp7y8/ofGWPHGWNHGGMbGWMDQ9HOtqbOKlnHd2dV4pnv09rdWuPJwSWBS7QM4f23kQeX6GC43DxgDu7+3Gr87r2dOF5U1+rv+VkWSCa7s9XHItqXWxftwsOfH6A5sIPwxb58rO0GBgfKwSUaQxhA3JyiK1tCyAQuY0wL4F0AVwAYA2AeY2yMz9sOApjCOT8LwFcAXm7fVrYPdXIBj9hwPQDgZEl9UI//3A9pGPTUzwFfF8WlKE+t4+F0uWHuBAtmVwsE7rpjxagw2tqqSQQBQA5RDjC2VcsW8mAUURKLETLyhB5+hgvC3EozADLydhSWbM/Gyn35oW5Gm6OMGeTBJfwgDCC0Nm8ZofTgTgOQwTnP4pzbAawCcJ36DZzzTZxzs/xwN4B+7dzGdqHWIgmY6DApB7e03hrU4y/dmdPo63aXNLhSFeWOx8LlqRjz7PpQN6NJxMKwudsdmGxOPPjZAXxzoKAtm0UQcpEp/8JFiNFgFEcTixEKUQ4NRpvHENjSehKBQtk7O5xz/JBpR16luek3dwDMDifs3WDrHMWD2w3OlfCPzenyGrvUCDsdeXBbRigFbl8AahNdgfxcIO4DsLZNWxQiRIiyCFMpr2sbr1Yg8WGXJ3WyXnc8fksvAwC4O3gBMMWD28xQKxHGabFTnztTMsrqlQnxVGl9h+8bocbp5nAEuEZKekYQvK46LQnc5uJwufHpzpyg7v9ZUusxDLe02J3N1TV/uxqzA9+cdmBdWmjDft1ujmXNqDNitrm6RSSElkKUuz3XvbMD4/7h34khiiNSAdiWoQt1A5oDY+x2AFMAnB/g9YUAFgJASkoKNm/e3H6NawFGo9GrjSezJUFbY5Im6Hqbs03OYcNvWxFjYA2eP1QsLZbzCgqxeXNF0L+3q7G72ImkcIZhPdqv6vWaXzcj2s9v11EoKJL6cL3Z2qy+W2aWBu7TWdnYvLkwqG05VObEj5kO/G1GODSs416zllBXb8TFr2/F2EQNbhxhwD93WXHrSAOuGKwPddM6JMLy7XC6/fbLo/mScfHgkaPQlZ1o1XfZrdL4vXPvflRmhKYifrBRew6COSetzXZg9Uk7MjNO48IBwem7xys9omnTlm0tGi+3bd+JxIiuV3uz2iqNt+mnM7HZHbrQ3+xaF57fZUVlfgYmJgdeftZb7aiqaZt1UEfCZpE86qu2HMGug8dwkZ97gXOOH7McmN1H1yX7ZncnvcQEwP/4erJKGtPqjaaQ3gu+mqWzEEqBWwigv+pxP/k5LxhjFwP4G4DzOed+XZuc80UAFgHAlClT+Jw5c4Le2GCyefNmqNu4Im8/UFgKm8qId+555yvWvVazTsq/PXvKdPRPiGzwcmVqAXD4MJKSe2HOnAnB+c4uzF9f3IiJA3rg/t9Navsvk3+7UWdPxbDk6Lb/vhbyfekhoLAQXKOFv/tvR0YFOAfOGZ4EAEgvqQO2bkPvvv0wZ45v6n3rOLLxNDIPnML0WeciKqxT2PCazbfrfgNgwelaILbfSACHYY/siTlzzg5xyzomdqcbWL8WHP7H1Owd2UDacYwYNRpzzvYEED30WSp+PVGK0/++stnfFXtgC0rNRowcOx5zRiYH6xRCitXhAtavAwC/93VL+aroAIBiTBg7GnMmByfzqOpAAbDvMABg6oyZSIkNb/6H5XF28tTpGJQUFZT2tCecc7g5Aq4Z8irNwOZN6Nd/IObMGdnOrZM4mFeN4TYXsGsPho4cgzkT+vh9n9vNYV+3BvrwSMyZ49en0WWIO7INBcY6bC2QnAz/uvOSBu85XlSHb9ZvQ6EzBqsfmNneTSTaGnns8Te+GjIrgL17YAgPD+r4e6b4apbOQijNQfsADGeMDWaMGQDMBfCD+g2MsYkAPgRwLee8LARtbBdEiLI6zL4siHm4ejl0LlB1T5F/FqjSKOFNndWp/GZtjUEn3aIdfX/Npqoo37Z4D25fskd5LMI4W5P3XVRj8RtWL8ITsytM2JVZ2eLjd0SqrNL1iovQK8XHIg1dw1vYXDjn+GBLpldIaiDUHsjG+opvv117rOSM+6ayp2UXClFuq9C4nErJaxEVFry+W1LX+hDlYORih4Llu3Mx59VNAV8XoeC2EJ1fQbUZv3tvJ57+9giAxrfFEXvCijY/9Fkqfjle2vaNDAFizGgMsdbo6nmYxwprkdqNt8OptTga3BeiuJSL6uO0iJAJXM65E8CjANYDOAHgC855GmPsn4yxa+W3vQIgGsCXjLFDjLEfAhyuUyOKTKkprLYE7fhhOmkRYQqQyC4WflSprWncbg6jzRmUqqvNIUb2QFaZ2iYvu87qwLkv/9bkxNJUVVJRxMfudDergqlnEdOyBZfJ5sSs//6GZ7471uA1sTB657cMPLbyQIuO31FRC1yTTTrPjual/nJ/Pm75YFebHb+0zob/rk3H+rSSJt+rFmj+xJqtiS3SzqQar1Jk6gwroqaX1OHG93c2qJZutLWfIS0Q6uJcgQp1tYScCik00x7EOafG7LlWLc3tbakwDjW5lWbkV1kC5uMrxdRCdH6VRslAm18lrWtE1WCXn/aaZQOR3SntILD2WAl2ZHTN1CldM6L0xLqtNeP82qPFIR9LmuLqt7fjxvd3hroZIWPC8xsw/T8bvZ4TTidXFzdutBUhDejnnK/hnI/gnA/lnP9bfu5ZzvkP8v8v5pyncM7Plv+ubfyInZM6P2IpmEUHwvXSzywWxL7Yg1hJtKtjlBeh/n6ztiA6XJrUKtvIg1tUY0F+laXJramufGs7rn57W8DX1eLBV7T6W3R5PLgtF7gA8O3Bhvm7oj/XWhyot3b8LZbOBH8e3ChDxxK4e7KrsDenKqiCSI2IRGmOiFFbvv21Rxwj0ML/TMZhUWTKfIYe3Bd+OoHU3Grsz/E2Mv3t26N4fOXBMzqWGqvD1WQxn6ZQzwnWIIkjzrlSJC0Yxb0E6t+wpYazzlposak5PNQC17cfWh1urNiTh6F/XYPyem/jrVm5v92oqPe/jZfvZzorzclCM7ZS4J4urcdDnx/AX7852qLPE+2Hbz8XUUT+DEFE01DGegfAn2XNEcRw4aY8uGLya6sF6ZlwsqQeU174FWV1wd0qKVgIwdReHlwhXqqM3gKXc44Hlu/HxhOtC90SRo+m9to9UVyHY4V1AV93NSJwq8wNxbnwcrV0wdWYB1gs8ow2J2xOd5eaHKrkYjEGrUb57YQBy+FyI6MsuHtot4RS+d6tayPjglk+7+ZU7HZ5hSg37Af2Jjy4Z+L1ULb8OENRKaz0vt6c0jprqxby//fVETzWCoEMeEf1tFYsC4pUoeXBTItR/4YtDlHupB5cJQQ5QPubMuS0Nb7GEavDhWW7cgB4xguBMBDZHG6UG+WxRDXfHi2oxbT//Ir1aSX44+pDqPEzv3QWfKNK/EWMiDVHdAsNmcI43pyUDqJj4QyBwN2VWYn8qs6xnVhTkMANMU6X26+X6UzDhe1ON/7y1REU1TQMbQ6T8zgD7bUlFgYdYR/cU6X1qDDakF/dMW6w9JI6fJ3q2au1Xl7w1lmdZxS+2FJE3o2vB9fp5lifVor7Pt3fquMLo0dji9cKY9OLbG8Prvexyvxse2Wxt27B1ZiXTCzyxLmdachoe+N0ufFVakGztvuplj24ZodLOT9x7d/blImLX9+KU6WhFbni924rI5BJ5eEBGu+7agHlT0w15dnyjdQorrV4fV9muRGz//sbyuqsSoGfM/XgimZpfASuzelulUcxq8KI4trWpbqo56Fg5RZXqER7MEOUgyFwO8Ic2BJEPw4U1RDM/Z5bgsXHgGpV7f3pu3gXxla7y41yPx7ckjorOAe+2JePbw4WYu6i3e0yF7cFvus8f2kU4txb6sEV921EJ6nV0FJD2tGCWhzIazzVymJ34bPduZ1maz2nn22CThTX4fGVB9ss2mTeR7tx7suB8/k7EyRwQ0xeAEvJmXpTd2VVYvX+fPzt24ZhKKJQUaCFlz8vxs7MClzw6uagWe2bi7mD7Y+6Yk8env3ek+dptHomZVM7FJMRCxJfgRssS7y43o0tyk8UB/bcCtT91dezVuqnYJoQnS0dpBsTreLaiAVURy/68/GObDz55WF8daCgyfeKEGWL3akIPXENsyuMABDyQh2iQF5bCVz1AvhkST3G/WM9sitMft+rXjz7MxqKvhpIaKm90JxzXPbGVsXzBEjhf4U1FuRWmSG+6kwFrvAy+1bAtTvdrRJcNWZHq8cJtSAK1p616kiiYEYNqa/VmQg59WLX3kn3wVWKpQWIarCHOETZ14hvsbuV8dk3skzcPy43R4lsoFGPJaIfikV/ekk96vzUMWkuTpc7oPG/rfGd//zNh8JD3Yx6VH4R1y5c3zkErjqX/ky45p3tuOG9xnN4N6aX4u/fHcOhgpoWfUd7ow5R3nyyDG43x46MCvxwuKjNvawWuwtPrDqI7ac7b/47CdwQk1EmLUp7x3lvaeA4QwuTCG/zF6IkBramPLhqK9HfvzuG7ApTQAHeVoiwy/YW1oEw2VywOFyKhVg9UbdHHq5YsPgWmTpTYZhZbvSbZ+sJUQ58vY8XNUPgNhKi7C/cXPHgtlTgqtrra71v4MENcG6b0svaLdS8MYpq5P2vmxHSKwSu2e5S3i+Em9gCLJQeXJvThWp5gdJW94dJCVF2IbfSBKebByzK53I3LnrEcwE9uKoQZbPdhTqrU/m9AO9Qe3FPnnmIstRGBmDdsWI89FkqAKkft0aQ1JodLc5F9bTN8/lgGR3rVfNQML0Q9hZ6cK0q4W53dg7Pji8eD27HzMH1XXtYnS7FWOxrKFbXCimsaShwxTnUq+5NYxMpNo3xxy8OY9w/1p/x58rqrFiyPduv9/hAXjUyy41NHsPXY+vw0/+E4GvM2PXe5gzMW7Tb72tiB4aIdhC4xwprkVZU26pjVPuEnOdWmoIWoiv6UVuIw9X78rByb15QjykMgGa7C3d/sg97c6qU9Uypn8i4YFJjseP7Q0UdJpqyJZDADTEZ8iA4qleM1/NnWnxDCFx/XgrhGQiUg+vPgysWp82p8hdMFA+uvEj8OrUAcxe1XUXWprA4nHBzz+JJveBtD3GkeHB9cnDPVBhe9NoWXPa/rQ0mY+EFDLQo/3xPLt749ZTyOJAXRz0B+QpKMRD3iPRsYt+cKso2pwu1Aay5akHuu4WS6M9i4WR2NOz3dVYH7v10H75ReU2tDhd+S2//7SjEfWfQNn2vWZzCg+tCjUUsfLwXr8cKW7fAaA3qcPRA90drw8PURWga6791VodXDqvTxTH22XV4d1OG8pzozwFzcFXnIMZPtSFCiD6b06Uco6l8dl9cqjC0vdnVypYodqe7xTmqDpcb9TZnqwWNVw5uG3hwz8RDbXW4MOqZtVhztNjv6w6nG0y+hc7kvNWCqrMWmfLk4J55IUmz3dnmY4a4Z8TvY3W4FHHnuy6xqMZrfwLXpghcz/vMrfDA/nC4CMCZ//ZrjhbjXz8dR7mfFJ6/fHUEr/9yCpf/bys+3ZkT8Bi+EQz+fp9qs/c474+X153Eriz/W+IJwahrxvzSFDanC5/uzAkoOJ//MQ1/+fpIq75DLXCrTXac/8pmPCgb/VqLMKrkVQZftP3l66N4OsiFvHwNIDVmu7J28s1dDzYiKiI2XN/EOzsuJHBDTEaZESmxYUiICvN6vrkLmx0ZFSirsyphbv4GSHGTBAxRlhcZ6sWG6NztnbMjRIlYsB4pqMGe7Cq43RxldVavHGO3m+OWD3Zh08m22yLZrLTHO+wVaB8Prm+4rUD9W51JeNVxn3Djpjy4G0+UIT7CgEvHpHi93xenmyuh8L7tESGrGuaZYJsTovzupkxc/94Ov6+pQ5RLfAZ638WtENyf7c7FumMlynOceyY8AHh0xUHcu3Q/sppheResO1bS6mgDcQ30zYhBExGIJrtT6X+iLwixd7Sw9oxDPznnyAkQ5nsmqPfv9idwrQ4Xhvx1DT7amtXi71A8uE631/99mfmfjfidKmTNbHfCZHfhlfUnleeUEOUAgki9iDYqAtdzXoqhxuFWvC+WZhS/+uV4qdIvxU/ldHHYXdLC3+lyy6LZ/0Iyq9yIQU/9jD0BFrXi2rfWg6se/4MV6m9soQc3q9wEq8ONN3897fW8y82VPbFFUb4zmbfU59Vpi0w5mvLgBr5P7lu6H1e/vb1Nz1385sK+qr7mJh+DkHqOKZAjM2xOtzLOii2G1P0oGCHGZ1qrwSy/3+onsqHa7IDR6sSp0vqA6ROAHw+un35ba5EEX3PqsvgTniK9qbVjAQBsP12Bf/yQhkP5NX5fr7U4kF5c36o5UR2ifFKORvrleGmjqVLNzcEW43l+tRlHC2rx8rr0oOdvByuVA2hoADHZXMparS0Errr/CGdObETH2qXhTCCBG2Iyy4wYnhwDg05a/AuPaXMt2/d9ug+f7MxpdD9HcZMEmgT8eXCbCt1rK8w+RY/MshCxOl34+3fH8McvDinvrTDasDenCn9cfcjPkYLUHh/BrV7wNubBdbk5KptRnKkpxGApBPar60/i8z25Xr+Lv8JivgxMlMJXN6R5eyibKsSUV2XG2f3jcenYXgC8BaEal9uNuAi91zEFwovm8LNYbqx/5VaaUFBt9pqAdmVWIqvc6FW0xLeIle/iVnzX3787pliCxfeK87Y6XPhVrkhdWmdDfpVZ8aQFoqDajAc/S23WfqyNIRYuuiYELudcEUNWh1vxXCueQ5unr5xpdMFDnx3AnFc3t7ooUWkTHtzdsiBrTSiXOizY3IgH1zf0scZPe0Rf8R03ReCKOmJDLLzVY4BVFYkgjuFbUMeXY4W1WLBsP577IQ2Ax6PtcHtCkkV4cqBInt/SJaNeIG+mWCQG1YMbpLQRo1cObvMXl6K/J0QZvJ7/z5oTmPXf31BSZ0O0XIjnTBbzaoHVUg+uw+VuEEnSHJwud1AMS6IfB8rBbcyQIzx/u7IqsaqR+1IyCrZMDNT7VCMvVM1ZDTy4qvtWnXogDHriXL08uH6ML1e+ua2BMaQxztSAI+Zkf3On0eZAndUBN2+8L/r2f3/9T/HgNsPp4c/oXi33y2AYqMSYHiga0GSTDHStCVNWe3BPl3mMzY3tGNHcugeiH+ZXWfDQ56l4b3OmV18MBlnlzb+f/UUzLVi2XzEA+xpATHanMg77GvaDgXp8EONZt/HgMsYi26oh3ZWsChOG9IxSvDeRcqW75nhgHC63spgVE5i/AdIVIBRIfRxACtsY/9x6nFbl8LV3yJbJx2MqJg+TzYXSeptXqK64wROjw9BWiElB/KueqBvbBuXL/fk4/5XNrZ5UPAte6ThrjhZjQ1qp1+/SnAE6Rt5P98v9+V4WRpNS1KthO91ujvwqMwYkRiI6rPE8bqeLewSuzwJfyRX1E8bcWP+qMTvgcHGvBcKTXx7GO5syvNpbVt+4B9ff5CeugVnl3RVUGG1YvjsXj644ELBtQPPyl5uDWLA1tXh0ujk4PL+lWGyIaA/1dT+TLXqOFdZinSzSq02ti0pQW5XrrA78erwUf/zikBL6veVUOQBgcFIUACkXas4rm84oJ0qMYzanC0Yh6pthNfcX7h5o4c/kaAO/HlybOi/XqXxe/I5N9QexgCuokc5ZRN84XdxL4NpUx/RF/L6xEf4XH8Lr01pvgnoeClY1cqPVCZ2GIUynafT+zyo3eoUSCuOLr8AVIr/O4kCUPE6dibBX/14tne8+252LC1/bfMa5gh9sycScVzcjo8yIxduycN0721v0/R4PbqAoraYN1st25uCldel+X6u1ODDt378q4bz+yK4wYUeG/4I0vvUFclW/61epBbjp/Z3K+Kf+PSpNdhjktZESleAnmsp3bZNfZcbx4jqv9Bp/qD93puO4EBq+94VYlwlh2dg1943U819kqukcXIFv/irgESrBELjimge6VuL1Q/lnJnDVc5/ag5tRWo/oMB0GJ0XhSEHgY/o7b3+IfphXZVbW2gfyas6orQCQVlSLZ747pghU9TipFuW+2JwuL8O5v/H9YF41jsopA76/udqD6293itaibo+Yk8V6ozPSLIHLGJvFGDsOIF1+PIEx9l6btqyLor6RXW6OeqsTPSINyiAuSsH7Kxfvi1URf06VJ6Lh55RclyaqKNvlLYuyVBblYIS1nAm+HhkxKJvtTtRbHTDbXag02lBvdSjFXnwXPG3Rnm0ZFdiQVoJ6q1PJaW7MS5ZbZYbR5kRRKzxiTpdbqcyqDkGrt3pXR21OPonDyRETpkNRrRWr9+UrzzfmwS2rt8HmdKN/QqTSLwMKXLdH4Pq+Rzz22nKkGfvgiuqR6kVItdkOo9WphIcBDRdPvos833OzOV2KAcXqcCG7woQ3fjmFCf3jAUgC1yTvodvYgtdfZdLlu3Iw6Kmfz8jbpeTQNrG4Ft8TH6n3eb7hwvBMwuf351Qp/2+tIKo22cEYkBhlQJ3FgSXbs/HNgUIs3pYNwCNwhWf0QF41cirNZ5QDqOyT6XQrER/N2RNXvQgShioldFN17Z0uz97JZ5KD6xsVEAjfkHT1Ikm93YuUgxugunMTW4cIQ4XDxVuV8+xVRbkZ17g5mGxORIXpYNBqYHW4kJpb1eA9ZfVWXPjaFtz8oSfEXIz3cT79Xz2GCQ/uh1sz8dbG5nnv1DnTNqcbtWbHGe/DXlBtQY3ZccaRE2IxfCC3GocLanGksNZLJJ8sqW9WKGKT++A6/I8xXsLC4ggoXI4W1KLe5sTBRsTA67+cwgPLU/32N985QX2dTpUasT+3WhmTfXPY+ydEKJ/ZeKLUb0EpX6OqiMZpanGuLqBzprnznigz3xBr6bHwvDY2rvuu13yLnHHOVSHK/qPz1PsA+4tSEeOeOQgGKjH2+btWnHPl3A/n14Bzjuve2Y6fjkhGkX05VQHHIvU1qjZ5e3CHJUfjrH5xiujzhz/D7Od7chsUXBSGweJai7JeOehna6GZL27E8z+mBfy+DWmlWL47V+nH6ut+upEij/9dm44Fy/YrY56/+1UUNgX8hSg7ldeC5cHNrTQp8696vZNTKemAQEbUzkBzPbhvALgMQCUAcM4PAzivrRrVlXnh5xP46IgUAikGiegwHfQ6bw9uc3KIxIRgsjmVvBR/gkHcJE15cAXqMNT2DlEWXjGLKkQZkCbIeqsTZrsTk1/4Fee9vEnZQiCxDQWuENjPfHcMC5enot7qREqM5DFuTEQIK2RrNlcXg1+UQQu7vOi2OaUtDdS/mcgrbQy7y43zR/bE8ORobEr35CwrhZj8LGxEBe0BCZHKwjFQH3K5OeIDhCiLxY3DqyJrMwSufH2Vz7vcMNulwd9qDyxwA+XgCgqqLcr9VV5vw9xFuxCm1+LNW8+GTsNQXm9r0P/84a9A0TPfS5NiUxZlh8uNP31xGCdL6pVFTlP3miJwI7z7u+LBtTkRrpfGkTpr8xfaJ0s9FmdrIyImragWpXVWcM6xam+eXxFQb3Mi2qBDfKQetRaH4u00yeGNwhhTJoetixy7svrmW6M9HlxVkalmCHP1wkl4kJTUDtW1Vy86Pt+Th79/d1Q+B+m71OOjxW+IcuNtUULSNdJv5VRClD0eXBHq55L/fBFjTyBDinrB1Zo6Cv6MUq2l3uZEdJgOOi3DurQS3Pj+rgYe/Dd+kTxv6pB34cEVmiyjzIg5r2xSFq1GWTgDUgjiz0f8h2/74u3B5Zjx4kZM+8/GMzon0SeaClMurrXg2ne2KxXtByZKkQyZFUaU10v7u6oFy0OfpyrXojHUnn9fPtySqaQG+I4xFaqIqDqLVHXbX38T4qKxysAZZUYYbZKBPKPM2/venArxYqzwHXNFdfjDBbW479P9+Omw53cVlYF9a0NsOikZ0iKb2Ps1v8pjgD5TD6d4v+89KM7V43EOfFxfAeO7Flt7rESZH/w5L1bszcOFr21RHtf49eDKY0Ube3BtKoPc4YIaWB1uHC6oxdHCWhzMq8bNH+zCmwGMTup+Wa3y4AqBO75vHIprrXhtw8kAYdze511rduBv3x7DHUv2eD0vDJtuDqQXS/egPw9uca0Vn+zI8dtW9feJ66G+7o3dI+K+9xhpG15Hi8Ol9Cnf3VRMdqeqinJwBO5L69Lx+MqDALx/BzFHdnkPLgBwzvN9ngpeJnU3IkynwZ4SJ/7xQ5rSySPDtIo1X/HgNiMcRdwERtnbBATIwQ0Qonzrh7vw7qaMBgugAlXeS7vn4CoeXG9viLQtisfCXG12oFi+wVu6AXqz2uMzOZ0sqUdshB4x4boG1nrOOQ7LxReE1fWRFQcw8Z8b/B67zupoNBRdXHthQbM5XbA5pe1hxGQ3fXACdmVV+rVC+h7LoNNgQEIkSlSLRuEB85c36E/g1gcQuE63W2mn0WexIRZ/nHvC5RUPbiP9XBgJxIJB/GuxS2E6kQYtogzaBt6BhiHK3q/nVZkVj8bRwlqU1tnwwvXjMCgpConRBlQYbcrrZrsTbjf3Gz7sW5lU/Z5AhgDBofwafH2gAH//7miDKsiBEN/j68H1VO91oXec5O04k30hT5XWQ68V24wFHtavems7pv9nI9KK6vDUN0fxnB8Lt9HqRHS4DnERssAVFn85ykSMRSIvW4TXl5+BwFV7cE2qvOOmUIs+0bf9VZf1FQmf7ZbyEo1+PLjeObievv3SuvSA23aIayDqLbhUHlxPfqGnrf7GdGEQCGSAUS+41J5Xi92Fc1/+LWAoqeCjrVl47oc0rxBKdcTQTe/vbNZ2VP7uG5MscPVajSKwfMdS9Rx0+f+24qOtWSiSjYVCMKQV1SJHJaLsTrfXXOCb9xkIs08ObkuEvPAqNiVw/7MmHUcKahsURswsMyrXQr3neZ3F0SxjleL592m70+XGi2vTlTxb9RjjdnOvqvHiN8gqNzYwOByTcyoD5Re63Vwpzne0sAZ//uqwlwcsUO0GtXHas22Qjwe3hyRwC2Rva4WqtoWozO873nrea/frNTxeVIe5i3bhgGrePOMQZRGx4VNkqoHBtTEPbhNFpl5el47RvWMxtk+s38KjJbVWrz5XbXIgNbca6SVSQSa3m6s8uIHSi9zN9l4bG/HgiuvXJy4cuZVm5Tew2D3RLSKCxxf1mKuO3Cqvt2FwUhTOlqOr3v4tA/uyG0Z8qAUu5xyH5X1ufecFo82JGJ+1zMmSprdB9EXco+r1qOc7AvcjMYaKiM1Ac74QsY15cMvqbEEpkFVaZ0NBjQWc8wYe3DCdBmG6zrF/sj+aK3DzGWOzAHDGmJ4x9iSAE23Yri7L/10+CsPjNai3OpQFU3SYTtkiRFgkTxTX4bbFuxutDuhZcLiaKDLVcA9XANiTXYVX1p9scJOpw3bavYqyjwdX3Oi1ZgesDrfXQCgsxMHIE958sszvYOM76R0vrkNsuB7xkfoG1tJtpytw3bs7cDi/RhFnNWYHqs2OBpOs281x4aubsVyV++mLuPYiyd8mn3+91bP9x/zpAxAdpsPv3tuJvX4GfoHD5UaYToOUuHAvy5/v9VaTV2UGY0Df+AhEhzfhwXVx6LUMkQZtg/eoH4tJ2hOi7H8ycLm5srATnxdeK7PdBbNDErjR4boGi6cGRaZ8Jrm8SrNn+yV5okqS87iTosNQYbR7GVaufGsbrn+3YTVnj/dP+m1zz8BjIX6DhCiD31Bnf4jX41QhQzHhOq8qyr1ipf20m+vB5ZzjVEk9zuoXr5xTRpkRq/cFLjazXRZHEfqGhiWjLF58Ba7J5lSKYPWKDYfZ7oLR5lSKyPjmUTeGWADbHC7PlkHNECXqRYhYfPkbN31FvhiTRT+zu9wNUijU+bJmuwsZZUZkVfi35CshynLUjluVgyvao86h9je+idSHQPOD17YqLs/5pJfUIb/KEjDX8tuDBXj481TszKzAppNlXgYosVjcm12F/bnV+PfPjS8BfvfeDlzyxtYGzxttkhFEr9Uo4t7XqKB+nF5Sj3+vOYFi2RgivPX+7rFwvVZJIWnsHjxVWu8357PRfEmXG0+sOui3gI7HgxvYUGNzuvCjnMMqhJnoR8eL6hThpq4zYXO4m2W8sfkx1AANIyPUr284XoK/fO3Z1kT0mSe/PIw/fXlYeT69pE7xhhfVWvxGDRTWWJQ2HCmoRaXR7mVQ8mds0GkYkuXxCvD0ZV9PqghRFmOmum/ERUoCueFeutKxXCqBB0jj3c7MCizeloXdWVVYpKrmLvrB6xtO4vUNJ9EUgXJwmzK4qmlqm6D8agsuHNUT4Xqt33FAPCeK4pXWW3Hj+ztx1VtSLnelye4xKgfYx/rBz1Ix5tnm7QMsfkd/xgBxzWcNSwIA7MyslJ93KVsUBaoXov5NxX0rQnD7xIdj8sAe+OMlI6TX/Yx56rxdp5srVZ57qfqXOPbo3rHKY52GweoILPADhVRXGT0e3J0ZFXjntwwA0lq+sfQki0+qgDjvpGiDz/ukY/hGU5jsnhxcu8vtNae1lEqjDXanVCRP3VfzqyydOjwZaL7AfRDAIwD6AigEcLb8mGgBBi2DxeFSFnyRBp2yxYpBp4Fey7D2WAl2ZFQ2qBxXZbKjwmhDndWhTCBSvqCw+ATOwS2tsyoDqtry02BQrfK2ivvy4poT+GRH9pmdNICdch5rY/guWIXV0V++gRhAW+tlzqs04+5P9jWohutShQyq6RkThh6RhgaDi7ByZ1eYvAZcoKHgqLc6UWG0e4VI+SI8L6JMu8UhWUKNNk8lvYGJUVi1cAYAz6LdH3aXG3qtBr1jw1FlsnuMI/bAIUfFNRYkx4TBoNN4cnADLBodbg6tRnqfWtC63Rwmu0sRCaJ/WlSDtD/qLA4lFFEsGMQ1FCHK4XotosN0qi0oOE6X1jdYLAvvtPBS5laalf4lJhDhoe4ZE4byeptyfSqNdqSX1OOwnwIXvuLoYL7HGxBoOyUxYYrQ9ZTYcMUT0JQxSXyf2oPbr0ekVxXl3nGywG1mLmBxrRX1NifG941TvmPxtiz85euj3oYJVdtEZdI+8d6LB8AjXuIi9KizOFVeGZfS1wYlSR6Z8nqbsuARC/GcChOW78rxOuYDy/fjKdXeimLctLvcym/v+5v7s2z782ra/BgXxGsTB8QD8Nx/6uuheKZVW5eI38FqdylRBgBw18d78WeVYBD3gN7Hg6uuoqwWBL5jOudc6T+B9v+sDuDBFe0OFHb2h9WHseZoCawOyZDmr8iUCPtULwqzK0x47oc0r7Dgg3k1yPBTcMVocyEqTKfcj1Ibve8Xh8uNvvERyuPYcB2KFQ+uMAI07ON6LVO8I0Y5+sKXHRkVuPSNrfgyVdoDu74JY4KguNaK7w8V4Yb3dqLaZMcz3x1T+oToh1WNFGk7VeK5FuJ3FuNMUa1VmTMqVSLZKkftNIV4z3ubMr2K4/lW2Ff38+NyiOZFo5LlY0iv5VaZFa9gYY0F174tGfemDuoBzj25eWpEWGaEXoujBbWotTi87xc//TQ+Uq8ULwQ819Bkdym/IQD0jZfGi1I/RXXCdBpE+TWquhRxo96n9lB+DeZ/tAffHCwEIN1786YNAODZf/et3zLwlixY3vjlVMCtuAILXO8+EGh94nZzuDkwLDlaEThW1Tgi0hMMWi10GuY3RFk8J15ZsSdP+SwA5FVJv9WQnlF+o7Q45/j1hBRNYLY78f7mTPxnzYmAnsHGQpTFazOGJELDoESJWBxOJbc4UKSO+hqJ45Sq5kjGGK6Z0AeAfyO7eryzO92KwG1Y8NKBYSnRytgzIiUGgLdRSX3upSrDq9Plxq/HS+FUVUw32ZyYv3iP4pnuFRfeqLFVvGZ1uJGqMhK+cP04vHTjeOV9nm0UfYtMSWs/cX+0JgVOIIz8xbXWBmuQ2E4cngw0U+Byzis457dxzlM458mc89s55/7veqJJ9BppgS9u5ChViHKYTqPkZgHAqxtO4nfv7VBuuv/76gj+sPoQ7lyyF8/K+X5Gm9OzYJPDTb7Yl698xuWWvHdON1cWCeobp9TnJlF7+PwNzh9uzcLzPx4/4/N+/ZdTytYYgRCWWI8H192gTQJhcW6twBULJV+PbCCr3pOXjUSPSEOD92fIuYyFNZYGIXeVPqFrVUoOR+AFkV32vAgPrnohJgZ0vZahlyxqGguLdTjdMGglDy7gqcAnPuPP6lhWb0NyjPR+sb9kII+Ry82h0zAvwQl4JhjhsXCqwjiBwJUh1dZ/ReBaGoYoR4frlddf23AKl7yxtYHnxiznf4rvqjLZGgzkQuBKHlxPDu6vjWxNIBaV4ljqqob+flfOOYb8dQ2e+yFNuQ9jwj0GgZbk4EboNco1NdmdSIoJg07Dmu3BFXs0jukjWbWtDpey36A6HFH9m6rzTn2pszoRE65HfKQBZfVWlVfTqSyKBsl5h2V1VsUoI67d1wcK8Mz3aV6L+rSiOqQVecLIPB5cd4NtvAT+2qY2Onks6A1D5cVnF5w7BPedM1gxVqhDz4QAFXltYjsz0T6zKldqy6lyRUwBHhGlbRCirPLgWgKLrjqr51oGCofzd66AZ9yICWvcMm9xSCkhanEtcphFu9VGnBV7crF0Zw4eW3mgweJYjIWldVbYnC45RFnrtS2W7+9ld7oxNDla8Uz16xGp9MHGPLgGrQZiu23OJWG16WQZMsrq8eSXh7E3uwr75KJqubJQqzZLlXpjwnSNFlUU32dzuvHXb49i+e5cbDtdLl+Lpj246pBum4/AVSMWzy63NGY15cF1uz1jW2GNBT8dKVZ+gyKfud07x86EvvEReOTCYV7vqTF7xOn7mzPAwbHm8XPxj2vGAgCy/YQpZ8rPzRiSgMIaC+qtDuU+5Zz7nTfiIw2INHgW0MIYZrW7vAqJJUQZoNcyv+HfYToNIsN0XnM15xwmu9PLkCZQe7TnTu2PSIMW86b1B9BQtJXX2/DmxtO4Z+m+Bt8LeH4739zW5oYoi5oUv5vYF5/cPQ2AZGB6bIWUD+mJ9GDQazV+05k86THSYxHaP6qXJNxEVNGoXjGwOLy3eVqfVoLBT69RHhfVWPHSunQs2pqFrw8U+m1zY0WmRJ/pGROGvj0ilDHbZHMFNBzlVprw05EiZRw2aDVKvxFODWGoEBXSTXZpDNmtMjyoxzuTzYnUXMnYXFbvCePlXCrqGhehV4xnI+XrpO5b6jWJOiprY3oZ7l+2HwuW7VfWc75rrt5x4Y2OIUqfcbhw4/s7le3ewnRaxckFePqUb1i62SZFLYltH0ubGfnkdLnx2e7chhEDckQgIAtcn7Z3Cw8uY+xlxlisHJ68kTFWzhi7va0b11UJ03qHRUQZdIrANeg0SjgHIIUJHMyrUW6a/CozCmssyKsyK1ZTdRVlu9ONx1YcxP99fUQpDOF0cQzpGQ3Ac8OqrY6+k6DamhXMEOWcSjOKaq0NitO43RzvbspAhdHWYB9cYXVszFLV2krP4lr4LhZ9Q6WuO7sPdjx1IQYnRaFHpF4RqYJTZdICprDG0kD8igFU5HP6FinwhzgvEZKqFs3i8watpsn8WED24Oo0iodPTB7CoOBw8QaTkCRwpdBdrUYKPw68TZAbOi1DVJgW9Vancv7i/SKUTEzq4toGKqKjtsj6enDNdikPJUKvRYxKUK8IsIejxeHy+g6z3dWgIqyYPBWBK7dPeKT8ebx8Q4vVRgx/wkNUJ1+6M0eJknC4PJUnm+rH/nJw9VqNUoDM6nAjyqBDrOw9bQ7ivhLb9phtTqTLhTDE+LJiTx6WbJciNh6aMxQzhyRK7fW3/6PVgZgwHRKiDMrCPDkmDA4XVxYhg+TvOllaD6vDDQ3zLDw9Ic3SsTnnKK+3eS1S1WHBxgAGGn8FY9T3jG+ImHpiF8cKkyMXjDbJE+jPg+vZxkx6HB+ph5tLCy6nTwSIZ09r6V8h8MQ2QQ6XWwnZVxsoRFvvWLIHX6cWIKPMI5QCGbW8QpRVfV3keTZVOKTeKm3RJcaUmUMS8e3BQpwqrVfOSb3IFVt4uHnDvLeMsnq43RyXvrEVn+7MkfK0wzxznvqaKOfsdCPKoFWKMHl5NR0NvdwCvVyZWX0eT35xGP/++QS+Si3Ab+llSl8Txrtqkx09ovQw6DRe4sR3Mai+pmvlwn5iUVqvhCg34sFV/W7iN7U63F6ebMDzG/n2F19yKkz4y1dH/I77Irqo2NeD63IrC/6cSjMGJUUiTNdwGSj61Ya0Ulw2thfG9IlFcmyY3D7p+nHOcaq0HpnlRhRWWxBp0GJoz2iU1lnh5p5Ii3KjDf4cgvEReq9xWW3AUKdhxEboEGnQeeXeCgw6af47WVKPn44UyfmkkrFpcJK05lGPHWJe+vqhWfjvjWfhwDOXKOOR75ixJ1sSUCJ9ZV9Oldf9rBjhWxiiLM5dq2HQ6zw7M4jUBtFHDFppTaiupSIq3wfaJ1uI9dxKKc1oeHIM3Fxah7y8Lh0Wu0sxzgiKay0Ynixds0DbQSkeXD/zmyflTov4CIPilLDYvQWuem20ZHs2Hlt5UAn5TYgyKH1PEbhx3kZ2k82Jbw4UYO6i3SiptWJfTpWXIXp9WglqLQ6cOzwJdqdbmQutDqkGREy4TilcJjy43gLX2wgkEIJ908lypS+a7C6v8OIekYYmQpQ997SowQBIc41Bq23wvgYeXNlwKvqsr3MqEHtzqvD3745hj08am/q8S2otDb4vphPvgQs0P0T5Us55HYCrAeQAGAbgz23VqK6OQSt1cI8HV6eEHBi0Gq+JXyBumgqjDbVmB2rMnnh5kxwSJ9goW4XEItHp5hjSU7ohRHGVxm5C9YQZrCJT9VaHMihc8sZWLFWFOJ8uM+KV9Sex5mixEvJndUgTsXjsG6IcoddiwbmDMW1QQpNtrDHb/YbKCcS1810s+lp0h/WMVix/8ZEG1KgWM243V74jt9LUICeoymRHvdWB6S9uxL9+OqF4QxrLExOLb7EYVYedCjFl0Glkrz/zCh+utTgUT4XwXuq1GsUaKiqSmmyebY/E+a47Vowxz65DQZXZK0cq2if8WI3w4EYZdNhyqhyz//ubZMW3BfDgNrH3pHrPUnFe4vwtDqm/RxjkEGWrVFU6UIEXaYL1rgbbwIMbLjy4BjhcXFkEixBaf230bM0l/VthtCnhm0bV4ju30oSsciN2yiFb/XpEIF+2tNtVIq252wSpF3/Csq8Yy8K0iA3XNerBrbc6kFZUC4fLrViAB8gT/klViLfoz3/99ijelkP2JvSLw8qFM5ASG+ZXkIscXPXWXWKBIhaaA+XvOiqLouHJMag02eB0uT0hn+I3t0oF9CqMNiXcVFj47U5Pmke91an0d8D/lhg1ZgeiDFpp/1WnZGgS19Q7B1f6f7hsQBHfqd6eRMkXlL+nXunnBq9zVYvAWz/cjU3pZUpIuhA2LrlvOt1c6QPqe93h4vKCtAK7syoV78T4vnEBo0yqzXbF+6nuV6JdYfrGp34h5sQ49a/rx8LNOb47WKhcH5PKSHWssNbj2fVp06lSI2os0hY6RTVWZZsgrxBln77kcElF8d6aOxET+sV5iRQxd/kz4ui1GqjtZTVmBypNdiXFoNpkV6IFxPWpNjukrfp0Gi8RZfVpk797amdGJS54dbOSQ96oB7ekHiNSJAGhDlEWxiWBOIbVJ4zelxfXnsDq/fl+i30JA1qxnwWw6A95lSYMTIzyW0RGRL1YHC5F4PkaWn89UYZL39iKi17bgnKjDVFhOiREG5TrL+4RYVQP9+lzMeHe+YpqY5WXwA3XI9Kg9TtXhuk0iDRocSCvBo+uOIgHP0tVxpDBsgdX7bUVBojRvWPkNmkRqRch995jhtivdFBSFLLKjbj5g1349qAnEsO3EKagqar+AjEn6TTMa80n+rVDGSekNaHd6UZZvRXjn1uPmz7YhSMFNX7npREp0co1yKsyo3dsuGIUXXusBO9tzsSWU+Uoq7MhLkKP12+ZAEAKZxfREXWqfGx1YajGQpTFejMqTIfYCJ1qe0rvXR8Wbc1SjCx5VWZwDqXYV0KUQbl+pbVWxITrFC9/hF4LxiQjrPgdTxTXYfmuXFSb7Jg2OAEAsGJvPnrGhOHGSf0AeOo7CINYTLheEbgje0n3Y2UAgatOITteVOclSqVzdiqGMkDq441FXCjbEzrdXhW+DTqNlwe3qW2CxBzqL2zfH6JPNYwsVFeptyrnLlKW1CkEnZHmClxh7r0KwJec8zPbxZnwwqCRBnExSESHeXJww3TaBhZdwOOFqjLbUWmyw9fp5a88vJiQnW43+sVHwKDVIFfOyWjuPp3+Qsd8MdmcuODVzQFzVQDvUI9aiwPP/XgccxftwvLduUrBlIJqi2LptTikwlnisa8H993bJuJvV41BuEHrtYelP15efxIXv74F7/zmv0S9eisif88LolVej4QoA+ptnoG7oNoCq8MNxqSBEADOH9ETE/pJA0WVyY4/f3kE5fU2/HC4UBFjjXlwfasoqxdYwsuu12rAGEN0uLf4XLk3D/MW7ZZzeqSLGKbTKGKjtM4Kt5vDbHcpYmT5rhw4XG68uuGUVLXa5lQ8uIDUTwN5iUUOrrKdkN2FU6VGZbISE6zD5Za+1+HJy/UbTmrx9GelyJTVs7dnndWBSIMO0eE6nCytx/C/rQ14Hc12b0Frsbu8vI96LVMWeWJh5SuWrY6G22cIz5joA1UmuyIU1QaOP391BA9/fgA7MqT7IyZcj4IqUeTI1WSIcnpJHU4U1zXoDyJf3+HinorsigfXv8B1uznOe3kTrnprO1bvy1cWEeL3EftcGnQav0YhYdEN02n9C1y5irLaqp0icuHkhYYIkxfGg2Ep0eCyd0HcD+JfIWycbq6ErQtRq94maGN6GW7+YBd2ZlRgyfZsv/lmIj/YoNPA7vLuE/48rWE6jaq4mvQ7CUOkWCwJQ43Rp5/X+1kIHsqvwTPfH/N4cDXeHlx1zr+vJ1EY+MqNNqTmVmNgYiQGJEQGHD9qzA70lO9ddV8X17OpPW0VgSvPK8mx4YgJ16He6qnYL6JtsiuMMNldmDEkQX5e+j7x/adLjYpoq7U4YLRLlUz9eXA3pZfhtQ1S4UODVoPx/eIwtm+cMt+F6zXK9/v14Oq8504h9MT9XGW2K/1QHKfaZEePSAP0Wo2XGPL16Il76t35k3DucKmQzuLt2ciuMHnSHxop+nKq1IiRvWKh0zCPwHW6EaEK043Qa5WxvTEPblpRLdanSQLMX10EUSjSNwcXkPp6rVz8cGCCfw+uMLbYHG6Ey+N0mE6LcL1G6RuVKmNAaa0VkQYtEiI9973N6YbT5UaOHLkyPDnG6zvC9Vqv7b1En7c63D4eXH3A7X7CdFqvytkb08uUiLTkmHBEGrRea4casx0GnUaZewApksKg1TSY70X0jsXuVCIUTqryqEX/8O0nvr+HzenGz0eKFafE4m1Z0h7XLo+AVecc16vmOcAzzjvdHIfza5V7YV9Otd8Un3OG9VTGxdxKEwYkRnoVLwWA40W1yKsyY/LAHrj6rD5gTApRFudSZ3HA6nDhq9QC3PXx3gbn5mvEUj8XZdApaVXi+oh29k+IwHubMxVvqLg/9+VIAjcx2qD0m5I6q1eRKI2GIVKvhdHmUq5Rekk9yuttGN07FrdNH6Cc46yhicpaR4kOkser2HAdhvaMhlbDMKqXlJqj7svqeUEdpXeiuA6Xjevldc5Gm9OrD4frtY3mzIv32hwur37bIETZIa2TfPdBr7VIkTVxEXokRhmavReuZw937/FJvc5RhyiPl9etvrVkOhvNFbg/McbSAUwGsJEx1hNAq7ObGWOXM8ZOMsYyGGNP+Xk9jDG2Wn59D2NsUGu/syMgikyJTqfeJsjgk4MrsNhdqDLZ/Yb6AA1zPAHPhOx0cxh0GvTrEaFUHm5qKwRhbfVddPtbUBXVWJBdYVIS+/2hFrgAMG1wAlJzq/HFvnxlElaHg1gd3l5p3xs5OkwstDUNQiWPFNTgmre3K9dXbF+wcq/vTlee7/J3bhafsvrqAUl4JMUCsKBGOr+RKTFKeNiNk/th9QMzAQBfpxZgnVzEamjPaE+IcjM8uP5ClMXApGwvZfAWnyJEss7iUAZsvZYhJlyPKIMWxbVWxcsltmp4dcMpfHewUNnPFoASlgYAcZH6gCExigdXdY1Ol9Z7QpTlvFGXW/KOutxcySPxJ+zExu2MeSYmtcem0mRHhFxkqiksDu8QKV/Bq25zY6Gbvt4ydVoAIBkdeseFw6D1hDoK71Z6ST22yiFh+VVmr3MSc1gggfvs92n4+3fHlJzsnjFhuGlyP6xcMB06rQYOledT8uDqvarwqqmzOpT+WVBtQWmdDb1iw5XcxdOyqJ05JBEZfvbzE9c7TKdpMJG75IJikgfX029S5D4kir3ER+gRptMoC88hsger3GhTFZrxFrgAsPFEKcrqrJ4cXKe7QUTB/MV78K+fjge0bEfJwsrh5F4C3cuDK4s/9eLZaJOiEVLi5D2wfUKURbvjfXKWfPtMYnSYYsVXqieLIlMuT5Ep3xBlca3K6mxIza3B5AE9EGnQKotyzr23sqo1OxTDgrqvC2+G8E5aHS6s2pvX4POefHVPWHekQQeT3ZMOI4w4h/Klxf+MwYny89I5iwX8scJaRbSV1Ep7vUaF6by8IWIMvmfpPrz9m7R1nVjwqe/xpOgwjwfXTx/X+8yd2T4FkapNdqVPieNUme1Knme5KqfNV1iK7ztnWBJeu3lCg+8GgIIqs9+K4FaHC4U1FgzrGS0ZWFTXP1y1sB2eEo2TpfWoNNo83h6HtMfyhOc34Gs5l/t/v3qMtf48yxllRjhcbv8eXKdbMXQPTIwK6M2vt0q/tVoAx0XosTenGoOe+llJZQCACpMNEXotevjsSX+8uA5HC2uh0zAlrFIQodd6ebvU9SDUxW2iw3QBtwI0yEWmAGkc4RzYIu+BGxWmw5jesV7rkmqzHQmRBjDmbQiJMGgbGMXEfVlvdeKYnO6lroweyADhu44oq7fikRUH8N3BQuzOqsQLP5/AjowKz3ZhWm8PrsnugtPl2Vdbr5XWhE6X28tweSCv2mvcumRMCpbcNQVxEXopHNflRl6VGQMTohAhXyPxmx0rqkNBtQX9e0TAoNOgZ3QYimosihe21uLwShMSDhT1Vn2+iN8vOsxb4Ko9uH+4WKqEXGmStm8SkUwi5FpEwJhsLpTUWhWRKoiS863FNU4vqUNZvRU9Y8K8jARRYTrFOO/x4Hrad9v0Afj24VnSfK3TBMzBFZFktWYHCmssGNcnzqs9ZrsTJpsTZ/WLw1cPzpSMNg63VyFPgdPlcdhY5V0gBGF6byMH4L23ukDM3REGLZJjw/3uRe8PMSarDadGmxP7czye86IaizK2C8dMoKrXnYXmFpl6CsAsAFM45w4AJgDXteaLGWNaAO8CuALAGADzGGNjfN52H4BqzvkwAG8AeKk139lRMGilXCUxgEg5uNKAK6x1gLTY/uD2yQCkhVRlI+FP6sFIjN11VrGHp+Qt6J8QqVh2xQAlFvQ+kReIDtNDr2UNwib9Wc3FBOtPZAtE5cV1vz8XAxIi5QGc42hhrTJ5qEWw1eHyCjP0DfsROZOSN8a7jftyqnG0sFYpuCAG7XJVwYGfjhQp1kzfPDpAWgScKPYO/VIvtOLlgfiX46VSRWt54BGhHYC02A3XS3u17s+txoCESMwYkgCr01PevVkeXHmy8BV4gGc/tRgfD64YXGstDq9QJ9H2eqtT+S1TVFbSHw4XIVJ1nimq8JtzhiXhQF61l7UTkBbXLjeH1kfgnio1euUmAlI0gSgsJELz/IVZVZnsYAzoGR2GlXvzsHxXjtdCrspkR4RB6yVIdz19YYPjAFJfd/qEKKs9WNFeArdhzolvCLfA48GVjl1ptCExOszLm55dYVI+Z7a7MDw52us3V9/TgQRuYbVFKtjkFMJLg1dvnoDJAxNgkAWutwdXhzqLA78cL8XT3xz1qq5docqvrzbZUVJnVapUhuk0ctVODQYnRfkt7Caud5ifUCwxicaE+4QoKx5c6VyjwnSICdcrkRti716j1enlwf1kRzZ+v/qgcpw/f3UEC5bth5t78uIC7OLgtfj2an+YThkz1Nfb24PrVs4xRhG4LhhtLvSOFfsM+3hwlX7uvcAXoXSDEiMxMDESxTWebVacbrfX3oNOl8eD6xuiXFInXauMMiMqjDZM6B+v5AcDUtjf4KfXwCRHlaijL9R93VfcrTlajKe+OYqTpfV+jZ5i4ScKyJltrgb9dHdWJeIj9ThL3qvSrISQS+87mF+tLJTEby486b7XXGB3ur2Md4KeMR4DQaAcXDXCe6icv9GmeHTEcWrMDjkHV+t1f1gdLmSU1SvGhTqLA4xJ/Ts8gEcxq8KEK9/c3uAaid8zIdrgNWfZHFI1+NULZ+DuWYPQKzYcWeUm3Lt0nyKgbE4XasxSiPeTXx1GVrkRvxwvxayhkkHBn9D/36+ncf+n+/1WrX1kxQFlv/a+8RGKh9YXEZ6ufj0uQq98dt0xz64DlUZpPE7wEbjXvrMDy3blol+PCC8hDwDhBq1XlWt1iLK6uI1Ww7w8rmrU+fQ3TOoLvZYpewxHhWkxdXACjhXWKvdplcnRYB9xAIqxyDckVORl+9sHWPHgNhGi7NnGzaXcTwU1Fo+A1WgaRO0ZbZ5ICb2WQSdH6og5cPawRBzK8w5Rnj44AReNTlHWRkcLa1FhtGNMn9gGHtwdGRUw2pxKqG6f+AgU1liUc6m1OBQjMwD8ll4Gm9PVwLilxmNk1SmV5wFp3hPtFP2j3upAubw9DWOe44nXjXZnAw+uOLbR5lTtYVuv1ApR3/uReq2SXlVaZ8NXqQXKPBgfaUC4Xouz+sWDMYbEKIN3iLLq3hWRZMLYO7JXtNfezSablCYzeWAPTBmUoBh+J/3rF9yp8nwD3vep1eG9Z7dB6x2iLL1HWreMSInGmsfPxeOqYnARBi16xYYF9ODmVZr91oxQt+FfPx7HmxslQ9nE/vHIqzIr45bYSumas/r4PX5noVGByxi7UP73BgBzAFwn//9ySIK3NUwDkME5z+Kc2wGsQkPRfB2AT+X/fwXgIuZreuuEiD1vK412hOs10GqY1zZBovhImE6jWN6sDhcq6gMLyCrVxHzXzEFgTBY3clEfnZYhPlLfoDiKqLbnm4cTadBKk4fc4Q/kVeOnI0V+82CE8PJXBEKQV2lGUnQYRvWKxdCeUV7eyB8PS6FAIj84NlwHq8Pt10ooEFVAw1RtFAgB5htKZXd5Cg78/btjeGeTlFfoL0T5xbUn8PfvjnkdN9rLgysNcn/79hie/e6YMnGJPBD1e4Roumh0MmLC9bA5XMrioTEPrickVed1PoAnT0v0G/ViVzon6f+v/3IKty3e4/XeMJ1UiEVMYH1U23HsyKhAhiqnS+3BvXxcL7g5sOG4d2VhEbor9sEVnC6rV/pLDyVEmSuLXSFw/Qm79JJ6DEmKQqxsjX7m+zSvRb/Lzb08uFoN8xLjaswOjwVZq2Ewq7xQgPfv6s8jLLbD8fUWCo+qKNxSYbIjMdqAqDBPMS71npnRYTpc7TNhqBcR/nJw3W6O0jorKurtHuGlmghF8RFlcWEQHlwHvtifj5V78/DnLz1b7KiNE1VmO8pkgSsdV/rtosN1iArTKnl4arxDlKU6Ai/8dBwmm9PLQq5eBKT4CNxI2TAhBIYofGa0OVWhVE68tzmzgSdW5FJe4RMq5kt6cZ3f50Xup93l2VM7Okznde39hSiv3pePE8V16B0fjpgwnZw7xj05uD4hygIxLtw1axBumdIfZfU2xRsiquSKS+xwe9rkuw9uSa1nDAOkKBD1b/T6L6fkzzmUcSLZjwdXjNFC4ObIRkWz3eU3HE0YTrUahsgwreTBVd2vnHPsyqzEzCGJnvQEVQj5+L5xcLi4sgWbMDomRBp8PLjefd/m9HgOo1R5YD2jw5SInXqrE2P7xCr1JYCGIco5Fd6RQ7mVZsVzZnW44HZz1JilEGWDj8iwOty4+PWtuPKtbQCkaxsdpoNGwxDuJ291ujz2VxhtSnVUgTo8Uj2vWh1uhOs1mD4kEc9dOxYLzhsCQOrnYq6yqeZCzqVtfADgQnl7H39CH5Cqd1scrgZj2u6sKvxL3p4kNkLnN0QZ8BhR1a+rK7irx/paiwORBq0yzvsSptMq+z4LIvRavHf7JNw5cyD6xkd4qig73cq6R9CYB1cYIMb2icNZ/eIVj22UQYepg3p47YsqfmtfIgxamB2uBnnXUwb2QJ3VgbTCOjAmrVGufnsbcipMynsbhCgH2BnB6vAI3KIai2J01WlZg2tTb/XMWQY5hNnp9qxfzhveE4U1Fi8PfZgsYsW1+kauhHzp2BQlj9Vsd0GrYco44xG44UpF/YQoA5xu7hXenl9l8Vqr+E8BcSlCTe3BNds9RrFEObKn3upU1nsjUzyh62LeMNmcqDLZkRjtWX9I5yaNeaItGWVSGlRPeTtDQWSYTqm3sO10OZ788jAelatTD5MLrgoSogyoMtmRXWFCZrnRy2gg5mcxZidGhSn3HWPynGV3Kka4cL1WMbru9SnopE4j9OfB9b0PLQ4XnHLq15g+sV4pchF6LVJiw5FXafaqPQFI88rVb2/DW6qUPN8QZbPdiZ+OeAqJTegfj+JaqzJ3xIbrcfyflyl7D3dWmvLgni//e42fv6tb+d19AahjRgvk5/y+h3PuBFALILGV3xtyDPJVrzDalMlHXWRKTPwGrSdXxGJ3N+rBrTTZcVa/OLw7fxL+dtVoRIdJXhwhPkT4qFKxVV5QiCpyvlbISIPWK5Tqo61Z+PfPJ/wKXI+QtAecbGssdmXwCtdrUavyRvoWLkiMDoPV6WpU4EarPEm+AklMItJeqhwVcugoAJQbrdK2BVYnTstCzurHg3tAzkVU4xWiHOUZwItqrIpgvfZsj4ARi11hZZs+OEHO0fAURAq0VyPgWWiLycJL4Co5uFJfkbbn8VwvcS3XHivBcXmxr2xFJbehWhm0PRO+m3tX1VYXUBjTOxb9EyIa7M0sFoxajUa5hhombYuheHDlhZHTxZVFrghZ8yfsjhXWYnzfOC+B5eupkLYJ0snXSFp4+qLVMNRZPII2LkIvVVFW9ZmmQpT7yB7GwB5cqVCU3elGUlQYosM8WxcdL6qDQavBrVP64/YZA9ErzjNhJ0UbvHJ8/An9CpMNTrckpMTvr662KIXbqjy4YVIObq3FAXE1REExwLNoTYgyoFL2ZokQYrWgiArTweVuuL2H4sHVaWBzuPHepgws3p6Nr1ILlEVHTLgecRF6xfMtBK7wjkUadF6LbvG60ebZN3fLyfKAeyaO7ROL4SnRfl8TnPRTeAeAUr3X4XQrQik6TOdTRVn6vxR9IbVzpVyhW8MYhqVE45TPfstiUasWAIBHIIbrtcpiUoSBO1zcK8zb7nSrwiLVHlw3Smq9Q8UGJUUqv5HN6RHGFpVQFQYfzx7pbuX3F303T46ssTncXlFAgiqTQw5flwrImWxOpdIzIFUWLayxYNbQREWImu1OuOT8sVnDEqHXMiVfVMxHidHeHheb0+VVWM7mDBCiHOMpblZncWD64ERs+P15yuu+YX7+9mxVf0ed1QE3h5KDq+a0XPVYjNW1FocyFuu1TOnfgnvPGYyMf1+BlNgwfJXqnQ6j3n/YK0TZ6fLykE4dlIB35k8EAGUXBPV+z4AnbFLcN75zshD8o3vHwuJwedVREIhFfLSqwKUv/jy4as+qr8cpQq/zKx4BaS70/Z5wvQajesXin9eNk/K75Wrldqe7gQEhcA6uRjGCDekZhaEqY0dUmA6TB0pGh9RcSQRUm+1ec7en7VpY7K4GYaXj+8VJ0U42JyYP6AEAOFZYhyXbs5W+7M+D61uMCJDWGeIeK6qxKFvAiBxgNVKupSxw5Z01HC6OWotUKE8YntWhtWEqYzcAfHOgAGf3j0fvuAhEGDzHv3GSZ5ndv4c0JiVEeaoei36lvnfqrQ6lDxp0GpjsUnTDG7+cUuZoqXic9Dup+4lIXQGkCAZAundF/q3Yb1z9eqXRDoeLN5iPIw2SIV+0RYyXyTHh3gLXoAVjDD0iDV6FonrFhnttQSXOvdJkxwWvbsZFr21RPO4xYTpVLQJ5fI/U44XfjcMXD8zEsJ7RqDTa4OZSmqH6N/BHtWp8szpdXuONbw4uIASup8q6ekutSIMWc0b2hItzr32vASklr87qxOH8Gvzzx+PIKKv3MhwDUnV0tRd+qCz6xZrYoJNSUvytqToTjSawcc7/If97T/s0p2UwxhYCWAgAKSkp2Lx5c2gb1ATcaQPAkFVUAebi2Lx5M05VS52tMC8HVrNcndJhw/EjktVp38FDKDMHiMeDNFlbTfWIqjqJHdtOwgAXTucUYNMWyZKck52FaqtkAdy8eTP2l0gdndWV+D2e02oCd3HkFhRi8+YKZBZaUGNyY9d+T8iguM77c6Ubd8upcox/bgOemBSGicneXauwxAqHUzrXmiorqk2i0Argu66P11hRYHVh5979Xs9H6AChi1P37IBew1BWYoPJ6vT6zU/mSgP1noNHYC+UvDPJBgeKAfyybS+y4qU9gTPLjPj1t01Iz5DaX1ZVqxxHb/eIvHAtYHUB6UcOoj5bGoQqLZ5Ga2y1OHKqDhE6YNf2bXjlvAjsLHIi4/AeZKoCDuyF6aipsKPW6EKOSxp0OQfW/7YZOg2wo9CJ2X110MuDytF8qV2n0g4DALIKipVjmewuMADbtm4BYwyWOisKatz4+6e/4MIBOhQUNxQHGadOYrMxEzazBcV2E3bsqwEAuKulxdhtow34/IQc+qwB9FogLXUX0lWD3OBIB3acLsNvmzZBI5+bRd7EPSc7S+nH/WM0yK2zYX+aZEUsyDop/Sb792NfgRMxeiA/U3pu1569OGZg+PKkHXeMCYPDLRkFIqwVyCz3TOB5JRVg8GxqX16cD1Yj/R56OP3e9yPiGU5UmfHVr7ul93EHam0cWTmeLYVspjrlszW2hiJTa5PDuvbsR0WCZ6GVnSdd49LySqzZKHl5yvIz4bI6UVBixObNm7HruBUpkcAVSdIC60CWfN8BiNU6kVunyo+srGpwDjm1nklo9xHJS5e6bzeywqXzLi+1wWR14ccdhwAAp44eQFmRE1aHG0WlFQCA/2fvvKPkOMq1/9TkvDkH7Upa5ZyzVpJzNsbGBgzGGJPBRGPABAMfXOByCSYZjAkGg8FgDM5Ba+Wc00raoM05Tw79/dFdNdU9PauVtFGq3zk+1k7oqenprqo3PW9Xv58dd2edfE1lWSI41dSDSAzoa61HRUULpIhyrsNBNJ2TVc5fVL4XAJgIsGu7/Le3L4DeoIQdPkUspOYMQq1VAIDqyuPY0lUJpwnoCwF1lUcBAA0dfbAY5Gs24vezY1Yeke/zg0dPoEfZsP3zQIPu3DA9zYAV6QHUVMW90/T+5DnBRc55vD2dCPpjaGnzYfsuOYXMEA0ipMxNAHC8Vj5He3ftZNc2ADjNwDxbJzqiERxuieD1zVvYc9Qobm+sVX3evqOnAAA1Z08j1yHfLzS6vO9ME+Z+I67KWnUu/u/2nvjmcv+BQzjWEDdiTAbg9KHdaKpTNitvxcexdedu0H1LT7M8liPHTyKt9yy84Xi0uL2rBxUVFThaI/8Oew8c1N2Ud3mDMBvkud7fH0CbN4aTp+NR0SdflrNDSEc1jnZXAwB++/phvLJL/s27mutR5CKo7lWvXVXHD6G7K35vn605h38F1b03G+rOoaKiGeeaOWdoRzNC0RjeeGuznPLZ2oBtW9tgILJzrra6SnWe2pI4SYwEqK1vxCub5fWxpa4K3n61c/bv2+QMHptR/v41DQEYovHrxEwk8Jdd1anjsLafQokjgiPn2lX38rEO+ZVnThxDJBhEQ3MLKioq0DvgR3dHSPXa/gH5Wnp1XyV7rGJnvBfrlgNyL/mmKjkKW1l1TjXuGwsj2GM0oqa3H6GIBHM0sY6OXgf7d++AxUhgNgBa3bGdB+XvX3O2EhV++bf198bPZ3efukZ/oKcDh/bsUM3RALA634Q7JvnxWq06q8LXJs87ABAL+tHQ4sXrm+Xz0FRfG//uFRXo7dT/HVuaGrAsB3irDqg6sgeB7vhvePTAHqTZDEi1Euw6Xo05hka09XpRbAsmzLNhvx9NgQFs3rJd9Xh3S9xRUWwZAN2R/Hl3/Jy3dqjn7fo2P1IsQKcme7TqXD07MbvPNKOjTb72Kk+egKurUvXarbv2gdo7J48fRWt7FP5gBKdr62E1xHC2Up5Xen3x81KlrO/VbVTHIIo8kxcVFRWo64tfqRnhdjy81IY36sJoPLUfbacJetriwqWWiDz37Dwqz7EEwOnaelTE5P1HillCvy+Ix1/YiefPhlEmNcJlIaiqC8IoRVFRUYHGJrXT5cgp+b48um8XCIBjlVWgfhObN+4wb66RP7Nit7zPbK6rQUVFfF4MDgTQE5RLonIdBC3KnrilthJ9jfH5q6G2GhVSPcxSCPVd8Qs70xJO+O0j3gAau+Ov2bFHvtecxig6++V9xX5lTTh2YA9qzIr6fdCP6mZFzO2cPM66OvUcwn/Wgdb4Oamtb0IHt4fcvXM7+oLqOXLbzt1o7wghGJWPU8ed09Mnj2Nelglr8wkq6tXX807ldbuqu7Crugt7TtUhxSqPuaahGRUV3Xj5ZBAWI/DD9Q4MhCR01p6Q33NKvt737t7F3gMAAwMD496u0uP8Ci0ACCEpAL4OgLpK3wbw2CWqKTcCKOL+LlQe03tNAyHEBCAFQIJUryRJTwB4AgCWLFkilZeXX8KwRp69LW8ACCJstCIz1Yzy8rVIre8Bdm/HjGlTUR1sRm1fD1LcTqxZuQjYuQVTps9CqLkPOFWV9Lg5mekoL18OAMg+vBX2FDtWrpoHvPk6ppdNRbcvjFdqz2DtuvXoPNgIHDqMa1ctwNMn9yQcKy8rHcFOLzKy0lFevgCP7a9AIOpF8dQZwEHZ4KLn+dhbZ4CTp9l7j/pSMDOzEA/97RAOPHo1HBYTHj+5Ax6TAeXlK/BK5xHsbJJvpHXTsvHWqTaYDERJxyBYM6cUB986i2mz5gJ79iLNYUa3L4ziDDdOt/XDbDDg6o0bAADbvSewo7kO/G/+0xPbAfQgb9JUzJyRDbxZgdWzS3C4ogr5U2Zg8dRM4PU3EJWA4tlLkO2rB6prIJls7DhPn9sHtMoTb3aKA3VdPpSvXcnaBPlDUXzu7VcAABZ3OlxOCzL7u9j77+TO5Z3th/HfI8245doN2OM/iuM9LYiZLQDkDcLCpSvx1PYa/P54NebPmYnbFxYCAOp21gLHj2PjmpX4xs7NsDhTAMTTUSwmAzZskM/Dyx1HsKelHk+fDOHaVQvgOFsFtKtvlQVzZ6N8bh5+dXonYhKQV5oPHD6G+25Yg4/eZoTbZsbfvvwSIjEJD98wC7cvLEioqepJacSWvx1C9rRFmKPUG/f6wsAbr2F62VRk+0I4+NZZ3LioFL+oqELQlg6LsR3LFi0ADu7GvPkLsaXrLEpzQli0YBpwcC/mLliER547ispWPx68bjbsEgDsxa3rFuGZU7vYZ/skCzLdEovsrV4wC2lOM351ZB9y0jwoL18DvPKiarwfumouvvCPIzjqdQMIIjfdg9aGXqRm5QJ18sI5KS8b5eWLACjR/M2vqI6xaHoJdjTJ12O5kp5Ezznq6uHypGDqnBnA1p1Ys3QBzoZq0OkNobx8DR7bV4G5JW6Ul8u19M7aLvz04E5kuq3Iy3Khulf+jVxWE+wuF8rLV6s++7XjLcDO/QAAkycLQBPWr13Dfpe3eo/h7YZzeOVcDFfNzMFdNyxBZ0UVcPYUjA430NmDsGRg1+XB108DJ85gUVkhKpWo5Lolc1E+OxepB95Gu38AOekpmD+7CE+fPILSmfOBrfJvkOKwsOP8rWE//O0DkJf3AUyaMg1FaXZg916sWrYYiyelIe/gFoS7fLhq3Sp8dfub6AvLYmPl5eX4S90+nOxqhcdhwVXla4GK15A/aTICJ+SNmwRgarY7oZb21YevBwA8f7AROHYIAFCY4UpQfE7WOWxaaSGCDb2wmg2Yu2AGsH07stJT0OTtwZq162AyGnDq7Srg1ClsKl8nXw9bXgcAfP/ORbhxXh6iW6ux9cWTKJ29CHhrm+r4S+fPwtMnD7G/U3MKgTM1WDRvNpaVZuCxXa+DloPX9qkHmZKRDTTIaWNByQAo5tPM2XPxRusZOC2yWnFppgsbN6xH1/4GPH3yMGYtXAIoxvbseQvlCO7ufVi3dD6eOr4XpVPKUL6yRK5Be3MzAMBsd6C8fD0+v+11ACFMmzlHjkjtVUcDYhJgNZtQXl6OF1oPobW2C0WTioBKeb7vN6cDaMU7r1svRwm2vIF9rVHsa1VKYKaVwZw2gOrd6h7V129cg90Dx7G3Rf6+Wbn5yCrNBHbGP3962RSUr58C6VQbfnl4LxwWI2ZNm4IXqk5h9uIVwGtvYe6MMpSvKYXtrVfgC0Uxa8Z04KRsXKc6LOgYCLH6Srk+Lp6amZqZirI5k4CtO7Fq8TxUBmpxsiveEuVMnwlAFEUZLpSXr8cvKnci3wmUl8vCga5tryPAlQatXrYY84tS8UbPUZw+0qxak3xHm4F9B7Bu5VL8q+4QUtIdKC9fAunt11BalI/y8jnstdGYhMd2v4rGgAWAbJwWTp0J7JU3/V2GVADtuGbdCnx3TwVc6dlAfTzdcOWSBWg92IhTx1sBhDG9OBeV3Yl9Tc1Ggqs3loMQAnvFqwhrIsGZBSXAidNYMHcOyuflAQC29J/A9ibZ+RU1WADEDaxJBfnYtHEeUra9pkp3/9gNi7F6aibOvHIKqK3C2rJM3LWkCDfOzWMRoj/U7EGnN4RlK5YBr7+OWdPLgNPypru8vBwVfcexVeM8AoCpk0vwyY1lLBW7xVGHF6rk3/+q8rVw28yYenIHIkaCdetWwPvqS5g9tQTl5dNVx/ld9R70+kJYuGQ+sEW+l66elYMF07PxrOKge/81y/ChGwyo7/LhwT/tZ++1OFwoL1/L/vZufR2zCj3YprSFo2Rk5cqZNvXNaPFKaPHK53vBvLnYOCsHeDW+dk2ZMVsuB9m9C4sXLkTvqVZsa6qDIyUD2VEfFs2fDhzaB74d7cJ5s1E+Jw+26k7ggDxnL50t3x/9gTD+VrsLpZlOfOS2uUixm/FRbmyVpAr/rZbn3tmTC3C4vQ5hWxqAdhSlO+BK8yBvSgGwYz+mF2Rge1UH0nIKgLO1mLVwKTJcVvQf3Y0MTwzl5esQPdmKJ47EAxQpWXlATR02bVgP97bXkZ6TDwlASkMTNixfgKeOy3vQdcsX4fFDO5FeUAocOYUFc2aifHEhO84/mg6gv6kPkUgMK0rS8OLRZoSjEjauWiq/YJc8H8+fPQPlS4pQdGYX6vvj+6CVM4tRXq6W+tnlP4V926rjYy2cBuAIJuWkoaWmC6vWrMP+0BkYKs/i+k3l7Jr9zdldON06ACDIxtm+rx44ES8JOhItwE3z8jA5y4WzW6uBgyeR5jAjNSMTvh4/0NUDALhqw3p5X7P1Lfbe2fMWwtVcCSfkOYc/pyuWLMKy0nQcCFXitXNnsX79evzkzTNytkVqCED8+0yblCsr2ze1wOJMRXn5Cvy1fj+KMwZwyzVykq4/FMXXdryCtqARQAzl69aolMwrKipU89lEYagqyr8D0A/gLuW/PgBPXeJn7wVQRggpJYRYANwN4AXNa14A8H7l3+8E8JakLQqbgNBsm86BEFMAZCnKqhpcI0sPCoSi6OgPMtETCu9059NcaC9MPg2Gpnr5QhGWVjM9x40Pr5+Mz1+jzrV3WtS1Qp0DsoIzLzxDU3S0vbVOt/bjGy+ckKNIPQHlM+M1B3zK09WzcuC2mbBispx5nuO2slQMWuBPUztuX1QAh9moqsniBTto6lYnl1JGaw5p0Xx7f5DViAGySIFeDS7fz5AaE3yqnN1iZD0Nu7xBdHlDqhYJPD+4cz5OPHat/N1NRqX+NcSUIru8IZYCSc8XEE8j1KvBBdS/N1+fcaShV7dPnZm7roLhKIuWpTosrLaSiuTkp9gSjFsAWK60AtnFtYSi15jZSPCpTWV46VNrUT5dNgRPt/bDZTOxdL6BYBjV7QMoUNpWAUBzT4CllAbDUfbvWfkefHj9ZPY5Tb0B1oYHAPJSbTAa4iJbeuSl2LGsJJ1tNmjqFL8B468n2lOYh9Yoa1sjMBXlqMTS5DKcFrkeOiCnadZ3+zApI542R1P48lJsqrr3FLtZN0WZF5GgqcZ8KhNVXPeFovhouXyuqAI63zeY3qud3iDSHGZV2uJkJT2Jqqk6rfEUYj4Cxl9jch13jNVRnevw4v8UZVf6W6Q7LXDZTCx9KxqT2BxAj+W2mVgacMeAuv1ZltuKt79Qjrc+tx5vfm499nx5E3uOPwfamqrBmJrtYj0lae1egVJjTVPT6H1nMRlU6etF6XZ2DACsdQgvEKNN0aQphFazXJ/Ii+Vo0xL5Egn+/q3p8OJs2wDmFaYCiKf20x6FJzgxPH84ytop0TTGUCSGg3XdqFIEcizKbzcQjLC08WAkqqv+S18PyGl4fD0dILc+ynZb5X6ilsR70GoyYJYy91JMBgKPzaxpExS/lrTnh/4GbpuJCRVRJxedQ+kYzUaCdy0pwpQsJ5vTClLtmJXnwbppWezYNrNR0UJQxJ+cFnYMurGj9cr0t+jzh1WbPq04E72mU+yyijm/VRnQpCjT9NNAOJpwHKOBYFquW6Vg2s2loh441w231cTuJW1ZkMdmVsqAlOtAJ0UZkM8rlTTRE5rqYinKahVlilaTgNbNatfBDCXtNL7+GHDz/HxV+qPLZsaRhl48u69eNZ7VUzOUsSYRmTLJGiZ0vuJLQOi8UphmR32XH/0BWbFeV2TKLF/b/pBSkvW+JfjN+5ao5rwcjw0z8zyYkq2eb/hSqmBErrOlHQJ4AhH9Xu0mnbaQfYF4WY3FJKssR2JySr3HZtbtXcw0FHTKP9w2M1781Fo8/u5Fqt+QwqcU5ynvOdfphcNiRIZLFqU83iTXIS8qToUkgfWT7vaF8fm/H8bxpl7ctbQo4XhAfC0yGQg8dlkLpr0/iEyXhV0fAJCupI/T9VRbP+5StEb6AmGkOiwstTbbo6nBVX57rar3NK7el1KQalMpJ1PRU9rmrMcfQrcvhFSHRXXNOi2muHCicu1bNffRj14/jU8+Izum6rp8cNtMyE2xK8ro8c80cTo8FFqDS9eX5ZPj1Zl0HbFZjPJv0R/ELzZX4fG3zuJAXTcTmqXjZCrKSilNU69fpb1itxiRn2Jje+1kZQsTjaF+iymSJH1dEYSqliTpmwAmn/ddg6DU1H4CwKsATgJ4VpKk44SQxwghtygvexJABiHkLIDPAkhoJTQRsXCqrHTxtpjidbe8ojK9kAORKOq6fJia41LV/vDtOHi5f9oLkwkZKCIh9HNprYndYsQj18/EbI38ucNqhEXpdRmKxNhiyQsP/GO/3GSeV/cFZCERujGnRqM/HGX9/vg6hVyPDXu/chXev6pE/jvFxhZU2lqCGjX3LCuGw2rSbLSNiMYknG0bwKJvv44dVR2sPrUvEGYbuNJMJywmA9r7gypD9nRrv6oGl25K6EK0emoG27A7NXVAr31mPe5YVIiugZBS26Nv4AJQbSQC4Sj6AxE2wWw7287qS3mVRrrA2S1GpZY0rBoHL0zBb8SPNPTo9k6kEyjtJdnlC6l6MANxMajMJJuivBQ78lJsrNcvEHd0GA1yQ/pZ+R5W81zX5UOaw8yu6Q/+YR8auv1YU5bJPvdEczwRpNcfRnt/EA5FLOmR62fiV+9dxJ7nDdz8lLiRTPvZ0b/pLWIxEZWh7mEtl+IbDf7cEUISjGUqMuULqs8p3eiHIzGcaOqD0UAwNdsFt01ehJt6/AhHJdaUHYg7S3KU1jyUVIdZV02aFxGhzg/+fbyoDhXwoJtD3iFCF7jOAVm4gz8n9JzyGySqpM3Xwbo1911dl4+l5v59fwNTV6WbktIsJ4rS7HBwiz7ddFJHHRXtcWr6VQJyXdWkDCcmZ7kwJcvFRJPkz4+fg0mZiZvJZMzIdStOMYmJqkzPka8d+nsGI1FWY8nfG7RejTrLXj8hp1fyG0Zt+xvqbLOb5ZqwHE60TVt7rjUYKN956SSMBoKv3jQTQLytEt3E0Q0ZQMWi5M+km9tgJIYH/7Qf33tZjtBkuazwh6OsZRwA/GN/A775nxO6n0+dKFTILqgRraK1xTazQbWxAuQ5Z1a+2sBNd8obRRNv4EaiCT1b4wJ68vXjVgw3IH5dxkXP4g7i/3nnPLz5uXJmyMQkCS99ei0+vamMvdZqNiIQiaFVMeozXFZuLlFvgqkB2R+IqDbuWmVfem17bGZEYxIefu4I671O1W/dVjNzHHcMBGUxLR3jMksjrsOrvPYFIkhxmNl31tbgptjVjhReKJCHNx70WgV16tTgpnDquP5wVLUmUoM7zWlR6TrQuYaKeGlrnYG4kfhd5Rq1mQ2o+e4NePqDy5Vj6zswtYZerie+aafGSGGaAy19AdamTK9O2GEx4kzbAFMZpnsQfs6jvb0LeMNA0+qIGn0lnFOTwtfg8uiVBvQH4t0PLEaj0g5OQq8/Ao/dlGAMAZwjivtNcpL89lr4OSxP+X7nOn1IU5zffYqBOyXLxYSfqMP1UH0P3jjZio9vmIoPrikFAJXIFCCvRWYjUdZXs7I3CyLLbVVd6/S3oYEUrYHrUHQABoIRuG0mzMh1w0DktY9fF9m16IjPDw9dVYbrdMQJeUMPkFsoAXEDt9cnd8nQtoDj9w10vdQqhQPx/dG5Th8mZTiU/ZfaUUiIjoGrqHrT+ddlNbG1h9ZU07X1XwcbWa3+3tpurOeceXz9NJ0rGrv9qutYex70rq+JyFC/hZ8Qsob+QQhZDZo7cwlIkvSSJEnTJEmaIknSd5THviZJ0gvKvwOSJN0pSdJUSZKWSZJUPfgRJwa8ncQX5RsNBBkuK7ugLca4irI3GMWJpj7MyU9RTUZpDnPce8RN9h6b7CVjIlNcBPftynYcqJP7X9HFS+tFdFri7TT4SZnfcD/83FH8aec5VfsWreeHbrZ8oQjs5rjIEcVqNsBmNrLvtHpqJluc6ef+5n1L8Obn1iNFafhOe+AC8RvxSEMPojEJW053MMXKXn+YeeEzXfJE2t4fVEXiTrf2s8U1Eov3xuzyhvD+lZPw5wdWwG42wm42qjZklAyXLFAwWASXx2oyICbJm1u6Ad1dLacdT812oYrrPRpkC5wBNpOBGSzU+OQjR26VgZssgqs2snt8iS0TblsoC1Bo5fl5CtPsaOjx47dbq/HIP49gl6IWyC/UuSk2ECLXes3M87BzJ0nAOxYW4D3LJ7Frhfdq9/kjSrud+LlM4YR7ijhjMTfFhhWT0/Gzexbi4evllDM+CimfO6NaJMVG+xfHr1ltVgR1oNDNerIILhXvCUVjONbUi7JsFxMmGghGWNsrPoKbYjeDEPn88otIqkM/gtvaG2ALLV30+d+d7/vJC0AB6lYz1HjqHJDF3nhnDK+uDchzEo0O8hFcN3ffaTfE9NrcNCObRYwevXEWfn//MpiMcYVI6mSj55jOSU6rKaHlQVYSJ4s81vhvqhWkma7jpaeU5biZyFRNxwAyXVYmbBKMRtHeH8TBuh5dlVx6r+R4bLhudi42K/02+c2s1WRQbTC1Qj05g9xXevcs5epZuZidn4If3jkf966cBCBuOBxp6GGv84dkMTIDiUfSAuEoOgeCTFAq02VBIBxFXVfcmXZayZp474rihM+ma4PTIotx+UNRuK0mtkEqSpP/T4WoeKwmQ4LBSDfIvGpxMBxL+P3p/ODiIrj0uksewY1fl1QBdJnSn5euMbkpNtgUJfnTLf1wWU3IT7GxTJSZmojzgOL45EWmgMSoJ70+6Oc8f7AJW87ImSNMYVyJ4O6o6sSSb7+hHCdxXdFG2bo0ApMpdjP7zloD18M5AoD4faTVVlIZuDrXO/1MVR9czXrhspnYPEnX7XctKcIH15ay11Cjha4BeuvojfPUhofNJDuEqGM4mciUdiOu7ZsKyJkX0ZiESqXcQS+CSdfULz53RPVd+H68dNz8uU1zmFUiU3SO1vb8BeIqyryoEhB3IPH0+eMqymYTYboccuaXWVfMiD6mF8E9H/x1ncedw1SHWRYA84dxvKkXs/M9bE9K94JPbKmCkRC8d8Wk+PHsakdmjz/E7k23zYQ+FsG1qtYiui7QucClcTa7rEZ4Q1FIkvw937eqBF+8bkaCM1KbTZCbYsNDV03TbQNI29RRaOeDeARXNnC11z6fVUDXS71MCDovnOv0YlK6k2XxaR3a2r2zPxxFOCqp1vu/PLAcj940i0WuqePnP4ebUJgW/x7ff+c8XDs7B4A8P9AMkv5ARF4PvCGWuUSh94WBIEFAb6IyVAP3owB+TgipJYTUAngcwIdHbFSXOfzCTjcE2W4b3vzsemyaka2K4NKNVmVLH/qDEcwp8CCV89DaLUa2AecnPY/dhMYeP9Z+X665MhkIuxm+9M8jeOloC0yGeINx7STrsBphNcr1Jn/fFxda0HrZvaGIKlK0sDhVtYDQ5+QUZSqlHv8sOiEsK03H0x9cjoeumsbSZKmBkJ9qU93QLj5FWRk/rcHbcjpeQ9XnD7MocLrTgiy3FU29fubNyvFYcbp1QLVAdXlDeG5/A/oCERYdt1uMSdsUpDstCEZiaOzxJ/TA1IOfAKl3dXdNFzJdFqyYnI7q9gH0+sL4z+Em9PnlthSEENjMRqZ6R3uA8hM6P77m3gDrd8xDzxWtRevWaZnwsfIp2P6ljSpDUktBqh0nmvrw7RdP4pk99fiUkoLDT4pmo4EZOrPyPSrjl0ZB6LXXydWx9frD6PSGWDQSUKeU8RFcmxIVu3l+Ptug0f/ThdViMqgUJFO4FGW+xRIPNeT4dGJAR0VZMUhDkRiONfaymmSPotRMU635dDWjgeDrN83CPcuK1Qau3aJr4Db3BjAp3QGPzYRITILJEM8GANQberoZoNdYROlpC8QN3A5vEJluK1v4+Q0cfZ/TamL3Kh/B5Q1OvQ2Wy2rCk/ctZRtBuxKFp8cEuAiu8jj9v8tmSmhanyy1ElBf+9pI6KJJaUnfRzeHoWgMNR1eTM50svm4vT+Ie36zC3tqu3Q9/fx5/9w105DpsuDRm2apPs/MORKBuPPGPgQDV+tA4aHOi3cuLkShEkmmkbnjjfFsCr8SJUqxm2EwyL2NO71y6jedPzJcVgQ1KcHd3jBMBoIv3zAz4bO1qcLdyr0zM082XPm5QntdWBU1zoevm4HPKQYnjYTxhk4wEkVrX0AVAdben26bma2H1PFC5xI6Rv5+WFuWhWPfvBZfu0muuStIteP+1aV48v1LWYryyZZ+zMh1gxDCNuz0ewHy3BOT5DY/NGpEob/pjXPzUPu9G9n9Q+eYUDTGHBz9gQicSiaO1ijTc6ZojTCaSk2j97wqcZ8mRdllM6na7LisZrz60Dp8ZrH62lMbuHGnutsqG620h7O2Dy6PxWRgUST6mXctLcKH101hrzFrfhuzzub59oWF7PrQfiaABMcJG7fGKNBrU0TvFxqd1Stn+dSmMswrjGex0c/nnel6pDosqhRlapgVpdsTshmoUvmKyRk4+o1r2OPaHriAHHWj85rZGC9b6/QG4bGbdSPudO3j17PBnIQ8/O+a7baysac7LfDYTDjX5UNzb0AVYKHftbUviMlZTtXcRud9FgX1h9nvT4MvHQMhZGn611pNRpiNhGXzuDSp6Q7uu7lsJiwqTsNH1svXmlZFGYiXXOmVW1H4SGaaw8wi8jSy3O0NocefuFdSRXB1shMpZqMBkWgMDd1+FCsR3EBYVr4vy3bhf+6YK49fcy0HFBVlfm+e5rTgg2tK2VpE77mGbj+K0x2o+Hw59nxlE7LdNvz63iVYMTkdfYGwqk0QLX0oSFMb9imafdnlwFC/yUkA34dci/tPAM8DuG1khnT5w9+zfCpoSaYTBs7otJoMMCgL4t5aOeI6Oz8F84tSsVJp8m4zxQ1c/gbXpogYDYR5nGidG5/GFNOUNtMIbk2HFz98LS4g1axJI/SHougLhNnCsnJKBhZxHso3T7bhB6+egj8UZTdjsujLmrJMGA0EcwpkD/q2sx1Mrpy9ZmoGVk3JZH/TiZ4auCe4/pd9/giae/2svmrllAzsrunCziq5fnRhURpqO72q/mS/frsKn/u7LKJF60GunZ2Le5bxemhx6MQpSfHXDwZv3PPtUWblp2BKlgt9gQg+++whfPKZg3juQAOr9+MnzkxNTRN/XGpk6lWqx1OUlTpgXzghrZoQkpC6oqUgzc6cBL94Tzx9WJsFQK/LWXkedRN2Wndu0ongKmnlmVzaEr/4FqUNPrZ4pDBu4NpMiRu0Hl+IpRxpDVxqKKY7LbCbZfEts5EkpJBSA7e+24eOgRDmKgYujVj990gTLCZDQjT8vtWlmJXv0TikzLrtklr6AshJsbHzod3X8CnK9L7irzEaCX/7dAdONvehvS+ITKeFOQ34hZ+PANANJa3LfOoDS/HVG+PGjzoqblJ9lh70N2c1uFxUjv6tjeAlS63kx5rpsiak4zssRnxwTWlSA9lsJAhTAzfLya7DL/7jCOo6ffjzA8vxgzvnq96jvSfKctzY+5Wr8ME1peqUcSNRbcK0dYx6ESaKNgWeR29TnuG0wkBk4yuurxBFS2+QzS0Wk4GlTcbfZ1EMfB/L/glF5d6j/L1CjxmP4MrP9fhCioErz9M0dRuAqnUS/XwA+Gj5FGycmc0+H1DPX8GwXBPNR8O1bYLcNpNOijLdWCplG5o5yGWNG3sGA8HXbp6FqdkuVkN+srkPMxSDlrYvo+UOAFh5AXW+8L+DzaI27Ch8GjPNFOkPhJkzJ7FdTvKoD4W2CKS9w1PtFpiMcv2pNoJrNBDV2m4zGzA9150wd2hr6gG5/Z3HbobDbGQR3GQ1uID8G9LrnV+n9SJAg6UoA+rzpjXgtOfYxc3vPERrVSJ+fcYN3MR12mU14ZpZOexv+psk03ZI4+ZPf1juRd3jC+Gg0l4w12OD3WxUnYeOgSDCUQnpDovKuaAX0e4LhFmNJl+2Fo5KsoGr4xSh50L92+tHvrV47GrDkTqIqT4HzQScmuNicwu/xyhMUzvEHYozh+5ve3y8gWtCe38AA8GIap2nOK0mtu5oHQzqln6Jzhb+84H4+jZYdp3HbmJzWzE3/2gjuNoUZf47831wtXT7QmjuDSASk1CS4YDdIu+/QtEYlpSk4V1L5awZee9P2Nj9IaUPro4DhEJ/614lGFKS6VS1dqTOBLpfC0cl1ChlcPmayDVzFl4m6cnA0A3cf0PufRuArGw8ACB5gznBoPBzt14qKJ3w+AmrsccPs5FgWo4b//euBfie4vWxWYysRpDfMNPUXPaZxsT0MRu3aGjTJWgfXC1aoSOfkhK3floW/vGRlfjkxjIsKo5HNF443ISfb65CJCYxT686gpv4GQWpdqQ7LejxhbG0JE21SHzlxln4DOfpZRFcLrUXkDe+vf4wzrQNMCPxY+VTkOG04Iktcqb7okmyWMJJTqn1mT3xaDWN4N4wNw+fu0atukjha40Gq8Gl8OnZ/GZ3dr6HRfpomnJ/IMLSLfmJM57iFz93dJPD9wHUwjtOghE5uqDn8T4fBanxiX1hcSpbDLVZAMzAzfeojF9m4GpSlHM9NpZWnskZS/xmT1svo4VujIyEq2O3JBq4kZiEKVkuvH/lJJRPz1IdgxpsKyanY5XiSHJYZNE2vmcxjbjShZ4KWNCI3sG6HszO9yTtJUfvL9rvWhvBlSQJLb0B5HniBq72lqQpyvx9xG9+6AL/rf+ewOeePYz+YARF6Q5mPL5n+STuffGIGXWGUUNiZq4naQ0sXegzBrn+5yg1/nT+cGtTlC0mVS0boO7BrEVir7EmGFUOixGP3jQLf/nQcvbYz+5ZiOc/LitUm40GdA6E0DEQQmmmE1Oz3CBE7un6hWunM8E7yonHrsWbn1sPLXQzzZ8LszEuTOWwGFl2CL1/9YzuGblulGY64RtCBJfHaCBsE0bnjkA4isYeP5fVY0wQj6KbzjOt/ZiS7VKlmBoMJKEWlQq5UUOmyysbuLOV2tpiLkNB62zQls0A8XmVN0ZlwaugKkODn6+MBgIPl6JM1zdmNHL30lCwmY2o6fCiPxBhBi2dh3gRIRqdpqI3/Aabltxo02d5I7DHF5L7rgcjzKBMiOAOKUVZVoOmvytNl7QYDWzz+vsPLMWjSrSaN3LovzOU1mJ0OuK/i41Fo/Nx64J8OKymuEAa9xvOzk/Bu5bEnb0WYzwln8+U0SOeoqw/H7p1skkodD5yahxkyfqO8nuGHEV4ivafTmq0cvOXXg0uD73v6DrV7Qvjw3/ajye3yQrTtA6az5ChwYFUh1lliGtrcM1G2WlB1wOLyaByCnhspkFTlC+mdyl/vTnMJhQoc3qux6oq4SlKs+vW9WodgIQQbJyRjXVlcjCiPxBhDg63zcS0UfQizE6LiRn3WnExvuZbW1rE3/tU70XPkauFEIL8VDscFiOyuH0HNeSr2726KcpzOG0B5yApyt3eMMt8zE+1yynKETlFWTtfWYwGFin2h2OIRCXdjAcKP/do07kBeX7s84fhDUXZb3xYKWnR7qXotapXEz5RGaqBWyhJ0t2SJH1fkqT/pf+N6MguY/gUZT2PPr2gtR65onRHglfbZjIkeGIA4Po5eaq/jQZDQqSKv4wjUU0Ed5AG8Dy+UAR9fll8Y0lJOowGgtsWFuAdiwoSbhRqaPBRAr0JgRDComGrp2YmPM9Dz0ddpw9l2S6YjQQrJ2dgeWm6bOC29qNM2bC4bWbMV5RIATBDPBSJqdLKKHoN4bXwE6eesIQWfmHKS7HhazfNwoxcN66elZOQzgkA05RNJjWMDSTuPeYXPRr1pt5APejr4xHcxLSboUBTW1xWE3I9Nswrkn8rbRbAspJ0zC9KRbbbpqoVZWJjtJ5uIAiL0YAstxU9vjC6vCFVNNBuNrJrkRp62jo5ysfLpwIAq0cxG4k62sh5qh0WI75565wE7zO9tz68bgqevG8pG8PTu+rwleePstdpDSu6mGa6rGyjfuNc9X3Iw+5vxZlENzQnm/vwi4qz6PWH4Q9HkZtiY+fDRBI3Q4D6PuI3zPz1SbMbSjJkL+/Rb1yDB7hauXhanoldg9SQcGg2Gvyml14PGTreeMr375yHVVMycLtS403PMavF1VmcB0tRpt70WxfkJxhVdJ7hHS43zs3DgqJUAPJ5p0ZBQZodcwtT8N9PrsG3bpuD+9eUQovDYho0EsJHmywmA9uE8dcwfb/efP/Mh1Yg1WFmKcR0vuc3c8lSJakToDDNDqOBwBeKoLHbxzacVpNBpXwPxB0Rla39KE53sPmYbpbo96H3GFWip+mCPb4wLEYDrpqZg5+/exGWlaSzY0di6jmAN+ZSHHL9OXWu8PNXQ7cPMQko4Yxl+l5CCFZPzcTC4jR23bUlRHCV9NchRh9s5rj6/nRljv3N+5bgxrl5quhaMTNwA6pzJB9DMew01wafPRWJSegPRtAfiKc3Jxq4509R7vKG4bCY2PVDr3/+2ltXlsVEfmw643RZCGq/dyNbI3gDgZ6/e1dOwhevmwGnxciMDKumpOh/3jmPfWezMS6EaTfrG4MUbaqyFlV9syZCqVXFTXYuAeDIN67Bwa9dzX03IxwWIzMytNltFN5BF78H5c+5f7V6XlhWKl/ztHSqpsPL6tgB+Zp974pJuHVBAXuMOru0a672fOSn2tHeH4zX4BoNKqeAh6u/5tFLWx4qfDTUbjHimQ8tx58fWI5PbCxTRdbzU+3IdFkT0q+16a6AfD/xdbnUwcEfj6YB83M9v+/SBmX4c6ddM/j9qlMbwT1P8KEgzS5H3bnPS3WYcf2cXPx2azUGgpGE343fgzgHcbh0eUMsAOGxmWWBu7As3qr97S0mAzs//rAiMjXIPtw+iMEPxJ0J0ZjESq2e2FKNGbnuBKcE/Vy9UqmJylDviB2EkLkjOpIrCN7hm6ez4aGTmZXbAAPqaK/dbISByAsO3TDQmhlATvf9w/3LVMfUesP42h06QdGIocNiTLpZyOfGPBCMoj+gbp9QlO7Aj+5akFBv5tAYNkDyFBpaD7PmPAYuPUeRmISNM7Nx+tvX45kHVyAvxYaWvgD6AhFm4AJQRaFm56cwA6FQZ4LWE6PQwqfY0GjfYPDf12Ex4f41pXjloXVYVJzGJkm+7jEewaXRDGNC1AIAFk9Kx9FvXMMMCCBRgZCeKyp01R+I6LZMOB90YpSjPwQLi2RHgbY++/2rSvBvJWpm1Ing0vPbH5CjGx67CfVdPkRjkqoGlxC5tYDTYoTdYsS2hzfgHx9ZqTu2OxYXovZ7N7IFzWo0qjagKYOkwVHo+eUXD5o++8KhJmZQhSJRzfvi53tRcSoIAW6al6/7GUDcSKTZEqFoDJIk4SdvnMH3X6lkmQa5KckjuKzelRdu4zaHelFVKoDitqkjCXyKMo2aUU+7Q3Of8udOG83Qw2Mz4y8fWoG7lxWzz5b/r47k8gxWP1aS6cTORzbiwXWTWRSaniM6Vn7+4qMaqrpl5XNn56fg3hWTLkpcg99YZbribc54hXt6/2rVcek4zQYDSwOkThh1Op6+8UA3hjQlsr0/iL5AhM3nVpNBJRRmNcVrhPsDEUzKcLDf0q5Js6Opu/T99Ht1KynKJqMBN87LGzRipG5dZ8aT71+Cu5VWIvymnarI8ymC/Hv/eP8y3LWkiJ3H9v4g7GYj+y3pXDjU6AN/j9BIxtWzcvBzruQCiEfG6f3Pb7h5HQyexPrZkCpFWbsJ1o3gOrQGbhBOq5HtF1K5CC4gzyH878CruWrHp3fPacsb+HTjwdJhzUaiyljg+euDK/DaZ9axv80sRXkoEVz1OaHHpvNZsmg4IF9nWiM2zWFhzhc9Zxp9Tfzz42ntZ75zPR69SV2b/rWbZuOpDyzF9YoDs7bDy8QE71M6Qnzm6mm4XqeWX/vbaiPas/I8qO30cgYuUTmIk4tMcdlhHhtumpfcuarFaCBwKwrwFpMBqQ4LVk/NRIrdrPpdHBYTzEaDan0G9PdPgPraM3MRXAqd4zd/vhwHH5WdEjRg49Rc0wCwamp8j6U1fg0Gwu5/+rlpQ6jBBYAvXDsd37l9LsvKAGQH6ddvns2uG22AyKZacw2qx0wGgiPfuAafu3oa/OEoU/CWyywMTGRKe/1aFJFCu9kIfyiCcExKer/w3xPQv6750qdFk9LgspoQjsbwrdvmJJxb3rC+XBiqgbsGwH5CSCUh5Agh5Cgh5MhIDuxyhiub0/XosxRljWofb+ASIi8sdrORTTZapUV+wTEZSMINyqcEzszz4O0vlONjG6YAiPfBBeSNK520AXUKV3t/EDFJ3yuqXehZH1xVBFf/Erx7WTEevm4GS21MBj+pF6U52Iad/+wyTlWVptcYiDw5UA/souI0PPOhFTj52HX48wPLMSXLyeqdBqMwzY5Hrp+BHV/aqFv/o4WfFPV6vAHq9PJpueoaXKvZwBYI7cTntplV3/tTm6biyfcvYX+bNdcTMDQjXgtNiaf9Rz9aPgXvWV6Mu5bo1ykDamERvh8yX1+XYjejWmndoq3nTHWYWWplYZojqegXhaUsJklRBpKnM2rFmni8oSge+MM+1HR4E2pmeZXhT2ycih/dNX/QmkvegUX/3eUN4a3KNgDALyqqAMhOsGQ1uNo5Qv43H8FVb0QIifdzTRgPJzJFSLwWyGoyJHiRVfXDyr2v3fQMBvvdmYpy/LNoyvj5fuO8FDsIIVg8KQ2137sxoX0OvT+0Rg8/9vN9xlCgRvGaqZlKT06jYkjK34mQ+O+kV8ZgNhLVJpeeGz7SkWxTTh122R4b7BYj0yIo4HQZ+MQKl1UdjS5Od8Tr1i1qI4evRQXiG0pfKDrkOi2tE2njjBwm/KJ3//EttfQ+g6/B5bMx4jW4Q4/gUgZLrS9iNbiJmQx0LFrDzs0pCwPAscY+tPYF41FHbQ3uEESmYhI0EVzFgadRjafwc15Cv15OuZxi5RyogDrTRW+N5qOx8RRl9eesmJyh6jt6vgguH0XUjjnuNKLiePr1zMmgDgEq9KWHXsYFHa92bbeYDNgwPRvF6Q4YCFDb6UV/IIwb5+XhG7fMVr1OS0Ids6a0Z3a+Bx1KCQX9fH5+SHdaBnU6AMCuL2/C4+9elPCawfAoXSq00N+FPwV0H0UfS6bbYTHG+8rHVZTVglaAfC3SuZE65/TmZqvJiIeuKlONQfV5imOWXhf5qXbcu2ISNs3MSXgtz+z8FKyckpHQpzw3xcZEoPSMePrdtOUqTqsJHpuZGfD1iqCfS9ER8IdkhWQ9A9dmNmBylhOH6ntUbYL0cHBZE3pZPnyK/OLiNOx/9CpsfXgjlnJZNxR6XWqScCY0Q13drx/RUVxh8JNlps6mkBoDdMNJF5hsTUT0A6tKsLA4jW1+tdclP1kZDSQhCqNlUoaTSek7rEZ28757+SR89upp+P2OWgByWs5Wpf0BNcb4BZGijQ4ykSk+gqszUQPyhPnR8imDjhdQT+p8/dbsgvjmjI/g0qgyvYnLctw41dIPu8XIhLtWT83Em58rP+9nA/Jv+eH15x8nhfesaxcTuvGQHQYmfPPW2SwFkVfpowuE3kaBX7xzU+xYMik+kZk1mQGAvuDG+XBYTPjwusnYMEMWjXFaTfjO7YMnePAGEr95SHda5Po0ZUGgaCNdmS6LrnBWMvjIDr9B4z9Db5MAyM6e0kynarF77qOrIEkS7v/9Xmw724GnttcgqKkZ5Y2QqdluTM1O3q4GUEdf6L+f2VOHUCSG+1aVsPstN8UeT1HWbM5MOinK6hpc9e+bn2JP+r35NkGAfD32ByJJNxqAfL3Re38wkSkt+ak2uG0mdo7o4jynIAW/vnfxoIJLydCK/rCeyAk1bsnvwYuB1tbR3oPpTrnPMFNhV9S+AVkF96Z5eThY18PULM0GtQOhXhE7et/KSfjav48DUG9UeOgGMUeJ4NI6Q7pJTBDnUSIIlNJMV0KqLZ2T+XRhQF0PN1TDYrDX0WvZQOLzcQnX01jvvUyAJRxVpUXyfXCHAi8iNFj6eWGqOkWZjxqx86YTSaL3DgB8/C8HlPcadcc4FCOIvn9mrgdTspyYq2Q40XOkTU/Uq8GlaAXeAD4CJf+flhvwzhke/nzbNddPMljHhqQiU8lrcOlYZ+R5sP1sJ6Zmu/D26XbdHsJ60L3IYOsdH8EdaiaHxWRAQZodNR1e9AUiCfep3lzr4QxGSUqM4FKnwBkl5VkWmeKdlhalp6xa6ClZPfJQ8djjYlI89Nzza2eOx4bjTX3I89jQ1BvQTVEG5P2R3WKUa3CV8a2akoGrZuZg44zshD0tEDeW9cYCAA9dNQ0PrJ2sm/VjMRlg5NpLGQ0E37ptzmBfW4XKsaFEot61tBirpmTqGvFbvriBdfvg30/HRo32c4qB67bKSvA0KpyQomyURTGvmpmOn711BjGd64PnvBFc7jej4mTJnBHJUvcnMkMycCVJOjfSA7lS0UvvYptz5f800qr1WH1WET6SJAlfun4GbuPqPQD1Ykyl5qnAUDJm5nkwLceFqdkuVqemTRWcyhmMFL0FWWvg8pE7+v0uRhCBh98c8O0qNs7IwS/fswjHmnpV49eKek3PceE/0I/WjQT8gqw1HPi/J2e5cPvCQvY3re81GQzxFjjn2WTazUbVBMj6neoo4F4oj+i0ExkMPZEpQDaK6rp8cFlNqmtIW895PgNai8VkYP3c+I0XHxVLthm+ZX4+bpmvTi1erAhH/evjq3Hzz7ahuTegiuCaDOSC01vp5zvMJvbvH752GmumZuIznEMp221NLjJlVG9M5X9zEWtN3RBvQGjRLs5a5WP1a+Pp7iyCO0gNrpZUhwVHv3Et+5v+RjPz3LCajEmN8MGgDjw63ngLtOQGbrL2IxfC+1eVwBeKsv60H98wBe9aWoQXjzYDiAueAfLm/vF3L8LH/3IAjT1+mAxEVs/kxvjwdTNwrtOL9y6PG7hJa3A98Ro2h8WIui55zi5UNjGlGU6m7Eq/L3//z8hzJ5TCxA03tUHGz0/J7p3r5+Ti5WMt7O/BDBCaQu6xm9HjC8NjM6l6Uup9Bq3/kyR9A23oEVx1mUQyqNHFDFyVyJRyvSWpodWqG/f5I7pj1L4OQIJiKyCLfKU5LSrnq15rGEA9ByQYuIOkKNP/Z9ISD1Ni9FL+DopOiEZUbTBYinKSeVIdwVWfoxyPDd+/Yx6unpWDL147HS8cbmKfPxRo1kCyVH/+NRdKSYaTRXAHU/al0GuOOkG08xPNHKts7Y/PD9z6meG0gBDClMAB2Ul0qeJAHpsJQZ30VGbgcg4IuhddNCkNsdpu3UANxWmRvye97idlOPFbLrNMC42U9mgETXn0jFtAvrcuxWepjdxTkrVNzE+1q8SatNkwNOOgvssHk4HAZlY73LVOiXcvn4QstxWTM534yZtnEsahZSg1uJTZ+fq6JZSLyeYb71z66i4YdrQqyn3KjZ6shyIhhPUC49FGcAF5YghGQgmvpRSlO/DaZ2TFUFqjm6WJzJTpGLgXk6J8KaIIFDpBEJKYJnP93DxWI0PRth6h3tLzeZ+HC35y025KLCYDExvSTuC0Hq6lLzCowAaPVglbL0X5YiK4FwOfhqUycDnREN74zNM0Iaep5EPlmlk5MJDE6KbDYlTaxEgX5fGekuXCstJ0tPQGEAzH2Gb7Yo7Foiaa3+nn716kunfMRkO8NVSCgavUHPERXFWGRPzfa6ZmYpPSqmWw8Tg1KYx6G9f4hjguipE5BBXxZDT3ylHLC/2deeyaCC51qmgdD6p2EtZLv+9zPDZVWmKGy4oMlxUnmnsByG18tNBNfjyqFR/jjXPzElLbk23M5xakwGU1YVqOWxW5pg4RKqBEcdlMqqwZuZ5P7Rjg6/13PbKJXWP8dZDsen/83YtQ3+VD+Q8r2FiSQeeEFMXAnVeYqjqu3vxmNhqQ5bKirT+oWnP4mtChQD/nfPMfvQfiKsqc4WhRb2Z5PDYzMpxRdCpKxLcvLEjo1+m2mrCkJA3LJyemC3qSRHC1xJ0P6ufsg/xWbs39Tb8DTe8E4qUNydIjLZxDQXvfJYP1Kk5y7fAbdL3MrruWxktgFk9Kw/VzcodURgTEHQaDGbgXU38PyAbpvn3dCIRjOhFcvTR7+bGSDCeONvYmpIQWZzhAiNy2is7r/O9A1waLMW7gWpI4Ii6EshyXruFIv8N0Lt2cZpZ9elMZitIdgwYq6P0xVAOcdmlIFsEdDL6l0sXAX8MX4zCgKvT03qJZAXVdPrhscukPvx/RznFUJE6SJKQ65HlxsOuSX/f1fjutQNhg6GVhTnQuv280gZicpKUL845SAzdADdyhR0gAdVNsM2v1YIQvJLevSPb5FNrSQxvB1btR9BbkFLt6w0tVFukGfDiipvQc5XlsQ0pP0zoJaJ1Zshq34YZfuPWMarfVhM5IKGHTNFMZZzQmDZqiDIAZydoNB91gqPuvjs735jfwvNomrdt0c8IZS0vSLjldZklJOpYodSZ2jVe2LNuNE819upGToZDrseFYYx9C0RicFhMGgpEhp8rxxCO48XKAmXkeJkKy9YsbmDhFsgiunhHPX2P8uP5w/7JBF8sUu1lR6baojql3v8cFy4xYUJiKBUWpmJFE2Xoo0KyQ5aUZF30MO4s4KzW4ypyn/c78Bmg4IrjJKM1MbqzT1jusTpi7l/XmsWTz07zCVBz7phwJp9d5YbqdbTi1v4lcg6s+L3FhoXgE12yUMxJ4Q9ulKOuHdMRR4t+LqFI9B3Ni0hRAei3NzHPDpNTsRQYRV8lNsaGtP6gbwR1qRI/eF3pRDwC4bnYuev1y706b2cBaLTl0U5QT7/3idAdyU2x465RcT/8/d8xT6QIAskHx1AeWJbwXUM/t1Imm9zm8MBwPvRaspsQsKbp+8O+5Z1kxS3sG4uUG3iStq8ycscoyJ86joszaBCWZg/hxni+zqzDNgV++d/Ggr+FJYxHc4Xfo5qfamTDP+SK4JkM8ffbJ+5bgteOtCc4smkba0O3n5ofEc2M1G4FABGvLMpMGPy6Ex27RT+Wdmu3G9++Yh2s5wayZeR44LUbkptjOu4+jTsShlg8kS3ceClaT4aLWYgq/V7hYh4HVHBfyo47pHl+YaV/wjqVkezhCCGbny+n4g7UJMhoIy8rUbxM0tOwKQH8PP9ERBu4YcfKx65Csdpx66+hiTTfig/WF1IO/WelmxmkxIeYEXvjE6vNOTNTA1cqjD6WtAQBMy3Eh02VBfyCCIGdw2bjoz6VCz1GyFBIt2obfxRkO/Pzdi86r1jxc8PVuesaG02pCpzeUsGEpy4lvluMiU/rnz0YNXM3vZDAkGkOjVXfBb2r4yTZdWQBcVhP7XvetKh3Wz7Zp7oOf3L0AV//fFswpHFzALBm5KTZWe+6yygau7SKuZWbgWowsBXID15O3KN3BrmsqsKXdHNI0aT4zwGwkrK6Rv8fOF6G4ZUE+pue6WVrVnpouAGCqtzxMlMZsQHGGg/WYvVg+sLoUV8/KYUqkF4ODu7eAuKqm9pzxG62RzNwoHeS7aJ2Y/CZG18AdgiFO7yu+XdkMbQTXamJOEVpjSyO41PFkMxt1I2iEEGS4LGjuDQxqSKrKIgatwZWfa+qRr/1pXM/vgWAk6YY412PDEfSqjAk+ojgU6P2aLKL3q3vjxpPbZmbK9nptghw6v80P75oPSZIw9xuvqcYHcJHMIY9VdkjrOWP00seB5ArPgNz//b5VJVhaGo8cl2Q6mbo6EN+YJ9M94CPmLkVU63wRXO01P5rEa3CHf8vLBx60DuP4b00SRIWy3TZVG52fv3sRy2TJcFnR0O0ftL8zndtvnp8/qMDjUBnMqXCXZg24dnYO1n/16vP+5kDc8THU6z3tIjo7UKgK8cUyHOuBzWxkGRUpdjNzCtIyk6EIXQJyUGP72c7zfp7DYpQNXN0UZfmztCVXegxljZloXH7faIIw2MTA2gRpvN/a9NrzwW9o6eLitMr1fkOpl1s/LQt/3HmORXC3fnEDgpGorldez1C6fWEBbpmfj7Xf34zm3kBCn8XhjOAO1cDVm8RvvAA5/UtFK+SjRU/hEtCmFQ+eomy3GNEXiCSd6PUUcEca3hvKX/t824c7FhVieq6H9SsdLrT3WlmOGycfuy6pgvf54Ft7uWwmoG/wWsNkMMPCYsSdS4pwrtOHj22Yqvtap6K0rB2yX+mdyhskcn2WvCm+kHvMajJiHtcn+qqZOXjjZCuu0lGgtBiHz0kFyHPVpRi3AB/BVUfsE1KUuU3FpWoADIa2HQgPHRPd9Bk5b6feOR3KOOlvPYkTh9L2EnZaTSz9/9NXTVPeJ38eTbm1mY1Jr+dMl1U2cAf53S2meBR20BRl5bl5hSnYUdXJlD2tJgMGgnKLLz3o/aerojzE65Ea+UPJ3MlwWtDeH4TFpBb7YTW4OvMsncfvXlqUcF1fiCBWXooNRWkO7Kntgt4loC0roCTr0SuP16RKqdfjfPsDXifk7qXFKMt2n/f7xGvix8LAHVoE9wOrS9DjS177qQcfeHBb9SO46U4LWvuCg86X/D6ET0MG9IW5LjRrYTih4lFDgUZwh5o6TAjB126albTX/aCfZTFetK4IoO4ffbHkpdhYmjUhBFluKxp7/GzfljIEHRAAmKY4J2s5ESs97GYjuhHWdd6UZjrx1wdXMA2RwRjJtXCsEAbuOMRiVE9cj906G0/vOndRwisUuqH64JrSIdc2PHrTLHx8w1S2KFAjMqARIiBE3zNKiNz+IsVuRnNvICGCe7EGBg89J8VDNHABuT/fYK0hRhK68UjWnoQJ/OgYwE9/cLncz9hiUtQtk6TweWxo7QuyTVyyMQCjl5rNozJwXfEaXJPRMOzGLaC/yRvq4qxHLieEQ6/7izH0+AhujseGH9w5P+lrCSEoSLXDblK3AgsognHahdlmNsAfjsJqMuDD6ycjGr3weqbH370QwYh+o/lITP7cS5mThhu9WkCTkahEnoChRxKGC71rQ9s6g27+Uuzmix6fT3F28K12CCF4/N0Lkeux4d4n9yDNYUa224ba793IjU8diZyd74E/SWoqdXaez5ixW4wIhmODbpqoo/OzV0/D/9xhY+sLnZ/MJv33UmVSPjJvtxhByNA30VRAMZlYDU+W24pTLf0JNbArp2Tg3hWTVNk1Wr53x7yEx4bas/fYN6+FyUAQjMTwvZdP4ZYFiVEY+tsl63l+sRGp862PvKhXboptSE5ivXrz0YJGBc9n/Hz95sENfz3UEVy1gWs1yTWhOcqaPNToNTWCqMOGnjM+pf5CW2ONFVrRv6Fw/5qLy+L61m1zLsngH44I7p8+uFw152dSA5e1fzt/ijIQL0vr8ibXzAHi612yuWzF5Isv+5noCAN3HGLSpPK8b2UJ3rey5NKOqXhNb5g79Gil2WjQre3QbthcVtOgGxk6WdMUQhbBHYbNcabLggfXTcbNQ0jBoIzlDR9X2Uti4FKFS53n15TF06hLM50oTNM36n9172K8cKgpafP1C0lbHQl41VFWgzsM/UiTMdwK2bwS96YZ2ThY13NxBq7xwjahv753MY4d3Kt6jKbW37m4UPW4/J3DsJoMeOT6C1O85o+R7NzRxwfb3I82q6Zk4sZ5faqSCovRAKNmQz2aKZKHvna1bi2XVkiQzvmZF9BqSQutE52kEd65aZ48Nz79wPKE1j9AojH0kfVTgCStz+j4LEmiqxSHxXjetl4rJ2fg6zfPwsLiNNU8dL7IFN3IeblWUncuKcSULNeQHS7UwB1KTSZtWaadszNd1gtqQUIZajo1/Z42sxHffYe+ijxfesRjYIqtF2vgDi2CeyFGS4rdDEISy4RGAxrBHYpD40LhW91oHf0mowF/fXAFGrr9+PRfDw35+qSiWOw8K/s3vS4AlyKqNBrQ+2Y0Is2z8y+u7IgyHAautlyPzh8unQjuYPuG2fkefOaqabht4eB7W3p+hyNY8dxHVyV0P5nICAN3HEI3P8OV/icfc/gmQUIIEzICzp/mSusQtN9rOAwPQgi+fIEta8YSprKXJIKoVbBNxqsPrUuITFHyUuyD9uYdrZZIyeAjglQ8aSQFDoYjU4CHFwWhImWXIjKl7aOZjLIcNxpt6u9SmulUReMovAjUSDAzz4Nf37sY68qyzv/iUWJBUSp+/u5FqsfMRkPSCO4lio4OiWStR7QRXOqAzLyAVkta2hSl35Ikqd7J0tSsg6TaaqHjSxZdpdjNRkTOkzVgMxvxgdWJkRra4itZv1S6ofNxUeZstw3XcSI45+Pdy4pxsK4bD6w9f6SIRq2Ho2cywAmMDcP6TjMp9Epe7GbjRc995xMfjCsiD/0myk2x4fXPrMPkQcTX/v3x1Uz7YzgZyRpct9UEu1kuCdFbxxZPSkcw0gFg6Hs6agTReYLOVbqtscagpvlCYCrK49wQB+JlGsMJnT/0UpQHcxAZDASfvqrsvMe3m42wGA3DstYPJZV5IiEM3HEIFRwZzs3ppfZI02I1yT11+wOR8/bPSnNYVCm3tIfbcBseEwWr2XDeFOVkNbqUS0lLGk7HyaUyM8+Nb906W7fOc7gYboM+xW7GV26YiQ0zslGvNHC/lDZBw7Vx5rFpsiVGgmtnD92gGCvMpsT+xBYT7cc5dvcBHRMtM6BRmExNzazDYhxy1Ommefn43faahHZp50PbB3cwaG0mrf1Oht1iGrTf+mDYzMZBo+w3z8/D5so2VkN8MaQ5Lfjt+5cO6bV0gxo7X0h6iEQUYbjB1FGHSigij0nvGtH2Qb8Qzqcgaz5PlD0ZU7Pdgz4/fwRKVAC5hOkdCwuwZgQccoQQZHusONfpS2pA0/n4QlOUqYggFRrlgwnUMTUWNbgXAlO1H+fjBEbG+U91EJjw2yBtgi4Gu8U4JqVmEwFxVsYh2vS14TzmcGE1GZFilxt4n8/b+4E1JVg7Ta1SPJiQyeUOr7KnxWUdvEb3YvjhnfNR1+lVff54gRCCey8x/f58jMTC+qF1kwEAVe0DAC7OGXUhhsUFH5trE3IlYzYaEkRtaHrtWKb2mTQpnvRvbS/hQ1+7ZsiR5q/cOBOfubrsgtcN6gQZSnoe3XifL8rmsBjhC13ctWfViDlpcdvM+M37llzUsS+GzCEa9UMlTA3cYZiX6LH01gubxXhJKZe3zM/HtCQlCEwReQIYLYB8rn/0rgUjdvwct03udZokG0dSnCNDjuAqEWd6zc0rTMGMXDcevWkWew091nAHL4abi6nBHStGQlWfRvVpxiPvPBqOPb7Dknw/eaUzJgYuISQdwN8AlACoBXCXJEndmtcsAPBLAB4AUQDfkSTpb6M60DFiJOT0h7vWMt1pRmGaA1Xt3vOmKM/I9bBUTordbFTVYl5JzMxLPB8UKiU/nAbuOxPqM8f/QjNRoFGqi4mUFmc4cOuCfKwcgZrwkU5RniiYDYl9QPV6z4422hRlGh3UpihfyBpgNJCL6vNp04hMDQY1cPuGYOBerHPFZr74944ENILrHSYDN6Skbg/H9UdTlPUiuO9aUnRJ/VF/es/CpM9NlPTY0SLbYx1Ui4QaNUP9Peh9RoXjnFYTXnloneo1E+U3oAbuWLSHulBGwtlMjWZ/OHH+GA4n6/1rStHSG7jk41yOjFUE90sA3pQk6XuEkC8pfz+seY0PwPskSTpDCMkHsJ8Q8qokST2jPNZRh5fgHy6G28v35PuXIhKT8NaptvOmKOvxrdvmsMbXVxp/vH9Z0ueoJ06v5+FwcaUbPcMJ9cxfzD1gNRnxk7uTbyIvhdFIUZ4ImE0EBPoiU2MZUaD1aHRz2ueXUxDTxkDdnUVwh7C5oyq0fQF9lWXK8tJ0tPYFB31N0vGYDOMqMjjcEVyqUDxJR/DrQgkrKcp6WTmD6TBcKhcjMnU5c/P8fBQkEXUEgIVFqfjqjTNx5+Kh9aul68lg19xgPXLHE9RZP97FsICRieDSPV1Up2JjOBx5tL2aIJGxMnBvBVCu/PsPACqgMXAlSTrN/buJENIGIAtAz6iMcAyZlSf3Ak0mFnIxDHeBf1G6A8GIPPlejEDQ1bNGruZyIkNreEYy5WQslJMvV26Ym4eTzf342IaR20xeDDYq5HaFOzPMRgO0XdHiDsQxTFHW1OD2+uVWEGOhYMn6MQ9hczevMBXzi1LxlRsHF/b7xMbzi6MkI81hGVHRuQuFRnBDejvUi+D6Obn41XsXD8saGFYiuKMdHbOMg3toPHHt7NxBNQkIIXhg7eQhH4/OA4Ndc5dzm6CxYiTKt66dnYu7lxbhM1cnagacT41ecGmMlYGbI0lSs/LvFgCDzvSEkGUALACqRnpg44GSTCee//jqYT3mSDRXtxgNWD01A0tLLi/ltbFkQVEaFhSlXlBf34uhfHoWbrmA1koCfcxGA750/YyxHkYCVvOF9QW9XDEbDQl9v+OtecZSZEodAevxySm/qfbRj+DSkoWhiJ3ZLUb8e5jXJi1fvG66qgXQWENbtkzPGVwgaagQQi5I8Xkw4vW8o3ufm8dBFsTlzFAyguK9iMf3HD+RRKZGojTCZjbq9sMGLkyFXHDhjJiBSwh5A4DeLP4V/g9JkiRCSFJ5QkJIHoA/AXi/JEm67ixCyIMAHgSAnJwcVFRUXOywR4WBgYFRG+OqfBN2NEWwdcvbI3L8D00F0FGJiorKETn+lchDs4H9u7aP6GfcVwqg7ywqKs6O6OfwPDDXAruJjOn9Od7nhvMx1LmjpyMIMwHefntk7vuJwlRrGFFJ/bs3DsjLSDjoH7ProeacbNB2d7ajoqICrR1+AMDZE4cRaRxdr77ZF8O6QhPOHtmD2nGU3VE91gPg+OoKG7Id0XE3f6zNjOBYI9Bw8iC6zg7+2w3nvqOpXs44qDpTiQrfePqlLg+CkfiWONlv1tYs/wb79+5BnWP8Go9nOmVnVV1tDSoqGsZ4NENnNO71vbt3wWMZP3NuMkbTZhlORszAlSTpqmTPEUJaCSF5kiQ1KwZsW5LXeQC8COArkiTtGuSzngDwBAAsWbJEKi8vv6SxjzQVFRUYrTGuWRuDLxw9rxCUQDDSlI/hZ/84pREmI0H5vIkdtR7q3LF14ARO9TWN2jwzXinXeex4Uy+wbRtS3C6Ul6/TecXI07j7HHDyGAry8lBePh9Fswfwp53ncO9Ns8akhOCuUf/EiUX5WA8gCeUAHr5naK8dzn3HceksUFWJuXNmo1xkAg07kiQBb7wEAEl/swPh00DNGaxbs+qSxMRGmpS6bmDvDsyYNhXlOn2vxx2vvAgg+XkfDqxvvIxgJIbydWsmxN58NG2W4WSs3D4vAHi/8u/3A/i39gWEEAuAfwH4oyRJ/xjFsV1WmIyGCXEDCQQjyW0LC3DTBDduL4QPr5+MJ98/eq1UJhKTM10oyXDga1zLjdGG1eAqKWpTslz4xi2zRX28YEIganBHFqq6PFj518RpEzRxUpRHi4+Wy5odV7pGxkgzVjW43wPwLCHkgwDOQXEgE0KWAPiIJEkPKI+tA5BBCLlPed99kiQdGv3hCgQCwcQh221Dtnv8evXHErvFiIovbBjTMZgMooZRMHGhdZ/i+h05Dn3t6kFFj7LcVrnd4gh2XBgO0hxmEBIX0BzvfO2mWcOicD4Yn95Uhk9vKlP1xBUMP2NyxUmS1Algk87j+wA8oPz7aQBPj/LQBAKBQCAYUaiq/Xhv8SEQ6GGZIAq+E5lUx+CCc7cvLMDasswR6d06nGR7bHjuo6swJz9lrIcyJO5fM/Jp1MKwHR0mhktFIBAIBILLBBbBHeX2LgLBcEAjuKPdnkgQx2w0IC8lee/d8cSiYtFpQzD6iNlJIBAIBIJRhNbaigiYYCJiEW2CBALBOEfMTgKBQCAQjCJMZEqI9AgmIDS1frz3YBUIBFcuwsAVCAQCgWAUMQmRHsEEZtWUTHxwTSlm5HrGeigCgUCgi6jBFQgEAoFgFBEqyoKJTIrDjEfHsM2WQCAQnA+xugoEAoFAMIqwCK4Q6REIBAKBYNgRq6tAIBAIBKOIqMEVCAQCgWDkEAauQCAQCASjiFBRFggEAoFg5BCrq0AgEAgEo4jZKGpwBQKBQCAYKcTqKhAIBALBKJLjscFtNaEkwznWQxEIBAKB4LJDqCgLBAKBQDCKZLmtOPrNa8d6GAKBQCAQXJaICK5AIBAIBAKBQCAQCC4LhIErEAgEAoFAIBAIBILLAmHgCgQCgUAgEAgEAoHgsoBIkjTWYxhWCCHtAM4Nw6FSAPQOw3H0yATQMULHHqlxj+T5EGMe+eNO1GOLMasZqbljIp7nkTy2GPPoHHsijnkkjy3mjtE59kQc80geW4x5dI49EccMjO+5Y5IkSVm6z0iSJP7T+Q/AEyN47H0TbdwjfD7EmCfwmMX5GNUxj8jcMRHP8wT+DcWYJ/CYJ/D5EHPHBB6zOB9izGN47Ak3d0iSJFKUB+E/Yz2Ai2Skxj2S50OMeeSPO1GPLcY8OkzE8zySxxZjHp1jT8Qxj+SxxdwxOseeiGMeyWOLMY/OsSfimEeSER3zZZeiPBEghOyTJGnJWI9DIBBMLMTcIRAILgYxdwgEgothos4dIoI7Njwx1gMQCAQTEjF3CASCi0HMHQKB4GKYkHOHiOAKBAKBQCAQCAQCgeCyQERwBQKBQCAQCAQCgUBwWSAM3FGGEHIdIaSSEHKWEPKlsR6PQCAYHxBCigghmwkhJwghxwkhn1YeX0AI2UUIOUQI2UcIWaY8nkII+Q8h5LDy+g+M7TcQCARjBSGklhBylM4TymN/U/4+pDx/iHv9PELITmXuOEoIsY3Z4AUCwZhBCPmMMg8cI4Q8QwixEZnvEEJOE0JOEkI+pXnPUkJIhBDyzrEa9/kQKcqjCCHECOA0gKsBNADYC+AeSZJOjOnABALBmEMIyQOQJ0nSAUKIG8B+ALcB+DGA/5Mk6WVCyA0AvihJUjkh5MsAUiRJepgQkgWgEkCuJEmhMfoKAoFgjCCE1AJYIkmSbr9KQsj/AuiVJOkxQogJwAEA90qSdJgQkgGgR5Kk6OiNWCAQjDWEkAIA2wDMkiTJTwh5FsBLAAiADQDukyQpRgjJliSpTXmPEcDrAAIAfidJ0j/GaPiDYhrrAVxhLANwVpKkagAghPwVwK0AhIErEFzhSJLUDKBZ+Xc/IeQkgAIAEgCP8rIUAE30LQDchBACwAWgC0BkVActEAjGPcoccReAjcpD1wA4IknSYQCQJKlzrMYmEAjGHBMAOyEkDMABeY/xbQDvliQpBgDUuFX4JIDnACwd7YFeCCJFeXQpAFDP/d2gPCYQCAQMQkgJgIUAdgN4CMAPCCH1AH4I4BHlZY8DmAl5MToK4NN0MRIIBFccEoDXCCH7CSEPap5bC6BVkqQzyt/TAEiEkFcJIQcIIV8c1ZEKBIJxgSRJjZD3FXWQHey9kiS9BmAKgHcpZVEvE0LKABbxvR3AL8dqzENFGLgCgUAwjiCEuCB7Rx+SJKkPwEcBfEaSpCIAnwHwpPLSawEcApAPYAGAxwkhnoQDCgSCK4E1kiQtAnA9gI8TQtZxz90D4BnubxOANQDeo/z/dkLIplEbqUAgGBcQQtIgZ5KWQt5LOAkh7wVgBRBQ+t/+BsDvlLf8GMDDE8GZLgzc0aURQBH3d6HymEAgEIAQYoZs3P5ZkqR/Kg+/HwD9998hlzoAwAcA/FOSOQugBsCM0RyvQCAYHyiRGJpK+C8o84RSb/sOAH/jXt4AYIskSR2SJPkg19wtGt0RCwSCccBVAGokSWqXJCkMea+xCvIcQfcd/wIwT/n3EgB/VWr+3wngF4SQ20Z1xENEGLijy14AZYSQUkKIBcDdAF4Y4zEJBIJxgFIn9ySAk5Ik/Yh7qgnAeuXfGwHQNMM6AJuU9+YAmA6genRGKxAIxguEEKciTAdCiBNyje0x5emrAJySJKmBe8urAOYSQhyKAbweQgtEILgSqQOwQpkLCOQ9xUkAz0MWmQLk+eE0AEiSVCpJUokkSSUA/gHgY5IkPT/agx4KQmRqFJEkKUII+QTkxcUIWX3s+BgPSyAQjA9WA7gXwFGunceXAXwIwE+UjWgAAK2v+xaA3xNCjkJWPHw4mYKqQCC4rMkB8C95fwoTgL9IkvSK8tzdUKcnQ5KkbkLIjyA73SUAL0mS9OIojlcgEIwDJEnaTQj5B2RV9QiAgwCeAGAH8GdCyGcADAB4YOxGeXGINkECgUAgEAgEAoFAILgsECnKAoFAIBAIBAKBQCC4LBAGrkAgEAgEAoFAIBAILguEgSsQCAQCgUAgEAgEgsuCy05kKjMzUyopKRnrYQyK1+uF0+kc62EIBIIJhpg7BALBxSDmDoFAcDGM57lj//79HZIkZek9d9kZuCUlJdi3b99YD2NQKioqUF5ePtbDEAgEEwwxdwgEgotBzB0CgeBiGM9zByHkXLLnRIqyQCAQCAQCgUAgEAguC4SBKxCMY6rbB7D5VNtYD0MgEAgEAoFAIJgQCANXIBjH3Pr4dnzg93sRjYl+1QKBQCAQCAQCwfkQBq5AMI7pD0YAAPVdvjEeiUAguBIp/8FmfP7vh8d6GAKBQCAQDBlh4AoE4xi3VdaBO93aP8YjEQgEEwl/KApfKHLJx6nt9OEf+xuGYUQCgWC0kSQJf99Xjx5faKyHIhCMKsLAFQjGMTkpNgD6Bm5/ICxSlwWCy5Snd53DE1uqLvr9n332ED71zMFhHJFAIJhoHG/qwxf+cQSP/vv4WA9FIBhVhIErEFwgZ9sG0NYfGJXPogZsZeuA6vFYTMLcb7yGLz13ZFTGIRAIRoaaDi8+/Kd9CISjqsdfONyEfx1suujjHq7vQd0lljZIknCgCQQjxXP7G7D0O28gNoKOalreJCK4gisNYeAKBBfIA3/Yi++8eHJUPqs/EAYAnNFEcL1K6uHfReqgQDAu6BgI4pVjzRf8vp1VnXj1eCvqu3wIR2PoU+75Pn84aYpxrz+MB/+4D409ft3n/aEomnoD6PNfWopyMBK7pPcLBILkfPX5Y2jvD7J7Xo9eXxglX3oRzx9svKjPqO7wAgBS7OaLer+WkJgTBBMEYeAKBBdAJBpDfbcfZ9sGzv/iYYBuUDsGZO/rb7dW49+HGuENxqM94ejYLziSJGHbmQ4R8RFcsXzkT/vxkacPXHCkpMcvv94fjuLJbTW49v+2AAD6AxHVfc7z9K5zeO1EK/64o1b3+RplUzvYxnko+EPxzxflEALB8GK3GAEA3b7k9+nxpl4A8j2fjB+/cRq3PL5N9znqHA+EL32fcLShF7O//grOdXov+VgCwUgjDFyB4AJo6w8iGpNwrtM3qDF3rtOLX79ddUkGXyAcRUgxXnt8IUiShD/uPIe/7qnHQDAemTne1HfRnzFcPLuvHu99cjf+fejiUyoFgokMjaZ2ei/MwO31y5tbXyiKui4fmnsDCISj6Askj+DSDaZTEaHTUt0xwI55KQ4wL/f5dJwCgWB4sJnkLXjXIHNGq1IOleOxJX3Nj984gyMNvbr3+tl2eS7o9AZ13xuLSQnlEck42tiLcFRK6uD/+756/H1f/ZCOJRCMNMLAFQgugOZeeRM7EIwMupF9dl89vvvyKWyubENFZVvC85Ik4e4nduKlo8lTGmn0pSjdjkhMgjckb3obe/zwcgbuc0NIU65s6cfh+h7d51451qyK1FwMjd3yeaHpUALBlYbdLEdjOvr1N5I8/YEwc371KYajPxxFf0C+r3t8YQwEI/CForr1edSp1TGg/1nV7fH7cCAQnyskScJvt1ajtW9oGgL8vDDYJlwgEFw4NiWC+/hbZ/DZZw/pvqa+S15bs9zW8x7vXKdX5VSPxSRUtclzQbK54sNP78e672+GJMmG69GG3qTHb1KceO1J5rgnt9Xgsf+cuOT9hEAwHAgDVyAYhCMNPfjTzlr2d2NPfGNYq2PM0fqU2g5Z2OH+3+/DfU/tTUjva+4NYFd1F7ad7Uj62XSzW5TmAAB0e0Po84fR3Otnxu/MPA/+tOsc/t9LJ1VGr5Z3/GI7bv359oQoTHX7AD7y9AG8OIihPRQsiida1OcIrlRouiEtJ0hGQ7cPc7/xGv64U045pPekPxRlNfeNPX7QfapPia4EwlFEYxL6A2GcbJYN3GSGag03N/Fpygfre/DtF0/i60NUVPVxG1UhUiMQDC/UKba5sh3/PKBfY0v3GXolAofqe/Ddl06CEPnvE8392PS/b+Nr/z6m/N0HfziKDKcFnQMhxYiVU5b/dbAB0776Ml4/0Yq2/iCq2r34xF8O4ObHt6n2PDzUwE1mLDf3BtAfjAzquBcIRosxNXAJIb8jhLQRQo4leZ4QQn5KCDlLCDlCCFk02mMUXNk8s6cO3/rvSeYVbeJEXWo71Qql+2q7MOfrr+JUS59qgym/1otAOIqfvXkGb51qZSk+TUlEYoB4ZKc4XTZwG3v8iElAOCqxz/7WrbNx3excPLGlGm+dSowUU8LK4viLirOqx2la5aWqQltN8kItDFzBlYqDGbiDR3DPKPf+GydbAWgNXNlJ1dAdn1t8wQhiMQkbf1iBX71dhX8dbERMApwWI1r6kkVwB2BQNr280BStxzMkWfm7vSGcaOpD50AQTT1+VYqyiOAKBMOLTTFwB6NWKUfw6URFXz3egl9vqYbLIpcqfOqZg6ju8DLn2dun2wEAty4ogC8UxcvHWnDVj7agorIN/z3cjFAkhilZTgDAnpou5px7Xik1+sGrp7Cvtot9XsMgEVx/KMrmsr/tldOUTzT1qcqpBuNMaz+ONSaPHgsEF8pYR3B/D+C6QZ6/HkCZ8t+DAH45CmMSCBgdAyGEojEMBCOIRGNo7vHDaTHCaCAJEdx/HWxEKBrDGydaE0QYdlZ14p2/2oH/ff00/u/1M8zAbe5JbliyCK5i4NZxBvXpFnmjmumy4vt3zgMAtPQmPxY1kp/YUo3tXNSYvqfzPFGn82EyyrvpUFSkJgmuTMxGeTlNlr5HCSgbVbq57VWlKMv/rufa+3hDUZxtH0BTbwBbTrfjt1trsLA4FdfPzUOrcv+eaOrDI/88gmhMgiRJqG73YlqOG4A6gntU2UCmOiy6Y7v58W244adb8dh/T+DBP+1TpRr2DCKEIxAILhwjDb0qBCOJ6yd1ZuvV4/sU47FfY0RmK+nMW8+0Y1aeBzNy5bngmT11AIDfbq3BrupOvGd5Md747Hpku63YU9PJssDOdfrQ4wvh55ur8M5f7WSfzVKUdZx4LUo2yfQcN/bUduFUSx9u/8V2/H57zVBOBa7+vy246Wf6QlkCwcUwpgauJElbAHQN8pJbAfxRktkFIJUQkjc6oxMIgE5lIn/wj/ux+NtvoL7bj6J0B4rTHahqjwstRGMSXj0uR2SeP9QEbyiK62bn4p2LC2EgcjuAM0ovW0Liwg98BFcrSEU3ptQ45XtaViqRGJfNBLfVBKfFiOZBDNyBQAQ3z89Hfoodv3q7ij1ODdxLjc5QcYtwRCitCq4c2voD+PifD6A/EIZfSSU+XwQ3oGxi7VoDl4vg8ve6NxjBwbpuAMDumi7Udfnw/pUlyPXY0D4gi97d8vg2PLOnHi19AbQPBNEfjGB+YSqAeCYIAFZf16sYq7GYpKrNb1Bq6Ws7fahp98LLGbjdIkVZIBhWAhqDVqua/qdd59jazEdwqSHq1Ynq3r20CB0DQZxs7sPe2m6sn56FTLfs0Np6pgMmA8G2sx3whqJYW5YJQgiWlqRj29kO+MNRpNjN6BgI4jBXi/v3fQ2IxiS2X9Bz4lF9ko9tmAKjgeCXFVUIRmJo7PGjcyCIGY++jB1VyUuyKCPZE1hwZaEvwTh+KADAS7I1KI+pEvwJIQ9CjvAiJycHFRUVozW+i2JgYGDcj1Eg06DU0u6s7gQAVFS2YWG2EQ4DcKjGx37H2t4oOgaCyLQTFp2dZevGvCwT/qHM17dMNqK+n6Cqsw9Br2yg9gcjeOn1zTjSEcVfTgbx2cU2lKTIG9999fImtL1G7rm792TcE3q8QfYLHdi9AxYjgdscw5GzdaiokNOU97dG8GJ1GF9dYYOBEPR4Awj2tGGKC9hf24HNmzeDEIIDp+SF6kxdy6DXZH9IgiQBHivRff7kWXkRrmtqQkXFYD4rwaUg5o7xxZ7mCF48GsQcWzfau+R76VRtE157sxNRCbCbCJoGYrCZgHSb7E/ef06+r3s621BRUYHOPnljeOL0WfR45eeOVsfVyLfv3ocdTfEIjYEA5o7T6G2NIBqT8PyrmxFRNoWvv70DdI9s98sOt72Hj8HeWYloTMLxRnk+q25sRUVFBbY3hvGboyF8b60duc64v/tsSw+8YWD7gXit7sGTVaiQ6iFJEnY1R7E4xwiLUX8+EIw/xNwx/ujoUZc5vfn2NmQ54vfhd173YlaGAZEY0Nzeidfe3IyfHwriWEcUX15uQ21D3Hm1PNeI9UVmtHpbEZOAD/52G2xGCTMNzaitjNf33jnNjIb+GGr7Yog1n0JFRyWMvhA6BuRjlbhiOOwHnn7zAHvPlkOVcPdVs3mmrq0n4Vra3qg46horUeAkeOO4PIedqm3Cs6+2IxCO4fPP7MH/W+MY9Jz869XNyLCPdXKpgGeizh3j3cAdEpIkPQHgCQBYsmSJVF5ePrYDOg8VFRUY72MUyHjfegVA3EtamObAj963DM/uq8ev3q7GpDlLUZBqR+fhJgCH8eit8/Hpvx4CANy+aRWK0h2YfnALKlv78ei7N+BHr53G8QMN6Awb4bbJERuSOwO/UhaTWpKL+8pnAwAq364Cjp/CrVetwWO73kDA5AIge1W9YcBoILh6YzkIIZhydhd8oSjKy1cDALb99wSqe2swbcFy5KfYEXjlJcyYWopcjw1b/nUUk+ctw6QMJ54+txdAGySrE+Xla3XPQSwmYfKXX5LTmL5yle5r9gROAWer4ErNRHn5kks+7wJ9xNwxvqjbWQscPo7JM2ZDOnMCgB+SzY1tAyk4XN+Df39iDUq+9CIA4LvvmIsFRanIirQCJ0+jtKgA69bNhv/VlwAA2flFCFRVAwD6JSsA2fBNK5qGs6fPINdjQktfAEtL0nHj1SthPt6CP53Yj07nJACnAACTps+VUwX3HMVdm5bj98e3In/SFPS6rbCbjYhI++WBW10oL1+Lv/xxH4BWTJoxH7PyPMArrwGQ5xcAgDsHQD0mZzqxvTmIz96+GP2BMH796k7c4gMKYgAAcdxJREFUs6wI333HvIs+d+FojKV1C0YeMXeMPwy73wK9zwFgzsIlmJnnASDrWQReeRnXL5qKg/U9sk5GbhkOt++HyUDwaosDdo8BaJWjoresnIn3LJ+EN0+24g8n9qHJK+GTG6filmumIxCOYm//IRRnOPDZq6cxzQxKh7sBL1QdBgBcs2gqDr9aicp+C6ymGCZlOECcDqSWFAPYh6nZLrT0BhDOnomfvHka//rYapiNBhzffBY4Wolbr16PzV0HWUZbzOrG3HnTgb270TQgJb8GX5HnybyyeVg1NXP4TrLgkpmoc8d4X10aARRxfxcqjwkEI44/FFWlAD2wphRvfm49JmU4MS3HjWhMwoYfVuAnb55GVfsATAaCG+bmYceXNuKpDyxltbN//OAyvPLQWnhsZqTYzegPRNAxEMSi4jQAwA9eq4TZSLCwOBWvHm9BQ7cPP33zDNr7gzAQIN1pgd1sZGmLbqX3pdNiBFFqeHI9dhys68H6H2xGfZePpUn+dU89fvLmGfa+eYUpAMDSj2jdTLIU5X8eaMD0R18GIPcATgZtIt8nemUKLgNaegM41aLuLy1JEt73uz145Vg8gYjeN73+MBNk6ugPorrdm9Ar8pF/HsXnnj3MUn1D0RheONzE1JLbB4Ls3zRVGAC++NwRdHqD+NZtc1CS4cAdiwsBAKWZsjjMX3bXsdd2DARR3T4Aq8mAaTkuECLXzj783BF88z8nAMj1eT2+EALhKLae6VDGH2JlEzz0sac+sBTBaAzP7q1HOCoP8uglCMK8fbodZV95WYjKCK5otP1nT7f2M/0OmobstJpgtxhZn2wA+NC6ydhT26WaYzw2MwB1v1y6x7CZjfjlexfjketnJhi3QLwMCgAWT5LfU9flQ2mmE8XpDjR0+/HHneeQ6bLipnl5GAhG8NrxFhxr7MO5Th8kScLxpl6k2M2wW4woTIsfr6M/qBKrq9OIcwLqtGSteKdAcLGMdwP3BQDvU9SUVwDolSRJ6I8LRgVtY/TiDAeLOJRlu9nju6u7UNU+gEnK8/mpdmyYns2ez/HYMCNX9sqmOczs8YXFqQDknpVXz8rBe5ZPQnNvAJ985iB+9Ppp/HZbDZaUpIMQglSHGd1K3dyMPPmz3bb4sfJS5EXtXKcPf9lTx9QQH998lhm4TqsJ03PdsJoMONrQA0AtMqWtAZYkCT958wzb0BpI8voYWkvUFxiaYqJAMFoEwlFd8RZAvsb1+kNf9aO3cd2Pt6oe6wtEsOV0Oyoq29lj1MDt84fhU3KD2weC6BgIwhuKJiiInmnrZ7Vqrx1vxUN/O8SeG0yc6u6lxbh6Vg4qvrABdy2Rfb6Ts1xwWU2o7fShMM0OAOj0hnCgrgcz8zwwGQ1wWU2obO1HIBxjiukz8zzo9oWws6qT1Q1vOdOBO365I+Fzz7T2w2ggKE53IC/Fhtb+IBOc6eiPO8VCkRiONfYmzCHJ+OrzRwFApWMgEFxpaPvFfvEfR9icQI1Cl9UEh9kIfyiKhm5Z5HJBUSqAuIMaADx2eT+QmxI3cOcUpAxpHJMy4gbplCwXUpV9ytRsFwpS7TjV0o+Kyna8d0UxClLluWaPoq68t7YLd/xyB1462sKeo/MRIM+HfAvDW3++jTngg5Eo2voCGOAM4FqNQOeW0+1MM0AguBDGuk3QMwB2AphOCGkghHyQEPIRQshHlJe8BKAawFkAvwHwsTEaquAyJhiJ4uF/HGEbQIpWWZj3jE5WpPUBoMcfRnW7F1OyXOf9LF69dG5BCj6wugRLS9LwkfVTMF1RPeXVkN+5SI7WpCiLFyHAdEUR0WmNe2JzuEXtuf0NqoWP4rKZYDYa5I1qXxChSAwdAyG4rSamFM1zunUA5zp9+OYts/GVG2YiJskbaD2oJ1pEcAXjjY88vR+PPq/biQ57arpw68+3J0QS6b3Ab0DblHuqnmvhQw3c9oEgQtEY0hxmhCIx1iaspl3+/6c2TsUf71+GcDQuRtevcQYl62kLgG0ceYwGgjkFsuNsxeQMluVxuL4HK6dkAJCjOkcUZxZlZp4HgXAM/z3SzPpX//ugfmJUXyACh1nOFMl2W9HWF2Dj5h2A337xBG762TaVwZ6Mtr4A6rvkuXaI9rBAMCFp7PHrqh8DsnPNH45iaUkaNs2QHeLBSAxVSlSWCk45rEY4lAhuQ7cPRekOth/g7x+3Tc7sSuf2GFmKmvL5yHJZYTUZWMbYozfOwg1zc3H30mIUcMbqLfPzMTVb3uecUyKtj/zzKI439eEL107H998plyzwEdxQJMb2Iz945zx0+8Is++NHr53Gph+9rdrz8C0W95/rxvt+twcffnqfbh9ggWAwxlpF+R5JkvIkSTJLklQoSdKTkiT9SpKkXynPS5IkfVySpCmSJM2VJGnfWI5XcHlypnUAf9tXj7eUvpSA3Ify+6+eUr0ulzNwbWYj/v6Rlbh3xSScbRvAmbYBTB6SgRuPuuZ4bPj6zbPx94+swrzCVOZ5pWrImS4Lrp+bCwBIUxYtt9WEImXxcFrjJfRWZaNqNxvR1h9MSI8EAJdiEKfYzejxh9lGfV6R7OW976m9aO71Q5IkhCIxvHKsBYQAN8zNQ1G6vMgl24QHaYpyQBi4gvFFY7efGVRaWpWoqV7bC0CtZtyq9Jzlj0UNXLpBo06uoNIPmqqdF6U7sHJKBlzcPRuKqntG0xIAk9LAlp8r8nUMXACYr0Ry5helIsNlwSvHWhCJSVhFDVy7mY0bkKNB9F5+7kADNk7PhtFA4A1FkeYw4/g3r034DIcyb2S7bWjvD7IsjXBUQiwmobp9AH/ZXQeHxYh/H2piToHtZzuw9Ux7wvHOcHOTXm9PgWCic67Ti7b+AG59fBt+/Xa17mtC0RhiElA+PRvfuGU2e7wvEEGvL8ycbHKKsgn+UBT1XX4UpsUNXB6aomxQ5g+beejbe4OBoCjdgXSnFUYDwR2LC/GL9yzGmrJMFKTGjdXSTKecHWJQi8tdPSsHH98wlUWM+QguAJxTxDpp+nNjt7zP+O+RZvQHIvj7vriWLM1wAYA/7KiFyUCwq7oL/zzQMOTvIxAA4z9FWSAYcegmtYnzIv7otdPYflZWTqZpxXzqDwAsLUlnkRIAzLM5GHwEl48IA0CG0wKLkgK9cnIG9n7lKpaGTKO2hBC22eU3y9fNycW7lhThd/ctTfrZLqt8rBSHBb3+MOulu6JU/g77z3Xj+69U4t+HmrDk26/j1eMtmJ3vQZbbysaazMClEdyBYETI/AvGFaFoDL6wviFFMw4GkqTW8/2s6bXf1ONn0QQ6d9B+1tosjtOKgZvutMBsNGCRssHjKct2YWq2i/WZpc6qkox4lkh+qi3hfUD83l1Wko4MlxVd3hDMRoIlk9IBAPM0KYp5KTbmLAOAq2blsM1yltsKh8XI5iDaxshhMbHn2/qDqiyNhm4/Pvf3w7CbjfjExqkA4m2S3vPb3bj3yT0Jact8pkyy6JZAMJH58J/krJGOgVDS/vSBkOzgspuNqrUckB1rNK3XpbQBDEVjqOn0ojDNrm/g2uPHqPh8ObY9vPGCxjwj142SjESF4zxl7kl1mEEIgc1sZD22KeumZan+pgZuulOea2o7vSBErvU1GQiaevw40dzH5oI/7DgHACjJcDCH3EAwgpePNeO9KyahJMOBFw43QSC4EISBK7jioaIvzaqNV3xDXJbjhtFAkOlKTPeZpSge2s1GXD8n97yfRY1lo4Egw2lRPWcwEOSkyJ+R47EyASkAuG1hAQBZzIamDPGLosdmxv+8cx6r6wWQ4GWlr0+xm9HrC+F06wAIAdZPz2Lf4flDjXhqew36AhGcaO5jG2Vq3OulPgPxGlxJSmw6LxCMJcFwDP4khhRNt9Wm51Mjb29tF0tNbu2X/x+JSSzKQA1culHjSxeAuIFLHVvLShIN3H9+bJUqO+TGeXnIdFnxf+9awB5LFsEtn56FrV/cgOm5bmQq88my0nTYLbJxeuvCfNXrc1NsqsjwdXNykapsljNdVlbvD8jGLyCnGAJAtseKgWCEnQ8A+N/XK3Gwrgffvn0OU3/VitGdblVnkzR268+zAsHlgCRJONfpw7FGWaQuWVYTrX+3W4yqbCwAONflZc4fp8XE7udQJIaidAert+XxcJocJZlO3f3KYHzn9rl44n2JHRCmZstidd++bQ57jIpVUtaWqVWP3TYzpma7UK7sLc51+uC0mGAyGpCbYkNjjx+bT7WBEODWBfksm2VqthsdA0FEojHsrelCOCrhqpk5uGlePraf7cAZZT4VCIaCMHAFVzy01paP4NZ2epFiN+NDa0sxJcuFojQ7jBqDEZAXkl/fuxg7H9mYsEjpkWqXN6FZLitLJeLJS5E3sjmaaPF8ZUGxmQ2sHk/v82zmeF3uxzZMxYPrJrO/qYGbajfLEdzWfhSnOzCvMBVvfHY93vzcekgSVA3elygbcnnzC7Qm80aH4+mWog5XMJ4IRWNJDan+QJIIrnJr/mZrDW77+XYAQBuX6lvfJafYMeeYYvCWZjrB+aVYlgR1bC0sTjRwHdwGFgA+f8107P3KJqaSDMjzhR6EEKbWTr/jxhk57Hka4Z2iGN75KXa2ES5Kt8NlNbHNMt0Q0wjvbQtk45ga79lueU6q7vDCbjbCbpZTknM9NtwyP5+NUSuW9dYpuTd3IBxFLCahqcePHI8VFqNBGLiCy44+fwT+cJTdN3ytfV2nD8u+8wZOt/bHDVyzERaTgTnVADmCO6DU4LqsJpZFAQBFaXY4LUbVfsRiNKjW/oshxW5mEVcej82Mmu/eiJvmxZ1lq6dmwmEx4tkPr8Q3bp7F9i08r39mHb58w0wAsmOcaoYUpNrR1OPHwboeTMlyYfWUuHE8PdcFSZJLRnZWd8JsJFg8KQ23LyqA2WjAtT/ekqBuTwmEowmq1IIrm8uiD65AcKFsrmxDcboDU7Jc8RRlZUGKxiRUd3jxgVUleOSGmej2htAfmJL0WNfOPn/kluK2mWAgcoRWD6qGnKtJXyaEYNvDG2AghAlC8B5bHrORIByVsGZqJmbne/DEFrkGyGXjIrj+ME619LFUI5pePTvfg+NNfbCaDAhGYiyCazYakOmyqur5ePiFpcsbYptuSmVLPyRITE1aIBgtguEoEl1JMjS6wmcdBMJRFrUE4o6v1r4AE3up6/JidoGHKYzTrPxUhwUZTitL06XvpUbjouI0TM5yotsbQrcvDLtZ3qjauc2p22ZWZW8A0HWGaQkrUZCNM+IK7gYDwd6vXAWb2YBHnz+Gq2blYHquG/evLsUH15YCiAvYUQOXRnDXaKIy2YpgTXW7F9keK2bne/DS0RZcNSubiVABwH8ON6HPH2ZzyH+PNOGBtaVY+/3N+Hj5FDT1+pGfakdAiaz3+sJIcejPZQLBeCUSjaG5N5Cw1jX3qev9+wJhHKzrxsw8D14+1oy2/iC+/eJJpCvXPDVMnVYjQj75Hq7vkiOe9HEH5wCTI6oEKXYzurwhvHNxIWbkqlOGR5qb5uVh44xsOK0mLCtN130NIQRpDovcfUEC+z4FqXbsqu5ETdSL9dOyMY0bO92PtPYFsbOqEwuL0mC3GDEly4WnH1iOO3+1E1VtXt19xMrvvgkJwKGvXTP8X1gwIRERXMFlTyQaw46qDpxsjnv+HvrrIXzh73Jj8y4lCtPaF8C2Mx0o+8pLCEVirJ4uzWlBsU5tysVgMMgLU5Zbv6YuN4mBC8jKhPmpdhgMBE+8bwnuX1Oiewy6YU13muGwGJnYBPWgpjrMiElAVbsX03LUNYNXzZSjP/9zxzx8+7Y5qrrjwjQ7jiZpBRIIR1kvPb1+udf+eEtC2xWBYDQYPIIbUf4fzzqgGQi0Hs1oIIhEY2jtC2BuQQoyXRa8drwV3YpjjNbMAvI9lquUGdBMC0LiLTzsFiPe+lw5Nin3Gb0n6QY202VVRXMvhB/eOR/funW2KvILyLWzbpsZP757Ia6elQOz0YCv3TyLjY8atJluC/vbbTPBajLip/csxB/vX8aOA8gRXbfNhJuViM51s/MAyPV2hAAvHm3GF587gmAkhvwUG4439eEf+xvQ3h/EsaY+NPUEUJBqh8NixOsnWrHkO68PqiAtEIxH/n2oCZv+9+2EFjbNmiyn+i4f7vjlDvx9fwObb7acbsfzh+SaUnrv04ysNIcZh+t7NSJT8TmBrrN0nV8zNRMPrI1nao0GhJAhZawZDQQZiuOMvr4gzY6m3gA6BkJYUJSCMk67hM5dzT1+nGzuU2kW0P1YW7/+XNHtCzMdA4EAEAauYILT4wsholEj1fLdl0/h3b/ZjQf+IItw+0NR9PrDOFDXg4N13ehSUpTDUQmf+utBFo2Zku1MdshL4s4lRbhxnn7UNz9JirKW9dOyVFL8PN+4ZTasJrkfLyEEGU45HZA2eOfrd3ghGwC4b1UJvnHzLNwyPx/vXTFJ9dy7lhThRHMf3j6dqIwaCMdYLz3tAtTjS2wtFAhHUfKlF/HktppBv6dAcCnEYhLCUbkdh574mZ7IVK/y2GevmY7vvmMuojEJzx1oQHWHFwWpdrx7+SS8VdmGp3fJwii8Qem0mJDrscNA4nVqbqspobzBblZvamkUZ2aeOhLz30+uwWufWTek71qS6cS9K0uG9FoebQR3eWkG1pXJtXO3zM9nAjLZXMsRt9WM6+bk4t8fX80ivSajQdWiBADet6oEbqsJ33tZVqSv7/KhscfPDNym3gDCUSmhRZtAMN6p7/YhFI0l6FJoRaW6fWHEJLm8p7ojsbsBNV5pCdHdy4pxorkPRxp6YDQQWE0GVQTXpKQye5SMLMdFOsRGCzqv0HHyLc8WFKWpDGXqUD/a2ItITGKK74BcWmU2ErT1y311d1Z1sue6krQvFFzZCANXMGHxh6JY8NjrbPOUjMP1PQDkyENLb0BlgD25rUY1OXZ5Q7hnWRHmFqSMWDrtl2+YidsXFuo+t3pqJtaWZbKeuBfDTfPyUfnt61ndTqbLwtKTAagUGIs16VVpTgvuW12qmxL5jkWFyE+xsZRnnkA4ioJUu1ynq0lj3lPTlfB6Wqf3G51jCQTDBd+Kx69Tn6UnMkXTllPsZrYZe/i5o4hEJayfnoX3Li9GmsOC32ytwaopGbiOE5dLc1hkNdJMJ3u8T0ehmWZV0HuURoG19/2cgpQExdLhhldRBoD715Ti5+9ZlPC6dKeF9dr02E0ghLA2RZSYJrsjL8WGa2bnMqfB8aY+hCIx5KfaVXWFvaJuXzDBoNHCDk2LMW0El9LlC6G63YtJGQ4s4sQgeWcXIcD7Vk6CgQCvHm+F0yL3oKb3iptbx6mjeiiR1LEk0yU7vagBf/3cPHx4/WTctaQwwaGXobQpOljXA0AtrmdQhD7b+4P469563PObXahulx0GlS1CfEqQiDBwBROWE0rK8ZuKiAlFkiS2YZIkCWfaBjCnQDZWD9R1MwNsVp4HLx9rwdn2ASyelIbCNDs+f800/L/b5+I/n1wzJgvH1GwX/vTB5cP62RkuK0uFBMBUUwFgUsbQo9QWkwHvXl6MHVWdqmbsgGzgOq0mZQFSL/C7FQOXLnRA3ON6Ib36BIILJciJn/lCUXz22UN461S83zU1ZnkDl84dHptJtcH65i2zceuCAmR7bKj4Qjl+fe9i/O6+pTArEZXlpelIcZjxqU1l+PfHV+PqWXGxJy00Ykt7U9O0/qG0GhtumIF7HtVVQgir9XMnqf/v1qQIemxmlQOAnudpOW5V2qVWmK6h24d/HmhImGfOx0AwwrQUBIKRhArMaQ3cll79669rIITaTi+umpmDf35sNXvcxhm4aQ4L8lLsmKu096JGIfU389FPet+O9wgudZw5uC4Oj1w/E99/53wWjd78+XL862OrYDTIGiMH6roBqL8vIGeRtPUHWfu2N062wheKqLLK9EqoBFcmYncpmLAcbegBAJYaS3n9RCuWfucNtPUH0D4QRK8/jFvnF8BqMmBvbRer9/rCtdMhSRK6vCHMzHNj28Mb8YmNZQkCLxOd968qwSc2TGV/84IufNrhULhrSRFMBqJqzA4AgUgMNrMB2e5EISqqeshniNJNwaUqPwoEgxGMxqO2nd4g/nmgEff/fh97LF6Dm2jg8hFcQO57TfHYzLh2di5sZiNLRf7S9TMAyI4gt80Mh8WEr988C997x9yEcdk0Kco0RfdCHE7DRVmOGy6rCUVJSh54aD9ubd/OZHjsJqwty4THZlJljswp8Kg25toI7jf/cwKfffYwHvrrwSF9DuW6H2/Bqu+9dUHvEQguBurMoV0YKM29Ad3740RzHwLhWEKNvJ2l7tpY3T+tN6XzAy1H+uTGMva+iRLBpY4zlzX5Wl+a6WQK85OznAgqIn/a9mhZbiva+gJoUFqNvXGyDd9+8SR+9XYVew3t6HCgrlukLl/hCANXMGF4/mAjntlTh9dPtGL/uS4cVfrM2TVG0oG6HoQiMZxq7scZpQfjrHwPFhSl4qnttfjkM/KmaVFxGq6fowikOBLl8S8X1k/LwruWFrO/aasiYGjqrDzZHhsWFKWq0o7D0RiiMQk2kxE5HhveOtWGjz69n6m60r6Xfk7oRxi4gtGAj+DWctFAmtqmLzIlP+axm1VRRr4ejGdtWRYqv32dbgugD6wuxd3LihMeZwauknr49Ztn4aZ5eVg8KfEYI826skwc+trVQ1IypunS3iS9rn933xJVT0yPzQyb2YiXPr0W37ld7qM5OdMJt83MvjsQT/eMRGPwh6LoVOaHo429TMQnEI7i3id3Y19tYskDIEduGrpF9FYwOvQqEdxOr9qhW93uVfWjp9R1+QDEdS+o+rBNKU/46o2z8NR9sqAb7adtUJztWW4rar93I26cl8eOlzJRDFwawbUMbZz03FmMhgRHQZbbhvb+IBq65XO5r7YLrxxrARBvhdYfDONwfQ/e8Ysd+PoLx1Xvb+zx4+N/OaCa7wWXL8LAFYxrqtsH8O9DjQCAp3bU4sltNfjQH/fhjl/uxMF6OY2lX1PjdrZN3rzWdHhZY/CybBf+710LsGqK3BfSYjLAYzfh/jVyq4xsHdXiy5UUnSbxF8LC4lTsO9eNd/xiOx59/pjKWKUR4ZePtWBfbbfS91KOmPvDUZY+1DEgUpQFI4svFEEn58Gv5gzct061IRqTWMqsfoqyfJ/MyHVjbVnmoJkdVMBtqGiVzWfnp+Dxdy+CxTT69wMhhKUKng8a5U0mCrVxRg7+96757G8aZSpMczDjeI6SfmnXieDe99RezPzaKxgIRpDutCAmAfMfew1Pba/BjqoObD3TgR++Vqn72VXt8d83fB7hQYHgUtGL4HZ7Q2js8WPVlEwYiNyyTwt1lP3mfUvwq/cuVqkMUydTaebgisFAvLe2a4iG41iRqVFRPh+LFEdhSOceznZb0ekNobbTh8WT0hCT5HKnL98wg0W3d1Z14lNK5kdVm1rU6+3Kdrx4pBnbz3Zc9PcRTBzG950huOJo7PHjy/88ip/esxApdjP+uPMc/rTrHG6cm4fmHr8qClitbGj6NN44Gp2p6fCiLxBGmsOMLLcVhBDcMj8fO6o6EYrEQIjcRPyZD61gaYZXAnRznSwidT7kSFUNDtT14EBdD14/0cqOy0dkK063YUqWE6Go3C6kqTeAYCQGm9nIRKYiUVEvIxgZ1v+ggl1nAFDDGUA9vjBTTjYZCPt3LCbhZHMf7GYjMzZfeWjdsNd12Uy0PdDEWoKXlqajON2BT20qS/oaPhuG79VdlOaA22ZiTkZtinI4GsM2ZePZH4hgbVkm/q20UvnDjlrWWommb2rZURXftHqDEaRexlk5grEnXoMbN3CPN8lZZfMKU5DrscFlM+F0a9zIMhAgT+mUkGJX16fz0Aiutqad545Fhcjx2MZ9D2lm4A6xVlgvE4ZCo8GhSAzXz8lFXZcP7f1BLJ6UztKRP/3XQ8h2WzE9x42Gbh8kSWLOSRpF31fbjevm5Ol/iOCyQYRPBOOKPTWdePt0O04oC0WnN4RoTEJzr1xP289FWt67ohg3zsuLt/oIRhCKxHBOmcSq2gew5XQ71pRlsQlOryn5yikZ4z7NZzghhOD5j6/G85zQxYXAp189dd9S1ibBajayiI3bakLFqXYW6ZmiiOdQB0W7EvUdSJLqKBBcKu2afsxUsMhoIBgIRphjLMdjgzcURTQm4av/PoaXj7Xg7mVFqvcOd12+tjXIRMFlNWHLFzdgxeSMpK8xGQ1Ic8gtPfgMDbvFiJ2PbMJdS+Rzq1VR3sG1/egYCCLdacHnr5kGQDYGKiplMcFQRD86ywtSabN6BIJLIRCO4qG/HsRpJSMsEo2xa4ymKEuShENKVtnsfA+evG8pHr1pluo4uR7bkLI0tHW6emS4rLh1QcEFfY+xgBqlQ91jpTstWDwpDY8omgY8fNeH4nQHrp6VA6fFiDkFHtVcevP8fLx35ST0BSIqVet6auCe676o7yKYWFzS6koI6Qeg59omACRJkkamz4rgsoVuSql3tEtZPI409IIPovzyPYtw/dw8fOVfR9EfiOBsWz+u+tEWfHBNqVwPajZg6xnZo1+u9HEE4gtHhvPK9u4v0LT3uBDyUuy4e2kRrp6Vgw0zspHpsqJjIAib2YiPrp+CZSXpONLYg++/UoljiqNiarYLW890wB+OIg1AR78wcAWjS02HFy6rLHbUH4gbuAWpdjT2+PGbrdX4y+46fHj9ZHzpusTN1XDC2gQNIrwykclwWWEgJMExwG9CtRHc1463sL/DUQluqwmf2FiG2k4fXj3ewgyKHp2WQpIkqeqChYErGCpbz7TjlWMt+M7tajG4WEzCnb/eiXctLYLbasLzh5pQ3+1HMBLF6qnxOnNaovOt/57E77bXIMttRarDglSHhSl6mwwEkZiUtHe9FpvZiIJUO+5YrN9OcCJRmunErQvysXJKcqeYluc+ukr38TXceS9Is+NL18/AB1aVwGoyqlooZbutmKkI4p1s7mNiVTSCe7ypF8/uq8fTu87hHx9ZNSalIYKR55IMXEmSRrZBn+CKg6b70No5Wt9ysE7tcctRGoJ77Gb0BcLYclo2Zp/cVgMA2DQjBy8ebQYArOMMXEII3vjsuqRtLgRD43t3zGP/vmNRAX69pRq+YAR2ixFryjJhUNaLl5XfgLY/ob1I6aYgmViNQJAMXyiCq/73bfy/d8zF1GwXPvL0fjz5/qXIOU8dfac3hMlZTpgNBgwEwywaMyPPjT21Xfjey6dQPj0LX7x2xogrqdMU5YkWwR0q6U4LorHB07pVBq4vjJ1cBBeItyLK8Vh1Va7ru3x4+LkjWFaajh+/cQbruXleOM4EQ+XeJ/cAAB69aRZsZiMO1HXDQAi8wQj2n+vGofoe3KSIO+0/1w2TgeCYInCZ7bayPcrRxh52HAo1ukoynTjbNoDCCygL2v6ljZf83cYDFpMBP7l74bAcy2Ag2PrFDfjLnjrMyPXAaCCsDIKPEGd7rEzx/VRLPytvqOvyMYfm/75Wida+ILaeaWfPCy4vhtVtQQjJJoQU0/+G89iCKwMawe3SGLoHtAauspn12MwIRyVWf5XltuJbt83Bw9fNwAfXlOLPDyxnKTKUqdnu826GBUPnM1dPw+eunoab5uezx+YWpIAQYEdVJzw2E6vDoSnK1JHhDUYTDygQDEJjtx9NvQGcaO7DofoeHGvsYyUNlGBE/7qidXEDwQh2nO1U1cEtLE7FT961EMYLVBa/GGyWiVmDO1Q2zcjGphnZg76GpmkbCFDZ2o/qDi82TI8bqdQ4yHbH5+qCVDtTVd52tgM7qjrx4zfOAIinHwIQKqmCIcHX1tO9xzt+sQO3/Xw7nlVa4ZVkOPDWyTasmJyOFLsZ//euBew9cwtS4AtFUdvhRVNPAO9YWIBbuHXQZTXhhrm5uG2B/NhQI7iC5BSlO/DwdTMS5mneWZjttsFtMyPbbcXZtgH86LVKnG0bQK8/jFuU34K2M3zhcNPoDV4wqgzL6koIuQXA/wLIB9AGYBKAkwBmD8fxBVcONLLX5Q1CkiR0Kwbuwfoe1euoWq/HLl/C28524Ob5+fjZPXFPobb+RTAy2MxGfFIjOuO2mZHusKDTG8KaskzWyikYieJcpxe9/jAynPLzwUhUV4U2FIkhGImKaLtABa3f7vWHE0oaKMn6H+Z6bOj0htDtC2FHRydWTs7AqimZOPHYtaNqbGa5rCAEyEu5PB1tH14/5byvoW2CCtLsqO+SUzmvn5OHzZXtAACXYuDmeOIOynmFKThY1wMAONfpA09LXwC5Hhta+gIigisYEvS6A4C2/iCKuBrP147L4olUnfueZcW4ZX4+CCF4+Lkj8IWiuHNJETZXtuFv++rR0hdI6NtKCMEv3rMYrX0B/Oj105iWoy+QJrh0tCnKgBw5f+VYC/zhKNtDzi9MxeQsJ6rbvbCbjXjzZJtKiEpw+TBcEdxvAVgB4LQkSaUANgHYNUzHFlxB0A1rpzeEPn8EESXNTZJk4SKb2YBMlwVmpa0FTU8JhGNYMgY9JAXJKVHqnT979TQWrfGHYkx1mQpkJIvi/vTNM7j5Z9tGYaSCiQSdI/pUBq46Yse37uCZnutWlE370djjZ3Vhox1JLUp3YMsXNjBF4SsROifkKtk0kzIcKhFA6tiiLdxSHWYUptlZivK5Ti9/OPhCUVa6ImpwBUNhL9dTuV3Tkscfjqqux9n5KcwI+pHSCmvF5HSsLcvCr96uQjQmJRi4lByPDW98dj1uEMq9I4aVq6OlWR+lGU5WFrX1TAdMBoL5RSlsr3jD3DwMBCNMKFNweTFcBm5YkqROAAZCiEGSpM0AlgzTsQVXEPEIbiihgfrUHBdyPDZVerGH6+m6pEQYuOOJn96zEH/64DJMzXazCO57n9yNb794EtNz3JiZJ9fIDCTZjO4/143aTl/SdNMeXwix89T5CS4/aHq7KoKrRGyPNfbif1+rZPOIlg0zsuG2mhAIy0q8tB3HWFCU7riiowZLS9LxjoUFrHb2azfNQhrX2ieeoixHY4rTHUh1WOAPR5VMEF/CMXOVaO8bJ1uZ6vJQ6A+EcViTJSS4fInGJBys68Yfd51jhlFbfxARrveqxWTAuxTFb5vZoFI2vm5OHmq/dyNSHRZcNyeXCWDmpybPyJic5YJhFMofrlT4uZRm9pVo1KjfsagAeSl23LagACsnZ+Dm+bLDobpd7SwTXB4Ml9u6hxDiArAFwJ8JIW0AxBUjuCCiMYmlFnZ5Qwlphp/eVIZXjrWoxAQ8yibIZTVhRq4Q7R5PFKTaUaB4tPn+uADwwNpStoFNlk54pk0WAWrrU6eOAbLQ0ILHXscDa0rxVZGKfkVBjdpefxg+pab7WFMvvvHCceyu6cLJ5j58YHWJ7nvLsl2qWi1tfb5g9Eh3WvCjdy1AMBLFxhk5mJXvQSwmgZB4xg4Q/42K0h3ModnrC6Ouy8fUaSmZLiuMBoKKynY09fhRPn3wOmDK/b/fi7213TjznetZdpDg8uW3W6vx3ZdPAQC+detsfP2F42jvD7LsAABYOzUT03JkJywVNNKDj/IWJIngCkYXauyWZsr7hvlFqZiW7cJDV8ltx1ZNzcSqqZloUVoIVbUPqJSxb/rZVqwty8LDI6ymLxhZhsvAvRVAAMBnALwHQAqAx4bp2ILLnF5/GHf9aic+c3UZYpIsOtLpDTGBqYevm4FAOIry6dkJGxa64VlYnDoq4jCCi8POKaZ+4drpuHNJEbaekWvtvKFEA7dzIMgida19gQQDt00RiPjtthph4F5hdHA1uDRyUlHZDqAdkzLk6+Sp7bWq96ycnIEZeW4QQlhtJyDXwgrGFqvJiFn5snPSYCBwW03oC0RYirLVZMTaskysnZoJh2L0Vnd4MRCM4H0rJ+F0az92Vcuppi6rCU6LUe5/2TP0tMO9tbKIoTcYQarjym4hdzkjSRIO1PXgiS3VAID7VpXgrqVF+NlbZ9HWF2SlDl++YQbuXFwEg2Io0etTj8lclDBPGLjjChrBXVGajkdumJnwfI7HCqfFmBDBPdbYh2ONfcLAneAMi4ErSRJ/dfxhqO8jhFwH4CcAjAB+K0nS9zTP3wfgBwAalYcelyTpt5c2WsF440BdNypb+/H0rjoA8qRU1+ljdXS3LshPWttCU9qWlaTrPi8YH9i4+hht4/deXxhPba/BqeZ+PHrzLLisJpxuHWCv5+tj1v9gMzZMz8aN80Qt05UKb+DSVGNKa5Jaqqc+sJRlEfAR3DRhzIw7Uhxm9AUiKkfEnz64HACw5bTsFDvS0AMAKJ+eha/eOAvTvvoyAHlOCSlppv1Budex5wJE6gaEgXtZc6ShF3f8cgcsJgP++bFVWFQslzVlua1o6w+gRxGrm57rQZpTvg4euqoMVw3SRoYQwjIJLte2XxOFT20qY+VQADAly4Ub5ubipnn5uq8nhGBylgtV7fH9Bt/ezBeKXLZK91cCw6Wi/A4A/wMgGwBR/pMkSUrq9iKEGAH8HMDVABoA7CWEvCBJ0gnNS/8mSdInhmOcgvFFrz8Ml9WEow29AMBa/SwqTkN1uxdHG3tBiJzKlox0pwW/u28JlpVeuWItEwE+gksNXJqCuOVMO/648xwA4Lq5udgwPZulJwNxOf9INIZznT78fketKi3MH4qqjr/ldDt+vaUKf7x/uYjqX4bQFOUebzgh+h8Ix1ifQx5egIRX2xQ1ceMPj80MA/HDaUlUVk9RMnYOK2tGcboTFpMBVpMBwUgMTq6+GgCaewLw5A7dwBVtyy4PJEnCp/56CIuKU/GB1aXs8Uql9/U/P7oKcwpS2ONZbis2V7azayfNEb9maFrrYGz54gY09wqhorHms1erfyuz0YBfvGfxoO+ZkuXEruouHGvsRUySVLXWB+t6VKnLgonFcBWbfB/ALZIkpUiS5JEkyT2YcauwDMBZSZKqJUkKAfgr5FRnwWWKNxhBrz+MjoEg+gNhXP/jLbjnN7uwq7oTABCTgMI0O66aKachP3egAevKshLqN7VsnJEjPKfjHBvXBoimhdIIzdHGXvZcY7cf4WgMf95Vh+J0BywmA4vK8UYLLyJENy2UvbVd2H62M6l4lWBiQ3/7/mAEMQnQ6jStmJyBg49ejb9/ZCUAwGI0qARIXFYze1ww/kixm+GymnQFuFIVw+NQXQ8IAYrS5cwems7ssqrXiqZeP+769U78fPPZIX22XrmEYOJxoK4b/znchG/+Rx0vOdfphclAMCPXrXo8VXGc7FT2Ihea2ZGfasdi0cVhQjKnIAUtfQE8+Md9+OQzB1VOrn1K6YJgYjJcVkGrJEknL/A9BQDqub8bACzXed0dhJB1AE4D+IwkSfU6rxFMAB74wz62gKyakoGm3gCaFK+nxybXXV07OxdXzczBrDwPTjT34d3Li8dyyIJhgo+UZStKp1kuKyxGA440xA3chm4//nWwEZWt/Xji3sX41osnsP1sB4419qqMWhrFA4DKlj4sKEplf/cpQiGVrf2IxiTWCkYwMXlqew2cFhPuWlqEaExC50AINrOBRVsKuT6qAJDpsiDNacEsk+xj5aO3QNyxYjMLA3c8kuowJ+19XZBqh9VkQGOPX/m3bNB6bCZ0DARVAoQAcKKpD3tquhCJxnCqpR/3LCvCqinqiEyYU871iv65E4a+QBh/21MPm9mAe1eWqJ7ja/AHghHmAK/t9KEwzQ6Txrn1+WunIxSN4aWjLQDijhTB5c+8wlQAYHvRY5zDvbpjQO8tCISjONs2oMoCEIw/hsvA3UcI+RuA5wGwnackSf+8xOP+B8AzkiQFCSEfhlzfu1H7IkLIgwAeBICcnBxUVFRc4seOLAMDA+N+jMNNNCZhZ3W8rcOOKtnQnZ9lxPHOKG4qMWBfqwGT0YJtW9twz+QYtlhMMLaeREX7qbEatmAEOLZvJxPvyLZLaBiQkG4jMBmAA5W1OHqGIMVKYG47iUgwgONdftz0s214z8y4V/3w6Vq4zIA3DOw4dAo53mr23Jlz8hT06LO70TgQw+Obxq4VzHBzJc4dP93sg8UI+JtP40RnDJGYhDkZBhySyzGRZgypPKXdrfWoqGhFjCpQSRHVOTvbLXvoDVL0ijuXE4HFzihKS6Skv02BE6juBTyGIHuNFJYdHNWVJ7Aw24gj7VFIAJ7bdQaAnGp4oK4H3u42+GdYUNEQwZoCE6xGgq5A3MDdvf8woo2XZzbQ5TJ3xCQJJzqj6PBL+P1xuWY2pb8GHkvcibr7jA9OZX34w3/exuxM2RFyrNYPj4XonocV7iheUv69b+e2K7qF15VEMCLJNZXK30++cZA9d6ymhV0rHf4Ynjsdwu1lFvz1VAgH2qL4xSYHHObL/zqZqHPHcM3kHgA+ANdwj0kABjNwGwEUcX8XIi4mJR9A7q1L+S3kVOgEJEl6AsATALBkyRKpvLx8qOMeEyoqKjDexzjcHKrvAV7bjsWT0rD/XDcsJgNCkRju3zQX187OhdVkSFhQ7h2boQpGildeBABs3LCBPTSvcT8ajrZgal4aTAYCfziKTn8YSye7sGHDEuSc2I5mbw8AwJSaB0Cu1ZXsqSjKDKG9Pwh7ejbKy+exYz59bi/Q1IYByYqBsB+r1667bFp/XGlzR68vjO5XXgMAfH2H7GEvSLXjw9fMxEf/fAAAMK04D0faG9h7ls2bhfLFhQAA5+ZX4LabVecst6UP2L0VqS77FXUuJwrl53n+jZ6jqN5VhwVTC9h9/9uzu1HT24EVSxbhU3emQ5IkrP7eW6hWojJ08xq2pqLKlIk/nTiFKVOm4r7VpfLaVLEdAFBSNoNdO5cbE2nueOVYC9w2k279446zHfjhq7tx/ZxcAHLEdfLsRSyaJkkS+t54Be9YVIi/7q1Hjz0P5eWzIEkSOje/hg1zClFePjvhuKFIDF/bIYuVbeDWKMHlz/RjW1DT4UWW24pjXXIGWGmmEz3+MLtnPv6XA9jZ3IyumAmVbbJDbdr8JZiaLae7P/LPo4jGYvj+O+ePyXcYSSbS3MEzLLs+SZI+oPPf/ed5214AZYSQUkKIBcDdAF7gX0AI4aVSbwFwoWnQgiEQi0n47ssn0dDtO/+LL5I9NbKv4pfvXYR3LSlCKCJ7zT12M2xmo/CWXqFMyXIBAIrSHChMs+NUcz+q2r2YXyhvVn5690LcMl9WQNzD1cNUtvQjy21FbopVpbIMAH1+Oc2wrV9+vFvTT1kwvmjhxFlCkZjqb219dV6KDd++bQ5TurWZDbh1gXx9TM6SI/UZrnik32k1waJJUabOjkkZl09k/0pirmLI8L8fFQ5zKjW4hBCU5bgT3lvd7mVpqEblOuCVt0WK8vjgh69V4ldvVwEAnt51Dme4eaBdKVWp6Yg37+AFnvoCEQQjMUzJcuGmefn43fZa7D/XhU5vCAPBCGslpkU7TwiuHN6zvBj3rylFaaYT/Yp2x8w8N7tmqtoH8OKRZiwrTVetSbRdIQC8daoV/z7UhEBYCNWNF4bljiaE/FTnv28RQpKKRkmSFAHwCQCvQjZcn5Uk6Tgh5DFCyC3Kyz5FCDlOCDkM4FMA7huO8QrUNPb48eu3q/HmybYR+4wjDb0oTLMj221DqjNe30LFHQRXJtTALUyzoyDVAb+yOMxXamqLMxy4fWEBAOBkcx9rAdDWH0SWy4pcj11lEAFybRYAhKNy3Ib20xWMP/af68KK776J/edk58Ufd9bi6h+9jVAkhrNtA3h6lxyxJ0Q2brc/vBEbZmTDqtTPzs5PwdqyLNR+70bWKizDqTZwrSa18NCULBe++465+PG7FozCNxQMN4snpYEQYGZeXMeSGri82OB3bp8DALh5fj7MRgJC5LXuUH0PADAROt7AHRAG7rigYyCIXn8Y/YEwvvr8Mfx+Ry17jhogvOhgS2/8323K75nltuL/3T4HaQ4zntxWg/ou2YFflKZv4ALAr967CD+88/KLwAkG596VJXj4uhmqFmGzlPmlrtPH2pJ94+bZrPsDIO9D6jp92HyqDa19QQQjMeyu6RrVsQuSM1wpyjYAMwD8Xfn7DgA1AOYTQjZIkvSQ3pskSXoJYGUP9LGvcf9+BMAjwzRGQRLoou4LjZznqWMgiLwUGwC1QqHoOXjl8MpDa1VqygAwTYmylGY6mRquzWzAguJU9pqi9PiGZNPMbPz3SDMAeQNjtxiwo6oDT26rweQsJ57dW482ToAKALpEBHfcQLNFbp6fj3mFqdip1OJvO9OBxZPSUNXuRX8wguZePx780z5Ut8tRmo+XT0VxhoOJlc3JT8F7lhfjYxumsmPT9lMZiko3IEf0CBKzQ+5ZJsTrJipTs93Y9vBG5CvrCRBXUeZFpgrTHDj+zWthNhpw15JCnGjqw3dfjus59PjleeF0az/cNhN8oSh8oQheONyEll4/Hlw3ZZS+kYAnHI2hxxdGij3M+qHz0VrqwOwPRFCQakdrXwAVle3496EmGA0ED66bDADIdtvgtplx/Zw8/GN/AzbNkHvZ5qfak372dXNEf/UrmXROXIw60Oq6vKhsGYDZSFCW48K66Vl4UdmDtPcH8Y5f7lAJYFZUtmH9tKzRHbhAl+EycOcBWC1JUhQACCG/BLAVwBoAR4fpMwQjhJcZuCPnve4cCLEUQr7HnIjgXjnM+P/tnXeYnFXZ/z9np+/szPaWzSabsmRTSSeEJCQhdBUEFVCxoKKv2JEXwfaqIJafKFgBERRFRKQJoYYEkpBKIGxCNr1ttvcyO/38/njKlJ1NQshWzue6cu2UZ545M3nmnHO3713Uu3PYlFFe7v/0XBaXawuC/RNpLCrPS1BRHZ0d25CsmFxoGrgzS7PY19CJLxjhJ88kt8+O0dytLT7VrT6cNgt5cQaQ4vTjC4Zp6gwyJkUq4Np9Tdy39iDr9zWz8uuLefNIG6C1doJY9OXB1w+Zxu2iiXl8+8JJCeexW9O4/cPTEx47a1wu68c0UeCJ/f9mueyEo1EUI4uSJCMlx20nTdCrXZxh8C4uzzd76ALkZThMtfWq2k4mF3mpquugOxDha//URGaUgTs4GA7J9p4Qu+u0dFBjLoBYBBdifZFXVTWQ4bDSHQyzs6YDgEJdrf/iaUU8tPEwj2w5AsCorJhjRKGIJzsu+2fKKC9CwPp9zdS09TA+LwObJY0rZ5ew6UAzTV1BGjr9CcZtodfBvobUyst9selAM9WtPVw5Qmv/B5PTZeBmAxmAoa/tBnKklBEhRKDvlymGAv0RwQ1Houxv7GaS3m+upTvIvHFaCmF81NarDNz3PedNLjRvXzy9twfdabNQ6HXQ5guxqDwmOnLOxFw6dW++dlysdUw8xoZp0c9XA3DoZ5eetrErenP3qn08vOkwb/3ggoT2UAAPrj8IQGcghJSSN/V00W1HWglHotTrddP/2HiEAo+DNTctNRW3T8Si8ryE6wPghx+cYgoMKUYu18wfw/SSzOP2TDfKIb536WRNfMgXIhqVVNV1cuXsEqpbfSpFeQhgtIDr6Amxu04zVus6/NS09XDt/ZsS9gwep1Zjf6ythw/MKCYqJY9u1QTnCryaITt/XA4OaxpbDrXislkSHB0KRTw5cQZuocfJJ88ay0MbD5Nut7C8ogCA5RWFbP3e+Sz+xSs0dAYo9Dqo12txK4q8tPreXcbYVfduBOjTwPWHIilFWBUn5nRV1f8CeEsI8YAQ4kHgTeCXQgg38PJpeg9FP2E0to6P4IYiUbbrm88T4QuG+eBv1/HG4Vjtwd83HuaSu9dS1+6nJxihxRckT588jBRlj9OKJU39aBUnZlKRl7ll2Qn1lR6njTw9Wjc2N51Nt6xI+drmpBrcSFQSiUr+97Ht7KxpT/kaxanz5pFWOvxhs0YuEpWEI1GiUcm6fU0AHG3pYXt1Oy3dQRaMz8EXjLCnvou6dm2jEIxEObM0i3S79bhGy4koL/SYafCKkUuO286SE6QFuh1WDvz0Ej6/eDxZLhvtPSGOtfXQFQhTUezF7bAmpMIaQoiKgcWIiEUlbNMzPECL0u5v7DazPkDbQxgZOgsn5rG8IuYsNaL5VksaEws050ZxplMZCoo+MYIv6XYLaWmCWy+ZzIR8N75gpNc6UuBxUt/hNx3o1y4YS6Y+r5wKgXDvAFO7L8SsH7/Emj2Np3TO9zunS0X5fmAhWh/cJ4BFUso/Sym7pZQ3nY73UPQfXQHtBxkfwf3+kzu47PfrqY0TbzB45u0a1u1tMu/va+ii8lg7D6w/xBV/WM/qqgZe3dNIJCq56bHtnPmjF5Ey5h0zUpRVM3XFyXLXVTP53TWzEULwpXMn8MBn5gEwUY/KfG15OV5X6oSU5qQa3F21HTR3BXh0azWv9KOw2vsRKSXv1GpRl4NN3by+r4ny767k5v9U0t4TIhSRXKpH6R/fpkVaVugR/EPN3eZmFaCiSBmmitOLkVFgbETfrtYcXJN1A/fNIzGl9lPdqCr6pisQ5sv/eIP6Dj9SypQK9/GigJXH2k3BwTcO9Rbv8Tht5Lg1J+fCCbmcPSE35ftO0o2TYpWerDgOOaaBq+0lXHYLd109i+x0G2fpGYgGBR4Hu2o7CUUkP/rQVH5y+bT3ZOD+ee1BVlbWJjzW2BWgJxRh/7tMe1ZovKcUZSFEhZSySggxW3/oqP63SAhRJKXc9t6Gpzgd9AQjtPeEKMpMPbl36RFcI5ILmD+0Tn+Y4szE43/x/G7G5bnNdMDqVs0INmojP/vgFvPYtXGGsCH+YtQ5ZLmUwJTi5IivjfnOxRXm7dKcdKp+ctFxo3wt3YlVEpsPtrBYv3Zb3mU6keL4VLf2mDVyB5u6ebaylqiEdfsaaezSxF+WTsrn2cpa1uzWvNKzx2YDsL26DRmXT5yqZluhOB1kumxU1XVy/7oDjMp0MqXYS4bDSjTu+mvzBU3hMoNdtR2UF2RgHSF9tQeaZ7bXsLKyjgyHlfICD7ev3MXGW85L2Js0dyXO10vK89h+tM0sZ4jH47Tyx0/M5u3q9gRtheRabKNlVHFm3wJTCkW23uEjwxHbT0wryWTb98/vFfkv8DhMY9a4frPSbXT0hGjzBXHZLb0U/N+p6eB7T1byt8+d1esa/eULu4HEEqoePejUoZxtp8R7naW/pf/9Vdy//xf3TzEEuO7BLSy4Y1Wfz6cSmerQN6nxNY6gqaDWtfsTvFTHWmNR3ryMvo3WXNOw1SYRVQujOB3EG7epehm2dAcT0g131LSbSpzxEYS99Z38a8sRpFRVm6eKEb0FONDYRY2ephwMR2nSa+tKc9LJ9zg4orftmFLsxWFN483DbQA49P/DimIVwVX0D5npNo619bDtSBtfWV6O3Zpm9tA1aNPb1Bipg42dAS6+ay3ffHT7YAx5WBOKRPn6I2+aKeD+UJSH9BZgx9p8Ccc2JRm44/PdZKXbONyceBxohuyoLBcXTSsyH3vz++ez9n+XJRw3qUjL9BnVh5NfoYBY+Zw7yfhMldYe32fb6BCS6bIRlbDizle5e9XeXq/54dM72Hak7aTL/4y2iW3KwD0l3pOBK6W8Xr/5R+AyKeUyYDWa2NS33+PYFKeJDQe0VhzJxqqBIazRHYzwmp5abNDhTxTdaPEFCUaiCR6l6tbYwnPRtCKevOEczj0jv1eKoRHBtVrS8DitZKoUZcVpxuhRZ7NoC1J2uo1Dzb4Eh0xzV5COHu263lPfxTk/e4V5t7/M+b9+jZv/U2mqcCrePXt01dPyggz2N3abPUZbfSEz0yMvw2EqY+e67ThtFkqyXGzT00PnleWQ4bBSlusehE+geD8Q71z90MxRAGb2wNRRWubAgcYupv/fi9z6+A4AUx31v9trCIa1mnKDxs4Ar6o6uT7ZWdPBU2/VcM9rBwBNOMeI1O5v6GbHsZgWQnLf8pKsdIq8qQ3TeLV9g2y3PSHjB7R+2TaLYIJei6tQpMI0cO0nTm49f0qs3tu4Pg0BtKauoNlvOx6jhWFUn2zi55BUGEEnVS5xapyuPJvvSSk7hBCLgOXAn9GMXsUQwNBxim9oH49h4G4/2san/rKZR7ceNZ/rTDJw69q1cyREcNt6yMuw47CmcfG0YmaWZvHX6+YzK66XKUBuXHT3AzNGqV5hitNOhlNbmIyF6toFY2nsDPC3DYfMY1q6g+b1+05tB8faenDbLXxsrqZiWKUbaYp3T027n7wMO1NGedl8qIVQRDJjtFbjYAh65XsclGZrLYSM1K5RWS7C+mL/48um8sSXFyoBOkW/YRi4hV6HmSpoOLa+eK7WHujm/2gdDl/cWQdoNeIGV9+7gck/eN6MSD6w/iCffWCzmQ2lSCR5g94TitCtp1/+9LldXPHH181IeVNXICE1fFSW01RETsbjPLkqu0Kvk9XfXsoHZow6leEr3ie47BZcNkuvbI5UFMZdk0bwJr7t5d763nWzhkJ4my/Wy/l4+I0Irk8ZuKfC6TJwjeLNS4H7pJTPAqrA8l2wdm9jv7UoMJThattTG7jJi/LavTFPtBGprWnr4Z2aDjPlsL0nxOW/X88D6w9S3drDzNIsdvzoQs6ZGGvTsWhiPhPyY1GY7Lj2QHdcMZ2PzS19j59MoUjkjiumU1HkoUJv0v6hmSVMHeXlL+u09jQum4XmroCZomzw98+fxU8/PB27NY099Z08tPEwF/3mtQEf/3Cnrr2HokwnFUVeMy18pi4SU3msHbs1Da/TakZwi00DV/tbXpDB+PyMhPQvheJ049Ujf+PzYhG92z48javnlbJsUqLj1YgGHmrqxmYRfPysMWw70kYgHOVAo7aJPdraQ1SSoMKsiNGQ5FzfVRtzIrb5QgTDUWrb/Ob9cXHZG0VeJ4We1L3LT9bABRidna6cZooTkpthP+n2lQ98dh43LJtgXlfxmSENnQGue3CLKVwnpTSFXNt8Qf615Qgzf/Jir3P++qU9vKA71YwUZRXBPTVOl4F7TAhxD3AVsFII4TiN5x7xHGrq5tr7N/P9J3f0y/kNteKTNXB3HIulaBoepttX7uILf9tKnb5QhaOSt4628eaRNo619jA6Ox1bkvDGpTOKWXXjUtPIVYuLor9ZOCGP57+xxKz39jqtTCr0mNGCMTnpNHUHaY/ziKYJzRtrtaRRXpDB7rpOdlS3U1XXaXpQFSdHbbufIq+TaSUxgSgjk2NHTQf5GQ6EEJTmaBFcwwtuiPbEp30pFP1Ft576N6EgZkgtm1TAz66ckSD+4rJZqNMVfw82dTM2183tl0/jz5+aC2hpy/e+tt8s09nfqNROU5G890iuswXMtmJtPUHT4QXa3FCYFME15vd3Y+AqFCfDrz56Jl9dXn5Sxy6bVMBNF8ZEL5PL7l6pauAXz2viUcb1DZoT5+b/VJJK7uNPr+7n6e01QKyzSUOHn1+/tMcUnVKcHKfLCP0Y8AJwoZSyDcgBVHugk8S48A82dXPHc7tSSue/F4y0ibqkReadmg5au4O90iSOxtXUGnW7u+s6qWnv6SX0sLehi85AmJKsvtUJn7zhnF6iDwpFf2KkGGU4rQn1WKU56QTDUWrifguFXqfpnJlU6GF3XafZWshIKVLEiEQlv3l5D4dSRKvqOvwUZTqZOiomvT6rVFNJDoajZt/i5AjuNP34S/QWQgpFf/LBGaO4dEYx3zp/Uq/n4gVllk8uIBiO0uoLcai5m7JcN0II5o/XWobc8VwVP11ZZfZm3d+oIrip6Mu5fubo2DxhiFW2+UK9amgLvdq8YfjIR+n7jVQ1uArFe+Gs8blm3+R3S6rOIC67theprI7Vmbf1hEwnDcBdV8/k+iVal4FAOGraAIZBW9Pu565Ve1m/r4nVVQ2cfceqPjV1FDFOVx9cn5TycSnlXv1+rZSyd+xdkRIj7XdfQxf3vHqA7zz+9imdp90XSqkAa9Sx1yWlCV1y91rm3PaS6c02MHrWZqfb6PSHCUWiHGrqRkrYmtSLbnedFu0tye7bwPU4bWbERqEYCLJcdpy2NFw2i9l3GbQILsDBplikZVScc+aMIg91HX4O6/V2TV0Bth9tMwWQ3s90+kOEI1FW7arnNy/v5dcv70l4vicYoc0XojjTZfa8Bhibm45ddyDk63X4EwsysKQJJuh9jK+eV8rGW85jWklSTzKFoh/Idtv5/cdnJ1ynqViq60TUtGnO3XF52vzhcVixpshIOqAiuCmpbe/p9Vih18G4vFgEvbqth3AkSqc/bBoKRvaXUYNrCM+NzdX+H7KVUKViCGGkKMfPK8Ze4pm3a8l12yn0OmjzhRI0ac4o9JjidqDphAC9IrYNnQG2V7dR2+5PMJgVqVFpxEOAo3q7DCPdZv2+5nd9jsPN3Zz54xf5x6YjvZ4z0izjI7jhiFYfF5WJKckG+RkOPE4bnf4Qh5u7TQGY7dXtpkKt8XqIRWQUiqHAZ88p4++fOwshREI0YEyOdp3G18rFG7iG+NE+faP6ws56Lvv9ej5x36Ze79HpD3Hhr187acn/00VzV8Csb912pNX8Lfc3l/1uPQvueMVs75HrTqyLMxxohqKk06YtL0IIcyNrOLqKM12svnEpF07V2nukpYk++3QrFIOFobr7Tk0HgXCU0fr8IIQwtS3ieae2o1cf12QGow1ZJCr503Y/b1e3Dfh7A2Z9bTxluW6K4vrSHmvtMbs2ZKXb2P6DC3jmq4uBWCnDkjPymVeWzbcvmMQ9185hYoGq1VcMHZy2NOyWNEqyXOy57WK+eO54jrT4aPMFeXlXPR+YUUyu20F7TzAh2ut12RJKI0wDN5Rs4Ppp1lXGK48pA/dEKAN3CGD0gzQu3K5A+F3X/hlpzk+/VdPruYC+Ga6JrwFIKlpPdkbnexx4nFae3l7DijsTxXbmj8vp9R7HS1FWKAaa3AwHc8u06zQnbiM6Rvf813cEzAhMfL2XYWQZe9A/vbof0Po4JnO0pYfd9Z0DutCEopI5t73MD57aweaDLVzxh9e5b+3B93xefyjCur1NfT4fiUoONHXT1BVgrX6cLxgmEpU8+3YtEb0/NsTSjtffvNwsTfjTtXN4+PNncfNFsXqlMbnppKm6fMUQ5IHPzONPn5xtXstv6k6seCdMcvRwzthsDjR2c8nda1OmD0op+fF/32HcLSt547CWCVXX7ufuVXvfs5Nqf2MX/47rfpBMc1eAjbUR87fbH3QFwuYcsKu2w2yrBH1FcJ3MGZtNWW46U0d5+c+2anO+zUq3kZluM9M7S7JcpAmYMsrLv7+0kLI8t+kcUyiGCkIIMtNtFGU6sVvTmJCXQSgieebtWgLhKBdMLSLbbaPVF+uvDVrkNz7dvtUXREqZwsANmPXrysA9McrAHQIYBm4wbpHbcZIXb4c/RCgSNXvXdqZQYjaM5X0NXaa4jpHjn0r9DSAvw47HaSVVm67lFYlCMC6b5YSpXgrFYBEfaRkTlypv3I53zsQbu/FISOgPDZhKzL7gwLUGOdyuzRHP7agz54hjbb7jveSE+EMRFv18NZ+8f1OfKrBGi7HrzhnHo188m3F5btp8If689gA3PLyNhzYc4sfPvAPEjIDcDIcZsR2X52bhxDycthO3X1AoBptlFQVcNK2Y/AwHaQIzSyO+H2tynejPr5zBfZ+aS31HwDTU4lm3r4m/rNecUUYLked31HLnS3vYcKCZ6lYfr+87NQP0kc1HuPk/b/fZV9NQYT1RW5L3wg+f2slFd71Ge0+IGx/dzo/+uxPQdAw6UrxvpsvG+VMKWXPTMnP/ca/eJzd5P5LvcfDfry7i8pkl/TZ+heJ08LXzyvnU2WMBGKen2L+m98guy3OT5bLT5gsm7NXddktCBDcUkXQFwr1TlDv8poF7sjbC+xll4A4Bjrb29m6ezEIkpeT8O1/l/nUH6ejRjk/Vh88finDm6EzCUclLu+qBWArENfO1Vj2tSX22tAhubJG5NE78ZcXkgoRjS7JdCcIcCsVQwnC+CAElWTEDd8boTH70oal86MxYb0RjQxtPdrqNSFTS6ksUfzNaaHUFYovQw5uOsPxXa95VBkZ3IMwdz+06qdfsbdMM3LG56WbT+AKPtunedqSVK/6w3vxtnyxPv1VjLprNXQFe29PILY9XmqmUH/ztOhb+7BUAFpfnMX9cDvkZDtp6grz4jjafPPj6IXbVdjC/LMdM41QohjuGgu/ueq2tTaoIbqHXwZmlWYzJSef8KYUsryjgv9tre53rr68fwmHVtlxGS8AWfd1dWVnHnS/t4XN/3drLkXYytPeEiMrUDm6IOeP6S5gmEpWsqqqnzRfi/nUHOdLiM7PKXt+vGe3lScI9XldsQ3/VvMSWganSv6eOysRuVVtWxdDm2gVjWVyu1e6P10tzXt/fjM0iKPI6yUy30d4TStjjCyF6KYK3dof6iOBq6/uhZl+/tA9as7thxGgJqNlikGno8KdUavWdhBx4TyhCfUeA3XWd5gLWFQgTCEdYtave3KD6Q1HmleVQkuXi+R3awmsYtB+eVUJZbjqfXzQu4dz5HgduPT3o+iXj+f0nZpsb/zE5Wj85w+Ok6m8VQxljI+q2W3HZY6JTboeVTy8sS9hMpWpJcfaEXKC3orIRlTCcSg2dfm59opIDjd0JLQFOxB/W7OOeVw8cN8XQYE+rNi9IGestadjjj2+rZtuRNu55rXf06Hg8r/fcA03B9Per9/HPzUfYelgT1opPhTLqlb0uG8faekyhi0PNPjwOK//64gK1CVWMKMoLPUSiEkuaIC8jVnduOM6unD2ap244x7zuJxV5qGnrSTBUuwJhVlU18JlzyoCYA7tNd5q9uLOON4+00ROKmJocoDmnTyZ92djodvSx4TUc4KcawQ1Fonz/yR1U1fXW6wB462grbb4QHqeVv75+yExX3n60jX9sOoLXaTVLm8bnu1k4IZdPLywzX3/ZzBLu01svQazzg0IxnMnNcJCX4aArEGZUlgtLmiDLZaPNF6LTH+LaBWPZ8t0VAAkRXIAWXxBfMJLQXrOhI0BTZ4DxemR4Zz9EcT/zwBaW/+pVwpEotz/7zrAW2FQ7kUHG2FxWFCWKJZxM2qNhpNa09cSiSf4wX/77Nj73163srOlASok/HMFltzB/XI7ZYN2IRhVnulhz0zIWn5HY3D7f4zC9y2cUamNbd/NyVn97qVZn4LKZqm+q/lYxlDEMWKN10PcunQKAw5o6XTZZ7GjB+D4MXP03Zxi4z8RFber7aIuRiqZO7bd4MvWoB/UU5aauANW6Ee3TvbxGq6NHtxxNWTOcik5/iHV7m7hA7z+7t6GLzbpS+r+29Da4i/UU7qx0G0dbehLKKiYWZqhMDsWIY1KhFnnMz3AkbDaNeSXfkyi2NjrbRTgq+f3qfbygr+9HW3xICdNLMslwWE1D08i2aO4OmuUBe+NqV6++dyO/eGH3CcdoGLB9RXTiHeDJPL+jlmvv30RzVyChbjaeV3c38tDGw9zz6oGUz7+2p4k0AR+fP8Ycgy8Y4bLfr2fzwRbmjM02M8LG5qTz8BcWmJknBoYyMmjzi0IxEphcrO2fjUBQdrqdcFTiD0XJ9zjM+SOjVwQ3iD8UYcboTDbech5fXjqBug4/nYEwS8/Qsij7sw63tt3PfWsPsqeus9/eo79RBu4gs7KylvKCDGaWZgGYKUzJqQnJ+EMRc8Nd1+E3F7BgJMqqqgZAU4oNhKNICU6bhaJMJ/UdfqJRaS6s2foibbTxMDzUeRkOavUNtJFaNCrLZaqhXjm7hKvmlfLBM0dx/pTEmlyFYihht6aR4bDitmsLyJVzRvPQ5+Zzw7IJKY8flZnosDEiD70juLqBq2db7KiJLTbJLbmSkVITZ2r3hejSnVmGgXo8uoJaVKipK2BuiH1mBFkbX6svZPaUPBGbD7YQjES5YvZoAP79xlGkhFljsli1qz4hbdrjsOLVN6nxEZYpxZqjKzkFUaEYCRgO3mTHl5EJkmzgGkrsd760h3v0WlwjKluanU6Gw0pXQNfC8AWpKPKYiuMAe+pjG8r9jV0nlS5ozEV9R3D7TlH+0t+3sXZvEz955h0++efeavFSSh7Vs0te3Fln1gX2BCP87pW93PpEJUdbfRR6ncwr6y1AaUkT3LBsopkRlm639joGYt8bqP62ipHDJH3+MK7v+PZA8VFbmyUNpy3NzJRs6dYiuOl2be9eEDfPnFGYQUmW67QbuPHCV4f09kZjhnGLT2XgDjA7jrVT0xUlGpVEo5Kth1pZVlGAW7/QC/SG5l2BsJmCGM9zlbU89dYxrrlvIzc++hageVpSeW4PN3cTCGkRFoc1jeJMJ+Go5CN/ep1fvrAbl81iqhQuGJ/DLz8yg2e+uohr5pcye0w2H5ur1cWkanr93UuncMXs0fz2mlksnVTQ63mFYiiR7baZvzGAxeX55GY4Uh5rbGS/eO54zhydaS5MjV3JEdzEFOV3ajo4SzeGa/uI4FbVaW1E3jjcyg0Pb+MXL1SZr09VPx+PPxQhLCHXbScUkabBbRjYjR2x8R1pOTnhqber2xECzpmYixBwoLEbpy2NFZMLafWFEtIli+MEuOIjLAv1FO5y1bJDMQKpKNIcOEXeZANXj+Bm9I7gGhhOKENnozQnnQyn1YyktnaHGJ3tMiMyHqeVvbqBa/SEPZk6OzNFOYUB29wVoFGv20tOUY4Xsdld30Vdh5/Vuxt4Sa+tb+0OcvFda3nxnXpmjcmiOxjhVV0w5/mdtfy/F/fw8KYj7DzWQW6GnUlFveeAhz43n7llOaTr86+x50gm/nGLUldXjBAqdAewMS+MTnDkJDp7Mhw206Bs9QXpCUZw6cKM8aVTeRkOppV42Xa4NWWJ47vhZ89V8bkHtwBaBqjB6/u1dqWlysBVnCw/XbmLW9f1cOsTlTR3BwlHJaOzXebm24ig/mPjEeb/dBWPbD7CH9bsM19/16q9/Oblvew41s7+Rm3xDIajHG6ObUQ/Omc0BR4Hh5p9+HWPjNNmMX8g2460AYltDoQQfHRuKUWZTu64YgZuh5UvLBnP/p9ekmAYKBTDkRy3w0xRPhHLJhVw/pRCbr6wgqe+sgi3w0q63dJnBNdo67W3oYu5Zdl4nVZTdRjgnlf3c/eqvRxs6uai36zlpsfeNntdpwlhLipdJ6iPMzanRhaFgbFJbej0M68sG4DDxzFw73huF9N/+ALPVday41g7E/Mz8DhtpnJpkddpbuZT1d9CosqpsamdWKgiuIqRx8SCDNJE7wju3LIc5pVlmxtYg5I4A7fVF6LNF6S61Ydbr/+PT1Fu9QXJSrfzzfPP4IcfnMKsMdms2aOlAxtGa5vvxAauEaFt6Q4lZF2EI1Hm3PYyd6/aCyQauPsaOlnyy9Xm/cN6xOb7T+7gly9UAXDTY9s50NjNTy6fxoOfnQ/AG4dbuPWJyoQskf2NXeS6HZRkucxIrYHh+MpwGBFcpaSueP8wrUSbHybka+tjaU5sfkg2cD1OK6U56VjTBI1dAfyhiNl5YFF5nnlcnsfBZTNLqO8M8JkHNp9wDA2dfq65d2PKoNma3Q2s3t1AdyBMd5xg5uqqBixpwmyVNhxRlssAc9vl07juvrXsqus0N8EFHqcZac102XDa0kyRmu88XgnAZxaWYbOksb+xi1Ckt8ri7rpOppdk8rXzylk6KZ9P3LeJQ03dHNCNYKfN0utCTe6FmwrlSVWMBG65uMLse3siFpXnJSwmoAk53b/uINY0wS2XTAYSa3D31HcSiUqmjsqkKNNp9oNs6PTzqxf3EJGSF9/R6vH21HeaqYJOWxrN3bH+18fDeH5cntsUgCrLTac7GEtRXlZRwPbq9oTIazzNXQGzju61vU28faydxfpnNcQvCrxOczNvGLi3XlLBwgmx7yRTj155nFaWVRRwzfxSM3qtUIwkXHYLd18zi+klmQmPj8tz8+8vLex1vMNqodDroF7PqNjf2MXRlh5Kc9JNtdRDzd38z9/foLbdT45bi3xOKvJQmp3Obc9289NndzFLL1sy1unNB1uYOsprOpw37G/muR21fPfSyaZ68q1PVHLrE5Uc+tmlAKbmhkF8hPffW6tp7AyQ47ab6ZAA1a09ZobGpoMtfHTuaK5doLU9Kc50mn234yPa4agk120nLU1QUeyl0x9iT30XmS4beXpKppGa3FcEF+Cuq2e+54iUQjGUqCjy8viXF3Lm6CyAhNrzDEdiKv51i8aRn+HAH4rwzHatd67hEPI4bdxz7Rx+8XwV4/LczCzNYnt1G/evPYiUMkH/4q+vH2LO2Gym6XPWtsOtbDjQzNbDrVwS1xElGI6yv7GLqITt1W0Jjuuquk5GZ7uwnkTp1FBlUEcuhLhICLFbCLFPCPGdFM87hBD/0p/fJIQoG4RhnlbG52dQ7Ba0dgdp6NQ2wYVeh7loeZy2lDUqzV1BDjR2pzRuQdvcGn3lbJY0xuSms/VwK9fctxHQetUmp1idjFKzQjESWDA+l7kp6sNOlvMma3Xm97x2gEN62mGsD26E/7xRjTVNMGdsNoVep+m8emjDYUJRzXm141gHbruF1u4gb+gGaqc/TG17j36+E0VwtfczeuuBlrbkC0boCoTxBSMUep2UZru08oRwhH0NnQkRnT31sXq+tXsbaewMMENfBA2jtdDrNLM9jF57l80sMRdLiNXgehxW8jIc3HHFjD5r6xSK4c4HZoxibK77xAfqlOW6zQypK/+4gZd31ZtijB6nlaMtPTy3Q3N4ZcepuK+YUsjPrpxBTyjCY29UA9DuC9HeE+Jj92zguge3IKUmYPWJP2/kbxsO89aRNmTStqC6VXNwGYJxBl2BsNldYc3uRhZOyOWR6xf0Gn+bL0R3IEynP5ygHB2fPZLs/DZqC2//8DTu/NhMstNtlBfEhOeMDBr3ceaJy2aW8PnF4/t8XqEYjswek23+XuJ/N8kR3GsXjOWiaUX8z9IJHGvroakrYKYoA1w4tYhVNy41DdECj1Z22NgV4KZ/b+cXz1ex41g7P3x6J79+aQ87jrXjD0WoadP2I8naHAeaYgGzbYdbEyK4kFgXPxwZNANXCGEBfg9cDEwBrhFCTEk67HNAq5RyIvBr4OcDO8r+IcOuGbiGh7fQ6zQn/wyHNeGCNpQFW7qDKSX640VL4/vKeZNEGpy2NHIzHAlRrAJP6hpEhUKRyN3XzGLzd8/DaUvjkrvX8tRbx8wa3INN3fxz81E+Mmc0hV4nxZlOatv9SCl58q1jLCnP5+aLJvGDD0zhWxdMojsYweggUt3ag1/P3ugrgvu3DYd4YP1BM4V5fJ6W6mSUNviCYTPqUeBxMDbXzZGWHm5/dhcr7nyN6/T6GogJ2FwwpZBqfbGbp0des8wUZYcZwTVqdI2WKAZeV6zVkkKhSORnV87gkevPTnjM+K0ktwPJTlIMnleWQ6HXwcObjwCacKThVNt0sIU3j7bxyxd2m+JX1SkE5VZW1tLeE2LzweaEx6XUavZr2nrYXd/J0kn5CVGbeAw15/h6+7I4A7e5O4DHYTX3IIamQUWRl2klmVw2s4QPxvUYNwxblaKsUGgkKycbLJtUQJm+93cdxyGUq6/LNz66nX+/Uc0f1uznFj3rc1VVAx/47Trufe2AKXoZ377wt6v2ctFv1gLgtlvYcqjVFL8zfrfxolPDkcGM4M4H9kkpD0gpg8AjwGVJx1wG/FW//RhwnhgBfSg8dkFnIMzRFh9CaCqMxqLndVrNBaDQ6+DXV80EDAO3k+RPX5Llwus0XhtbiC6bOSrhOKfNgiVNUOBxkG638Pw3FvP0Vxb10ydUKEYeBR4nj1x/Nl6njWferk1I9wtGolw9fwygtd5q6gqw4UAzR1t6uGR6EdcvmcB1i8YxQY++WtMEkwo9CYqpqRROAf64Zj/3rztoRnhHZ7v42RXT+feXzibdbsEXjJi1NQUeJ2Ny0jnS3G16a+PfY3d9J5kuG0v0tmBFXqepgmxsdAu9TjIcVjwOK4FwlJx0ey+FZ6OebvaY7FP5KhWKEc24PDeTijzkexxMyHfziytn8K3zzwB6pyVmJzmPLHomSDAca8EV/xte+bbWjuwbK8qB1AbuT1dWceOj280+1fFM++EL/FlPMz57fF6fBq7xnvEG7ri4KLY/FMXrspHr1gzb3KTP8X8fmprQ69Z9ApEpheL9hqcPB7EQgoumaanEPcdpGWpkTazb18T8shyKM51UHmtnxeSY8Oux1h5T9NKYK559u5ZfvbTHPObDs0vYeKDZbFn4cX0vk0oVfTgxmAZuCRDfaLFafyzlMVLKMNAO5A7I6PoRj02zUqvqOsl1O7BZ0uJSlK0JOffGotHcHWTLwRYmF3nxOq2mlHiu227WxsWnO5xZmsXL3zrXvG+0IRiV5WJCfgYVRd5eohkKheL4zCzNYsH4HN6ubuvVksPwuK6YXEhUwsfv20Sa0O4bGEIT00oyKfA6zNY+NotIKTJ1rE1bnKpbe8xUZq/TxtXzx1Cc6SLdbqHTH+ZvGw4DmvGb73HQHYxQr5dANHUFzc3ynrpOJhV6zL7byyryzRRCYyNboKcnF+rzQ3IbFICJBR7+et18fnTZ1Hf3BSoU7yPWfHspK7++mI/NKzWjn8lRm1Sb3DE5ienQ8QbuI1uO4rCmMUlXdz7Wllhvb7Tr2naklaauYEJ/WYO/rNcM3NIcF06bxWxPmPCeev/LLFfMcC1LErhzOyzm/BDf/iQVuRl2hCAh5VmheD9y8bQi4PjtsC7SjwmE++5pbziXpITywgye+eoiNn/3PO65di7nVWhGbnN30Gz5WaP/fXr7MUqyXPz2mlnceP4ZXDS1mEA4avbtHpfnZsMty7nxgknv8ZMOLiMiv0wIcT1wPUBhYSFr1qwZ3AGdAGs0AAjeOtSIxy5Ys2YNhzu0VIDao4cI+LSNrgz4eOdNTSHt2Y072Xo0zEfOsJEWkkh3Gjubo0T9XeRkaBftrgNHWbOmwXyfnnCsMGfH9jfpPGjhgyURpGTIf0cKxVAl3R+ivkPzdNotYJSyv7lpvWks5rsEjT2SRSVWKrduMF8blRKPHcbau6npjC1cBS6oa27r9bvcWBMzep/dvBuA7W9s4oBde5/WxgCNnWGerazlwxNtHNqxhcZqzfDeXx8rafjD469Q5E5jR3UPC0ustOzfzrRcC2dYGs33bGvQPlPt/l2sad3DQV2g7szMQJ/zxcaak/7aFAoFUF+d6Bg7uvtt1lQnGpj+psRjNuzS0pUzbFopw+gMwY5t2t6g8kDij/Dq8WFetVvZXBskGIFie4DDKcZhT4vNWS6LJLlCYqP+nvurKhF1mtPdF5CUZAiOdWl7i4jfh0N32B/avYM1dbuO+9l/vNCFrWEXaxqrjnucQjGS+XCxZHGWi02vrz3ucTfMdFDhae5z/W31x/YQgdZaKrfGShKuLYOmZgu7qxvxhbTf6+GmDl5ZvZq1u33MLbLiad3DdAv4j1bjsmppzQBvbtmAyxpLF+3q6hqWNsNgGrjHgNK4+6P1x1IdUy2EsAKZQHPSMUgp7wXuBZg7d65cunRpf4z3tFH1+CrAT4tfMrMsn6VL51Hf4edHG1axeM40ardWU9XSQElhLhedNw/76udZfTSMEHDjlYtNUYrp//cCE0YXcu25E3i4ai1TJ45h6dLJ5vtIKeHllQCcs+CslP1sFQrFu8NzuIWHqzSjdXSOmwON3WSn21i2bJl5zJ/GtbC6qpGvryjvld776vwgGQ4rP3hqB1vqtCSWaWML2HGsg+S5a/VTO7CmHSEclRzqtgARLlx+LnY94rLZX8VLh/cDcMvHllDgdeKrrOXBndvoCWspyHUdfn6zLaZM+pHFM7hgejEXnJf4ufZbD/L0/ne46NwFjM11cyP7WLWrgds/tWBYKykqFEOJ2vQj/Gt3JWePz+WeT83ppZcBYN/XxIM7N5n3m0M2PA7Bkkn5PPt2LTPGFXLRebPglefowgHE0pQvX7GIpnUHea1amxdWzD6Djc/2NjxH57hZtmwpAAVvvkpbfRfWNIHLZiEQidIYsgIRlp9zFuPzY3uHyy6Eube9TFNXgOL8HIoynVQ2VXPBkrMTenwqFIr3xtITPB8MR/nmmucAWDx7KktnJibBrmrbwZNvHqMnFMFhTaM7FMU1Zga+8EauXDQt4fi5Bzexdm8TABcuX0panF7PmjVreu1NhgODuWvZApQLIcYJIezA1cDTScc8DXxav/0R4BUpk/UChx9GijJgtu4p9Dp5/htLOH9KkVmj4nFaEUKYAi8zSjIpztRSipw2Cx+ZU8qyigImF2sy5N9ccUbC+8SXKxspygqF4r0xpTgTj8NKodfB1fM0H128EirAnLE5fPvCSb2MW9AEm+zWNLOkwGFNozjTlbIGd+vhVuaPyyHHbaepK4gtDdO4hUSRJyP1L75mzuhRa5Am4Jy4dj/xXDq9mJsunGQ2mv/y0on8538WKuNWoTiNGCVIGU5rSuMWYExSWnFtu58Cr8NsHTQuz43NkobLZjHr6gwByRy3nZy4+WhcnptvrjiDL0xPnKPiS5SMOtzzJhew5Iz8hDZHWem9U4+Nucvt0FoiQSxdUqFQDAx2a5qpwVMS16feYHS2i85AmHBUMmtMFgDXP7QVuyUtoe0fYK77brslwbgdzgxaBFdKGRZCfAV4AbAAf5FS7hRC/BjYKqV8GrgfeEgIsQ9oQTOChz0ee+ziMXpjAaYqYrquomxcuFnpNuo6/MyIOxbgjiumm7dPJPbitClhB4XidOCyW1h383LcDgtrdjcCiUblyWLU3+RlOPA4rWYLj39uPspjbxzlJ5dPY1dtB19ZNhEhYP2+5oS0IYhtlrPSbeaiFF8zV1Hk4dU9jeb9M0uzyOxjrEWZTm5YNvFdfw6FQnHyGDV1yWrK8RRn9t6sFnqdzBmrrfPlBdpeweuy0tMRwW5N45Ubz6WmzZ/gFAfN4P36inKef7maZ46kEYlKGjoDKQ3c739gCqOz07nqng0cbTFq/nuP0xi722Hl42eNpbzAo8SjFIpBIC/DQYc/zKgUBm5Jduyxz54zjnllOeyu6+QLS8b30tYwavWjwz6EGGNQa3CllCuBlUmP/SDuth/46ECPq79xx+0vZ4/tbZjGi0wBppjNjNGZvY49WZSBq1CcPgwjMayvBskR3JPBiILk6SrqUQl/WLOfO1/aQyQqufTudQDMKcvBF4zoBm7iOYy5Ij5ikx03wYyOW+C+uGQ8CyYMe40+hWJYY0Rtk7Mr4onvlWmzCEIRSYHHwczSLP78qbmmCrrHaaO+I0CR18no7HQzRTgnI9HABXBaBRtuOY9fvbib376yj1FxRnSm7hQzorUVRR42HWwhw2FNmcFhGrh2KyVZLkpmJeuDKhSKgSA3w87hFp/Zuz6e+Kju+ZMLuXBqUZ/nMSK4PaHh3RoonhEhMjXciF+8xuf1bh5v9L0yPKc1usR3cgT33eBMoZKoUCjeG4Zy6NmnYDgaDqz8DIeprPrLF3YzvyyHb5xfzsfv02rwZo3JoklXW07vFcGNZXkYxEdwvXEtQL5zcQUjoMuaQjGsuXBqIfd9ai7LKwqOe9x/v7KIdIeF25/dxStVDeRlOBBCsGJKTJXd2CMkd0SId3gl97A2Ij3xr8lx27Bb03DrDrMpozSF5r56c2c4YxFchUIxeBR4nJRkuRLsCoNJRR7OmZjLt86fdMK049KckVc/r2anQSbVRZccwV1eUcArVQ1mD813w1M3nMNL79SrOjqFoh+YV5bDf7+yiGkl3nf9WiOCm++x47Rqv/lLpxfzu4/PQgjBTRdOYk99J16njcl6r9rklpXxdXcGLrvW9iMQjpo9b4PhiDJuFYohgBCC8+OM1L6Yrmds3XvtHJ6trGXB+N5ONGOPUJxs4Orzgc0ieqVCG1kd8dGdz54zjnMm5plzhDHf9IXR2sjoh61QKAaHb184iTZfMOVz6XYr//j8gpM6jzJwFaeN1d9eiruPxSE9TmQK4Hcfn0WbL3RKRuqZpVmcqQtTKBSK08/0Uywd8MbV4F4wtZAfB6dy1bxSc5MZXw87sSADm0X0qsFt18sXkoVgstK11EWvy8bfrpt/SuNTKBSDj9WSxmUzU6cAe/qK4OoGbo7b3suxdfb4XH5+5XQWlcdEZkZluRJq+Aw9kL4wIrdGBolCoRgcxuW5gXcf/EqmL8G74YyanQaJcSlSkw2MelnDO5tut6qFRKEYYZg1uBkOPE4bnzq7rM9j7dY0PjKnFFtXXcLj507Kx+O08rlF4xIez063U98RMMVjFArFyCMc0TQAipPq79L1LI5U2gBWSxpXzRtz3PMae5B5ZanFK40U5eMJZSkUiuHFdy6uMGtxRwJqdhqCJEdwFQrFyGNMbjoVRR5TGfVE3HHFdNasSWwDXpzpovL/Lux1rGHYKgNXoRi5dAe1GtmiJNVlIQS5brupEXAqVP3kopR1fZCooqxQKEYGXzp3wmAP4bSiZqchSIEn1htXoVCMTLxOG89/Y0m/nNuI3CgDV6EYufiCmuJpdorWX8snF1CSderRmON1XjCc7+mqBlehUAxRlIE7BDlnYi4vfXPJcdOYFQqFoi+y0m2k2y3YlLicQjFimVuWzRuHWxP6XRrcdvn0fnvfDIdKUVYoFEMbNTsNQYQQlJ9A5EGhUCj64pMLxjJrTNZgD0OhUPQj375gElfNLTX73w4UpTnpWNIERSrLTKFQDFGUgatQKBQjjGklmUwrOTV1Z4VCMTywWdIYn58x4O87ryyHLd9d0avHrkKhUAwVVP6aQqFQKBQKheKkUcatQqEYyigDV6FQKBQKhUKhUCgUIwJl4CoUCoVCoVAoFAqFYkQgpJSDPYbTihCiETh8Gk6VCbSfhvOkIg9o6qdz99e4+/P7UGPu//MO13OrMSfSX3PHcPye+/PcaswDc+7hOOb+PLeaOwbm3MNxzP15bjXmgTn3cBwzDO25Y6yUMj/lM1JK9S/FP+Defjz31uE27n7+PtSYh/GY1fcxoGPul7ljOH7Pw/j/UI15GI95GH8fau4YxmNW34ca8yCee9jNHVJKlaJ8HP472AM4Rfpr3P35fagx9/95h+u51ZgHhuH4PffnudWYB+bcw3HM/XluNXcMzLmH45j789xqzANz7uE45v6kX8c84lKUhwNCiK1SyrmDPQ6FQjG8UHOHQqE4FdTcoVAoToXhOneoCO7gcO9gD0ChUAxL1NyhUChOBTV3KBSKU2FYzh0qgqtQKBQKhUKhUCgUihGBiuAqFAqFQqFQKBQKhWJEoAzcAUYIcZEQYrcQYp8Q4juDPR6FQjE0EEKUCiFWCyHeEULsFEJ8XX98phBioxDiLSHEViHEfP3xTCHEf4UQ2/XjPzu4n0ChUAwWQohDQohKY57QH/uXfv8t/fm34o6fIYTYoM8dlUII56ANXqFQDBpCiG/q88AOIcQ/hRBOoXG7EGKPEGKXEOJrSa+ZJ4QICyE+MljjPhEqRXkAEUJYgD3A+UA1sAW4Rkr5zqAOTKFQDDpCiGKgWEq5TQjhAd4ALgd+A/xaSvmcEOIS4H+llEuFELcCmVLKm4UQ+cBuoEhKGRykj6BQKAYJIcQhYK6UMmW/SiHEr4B2KeWPhRBWYBtwrZRyuxAiF2iTUkYGbsQKhWKwEUKUAOuAKVLKHiHEo8BKQADLgM9IKaNCiAIpZYP+GgvwEuAH/iKlfGyQhn9crIM9gPcZ84F9UsoDAEKIR4DLAGXgKhTvc6SUtUCtfrtTCLELKAEk4NUPywRqjJcAHiGEADKAFiA8oINWKBRDHn2O+BiwXH/oAuBtKeV2ACll82CNTaFQDDpWwCWECAHpaHuM24CPSymjAIZxq/NV4D/AvIEe6LtBpSgPLCXA0bj71fpjCoVCYSKEKANmAZuAbwC/FEIcBf4fcIt+2O+AyWiLUSXwdWMxUigU7zsk8KIQ4g0hxPVJzy0G6qWUe/X7ZwBSCPGCEGKbEOJ/B3SkCoViSCClPIa2rziC5mBvl1K+CEwArtLLop4TQpSDGfH9MPDHwRrzyaIMXIVCoRhCCCEy0Lyj35BSdgD/A3xTSlkKfBO4Xz/0QuAtYBQwE/idEMLb64QKheL9wCIp5WzgYuAGIcSSuOeuAf4Zd98KLAI+of/9sBDivAEbqUKhGBIIIbLRMknHoe0l3EKITwIOwK/3v70P+Iv+kt8ANw8HZ7oycAeWY0Bp3P3R+mMKhUKBEMKGZtz+Q0r5uP7wpwHj9r/RSh0APgs8LjX2AQeBioEcr0KhGBrokRgjlfAJ9HlCr7e9AvhX3OHVwGtSyiYppQ+t5m72wI5YoVAMAVYAB6WUjVLKENpeYyHaHGHsO54AZui35wKP6DX/HwH+IIS4fEBHfJIoA3dg2QKUCyHGCSHswNXA04M8JoVCMQTQ6+TuB3ZJKe+Me6oGOFe/vRww0gyPAOfpry0EJgEHBma0CoViqCCEcOvCdAgh3Gg1tjv0p1cAVVLK6riXvABMF0Kk6wbwuSgtEIXi/cgRYIE+Fwi0PcUu4Ek0kSnQ5oc9AFLKcVLKMillGfAY8GUp5ZMDPeiTQYlMDSBSyrAQ4itoi4sFTX1s5yAPS6FQDA3OAa4FKuPaedwKfAG4S9+I+gGjvu4nwINCiEo0xcOb+1JQVSgUI5pC4Altf4oVeFhK+bz+3NUkpicjpWwVQtyJ5nSXwEop5bMDOF6FQjEEkFJuEkI8hqaqHgbeBO4FXMA/hBDfBLqAzw/eKE8N1SZIoVAoFAqFQqFQKBQjApWirFAoFAqFQqFQKBSKEYEycBUKhUKhUCgUCoVCMSJQBq5CoVAoFAqFQqFQKEYEysBVKBQKhUKhUCgUCsWIQBm4CoVCoVAoFAqFQqEYESgDV6FQKBQKhUKhUCgUIwJl4CoUCoVCoVAoFAqFYkSgDFyFQqFQKBQKhUKhUIwI/j/vAU/7iF0AnAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "daily_smooth_seasonality = rcp.SmoothSeasonality(period=288, phase=-72)\n", - "noise = rcp.RandomGaussian(stddev=0.1)\n", - "signal = daily_smooth_seasonality + noise\n", - "\n", - "recipe = dict(\n", - " daily_smooth_seasonality=daily_smooth_seasonality,\n", - " noise=noise,\n", - " signal=signal\n", - ")\n", - "\n", - "plot_recipe(recipe, 3 * 288)" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:55.954374Z", - "iopub.status.busy": "2022-06-13T08:51:55.953232Z", - "iopub.status.idle": "2022-06-13T08:51:56.451832Z", - "shell.execute_reply": "2022-06-13T08:51:56.452245Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAI/CAYAAABtd2SuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXwk9fnA8c/sbtzd7S45d1dOcSiUokUKhSKlFKsL/ZUKVUopFIq7uxxylnN3jVzcPdnsZn1+f8zuZPeSMwinz/v14kWyOzu7m5ts5pnvI4qqqgghhBBCCCGEEMeL4US/ACGEEEIIIYQQZxYJRIUQQgghhBBCHFcSiAohhBBCCCGEOK4kEBVCCCGEEEIIcVxJICqEEEIIIYQQ4riSQFQIIYQQQgghxHFlOlFPnJiYqObm5p6opz8qFouFiIiIE/0yhDgu5HgXZxI53sWZRI53cSaR4/3ksmXLlhZVVZP6u++EBaK5ubls3rz5RD39USksLGTu3Lkn+mUIcVzI8S7OJHK8izOJHO/iTCLH+8lFUZTKQ90nqblCCCGEEEIIIY4rCUSFEEIIIYQQQhxXEogKIYQQQgghhDiuJBAVQgghhBBCCHFcSSAqhBBCCCGEEOK4kkBUCCGEEEIIIcRxJYGoEEIIIYQQp5C6jh4m/XEx26s7TvRLEeIrk0BUCCGEEEKIU8iqkmZauh2sKW0BwOn2UNlqob6zhxXFzYd9rKqqx+MlCnFEEogKIYQQQghxkms227E53QBsqmgHYG99FwCPLy9lzt8LueeN7dz8wiZ9u4NZ7C7yfrmIF9aUH58XLcRhSCAqhBBCCCHESeiZVWW8uLYCVVW54NFVPLKkBIBNFW0A7PMGortrtf9vKG/D5VEpaezud38VrRYA/u/jvUd87h6HG6vD9bXfgxCHIoGoEEIIIYQQA2RzRRvPrCo7psfYnG49zdbfC2sreHl9JQ1dNprNdjZXtNFktlHZaiU+IpiKFgs9DjfRYaaAx/kC1IPVtvfoX5c0mpn5l2XUtFv73fa+t7Zz28tbjul9CHEsJBAVQgghhBBigFz+5Dr++Om+fmsxexxu5v+zkM93NwTcft9b27n2mQ3Ud/YGit12FzXtPVS0WNhfbwa0VNztVR0AfGdCBh4VihrNNHXZ9ccZlN6U3YPV+AWiP3x1K7UdPXyys77fbbdUtrO1sh2P59hrSteWtrBoV//7FcJHAlEhhBBCCCG+AqvDxb+XlPRbk9lhdfa5bWNFG2XNlj6rn4t2aYFpa7dDv624UQs+XR6Vpfsbvc/n5sMddRgUuGB0GgA17VYaumwMSozg7gUFjMqI4YW1FTxReIBOq5MOq7ZPVVWp9lv9LGnS0nejQk20WRx8uL3W77U7aDLbsTjcAcHr0fruMxv44atbj/lx4sxiOvImQgghhBBCnN7cHpXOHifxEcFH/ZhX1lfyryXFhAUbuPWswQE1lU1mO3EH7Wt1idbRtqTJrN/mv3Ja2WolNMhAeLCJd7bU6Ld/vrsRRQFVhU931jMkJZK8xAgAGjptNHbZ+M6ETO49ewg9Tjc7azr56+f7eXNTFVVtVv511Th+88FuzDYXQ1Iisbs8VLZqQWm3zcWbm6r56+f7mZIXT1pMGMV+NaZ767vITgg/qp/HzpqOgNftcHkINsm6l+ifHBlCCCGEEOKM986Wamb9dRnd9qNv0KOgAFDeogV1RQ29AWZjl03/ek1pC9c/u4GnV2ndakubLPp9B5p7v77r9a0sfHgl1z27gdc2VOm3t3TbGZcVS2JkCAD5yZHEhAURYjJQ0WrBbHORHK3d95NzhvL+D2cAUNFqxaPCi2srMNu095UWE8bw1Gh9321WB1Vt2uuv8ganvtVYgP0N/af59ucvn+3npXWV+vd1Hce+mirOHBKICiGEEEKIM97Omk6sDjcVLZYjb+zlC1obvLWd+/0C0SazVrdpc7q5/eUtlDZ1Ex8RzLDUKFq67XrKrH+arq8cs8wbnM7KT8Ro0ILdaYMS+N/1EwBYMCwFRVFIjQllZ00nAKnRoQAEmwyMz45jal48g5IiOHtECnvqeoPJmnYrw9N6A9EOi1NvWPTIkhKufmode+o6iQwxkZcYwY7qjmP+eUSGaEmXVW1W/rxoH29tqj7qfYgzh6TmCiGEEEKIM165NwCtaLUwKiMGt0dFAQzeQLA/zd1asOlbCd1a2U6wyYDD5fF2t7XwxZ4GzHYXj187gbOGJLF8fxM3vbCJ0qZuJuXG8+muegqSI6lqs2J3eQDIiA1j8X1nEWQ0sHRfI109Li6bkIHJaKD4j+fr6a4p0aFsLG/Tv/b31PWTcKsqjy4t0fcL8LPzhmFQet9Tm9VBtXdFdF1ZK6CNgVkwLIX85EieWnmAqlYr2QnhVLRY6La7GJ4WrQfIPqqqcqCpm+9Nz+H2uYOZ/tAyqtqsvLW5mmGpUVw5OevY/kHEaU9WRIUQQgghxBnPtxJa2Wrl7c3VjH/wSy57Yu1hu8b6utXWddposzhYU9rCgmHJRIWYWL6/iYv+s5o/L9oPwPTBCQAMS4tCUeChz/azu7aTTRVtXDgmTU+7/c6ETJbeP4fwYBNBRgPnjUrjyslZmIzaabt/zaV/8HlwIBoTHkR8RDBpMb23L71/DueOTGXqoHjOHZlCbkI4bRYHtQel0BoVhV+cP5SbZuZiNCi8uK6CdouDcx5ZyUX/Wc0LaysAra7WN9O0ocuGxeEmPzmSlKhQgo0GSpu66bA69RXe/nT209TpYCWNZn0FWZw+BiwQVRQlS1GU5Yqi7FUUZY+iKHcP1L6FEEIIIYT4pvQ43NR1ajWdFS0W3t1ag8XhZnt1B0v2NR7ycb4VUYDl+5uo67QxIz+RpOgQNlW0Exli4sIxafz6guEEeQPJtJgwHrlqHHvrurjk8TUEGQxcMi6DhEitsVFWfBihQcajet2p3rrQxMhgBnmbF/XZxi8Q9aXvRocG8b/rJzEyPYb99V043b3B9m1nDeLlm6eSnxxFSnQoozJi2N/QxbL9TThcHhRFa9Kkqip/+WwfVzy5jl01nZR6u/AOTo7EYFDIjA9jc6UWpDaZ7ZhtfQPOxXsbGfvglyzf33TI9+hyezj7Xyv53nMbj+pnIk4dA7ki6gLuV1V1BDANuFNRlBEDuH8hhBBCCCEGjK/LbWVb74pdZauVPXVdXDExk+z48IDmO063h/MeWcmzq7WmQy1mO6MzYgD0brEzByfoqa53zS/g8e9O4AdnDQp43kvGZfDEdRNIjgrh0WvGkZcYQYK3w25GbNhRv37fKuqE7LhDphD7gs+oEBMRIYFVeXERQVgc2uiZFG9Qe96oVH31FiAtJpT6Dhtf7m0gNTqUf1w+lvIWC//8slhvvlTb0aPPOs1PjgQgJz6cvX61qWXNFjaWtwV0Fn57s1Y7+tN3dvY7Asdid7GzVquB3eGthRWnjwELRFVVrVdVdav3azOwD8gYqP0LIYQQQgjxdTjdHvbWdWF3uVl3oJURD3zBugOtlHtTR4enRbOxog2zzcWYzFim5MUHjFqp6+hhf4OZP3yyl/0NXTSb7YzN0gLRjRVtRAQbyUuMYIS3GdCl49MP+VrmDk1m3S8XcN4obR5ogjeozIg7+kDUl67rHzgeLC1G25+vq66/+PDe8TLnj0ojJiwooJGR7/F1nT2sKmlhwfBkLhqbxvmjUnlseam+zbbqdh4vLGVMZgxJ3vdRkBKFf1bzJY+v4cr/rdPTeu0uN2sPtBIfEUxLt51dtYGBpqqqXP7kOi7771oAYsKCjvTjEKeYb6RZkaIoucB4YMM3sX8hhBBCCCGOhaqqnPvISsqaLfz8vGGs8s70XHugRU+bvWhMGvvqtVW8URnRtFnsvLPFjtXhIjzYpI85AW0kisPtIS8xkuhQE102F4OSIlEUhWdvnExXj5Pw4KM/1fal5h7Liui1U7MJMip8d0r2IbfxBaD+Kbo+sd5ANDEymN9cOJx7Fw7pkxacFhOKzak1OxqTGUOIycgT101kc0Ubi3Y18Nyacp5bXY7Lo/LIVeNQvI2QfCujB/PV4i7d10S33cVfLhzNL97bxa6aTibnxuvbba5s1/8tAP3fCODNTVV8truBv1w2pt/3JU4NAx6IKooSCbwL3KOqatdB990K3AqQkpJCYWHhQD/9gOru7j7pX6MQA0WOd3EmOVmOd7NDJcwEpsN05RTi6zpZjvcTrcPuoaxZa8rz9rpiyju14GrTvnI8KiSFKRR4eseMNBRtw9KkpYu++8VKsqIMFFZrdY5JYQrvbtG2ba4+QEyQhy4bRHgCf9a9k0CPzNTpIiVcoWTHRsqP4TMhG1i9quKw28SGKBhtnX2Og6Jy7f2MiPWwetXKfh/b1tCbSttVU0KhpUz//qwo+DRcodGqkhKuULVns/6ezR3azy7IAPOzTGREGSisdrGnvI5ly9v445oeUiMUkroPEBuisHhrEYNcvWnQz+6yE2oEmzdjt7XbzpJly2myqvxqtfbv+MSHq5iXHbhS6n+813V7qDJ7GB5vJCZEPmdPNgMaiCqKEoQWhL6qqup7B9+vqupTwFMAkyZNUufOnTuQTz/gCgsLOdlfoxADRY53cSYZyONdVVVeWlfJ+aNTSY46+ivzqqqS98tFXDA6lf9eOxFVVfWVBCEG0pn++b6rphOTUSHY6oDlG4gJC6KsUwvA0mNCafOYUFUYlxfBOQsm8fnILvbVd3HO+EzSajp5YsdqkgeNYO7IVNZ/tp8gYxnXTB/Mo8u01NQrFk6jdNE+qvc1MX3kYObOLfhKr3Mu8NMBes8He6Wgk8TIkD6rh/ljrTR9sJt/XDFWTw0+WFRlO//drqXHXnnuWcSEBwZ++aXraSxtZcKgFObOnajfPtHm5A/rvyQ9Lpz/3TEPgMZXt7K3vovovDHUfbGOf101lgXjM5lYtYnKNitz587RH/+nrSuYPTSC66blsKKomefWlDN8wjSMjWZYvQkAR2QKc+eOCXg9/sf7eY+sZH+DmasnZ/GXcwO3EyfeQHbNVYBngX2qqj48UPsVQgghTmY17T387qM9vLnx2Aa2d/VoqwyLdjXwwbZaxj24mNUl2mD7TquT97fVoKqHHhshhDg0m9PNh9trWVvaws/f3cmNz29kT62WqHfxWK0mMyYsiEvHZ1Dc2E1JUzdDU6IAGJYazbfHZwKQnRAOaOND/vDJXl5eV0FmXDizCpIAmF2QyOCkSD2ddlBS/51rT7RRGTH9prBmxoXz/E1TDhmEAvr4l+SokD5BKEC6twb14NrSqNAg0mJCSfG7QJcRF0ZtR4/eYXdidrz++g40d9PjcPPo0hK+/8Imqtqs5CaEM2dIErOHJALQ0NlDU5fW3XhQYgQ7D9PASFVVKlq1NOAG72PEyWUgV0RnAtcDuxRF2e697Veqqi4awOcQQgghTgprSlvIigunpkOrGdvfaD7CIwK1WnrHPtzz5nYAXlhbwayCRP7xZREvr68kJSqUGfmJX/u1/rewlL11XTz23Qlfe19CnIxcbg8VrVa9LvHPi/bx0rpK4sKDcLg8WBxuHl1WQkSwkfnDknllfRVT8uIZkd4bPA1Jjeqz35iwIEwGhX98WazflhIdwuTcOP55xVjOGZkCQPpJHoh+HclRIRgUKEjpv+bT996H9fPz+9H8fKJDe4PXjNgwHC4PmyraCTIqpMdqQerg5EhUFararLy9pZrqNi31NjteuxDg6/z749e3My47FoD5w5J5cV0FNqe733E3nT1Ovba1zSIzSE9GA9k1d7WqqoqqqmNUVR3n/U+CUCGEEKelO1/byn8LS6lp106Yihr6D0QPNHfz4fZadtV0sr6sVb+99aATo7lDkygsaqK1247dpRVFrS5tOexrKGvuprPnyMPgN5a3se5A6xG3E+JU9e7WGhY+vIJPdtYBsNvbgbXd6sTicBNiMmC2uRicHMnojFiCjApnFSSyYFgKk3LiUBQYlxnb777nDUsmJiyI66ZpDYGsDjeKovCdiZlEeYOsc0emct20bIak9A3GTnUmo4FxWbFMH9R/Z96hqVEEGRXG9PPzu3ZqDheP7e0c7Fs5Xl3aTHZ8uN711xdwrixu1oNQgOwELbD3BaK1HT18urOehIhgJubE4XSrfbrt+tR1aKugoUEGWrslED0ZfSNdc4UQQohTmdXhoqzZwijvfEB/7RYHLo9Kh9VJs9lOrTcQLW+x9Htl/pfv7WJjeZv+fcVfLgS0xhs+SVEh3H/2UAqLmllZ0qzP9Vu6r4nb5w6mtdtBnndY/ZbKdpbua2RKXjw3Pq/VSX30o5n9ngT6tFkcdPQ4+61D3V3bSX5yZL8rCkKcKrZXdwDwmw92E2w0UNrUTVSoCbNNS4G/9+wh/OOLIvKTI0mKCmHxvXPIig/HaFB4+/bpWB3uPjM2fZ6+YZKeJh8TFsSC4Sl9tslNjOCPl47+Zt7cSeC9H8485H3njUxl9c/nkxJ95Bp532iaxi47o4fH6rfneAPRVzdUBmzvC1Bjw4MYnRGjB53J0aHMLEgk2GRg0a56vdtuj8NNh11bBa3v1D6bR6XHsKcuoH8qNe1WbnhuI0/fMInBSYErvbtrO2ky25g/rO+/sxhYA7YiKoQQQpwOqtusjHjgCy76z2rqOnr63H/na1u5+UUtAGyxOPQVUbdH1euefFS1720ut3aS1OJ3hX7G4ARGpEcTGWJia2WH/rxFjWa+//wm5v2jkNZuO5/srOPK/63jv4UHuP2VLfrjf/bOTn2/Ph/tqGPO35djd7lp7Xbg9qh02VwB23T2OLn08TW8tuFYensKcfIpaewmMTKY1OhQbn15C102F2eP6A0kZhck8tLNU7h34RBACxyN3s60iqIcMgj1URQFRVH46bnDmJAd9829kVOQwaAcVRAKkJcYoc8DzUsM12+PDQ8iKtRERauVrPgwwoKMGJTeFVRFUfj4rll8y7u6mhIdQnRoEPOGJvHJznrc3oGlN7+4iXuW96Cqqv45Oiojhh6nmx7vBT6A9WVtlDVb+Hx3Q5/XeMNzG/n+C5v1QFZ8cyQQFUIIIfw8vap3NEFtP4FoZatVb5DR2m2ntsNKindO3+8+2kO3vTfYK2ux0GZx8Kdvj+LBS0bq+/R4VL1maeHwZK6enI3RoDA+O5Ytle3Ud9hIjtL2ubmyHYDn1pTz7yUlDE2J4s55g7E5PYQGGfj31ePY32Dm8z2BJ1Sf766nstVKcUO3/lwd1sD0tMYuGy6PSslBwbIQJztVVXludTmdVicej8q++i4uGpPOI1eP07c522/lMjMunBmDE8mKD+9nb+J4CQ0yctPMXICABkmKopDjbQw1Z0gSQ1OjSI8NI9gUGKoM9dah+hogXTA6jWaznb3eFc+13hKEnTWdrC9rw2RQ9Me0Wuy43B5+9+Fulu1vBGBVSTM2p5uHPtvHXa9vw+X24Juc80ThgW/gJyD8SWquEEII4WW2OXl3Sw0j06PZU9dFs9neZxv/phdtFgeKAtMGJTBjcAI/f3cXT60sY1tVO499d4JeEzpjcKLe6XHBP1dgMirYnB5iwoJ45nuT9f1NyI7j30tLALh8YibvbKnR73t5XSVmu4t7Fw7h0nEZPL78AJNz4zlvVCoAB5os+raqqrK5QgtgN1a00ePUVgLarU5y/Mq8fO+vqq33sUKcTDweFRX01cv3t9UwKj0GFXjwk70EGRVm5idicbgZkRatd74FmJATR0JEMA63R1+FEyfenfPyiQkL4rIJmQG3Z8eHs7u2i7MKklgwPIVOa9/6d18Nru/in68kYV99F6Mze0spLnl8jf51ojfgbbM46LA6eXFdb/rvlsp2Xlxbwf9WaBcgvz0+nSBv3eqy/U1YHTvITQjnR/O/2kgecXiyIiqEEEJ4ba5sx+Jwc8fcwQB68OjT43DrQR1oTUuq23rIiA3jsgmZBBsNPLuqjFUlLWytbGdffRfRoSZyE8LJ8TbdcHlUvZNjQkRwwP6n5sXrX0/IjiMi2Oj9OpYumwtVhbFZsWQnhPPj+fncetYgQkxGEiODaejqTRGubuuhyRtkrihu1vd556tbuf3lLXq9my8QrWy10m5xyLgYcVKoarXy2oYqehxu7n5zOxP+sJjff7yH+s4e7n1zB2f/a6WerbCtqoNrn9mAQdECT0VRuHpyFqB1ex2UFKGvtImTQ5DRwE0z8/pcHChIjiLEZGD64ATmDU3m0vEZfR47PE0LRDPjtH/TnPhwwoONfLm3kVfWVxJ5UIp1RmwY8d7P2VaLgyZz72d6fEQwTrfKol31mAwKCRHBvL6xWv/srGnv4aPtdbyxqZq1pS0UN5oZ9tvP+k3nFV+NrIgKIYQ4Y3TZtDQ+f5/tqmdCThwp0aF6TdH47DhMBoXm7sAV0TZr/50XByVFEmQ0MCgpgv3e7rlFjWYqWqzkJUagKIqeagva2IFl+5s4qG8Q0/y6UqbHhpKfHMmOmk6+PyuP7a9vw6PCWO9V//vOGapvmxYTRl2HjeX7m7jj1S2M9jZZSokOYaVfIFrb0UNtRw+L9zZyzshUPRCtae9h/B8W8/QNkwLq6oQ4ER5ZUsx722p5fk05Fa0W0mPDeGV9pd6QCODzXVow8PHOOpxulSevm9g7uuXbo3nwklEoisLvvzVKrx8UJ7dbzxrExWPT9E7E/cmMC+e9H85gpHfsjsGgMCw1iiX7GlmyrzHgM/X33xrJWUOS8N3U1u3A6nchcd7QZN7dWsPuui5y4sOZOzSZ59aUA1pN8aqSFhxuDzXtPVz77AaiQ4OwOT38b+UBPRPlRLI53TjcnoDxOKcaWREVQghx2jq4gc8tL2xm3IOLsbm0E9Oadit3vLqV/y4vBaC+w4bRoJAaHUpiZIgeqD27upwfvrqFtkOMAPClA/qPbihuNFPeYiHX2+3WYOg9Q7p9jrbieqA5MCXWYFD46blagDkoMZLB3hPrybnxTMiOY1BiBLHhgauooA2cr2y18LuP9qCgsLmynVvPGsSl4/quKPjeD9An0N5c2cYbG6vkxF0MuC/2NAR0j+7PiuJmRjzwOStLtLFFJU3dON0q/7pqHPOGJrOtqkPf9p2tWtq6061iNCjMH5as32cwKHpt4Yj06ICUTXHyiggxkZ985PE3E7LjCDH1dvmOj+i9yOdL6ggxGbhqchZ5iRHEeVdE2ywO6r0XG6NCTFw+UUsNdntU0mJD9fmkoAWi/lQVfVTWiU7z9nhU3t1Sw9J9TYz5vy/1UUWnIlkRFUIIcVp6fk05v/94Lzt+d45+4rCxQjsRfq/EwXkLtfEooDW4WHughYpWCylRIRgNCklRITSZ7dicbh5bVkK71cn0wb0nJ4rSe9LjW4kZmhoFO7Tbdtd2UtfZQ25Cbx3Ury4Yht3pYbz3hGdMPyfId87L54qJmSRHh3Lh6DSsdjfJUSE8fOU4bC53n+1BC0S/3Ks133j2e5OYkhdPVGgQS/c18r+VZQHbJkeFsK2qgx6Hu08NrK9OyuVRuW5azuF/wEIcgwc+3E1OQgRv3Tb9kNu8takaq8ON1eHmVxcM48s9jdR32hiXGauPLwIICzIGpMjnJoT3aWojzhwLhyezZF+j/v2sDBMXTBmuj6SKDjURZFT4ZGcdoUFGMmLDWPOL+YD2edhktpMWE8bw1N4geGJOPGFBRkxGhbjwYJKjQvTGcZWt1sO+nnUHWmnptuvzU+94ZQtzhyZx1eTsAXm/GyvauP/tHYxI01aFc/1+N041EogKIYQ4Lf3+470A7K/vYuqgBOwuNwYFPCosrXJR2WrRT15Kmrr57tMbAJiYo41mSIoKobHLxme762n3Ns14Z3O1vv+8hAjKWrQVzTBvLafvxGBYapSeout/An3rWYP1r7+45yyS/NJ1/SV7RyEsGJ6izyzMPkydW5p3xAHArIJEfbVgil/Nqc93p2bzyJIStlS202y2k5cYQXlL4Mrslsr2AQlEK1st7Kvv4rxRaV97X+LU1dnjpLHLjs3p6XeWrU9qTO8IkEm58Vw5KYsepxuDQQk42Z4/PJlPd9br3xccxSqaOH1dNTmL80elMflPS3C4PcxIN/Hdqb1Bn6Io3DW/gMeXl2J3eZic2zt+JzMujCaznfSY0IDP6rSYUMZkxhAWbOTfV48nNMjA57sbWFHUzIc76nC6PXpTo4M9seIApY1mLh6bTlWrlc92N/DZ7oajDkSfX1NObXsPv7loRL/3V3kD4b31XaTFhPapiz2VyOUjIYQQpx3/ESrFjWbe3lzNNU+tx6PCL88fhtEAf/u8iA1lbQENgkA7AQHtSnmz2c7nuxvIiA1jUFIEO7xjW+YNTeKiMX2DqzlDknj+psl6syMIDET9DU2N0ptofF2+15wUFRKQstZfrdWVk7JQFLju2Q2sLm2hIDmS8ocuCEhFW3ug5YiNi/74yV5We1MoQfuZ/3tJCVZH789+zt8Luf2VrZLqe4YrbdIuynT2OGnosnHna1tZXqRlI1S2Wrjk8TVUt2kNswAGJ0UwKj2G2PBg0mK0iyy53mZfSVEhep10kFELaH0ZCeLMpCgKMeFBelOqmOC+Fzp+vKCAC0Zrn9nJfjNPfeN8UmPCMPkFlomRITxx3UQeuWocMWFBhJiMXDIug5n5ibg9Kn/7fD8W79+ZVSXNTH9oKbe9vFmfX9potuP2qBQWNx3ydTeZbfz+4z3YnIGZLl/sadBTz/tT3d67InuqH/sSiAohhDjtrPJr0LO/wcwzq8rZ6q0vm5IXz9RUE5/uqsfh9nDPwiH8YHYeg5K0E9107+qiLzV3TWkrswsS9ZmEJoPCczdO1psF3TwrT38ug0Fh3tBkLh6TrjcMykv65tOmegfE932u3140gvP9Gmukx4bxk3OG6u/X412hSo/pXVVt7LJT1GimrLn/+aJdNifPrC7n/W21+m1vbKziX0uK+cI7z9Th6q3PbTyo+7A4sxQ39h5H722t5dOd9TzlTQN/ovAAO6o7+Hx3A21WB2MyY1h6/9w+qba+4zUzLoxhqVrmwVjv6I6ClFP7ZFwMDN/nX0xI/yvuC72f4XV+86Ez47TPvbRYLTj1HWfBJgPxEcF9avJ9n+dPryrnV+/v4idv7+DjHXXUd9r4Yk8jla1Watt7cHtUmsxaAznQSjlsTrc+Rxq0VPTn11ToJSI+TV12OqzOgFFh/qrbegPRwUmn9rEvgagQQojTzsqSZqJCTEzIjuXLvY0UNZr1+/ISI5iSqq0axoQFMTk3jl9fOIJzRmjBmskQuMrSbXcxMz9RT5GNiwjWUwsr/nIhv7lweJ/nNxgU3v/hDFb9bN5x6Wg4OTees0ek8PfLx/S57+ZZeTxx3USm5MXrnXvvnJfPCzdOAXpP5n0BuC+9+A+f7GX+P1fw2w9297liX+L9eVa2aim9qqry5iYtbXn9gTa2VLYx5Def6dvXtPcgzlwljd0Ee1ebnlxxAID15a08vLiY97ZqFzPWlbXSbnEQ108zLtAyFMKDtfq+4WnRmAwKl4zP4PHvTtBXusSZbWR6DLHhQUQc4iN3ztAk4iOCuXNuvn6bb6xWljcg/eDOmaz62bzDPEc0V07KZFxWLB9ur+OdLTW8v61WX51fVdKs1y/XddjYWdNJVIgJVYXCombm/G05f/1iP6DNKfX93+n20OJtHue7cHfwhcAPt9fS1GWj2u/z9FRfET11k4qFEEIIL5vTzQ9f3Up0qIm4iGDe21rLnCFJpESH6iuhPrHhwQxPMJIUFcLcIUl6Otas/ESeXHFAv8J80Zh0Hvx4L60WBzMGJxATFkRseFCf2Z+HqnczGQ162tc3LSLExNM3TDrsNm/dNj0g3TY7IZwtv1mor6ame1cEZg9JZG99F+sOtBJsNPDy+kpWljTz2wtHsHBECqqqUtSgnSBVtFrZXNGGyWigpKmbEJOB9eWtJEcH1r7WtFv7rVcVZ4aSJjPD0qLo7HFS2WolItiIxeHm0aUlzBicQGSIiTWlLUSHBTHoECs8iqLw0GWjyUuMICkqhE9/PJvcxPCAVHRxZrttziCunJxJ0bYN/d4fGWJi62/PDrjtW2PTiQsP1rv1RocGHfbiYYjJyN8uH0tpk5kfv76dvfVdON0ql03I4JMd9Xy+p3fGaFGDmVaLg8vGZ/Detlr+9sV+XB6Vp1eWMTs/iW3VHRgNCiuKm3h8eSnPrCpn8X1nYXFogWxZs4VJudrnZrvFwd1vbCc+IhijQSEjNozajh59jM2pSgJRIYQQp7yqNqt+ddlndkEiw9KiqWi1MCE7jiEpUXpKlsmg8MldswKaPMwqSGTJfWfpgajRoLD0/jnsqzeTEKkFVj+al4/rFK53PDho9r0v6E1rm5WfyHOry3G6VabkxXP7nMH87qPd3PvWdr49PoO3N9foV/xbuu1c/uQ6vQvwRWPSeXdrDVur2kmJDuGLe85i3IOL+6yIqqrKjc9v4jsTM/mWt7OkODk9UXiANoudX1/Yf+MU0Gbxvry+kok5cdyzcAhGb1ZBs9mO2eakvtPGkJRIHrpsNHe/sZ0bpueQkxBBRmwY+cmRfLKzji/3NmJxuA+5Igpwid84oqGp0qBIBAoNMpIWE0bRMT7mq8xOzk+OYtHds7niybVsqmhndEYMB5q6WVPaqm+zrkz7eu6wZD7YXktZs4UJ2bGUt1j4wUubUVW4dc4gnig8wDOryum2u3hhbYX++L99UURqTCjTBiVQ7s0+8aXr3nf2EBYOT2GEBKJCCCHE19NlczL2919+5TQ73x/nV2+ZisPt4ZHFxZwzMpWU6FBevnlqv49J8WtY4XPwDLvY8GCmD07Qv79l9qBjfm2niok5cbxz+3Qm5sSRERtGRauV3MRwZhUkcv85Q/nhq1t5aV0lceFBAaMzAH2+4yXjtEB0Q1kbY7NiiQ0PJikqhNr2Hh5dWkKP083PzxtGUaOZFcXNRIaYjhiIejwqinLolWfxzXG5Pfz1cy2N8FcXDO/332BXTSd3vLqVuPAg1h5o5ZwRqfrczukPLcXlUYkONTErP5GR6TEsuW9On32MSu8dYxR/qLxKIU5CE3Pi2VTRzrDUaMZkWvSGdkaDwtpSrZnb8NQoHrpsNJ/vbuC2OYPZXdvJHz/dx9WTs/jx/AJeXlepN9jzjdAC7ULfzS9uIjMunIN/9QqSI0/5IBSkRlSIAWdzuhnym8947zAdz47k0531dNmcA/iqhDg51Xb0YLG7qGyxoqrw+4/3HNPjF+9t5MkVB9hf3wVAbHgQ84Ym8+GPZvUbaIpDUxSFSbnxKIpCZpyWUuzrVDozP1Ff5XriuokADDmoQUxKdIjeoMnlUfWa08y4MGo6rCzaVc/73nrAVcXaCdq+hi7cHpXHlpXQ2h0409Tnzte2Mvr/vhzItyqO0sbyNv3r1kM0Tll7QPu3/M81EwAtOwG0INaXPdBlcx1yVBFAtl8Ke9wAdZIW4ni4ZFw6swsSGZMZw00zc/Xb8xIjaLU4UBStM+9Vk7N5/qYpTBuUwA3Tc/nb5WP4zUUjCAs26h3YzxvZ21Tu6slZADjdKuUtFsqatRXRLb9ZyAd3zuQcv21PZRKICvE1WB0udtZ00NnTGzTWdfTgcHn42Ts7v9I+q9us3PnaVu5+fdtAvUwhTkqqqnLJY6t5dGkJrRZfk4beYGRrVTvfe24jXTYntX5dDhfvbeTD7bU0dtm4/ZUt/OWz/fxnWSnAgI1DOdNlxWtBpN6FMiyIaYPiGZYaxdS8eLb+9mxe/8G0gMfkJkQQFxGs/xv4ak4z48Kpbuuhtr2Hhi4bXTYnK0u0rsYVLRY2lLfyjy+LufetHf2+ls92N9Btd8kImOOkx+Fml3dVZ7F3zi5AaVP/HZS3VLaTmxDOOG96ti8Q3VPXFbDd4QJRg0EhxNslN/4wqblCnGyGp0Xz8s1TiQgxMSgpkoevHMttZw1isLe7rqpq6b/+gk0GrpyUpZeG3LNwCH/69ijuWtDbROnXFw7n7dunBzwuKSqEhMgQxmXF6hcGT3WSmivEIdicbnZUdzA5Nx7DIX7h73x1K8uLmlkwLJlnb5wM9F41/qp1ZFZvkfrBf8SFON3Ud9po6XZwoNnCYL/Ofzanm9AgI7e8uJk2i4PffrCb5fub2PbAOQD88r2dtHQ7yE+O1IMT3+/d4erLxNHTV0T9xsE8ds0E3N5RL75g86XvT2FHdQf/XFysB62DkyJoszjIiO0NZj/eUafvZ9HOetYeaGVQUgRlzRZ9Fun6A1o9VYfVwcbyNh78ZC+/vqC3I/H26nZSY8L0/YpvxkvrKvj7F0Vse+BsKlutxEcE02ZxUNLUTW5CBDtqOpiYE4fLrZIQGczWqnbOKkgiMsREQkQwb2yqYktlGyP90m0BvWPzoSRHh1Dd1tNnXIYQp5LLJmQC2qLCF3sameC9QHM4qTGhXDs1J6CZXGSIiTGZMYSYDDjcHlQVco5T87vjSQJRIfrRbXcx52/LabU4+PfV4wIaJPh0Wp2s8p5A7art1G/3Ty9rNtsPexXY7VH5fHcDGXFhjMuKBcDsTcn11QsIcTK78fmNXDA6jSsnZR3V9uUtFqwOFyPTYyj2jgCp7+yh2dz7e7OyuJlzRqbqdZ/bqjrosrmo6+jRg9epefFsKG9jSl48TreHbVUdhAUZ+1x5Fl/NxWPS6XG4yUvoDUT7S5k8a0iSvpKVqweikWyqaNfnkh6cwvv7j/cSGWLiH1eM5bL/rmXxXm3VzeH28PTKMv7y+X4tnbe9hzte3ao/7nvPbWJkejRv3ha4StAf1Rswi2NX1GjG5VFp7LLRbLYzOiOGzRVtHGjq5vk15ZQ1WxiXFcvOmg5So0Np6XYwIScO0FIQt1d3UNlqZXlRM1GhJsw27W9ZctThU+WHp0ZT3dZDSJAk64lTX1Z8OOt/uQCT8eg/hxRF4cfz8ylqNKMoCiEmI7+6YDguj8ofPtkbkMJ+upDfdnHGeWrlAXJ/8elh07z21nXpKyzPrS5nzt+XBwxABlhe1ITLo3LuyBSazHY9Pbe5u7eOZktlOx6PypbK9j7P8f62Gmb+ZRl3vrbV2z3NV0uj7cfqcHvHJJj7PFaIk0G33UVhUfMxpaHP+0chFz66GlVV9VS/+k7thFdRICchnDte3cqCfxbqj/Gl+m0ob+M/y0oINhl47sbJvHLzVP55xVhSvbWgceHS5GSgZCeE85Nzhx4yG8Tf6MwYZhckMm9oMtA7YN03IH5ISmADqB6nm3sWFjA2M5aIYCMl3uNAUeBPi/bh9qhUtlr7NDHqtrsob7EE3LarppMeR2DjpKdXljH5T0tOizr72o4etlb1/fsxEN7fVqPPK/Tn+xk3dtlpNttJjgohPzmSvXVdlLdYCDYZ2F7dgUeFuk4bF45O47IJ2sVa/9Vqt0flkavG6d8fPNLnYH+/fCy/PH8Y47xzbYU41aXGhJIYefjj/mD3nTOU/13fO4rrezNyuWlGLmMyYwIa550uJBAVpy1VVfl0Zz12V+BJysOLiwHYV3/o1NfyFu3EaFhqFDtqOqlstepX7W1ON9VtVgqLmkiMDOHyidpKUGmTFjD6r4jub+ji4511fOeJtWypbGdLZTv3vrmd6jYrr2+oxmhQOHtECs1mO3m/XMSrGyrp6uldCV1V0sK5j6xkjbfz2sEKi5pYftDIiiP5fHc9TxQeOKbHCNEf34rmV3tsNyWN2u9Zm8VBdZuVvMQIPrxzJrfPGcSBZkufx/zk7R2sL2vl9rMGERFiYlZBIlnx4XpTIknpOzHCg028fPNUfZzGhWPS+P7MPD0AzU2I0Ie95yVGUJAcyXXTcjAaFL276oi0aP562RiiQ02M9d72nYmZrPjpXJ70NkcCaDLb9c90s83JxY+t5kev9a6aFhY18adF+7SU70PUNK470MqB5v7vO9k8sriYO17ZcsTtmrps3Pj8Ruo7e464LUBDp41739zBy+sq+9znC0QbOm20dGtZPfnJUWypakdV4d6FQwg2GbhmSjZlf76Ax6+dQHiwlmDXbtUuxP5oXj5//vZoFgxPITrUhMmgHLH2MyY8iNvmDD6qix9CnEkMBoWPfjSLK44y8+hUIoGoOK389O0dfLi9ltxffMqP39jOna9t5a3Ngd1rfVfrH/xkLy+sKe93P2UtFoKNBi6fmKnftrJYa67xuw/3cMGjq9hXb2Z0RjRDvSdb33liHW9trqal2058RDA5CeEUN5r1+qcVRU28tqGK97fVcvVT6ylt7uasIYn8++px+nM8v6Yi4Cq+by7iol31/b7OBz/ey4Of7D3qn88nO+u4/ZWtejt+Ib4O32r94dLPD2VFcRMlTb2B7M7aTpIiQ4gND+an5w7j+Zsm680e/F0xKYv7zhkacJsvEJVGRSeH9NgwHrh4BEFG7RQj2GQgLzGCiGAjr/9gGq/fOk2/b6y3JCEzLowrJ2ex/YFz+M81E7hpZi7TByWQkxDBeaNSA+oLGzu1i32+lfKl3s/JLZXt/OClzZi8gUx1e/9B2X1vbeffS0oG/o1/Axq86bFHatS0vKiJwqJmfvHursNu53R78HhUdnvLSfx/B6vbrHzvuY10WLW/QcVNWopuYmQIBSm99diTc+P47O7ZPHDRiD5B482z8jAaFL4/K4/vTs0GtOMhMTJEAkwhRB8SiIpTxofbaxn/4Jd6DeXBqtusvL2lhrvf2A6gN8dY5Q0g3R6V6jarfpKysbyNPy3aR4e1b0v6smYLOQnhnDsylRFp0cwuSGRdWSv1nT28v60Ws81FUaOZwUmRZMb1piL97J2dtJgdJEQEMyQliqIGM2u9DThWlbboK0i1HT20WRwMTookPNjEu3dMZ2pePA2dNv0kAOAj73tYvLcRj0elx+GmzHslv9lsp6zFQnmLpd/34GN3uVm8txFVVVmyt7cD4sHpbEIcK18g6uv8B+jHWX8nzv7H3IriZoobuynwNilqNttJ9hu3Mm9oMkvvn9snuJyaF99nvynelL9YSc09aU3OjWdURkyfVDVfGmaWt/bJYFDITgjndxePJNjUe4ri/zlb06EFoDV+gabV4eJX7+0iKTKE1T+fD2h/Ew7m8ag0me00mfumpPa3rc15bJ+TnVYnT68swzNAHX6bzXY8Kof9jAf0OswVxc19XvPbm6v5tEx7/OVPrmPaQ0t5YW0FENgJ97Pd9azw/r0E2FOrZQ0lRYWQn9Rb55sdH87gpEjCgvvWYy8YnsKBP18Q8Hs7LDWK/OTIPtsKIYQEouKUcfcb22m3OtnfYMbp9gBa639fGpGvcdDB1h1oxeX28P62Wub/szAg5c/p1poFHay8xcKgpAiy4sNZdPdsbpqZi9Xh5kevbcPhfW6A/ORIDAaFS8f11jJtrGgjMTKEISmRHGi2UNvRQ2p0KNuqOthV28ncoUn6tr5OoRNz4rlsQgbddhc7a3obH7VZHOQmhNNktvP5ngbuf3s78/+5gh6Hmy2VvfPdtlS26zWm72ypoaGz9yTro+11/OClzWypbGe/X71p+yFObHocbr793zXfWF2SOH340tv9T5I3lLdxy0ub9dV8fw3eerSwICPry9rotrtYOCJFvz+pn1qahIMC0WmD+tbIpMqK6Env998aycs3T+1z+/jsOIwGRc9UOZQFw1OY4a2PquvQjiP/QPPfS0ooajTzm4tGeIPd4H4D0XarA7dHDWiOdSi/fG8Xw377eUAnyyP5aEctf1q0j+Kmgantb/GWevjP8LznjW08uzowm8f/M9+/eV5jl40HPtzDeyVO9tR1sqO6gyazndXeco+KVisOl/Y3zWLvDWDDgozsrtP2kxSlrYj6bj/WDIiHLhvD/66feOQNhRBnHAlExSlhf0NvPecDH+5h9l+X8/bmaub+o5Brn14PwKqS5j6PCzYaMNtd7KjppKTJjNOt0m13ceOMXDb+egG5CeH8c3Ex8/5RyPx/FvLwl0Us3ddIVauVvMTeE6PZBUnERwSzpbKd2QWJBHvTynxXeR+5ejzrf7kA0ILHhMjggAYdD31ntP71JePSifKuIPlfZR7lHQS/9kALRoOir9z+/pJRDE+L5vcf72HJPu3k/q7Xt3L7K711UTe/uJmHPttPS7edn7y9g289tlq/zzcGprComQPN3Qzypju2HWI4eUmTmW1VHXy6s/90YCEAnig8wAbvsPt2q5OfvbOD7dUdenBa0mRm7YEWrvzfOj7YVsuXexq409sB9bxRqfqK6cLhyfo+fXMn/flWzxYOT+H8Ual6Gq6/lBipET3ZmYyGgBVOn9SYUBb9eHZAGUR/7pyXz/M3aSOyar0rob4VUZNB4dnV5cSFB3G298JGZlw41e1W6jt7+HJPAy7vBcQWbzO5lu7DrzACvLm5GiCgbr/b7jrsKmmZ98Joi9lBp9XJ3q8xhsvl9ugBaItf74EPttfxh4NKMur9mg5V+DV0eqLwAA63B7eKnrb7w7mD9fvdHpWKVl9zIhuhQQYe/+4ExmXF6tk5SVEhZMaFE2wykB0ffszdiMOCjUSEyJAGIURfEoiKU8LWyg796331XTR02fQ/xHWdNipbLawra+3zuEvHp6MoWpBa65fGlRkXRnJUKH+/Yiwj06PJTQgnKy6cR5eVcvOLmwkJMnD+qFR9+yCjQe/geNtZg/Wrw/7pRqkxoZw3UnuMy60yIVtrZ//HS0cxb2iy3qxjVHoMY7NiCTEZAjoMDkmJIthowOpwk5cYwa7/O5c1v5jPnCFJ/HDuYBq77PqVa19AevOsPL2OrrCoSV8dbjLb9Sv+vhOhVzZU4nSrTPeuKLVbHfzjiyIe/rIIgOJ2Nw2dNr3uamN5G4t21esncEL4e2ldBbPyE/nVBcMAeGtzDR9sq9XTdbdUtHP3G9vZVtXOPW9u51fv72avN0g9d6QWLJgMCqMyYvjb5WP487dH6zVl/hIiteDyjrmDeOK6/ldVMmLDSI0OZURa9IC/T/HNG5oa1W+QerAQk7YaV9thpbajh5ImM8NSo7hiUhYuj8o5I1L12tPs+HCq23r4zfu7ufXlLdz6stbwxxfQdfY49c9T0FJq//DJXuo7e3hnSw1WR2/w6Z/Ge/VT67j3ze19XpvN6ebRpSV6Omurxc6dr23lgkdXYfmKo7jaLA58i7Gt3sDZv/ne/W/tYO2BFq55aj3L9zcxOVdbXfYFli63h0921nHeyFQGxRj0ldL7zh7CdyZk8rPztFprX8lIQ5eN/ORILhyTpqe7gxaIGg0K4zJjGZkhv2NCiIEzYJeoFEV5DrgIaFJVddRA7VcIgLqOHgyKNqeuzJta22Vzcf6oVD7b3cBL6yrpsDoZnhbNvvouDIrWnfGyCZnsb9AaBnn80qt8qUWTc+N54aYp+u0VLRaazHZGpEcH1L2BdkV+aGoUM/MTmJAdR4fV2WcF5tcXDufzPQ2Mz44lKz6ckj+dr58YLfrxbN7aXM3gpEhuPWsQc4cmBTRvCDIaGJQUwf4GM9GhJsKCjWQE9w6EP9hvLhzOLbMHcducQfzotW10Wp0BV8Lf3VrDbWcN0n8evqvb0wcn8OqGKtosDt7bWkNYsJG7Fw7hn5ttVCklpHuD4121nfzw1a08ed0EzhuVdoz/YuJ04XJ7eHFdJTXtVh64aASKotBlc1LfaeP66TkkRPSesBY3munxrhb5Gsi89oOp3PLi5oAVnZn5iUQEG8mKDyfEZDzsDFLfiujhWuCHBhlZ/6sFX+t9ilPDyPRoFu1q4IPtdThcHuYPS+au+flsrmjj6im9x1FWfBgf7ajTL6ytKmnG5fYEpOS2WuykeWed/uqDXXy6s54Pt9fS0u0IGLnVZLZTkBJFdZuV3bVd7K8302ZxBKSCf7i9Vu/IDlpt546aDkC7qDdvmLby/8bGKpKiQlgwvDcl3eHy8N/CUm6akUdMeBB2l5uiBjMGv5XHVr8A2ufdrTW8u7W3GV9WXDjNZjsVLb0XE1u6HVw0Jo25cR08XWRkSl48JqOBf145FrvLzdMry/h0Zz0XjUmnodOm1+KmxvReJPVl8Dx/02SM0nBICDGABnJF9AXgvAHcnxC6uk6tznJIcuA8umumZJMWE6rXy1w0RguYCpKjWHr/XKYNSmBWfiLbqjsC5nH2V4sGWqA7JS++TxAKWvB6zZRsFEXh5+cP4907ZvTZJis+nO0PnM0tswcB6EEoQEFKFL++UOsyeNaQJH0bfwXedN7osMCmK1lxfYcYz8xPBLQh4UNSImk026hotWAyKIzJjOG9rTW8tK4Ss93FnfPymTE4gVEZ0UzO1Zq9VLZaqeu0UdPeQ217D3Y3VLX19Kmrauw6ci2VOHXVdvTQfZgVm8eXH+APn+zl+TUVNHlP4n1jV4YkRxEX0XusFjWYKfb7PRuSEsmMwYlcOSmLcL/GJlGhQdw4M5drpvRdAT1YZlwYwSYDyVF9U3LFmefP3x5NZIhJ/wwPCzKSHhvG4vvmMN6bhQJwvt/Fs1tm5eF0q1S39wRcEPEFpdurO/ReAb6U3Tc3Venb+WZtFhZpF1dcHpVPD+pk3mYJbKLX0u3QM15W+pWN/OK9Xdz84maeW12ud65dXdrMI0tKeG+bFlS+vqGKbz22hov+01ti4UvR7fReUJwzJInfXjQiIDBMjQklNzGC8hYLNqebhxcXExliYu7QZJLCDXx57xz+cEnvOkGIyciVk7P4cm8j9Z09NHbZ9NT3783I4Ufz8vnDpaP0VNyIEBOhQX0bFAkhxFc1YCuiqqquVBQld6D2J84MPQ43To+H6ND+u102dNq45PHV2F0e8pMiGZwcAXtgeFo0xY1mJubEccXETB5dVgqgN7NIjek9aZ1dkMR/Cw9g8evYmfgVxk34iwwx9RuswterU/N1EDUZAq8RxYQHERVqwmxzERceRFx4sD42BiAlKpQOq5Oihm4y48K4fGImD3y4h999tAfQ5vrd7x154faoKAqs96Yy210e1pdrX9e2W3F7PAxNiSI/JZJPd9ZT26GlNDd02lhX1sK5I1PptrkCOpyKU9fMvyyjIDmSxffN6XOf1eHi+bXlRIaY6La72N9gJtho0Ouxh6RE0dztv8KknSynx4RS12ljrLcj6i8vGMatZw3iiz0N+vzGn5477Khe33XTcpg7NKnfDp3izJMeG8ayn8whxGTkw+21TMrp20UZtJr7d++YwfbqDsZlxfLM6nKW728KaMJ275vbuWhMOi+srSAjNgxF0S7QAXhUuHPeYB5ffoAHP9nLkn2N9Djc5CSEExZk5KW1FVw7JVvPaik7aC5pa7ddr8P3jfDyb3r04Cd7GZQUwbL75+qlJ6tLWrhpZl5AwzofX4Dc4V0RvWV2HrMLkrh0XDr/+LKY1zdWER5sJDchgsKiZib9cQnddhf/uWZ8wO/OwfWd103N4amVZTy/poJ2q1Nv/JUWE8ZPzg0ckySEEANNqsfFCaOqKrP/tpywYAOrfjY/4L4um5PLn1jL+Kw4fUUuPTaMqydnExcezPTBCeyvNxMRYuL2uYN5dFkp47Nj9SvQaX6B6KTc3qvk8RHBtFkch03zO5F8gaj/VXuf7Phw9tR18X/fGsm3xqYHnFAke+t5NlW0MT47lm+NTWfpviYuHJ3G3KFJAUGj0aAQExakB6IAK4q0wKK2oweH28P4rDgevWY8e+sK9draq59aR0WrlYvHNrOpvI11v5x/zE0r7C43ZpvrpP35n2l841RKmrr7vf/z3Q10WJ08df1Ebn15C0UNXfxvxQF9JFFmXBguT98a4p+fP4y739jOpeMzAG3lJT02jJtm5h3zawwNMpJ/UCaEOLOFB2unLpdNOHyDo4k5cUzMidO7OvtmLhsULdA80Gzh30tLGJQYwYvfn8LTq8p4aV0lV0zMZGhqFDfNzOP5NRV0WJ0s2tVAsNHAd6dmMz47lrvf2M4Xexo4f7S28nrALxBVFKjvtOkXacpaLDjdHj1t3SfEZOSOV7bwpXes1vqyVpxuD/sazMzMT2BNqfZ7lh0fzusbq3C6PZzr7UMQG6Zd8EyIDGHBsGRe31hFZly4nk0zIi2auxcW6Jkzh5IVH86CYck8tbIM6G38JYQQx8NxDUQVRbkVuBUgJSWFwsLC4/n0x6y7u/ukf42nsrV1Lj3g+mLJckJMCjubXYQHKTRZVYob7RQ39v5xd3U1c2BnJ/lAc3EVCUBhobYS+u954ZgMDnZvWUdsiIKpuzHg3y4mRKHTrnJeFlicQezYuOaYg6jjoa1bO6mvbu7sc+yFurX0sIay/azoCBzG3tispVZ29jgJsrWzfeNabhoEWA6wd+sBAvsrQiguOvwmEizdq6WZ2Zweqtt6GBfrorCwkHC1h31VPSxdtpwK70rBZzvrcKnw2DtLiQpWyI3pvdq+ssbJsHgjyeH9Z/1/WOpgaZWLf88LOyl//mea+u7eIPKTL5cTGRz4b7K4yIFJAVPTPmJDFAq3l7K2TjvWwk2wcuUKuh2Boy0uyAsipqOEx+aH46zZTWENJyX5fD9z+Y/4vGt8CMPiVQ7s3IjRrK02pnqayXe3s2plFcGKB1+xgsPtIdFRT1R7EwmhCk9+uYONO3YzNtFIUX0Pc7NMLMgO4u0iB9srW1BVKIg1UNLh4f0vCjl4tGhJQ5feZTrcBBaHm2c/XE5xg41zc4MYl2Rke7Nbr3N9Z0sNtnYtaN2/cwutpdrnrAn4w8wwYjqKCfdo72l8si3g9+9wx/uESDdLvF83VRRR2H3g6/x4hTjh5PP91HFcA1FVVZ8CngKYNGmSOnfu3OP59MessLCQk/01nsr+9dhqQAtEV5oTWTgihYc/33TI7aeNGcLc6blH3O/6WW6CjYaARkA/Da3kNx/s5oeXzCSzn3rLk4XD5eHXqz/jZxeOYu7kwPq5NZa9bGks5/w508lOCHwPSXWdPLxFqye6aPoo5o7LOOzzJO1aTYO1kyl58Wwsb8N20DSCC2eMZu6oND5v3cmSfU2EZY8GNgDg8p5MPbrdQWZcOMt/MhfQguAbP/+SS8al8+8Lxvf7vG9Ub6HL0cD4qTNl1MZJYFVJM6zeCEBE9kjmDksOuP+Vys0MSrYwf94cxpRvpKbNiqK4uGBUGncvLGBISpQ2hmXZIpKjQlh83xxiwvpPsz/ZyOf7GebzT/Uvs+LDqG7rITkqhPuvWqjfPs7qQIkp5Y5zh+irrh1+jwsLMnLLJfMIDTJysXkPL66rYEezm0vGpWNx9nDW2CFcPyuP7T072OltInTu+EGULC8lNX+0Vl+5ah2PXDWOTRVtvLqhtw71NxeP5lfv76LMk4hbreHcqSO5cHQaPU5vQ6Fd9VS39fBJmRYsnzt/9iFLWs7p57bDHe9zgdFjmllT2sotCwukDlSc8uTz/dQhqbniK3lxbQVvb6nmk7tmf6XHV7Za2FHTyc2z8nh2dTmvbqgK+KPcn4PrJg+lvz+i103L0eZ3HuIP98ki2GSg4i8X9nvfrIIkNpa3BdS/+vg3cpldkHTE5/G18b9rfj7XP6sFIiMSDOxt9QTsIyM2jJZuO2sOaDVOQUYFp1uLRJ1ulfIWi9490texd/FerZaqv5q+Su+V/fpOmwSiJ4G6jt6RRo8tL2VkRjTJUaE4XB6CTQbKWrr1BmGjM6JZWaylcF80Jk2fk2s0KDx9wyRGZUSfMkGoOPO89oOpdFqdjMqIIcRkoMvmJOmgBlix4cE8cPGIfh//03OHoii9f1/OGZHCC2srAPhoRx0AY7O0WdCJUb2fbdMGJfDY8lL+8Mle/TNxSEpUwBznbb89m7iIYB5bVsJbm7UAdlhqNCajgSijgfvOGcp95wzlxuc3UljUjNGg6J1sB8rsgqSj+tshhBADacC65iqK8jqwDhiqKEqNoig3D9S+xclnY3kbu2u7+p2P9vrGKn0u2cEsdhcby9v4ZKeWCvr9WX1rxv546Sgm5vTWdYaYDEzMieOckSl9tj0WJ3sQeiRzhiTx4Y9m9TtvL8FvjID/SIFD+b+LRzB/WDKz8hO5d+EQfjA7j9vG9J6U+YaPZ3hb+a8sbiEjNozxWdq/i3+nxu3VWvMP3+w6q8PNcm93SX+qquodeRs6bfxnaQkPfbbviK9VHJuSRrO2SnkUajtsKAr8/fIx7Knr5Mon17Gpoo1Rv/uCLZVtVLVaGeSdU3vOiN65ugUpgTWbZ49I0cdgCHEymjE4kfNHp5EVH05ydCj5yVFHdeHkL5eNZnZBInfOy+eHc/P12yfnxTMyPZoZgxNQVRiTGaPPjva/MDguOxaDotVh+5oQJUYF65+tGbFhxHk/s8dmxQJaTWiB34xqn+HeObnhQUYpbRBCnBYGLBBVVfUaVVXTVFUNUlU1U1XVZwdq3+LkU93uW9nqCbjd5nTzy/d28WShVmPicgc2Mvnnl8Vc+b91vLC2gkk5cWTEhvHj+fkB2wxPi+bdO2bow+0n58bz7h0zpMHNYRgMCt8en8Gfvz36qLa/cWYez904GUVRuHthAb++cATRwXDNlCxevWWqvl2+92RoV20n+cmRFKREoigwb2gSyd7Ow/9eWsq2qnYONFtQFC0o/mSntkLQ2ePk4S+LaOm202516mNCGrpsLNrdwCc76hEDp7ajh3MfWckXexqOavu6jh5SokK5YlIWr94yjYpWK795fzcOt4dPdzbg8qgMTtKOgTGZMfrjchJO3vR2IQbS1VOyefnmqX1uDzIa+PTHs/nPNePJiA3j3oVD9ODw2+Mz+M2Fw3nl5qlEhpj61IbGhwfrjfUG+wWcvhnOZ49ICSgt8RmWql0AMh9m3JIQQpxKJDVXfCW+5gl1HbaAjpa+2zdWtNFstjPzr8u4fc5g7jt7CBa7i7e3VAPa/LYfzdMC0PvOGUpabBi/fG8X0NvxNs3b6TX5a45aOVP866pxX+vxiqLw0GVjAm4bkRZNRLARi8NNfnIkN0zPYUpePLMLkrDYXfzota3sqO7g2/9dC2hX9xcMT+atzdV02128vbmaR5eV8tbmGv5+Re++6ztt1LRbsdhdehqo+PoqWy14VKhp750F63J7aDTbSYsOZen+JowGmD9Myy6o6+ghPVb7PZvovTBU5M1mKCzWVrV9K6KKovDnb49mT11nwHxcIc5kCZEhrPlFYNf3+IjggDnRwSYDDlfvRVmT0UCmd0U0P6k3EP3u1Gx2VHdw21l9Z0yDlq4rhBCnEwlExRH1ONz8t7CUO+flU9Zs4fHlpXR4h2rXd/awuqSF1zZWkhwVql+xrWnvYfn+JhwuD48uLWFybhzPr6nAbHMxKiOaffVmzh/dm+rn+6NsUHoDT18tZFK0BKInisloYGJuPCuLm8lPjiQnIYKcBC0wiY8I5rHvTqC63co7m2t4b1stIUEGLh6bzkvrKvnp2zuo69Q6/Taabfzw1a36fosaujDbtKv6dR095CZGHP83dxpq8P68W/3qz/69tIT/LCvlhuk5vLSuEoB9D57HE94xLFdPztK3HZ4Wpc+NLWvWUq3903B9WQpCiKO36Mezaei0cd2zG/TbYsOD+fUFw5k3rLcuc3BSJO/cMeOQ+/FdFBJCiNOFBKLiiJ5aWcZ/lpWSGBnCkn2NrPIO5wZYsq+JlcXNRIcF0WF16I1sAH31E+DeN3fQ0m3ngYtGcPmkTMqbLQF1NL40peSoUEze1RZfzVmSpOSeUFNy4/RA9GBZ8eFkxYeTHR/Oe9tqSYsJZVJOHPefPYR/Li4G4OZZedicbl7dUIXJoDAoKYJNFb1D5e98bSvXTMnmyklZ3P/2Dr47JZvpgxOwu9y8uamaKydlnfFdHLvtLnbXdjIlN77flL0X11YwKTeOel8g2t0biG4sbwMIaAa29kALb26qYvqgBH55wXD99mGp0SzZ11vfmxkXRuQAN0UR4kyTnxypf34G+2UT/OAQK5+HEmQ0UJAcybRBCQP6+oQQ4kSRMwxxRA1d2smtotDnpHTx3kaSo0JYdPdsHl5czGsbqggLMqIosKminYhgIyPSo9lU0c7QlCi9OZGvKYOPrzbGvyNsXlIERoPSbwAkjp/LJ2bRZnEyNjP2kNtkxoXzzu3TyY4PR1EU7lpQQHRYEL/7aA/nj0plbFYs84clkxgZwn8LSwPmw+6p6+LfS0swKAof76ij2Wxj+uDpfLargQc+3ENlq5XfXqR1snS5PXTZXEfVkOlYOd0eLn18DfcuHMLCEV+vMdZXZbY5+dk7O7n37CEMSYnC6fYQZDTw8rpK/vr5fiZkx/LWbdP1izXlLRbcHpXffbSH2PAgLh6TDkCbxYHT7WHZ/iZSvCnubo/KLbPyeH1jFe9vq6Wxy85NM/MCGrYMSwtsQuTLcBBCfH0bf7Wg3wtJx2LxfXMG6NUIIcSJJ4U+4ojMNi0N1+1RaTLb9duDjNof1Bum55AYGcJZBYkA9DjdevfA3MQIZgzWbj9c19vQICMp0SF6vRpoq6TrfjmfOUOkpfyJlBoTygMXjzhiHeek3HiSo3v//b43I5cdD5zDpNx4gowGFgxPYWxWbL91Ts1mO796X6sR9s3vq2zV6hw/2FaLy+3B4fJw9r9WMuuvy1DVo+sKC7C/oYvvv7AJmzNwWOozq8p4ckXv4PbWbgd76rrYWNF21PseaM+sKuez3Q28tqGKbVXtjHzgC6parXpTsK1VHXzsbQQFcMNzG7jiSa0+1+1We1dELQ4+393AbS9vYU1pbwbDzPxEZhcksWiX1iRqSErgRZ4xGVqHT19joqESiAoxYJKjQ6XpnhBC+JFAVBxRl7eWr93qpKrNytisWH5+3jC9E+C3J2QCMN0bcILW6Ra0QPS8UakkRARzybj0wz7Pv64ax31nDwm4LTkqVNrUn8JiwvuOR7h22qHrDNNiQvURL/sbugAtqNpc2c5L6yoob7FgdbhZsq+Jh78s4px/reCBD3f32U+Pw82fF+2j0+pkdUkLy/Y3caC5O2Cb97bW8tbm3vTxlm7tIosvmPsm2F1umv0u5vhzuj28sUlLn7U53Wyt6sDh9rC7rpM2i4OchHCGpUbxvxVlgNYht7qth3ZvvXZqTCgNXVrA2maxU9qkvV9fvWiw0cCEnDjmD0/Wf3cLkgMDzeyEcJb/ZK7eaGWoNEcRQgghxDdEUnNFH7e/vIXqdiu/vnA4MwYn6kPvGzp7aDbbuWFaDnfMHcyYzBj21nXp9Z0xYUH84dJRjEiLxu5dfRqUGMHwtGi2/PbsIz7vDL9AVpy+kqNCuX3OYFq67UwblECQUWFEWjQxYUE8tbKMVzZUoqoqRQ1mpuTGs7Gije3VHWyt7K0rvfuNbVgd2jFW0tTNAxeN0NNVVVXltY1VPLWyjLAgIz3eY7Gh00aw0cDe+i4uGZdBk9lGl82Fx6NiMCh6wNZw0EiiI3l5fSV5CRHMKjj88dttdzH7r8tQge0PnIPHo6Io6Bdatla209ilBakVrRa9M215i4V2q4OEiGDmDEnmkaXFWB0uNpUHrtzaXR7ardp7aOt2UN5i0e+7eGw6d84bTExYEPOGJgMQFmTUf3f95SREEB5s4pwRKczKl99JIYQQQnwzJBA9wz3w4W7qO208fcMkQKst+9w7g/DvXxShUKSvrOyq1Vaosr0zBGfmJzLzoBPV66flANqKzuyCROYNSz4u70OcWn5x/rB+b8+KD8fm9FDT3kNFq4WLxqbT0GVje1UHu2o7mZQTx+bKdqwON9dOzWbG4ETufG0rO2o6mJgTT1GDmZue30hosNbcSAV9BbKu08ZvP9hNXaeNaYMSaLU4UFVo7raTEh1Ki/nYV0TdHpU/fbqXSTnxAYGox6NS1mIJqG9+ZlWZvnrZZnHws3d2Ehpk4LHvTgCgsLgZk0Fh/rBkdtX2jkipaLHQ2u0gMy6cgpRIVBUONFnYVNFGVIiJkCADLd0O6jp6cHlUwoK0cTv76rv0586JD9dTopOiQhifHQtwyHq1pKgQnvJ+JgghhBBCfBMkED2D7a7t1Mc57KnrJDo0SB/dMDQlim1VHQHb+05sM+OOPMw+NMjY7xBwIQ4nO147tn753i48KozOiKGixcKiXfW4PCo3zcxld10nNqeH8dlxzMpPxKDAiuIWPtpex8c762nzG13S1GWjyawFlg2dPXT2aIHgGxur8ZWZLt/fxPzhybRa7N7H2PVV0iMpa+7G5vSws6YDVVVRFAWrw8W3HltDaVM3r90ylRneizUlTb2pwevLWlm2vxGT0YDV4SI82MSKomYm5sQxKiOGL/c24vLmz1a2WmmzOBiTGaPXdJY0mdlU0caEnDj+fNloXttQyePLtXrXsVkxrC9rC3i+pINm8f732gm4PUdfZyuEEEIIMdCkRvQM4DnECefTq8r0ry98dDWz/7acv39RBMC9ZxcAMDwtGpNBCWiwkJtw5EBUiK8iyxuIri5t4ZZZecwflsz47Fg9KBubGUteYqT36xhiwoMYnRnLR9treXFdJTkJ4Swc3rsKX9Peo6+I1nfaCPd2fX5lQ6W+zS/e28VP3t6pjzxxuD3UewPYPy/aR2t3/zWdoHX8Ba2O+l9LSqhus7K5ol3PIvBvfFTTZtXnAD6+vBSPCg6Xh3UHWum2u9hb38Ws/ER9pqrvdZe3aqm58REh5CREEGRU2FTRTnFjN5Nz48iIDdN/JkC/6bQHB6JpMWFHdUFJCCGEEOKbIiuip7nKVgtz/l7IU9dPZHhaNI8uLeEPl47CZFAoLGrmknHpfLi9twvnlkpt5Mq5I1P546WjOGdECklRIdz/1g7e21ZLYmQwCdL1T3xDchLCuXRcOmcNSeIybxOsKydlsb6sld21XYzKiCE/OZLqNiuDkrTga2pePE+t1C6q/P5bI4kJC2J1aQvBRgPV7VZ9FfRAs0UP7g5uGLS6pDng+5l/WUZGbBi1HT0caOrmme9N6rdp1p66Tv3rR5eWsLG8lfnedPTEyBB21XRS0WJhVUkzlW1Wzh+VSn2HjT11XeQkhNNitvP57gb9Qs+Q1Ch9VRigIDlSX9lMiAgmyGggLzFCb2rkawrmH2j6bgOt++3Omk7p1CmEEEKIk44Eoqe5ogYzAM+tKSchIoRPd9WzYHgKiZHBdPY4OWdEKk1ddoobzfzp26O5/ZUtWBxuFEXhOm+9J0BsuDa3cUiKjHMQ35wgo4FHrh4fcFtEiIn/Xd9br3jf2UO4ZkoWRm/q7JRcLRANDzYyIi0ak9HAjt+dwyNLSniisHc8y47qDgDOG5mq10H7eFRY6a3R9K2+1nb0MCYzhqX7m/h8dwM9Tjf//LKY5T+Zq4+y2VXbyYi0aPZ609a3VXUQHxFManQoM/ITWLqviSv/t04fe5QdH6E3T7rtrMHsq+/i1Q2VRHtneeYnRzI4KZI/XDKSd7fWctmEDB74cA8Acd7ZqaPSY/Q5rL55vImRvXNVJ+TEcfeCAn0m786aXaT5zecVQgghhDgZSCB6mvN1Fq3rsJHu7ZDZ0m1nW3U7JoPC7CGJLByRjKqin9hfMTGzz35ivWM4fGmDQpwoeYkR5Pkdh5Nz41EUGJ8dq3fODTEZyYzr7QgbFWrC7B1D9J2JmXogetPMXKJCTCwvamZXbScjM2LYUd3BtVOzuXR8BmMzY7nw0VX8/YsiOnqctFkcLNvfxHmjUumwOthS2c6NM3L507dHUdVm5e43trNoVwNzhyYxJiOG97bWEuc3wiY7PpzvTMjk3a01XDEpE6vdzae76nl2dTkmg6Kvhl4/PZfrp+fSZnHogWiCNxD91YXD2VLVTkFyFKFBWlMm/xXRIKOBe71jkOwuN5lxYXrKsxBCCCHEyUIC0dNcb31cD6FBWu1YWbOFz3bXM2dIEtGhgXMe9z14HkHGvimIvoA2OUpS/MTJJSY8iNvnDGZCdlzA7YP86ibnDU3mox1aCvrUQb2pq7+7eKR3H8Hsqu2kIDmSp2+YSFJkiJ6Ke+tZg/jpOzuJDtU+Lm9/ZQs/mJ1HfnIkTrfKxWPTGZMZy5jMWP6zrJTSpm6y48M5b1Qa68paue/soZz7yEoAsuLD+NvlY/jTt0cRZDQQE27gknHpPL+mgsTIEL1Trk98RHCfrxMjQyj8ydyAZkMJEdrv5cHdiENMRmYXJB3rj1QIIYQQ4hsngehprsXbaMXpVtldq9WzvbK+Eofbw28uHNFn+zDv2IuD+VZjhqfJgHtx8vn5eX3HwUzNi9frPG89axAXjE6jzeIgOjSIKyZm6r8bABePTePPi/aRGh1KclRgGuuojBhAa0jk8/SqcsZmxZKbEM5o7/1Gg8KT103kxuc3ct7IVFJjQvWU4qEpURQ1msmOD8doUDAaen/PLhqjBaINXf2PjfHNQo31W1lVFAWT3wUjo0Gh4i8XHvXPSwghhBDiRJNA9BS2t66LkiYzl4zLCLhdVVX+taSEc0akBDRl2VmjBaIOt4eEiGAWDD/6GZ83zsxlcHIE84bKXFBxajAYFD6/ZzZf7GlkZHq0HlAC/P2KsQHbJkeF8s7t08lN6Jt6npcYgUHR6kjvXTiEaYPiueqp9eyo7uCu+fkBTYzykyNZ/fP5ffbxyi1T2VTRptda+xufFcuknDiumpzV7/t467bpPLnyABmxYf3eL4QQQghxKpJAdAC9s6WG6FAT54xMPebH+lZnDtfd0uX28NjyUnbXdvLfayfy2PISvtzTyLxhyUSHBmFzujEaFNotDh5dWkJjp43mbjs5CeFUtloD9nX3wgK9vuxoBBkNzB+WcszvS4gTKSo0iMv7qXnuz/iDUnt9QoOM5CREUN5iITshjPHZcYQHG7E63Fw8Nv2o9p0UFcIFo9P6vc9gUHjnjhmHfOzozBge/+6Eo3oeIYQQQohThQSiA+i/haWkxYR+pUB00h+XABw2ve7jnXU8sqQEgKo2K3vqunB5VNaUtHD+6DRG/u4LZuUncvOsPAC2V3egKNoIiA6rk84epzaXMSuWa6fmHPJ5hBCBCpIjtUA0Ppxgk4F5Q5OpbrdKF2khhBBCiK/IcORNxNFqtzhotzj7va+h08Zbm6rx+DUYOVZbKtv1r0ubuvVVzuVFTZQ0mnF7VFYUN7O/QRslUdxkprLVSmJkiN7tdmxmLHctKNA75AohjswXcGbHa79H/7xyLK//YNqJfElCCCGEEKc0WREdIG6PSkePk7B+0l3rO3uY/tAyAAYlRTDJb+D8wcw2J1EHdbL12VXTSWp0KA1dNpbvbwK0LraLdgXORNxXr80OVVXocbpJigqhx+lmR3UHCZF9a9SEEId3/fQcshPC9TEpx5LWLoQQQggh+pIV0QHS2eNEVaHN6uhz347qDv3rNkvg/Vsq2/hwe63+fUVLYC2nz4HmbvbUdXH2CK1Oc3mRFog+ef1EFOCtzTX6tiuLmxmb2duYJTEyhBxvE5bD1aAKIfqXEh3KlZP6byYkhBBCCCGOnayIDpA2i9ZsyOb00ONwB4xBqW7r0b/u6AlM3f3OE+sCvt9e00FBSmTAisvu2k4u+s9qQJuB+MH2WprMdpKiQpiQHccL359MaVM3MWFB3P7KVlotDq6anMUfLx3Nm5urOHtECuvLWgFIlBVRIYQQQgghxAkmK6JfUVlzNy+vq9C/b/OrDW0/aFW0ut2Kb8JDp7V3O1XtWy/62w92c9bflrO6pEW/bU+dNnZlRFo0s/OTSInW5hyOTNdmek7MieeqydmMyYzVH3PB6DRGZ8bwx0tHkx4bxtkjUrhnYQFjs3q3EUIIIYQQQogTQQLRr+hX7+/itx/u0dNu/VNun1xxgO1+6bjVbVaGpUZjNCh09GjbeTyqXst5sKhQE3e8soXyFgsA5S1WgowKH/1oJjHhQaR6A9FR6TEBj/PdDr1Bau8+g7hn4RCCjPJPLoQQQgghhDixJDX3K/IFdC+uq+DhrHEBq6AvratkdWkLX95zFiajger2HgYnRdDUZaPD6sTp9nDby1tY5m045HPVpCwWDE9mZEYMC/+5gv8uL8XicLG3rous+HBM3uc8eEXUx2BQ+Pl5wxiSEomiSFdcIYQQQgghxMlJAtFjUNrUzX1vbeecESmYbS4APtvVwD8uV/s0ISprtvDW5hr21ndS2tTN3CFJlDR109Hj5I+f7O0ThAJ8b0YuI7zB5ZS8eN7bVovbO+5lwbBkfbuUaK3h0MiDVkQB7pg7eGDerBBCCCGEEEJ8QwY0EFUU5Tzg34AReEZV1b8M5P6PF5vTzZ8+3Ue0zcUcVWVXbSej0mNYXdLMzppOdtZ04hvD2eN002i29QlEEyND+O2Hu/VAMi02jNiwID7dWQ/ALbPymD8smc/3NPDSukoAYsN7x7ZMG5TAiuJm/Xtf11uAb41LR1EgKz7sG3n/QgghhBBCCPFNGrCCQUVRjMDjwPnACOAaRVFGDNT+j6cQk4HP9zSwqcHF957fxLceW8N722qpaO0dreJRYWJOHADlLRbaLY6AGs0/XjoKt0dlfHYsc4YkMWdIErHhWsdao0HhJ+cOZUZ+Ir+6YLj+mMBANHDWqMEv03ZYajQ/PXeYpN8KIYQQQgghTkkDuSI6BShVVbUMQFGUN4BLgL0D+BzHhaIoTM6N4/PdDXgatFXJNaUttFkcDEuNoqzFgsPlYcbgBLZUtlPRYqXJbCc5OoSGLhsA545M4XcXj2DBsBSyE8IBiA3TAs2chHB9PEtokJHoUBM2p4cwv5EtozNiuGhMGldMyuKDbbXcNCvveP4IhBBCCCGEEOIbM5CBaAZQ7fd9DTB1APd/XE3OjWfRrgZCTAamDUpgY3kbJqPCqIwYTEaF3bVdTMiJI9hk4LPd9aw50MIts/LYWdNJQbLWLOimmYHBY4x3xTM/KTLg9uToUDqszoAVTpPRwGPfnQDAnCFJ3/C7FUIIIYQQQojjR+lvluVX2pGiXA6cp6rqLd7vrwemqqr6I79tbgVu9X47FCgakCf/5iQCLUfcSojTgxzv4kwix7s4k8jxLs4kcryfXHJUVe13VW0gV0RrgSy/7zO9t+lUVX0KeGoAn/MbpSjKZlVVJ53o1yHE8SDHuziTyPEuziRyvIsziRzvp44Ba1YEbAIKFEXJUxQlGLga+GgA9y+EEEIIIYQQ4jQwYCuiqqq6FEX5EfAF2viW51RV3TNQ+xdCCCGEEEIIcXoY0DmiqqouAhYN5D5PsFMmjViIASDHuziTyPEuziRyvIsziRzvp4gBa1YkhBBCCCGEEEIcjYGsERVCCCGEEEIIIY5IAtF+KIpynqIoRYqilCqK8osT/XqE+LoURclSFGW5oih7FUXZoyjK3d7b4xVFWawoSon3/3He2xVFUR71/g7sVBRlwol9B0IcO0VRjIqibFMU5RPv93mKomzwHtdvehvroShKiPf7Uu/9uSf0hQtxjBRFiVUU5R1FUfYrirJPUZTp8vkuTleKotzrPZfZrSjK64qihMrn+6lJAtGDKIpiBB4HzgdGANcoijLixL4qIb42F3C/qqojgGnAnd7j+hfAUlVVC4Cl3u9BO/4LvP/dCjxx/F+yEF/b3cA+v+//CvxLVdV8oB242Xv7zUC79/Z/ebcT4lTyb+BzVVWHAWPRjnv5fBenHUVRMoAfA5NUVR2F1iD1auTz/ZQkgWhfU4BSVVXLVFV1AG8Al5zg1yTE16Kqar2qqlu9X5vRTlIy0I7tF72bvQhc6v36EuAlVbMeiFUUJe34vmohvjpFUTKBC4FnvN8rwHzgHe8mBx/vvt+Dd4AF3u2FOOkpihIDnAU8C6CqqkNV1Q7k812cvkxAmKIoJiAcqEc+309JEoj2lQFU+31f471NiNOCNy1lPLABSFFVtd57VwOQ4v1afg/Eqe4R4GeAx/t9AtChqqrL+73/Ma0f7977O73bC3EqyAOagee9qejPKIoSgXy+i9OQqqq1wD+AKrQAtBPYgny+n5IkEBXiDKIoSiTwLnCPqqpd/vepWgttaaMtTnmKolwENKmquuVEvxYhjgMTMAF4QlXV8YCF3jRcQD7fxenDW+t8CdoFmHQgAjjvhL4o8ZVJINpXLZDl932m9zYhTmmKogShBaGvqqr6nvfmRl9Klvf/Td7b5fdAnMpmAt9SFKUCrbxiPloNXaw3lQsCj2n9ePfeHwO0Hs8XLMTXUAPUqKq6wfv9O2iBqXy+i9PRQqBcVdVmVVWdwHton/ny+X4KkkC0r01Agbf7VjBaAfRHJ/g1CfG1eOshngX2qar6sN9dHwHf8379PeBDv9tv8HZXnAZ0+qV4CXFSU1X1l6qqZqqqmov2Gb5MVdVrgeXA5d7NDj7efb8Hl3u3l9UjcUpQVbUBqFYUZaj3pgXAXuTzXZyeqoBpiqKEe89tfMe7fL6fghT5t+hLUZQL0OqLjMBzqqr+6cS+IiG+HkVRZgGrgF301sz9Cq1O9C0gG6gErlRVtc374f4YWrqLFbhJVdXNx/2FC/E1KYoyF/iJqqoXKYoyCG2FNB7YBlynqqpdUZRQ4GW02uk24GpVVctO0EsW4pgpijIOrTFXMFAG3IS22CCf7+K0oyjK74Gr0CYCbANuQasFlc/3U4wEokIIIYQQQgghjitJzRVCCCGEEEIIcVxJICqEEEIIIYQQ4riSQFQIIYQQQgghxHFlOvIm34zExEQ1Nzf3RD39UbFYLERERJzolyHEcSHHuziTyPEuziRyvIsziRzvJ5ctW7a0qKqa1N99JywQzc3NZfPmk7tJW2FhIXPnzj3RL0OI40KOd3EmkeNdnEnkeBdnEjneTy6KolQe6j5JzRVCCCGEEEIIcVxJICqEEEIIIYQQ4riSQFQIIYQQQgghxHElgagQQgghhBBCiONKAlEhhBBCCCGEEMeVBKJCCCGEEEKcJvY3dPHZrvoT/TKEOKIBC0QVRclSFGW5oih7FUXZoyjK3QO1byGEEEIIIUSv/Q1dqKra5/bHlpVyz5vbcXv63ifEyWQgV0RdwP2qqo4ApgF3KooyYgD3L4QQQgghxEmnus3KHz/Ze8zBX2mTmbMfXkGz2Q6Ay+2hy+Y84uP2N3Rx3iOr+POiff3ssxu7y0NFq+WYXosQx9uABaKqqtarqrrV+7UZ2AdkDNT+hRBCCCGEOFnUdfToK5J3vb6NZ1aXU9xoPqZ9PLy4mJKmbpYXNQHwzOpyFvxzBX/5bD/XPrP+kI8raewG4OlV5Zj9AleX20NZsxaA7q7txCOrouIk9o3UiCqKkguMBzZ8E/sXQgghhBDiRCltMjPjL8t4fk0FAPWdPQD0ON3HtJ/6ThuAHjBurWyn2Wxn8d4Gdtd2BWzbZLZhtjm58sl1vLqhUr996b4mXllfiaqqVLVZcbg9ANz9xnaufeboT8XrOnr4fHfDMb1+Ib4O00DvUFGUSOBd4B5VVbsOuu9W4FaAlJQUCgsLB/rpB1R3d/dJ/xqFGChyvIsziRzv4kwix/vA293iAuDttfsZ5KqkrVtLrV25fgtdZUd/el3RaAVg/c79pFrL2FGhfX/Au6r50ZfLMSpgMsBti62kRyjUWbSgNcgATg/89ZMd1FtUaD5Ak9UTsP91Za1H9W/f2uPh/hVaMP3Y/HAig5Wjfg8nGzneTx0DGogqihKEFoS+qqrqewffr6rqU8BTAJMmTVLnzp07kE8/4AoLCznZX6MQA0WOd3EmkeNdnEnkeB94alETbN5EUHgUc+fOwvn5pwBkDBrK3ElZAOyq6cRsdzJjcGLfx6sqT60so92+HwBXeCKdsSk092wP2O7Hy7TA9JGrxgHb9SAUYFJuAjtqOqi3aKuw2UNH01nbCRQxY3ACaw+0AjBt5mxCg4z645xuD/9aXIzV4eaehQWEBhm54sl1gBaIxg8ejduj0tRl5zsTM7/uj+q4k+P91DFggaiiKArwLLBPVdWHB2q/QgghhBBCnEy6erS6zG67i267S7+9yWyn3eIgLiKYPy/aR21HDyt/Nk+/3+NR+deSYrLiwnnos/367Z/srOeTnYceufLSuoo+t+UlRdBmcVDkrUtt7LJR2WohKSqE526czFubq3ngwz3UtPfQ1GUjPTaM3MQIFu2q57+FBwDIjg/nvW017K7t4q/fGc3P393F3roulhc1sbeui+yEcEJNRkZnxnytn5cQ/RnIGtGZwPXAfEVRtnv/u2AA9y+EEEIIIcQJcaC5mw6rA+gNRK12NxUtvd1p//5FEeP/sJgeh5sDzd1Ut1uxOd3c++Z27ntzO5/tbuA/y0r53Ud7AFj7i/nMH5Z8xOfeWtXBoMQIAIKN2ul7XkIEWfHh+jZNZjvVbT1kxYURGmRkeFo0ADXtVn78xnZ+/cEuAJ5fU0FmXBiKAk+vKmN3bRf/uWY8V03OJiU6hL11XVS0WGm3OrniyXVc/Nhq/TmsDhf3vLGN3bWdX/nnKITPQHbNXa2qqqKq6hhVVcd5/1s0UPsXQgghhBDiRLC73Fz6+BoeWVICQKc3ELXYXVS2Wvtsv2RfI01mO6qqBbCf7qznvW21/Oj1rYDW1CgrPoz02DBSokP1x0UEG8lJCO+zv+hQE3+7fAwAZ49M4YdzB3PR2DSy4sP0bZq6bFS3W/XgNCtO+39lq5VWi511B1rZUtnO9uoObpyRS2ZcGPWdNkJMBi4YnQbAiLRotlV3UOdtvuTv9x/v4cbnN/HB9jqe8K6o+mypbOOG5zZS1c/PQohD+Ua65gohhBBCCHG6WHegFbPNRVWbFmh12bR0XLPdRVmzNkolPaY3oHx+Tbn+9aqSFhxuD5eNzyAhIpgR3pXK8VlxAAQbtcZAPz13KLt/fy65CREBz71weDIPXTaGcVmx5CVGMGdIEj87bxhpMWF6sAlQ12mjvtNGZpwWnCZHhRBsNLCrthNVBY8Kf/hkLwDTByfozzM4KRKjQXsNozNjKW+xoB409aWq1crzayrYWN4GwIbyNv706V7aLdoK8XOrK1hZ3Mx3n1mvj7QR4kgkEBVCCCGEEOIgbRYHdR3ayuDivY1A77iVTmvv7M7Nle1EhpjI9lvJ3FrVoX+9xPvYKydnsenXC3nsu+NRFJiSFx/wfLkJESiKwqCkCJKjQgjSA9RhXDgmDZPRwPKfzOVKbzMkgGFpUYAWdO6s6cDtUfXg1GBQyIgLY0d172vZXt1BWJCRoSlReiA6JCVSv392Qd/GSgCf7KoD4KnrJ/Lz84bR0m3n6VXlfLGnAY9HZUO51hippr2Hrh4tSG+3OGjzBqoAG8vbAr4XQgJRIYQQ4iSzoriZcQ9+SZffoHohxPF1yeOrmfGXZXg8Kkv2acFkgzdl1f93c2tVO+mxvauhs/J7g7nU6FA2V7YDkJfoCzQj+fhHs7hqshZQ3rNwCPedPYRzR6YAcO/ZQ3jn9hnERwQDkOa374NNH5TAqp/NY8bgBBq7tBEy/nWjmXFhlHpXbH21qGMyYzAZDXoKcEFKlL79uKxY/euzR6ToX7+7pYa0mFDOHpHCwuG9Na21HT3sre+ipduhB7EtFu11fOvx1Uz4w2I8HpV3t9Rw5f/W8c8viw75XsSZRwJRIYQQ4iSzu7aTDquT6japtxLiRKlu04LOVzdU0thlZ1BiBO1WJ//4oohtVR3kegM5s81FemyYvhL4/Vm5TMqJY0hKJJP9Vj2To0L0r0dlxBDkbToUFxHMjxcUYPJ+Hx0aRHZCOPERIUSFmIgODTrka1QUhaz4cJL96kx9qbna1+F6mu2NM3IxKDApV0sJHpTkWxHtDUSDjAYU7wjRp2+YxLt3TAe0uaaz8hNRFIWClCgW33sWWfFh7K3r4jcf7CbEZOCyCRmAtpKsqqr+81uyr1HvEFzT3rf2VJy5BnSOqBBCCCG+vmaztqLQ1GVnZPoJfjFCnIH86xx/+6HW4faaKdn8adE+HlteCmgrjD1ON41ddtJiwihp1FYes+PDefO26bg9KrtqO/h4h5bWqvgivKOUHBVy1PWWvvrUxMgQ0mN7A1H/ZkYj0qP54M6Z5Hm7784uSOJP3x7F3KFJAfta/fP5NHhTkP0bKc3yS9stSIlicFIkS/c3AfDkdRP0ldjWbjst3b0puG9vqaHVu0pa39nDO1tqWDg8mdjw4KN6b+L0JYGoEEIIcZJp6fYGombbCX4lQpxeXG6P3pjn7c015CSEk5cYwePLS/npecOIDDHx2oaqgGZDAFPz4hmRHh1wW3SoiZHpMTR2NZERG8pvLxrBgx/vISs+HKNBwWhQmJgTz7isWCZ7VyGPxa8uGI7N6T6qbb8zMZPEqBBm5SfqK62grYgCKArEhQeTGNm7KhtkNHDt1Jw++8qIDSMj1tfwKBRFAVWFGYMD60fzEiMoLGomOz6cc0em0uS9gNbS7aDEO9tUUaC0qRtVBaNBobixm5+8vYOfnTeUS8dlBATN4swjgagQQghxDCpaLASZDPqJ2jfBf0VUCDEwVFVlzt8LuWlmLmMyY/nZuzsBrS5ye3UH0WFB/HBuPiuKmyhp0lY3n7xuIplxYSRHhWC2uwL2Fx0WRFZ8OMv2N5EeG8Z5o1I5b1Rqn+f94M6ZX+n1Dk2NOvJGXlGhQVw0pm/6RJY3TTc+PFgPwI9FsMlAQkQIiZHBJPmlFoNW/wowOiMGRVGI865wPrRoHxaHFkBPy0tgY4XWaXdsZozexOmdzTX87fMiXvr+FM4a0rsiW9pkZm+9mW+NlVSQM4HUiAohhBDH4P63d/A7b6rewarbrJz98Arq+5nBdzhuj8rjy0vpsGrpbL0rohKICjFQGrvs1Hb0sLWqnRXFWkppVIiJ7d6usv9ZVsqUPy1hd22X/pjs+HBGZcSQHB2qB14+VoebsZmxAP3O/jwZ+FZEfY2PvorbzhrEXfML+tzuWyG+dLxWGxpsMhATFqQHoaAF026Pll481q8RUlmLBYBl3tRen1++t4sfv76NtQdavvLrFacOCUSFEEKIw6hus7LU2zEToKHTpgeKB9tZ00lJUze7ajoPuT+b043D5Qm4bUtlO3//okivJfPVV32V1FyHy8OK4uZjfpwQp7uyFm2Vs6zZwsriFibnxnHDDC019aaZuQxLjcJsd1Hb0Xshyb/GMiLExDVTsrhpZi4Ate09zB+WzCs3T2VC9rGn3h4PiZHBhAUZSYj86oHoD84axIVj0vrcPrsgifW/XBDQXdc/4P3x/PyA731Bu781pYEBpzdm5c+L9tFpdQaMyXlhTTnF3pRfcXqQQFQIIYQ4jGdXl3PHK1vxeM+QOnuchxyr4gtQGw+xkunxqFz+5Frue2u7fpvL7WFfvbYCU9rUjd3lprNH2//BK6JWhwurIzA98GC//WA333tuI/sbuvrcV91mDTjJFuJUtLmiLSBAOVrl3lW4smYLu2o7Oasgieum5bBweDJ3zB3Mm7dO7/OYqIM61j502Rh+cs5QRmVE85Nzh2IwKMwqSDzmRkTHi6IojEyPZnBS5JE3/gpSYwJXibu96ct/+84Y7jtnKHF+geiojGimD0rgmina2JqoUBMlTd00dNpo7LLx9uZqWr2focUN3fzo9a3c9cY2QPu3+7+P9/LvpSXfyPsQJ4bUiAohhBCH0Wpx4HB7eGRJMWa7i267izCbEYCnV5YxNDVKr3HyBaIripr4YncDT98wibBgo76vL/Y0sLu2i7JmCw6XB4+qMuy3n+v3lzR10+pdDVUU2FffxaqSZn1swo3PbWJ7dQe7fn8OIabe/YJ2AvjnRft4c3M1gD44vrPHSZvFQV5iBAsfXoHd5eH6aTlMzouXOixxymk227nyf+u4Z+EQfrygb7oowIfba/lyTyOPXztBv+3Hr2/jI2/GgcOtZSTMGZpEWkwYz3xvsr7doMQIylos/N/FI0g7RB14RIiJT+6aPVBv6Rv30s1TvlJ96Ffhq2/3pe3G+3XGTYgI4fVbp9FucbC5op3b5wzm/rd38PGOOjp7nDy2vBRFgcgQE912FxvK2ggJMqCqKl/saQCgcH8TNqeb0CBj3ycXpxxZERVCCCEOo807duDpVeW8ur4KgK4eLWXsT4v28f0XNvHJTl9Krbbtkn1NrC5tYXt1B1Wt2ixQVVV5dFkpwSYDVoebzZVtFDUEppmVNHXr+0iPCcPm9HD9sxv51fu7UVWVjRVtONweniws6/M6t1S289qGKv17X0D7zy+LuPqpdQDYvSnBL6+v5MGP+69z9ddpdbK3ru/KqhAnyurSZjwq1LT3ztjdWtVO7i8+pdTbYOjuN7bz6a563ttaw6NLS2jssulBqE98RDCj0mP67N9Xx3jhmHTOHdm38dCpKDzY1OfC1Tcl0ZsCnJ+srcDGRWgryoqiNXfSbgtm8X1z+M7ETCZkx/L6pio9g0NVYdogbfaqw+3BbHNR12njiz0NhAUZsTjch60fdbg8WJxHN/JGnHgSiAohhBCA0+3hmVVlemqZT5tFSwHscbr1lRS7y8OOmg5Am9v349e3saa0hWazI+Cx33t+I2f9fTmt3XaW7GtiX30Xv71wOEFGhRXFzeytDwzyms12/WT6gtGphAcbmT8smTc2VVHsnVEI2oD4g/kCZh9fitv+BjONXXZ6HG5Cg3r/7PuPcTiU/xaWcuX/1h31LEMhvmmrirUgpNGvo/SnO+sBeH9bTcC29721g4cXFwdcoPGZlZ+IoZ9VwqsnZ3Ht1Gw9oBLH5q3bpvPEtRP0FUtfjWh0aFC/q7JXTc7Sa3Z9pg1KCNhmc0UbO6o7uGFGDooCO6oPXYN/w3MbuHOp9ZD3i5OLBKJCCCEEsHx/E3/8dB/vbw08mW23OPrdfpN3JMEbt04jPiKEV9ZX9mli5GtK9NGOOl5eX0lmXBjXTMlmYk4cK4tbAlYbr5qk1U19uF1bufnh3Hz2/P5crp+eg6rCW96U20k5cRQ1mnG5Axse+VZAN/56AQZFSymG3rq48hYLNqeHH8/P57pp2UdVK3qg2UK33dVnbIUQJ4LHo7KyRAtYKlot/OClzZQ2mXF6fxd21Xbptdz+/r20hLzECH5z4XDeuHUa103L5kZvw6GDTR2UwJ++Pfqkrfk82Q1KiuT80b2NjXypubHhQf1uf86IVAxKb7o0wOTcePx//G9uqsajwszBiSRGhlDf2UNtRw8z/7KM0qbArJL1Zdrn8sGfj+LkJIGoEEKIM9Lu2k4au3q70vo6za4pbdVvU1WVNmv/geiGsjbiI4LJSQjnojFpLN3fFJAu6O/NTdVsKm9j4fAUTEYDc4Yks6++ixXFzUzJjaf8oQv4xfnDMCja6yhIjiQuIhhFURiTEaPvQ1G0UQkOl4fyFgtbKtv1kS/N3XaCjQaSIkOIjwihpduB2ebUa7Z212mrCBlxYWTHh2O2ubj+2Q0UFjX1+5pBa24EvUGuP1VVufO1rX26Xh6KxVtfK8RXtb/BTEu3nehQE5WtVhbvbWTZ/ib9YsuGslZ9ZuXBfnH+MG6ZPYhpgxL446WjT9out6ebWF8gGtZ/IBoXEczEnDjvtto2uYkRpERpTZCSokJYe6AVRYFx2bGkx4RS32ljV00ntR09rDvQyoayVq5/dgN1fhfXDvW5LU4uEogKIYQ47eyp6+Tcf63UG/YczOJUueg/q7nh2Y2AFlQVFmmB6LqyVn3uncXRd9SKz8aKNoanRaEoChePTcPh8uhjV/wNTYlif4OZHqeb6YO1lLOzhiQCUNVmZUR6tDYMPiKYSTlabdTkvHj98QmRIUR5m3fkJUboJ23ry9u46n/reHx5KaAFi4mRWvCaGBlMa7edipbewHhPrRaIJkaGkBGrzRZcVdLCC2srAl6vqqp09jhRVZUqbyB6cNovaCuun+6sZ9Gu+n5/Pgf7yds7uOu1rUe1rTgzqKrK+rJWfUUToMfhDqidtthdmG1OdlR38MLacgAuGZeh31/ZaqWi1UJ+ciRBRgNXP7U+4Dm+Nz2HTb9eeNrUe55qgk0GokJMekDaH9/4l1+dP5xrpmQTExZEVnwY6TGh3DBNG6+jqlp6b6o3EPUFnXvrzVz11HpWlbTon4UALWYJRE8FEogKIYQ47Ty7qpyiRrM+l9PHl7a3ulZbmStqNPPAh7v5aEcdtR09TM6No7PHyR7v6uGh0nJ9hqREATAhO44Mb4fNzDjt/9nxWrD3u4tHEBsehKLAtDwtEB2RFs3gpAiGp0Vz61mD9P0tHJEMwJTc3kAUYJo3gP3tRSMYnBRJkFHhhTXluDwq26o6AK1RUoK37jMhMphWi0OfmwiwyxuIJkSGkBHX2w107YHWgJEwn+ysZ+zvv2RlSQs9Trd3331/Dg2d2mqybzXqSPY3mClt7j7yhuKMUdrUzdVPref7L2zSb3t+bTkX/2c1Zu+IpJ++s4MfvrqVK/+3jrc215AUFcKYzN4mQyVN3dS293DB6DQ+u7tvJ9shqVEkRR25Hlp8c7LiwwM+cw72vRm5vHXbdK6cnMVDl40G4OZZedy1oIDb5gxmdEYM9yzUOiSnxYTR4BeIvr6xt/7XV74A9CmTsLvcjP6/L3hnS2DphTixZHyLEEKI006Kd7bd7tpOmsw2qtt6+NV7u4gND+LN26aztq438HppXSUvrasE4LazBrO5cjPL9jcxJjNWX1HNSQhHVaG63Yp/355BiRGANqvvorFp/G9FGfOGJvPBtlpumzOIF9ZUMCEnjp+fN4x99V3EhAfp239xz1mYjIHXgy+bkMmBJgvzhycH3P73y8fQ1eMiO0ELbiflxLOuTEsh3l3Xicvt0VdEQRuTsLOmg9KmbhQFIoJN7PbWoyZEBAeMlHG4PKwqadFXjHZUdwDw8OJifZv+VpZ9gWhZ85EDUY9Hpba9B0XRVsGk/k6Alk4O2sr8vvouhqdFU9RgxuH2UNxoZmJOPDtrOnG6PXrH57vm55MS3Tu7cmO5loqblxhOVnw4L988hUW76nl7cw0uj0pyVGjfJxbH1YvfnxLQKO1gISYjU/ICL76dN6q3zvTju2bpX6fHhtJtd1HU2Ltqnh4TSkZcGJsq2pldkMiqkha9JMGnsKgZs83Fv5cWc/nEzK/7lsQAkRVRIYQQpx1f3eTbW2qY8qelfOeJtZQ2d7Oxoo1Oq5NGi4cRadF9Hjc5L56J2XF6V1pfndFD3x7NB3fOJCEiJKCJRk5ChP715RMyiQg2ctXkLHb9/lyunZrD4vvmEBpk5Jop2Tx4yaiA5zo4CAUtbfavl48hOjSwnio2PFgPQoGAVVSb06OPfQlYEe12sHhvI+OzYsmOD9dTjBMig0nwdrLMjAvDaFDYWdPBu1tqsDnd+Hq9+AJS6O3A66/eW1/b0GXDcoTaz5ZuOw5vMNFlkzrRM9Vbm6r1Jl+gjUHyOeBdLa/wrrDvqzdjc7qp7ejRO+T+5sLh3DA9l9SYvsHlcO/v8+yCJB66bIzeFTpZVkNPuKSoEKJC+68RPVapMdrK6pbKdv226YMTmT8shSCjwi/PHw70XRH9cHstAIMSIwfkdYiBIYGoEEKIU5rbo3L/WzsCAif/MSo3zczlp+cO5cnrJqKqUFjchM0N545MDRgnkBQVQkxYEAuGp7C7tovqNitt3pTU9Ngw4iOCSYkOIT2mN8UsL7E3EC1IiWL3789lVEbf2YQDbe7QJC4dl859Zw8B4Px/r6K+06affCdGhmC2u9jfYOZbY9NJ8564hwUZCQ826Suyn941m+z4cP5beID7397BUyvLaDL3NnAKNhoIMRn0DrwA/1txgPe21tDQ2dsY5EjpuTV+TUQOXqkQZ44/f7aPF9ZU6N939fRelGg221FVVT+W9jd0UdkamIGQ7F0JzYgNIzrUxOwCrdY6xGRgqDdN3ifBmx0gabmnl3TvZ5nV4WZiThyp0aHcMXcwN8/KY9n9cxmeFkWwQQtE7S43H2yrZWdNB8v3az0Amsx2mrpsRz2S6p43tvHIkuIjbyi+EknNFeIbZne5j9sgaSFONz0ON9XtVr0Wsz8NXTbe3VpDZ4+DZ743GdBOQmYXJPLYNRP0dFirw4XRoOh1o4OTI3jyuolsLG/l6VXl5CdpV8ovGZfOv5YU86/FxYxI11ZZ4rwriLPyE+lxuvVU3vTYwLqn45VyqigKj1w9HlVVUVV4auUBLA63vtLpW+01GRQuGJ1GkMnA0v1Nes0nwNBU7Wc6KDFCP/m3Otw0ddmZmhfPE9dNpKvHyQ3PbdS75nb2OPnHl0UYFIUxmTHeVFttNetwAXhNe28g2mS26cPuxZnD7nLTYXUGXIjo9FsRbTbb6bA69RXz/fVmylsCa4pTvYFoRIiJzb85m3VlrawqaWHh8JQ+v3sJfhdlxOkjK743M+SsgiTu9taO+t8XHaLQ0u3gF+/u4v1ttcSGB9Hj1OYo76vvYsqfl3LLrDx+c9EIQMug6bA6yfW7sAhaGcHivY1kxYdzz8Ihx+HdnXlkRVSIb9CXexoY+pvP2d8QOLS+zeKgTJp2CHFED36yh3P+tVJPs7I53QGNdaB3hW15UTNbKtu56D+r2F7dQWJkiB6EAoQHmxiVHq2PaUmLCePsESksHK51bPQFR+mxYdw0M5f3t9eyvqyVyBAT0aHaddtfXjA8IMW2vwHtx5OiKNy9sIAfzssHtA6VAPOGJbPx1wv4/J7ZJEeHcs3kbIalRrHwoNpTCFzVNRqg0WwjOTqU+IhgchMjSIgMps3iwOn28MG2WpxuFY+qsqminZHp0QQbDfo8VLvLzc/f2cnZD6+gy9YbZNS2y4romc7X8Kq5OzAQNSiQEh1CS7ed8lbtgkhGbBj76rsC5uyCtp1PsMnAjMEJ3H/2EP787dF9ni85KoTEyGD9d0KcHlKiQzl3pPaZ7Vv1Plh0sEJLt52tVVr6bodV+yyaP6z38++Z1eXUd/awtrSFcQ8uZv4/C/uk8zZ327E43JQ0dWPzu4j3dTndHh5fXnrEkoYzgfx2ijPSo0tLuPDRVcf0mOVFTcz5+/I+J8ENnbaAVDZ/v/5gN6Bd2fX3l8/2ce0zG/rsX4JTIQL5TkQ3eRuS/OLdndz28hY8HpWPd9RR2mTWAxu3R+Wu17ayu1Z7TGI/JykTc+JxurWULF+X22Fp0USFmJiU2ztX8OIx6agqLN3fxEjveJWT2W1nDeKv3xkd0IQjOSqU/GRt1dNgUFj049k8fcOkPo/NS+oNRFvMDpq67KT4pTMmRATT0m3n/rd28LuP9pAeE8rNs7QaVVWFkRnReufeT3fW8+bmakqaugNGcNR2WPWAQALRM1OTt6a4yW92b2ePk+iwIJKiQmg22/X60B/Nz8ficPP82oqAJjf+TYoAgowG7lpQEHDByeeu+fk89t0J38RbESfYv68ez8/OG8pFY9L6vT8mRKHZbKe+06aXJZgMCrMLkgK2+2xXA4XeC5MeNfBcbVdNJx/v0EZTuT0q+xsCz+N8ms12HllSrI/8Ohrbqjr4+xdFLNt/6BnOZwoJRMUZ6Ys9Deyp69JPiOo7e/TmJkC/tQMri5upbLVS3BgYLE57aClT/rQ04LFPrjjA0n2N+v79048A9tZ3Ud9p059TVVV+/No2HllS8rXe1+K9jQEDnYU41aV56zF9HWL3N5gpbjTzi/d2ctfr2/jjp/v037OchHDqOntPchP6ScnzBZtGpbd2LCYsiA2/XsC3xqbr2w1LjSIsyIiqwuh+Uk5fvWUqn9/Td1TEiWIyGrhqcjYRIYeuuDEYlH4Dav8V0fJWCz1Od8AJf2KkFiRs9jaZ+ct3xvD9Wbn6Yydkx7GztgOn26OPiAGtbnRFcTO/+3A326s7GJ0RQ7DJQJMEomck3++pxeHWV4K6bE5iwoJIigyhudtOUaOZYKOByydmMjYzBrPNxU/PHUaQUSEmLIjQoKMvc8lJiGDaoIRv5L2IEys0yMgP5+YfcjZpfKhCaVM3DpeH873ddwcnRZLj1/AtOz6c9WWtbK/qICte+zvj68RbWNTExY+t5g+f7NW33+332ebvy70NPLKkhGLvY58oPMB3n17f77Y+jb5Gb539L2KcSSQQFWccs83JvnptxcT3wXLl/9Yx7sHF1HX0UNbczdjff8mH22txuT28sbEKp7eVPGhzz3w8/VwBazLb+ctn+7n5xc2YvGl7/8/eeYa5UV5t+B5ppdVqi7b35nXvFeNuY3oLEHoLBAiQECAhlZACSb400mgJNQECoZfQbXC3ce9tbW/vvUharfp8P6ZI2mKv8bq/93X58mo0Gs3sTnnPe57znPAMQDAo69t4bUM1X+xpxO72q8Yi9l7bGyhef5C7X9nMC6vLv/I2BIITjXZ1smZtqRKI1nZ00+zw8MVeZSa5pr1bv77umjc04rN91YZNK1AC0cRoKUJWqxn4aEQZDXqvwvG5vQPR2cNSGZXZ23X3ZGRMVgIpsWYkCfaqGej0MAnkyMx4Wru81HW6+eF5I5g3Io30eAtfPDCf3319PJPzE3H7lHvlrtpOJuTaiDJIVLZ28cyKUl5aW8muWjsXjsskPT46IiPm9gW44bl1rFcnGgQnP8GgjNPjp9sb0NVCP3tvJ/e+tlVfJ3yS1qZmRFscXvbWOxiWHofJaOBv107i6ZumcvucIaTHW/T6UIHgUGTFGvCr47PpQ5LItlmYmGfTJzYtJgNnDklmbWkr22o6OGd0BsmxZvarWc+nlpVEbM8WY9J7S/dE6zWtBZVbq9rZXNl+UDMkbTKurlMkDkQgKjjt2FLVobcn0Gbvq9uUm8FV//ySO17ehN3t5+W1lawpbeWn7+5k1YFm9jUowWNpmHw23IDjnle38MLq8gg7+gvHZ5GuSo40aju6cfuUNgp//KyYO17exJ8+K1a33YXH/9XqEBrtbgJBmeo211f6vEBwIqLV7JQ0O2nr8uJw+wnKob6WFS1d1Hd2k2Q18fUpOdy3cJiewbSae2dP0hMsFKRYSYk5tNR2cr4StB4LF9zjSaLVzOZfnMvlk3JwqJmq8N6L4Rnh4WGmUcPS40iwmJg+JJkYk5Ff/G83GyvamZBrIzcphp21dr3HI8BF47MYlZnAJ7sa9DrddWWtfFnayrMry472YQqOEW9uqmb2H5by/Te2Mf3/ltBkd/P2phq9DyiE6kQ7u30kWEykxik1onvq7HoblqK0OC4Yp/S2HZUZr5trCQSHIjM2FN5k2WJ48+6ZPHTxGHISYxibncBTN0xhRlEKDo8frz/I5PwkRmTEsb/JQZfHz9aqDq47I0/fxvgcG7tq7Xy4vY76HsFju1p/Wq8Gos1ODx5/kC5vgGBQxh8IMvGRxfxRHecB+gTN0uImzv/bSjpdkaq50wkRiApOKVbub6a8pYufvL2DnTW9Z69kWebNTdVEGSRS48z89fP9PLeyDJNRYt6INKJVKd6IjDh21XZSrGZOt1V3hgbEYRnRA02hmoGPd9bzm4/2RBh03DWvSJnpDSuAD/+MxqvrqwClDqG06dDN4ftCuwlWt4sZNsHJT0VLF/e8uoXqtm4sJgOyDFvC+sYBzB6Wgj8os6mynbT4aCwmIw+cN5L7z1ZcFPtz2v3jlRO4ZmTfkq5wbp5ZwEMXjaaoh5PiqUp4TW24q+2Y7AS05PHwPtxu0+MtbPr5ORSqsrfh6fEUpMSycn8z/qDM7XOGcO/CYWQnxvDnqyeQFhfNv9coyo01JS2AUotb+NOPI+pKBScne+rtdHb7+Gx3AwDfeXUL3kAwYp0H393JHS9tZGtVh54R9QdlWpwe3ak6nKdunMKjV084JvsvOPnJig1NNGYlWshNsmKLMWGOMvDxfXM5e7RiUnfJhCxmDU1h7rBURmbEs7/BwdrSVvxBmYsnZKkGbxmMzUlgT72de1/bymM9Sqg01c7qkmaeXVmqj/c+3lHHrD8s5dIn19DZ7eOfy0v1zzSrfXErW13sa3SwpaodfyB4WgakIhAVnDLIssw3/rWBs/68nDc2VUfMPmm8t7WWj3fUc//Zwzl3jDLT+ujiffgCMrOHprDshwtY9sMF/PKSsXj8QV7fWA3AMrWg3BZjorTJyXMry7j5hfW96kUBvc3Bu9+Zxbgcm2LCEB6I9vjMxeMji+33NR5anru2tJUnlhyIcHHTZulq2geWEf39p3v53utbD72iQHAUcfsCugT++VVl+kTOJ7vq+XhnPd5AkAk5iQBs6hGIzh+hGE+UNDkjegWeMyaDkv+7sN8WITOKUhiWeOhas5zEGL41r+iENyoaLDQpc3p8dMTv02qOYnh6POYoA/lhrRPCiY2O4h83TmVYehwLR6XrbWTyk6387KLR/OC8kYCSfZ2Ul0hFSxf3vbaV51aV6wEshJrUV7W6eGpZyYB7/QlOHLRJUe2y6XndgnLNavJ6zaxIY3RW7wkki8ko2qAJBkySRSLGZMRklEiN7bt9j81q4skbpvDfb80gKdbMWaPS6fIG+Pn7uzAZJaYVJPPp/XN5/pZpjM226WZEX+xtiijL0qS5n+xs4HefFOsO4b/4324a7G69FCwurH6/V528BC+vrWTBn5fh7zFp0x976+2nxP1RBKKCk54dNR3srbfT5Y2UtDr6sMX+eEc9+clWvrtwGA9/bQxXTsnFq8qFEsNc96YVJmEySnpvPU3Ce+G4TCrbXPxrTTmrDrTw2oaqXt+hSdFsMcr20uIipbnbqjvISYxh/og0zFEGzhmj2ImbjBIWk4EV+5r1dUubnVz02CpqexgQ/eHTvfzl8/187/Vt+jLt4e9w+3uZI/XFlsp2Nlf1HiAIBMeSUb/4jGueWctP393Jbz/ey4Pv7AQijSG0Gs3NlW0Rnw13QEzrUQ8aZRSPt8MlWQ0ee/bSAzh/XCYLR6Yf9Pc6JjuBLx6YT16ylelDkgH46zUTe7W4KUy1UtHq4gO1n+s3Zw9h58PnYTRI1HYoE2nXP7eORxftE8ZGJyHapKgswzmj0/nR+SN58obJvdabPUwxEkqIiWLW0FS+PjmHhaPSmZSXeCx3V3AKYpAkhqTGkpFgwTDAFlsLRqazcFQ6DXY3PzhvJDFmoz4JOU7N0kuSUi6yraZD/1x7jyymFqN6/UHOH5tBrFoi4vL69fFmz04LDrefA01O2l2+Xve8n723U1eQdHsDnP2X5dzx0iYufGwVi1TVwclM//Z6AsFJwLJ9TXzz3xuxmo18fJ/iYGkxGRiaFsfeejtuX4B3t9Ry1dRcZGTWlrVy5ZRcJEkiOsoY4aBmiwnJ0iwmI2OzbWyr7tCXZdss3Dq7kNc3VutBX1Wbi2HpcRFyXa32KcGiBqKqNFebQVtb1so5ozP4w9fHE5BDUtwsWwwXjMvkuVVlfGteEWOzbby6roo99XaWFTdx04wCQJHvat+3K6x4Ptx9rbrNhe0QdW2tXV46uk4/GYjg6NNod+uuq06Pn/2NDqbkJ/VaT7smtqitP2YUJfPxznou292gt2ABdNOgzZXtRBkkgrKMjOKCOHd4KqsOtBDTRz2o4PAIqrPro/qoxXvg3MNr5n7NtDzOG5upB7fhDEkNZapfvm06c4alYjBIZNkset29NvnW4vSQkWChsrULh9t/2PW6Hn+Abm+gX3dNQSQef4DiegcTjyAYrO8IPYvGZNu4R+1x6w/IpMSZOdDoZGJeIsv3NbGmpJVgUCY51sxfr510hHsvEIT4+pQcXTY7UB6/fjJVra5e8vDClFjS46M5d0wGr66vYn1ZG+NzbJiMhoiOCz0Zl23jznlFrNjXzONLS/QxY88WVvZun27iVt/ZTbbaWkyWZf63tZYMm4Vvzh5CZVsXpc3KP4D9jU4uGMdJjZgyFpzUPLFE0eq7vAG2q0HjszdP49sLhuL1B3lsyQF+9t5OHluyn80V7bi8AV3OB5Gumkk9+pD1HDhPzEtkVGYCc4enIklw9dRcphcm81RYn7LoKAMH1CAx3qLM86TFR+MLyHR2+9hTb6fD5WP2sBSijAaio4wMTY8lSh2E3bNgGCaDgQ+21+EPBPWMwZawzOWBJgdd3gC2GFNE5rOuo1vPPOxvdPDd/245qHFRW5cXh8ePb4AyEIFgIGyqaOPM3y3Rz92/fb6fr//jyz4dB3uqFv545QRGZcZz/+vbqAo7d/OTrSRYogjKSr1Palw0GfEWzFEG/nHjFK6amsvXp+T23LzgMLlkQjY3zyjgB+eOPOJtGQxSn0EowJBUZQLQICnqEy1jkZMYQ217N91h6pYWtdThhufWc8kTqyMcdwfC7S9uYtKvP/8qh3Ba8t6WWi57ao3+bD1c3L4ArV2hgXm40+3lk3OYOzyN2+YMYWpBEhNzEwHl+S0QDDZ3zC3iR+ePOqzPxEVH9VmjbDBIfPGD+Tz8tbGkxJpZU9LC2F8tYtWBZt04ry/yU6xMLUjmrFGK8q28pQuvP0i7y8fQsP7NdncoE1qrTuS8t7WG51aV0eUNUNbcRV1HN432yAD2VOg9LwJRwUmLxx9gV52ds0YqgeU7W2oAJfDTasq0eqO1pa18sbcJc5SBmUNDfcXCzTl6zphPKVC2oWVNNbnQby8fx1M3TOFPV03gzbtn6u+nxpn1fnzRUQa935lW+9Jgd+vGHLOGpurfEx1lZO7wVM4oTMZmNTEsPY699Q42VrTT4vSQYInSTVr8gSCf7lSkGGeNTMPh9ut1Cw12t54teH1jNR/tqGfZvr6bJfsDQTpUOUlHmKxke3XHgGS9AkF/aBMxK1VlgOYi/e81Fb3WDXeYtpgM5CVZ+dNVE+j2RQ5Mk2PN+qTRnGGpZNos5CQpM8bxFhN/vnoiZxQmD/qxnG7ERkfxm8vHYesxKTfYFKYo98mhaXFYzSFhVm6SlZr27gglSovDgyzLeob0L4v3H9Z3rVbvuW6fCHYGgpap+cvn+3F5e5e3HIrGHhMFmba+6/MAFo5K5+cXjz7sbLtAcDxIsJgwGQ0UpFhZXdKC1x/k32sqsLtD10lUDxlwnlpTr40Ny1uceivAO+YW8dq3ZmAySti7/bpct1691/1zeSl/+DTkdbK6pEW/vv545XhmDU1hf6MzopPDycigBaKSJP1LkqQmSZJ2DdY2BYKeVLe5eH5VGbIss7fegdcf5OppeWTbLKw6oAw40uKjyUq0YJBgt1pntr/RyaLdDcwbnhrR8D01zCAhscfga86wVGYPS+FmVRI7Ve0/WJASy0Xjs/TaAYvJSIIlipwkK+nq7G9CTGhbI1Xnzl21nawpbWVYelxEs3iAf39zOj88X8lCjM5KYG+9nXVlrRgkxbmzotVFZWsXt/57I48tOUB+spUJ6mzyj97azm8+2kNVm4vRmfEUplj1OtX+MqIdYQGAJisJBGWufmYtL/YRMAgEA0VrmeJUH85avcwH2+oiTBi2VrWzKazmszAlFoNBYkJuIusePJu/XD2RjQ+dw68vG0t+spUytV77gnFZ/OrSMfz84tHH6IgEg01yrJmUWHMv+WduUgyNDjcbK0LnxZ8WFTPkwU/011ur23G4fQMKLMONPD7ZWa+bzglCdHsD3P/6Vv1ZEa5SeG5lOTc9v37ALcW2VXcw/9HlAJjVWuLwNkA9MRgk7phbREof/X4FghOVgpRQJnOpek/50fkjefm26bqSThtP5iVZ1ddmhqXH8dqGah54cxtJVhNnj0pn5tAUbDEmOlxefRKorqMbXyBIeUuX/vw0GiRWH2ihUS3BumxSDmOyFCffs/+yQk+6nIwMZo3oi8CTwMuDuE2BIILffLSHxXsakSSJZ1YoVthT8pOYXJBE3Y56jAaJJKsZo0EiLT5alzE4PX6cHj/fO2d4xPbC3dRsMZGBaKLVzKt3zCAYlBmbbWPaQTIuRWlxjMgI1T0lWEKX1tC0OOKjo9hY0cbG8jaumXZwCeHorHje2VLDxzvrGZtt45IJ2Ty1rJRrn1lHs9PDby4by5VTc/XM6Ltba/XPzh2ehsEgUdGqmChp/VE1atpd7KmzR5iRaIX2Tp9SXN/sPDzpm0AQjkftkdulZlO0Gh1vIEijw0OOWvvygze367XWAEVhMqVMm4UrpyrXyTdmFgKKAmDZvmZmFqVgjhJinpMZSZJ45Y4zI5xSAXKSYpBlWLyngbzkGJodnggp2oRcG5WtLm54bj1T8hN55LKDF0eF93l+6L1d5CTF6BI5gcKOmg7+t62O8Tk27phbFFHvtnhPA7vr7Dy7oozC1FhMRokLxkW6vMuyzKLdjZw1Ko1/rS7Xl4/JTmBbdQeZtv4DUYHgZERTwSVaTbqiLDcphnkj0vhgex2bKtsYnh7Hrlp7hOruoYtH654mz948LZS4sJgigs66TjeVrS58gdBE2sJR6awpaSHOEkWi1YTFZGSI+szMSYxh8kls8DVogagsyyslSSocrO0JBBp76uxc+8xarpyaS5RRyUL+5qM9gFI7lmmzMD7Hxsc76jFKkl4nmWmLodHuITXOzLljMqlpd3He2MyIbafGKzeJGJNRl9L2xGCQIuS8ffHiN8/AHGXQ+0SFZ0QNBolJ+Ym8uUmRDs8altrnNjTGqM28S5qc3DFnCKOzEphakMTmynaun57HzerAvGfgbIsxcfbodGRk/qv2Ja3pCGVE27u8zPnjMgD+cWOorlWrb7B7lZteRw8HuIZOtxhMCAaMllHpUv8Pr5+pbe8mJzEGjz9AZZtLl5UDhzShefKGKTjcfhGEniKMzupdh6XVTO2qtXPR+Ex21nZGTKbNH5HGE0tL2Ftv73X/64visJ6k3b4ALU4PHS4vRoNEvOXoyo8Hi/rObpodHl0BM9hUtirPCO13FX7/r1Lfe2JZie72WfGHiwGlNMZsNPBlaSt3v7KZR742lmXFTYzPsTGjKJl4i4mK1i6ShUmU4BRDC0TnDEulvtPN5sp2ktTz/PrpeRSmWGmwu5EkKaL111kj0/nnjVMYk50QkVWNjzHp8lqDBJ/vaYxwzk2ymjh/bCaf72lk5f5mve564ah05o1I47eXjRuwM/CJiHDNFZxwBIIyf/t8P5dPzmZYejwr9jfj8Ph58csKXe5gkOCZm6cxXh28jstW/g9vmp2VYGE7iozi918f3+d3Wc1RWM3GAQ1qDoZWX5oRNsMVzsTcRFYdaMFsNDCj6OBB7dgcG3HRUXT7Apw/Tgmc75pXxM/e26m7DwK96rhumz0Ei8nI7KGppMaZiYuOorqtmy/2NFLV5oqo/fxQNZKBkDTXoQai4eutPtDCTS+s59P75/Y5cBQIeqJJcp2eUEZ0XE4Cu2rtamuOZKpaI4PQD787h5F9OLWGExsdFSGrF5x6TM5LItZspMsbYGy2jfIWF9BNls3COaMz9B6m/qBMs8NDp8tHbLSxz5YyzQ4P/1heErGsw+Xj1n9vpDDFyt+vm0xDp5ukWFO//Sk7XT4q27qOWhA4EB5fUsKKfU18+eDZR2X75a2a+6YSiHZ2+4iLjsLp8ePw+BmREUd9h1sPRF9YXU5Raiw/ensH04ck6bXbTy0rweHx86PzRzJvRBpuX4Brz8g7qQfIAkFfaEHkqMx45o9IY3NlO1nqZP3UgmSmFiTjCwQjnnEaF/boGw+Kgm67aspWmBpLWXOXbr4ZHx1FfrKVOWoCo6a9m3mq4WaWLYaXb5s+6Md3rDmmT3VJku4E7gTIyMhg+fLlx/LrDxun03nC7+OpgKy2YjBIEp0emS2Nfl7a42XD3nK+M8nCkq0h+V6Hy8eYFANXDjdjatpLcRMUA05v6ILX/mYBpzKjJLntB/07xhqDRAW9g/K3bm5SBt9ue1vE9nJ8QaZmGLl8mJmt69cccjt/nWcmygBdFTtYXgFm4M9zTJRs34A2tKp1hoLuuyZEMzGqluXLFZnun+eY+KTcy5v7fNzx8iblOE2QHSvR6ZX5dFeo99TmXcVkusposncDEjVNbXz8+TL+vNGNpjB+a8l65uUeOlgPyjL/3evlrDwTOfEic3U6srdErXNpU+6fTZ0uCmKUE2nVlj1YWg+woT7SBKVu3xZaS47tgFXc309MhtlgezP4mito7lAGZ1cUykxPbGFXRei+VdfmYOKvFzMjy8jdE5VBoNsv80Wlj/l5JpZV+9ha5eOb48y8vNuLpnLbXt2B3W5nydJl3LvUxUVFJi4p6jtr9/PVLmqcMv8634pBOj4B1YFKNy2OwBGfqz3P926/TLQRNu5Vrtfiuk6WLltGbXM3SWYJ9fGJTermigkmllXLbGgI8JuP9mCNApcfPtkZ+ns0OTzEm8BXs4vldaHf1d4j2muB4KtxNO/vnoDMxDQjSV3VpEoSD8+0ULt3M7Vf8WT3hPUUvXZIgPasaJ7eoVyAC3Ik4szdFG9dx4gkA/vbgwSc7afUs+uYBqKyLD8LPAswbdo0ecGCBcfy6w+b5cuXc6Lv48nOl6UtfP+NbUzJT+Kx6yYz6w9LdLv+/JwsFiyYyM/WLuHCcWks3tNIICgzc3QBt18ypte2vrv0Y+YOT2XBgjMB2G8o5fPKYsYU5bJgQf+1RMMPrMNiMrJgwRlHfDwpNZ08tmU1wwpyWLAgMgt7/RFvPZImu5uHVi8BYP70Sb0kv52Jtby5b5v+ussHl0zMxeHx6QMIk1EiOTOPBQtG83nl54AXOcpCfME4ypds0D9rSMxhwYLev/Oe1HV088Wipey1m1jz0wWUNTv5zqtbeOWOMyNa5QhODS5+fBVzhqfy4IUh46BFbTugohqnD6bNnEP3Z4uYNrqI3e0VRCdl8O/SLt1MCxRTk/MWLoiQMB0LxP39xGTsVA/PrSrj7nNH8PzuLwA/l511JiMz48ludPDnTSsBcKjCjXX1AfxmMw9eNApfl4+3v9jEOyU+vjYxm9S4Fn5107ks/sNS3XVXBjxSNMMmTse1eDnB2HQWLJjU577UfPYxAB224YqZ27S8o3z0vXmhdD3exhZmzZl3RLL08PPd4w8w8uefcdvsIXQZWgE73iAMnTAd/9p1TMyzUb27EYDhBTl8+4rxLGxwcP7fld+9S51HumPOEF5aW8HUgiTWlbXxtSn5nL2wb/WRQHAsOdr39/MHUaCwqG0nGxqqiDEZue2yszAZDVwyvxOH2x9RFuZObeDuVzZjTUxhwYJpg7cDxxmhcxIcNzpcXr773620dXn5dFcDX9vbSIvTS25SDDXt3TTa3TTZ3dR1url9bjJ76+1UtLp0CURP9vz6fKIMoQd1pk0xRUmPP3gA9NdrJjFY6qEM1ao+4QilvgMh/DvSE3of45T8JAwSvHDLGfxjeQkbK9qZlJ9IYUqsHogmx5rZU29nbWkrLS4lw9rR7evVbHl/U6Q9uC8QxB+QiTFHSto0J0tN3ru9poPiBgd76+3MHZ6G4NSh0+Vjd52d3XV2Eiwm5g1PY3yuDUeYlf23X9kMKOdZblIM72+t69WaJSHGdMyDUMGJS1p8ND+7SJnYOHt0Ov/bVkeh2nc0ox8H1k2V7by8tpIzhyiDNlmGJXub9M+lJ0TrgShAs9NDhVr/GL48nHDTnoc/2I05ynBcAlFN4u5w+wbNXVabCHp1fSVGg8QZhUlsrGhna1UHHd1e8pKsSJLye0xUnzNDUpV+135Vbjg0LZafXzKGBy8aTUVrF5c/uYZrjsPvRyA42UlQFUNTC5IwqWUGfXkmnDcmg28vGMrlk3KO6f4dbQazfctrwFpgpCRJNZIk3T5Y2xacGgSDckSPsX+uKKWz28ePL1Daljzy4R7iLVEs+cF8zh2TQaPdzRNLS5AkpSi8KE1xpc1SA8yeWM1RETPGWsDa05mxJ5k2i+5edqSkxkYzoyiZaWqrl6OJxWQkWj3etLje+5+XbKX0dxdx1qh0ZqvZ0kl5icwcmsLsYSlMzEuk2eFh1YEWrn9uHYsqlQGPvdtHXdjgLMtmoaQxZPohyzILHl3OxU+s6vWdXR4lyNAcU9u6lIC0Z2ArOHkIBmU6u33IsowvrAZ7S1XILv7RRft4eW0FoAycNcMwraVScqyZpFgz3b4AKbFmTEZJb+/Qs22SQKDxxysnsOanC/UazoSYKP2e1xNfIBhxn3F6/GQmKM+KngGs1x9kl9raq64zMhDdUN7G8Ic+4Y2N1foyu9tPi9N7XHqRdumB6OH39AQl+9mzN/SyYqXHr9Eg4fIGuGRCNunx0fxvWy1uX5CkWDPxaj22ZsJijjIwNjuBeSPSSLKa9IlFo0FiaFocOx85v1c7HoFAcGi0LlOTDnH9GAwSP7lg1CH9FE42Bi0QlWX5elmWs2RZNsmynCvL8guDtW3BqcFLays483dLdHewLZXtTM5L5BbVBbbB7uaSCdlERxnJslnY3+jkP+sq+easIYzMjNcbAmclDixoHJudwMUTsphzDDNxBoPE63fO5OzRGcfk+xKtJsxGgz6j1hMt03TrrEL+eOV4Rqk3sP/cdibvfXuWPgCZURRqTROU4UCTk+RYM188MJ+bZhRQ1+nG4VYGM29trqG2o5uy5q5e3+fwKOtoN9Z21TG1SQSiJw2bKtr0wS/AMyvLmPjIYn71wW4mPrKYTtVVM7zXI8DuOjugmBXNKEpm6y/O1d9Lspq5YGwmo7MSeOm26Wz/1Xks+cF8oLf7s0CgYTEZ9XY/oNzPMm0WTMZQBv27Zw2jMMVKaVMXzU43CZYoval8tvqs+Na8In5zeWR5xib1/G3odEeYiry/rRZfQOb3nxb3UsrU9ZM97YnbF2BzWI/cj3fU647qh2J9WSszfrdEz8hq5l/hgejP3tvJ+2Ftu/qjtNnJlF9/zuVPrYnoqbp8v9L70OVVAusJuTbOH5vJsn1KgJpoNemKm3BTvOdvOYMnrpvMx/fN1SeQBQLBkaFd6+NyTk9DSOEmIjgqyLLMf9ZV0uL08GVpC25fgE0VSgbliz2NrC9rZV+Dg5GZ8cRGR/H1KTmcPzaDX6q1nxlhGcrrpitynwm5NsxGAwWqc+KhsJqjeOqGKREDmVMNW4yJtPjoQ0obE61mrj0jX1/PYJAwGCT+fu0k1j14NueOiWxrU9xgJ8tmYVh6nB687lEDjZX7m/X1tAzZ/7bVsqWqXc+IarSpN9gmuwhETwYqW7u46um1jH94EU2qgcKyfcqg9eW1lbi8Af7wWTFArwba+xsdvLe1hrqObuKio0iKDRnAJMWauG56Pp/eP5dxOTas5ihyEmOIMkgiEBUcFjeemc8dc4sAyEiI5ofnj+S8sZmUt3bR0Okh02YhN0m552fqTpZJ3HRmfkQAu0k9f30BmeowV/GGsN62f7hyQkRP6P5kvOEEgzJvbarmqqfX6gqge/67hT9+Vkx5SxdNYaqgvthR00mD3a23UwmX5oZv/3/bQoGo0+Pnh29t169ZjRdWl9PlDVDe0sU7B3y8ubGa9i4vZc1d5CUrvyMl02njwvGhZ0BijFm/LpPC2q+kxUdjs5rITozBahaVXQLBYPDAuSO5d+EwzjlGCYwTDRGICo6IPy/ax63/3tBreVWbi1+8v4vvvb6NG55bz2VPriFOlfr8/tNirn12HXa3X5cY/PWaSTxz8zS95jAzLBAdqkpyL52QzcofnzVodTKnAklWMxl91IcOFC0g7Skl3t/o1CXQmlxkq2onXt0W2Zs0EJS5//VtfP0fX0ZkDIJBWc+IljQ7+WhHqGWM4MREG2gHZXjovV3IskxeUuTEz9ubq+lwedldZ6coNdQLzR+U+f4b26nrdBMXrQxif6FOLGUl9J4MMhgk8pOtEZNOAsGhuHPeUL2NlXZuDk2LxesPsq26g7T4aL29QrifgCRJpMSG7pUOtx+LSRkCLfjzciY+sphlxU3sruvk/LEZ/OvWaVw9NZfssInM2vbIQFSWZZ5aVkKl2gJlW3UHo3/5GV+WtiLLoZYoGhc+tpJvvrhRz062OD0RcndQ6ldBeYbKsqwHonY1I9rS5cEXkNnf6OTe17aytrSVL0taeHtzDS+uqeCHb23HpZZGVLe5iFcD6Y/KfPz4nR3sUCXJV6h1ZuOyEzBHGZgxJGSKkmg16S3IhHReIDi6ZNos/OC8kX22oTodOD2PWjBoPLmshOX7mvH3eJhWqcHK6hKlRmxfo4NPd9X3+vyIjL617tpMttEg6fVmBoOkLxco/OKSMTzytf4dgQfKmOzekhBN1pYSF01BipWtak1gdXs3SergpMXp1aXWoJwPGpc8sZptavC6cn8z3/3v1oggVnDioTlWXzU1l8/3NLKlqj2ivux3V4zHF5B5blUZTo+fc8cqM7gxpkjTKm3we/ucIez/7YW9et5qvHTbdH4iJH6CwyTWbCTGZCQvWQtElcnKFqeHNPV+Bb39BFLjzRGTnHPCnMZT48z8fckBGu0ezihMZuGoDCRJ0hU1kqRM1Hy6s54L/r6Sx744wO46O48u2sfvP1FUApsq2vD4g6xQVSMlTU49kwng9gXZXWdnc2U7LU4P0377BX//Yj9vbqrm+mfXUd3m0utcq1pduH1BNNWwXd1OfYeS9azt6ObD7XX8Z10Fe+uVgPfZlWW8vbmG9eVtBIIyte3dzB2eGnHMn+9RjOq+pgaik/OVSUiDQWJ6oVKiEd5bO1EoFgQCwVFEBKKCQaG0R71gVVjAoZlL2PswWxjZTyCqtfoYEpZxEfRmXI6N8bm93dUOF5PRwO/mxPD6nTP0ZeGDuMl5iWyp6qDL46ety6tnSdu6vHrjZYg0JdpTb6e+M1Iqtq8hMkMgOLHQ/n73LRyOQYIV+1to61KWnTsmg2vPyCM/2cpTy5R6t/PGZCBJMHNoCjecma+rHrT/gYO2nMhLtpJo7buHo0DQH5Ik8chlY7lt9hAARmcl6LLbtPhoCtWMaHaPQPTKKbncOa9If33f2cMBmDcijaum5un3svFhjpWjsuIpSLGSmWChvKWLH7+9g7KWLp5YeoB/r6kAYNGeBspbuihR3cW12svSZiflLaFnY05iDPGWKF5dX8Vbm2oAeHtzDT9+ewdry1rZXNmuX4OVbS49GwqhGtGe99RV+1vYqWY5NUfbP35azJTffE5ZSxd5SVaunJpDskX5/byyroqitFiGpsXyq0vHcOusQn1bT988lQfOHcGE3MRQICquT4FAcBQRgajgkPgCQT7eUR9h6NATzYFQIzwQPW9spj4YvWBsJu/fM5sfXzCSKfmJEXVk4QxNi+WmGfk8e/PUQTgCwUDIjjPomQSAMwpDct2phck0Ozx6fajmjtja5WFnbSexZmPE4K0/9jU6aHZ42F3Xech1BYNDtzfSOOVgtDg9mIwSeckxjM9NZE1JC21dXi6dmM1z35iG0SBx/fR8ff2x2TYWjkzn7NHp/O6K8Vw2KRugV1sfgWCwuWZanj4JFxsdxahMRdWRGhfNVdNy+fu1k8hPiZSVf3P2EG6bM0R/PSE3kSU/mM8Lt0zjxjPzGZ2VwI8vGMn0ISHztvvPHsGH984hJzGGj3bU4/D4+f0V47GajbyzpYYkqwlZhs92NeiBqEZJk1M3dXvl9jN58+6ZXDw+i8W7G3hlXSUA7a5QxrTD5Q3LiHZFBKJPryjl2ZWl1Ie5/BokcHj8fLG3MeJ7ixscupIhNymGH50/ij/NCwXlZw5JRpIkvjl7iJ5VBsXd+r6zh2M0SLoBnqjhFggERxMRiAoOyf99vJd7/rtFD0I6XT42lLchy7LuTrirrpNAUKmX2VDeRk1bN5p/zsRcG/nqw64gxcqkvES+s2AY735ndr/fGWU08NvLx+stWwTHhuRYM9FRBq47I49phaHB2Nmj0gF4blUZEKobbXZ4WF/Wxrgc2yHb5ABsrWrnumfXcuu/Nw7+zgv65JV1lVz19FrqOrpx+3q3cginxeEhJVYxv5o9NIVt1R1UtblICZsw+sbMAv1ni8nIC7eewY1nKsu0erpWpxeB4FgyOktR10gSJFhMXD65/157n94/l3UPKh3ph6bFYTIayEu28un9c/nOgmER5m/mKAMJFhOXTMjSl106MZvHr58MwLVn5FOQYmVbdTslzZGB6P5GJyv3N2OQ4IwhSeQkxnDR+Cy6vAFqO7oxGw14/aGylo5un14jWtnminCvbnZ4+N0nxZQ0OTFHGYgxGblicq5e56rdk1N7eCjkqnW0UQaJSyZkMbMoRe/TejAun5zDj84feVBFg0AgEBwpwvZMcFDcvgAvflkBKNkSgMeWHOCltRWs+clCXQq0p87Orz7YxSvrqihMsWI1RzF7aCqzh6Vy1dRc1pa2UtLkHFCwIjh+REcZ2fnw+b0GH9mJMUxS5bmgZMKMBolnV5bR5PDw56snsr6sFVDkZ5/cP5cfvrWdz/c0khoXTYvTo7SD2dukb9PtC2AxiczZ0WZnbSeyrLRb2VrVwdLiJlb8aEGfTsvNTo9+jc4oSuEfasuJ8EA0NjqKt++e2ed3TVAzVEnC4ERwjLlpRgFvbqrhjLAJtP4YnXX4bRJumVWIw+0nKdaMOcrAgpHprP7JWWQkWGjo7OajHfX68xCU9mG76+y8u7WWc0Zn6L1QZw5NITUumrHZCRSmWHlpbSUmo0R0lJFmh4e2Li/x0VF0uHx9uvS+ul55xv7jxqnkJMVw66xCfvDWNn516RhkYPWBFv76+X59fc1BGOCJ6ycf0mE9tP82xmYfedmHQCAQHAwRiAoOygfbQk6nmq39iv1NBIIya8ta9Peq2lzsa3SQmxRDRasiy71pRj7fXjAUQJdIpQuHzBOe/mbAr5ySw7bqDoakxpIaZyYxxkSTw8OkvES+PjlHl6XFW6KwxZj04OU7C4YyfUgyH26v45mVZUzJVwLa+k43Q1JjCQZlvvniRi4Ylxkh+xQcHh/tqGNaQXIvQ6+99Urbnc2V7awva6OqzcWBJmefRmGa2QtE1sklx0VK6Kf1M9ifOzyNl2+bzoyilD7fFwiOFhNyEyn//UUDDrQOF0mSuFetKdXQso2T85N4X31Wjs5KYG+9nfvOHs7IjHjsbl/EtWQyGvjw3tnEW0y6PDcnMYagjH4PnVyQxMr9zfq125N4i0k3mBufa2Px9+fr76XGRtPs8PDJznpau7zkJEX2YRUIBIITCaG5EPSLLMu8+GUFIzPiSbKaaLC7qe3o1o2JVh9QMmATcm3Ud7rpcPm4aUYBF6n9yKbkh2oMtd6f6SIjetJy88xCdjx8Hl88MB9JkmhVW7N8c3YhBoNEqhqsxKpGNVrtkSQppkrfmFXIn66cwA/PV1xS6zu62VjRxk/e2cGK/c38+sM9Ed/X3uXlT58V4/L6KWly8OsP9xA8SJ3yqYQsy6wtbY1oQn8wHG4f3/3vVv79ZXnEcrcvQJlqlrJyfzMHmhSzqFUHWiLW21HTwSMf7mZXrV2X9oXXb6f0U8vdF/NGpAk5n+C4cLwCrWlqPf1ZI9O4amouoBglFabGMiE3sdd+ZdliiIuO0tvL5CZZSbSa9EBUa6el9W7W+PPVEylKi+W8Mf33G8xPsfKby8fxwb1zePz6yaLfp0AgOKERdyhBv5S3dLGn3s6vLxvLf9dX0Wh3s0Ztx2I0SHxZqvw8IdfGjhrFfKYwxcrd84cSDMoYDKGH7+xhqYzLSWBUZt8uuYKTA623XDjnj1UmHlLUQFRzTL1dNQXRspw5iTFcc0YeFWpgVNfp5s+L9tGgNngPzxrIssx1z65jX6ODyflJ7Kzt5F9ryrl5ZsFp4aS8qbKd659bx6t3nMnssBYT/VGntnQobQo5dLq8fn727k4CQVnP0oAyMbD6QLP+92l2eLj66bV41Fq15LCgMy46CqfHL3r3CgQHYWy2jY/vm8OozATqOrrZXdvJ8IxD+xtoNdW5STHUdqA/R/VAtEdG9IrJOXqgeyhyEmP01jMCgUBwoiKmrU9CNNnN0UZrxj05L4ksm4X6TjfF9Q5iTEamFiTpNvITcxP1z+QnK0FCeBAKMDwjno/unSus4E8h3rhzBi/cMk2v89SaxcepPSQtJiP3nDWsVx2oJh2t7+ims9tHapyZbJtF75MHsKWqnX3q+dfkcOsN4ytaItsEnapUqfL2gba7qe1Q1i9rCZmlvL+1TpcL/vHK8frys0ams7O2k3VlrWyv7uDV9ZV4/EHuWzgMIOLvNUIdTIe3YxEIBL3R6ubzkq389dpJA6p/D2VEYyKejaOyEkiNM1PTrtSI3jKzgJlFKXpPbYFAIDhVEKOLk5A3N1Xz6KJ97H7kfF0GeSR0unwEZBmDpNQHalKeA43KoHZoeiyZNgs7azspbXYyND2W8Tk2NpQrLSG0Vh5AL7t8wanLmT3qAPWM6CGkYBaTkZRYM3sb7HT7AvzgvBGUNDlZUhwyMvpgWx0mo4QvIFPf4dbrjitaQ4HortpOgrLMhLCJkFMFLUtcPsDAu1YdsFa1uvAFgpiMBjZXthNlkHj/ntmMy7Hx2HWTWL6vmdFZ8SwtbuK6Z9cByiB4/og0vn/uCMbl2JgxNPR3ffKGKby0tqLPelKBQHBk5CTG8OCFo7h0YjZPr1CMwWwxJpKsJvKTrbQ4vRgkePhrY0V9p0AgOCURgehJSLtam+f0+AclEP32q5tpdnjwBoJMyE3k6qm5/PjtHTTY3eQmxWA1R5GZEEOL00txg50ZRSlcPS2XF1Yr9WiK/b1EgsUkMienMVptoZYRPRiZNos+kZGXbKWty0t7lxdZlgkEZT7e2cA5ozPYXq2YGmkZ0edXlVPS5OS3l4/jkidWA1Dxh4uP0hEdP+pUt8zwDOfBqFWluf6gTGWri2HpcWypauesUemMUyXPl03K4bJJOSzp0XOwvtPN5ZNykCSJ81SZtUZ2YgwPXnjoVg8CgeDwkSSJu+Yrhn6Jar/OwtRYJEkiWVWY5CVbRRAqEAhOWYQ09yREkzA63P5DrHloGu1u1pa1cqDJSWWri6V7G7nzP5v0jMywdEWal2mLVtf3MCwtjlGZCXoPUaNBIjsxJqIxtuD0IznWTIzJOCBDquxEZWIDlIxccqwZf1DG3u3nz4v30+L0cNXUXDJtFoob7HSoTd9rO7p5dX0Vq0tCZjt9GfoEgzJrSlrwB5S6x0a7m9c3VA3GYR4TNIfq8ubIjKjXH8Th7t0HtLYj1Le3tNlJq9NDeUsXUwuSeq2rXdMagaCsG00JBILjg02V5qaqNdpaX9Q/XTnhuO2TQCAQHG1EIHqCo2WJwtEa0js9Rx6IfrqzHllWasCMBokubwC3L6gbzHh8ykB+fE6i/pmh6kB208/PYdkPFwBw17yh3KaanwhOT0xGAx/dN4ebZxYcct0zh4Taf+QlW3WDnE2VbTy9opTrp+dx9ugMsmwx7K7r3cLg/z7eq/+8tLiJtzZV0+Rw68seeHMbNz6/nqXFTWwob+PtzTX89N2deoDXkx+8uZ03N1UP+Fh/+NZ2Hnhz24DXHwhOj5+Zv1/Cpzvr9frruk43Lm/oOv/Oq5sZ//DiXp+t6+hmrNrOoaKli7VqT9czCnsHorlJ1l6utsKMSCA4vkSr16TmVn3PWcNY+oP5vUogBAKB4FRCBKInMO1dXmb8fgmLdkdK6ezdysDUGZYRbXV6dMnuwShtdvLIh7vxB4L4A0FeWV/FqMx4Xr3jTF771gyiDBLjchL46YWjGJ4ex3fOUmRDY7ITGKM2AdcyKolWs+5gesOZ+XxtYvaRH7TgpGZoWtyA2gWcHyYBTbCY9ED0uVVlGCT4/jkjgJCZByjuzBrFYSY+t7+0iR+9vYPHvjgAKL34NJOe/6yr5Jpn1rJifzMQWWOqEQjKvLOlhh+/vaPXpE+Tw83vPtmLV3WUBWjr8vL25hre3VJ7yOM8HLZUtlPf6WZ1SQsNdrf+Owk3LPpir1JHu3h3A6vVFizBoEx1m4tRmQnERUdR3+lm8e5GkmPNTMrrHYgaDRJFPZyHU0UgKhAcV7QJJ63W3mIyUpR2aOddgUAgOJkRBX0nMPWdbjz+IKXNkXVioYxoSKJ33+tbMRkNvPjN6foyp8dPVauLkmYnF4zNxBxl4H/b6vj3mgqCQZnFexqp73Tz9E1TdMOh314+jqHpcdhiTHz+wPyI7339rhks3dvE8HTxcBQcGT1l3FrQta6sjbNGppGeoASg6QlKgJQWH82rd5xJbUc3F/x9FQD/d8U4Hnpvl76Nuo5u9jc62FTRri/bXKn8vK2qA1DMfGb0yDC0Oj36z5sq2zmjMJSt/dm7O/libxPzR6TpbVTe3VKjvx8IyoPmZLmxQqmZ3VHTSVuXl9vnDOGlLyv4bHcDk/MjA8o7/7MZgFGZ8di7fTQ5PMwsSmF7dQeVrV1sqmjnwvGZ/e7brbMKeWdLDRvV31VavJDmCgTHk2un5bO33sG31ZpRgUAgOB0QgegJTIdLyXA2OzwRy/uqES1t6sIbCGVtHG4fs36/FIcq3/3lJWO4bc4QPah9aW0loPQlC89OXadKcvsiwWLi8sk5R3JIAoHO6p+chT+gZCDDe1dePS1P/zlDDUi/f84I4i0mRmWa+M1lY1ld0sK10/L0QHRcTgKVbS7O+9tKAKxmI1azUa9D1a4NLSO6aHcDHS4v156Rr9dDA3y8oz4iEN1Zq/T1a+h04/EHaLJ7dJMlgBanR9/HI0ULRLXvHJ2VwNzhqTyzooysBAu3zCrEHGWIyM56/EEybRaunpbHlVNz+WB7HWtKWvEGgiwc1X/T++um55OfbOWG59cDodY7AoHg+GCzmvjbtZOO924IBALBMUUEoicwHWrms8XZIxDtUSPqDwRpcrgJytBkd/Ojt3eQFh+Nw+Pne+cM55V1lfzfJ3vpcHnZE1Zv950FQ/nxBaOO0dEIBJHkJoWyologZIsxcfbodH35JROyyU2KYUpYRvDmmYXcPLMwYltjs2y8EVbjOSYrAbc/oAeiGpVtSnuTu9SMYllzl541TbBEsa6slX0NDoakxuLy+mm0K9deZWsX1zy9lu01nbpEHRTVQngg2uXx880XN/KTC0YytSCZgdLQ6WZrVQeJVpNuzDQlPxGr2ciyfc08/OEe0uItEUHoFw/MZ2habISjZnaiRQ+6w6XMfaHVhUYZJGyqY6dAIBAIBALBsULUiJ7AtKsZ0VZ1MO3xB1iyt1HPcmo1oo0OD0G1tO2ZlWWs2N/M25sV+eCNZxbwvXNGEAjKPL60JKIv4dzhacfqUASCgxJjVtx2r5qaS3RUqBG80SAxtSC53/YFb9w5g/fvma1LeDXG5djIiO+dqaxs7WJpWL/Sf60pZ5MaiF4xOYfiBgfn/30lv/tkLzN/v1Rfb/GeRrbXKJnKfY0OxqstUXqaH22pamdDeRvPryo/6PHKsszTK0r5y+J9uLx+fv7+LgySxC8uHgMoQXFRWhwXjstk88/PoTDFys/e26l/flRmPMPS43r9XrJsMfrnw+tr+0KrRUuJM2MYJHmxQCAQCAQCwUARGdETGC0z0uL04PEHeHJpCU8sLdHf1zKi9WrPQUDv7QmQmWAhLT6aq6flEgjK/OqD3QDMHpZCk93DlILEY3AUAsHA+OT+uSRYDi8zpzlKanJWgJRYM+eMzuDjnXUR60ZHGahscUVcI75AyJzo4gnZumR95YFmun0Bfv/18Xyys55VB0LtYgJBmcn5ieys7aRRlfVuKG+jIMWq16Iu2dtEh8tLotqS4b2tNfzps30s/9ECgkH46+f7eE4NVpvsHpbta+K22YVcMjGLVQea+faCYYDSZzAlLprb5xbxi/cVGfIzN09l1tC+nTS14HN0VsIhew8mWc1IkpDlCgQCgUAgOD6IQPQERqsRPdDkZOTPP+tlEqRlRut7ZGUunpDFxzvq9Ub20VFGbplVyH/XV7Gv0cG9C4f3MmwRCI43R+LcqvUujY4ysOnn5yBJkl5zqXHV1FxeXV/FhvI2vnfOcP6uuuxqTMpLZFJeItuqO6hucwGwYGQaW9SM6ZlDklmv1oeOy7ZhMkr86oPdFDc4eG1DFdMLk4mzRBFjMtLtC7BifzND0+L4yTs7SI2LVhxxD7Twu0/2UtrcxfXT86ls7WLF/mYCQZnC1Fiio4z8/brJvY7vrJEh9UJBipX4fgL27EQlIzo6TD7cH0aDRLLVTOoA+r4KBAKBQCAQDDZCmnsUWFbcFCGBPRjVbS62VXf0+Z6WEdWoae+OeK1Jc+s7leV3zSvi5xeP5tGrJpBgiWJGUWSN2j9umsKlE7OZpDrkCgSnClogmpMUo2cCNbluXrISnF13Rj7XTMslJzGGO+cVUZBiJcYUkgGbowy8f89sxmQl4AvISJISHMeYlXXumFuEyahsOzsxRs+mvrahCoANFW2sK2vl3DEZSBKUt3Sx8kAzu+vsevuYH761nUa7h1fvOJPff308eUlW3SzpYFLa8HrazIOYIxWmxiJJDPganz0sNaKnq0AgEAgEAsGxQmREjwL3vraVyyZl839XjD/kun9atI8tle0sHJVObUc3L9wyTR9It/cIRAM9ehw6VPfcug43cdFRPHjRaP29VT9eSGy0MWL9oWlxPHF972yLQHCyo7V76Stgu3RCNu9vraUg1cofr5yAxx/EYjLyzVmF+IMyv/14b49tRbOnXpH4mowGvn/OCEZnJXD2qHRyk6yUt3SRlWghNS6aFqeHJ66fTKPdzW8/3ovLG+Ci8VlsrmynoqULoyFyrq/d5ePcMRl6Kxgtg6nsbwwHY9bQFL4sbT2osVBOYgyLvjePYQPsP/i4uB8IBAKBQCA4TohAdJDp8vhxevx6r89DUd3moq6zm/+sU2rT3tlSy1VTc4GQNFcj3DHTFmMK1Yh2dvfKptiswgVTcPqQpsp6c5NCwdyc4an86tIx3DSjIMId2qJmQW+dPQSAMdkJekYVQtnVNNXsKCnWzPVqW6P8ZDUQtVn44LuzASWY9AeCLN7dyPyRaVwwLpNX1lUqqog+6jQnhrnZZieGrttDmQv969Yz6Oz2HbL2c0RG/EHfFwgEAoFAIDgREIHoIKO1WrGH9fjsC38gSJcnQF1HN+GJzrc3V4cC0W4fFpMBty/Y6/Pp8dF6H9Gy5i4KU2MH6QgEgpMPc5SBH543Qs80glIb/U012DwYs4amRrxOUwPRjITetZOjsxIoaXJiNUdhNYdun1FGA2/ePVN/XZhq5YNtdcgyxJqNuHwBCpKtVLS6mJCbqK+Xo2ZELSYDiYeYPLKYjHoQLRAIBAKBQHCyIwLRg7CsysewdleE3O9QNDvUQPQQGdFnVpbxwupyvUWLRkmTU/+5w+Xl3DGZtDo9fFnaCigD13PHZNDu8rK5sh2vP0h5Sxfnje2/eb1AcDrw3YXDB2U76WomNL0PE5/vnTOcO+YeOrgtTInVJ6N+fvFozihM5o1N1VS0VkX099SkuVm2mENmOgUCgUAgEAhOJYRZUT90dvt4aY+X/66vOqzPaRlRrX6zP9aUtNDW5Y3Ihs4dnkqL06sul+lw+chLiuG/35rB2GzFBXNCro2HvzZWl+ZWtnbhD8oMTxdyPIFgMEjXM6K9pbIWk3FA7r5FaSGFwuisBCbmJXLLzEJ+c9lYvaULQKYqxz2YAZFAIBAIBALBqYgIRPuhSXWyrO7hVLuzppPrnl2Ly6tkOzpcXr3VA4RlRHtIczUX3RanhxfXlLNV7TcYzoKR6QAcaHTQ7PDgD8qkqIPeJHXwqhmVZNli6HD5eG1DNQDD0gdmTiIQCA6O5rbbV0Z0oMwoSuHWWYX86PyRTFddaUdmxnPzzMKI9SwmIzmJMRSkDFx1IRAIBAKBQHAqIKS5/dCkBpRVYUEmwBd7G1lX1saWyg7mDE/lD58Ws7qkhdU/WQj0Lc3dVt3B5U+t4deXjaWuw83TK0ojtilJIMtKr8DffKT0Da1oVQLXmWq/T61+TAtEb55ZwKvrK/nXmnJAccQVCARHzvCMeCblJTJ9yFfvtWs1R/Hw18YOaN2Xbpt+yPpQgUAgEAgEglMNkRHtBy2grO4RiGo1nNuqlSb3Zc1d1LR36y65zU6l5tPjD+LxB4BQdvXZlWV0dodqQrNVWd6I9HhS46IZkhpLrNnIvgYHn+9pJCcxhtFZiuRWG6gmqIFoXHQUT980FYDh6XF6r0OBQHBkJFhMvH/PbEZmHhu5+7D0uAHJfQUCgUAgEAhOJQY1IypJ0gXAY4AReF6W5T8M5vaPJU0OJXhs6/LicPuItygB4IEmB6BkOQFqOxTpbkmTk6kFSXoAC+Bw+4mOM+rutjXt3eyus5MaF813FgzF4fbz8c46Fo5Op9HuRpIkphYms7S4iRanh+un5+sGJj2luQDjcmzsfuR8PP7erroCgUAgEAgEAoFAcKIyaIGoJElG4CngXKAG2ChJ0geyLO8ZrO84ljTZQwFldVs3Y7JN+AJBvdZza1UHTXY3DWq2s1QNRDWzIlDkuSmx5ghn3B01nVw1NZfb5gwhGJT57sJhGA0ht8xzR6ezcn8zAF+fkqMvT+wjEAWIjY4iViRTBAKBQCAQCAQCwUnEYEpzpwMlsiyXybLsBV4HLhvE7R9TmsIym1qdaGWrC19A5qLxmbR2eZn+uyUEgortrZYpbeh0k6TKaBf+ZQXvbKmlw6XIdrXuDEPUnp8GgxQRhAKcPVppwzI2O4HxOaE2D0k9akQFAoFAIBAIBAKB4GRlMAPRHKA67HWNuuykpNnhITdOCRJL1CBzuyrHvXv+UB67blLE+geanDjcPhrsbiblJerLP9heR0e3l+RYM/nJijOmFoj2RXZiDA+cO4KHLhod0VdwSGosBgl9GwKBQCAQCAQCgUBwsiLJ4Y0sj2RDknQVcIEsy3eor28GzpRl+bth69wJ3Km+HAnsG5QvP3qkAi3HeycEgmOEON8FpxPifBecTojzXXA6Ic73E4sCWZbT+npjMM2KaoG8sNe56jIdWZafBZ4dxO88qkiStEmW5WnHez8EgmOBON8FpxPifBecTojzXXA6Ic73k4fBlOZuBIZLkjREkiQzcB3wwSBuXyAQCAQCgUAgEAgEpwCDlhGVZdkvSdJ3gUUo7Vv+Jcvy7sHavkAgEAgEAoFAIBAITg0GtY+oLMufAJ8M5jaPMyeNjFggGATE+S44nRDnu+B0QpzvgtMJcb6fJAyaWZFAIBAIBAKBQCAQCAQDYTBrRAUCgUAgEAgEAoFAIDgkIhDtA0mSLpAkaZ8kSSWSJP30eO+PQHCkSJKUJ0nSMkmS9kiStFuSpPvV5cmSJH0uSdIB9f8kdbkkSdLj6jWwQ5KkKcf3CASCw0eSJKMkSVslSfpIfT1EkqT16nn9hmqshyRJ0errEvX9wuO64wLBYSJJUqIkSW9LklQsSdJeSZJmivu74FRFkqTvq2OZXZIkvSZJkkXc309ORCDaA0mSjMBTwIXAGOB6SZLGHN+9EgiOGD/wA1mWxwAzgHvU8/qnwBJZlocDS9TXoJz/w9V/dwL/PPa7LBAcMfcDe8Ne/xH4myzLw4B24HZ1+e1Au7r8b+p6AsHJxGPAZ7IsjwImopz34v4uOOWQJCkHuA+YJsvyOBSD1OsQ9/eTEhGI9mY6UCLLcpksy17gdeCy47xPAsERIctyvSzLW9SfHSiDlByUc/sldbWXgMvVny8DXpYV1gGJkiRlHdu9Fgi+OpIk5QIXA8+rryVgIfC2ukrP8127Dt4GzlbXFwhOeCRJsgHzgBcAZFn2yrLcgbi/C05dooAYSZKiACtQj7i/n5SIQLQ3OUB12OsadZlAcEqgylImA+uBDFmW69W3GoAM9WdxHQhOdv4O/BgIqq9TgA5Zlv3q6/BzWj/f1fc71fUFgpOBIUAz8G9Viv68JEmxiPu74BREluVa4M9AFUoA2glsRtzfT0pEICoQnEZIkhQHvAN8T5Zle/h7smKhLWy0BSc9kiRdAjTJsrz5eO+LQHAMiAKmAP+UZXky0EVIhguI+7vg1EGtdb4MZQImG4gFLjiuOyX4yohAtDe1QF7Y61x1mUBwUiNJkgklCH1VluV31cWNmiRL/b9JXS6uA8HJzGzga5IkVaCUVyxEqaFLVKVcEHlO6+e7+r4NaD2WOywQHAE1QI0sy+vV12+jBKbi/i44FTkHKJdluVmWZR/wLso9X9zfT0JEINqbjcBw1X3LjFIA/cFx3ieB4IhQ6yFeAPbKsvzXsLc+AG5Rf74F+F/Y8m+o7oozgM4wiZdAcEIjy/KDsiznyrJciHIPXyrL8o3AMuAqdbWe57t2HVylri+yR4KTAlmWG4BqSZJGqovOBvYg7u+CU5MqYIYkSVZ1bKOd7+L+fhIiib9FbyRJugilvsgI/EuW5f87vnskEBwZkiTNAVYBOwnVzP0MpU70TSAfqASukWW5Tb25P4kid3EB35RledMx33GB4AiRJGkB8ENZli+RJKkIJUOaDGwFbpJl2SNJkgX4D0rtdBtwnSzLZcdplwWCw0aSpEkoxlxmoAz4JkqyQdzfBacckiQ9AlyL0hFgK3AHSi2ouL+fZIhAVCAQCAQCgUAgEAgExxQhzRUIBAKBQCAQCAQCwTFFBKICgUAgEAgEAoFAIDimiEBUIBAIBAKBQCAQCATHlKhDr3J0SE1NlQsLC4/X1w+Irq4uYmNjj/duCATHBHG+C04nxPkuOJ0Q57vgdEKc7ycWmzdvbpFlOa2v945bIFpYWMimTSe2Sdvy5ctZsGDB8d4NgeCYIM53wemEON8FpxPifBecTojz/cRCkqTK/t4T0lyBQCAQCAQCgUAgEBxTRCAqEAgEAoFAIBAIBIJjighEBQKBQCAQCAQCgUBwTBGBqEAgEAgEAoFAIBAIjikiEBUIBAKBQCAQCAQCwTFFBKICgUAgEAgEAoFAIDimiEBUIBAIBAKBQCA4Abnvta384M3tx3s3BIKjwnHrIyoQCAQCgUAgEAj6Z1+DA4tJ5I0EpybizBYIBAKBQCAQCAaZ1zZU8eTSA4f1GZfXT2Vrl/66o9uLw+0f7F0TCE4IDhmISpL0L0mSmiRJ2tXP+wskSeqUJGmb+u+Xg7+bAoFAIBCcfLh9AarbXMd7NwQCwXHg4x31/G9b3WF95rmV5VzyxGpkWQagw+XDLgJRwSnKQDKiLwIXHGKdVbIsT1L//frId0sgEAgEgpOf77y6hbl/WkYwKB/vXREIBIOE2xfg0idWs7Gi7aDrOdw+un2Bw9p2ZVsXDrcfe7cfty+Axx/E6fEdye4KBCcshwxEZVleCRz8ShMIBAKBQNCLpcVNAIc9GBUIBCcujXY3O2s72VHTedD17G4/3d7Du/abHR7lf6eHDpcSgLp9QXyB4FfbWYHgBGawakRnSpK0XZKkTyVJGjtI2xQIBAKB4JTAdZiDUYFAcOLi9ChS2S7PwSWz9u7Dz4hqgWir00NHt1dfLupEBacig+GauwUokGXZKUnSRcD7wPC+VpQk6U7gToCMjAyWL18+CF9/9HA6nSf8PgoEg4U43wWnE8f6fF+2ag3pVuEPKDg+iPv74LKvTQkui0vKWW6s7XMdWZbpcHkJyrBs2TIe3eRmTIqRS4rMB912XZtiVLRiw1YSzJK+/IsVq8U9ZICI8/3k4YgDUVmW7WE/fyJJ0j8kSUqVZbmlj3WfBZ4FmDZtmrxgwYIj/fqjyvLlyznR91EgGCzE+S44nThm5/tnHwMwYco0RmUmHP3vEwj6QNzfB5dgcSNs2ERKRjYLFozrc51ub4DAos8AmDR9NnsWfc6e1iB/vu28frfrDwRxLPoUgMyCYaTHW2DDZgDGTJzKuBzbIB/JqYk4308ejnhqRZKkTEmSJPXn6eo2W490uwKBQCAQnCoIaa5AcOrg9CjXc5c3JJdtcXp4bmWZ7nbrcIcMhrZVdwxou21dXtSP0+L00nkQaa4syyza3YDXf+xrR92+gH6cAsGRMJD2La8Ba4GRkiTVSJJ0uyRJd0uSdLe6ylXALkmStgOPA9fJ4uwUCAQCgUDncA1LBALBiYtWG+ryhK7rT3fW83+f7KWiVWnXZA8LRDeo7rpRBomD0aTWh4IS2GpmRRAZ2AK8tamGu/6zmVfXV37Fo/hqOD1+zvjtFyza3XBMv1dwanJIaa4sy9cf4v0ngScHbY8EAoFAIDgF8PhDg1SRERUITh2canYyPCPa2a0Eii1OD0NSY+nsDr23sVwJRM1RBnyBIHf/ZzPfmlfEjKKUiO02hwWirU4PthiT/rpnRvTNTdUA1LR3H9GxONw+3txUw62zCjEeIlAGaOjsxuHxU9rcdUTfKxDA4LnmCgQCgUAgCCM8m+HyCsdLgeBUQXPNDZ9g0gNRh4fK1i4+2BYyMdqqSnNd3gA7ajpYUtzEh9vrem1XC0TzkmM40Ohka1W7nkXt7PYx5pef8cyKUmraXWyqbAdgf6Oj13a8/mBERvZg/HtNBb/5aA/bazoGtH6rU5EL27tFb1PBkSMCUYFAIBAIwhis6pJ2V6i+S0hzBYJTh64+2rfY1Qxoi9PDlf/8kpfWhiSzgWDonrKsuBmAnbWRPUiDQZmPd9ZjjjKQm2ilrKWLdWVtSGqS8vM9jbi8Af6yeD871f6lozLj2VvvIBiMvGf9+qPdnP+3lYfsPRoIyryxUcmsNtndEe812d2UNTt7faa1Sw1EDxHodnb7IjK8AkFfiEBUIBAIBAKgtqObkiYHY3+1iGdXlh7x9tq7QgO1ilYXe+vtB1lbIBAcTzz+AOvLBua12VdGVAvMmp1eWpzeXp8pSLECsGxfEwB76+24w3qMfryznhX7m/n5xaM5f2wGBSlWbplZwE8uGIU5ysBadd9GZ8Wzq64To0Hiskk5tDg9FP3sE8pbFKms2xfgf9vqqO90s2Rv00GPY+WBZmo7FGlvU4+g8Qdvbee2FzdGLFt9oEW/j9m7D67y+PWHe7jrP5sOuo5AIAJRgUAgEJz21Hd2M/9Py3hyaQkub4DffVJMaR/ZgIEiyzK760IZj6dXlHLnIAzKHnx3Jw+9t/OItyMQCCL5aHs91z67jvrOQ9dchgLRsIyoFog6PERH9R5eD02LA2B3nZ0og4QvIDPqF5+xcr+SId1V14nZaODGMwu4dfYQVvzoLB65bBx3zC2KcMZtd/nYXWdneHocM4qS9eVf7GkEYGlxEw63nyiDxL/XlOMLBFm2r0nPonr9QV318dr6KlLjzBgNEk32UCDa6fLxZWkrFa0u2tUMaCAoc9uLG3liaYmyziGkuU0ON3Ud7oOuIxCIQFQgEAgEpz37G534gzIbK9r1ZVWq++VX4bNdDfz2470RywZDpra+vHXAtVwCgWDgNDuV67O1j2xmT0LS3D5qRJ0erGZjr88MTYvVf75kQpb+818/38/rG6oobXKSn2I9qGHQpROzaeh0s6vWzpjsBCbnJ7HyR2cxNC2WVSUtlDQ5+Nl7O8lLjuEXl4xhfXkb9722lW/+eyOXPrkaXyDIrD8s5b8bqmhyuFlS3MRVU/NIiTWzoaKNP31WTDAos2xfky4n1iTETQ433jCpr93tw+nx89uP9vRZetDl8Q+4TlVw+nJI11yBQCAQCE51KlsVWZsmUwNl4HUwZv9hKQtGpvF/V4zv9V6ZKpObkGtjf6MDty+I2xfE4w8QHdV7kDoQZFmmodNNSpz5K31eIBD0jxZIhmf67G4fPn+QlLjoiHW1ALTbFyAQlDEaJF2q2tDppt3VOwArUjOiAN9eMIwfnj+Sl9dW8uzKMr3P6DmjM/rct0e+NhZbjIkOl5cPt9fR4vQwLtsGQH6KlbnD03h9YxVvbqrB4fbz4XfnkJdspb7TzdMrQmUGdR3dtDg9bK5QTJACQZnLJ2ezuqSZDeVtbChv45IJ2azY34wtxkRnt4+dtZ3MG5FGfWfk/bCz28e60laeX11OotXEZ7sbePOumVjNSmjh8gZweQP4AkFMRpH3EvSNODMEpwxPLSth8UnY12pXbSclTb1d7wQCwbGjMiz7GW9RBlLhUrWeuH0Baju6eXV9lS5z21DeppuDtHV5iTUb+eC7c0iwhFowHErOdjDsbj8ub4DOPga5AoHgyLD3EYj+4M3t3PLvDb3WdYSZFHWrdZ5a9m+PWkNZkGLl7FHp+nqZNov+88jMeHKTrNwyq5BJeYn68iGp1j737ZZZhVw+OSdiG9MKkyJ+dvuCrC1tJTXOTF6ysp3b5wzBrAaBmQkW/T5X2uxk+b5msmwWRmbEkx4f2u7W6na2VrUzoyiZotRYtqtBcn0Pma2920ebKttdWtzErlo7dWETeVr9rHDXFRwMEYgKThle/LKCj3fWH+/dOCwCQZnbX9rI997Ydrx3RSA4rdEyogA5iTHYYky9zDs03L4ABxpD9aOlzU42VrRxzTNreUbNPrQ6PXoWJSZMptfXoKy2ozvCVbM/GtSMhN3tZ2tVO9VtLi58bBXvbK4ZwBEKBIKDoQWg2jXa5fGzYl8zu+vsvdovhbvl1nd0s7myTf+cdi0/fOlYnr55qr5eYoyJl2+bzqofn6Uvy0mM4f17ZjOtQAkqC1ND8t2+yLTF6D+PyUrQf85OVJYXN9gjgsq0+Gh+fslokmPNtLm8VLa51PUcrDrQwoKRaUiSRHp8KOO7dG8TFa0uJuUlMTEvkS1VHciy3Kt21u7263JmLcC1h/U61X5nfU2+7amzR9S9Ck5fRCAqOGXo8vgjHOgGg0BQ5v2ttTjcPj7eUT9obR00vixtodHuYVetfUAGCQKBYPDYVduptywIz4imxkWTHh/drzR3zh+XcemTq/XXb2ys1rMGdWqw2Nrl1SW0vrABV0ePbGZnt4/Zf1jKD9/afsj9Db9HfOOFDfzwre3srbezuaq917qrD7Sw8M/Laevy9mrLIBCcLry2oYqHP9itv3Z5/fj7aWnSU5q76kAL3kAQWVYCJ+29q/75JVVtLuKiFeXEuX9byZX/XEtQVrKOGukJ0RGS1ESrmXkj0vRsZTjThyimQ0NSDh6IZoVlRKPCtq0t9wVk0uIjZcTfmFnI3fMVw6M9qoGaxx/E6fFz9ihFCuwPmwhbUqw47U7OT2RaYRItTg+Vra5exkOBoExNu3Lf1Fq6OMICUU2+3DMQ3d/o4KLHV/H4kgMHPVbB6YEIRAWnBMGgjMsbwDPIM2zrylr53hvb+PYrW7jnv1t4d0vtoT90GLy/tQ6z6q53KJt1gUBweDTZ3fx7TXm/E0iXPLGas/68nGBQpqotPBA1k54Q3a+5UIsztPy8MRk8t6qcJ5cpTpLa4LTF6SUlVglEXb7ehiYAb22q5sU1FQC8t7WWkiYnlzyxipp2Fx5/70m1hrAaLYfHrze07yvQXHWgmbKWLqb85nOm/27JoE+iCQQnAw++u5MXv6xgX4MDfyDImF8u4sF3+3ad7inNfWtTNRaT8nzeWdtJQ6ebB97Ypl93SbGmXtu4eWaB/nN4UApKRrQ/Lp2YzdSCJMbl2g56PKmqyuLWWYURy9PiotE8jtJ7BKLhn9tS2RGxfP7ItIjX4VLi8Tk2zihUAuSNFW3Ud3aTaI08hrLmrojX2u8wGJTDJMuR2eS1pUobmiNxJRecOohAVHBKoA30PL7BDUQ14xJt1u8/6yoPtvphIcsyq0uaOW9MBtk2CxvK2wZt2wKBAH7yzg4e+XCPXrMVjpYB6PIGKGtx4vEHKVJlcUpG1NKnNLen6uKpG6cwMiNez3RqNVOtTg8pscrgL7zX4D+Xl3LNM2t5alkJP3lnB3/7Yr/+3m0vbmRXrZ17/ruVkT//jKfU4Fajp1mIJgFs6CMQLWmKHOT1HAyuL2uNkCMLBKciIzPiAfjX6nJWHWgB4O0tfUvZwzOin+9pZElxE/edPZzUuGh21dq565XNLN+vPLMh0jFXoyg1lotVR9wka6SpWMJBAtHRWQm88+1ZEfXkfWE0SBT/5gJ+ecmYiOVRRoMuyT1YILqv0cEENdhdMDJNz9j+5IJR3H/2cJ65eSovfvMMnr5pKrHRUQxLiyPRamJjRRt1nW7G59j4yQWj+OF5IwD03qUaWka0u5/JN4fbx3K1j6rF9NVM2wSnFiIQFZwSaPUa7j6yCIfDxzvqI2bpGtWBX3W7EpBuq+7Qg9JDcaj6h5r2bhrtHqYPSSbTZtEHsAKBYHDQFBI9TTYAHN5QhnCpKkW7YnIOAKnxmjTX0yuTGG7GAWAyGrglLDvR6lQ+0xYmzQ2/F2yqbGdDeRuPLtqHpoabmGvDaJD0rGyHS7kXPLpoHyv3NyPLMr/9aA+P9SNla+zDVOlAj0C0NSyLGwjKXPvsOi59YnXPjwkEpxRaK5S1Za28u1VRNI3LtvHUspJeJoHaZE1nt4+/f7GfotRYvjW3iFGZ8ZQ2OylrdnLTmfk8fdNUvn/OCB66aDSgmJtpctiEGBNPXDeZXY+cj6FHG5aDtWU5HCwmY69tQ8gMKa1HJhZCgSjA1IIk3rp7Jk/fFKpfTYuP5vvnjiDKaGDByHQuGJcJgMEgMSkvke3VndS2u8iyWfj2gqFMzldqWntO1jncPhxuX0SmVAtEZVnm7L+sYNk+pW9qQ6coGRCIQFRwiqA1lz6SjGggKPO9N7byz+Uhq3Mt0xBuJLK5sh1Zlg8qdWt1epjwyCJWqI2qu70BFvVw9N1UqWRApxUkk2g109F9eIHo5so2lhY3HtZnBILTiWRVGttz1h6g0xO6fl/6spKhabH64Co1Lpq0+Gi8/iCVrS6+LGnR1w2vk9IyH1+fksMVk3PISIimtcuLvduPPyjr39+TyfmJ6veYiTUbmTciLSKLYZCUQWa8JYpvv7KZiY8s5vnV5cSYjBSl9a4ha3F69Lq30mYnM3+/hKo2ly77h1ANFyg1WqAMvJftaxqU/qYCwYmINjaobnexXJ1wKm/p4tFF+3h7sxKYdri8/Oit7fpk8KLdDeyus/OteUWYjAbS4qNp6HTjcPtJiYvGYJC4/5zhjFbNgi4al6VnXiVJCd40if6xRJMC95kRjQ/di2YPTeWMwuQBZyTH59jY1+igxellXI6STbX1k91dW9bK+IcXR9TQa3Jdjz+oB64jMuKo6XDx6vrKQff2EJxciEBUcEqgZUT7qqsaKI12N76AzIFGR9iy0ABtYl4isWYjmyraeeDN7Yx/eHG/26po7cLtC7JRldt+uKOOu/6zWZfCybLMol2NxEdHMTIznsQYUy8TE18/hgoaf//iAL/9aO9hH6dAcLogqQFdWUvvWqSOsEC0tqOb+SPSGZOdwLicBKbkJ5KuDuoeXbyPG19YT0OnG48/oAdxK390Fk9ePxlQMhR/u3YSc4alUdLk5K5XNgGRWYhwrp6ax9zhqdxwZgFLfrCA7y4cFtGWQRu4PXnDFM4YkszXJmXzq0vHsOfX5/PfO2b02p4so7tXritr1SW8D144ijvnFQHQ4vDQ3uWlyeFmi2pulBoXzTf/vZGrnv6SX7y/i+q2SLVHo93NuX9dwTl/XRGxvMvjZ1dtpxhACk54ujx+kqwmZFmpq46LjtKDU838a01JK2+FOU/7AjKxZqOukEiJNeuT0uGTS2OyE3juG9P4zeXjePTqCVw7LY8p+aGWKsca7R7SVyCaHCYTnjM89bC2OzY7VLeqHV96Qt/3tuVqtjMcew834v+7YhzzR6RR3dbNQ+/t4ou9YkL9dObYT9kIBEcB7cHi7icj6vYFDjn7p9WD7m90EgzKGAwSjWG1Vxnx0cRHR7Gxoo3iBmUw2l9zei2A/WJvI1/sbWRGUQqgyFgSY8w89P5OPtvdwL0Lh2E0SEpGNCwQbXZ4mPunpbxwyxnMHtb3Q6Oh002bS8h5BSc/sizzj+WlXDIhi4JDuEb29/lnV5Zx0fisCEdKTRJWqsrEFu9u4ECTk+8sGBqREQX41rwhJMea+ejeuUBIcratqgNZhiXFjSwrbtYHTVmJFj3Q1UiNM+PyBlhXpkxAadLc+84ezr9Xl+u9B4vSYvnP7WdGfDbc2KTN5cVokJg3PJX5IyLNRMIzEUaDRLwlig6Xj7qObrJsMTjDakHnj0gjLjqKZ1eW0dLl5buvbaG+083E3ET188p6la0u/tNaSX6ylW+pgSsobsCaxNfl9euN6m/51wY2VbZz2+wh/PLSyFo1fyAY4eYpEBxPHB4/s4em6HLQhaPS+WB7HRCS2Vf3UW4zITdRHzOkhE0o9VQ5nKvWi2bZYvjjVRP63IdbZhYQOAZmYdmJaiDahzRXuyYl6fBrM8flKJnfGJORUZlK5jc93kJBijXCbbw/tP6q2v8JFlNEG5rSJlGrfjojnhaCk5rK1i72NThwqaYBfbnm7qzpZNyvFunZSF8g2Ge2Uav97PYFqFFrQsNNQFLiopk+JFkPQoFeduYaWu1DcYOD4gYH76jmCK1OD/9YUcKnuxr40fkjeeBcpeA/0WrC6fHr+1Xa7MTtC7KlsndbBv077G46u339WtELBCcLHS4fjy7ax0c7vlof4Oq2bn7/aTGv9DAT0wPRJiedLh8Pvb+LRxftY96jy/j3bmUS53dXjOfT++eSFTYwglBWQZug+mJPY8TMvamPYKvnIFVrqfDAuSPY+cj5+vKiPnoFhmdEZRmsJmOvQBfAYjJgNhpItJp4+NIx/Oj8kQBc+c+1fLqznmaHh+goA4u/P4+itDiS1H3a3+BgbWkrZc1dfKz+nnvWd2kD8k51Uqw9bKKrxRH6Wfud1HZEDkIPNDoY/cvPIlQlAsFgcvuLG3lhdfmA1vX4A3j9QcbnJmKQwGw0MCdsYre6rZt/LC/RWy+BIocHRQGloU0oQe9rfCA8ctk4fnv5+MP+3OFyxeRcfnv5OLJtvQNRgI/uncP6B88+7O3mJMaQaDUxMc8WMck00OxvyARKmSRLiDFFTLyFK1Ze21DF+X9bedDSp5Im5xGp3wQnFiIQFZzUzH90Oef/fSVd3v6luSXNDvxBmb31Dh7+YDejf/EZc/64tJcMrbY9ZEKyr9GBLxCMaNOQGmfmmml5EZ+pbnOxvbqDvT1cORt79B/sVl0zW5xeSpucDE+P456zhukDTc0SXcuKapnYin5mG7s8fhxuP7Lcd7NogeBkQlM0hDeJB8X44vM9h5ZtlTQrgc9mdeJmf6MDWZbpVAOp1i4vFz62kiT1OqtuU671+OgobjgzX6/1CqdnVmFNSav+8xS1xrMnWuYkLzmGD747m2Hp8X2u17PPH0T2BwSwRvedtZAkiYQYE+nx0dw8s1DPyAC8vbmGZqeHjAQLI9SaNZPRQJLVxPtbawnKKHWjEswsSqHnWK+6zcXnexqZ+OvFbKlqj7i3NIfdC7W/V3uPcoI99XZ8AblPl2KB4EgJBGVWHmjWS176wu0LsKtW6ZWpudomW00UpMQyMjOe7MTQhFOD3c2fPtvHp7tC/g2a6+vEsDYqKbFHFogeK9Lio7lpRkGfE1gA43JsfWZLD4UkSfzpygn85IJREctvmpEPwKyhKRHLh6XH6T9bzUb9PhLKiEZFtIEJN4h88N2d7Gt0YO+OfBZodHn8XPT4Kv67vuqwj0NwYnLIQFSSpH9JktQkSdKuft6XJEl6XJKkEkmSdkiSNGXwd1MgODgHMytq71Jufs+vKuPFLyu4bFIOLm+A77+xLWK9mvZu4lWDgf2NDpodHmQ5FCSmxkWTabMwN6y+orrdxWVPreHCx1ZFbKuph4ul1iqixemhpr2b3KTIhtaJav1Gp2pYpGVUK/pprxCeqRVuu4KTHW3w1zMQfX9rLd96edMh24xorUp21Hby+Z5GzvvbSt7cVE1nt4+bZuTzvXOGU9fppqLFxY1n5vPkDUptp8PT92AHINZsJEaVsBWlxuJVlQdP3zSV1++c2ednrGZl/YLkWCao8tdwLhibSU5iTJ8DxYweA8RYc/+VM4lWk96qIS0umgfOHcHEXJva68/dK9BNiYvG4fFTkGLlqRum8NQNU3TDpHCq27vZVKEM8lftb4kYDGqTcrIs6/fbzh6BqHbfa+yjnYxAcKS0OD34AjKtXZHPV68/yItryvH6g/x3fRWXPbWGti6vLlOPs5j41aVjeOji0X1OAoVTkKI8mzVTHji4NPd04byxmbqZm8bUgmSKf3OB7rBrVrOl48N+d8PT43T5rlYjmhBjYnJ+IueMzmDByDT2NTjYXdcZse16e6Q7uUazw4PXH+zVv1Rw8jKQjOiLwAUHef9CYLj6707gn0e+WwLBoQlvR6ANYL2BIMFg5DS/Ji/bXtOBySjx6FUTuHv+UDZVtkcEcbUd3RSlx5EaF01Vq0sf3E5WJTqaPOf5W6ax7sGzMRkllu5t6nPfGu1uMhKiMRkjB5wtTg/VbS7ykiNlgFqjay0jqpmN9DcAD7c9F4Go4GTHoc6UO3v05dMmXMLl8H2hXatef5CHP9gNwB8+Labd5SMxxswYNePpDQTJTLAwe+ihzTokSdINOS4an6XXZk7JT4xwow1niCq5vfaMvD7ff/rmqaz56cI+3+spDe4vIwrw0wtGce/CYfp+3nf2cO6aPxS728+G8rZeZiVaRueCsZmcOyaDc8dkEN9Hv8Kadhex6mRcW5cHe7ePQnVgrgWiLm9Az6S296hR1/5ePfudCgQD5cvSFi56bFWfRliaJLzVGXnerSlp4eEP97DqQDN76u0EgjLVbS59wiQuOooFI9OZUZSiB6IxPeokb5s9hCdvmMxH987h9TtnRNSah2dEEw/SC/R0xGIy6vfGGHUibmx2SGEypSCJmvZu7G6f3h4nwWLCao7i+VumcfboDHwBmYsfX82yfaHxVH/3EM39u2cbLcHJyyEDUVmWVwL96yDgMuBlWWEdkChJUtZg7aBA0Bcfbq/j/L+v1F83dIaCUm+PmkltsOQLyGQkWDAYJM4oTAbg8SUH+EKV/lW3uchNjCEvOYaaDhcbytswGiTOUaVvmgNmdJSRTJuFnMQYlqh28D1bejXa3UwtSGL7r86LCDpLmpx0eQN9ZERN6r5GSnNbnF59kN7s8PDe1hr1eEM36Z6DQUDJBvXIVpQ0OfnL4n167cWOmg7Wlrb2+qxAcKzpT5qr1SXua1Cktv3VQx9ocjIyI54og0RtRzcjM+L1a8kWY4oYVGbYLCTFmimyGbgrzJinL7SALivRwnljMshNijmotG10VgI7Hj6PSydmH+KIezMyI54xWQl6VsF6kIzoOWMyOLMoUg43e2gqWqK1Z9YnVX2tZS4gVAunEWMy4vYF9aC+qs2F3e3Tg2vtb6H9reItUXR0+yJqubRAVGREBV+VLZXt7Km392mCowUfzQ4P97++lS9LlbZKWoBa3tKl1yfXdnRHnKsaiTEmLCYD0wojs3tRRolLJmQTbzHp5oIa2iR0otUkjLj64OzRGfzkglH6pFVhmOHctAJlrFVc79AzouF/j8lhtbh//LRY/1kb42yqaOO3H+1hjdpCS0tA1IpA9JRhMK6oHKA67HWNukwgOGo88uEeWsJmRWvCXO96zqSG1zFpdVgT1PqPF7+s4I6XN9HtDVDV5mJYehx5SVaq27rZUN7GuBwb54zO4OLxWRFSHUCXxoEyK/jQezt5c6NyKTTZPaTHW7Cao0iJDQ0Kt6mmCHlJkdmPJFWaqzWyr+9064NKrTbt1fWVfP+N7TTa3T2kuZEBZ0VLFz9+ewf3vr41YvkH22p5YmmJnnX9y+L9PPLhbgSC440eiHp7BKLqoGNfo4NHPtzDsIc+7aV4+N+2WorrHZwxJIk37prJGYVJ/P7KkDFIz0BUM8n45cwYHlQb0veHdo1nxFt45LKxvPudWYc8loQ+Mo0DwWY18cn9c5lSkAgo0uDD/fxwtTarZ0Z0XLaNUZnxulsuRA4GMxMsXDZJCZ61e9T+Ried3T5S46KxxZj0v4Umo85NsuL1B7no8dV8ptbYNYmMqOAI0Z7rfWW8tGUOj5//bavjw+31/PrDPXpteFlLl+7yXNfRjdOjPOtiw3p6GgwSr95xJr//+niybRYevFCpe7x0Qv+TR1ZzFFazMaIFiiBEXHQU314wlG517BVuvKbdz/bUdWLv9hEdZYhw7R2XY6P0dxexcFR6hPJFu4f86oPdPL+6nL9/sR8IZURFIHrqcEzbt0iSdCeKfJeMjAyWL19+LL/+sHE6nSf8Pp6upJh8tIS93lsd6l21bOVqkiwGOjxBvresm3B1rNFj7/Nv+uonywnKEGyrIugIUtXmo6bdxXkFJvZuWcfVObBp7eqIz8xO8ZMqmfAEZJZU+Xl1fRWvrq8ivrMEh8ePs6WW5cubkd2hQZnWXqaxbA/Lm0Ozfy6fMrjetLOYNGcpVc0uRiQaKLcHufuVzTw808KX5cpD9f0v1rC5wU+0ETwB2LyrmOzuMn1blXblYbCtojniWLfuUwaSn69YTbrVQGVDNx0eWV9HnO+C48XmKuXcrmtqizgHy+qVwcbW0gbqupRr5IX/LWV4kjKQaXIF+cnKbtKtEgVyE47yVu4ZBfay7fo2qsv2samrlDgTOH1QvX8ny+sMAzrfvWrNY/WBXWxoUr5zz6Accf90q0Znzs62w74eE1A+21BdwfLltfry0cCoiTIrV4b6gZY3KQFltBH+MMtInbOF11EyoRAa6NlbGrAaAuwqq+GLpc1UOZR7WExAKRvYW2/nvVXbsbQUU9GofLayqVPcS04wTpb7e3G5cg4v27AdqSFyUmfDnsja0A+2VhE+D7tkZzUur3KfWL/rAC029ZrdvoWO0si8iwP43UwjyNW8eEEsrSVbWV7S/37FGoMY/d0nxe/weBEnK3+7Azs368uKt6wjzgRLt+5HAixGuc/f4QSrnw0muGlMNK8Xe9laXM4SYy37GpR7yt7adpYvX86mUiUQdbj9fPL5Mqymvo2ZTpbzXTA4gWgtEF4Qk6su64Usy88CzwJMmzZNXrBgwSB8/dFj+fLlnOj7eKrwyIe7SYk1892FwylpcpBli4mYxezJ/21ZQWaCn8smZ/PMijI6vAZAGSBNPWMG+SlWlhY3ApsIhCVQJg4vYMECJQvyN1sND767E7cvSHd8PrCfa8+bxaoDLXxUtpOgDNeeNYkFI9P73IcF6v+vrKtkSVXIy8uaPw7YwIUzJ7JgdAaftGxne3MNkoReW3X5uXMjarRkWca47FNSsvKYO28knYs/5fqZQ7hkQjYXPraKxPxR2MtLAQdJeSPwtdcxPNNLRYsLW3ouCxaEevmtLW2FL9fh9BFx/v6rbAPQzKgJU5iQm4hv3VLcQY++jjjfBceLvctLYU8xRouVBQvm68sfWrcU6KaxW5HGtzg91Edl8a0FY/jb5/t5bOUBAP53/8KIWXiA5FWf09blZfYZk5lRlELRrtXsqOnk0nPmkmAxDeh830spn1cWc9FZs3uZCR0t3q7bwvbmegpzsliwYOJhfbYupopN7+1kyvjRLJiSe9B1Yyva+PuWtSTHWViwYAFef5BffPkZgR4Z57EjiugwtLC+vI2/7YriZxeNhrXrmTwiny1NShsNS1I68+dPovOLzwCZTi/MnTcfY8+aBcFx42S5vz9fsh5oIT4jjwULlGxli9NDICgjVe0CQi7aPcRANLqUc1eSgNgU8oemw46dnD1v1hFfv7MatpIWFx3xrBVEMvlMH1ur2lkwMp3vL/8YgLPOOovJZetpcngYmhZHqsfe53m4ALj/ahlJklj75Gokq5mCcaPxL17J2OwEdtfZGT9tJiscJXCgAoCh46cxMrNvZ/KT5XwXDE4g+gHwXUmSXgfOBDplWf5qzeAEpy1Li5tIspr5zoJhnPPXlUzMS+R/98zud/0mh4fLJmVzw/R8nllRFuF+ecPz65icn8Q5o3sHkOGD1Ssm52I1R3HXfzbz+d5GEixR5CTGkBdWv9nTlrwvwm3IQXHnhVCPrWRVmhtnjsLh8XPO6PReRiGSJJEeH81z6mcDQZm8JKtea1HZ6qKsRclAVLZ1caDRyayhKXR2+3rViGpW6T3GkzR0qhkO1Qmzw+XF7Qvy18X7yEqMQRR2C44XmoSuK8ysSJZlmp0esm0W6jrdujR0xf4mYAyPLVGC0Csm5/QKQkExDmrr8ur9PvOSrJQ0OXVn7IFw5dQcbDGmYxaEQsh592ATcf1x/fQ8MhKi+508C0eT5mpGI+YoA3lJMVS0upicn8jWqg5AabWg9VXeXWenSc3Y5oaVF7Q6vXS4fHj9QYrSYilr7qLV6flKrSIEpzfadR7eo/snb++gzeXF4wuSaDXp5SV9ER1lYGJuIp/vadRbP8V9hWupJ49dN/mIt3GqY4sx6feeZ26eqre1O6Mwmb99sR9zlIGEg5g9aW7iGQkWKlq72FuvSHUvmZDN7jo7B5qcEeaMdR3d/QaigpOHgbRveQ1YC4yUJKlGkqTbJUm6W5Kku9VVPgHKgBLgOeA7R21vBacsbV1e6jq69fqj8AbTPXH7AnR2+0iPj9abtYdT097Nh9vreGZFSK6q1Vv2dKbMUXuK7ajpZHRWApIk6QMso0EiOurQdVpJPepGVh1oYWharL5vqarRwXXT85hWkMQfrpzQ53Zevm06w9Pj+cfyUgwSLBydTozZSGqcmXVlrXj9SsZ3Z62dBrub4RnxJFvNes2EhtarCyLrZbXi/85uHx5/gC61t+njS0t48N2d+nqVrV36dwkExwKtzYIzbELJ6fHj9QeZPSzS4bbJ7sEXCCJJcOusQn7/9b4bxf/92klcMy1XbyVw44x8Hjh3RL899voiPd7CDWfmH+7hHBGaSZH1MGtEQRnInT06Y0CZSG0yLHxgqBkThTeqt1lNfP/cEboD+Aa1h2P4hF2L06PXdGl1qKJOVPBVaOujBrC4wcHuWjslzU7OHJLc5+e05+zd84cSbYoc2n6Va0lwZJw/NpPvnTMCUAJRWVbGWQOpoc9JiqG6rZs99XaMBkk3WStpctLq9OrjtpqD1Ik2uYJ6vbvgxGYgrrnXy7KcJcuySZblXFmWX5Bl+WlZlp9W35dlWb5HluWhsiyPl2V509HfbcGphNcfxOH20+z00OwMDV7CAyqNQDDULD0tPpr46Cii1EFXz5YK4U2StUFTz6bxOWHNrTWnvLxkK1+fksN7AzAmgVBGAWC6+pAsSgs1dNb6jl0wLpO3vz1Ld9/tyfCMeL69YCgAs4el6kYpOUlW1pYphkWJVhMr9yv1sMPT4yhIiWVfgz3CudIe1oT+kidW09Dpptsb0K3T7W5fnzPK3X4Zl9ev92AUCI4VjjDXXO1c1kxLzihM1oOgiXmJODx+qttcyDKMyoyPML4IJy/Zyp+umqjfF2YNTeWOuQd3yT0ROJKM6OGgZUTDB4aaeiM77L6YYDFx1dRcVv9EaTujOW3nhrmBtzg9lKuKjRlFyj2wQTjnCg4TWZb1QFQzJnL7AtR1duMNBPH6g8wfoWTctJYqWrbz7vlDeeqGKdx39nCunJIboVQ6nMknweAzKS9RH6cNZFJgQq6Nbl+AD7bVUZQaS2GKlVizkQONDlq7vIzKjMdklA7awuWt/V7ufW3LoB2D4OghfKgFxx3NKVaW0aUYAJsr2iPW8weCXPnPL/n6P74ElGyFJEn4VQ1qTxmtJyyrd+H4TG6dVcjorISIdcIfVgtHKQ84o0Hir9dM6rMhfV+Eb+OfN07hhjPz9YBS2a9ULp6QxajMhL4+HsEF4zI5f2wGd80LfT5XHRSajBJnj8rQl4/IiGdGUQqNdg+lzV3UtLtYU9ISMZNc0uTkox11EYPCzm5fn71HyzuDarY0qEvxBIJjgZYR9Qdl/brVJHqZNgtD1Ykdzep/Z63S/DwrMYZTDW2gdrSzOHHmKCQpciJNu5d5/CElhfZ+RoKFtPhoKtS2GuEtqNq6vOxX22bMLFIy2A0HyYjuqu2kuq13ew7B6Y29248/KBNjMtLQ6cbrD1KlTjppTB+STGpcNBeNz8JsNHD99DxMRolJeYlcPCELo0Hi8sk5bPvleUzJT0TEoMefGLORa9TeyjkDuGdriozajm7mDk9DkiTG5djYUtVBq9NDalw0mTYLdR3dyLLSM7Zna68ml0xDp7uXy7rgxOOYuuYKBADBoEyX169Lw8KlpVq2E5Q2AmeNCtU6vbmpJkJq0bNX3rXT8li+r5m+iDYaePDC3q0awmdKx/dozzJQNGmu1WwkJS6a310RKRXMtFl46oYpA9qWyWjgmZunRSzLUaXCZw5J4cYZ+byzpUZfPlMNvs/564qIz2h26n/9fD8bK9oYmx06NnsfdaUAJR0BPSDo6ON9geBooUnyAV5eW8E3ZhbS4lAC0ZQ4MyMz4ylucDAxTzmPd6mBaHYftaEnO0cizT0cDAaJvCQrQ1JDAeX8EWm8sLqccdk24qKjcHr8EdLd8Tk2lhY3YY4yRNTdBWXYVNlGTmIMuUkxRBmkPjOiTyw5QE17N29sqiYvOYZVP16ov9fQ6ebr/1jDS7dNZ3iGqPs63Wh1evjJOzsAOGtUGp/sbOA7r27hi70hcyKr2ciQ1Fg+vHc2iTFmvjW3iOxEC98/d0SffXffuGsm/oAIRE4EfnfFeL4xs4CshEMHovnJVlJilbKjs1Wvj1lDU/mb2sIlLT6abFsMu+vsXPjYKoobHCRZTXz+wHySrWYMBomW7iC+gNJnPaUfFdrBeGtTNeUtXfz4glGH/VnB4SEyooJjSqfLx0WPr2LOH5fpzevbwwPRulAguqOmgztf3kRlqyL5Wr6vKWI2LT1BublMzLWRGhcdIYfVGiubjBLTC5O54cyCfvfp/64Yxx++Ph7DV3R4tJqNmIzSUTM08akzfZPyEpmSn8SXP13IR/fOwWiQ9OME+MUlY/SBeVKsiXvOGsYVk3PYUN5Ggz2U4fyytDWiflZjW1NAr9HrK1AVCA6HQFBmY0XbgNYNrw393SfFvLe1ljb1HEyJjebySTl8fUqObt6lZUT7Mik62QllRI/+PPEn98/lrvkh9cW8EWls+vk5zBuRpvdaDg84tV7KmuFT8W8u4PHrFROX9WVtDEuPw2BQ7oUNnW6aHR4+3Vmvy63/8vl+3tgU6rXc5HDrdey76zqp63Trf1vB6cVLX1bwxd4mAC6blEOMyRgRhOYnWxmXbcNokMiyxRBjNpKfYiXKaOj3WjEZDcSI+tAThlGZCdish64RlSSJKQVJxFuiOKNQkfrPGhZSvF0yMYucpBhKmpwUNzi48cx82l0+fvbuTob//FOeWlaiOyo3OTx9fcUhWbS7kbc213ylzwoODxGICnTWlrZS3GA/9IqHyd76UA3jG5uqKG5w0Nnt02sdwzOiu9VAdGpBEsv2NbN4TyNPLi3BHwiytqyVucNTGaY2bU9R65ne+fYsvvzpQqLDakS1dYamxfHm3TMPOmC98cwCrpv+1Q1JJEnCFmPulaEdLK6fns+IjDhumqEE09mJMfqAUJIk3r9nNh/dO4fb5wxhqHrcWt3X9CHJtLt8rClR6rrS46PZVt3Biv2RmeNrp+VR1hnUjUjaD+JKKBAMhL9/sZ+rn147IMMIp8eP2Ri6fnfUdOp1zIlWE2eNSuev10zS66t31nQSHx3Vy336VMCqBnmx0Ud/AB0XHaW7Cmtov+N/3DiFv14zMaJeVFONaPWrFpORDPW+5w/KuoQ606YEoj97byfffnUL/1heiizLeq0vQGFKLBf+fRXPrVQmxepUKa8myRacPgSCcsSgP9sWw/wRaRHr/OvWafzxqr6N/gSnHr+8ZAwv3TZdr/HXTNCybBZGZSboSYnoKAM/u2g0RoPE4j2NBIIyjy7ap2+n8SvWqjs9PlrVtkGCo4uQ5gp0HnpvJ8Mz4npJQ78KnS4fcZYoPtpRx/2vb+Ppm6Zwwbgsqtu6FYMho8Si3Q1cOD5Lz74ZDRItTg9Gg1LvsblSqRGNs0SxpaoDh9vPnOGpPHjRaCpaunRnyCh1IBVuWpKfrGRObAexCh9MhqfHHTUb8REZ8Sz+/vx+35+k1s2BYtACoeMepe7TurJW4qKjyEqM6XOG8M75RbyzuZrXNlQBkVlqUOTUTQ7P0i56fgABAABJREFUKZmBEhwdNqk13o4+TMcA6ju7MUoSJqOBFqeHDFs01W1K5n5XbSdWsxGr2RhxXWtBUpc3wIiMuD63e7JjNR27jOjBSLSa+XqPXqRaIBqeJU0Nm4Abrv5NMhMsrNzfjMPjJz0+mj8v3sfIjHh8AZm75w+lvMXJyv0tdPsClKimcvVqbXuL00uXx8+S4ia+NjH7qB6j4PgRDMr8/Yv9XDEll1bVdfmueUXsqbczND2WH54/goWj0kmIiaKh082wdCHXPp3IS7bq4xlQzCg/vX8umaryTJsgy0iwEBsdxbC0OPY1OhiREcf+xpBRZc/xTiAo85N3dnDrrEJ9Qr8vnB4/QVlRh/VnMCkYHEQgKtDp6PbpTpVHgtsXYOKvF3PrrEJ21ykyq0a71husm7xkK2OyE/h8T2OES96ozHh219lJjDHpGU3tMw++u4OUWDNzh6dhizExMSz40gjPiKaoVu7HKhB9+fbpGE4AVwTNHVgL0rWbdU17N8PS44jtIVOKj46iy+unMCWWRItEpWog0jMj+qdF+3h6RSmbf37OV6q3EJx+ONTeoOEzyr5AkEBQxmIycsdLm9hdp9jzB4IyIzLi9UC0uMFOYWpsr9ZIMWpw6vIGKFBluqcaUwqSuGxSNmOzD21udqzJSIgmNS6aOEto6JBls5AaF82IjDgum6QEjpk2Cw6Pn7joKN67ZzbXPL2WO15WDPW1ibNFuxXZZX2nm/9tq2Vfg2J21KLWCn60o57Obh976uz87opxwvn0FGNbTQePLy1hW00nF4xV2nPcNKNADz6GpceL4FMQQbjZpBYcakq0cTk29jU6uGNuET9+e4e+3o/f3kFVq4sfnj8SgJp2F29vriEvyXrwQFT1LWhRzZEERw8hzRXoON1+WgdBFqVlOF/fWKVnNTvVliK1Hd1kJ1qYlJdIZ7ePuk43bV1ebDEm3aU20WrSJV4Ai/c0UtrcxaNXTzhoYBmeOdGs3Y9VIGoyGgbUu+9ok6e2VNBataTEmnVpS2aCpZdbrs1qIjk2GqNBIt4k6e6EHS5vREuYl76sAKBZyOYEA8TRR2/Qhz/YzeVPrUGWZV2Gf+OZ+Vw8PovLJ+fo6/kCMuvKWiMcqTVcav/bs8OMzE4lkmPNPHbd5BNSdixJEt+aO4RLwzKVVnMUGx86m/9+a4aexdWyFjfPLCAnMYbb5gzR189NiiE5NnRsO2o6uP/1bSwpVuoDW5xeitWgdPHuBl7bUKX3PBacnKwva2VpcWPEso1qGYgtxkR5i5PoKMOAHFUFAoCRqqHZLbMKAZhWmESUQWJOWN9prWXMsyvL9LFPper6rbUK9PqDvLO5ppe7rvb8av6KNaaCgSMCUQGgZDG9gWBEveZXpV2tEnf7gmjXtnYx13V0k50Yo0tGi+vttHV5SYk16xkAlzfAyMx4EixRxJqNyLJiOjRnWFrvLwsjPCOafIwD0RMFLSOq9RKVJEl/uGckWHQny9e+NYN1D56NLcakNwKPNYcCaX9Qpq7TzQNvbKOytYtu1VCkbRAy5oLTAz0QVf8PBmU+29VAcYODspYuTEaJu+cP5deXjeOpG6ewQK0J0+SfzQ5Pr4xoOGePzuj3PcHR4675Q7l5RqT5W89s5ZlFyUzKS+R2NQCdOzw0OMxLtkb8Xd2+yLYLrU6PbmSnPTcGY4JUcPy49tl13PZiZIv5L9V+tCaDRFlzF0NSY7+yYaDg9CM/xcq+316gy/evnprL5w/MJzsxhs++N5fvTIzWW/t5A0HeVbsNVKmqL+3e8u815fzgre28u7WWYFDWzdO03tYHq1nv7BZeGoOBCEQFQGjQ6HD78ap9/GRZ5u3NNREZjYHQl+Nqs8OD0+PH7vaTnRjDCC0QbXDQ7PCQHGvWZRL1nW5sMSa2/+o8bp5ZCMDw9Hg9s9cf4Q+x0zUQzVVbvWQnhmo5tZ8zbdH6LOLk/EQybRbmj0jT+6fG9fhVfb67gXe31jL/0eX6spZBmKgQnB5otaHa/WNXXac+0fXxjnp8ATkiM5aXbOW/d5zJK7efqS/rKyN69dRcRmXGHzVzMMGRMyE3kffvma1L2oaHlVrYYkz6/bkvWpwe/ZzRjEZanB62VXf0yqoJjj8ef4CH3ts5IFMYl1f5u5Y0OVhfrgSibS4vZS1dFKWdmlJ7wdEjOiqkgosyGhiSqpxDozITmJ4VKh8Yk5XAYrUUoLpHIKr1rT7Q5ODNTdXM+sNSnJ7QOLjF0feYp6Kliym/+ZwvS1sG+ahOP0SNqACINBRp6/KSabNQ3tLFD9/aTlCWuWZa3oC31VP+GWWQaHZ6dDOK7MQYEiwmcpNiKG5wUNLk5JzRGXqWVEPJ5ilB1OHUS5mNhlAgOgCr8FOJlLhonr15KlMLkvRl2TYlOM1MsPD0TVMpb+3SZczhPbLiTJGz0eE9XTXa+pgdLG6wE2uOIjcphl/8bxeXTcrRLdcFpyduXwCf2r9Pm+Ravq8ZSYKMeAvvb60F6JXxnKXKqlLjzLQ4vX0GLI9ePfFo7rrgKCBJEl+bmE1NuzIITDpIINrq9BJQywK0WvVmh5cH3tyGyxtg7YMLybIJCeeJwuoDLby6vopWp5enb5560HUPNDoZn2Pjjpc2ERdtIicxika7h6o2FxePzzpGeyw4Xfjkvrm4vH4+3lnPaxuq8AWCoYyoOpZJUOvdm+0eHG4/bV3eiDaC/WVE99bbCQRl1pW1MWtoap/rCAaGyIgKgMiG8q1dqhxKDShbByDHfHdLDZ/tagB6Z0TzU6w0OdzUaoGo6rw6KjOBtaWttHZ5GZkZj8Vk5NeXjeW978zSP6sNOAYaiP7n9uks/eF8ClNieeDcEboJwunEeWMzIwyFwt3lkmLNTMlP6vNzcebegWiUQeK5b0xjcn4iQJ/S7e+8uoXffbIXlzfAK+uquPrptYN0JIKTjdqObmRZpr4zlB3RsluLdjcwKS+RWcNSKGtRegP3lxnLUSXmiQeR5gpOLh6/fjLvfmc20HsCYlRmPDOLUrjujDz8QRm5R8eE1i6P3mbm8SUlfW5fO/cExxbNpE8bNxyMzZXtbKxoo6LVxc8uGsWE3ET2NzoIBGU9myUQDBZjshOYVpjM1IIk3L4ge+vteiDa4lB8MFyqFLfZ6dGzpTtqOvRthDKngQjjPc3YcZfoe3zEiEBUAEQGolpGU/u/L6ltT55aVsLTK0ojPqdRkGyl2RG6yHNU+ej0IUn6bJPW+uQbMwuZHBYoTcizMSYrgfkjB2ZMMnd4GrlJVgwGifvOHk56gmg3otWIHqr1ipYRjVGzpbtq7WTaLJw7JoP3vjOblFizHoh2efy0d3nx+oNUtrqoV02nBKcvTQ43s/+wlJ++s5MXVpfpy51uP1WtLnbX2bloXBa5SSFL/v4yY3nqPSLpNFM0nC4kq4FoRoIyYTY5P4nX7pzBzKEpfa7f4vDqgejqksgeyE0ON9VtLub9aRnLe/RHfmdzDRc+tkoEqEcRrU7O3t13CY/HHzKa+vVHe7j22XUALByVTnKsWR/cC2mu4GihTb5/7ck17K6zY5Cg2xegyxvQPQxqO7qpbVeSJTvDgkstczry559xz6tb9OVVIhAdNEQgKgAipblaBrTDFRmQHowmu4eKViXL0bMHZUFKLG5fkC1VHcRHR+mOigtHhcxGRmT0bdOeHm/hk/vnitnSI+DC8Zk8dNFoxmX3b1UOoYzoiIw4vfF8eDP7lDgze+vtrNjfzG8/3sONz6+nut1FICjT4vTQ4RKF+6cDu+s6WVfWqr9+6L2dfLKznh3VygP5jU3VvLKuihvOzKcoLRaHx8fiPYpa4oJxmXodM4QCkp5owerBzIoEJy/xliiMBomx2TYm5SWyYKRiVBU+SRFOo8NNa5cHgwTVbd16lt3l9XPWo8t5fMkBAkFZH0hq7KztZG+9/bB9DgQDR5uo7q9fcGcfz4Vsm4VEqzlCEVGUdmr2BRYcf7ITYyhKjcUcZeCc0Rlce4ZSatbsCBmjVba69CznzhrlWRZvUXrY2tVz+7PdDby6vpKqVhdVqvtuk8ND0wDqowH8gSCjfvEpb26sHtTjO9kRNaICoKc0VwtAlYuvZ2DZZHezrbqDZfua+LK0lU/um6s7jHW4vLT1ePDkq33BVh1oYURmvO6wODQtlvxkK10evzAeOYrEW0x8a17RIdfTMqIpcdGMybaxvbpDl1GDIqNcV9bGLf/awOisBEqaHJQ2KY2jW51e2sIy550uH+WtXVz+1Bo+/O4cxucePAgWnDxc/PhqACr+cDH+QJDXN1bTHdbX0xZj4gfnjeAbMwu5/Kk1ONx+SpudpMZFk5ds1ZUR0H9GVAtW+zIrEpz8GAyKm/eQ1Fj+desZ+vLJffSHBtjf4ECWYd6INFbsb2Z/o4Mp+UlUtrro8gb0VkD2HsGQ9lxr6/KekO1wTmQ6VBOh/ko5NLQ63o5uH7Is93JQ1t7/9oKhXDQui/LWLorUiWVtoik1znzaGQsKji3v3TOb6CgDFpORVQeaeW1DNcuKm/Sxa7jsVisdGZ2VwM6aTg40OvT3HnpvF+nx0USbDGSqnQj21NtJT7DQ0OlmU2Ubl0zIpi/qO924fUF+/+lerjlj4L4rpzoiIyoAIh/gbWqth54R7SHN/dHbO7jzP5t5bUM1la0uvfYT4IE3t/Ph9rqI9YdnKDOdLU6PLsEFxcDih+eP5N6Fwwb3YARfCc01NzY6Sh8QhkubU2JDkwV76+34AjJr1cxYty8QkY0oaXbyzmbFLl1zRxScuCza3aAbyQwUjz9Ag91NICjT7PSwu66TotRYtv3yXL6hul3HW6JwevzUdrh14zEt62U0SLpRRE8m5NowGSWKUkWW5FTljbtm8P1zR0QsMxgkHuixDJT7DYTawOxT+4xWqiocbXKjpzxUe64NRluy043nV5Vz3bPrIgbofaGNE1zeQJ+qGC1jOmdYKuNzbXxtYrbukK9lRMV1Ljja2GJMukmjlvj49Ud7WLy7UW9hB+hO36C47Xb7AqwtjRzDNDk81HW4ma+2HKtQA9eX11bw3f9u1d2he6KNlWOj+88B+gLB007BIQJRARCaOU6Lj6a+Q5EZ6DWi6v/d3gCf72ns1TtpY0Wb/vNStSm5hkGCmUWhup+ezrhfm5jNrbOHIDj+aNLcuOgo8tQsdrisqqO792Bu1YGQdfmBptCs4daqdt3O/1Az3YrDavCg6wiOHnvr7dz1n8384v1dh/W5JXub9Ad0q9PL7jo7Y7ITIjIicdFRON1+vX8wKLXKBknJhvTMnmhMyE1k9yMXkJ/St1RTcPKTZYshro8B2b0Lh7Hqx2fpShqALq9SZzg5PwmDBA++q8jBK1R5nJbV6J0RVV6L/seHT21HN15/kHaXl78s3sd9r23V33vpywq2VrUDoYwnKFLoF1aXEwwLXrXgtC91gx6IivpQwTFkSGoss9R6dKfHr493AM4dEyoZG5OlmGQu6TGuBSWDesaQZGLNRv0+VK1OxvfX8qVGfb+v+57Gt1/ZwrhfLTqcwznpEYGoAFAC0bjoKCbmJrK1ugMIPWC0gPT9bbV86+VNlKuzPxrry9roD6s5iiijgfPUi1vMfJ64aNLceEsUl0/KZkKujW/NC00SaCZG4ZSo0lxQrPkBphYk8adF+1i+TzEO0WowSpqcPL2itJdxyC3/2sBvPtozuAcjGDBPLlNcSGPMvf++B+M7r27hR2/vAJSMVG1HN6OzIt2t46KjcPQIRM1RiqQpvIdoXxyqb7Dg1ESSJPKSrXrWQKtXB8Xc6JzRyrPkrU3VekZUI7zEBEIZUmGkdvhoE4mtTi9PLC3hA1XpZHf7ePjD3Ty/qhxQMqLpaobpG+q9XBtDaO9D3w7Y2j1ABKKCY0l0lJGXb5uONg8aFx3FB9+dzcUTsvT6UVBcdwG2VnX0uZ05w1IpSInV/VFqVVVRSz8O0ppq7GDP2i/2Kv1Og4dQIpxKDOhJL0nSBZIk7ZMkqUSSpJ/28f6tkiQ1S5K0Tf13x+DvquBo4vT4iIuO4ozCJMpbumh2eHRJjd3txxcI6vKDzm4fthgTC0cpTrYHk15qF9yjV03kpxeOYkaR6C95ohJtVJwMzyhMJiUumg++O4dh6aEM9u+/PoF/3jilVz2vNrN4oMlBotXEc9+Yhskg4VWznNrg8OkVpfzh02IONDmpbnPx7pYaqttcVLW5IgJawbFlhTphINF3djIcfz+Zay0jVZgSOaCMs0TRYHfj8gYijK9GZMZHZLwEgp7ERSvPjovC+kumxkXz7DemMXd4Km1dXipbI+Xk9m4fgaDM5kolWyekub15eW0Fy/b1zvD0pEELRMMG1R0uL1sq25FlxbRMWeZjTHZChNqpvlMZcP9rdTk/fXcn0LcD9pDUOO6aX8SlE/uuqRMIjhZRRoNeoxwXHcWE3ESeumEK43NCfhbD0g+eOMm0WRiSGquPjTXpbYuj70BUK39xeQJ9vh+O9kz96+J9PLWs75ZVpwqHDEQlSTICTwEXAmOA6yVJGtPHqm/IsjxJ/ff8IO+n4CjjcPuJt0QxrVAJFDdXtkW0belw+XS7aoA75xXxr1vPwBZjotHuIcZkZPkPF7DxoXP45L653DKzAACrGojarCbunj+UKKPIcpyoSJLEv249I0KaEk5afDQXjs/SjSY0bjgzH4BGu4ck1Qlx4ejQNtpcXjZXtrNcHfx8vqeRP35WzANvbucHb27H6fGLjMVxwunx6/UoPWWNoLiSrghridFTlt+TvOSYiNfxYRIkrUYU4LHrJvOXayZ9lV0WnCZoGdFzwu4lWo1XeryFZoendyDq9vHYF/u58p9fsqOmI8ys6NA9Lk8X/rxoH6+uqzzkek12tZ94mKy5vKWLTRVKkF/R6sLu9tHu8pJkNXP26FCLtao2Fyv2N/PrMKVLX4oao0HiwQtH6/3CBYJjSYoqDQ+v2TQaQhOylrBz9r4eXiaXTVImTwpTrVS0uvjBm9tpVK+Zln5KATRpbl9lTj2xq8/ax5eW8OiifYdc/2RmIFHBdKBEluUyWZa9wOvAZUd3twTHGi0QHZeTgNloYFt1J+1dXn0W8/UNVREPfc3VslANSlLjzRSmxpIWH82Y7AQyVLfVvh4+gpObsdk2vTcpRA4UtfPl6qm5+rK3NtVw5T+/pMXpxWiQ+HxPo94kuqVLsU8XGYujhz8Q7NeIKNx2Xhu0y7LM/7N33uFxVFcffme7tKveq+XeK7ZxASzAdAKEEErypRMCJCGkEdILKSQhCSGFhEACgdBCD6YYGwuMe+9Vvfey2tX2+f6YsrMrybJxlXXf5/Fj7e7saHY1c+eee37nd17dXk8gFOGGh9fxmX9u5KDqGtg5RIueorj2Gy6DGZExI5qSYBUumYIjok0OkxwWHv7kHL5pMDHKSrIrhiHdse1aevqCrFXrlt2+kF4jejTjS3OPj1seWU9T99G1YhiOdHkD9PhC+oR5MIwLVMZFwqfW1/C/nQ26XHpvQw9d3iCpiVY+OrtAl+Zrihej8ctg9eACwekiwxXNiBp5/avn8cebZwGKc252kp3zxivGRAWpCbz+1fP4zQ0zAHS3+Be31unv/9Gru7n+r2v6/b66LuU+3OkN8tbuRnzB2MxoXyD6OH5h2NiP92zjaALRAsDY9KZOfS6ej0mStFOSpBckSRK+xMOMDk+A1EQbdouZrCQ7Td19dPcFGav29vrdOwfZqzoXQjQQvVDt/zYlrjZMC0CPte5McObzzUsn8OIdi3jpzkU89YVzcVjNelChSV0umJDFe98uZUymU5/Q2CwmbphTyK76bn1y0+r2E5EVQ6yhms6HwhE9I/f8plp++/b+k/URzype3FrHxb97b8A+f9qENN1p019/d38LX3t2Ox/96xr9mtdMiTSVxE8+MoUV37ggZl8uu6WfIYlxImoMRAWCoXDZooHoFdPz+OrF4/XXspLshCIyshybhe/xhXSX905vAK3MqsMToOxAC499UMmzG2vYXNXBx/+2ln+vq9Lf+9dVh1lX0c5rO+qHPLYDTW5e2lqnL6idKXgDIR5fUzlofZm2mNw0RN/DZsPrxp9f3FpHpyfAVy9S/hb/XldFrz9EWqKNcdlJvPm185lVlEpNh5dtNV3MHZXGn26Zzb1XTDrejyYQnHAy1PtTfCA6rSCFa2cpYc7Ldy7i/Xsu1I21spLsTCtIwW5R5rZLJ+dw63mxhpuhiMzWmi7dHwMUU8aGLh9Ws0QgFOH2p7by6cc28qUnN7OlWvFZMS6sxTuAax4cZyMnqo/o/4BnZFn2S5L0JeAJ4KL4jSRJug24DSAnJ4eysrIT9OtPDr29vWf8MZ4IZFmmosVLvtVLWVkZtoifHRVNRGTIMvViNUFQLQ1LtkFPAGr3b8ddaWKWBR65JBGLyR3zXdXUKpNav6dnRHyHZwMf9nwvq4fJqRHW90FlY1vMPuSgMrDazfCXixysqmkmHJGpbFMGVS0LF4rIvLGiDKd18FXzlTVBXj4U4I8XJnLPcmVCNc/edMzHO9IoOxDAH4rwvxWryXfFrj2ua1C+/0xbiJaeIGVlZWxpUp7b09CDSVJMrF7bsJ9RgSq2Nqs3x7YK6oLV/HSRg06fzINb/aTZIrz33nsx+0+VZe6caac3KLN787qT/2GPgZEyvg9XOluVIG/vTuVeY6S1MTpJy7MF9JXyLo+fPp/yvtVb9ujbVDe287Wn2+j2KwFaTqJEs1fGEuih2F8FwOaDyljVWFNBWdngDedlWebrZX10+WUuL7Fy8yRlgtoXknnxYIDrx9tINIxjr5UH2NYS5scLYxdiXjoUYGqGmYnpJ26x9tn9ft6qCtFaW8683NjpXW9vL+tXbwaUGraV766KkSEa2dcezb5s3FcV89q9c63km+u5ZJSFN3Yp429bfRVlZUoA7wj52NIQxheGBVlBkjrdTIIjfqcCwYnmaMZ3X5cyVjTXV1NW1njk/QWUscPkd/fb73kueMYKniBYTBBS58vPvfkeY1LNvFMdpNsvE47ITM00s7NNub42qh0nVuxt5r7FCXT4ogtIazdvw1cTHRteKdtIW8HZqSI6mkC0HjBmOAvV53RkWTa61TwK/GagHcmy/AjwCMDcuXPl0tLSYznWU05ZWRln+jEeCW8gxP89uoGfXjONzCTboHUY7b1+fG+vYNGMCZSeN5onKjfq8qaPLJrOX2/L5bIH3+dgcy8/+MgMspLtXDgxe8B9aXRvr4c928nPzqK0dO4J/2yCE8/xnO/T5/o55+cr+PjCCZSWjtWff/TwBiq728hJSWTpRRfSt6OB/+zfpg/URibPmseYrMHNAd7/3156g5XMmLcIlq8AYNF5Fwh31SF4uWkb0MC4qbOYPzrWLOzg++Wwcz/njC/klW31lJaW0rixBrYrBiMTcpKYVpDCyn3NXHDBElq21MG2nVx8/kLd8r7V7efBrSuYVDTwtd5vRfIMYbiP72c7WwMHWF59mAvPW6D3ntWwl7fztx3rAVg6Zzwb31DUEcFIdNE0ISMfqCLBaqayR5n4XTAhi9313bSoWVOLM43S0nMBuHftSsBHXvEYSi8YS6vbz8bKDq6akRfzu1t6fHS9vRKA1KxcSksVid5v397PippyFs2YwOcNGZJnajdT1dPMwvPO17MovmCYz771Fo60HL5UOvMEfWOwvHMXVNWQO2ocpWovX42ysjKcCQXAQWRgyjkLBp0TdG6rg007sFlM9EqJgJsxmU4um5bLJy5XspulpVDe2svaw21cM7OAFFUNsSVwgPWNirnKx5acw7mG9m0CwaniaMb3neFDrKw5yIwpEyldMOqI20YiMpayN5k8uoDS0un9Xn9lspunN9bwvx2NtPUqAa6rcAKlc4v47L3L9O2uOXcCO5ft0x9fOyufN3c1cTCSw6TiJNis3HuLx07k3Bl58LbSykVOKaC0dAodngDJDstZ5bdyNJ9kEzBekqTRkiTZgJuB14wbSJJkHKmvAfYhOO3UdHjZWtPF42urWPird9lZ1zXgdtWqCdEotWdfhsuOX40UcpIdSJLEZxaVADCjKGXIIBSi0txEIc0dEWS47Bz8+RXcvmRMzPNJao2g1jA6RqqZ4ojZ9qLfvcdVD61mh8H634gmyzW6ODYPITEbibh9QW59YhOH1b6u0TYM/WWEzT1+nDYzeSkO+tR+rsbtphekMHdUGp3eILWdXl2am+aMtmJIS7RiMUmMEi64ghNImtOGSYLkAWqJNefuZIeF4vSBW39oDpaLx0UDoR9/ZAqfW1SCVgWgmYp0eQO6XFXre3nFH1fz5ae39msubyxR8RpquspbYlvJaLS6/cgyNHRFx6oG9dg085ITRaJ63/UEBq4nqzYYDhrrRH3BML9YtlfvGd7Urbw2MSeJilblc/3g6sl85/JYie3YLBefWliiB6GAbniY7LAwvTAFgeBMJVojOvQ81WSS+MVHp/HpuAUejfE5Sfz4I1Nj5ieHmt0xtZ5piVam5kevia9eNI4ff2QqV0zP5cUtdXoCCJQyA+PYU93uodcfYs5975x15kVDBqKyLIeArwBvowSYz8uyvEeSpJ9JknSNutldkiTtkSRpB3AX8NmTdcCCo6fTo1wAmv582c5GrnpoNd95YSdhQw1JTXt8IBqdZOaqwcInzx3Fuu9exKTc2FrQwdBqQ0UgOnKwWUz9DCm0QFSbOGYlRc+togEClz0NPbyyvZ5Wt5/S367iULMbWZbp9YfoVp3mjM3ptQndieCKP67m6Q01J2x/J4u/vVfO157dNujr+xrdrNjXwtLfv48sy1EnvwEMW5p7fOQkO/S/U68v1jhqWkEKE9W2DPub3HR6g9jMJpyG69piNvHoZ+byxQtiFyEEguPhhnMKeerWc0l2DB6IlmQ69fr07Li2UtrYcOeF45hVlMq4bBdjMp26wR5EF2f2Nbr157r6grh9QT2r8fK2en71ZnRtXQtEC1ITYgJRrZdgi1o32hcIc7ill1Z1P7WGIFBrfH/CA1H1utzf2MN9r+9l5b7mmHt9VZtHd7I2mjKVHWjlH6sr+cGruwGo7/KSkmClOD1Rb8N1tOZiSyZkceDnl7P+exeTaDtR1V8CwYknw6mMGc6jPE9vmles3w8HQzPsG5vl5EBzrz6/BuV+mqb2zrWZTXzz0omkO23cet4YegMhXtvRwA2q0eN9r+9l/i9W6u9t7PbppoFv7D6yjHi4cVTfvizLbwBvxD33I8PP3wW+e2IPTXC8aI2ktVXQ13Y00NjtY09DD0un5CABS6fkUN3uRZLQ5U+Z6sUpSbE392OxWNduiMKsaGSTpE4itUyoMSNanJ7IhsqOmO1NElS0etjf1ENVu5e9jT3UdHi58z9bKVANsowBVbxr5oclHJHZ19jD917epbejOVO5/01FhvjHm2cP+Lo3EF1F3VTVecSMaEuPn+xku/532lbbqU+kbWYTC8dm6A7JB5rcdHoCpCZa+y04lB6FSkIgOBaSHFYWjc0c8LVkhwWbxcSojGggWpCWoJ+7EA1E0xJtvHD7QkIRGUmSGG0MRD0B/vzuIXrUWnWH1US3N8jL26LVRz98RQnOrpiWx6yiVPY29FCYlkB2kp2+oPK+Lm9AnyQ2qWPSd1/aySvbG7CodZi1BudqzcW6oauPcETuV6vZFwizp6Fbzy52eQN6L96NlR2kJlp5aOUhLpuaG9ODU4s5X9neAMBjH1SSYDWzeFwmNxbK7Kzv5oppuby6vYEWdzQQ1ZQOZftbkGWZ+s4+CtMSYnpGH4vLtSZBFgjOZCbkuLCZTTFjwvHy9BfP5VBzLy9tq2dHbZe+QDWnOJUbzikkNUFZjJ83Ok1/z/TCFP7v3FE8s7GGO0rH8vbuJr2PKCjzpuYeH/vVBbN0Z/S67PAEqGzrZUpeyrCdb4vlqrOYLlXKqMmQGg0roHc/uw1fKMKun1xKdYeH3GSH3jMpU81aZTjtWD+kDt0hpLkCom50WgCakmDFapYIhmWKB8iIXjEtjx11XXoWr8cXorLNgz8U0SVi9YYsglHudjwYg7fhgi8YjulzpqEZQAF8cKhVz9rE92oNhSMcbu3lwonZekb0848rZiazilJ5/ksL9frb4vREDjS7CYYiujOyQHC6kCSJry+dwMyiFN3NsiTDybaaLuYUp9LU7aNBvd9p9VRabKQpf0BZgHpg+UEkSQlCJ+cl09rr5+/vVfT7nY99UMmfbpnNvsYepuQl4w2E8QZCBMMRPvuvTUiShN0s6ffZLTVKv82QGh3WdkTHLS0TGorItLh9/RZ5n9lYw8+X7WXLDy4hzWnj+6/sZtnORp78wnw+9dhGfbsPDrdx3rhMXSpvzNDmpTj44dVTeHZTLSv2NVNoshEIRbhuVgGv72yMyYhqY6onEObLT2+lvNXDpNwkpuZHFVApCeK6F5xdjMlysf++yzENYtr1YShMS6QwLZF1Fe28vcenO1U/+YVz9ZZUf7plNhdMyIp530+vmcodpWPJT03AabfEBKLjsp2sr+hgV30XAFbD8a4rb+fLT29l+dcvYELOkbO1ZypnT7WroB/aKqeRkoxEkuwWPIEw4YjMrrpuNlR0MMkgN9DkCrkp9n7vP1qiNaJirWMko9eIJmlZdkk/v4oz+gei43Nc1Hf1UaNm8Xv6gjETOICK1qiNeUNXH79/5yDPbz6yI2NfIDxo7SnETuC8gdCQrWTOBFoG6AX48rY6/bszSfDOvhb9tfa4JturD7fR4Qlw2dQc/e+kkemyxZhATcxN4kCTW+8ZKBCcbu4oHcuisZnkpjj4482z+PFHpvD7G2fyn1sX6Bn+gWpMkxxWspPs2A3ntyzD6EwX6Yk2NlZ2UN/Vx/evnBzzvlX7W/D4Q1S0eZicl0yCzYw3EOZAk5vttV385CNTuHRqrl5rmuWKvX8aM6JGme5A8tzKNg8ROSrz3afKgX/9VrRlVZLdQpc3yDObouUEWoYWYFy2iyun5/HTa6YC8OTeADaziQVjMhiX5WJzdafhGLxkJ9n59MJRvLGriZoOL4VpicwZFc3aiL6/grORExmEGslOshMIRdhR20Wmy64HoQAfmZnf73oymSS9xVl8D9Fx2YqJ43sHWgFo7fUTVCXzWruq4bxALALRs5iuAZrP56cmMK0gWiz99/crqO/q47rZ0dawWo1obrKj3/uPFi0ATRggYyMYOWj1XcZJmZZxN2ZEb5xbyIM3zWJMlgtZhg0VStF+jy8YM4EDZZKm0djt46GVh7jnhZ39mkMb+c+Gaq5/eK0uV4/HGIjOue8dlu0682swjL0Aa9q9VLd7+PpzO3hyXTUAC8dm6BNYi0liR10XZQeigenLW+tJTbRSOjG7Xx1eujP2pjYhx0Vlm4c2j39Y3/AEZyfXziogNdHG9XMKSbCZcakLKznJjgFVPY98ei73XTst5rkxWU7ddMckwdUzY91ye/0hlu9tQpZhSn4yCVYzfcEwFep4NH90BnkpDhq7fciyrPcoBKV+vi4u+MxT/Rfq4sY3iAatWp2qJu/db6hlve2CMeSnODjYFH3O44+OYyUZitxwdKaT3GQHYVlxDU6wmbliei6bqjpo6OrjkffL2VLTyehMZ0y/z4K0BEZnRCWLwp1cIDh6NH+VTVUdMSqMo8EbZzY2PltJFGkqj+p2L+O//yYvba3TPTOG8wKxGFnOAjz+kL6CcsdTW/jH+4qsqHMAc5K8lARmFCmBaKLNzLv7W0hyWLhsaq6+jSajzDmOQDQn2c5XLhzHJVNyPvQ+BMMfbWJnrDXKdNkxSei1hwD3Xz+D62YXMEat1dBqR92+UMwEDqKBaILVTLkhO/rGEYLH8tZewhFZl8nEE9t4OsKaw21H9flOJ41qLVowHOGC367ilkeUdhZNPT4kCc4dHXULnZKfTF1nH5/91yYCoYg+qb5qeh42i6lfRjR+tTY3JYFwRKam3RvjmCsQnIlo53N+6sC+BrOKUplZlBrz3NhMp16/NSrDGbN4psnontukKC+m5CWTqGZEK1p7kSRF8pub7CAQitDpDeoZC4CFYzLY1+imLxBGlmWq2j0sVNua1HX00esP8eWnt+rGJlrGtK3XjyzLdKqLyprM9x+fnstXLx7P2GwXh1t7eXd/M75gOGYCa5z8/ur66dww3spDt8wC4OoZ+cgyfPnprfzyjf3UdvRRkJZAos2CVv5dmJZw0rJFAsHZjpbI6fQGGXeEtnRHg5YRBZhhcKK+96VddHj8JDksH7qM7kxg+B75CKDXH+KC36xixd7mAV+v6/SyvqKde17YyRefUGq73tzdxC/eUBz+tBpRI3kpDm47fwz/+tw8Jucp9R8/uGpyTK1ZutNGssPC+OwPf/FIksS3Lps4oDOqYOSwZEIWP79uGrMNk768FAeZLrsumUu0mfUJz9gsl776D4pDblNcixbN1XV6QUpMYPnBocGDR02uGp9d1eiLy6buqO0e6qOdNHzBMPe+uDPGTGQgNBOiQ81KMN5gqPly2SxcODGb1EQrP7hqckyGs7LNw1u7m/AFI1w/R1FCJMVlRLvjxg5tUh6KyKQN45VXwchAq00fLBCFWHf4SblJnD8hS88qjM50YjGbSFYD2oVjMrBZTKyv6CDJbqEwLYEEmxlfIExlm4eC1AQcVrOe5Wzo6qPXUKt9/ZwCAuEIGyrbaej20eUNMrs4lXSnjcYeHztqu1i2s5FP/3MDsizrct0Hlh/g4t+/R6cnEKMg0X7P2CwXu+t7+Pzjm3l0dUWMNNdowHLhpGyuHmvTlUrjsl1cNT2PbTVd+jbaxFn7X1uIfvvuC/j35+cP/aULBAIdYyJnKKfd/u+NlfWPNQSyN84t0n8OhCK8f6itn4JpuCEC0TOYA02KY+gXn9w84Ou/WLaPLzy+ia01neyq746xaQdiZIiaK19eqoMMl50LJ2Zz//XT+esn53DTvFiXUKvZxKpvlfLJIRr8CgRD4bCa+b8Fo2JW1u+6eDyPfHoudosJi0mKqZ1IsJmZapCOH2h2Yzytje6SUwtiWwnVdfUhyzLPb67tZ8xTrWcaBnbZ9cT1CjzQ7D6i1PdYCIYjuqNmKBzpZ4z01Ppq1hn6h+1p6ObZTbUxz2lEDF+G1utvd33/oNml9vDb/qNLufX8MTFmKAea3byxq5HCtATmFCs1YEmGCTcoGSEj2YYbo5DmCs50ooHo4Koe7TxeNDaDt+6+gHkl6bq5nuYWr2X/c1Ps+sLs7FFpSJKkZESDYSpaPYxRJ4rahHNvQ4/eAzDBaubSKbnYLCZWH2pjj3q9Ti1IITfZQZMamAJUtXvZ3+TW+3jXdvRR0eohFJGZbhgXNdmfMVPiC0ZipLlDOYH+7saZfH7xaD63uASIGgz+6ZbZzB2VpvtGTMxN6mesIhAIjozxnnmsgejrXz2fJ9TFH0mKDUzHZMVe15VtnmF/TxZOMqcRbyBET19Iv6nEo02aZVlpvWCsOQmFI3xwuA1PIKw3rz5gqBXR5Dw2i4lAKMKYTCeHWnr1lVRQGvCOH8RlK8P14Y2KBIIjkZeSoAdGSQ6LPmnUmDsqTTcW0qzPNRncqPREvSbLODGbXZxKfWcfext7uOeFnVw1I497L59EUXoiwXBEb+UwaEY0TtJW3e5lT0MP5xjMOj4sf3+vnAeWH+SlOxdx/xv72VrTyeFfXqm//sDyAywYncHCsUoQ2OpWgugeNSsZjsh0eAJkJdnxGoLjph7lM+0aIBCNl9p+/6rJ3DK/iOv/upYDTT3squ/mgvFZehsWq9nE4V9cgdkksaOum2n5sUG+sY3TcK5FEYwMAmogV3CEjKjZJPHuN5fELNJoAaFWSpCaaKO63UuG084PrprCjrouvc9fgtVMOCJzoMmtt3wqyXCSZLews74Lty/EhROz+OrF40mwmZlXksb6inacdgsmCSbnJpOX4qCh20e7J2o89sr2aOsYI9MLU1i2qxGb2US6OvE0ZkoC4Qh9gTDnj8/kUwtG6cHxYDisZn70kSlEIjKTcpO4eobSBmZuSTov3LHoiO8VCARHxm4xk+600eEJHLObbVaSnXMdSusml82CJEn849NzGZ3pJKIaKeYmO2h2+5Dl/p4Oww2RET2N/Ondw9zwt7Uxzz32QSWrDynOWEbZ4X+31MVst6OuK6ZNA0Tt4kFx1eryBvWauwsnZZPutOlyXIHgTMDlsOC0xxpaTciJTqA089qZhakAXGqoZZ5iCJbmjkqjqUfpkQuwqbKD83+zivcPttLQ1adnVWvj6k27+4L0+kN6bdWyu87jhdsXYTZJrNg3sCR+KHzBMD94ZRctPYppyfoKpd712//dwcaqDkIRWXflDYYjdHmD1HdFM7WaQYkmj31+cy3zfrGCLdUdMZnb1QfbeGt304CBaHxw77JbmFGYyuhMJ2vL22l1+5mcF3tztJhNSJLErKJULHH1Jsb+r8N99VVw9qN5JhgXUAZiTJYrpvfehZOUzN+V0xWjIk2GnuGysXBsBrcvGatfCwmqzDUQjuiyWZNJYlpBCrvqunH7gozKcOqqg8m5yRxu6WVXXRdj1d+bl+qgsbuPNkP/U60+3RnX+mxclguH1URuikNXmBjHyrZeP95giEyXPWacHAqTSeKmecUxyhSBQHD85CQ7SHfayHQd+z3TYTXjslv06/KSKTmMy3YxOtPJ9XMKeOLz86PKjWF+TxaB6GmkvrMvpgVDTbuX+17fy2f/tUl53OElN9nBeeMy+deaSvyhaDZk7eF2JImYerqtBjv22o4+urwBzh+fyZeWjOHO0rFs/eEl/fqVCQSnkyS7FWdci5/LpuYyKTdJz3haTJJeoH/DOVF351HpyiJLutPG2CwX4Yis11O3qsHcpqoOvT4002Vn9aE2XjVkHL74xGa+9fwOXS6bneQgK8nOhROzeHFLHSGD4YgRWZapavPohmDBcISLHijjibVVbK3u5Kn1Nfzp3cNM/tFbfKBOLMtbo26/Wo8wraXKQIFoj7rQtKlKCWTvfXGXniX92sXjyU9N4Aev7B5Emjtw1nJCbpJeFzblGBalHFazbmAkzIoEZzo9fcq1E9+6ZSjOGZVO1f1X6Qu22gQvcwCFkLFHtlGGN6Mwhb2NPfT4QjELQuNzXPhDEdaUt+tjW15KAl3eIHWdfWQ4bSTZLeyu78FqlphVnBrz+9KcNgrTEmPc7DNcdtbeexHTCpLp8ATw+sPDtqm9QHC2sWBMOhdPytaVR8dKutOmO4BrWM0mfn/jLCbmJumKj3Tn8FYpiUD0NNLdFyQQjugyoqc2KG0XMtSJXk2Hh+KMRG5fMpbmHj9feHwz3X1BPjjURkN3HxlOOxNykrCaJZIdFrYYAtH9TT2EIjJZSXa+e8VkUof5iong7OSWc4v5uKH4HhQ53Ft3X6BLVfNTE5iYm4TTZiYvJYEvLRnD0snZJNjMZCXZyUtxUJCmDMjL1UBUy6TuqOvm6Q01mE0Sl0zJBuBrz27nhS11yLLM3sYe1pa30avWVmmTyxvOKaTF7Wej6t4bz89e30vpA2Xc9ew2QAkWK9o8PFxWzl61Zcpzm2vxBZVr+9cfm87rXz2P69U2SV0eJaDUgs4OT4B5v1jB0xtqooFon7aNEqweaunl9Z2KM/C0ghRuLx1DW6+fUETmqhmxrSaSBsluXD09ut2xqiOy9NXX4X3TE5z9/ODqycwpTmV20fFJ6/XFlwHun8ZA1BioTslPJhhWBiCjRH6c2oIhEIowf7Qiu9OCyt0N3WS67Hpv5TGZLnKTYxeN0502vn/VZL5+yYSY5/NTE8h02WnvDeANhPtlUgUCwenhxx+Zym8/PvNDvz/DZTuiUqEgTRkvhvvisNBinEY06V1fIIzNYmKZOsnU7Eiq270smZDFeeMz+d6Vk/jlG/v50au7eXV7AzOLUsl02Vg6JYf8VAed3mBMIKplSUQAKjiT+dQRDLG0YKowLYHrZhVw4cRsnHYL370i2mh+4ZgM0tVMwUC8f1CRuX//ysnccE4hF0/K4bEPKvnhK7sZl+3SDUV21nUB0b63s9QJbHmbh0XjMqnt8LJ8bzOfX1yCJEmsVh16tets5T6lP2dTj4+Hy8qBaJ0awOJxmRSmJXLl9Dxe2lZPpzdAcUaiHnQCtLr9vLi1Tneo1caHyrZerpiWy5bqTv72nrJvp93MgjHp2CwmClMTuGB8pj5+QP8aUQ2jZO9Yb17ZSXYOt/QOexmQ4OxnRmEqL925+Lj3c/2cAjJdtgF7aBqd5o2BqNEkyBUTiEZltFogmqeaKR1s7mXR2AxSEqzsaehhQm6S3m/ZaTPjCYRJS7QyOjN7wOPMcNo50OSmLxjWJcMCgWB4c8eSsXpN6EDoGdFhfk8WI9ZpRMt4eAIhfKEw9V19JDsstPX6cfuCtLj9eu3J+eOzgP3srFMmvvsae5hXksY31NXRrz+3PSYQ3as2vk49RmmSQHCmoMnqitISMZmkAQOnh26ZDRAjW798ai5v7WnSH5dkJHLr+aORJImlU3KYkp/MpX94n1uf2KRvs/pQGwnWaBuZ7CQ7NouJGtUs6emNNTxcVs41M/NJTrBQ1ebBYpLo9AZx+4Ks2t/C+eMzOdjsptkgt5+Sl8wLdyzU2yakqRKaTtXRWst2amxVG8uDUufmD4Wp7+zjo7MLKU5P5O9qj2CX3UKSw8p9104lO9lBKBx7s4qvEdUwmySW3XWeLl08FrKT7EjSscsdBYLhyozCVGao9enxGDOixp6jWskAxLZFSkmwkp1kJyJHg1VjqUymy66bCU7McXHhpGxsZhNry9vZVtNJ8iBye+W9NhrV9k2JIiMqEJwVDFXrrSnBREZUoPPsxhpcDovuPjcUWsZjQ2U7m6qUIPKqGXk8s7GWfWogqcnhtBVXzUU0EIqQ4Yze/ArTEmJ+rmhRegsO9xNUMHLRsnpF6UPXNdstZr5/5WRmF6dS3trLW3uamD86HVmW+fXHZsTUaOSnJvCJc4t5RA3qzCaJXn9Il8SDYuBRnJ6o15ceVq+n5h4f7R5JkcNOz2PZrkZ21XdT0ebhY+cUMjbLxeNrq/T9jM5y6kEoRBUKmjtnuyEjCoqkuEKtJe3uC1Lb4SUiw5hMJzLRYFOT62itl7RFKM0lO76uxMjU/JRBXzsS55Sk09Dti2mhIxCMVIwBX3JC9HpLMUjX4yXy180uwGEx6eNRfqqDJLsFtz9Ehsum992ekJPE1PwUpuanUPPsNqraPDEtsOIxumaKQFQgGBmM0Re0Bm9TNRwQNaInkHtf2sVXnt52VNvKsqwHol9/bgdPb6gBYOnkHAD2NmjSWuWmlu60YZKitW8Q25DbGIjmpyToZiiinkswXNEyAEXpA8tu4/niBWOYW5KuZxkWjsngv7cvGrCNwfnjM/Wfp6nGIYlx7r3F6Ym6c3W5Gog2dvv0NkmXTlWu1eV7lLrUCTlJXDIlJ2YfY+J6+Wmy1mhG1I/dIPszXsc9fSE9KB2d6Yxp1RA/wdUmoiVqjdlgGdHj4VMLRvH8lxae8P0KBMMRozR3MDOS+AWh7105mW9cOlF/bLeYuXCSIrd12iwsGpvBnOJU5pak69vcWTqOX39sxhGPxdhuLVFIcwWCEcGisRm8eMeiQVUbwwURiJ4E/rejgbpB+hVqeANhQpFYOV1BagKj1InkfnWym5KgTDDNJqlfryBjXUqRoUbOuJ2oERUMVybkJJGdZGdWUeoxvW90phNJ4oi9u+YZJnrj1AAv0Ro7gStOT6S2w4s/FNaVCL9YtpevPbsdUFoiSRIsV2XAE3JcLBqbwYM3zeK3N8zQj8VISoIVSYJOb9SIKCvJzl8/OYd3v7kkJpDt7gtSqfZMLcl0xgTU8QYG2jU/JlPZRshnBYKTy5ECPs3NfrBabSPXzFQUVAk2M2OyXLx05+KYe/jE3CSWxi1wxWNclBYZUYFgZCBJ0gnpdX66EUtnR6DHL/Pcphoun5oXI7cZiKChzcNXn9nGvJI0/nv7wE2hOzwBXotrWj2nOJW/fHKOngXapzpvGpvHZ7rsMTVlRimh0azFeFNKERNSwTClOCORjd9feszvK0pP5M2vnc+E7MEDUYfVzKiMRBwWsy79tZhjsxrF6Yl4AmG2VHfqfUir1AzppVNySHZYyU9JoL6rD4fVRFFaIpIkcd3sAjo8AUonZrF4XGbMPs0miWSHlYdWHuKR98vxBSNMyk3S+xZePSOff62pItFmxu0LUt7aS6bL1u86jp9sJjss3HreaK6Zlc/5EzK5fNrR9xEUCATHzpECvnSnjRa3Xzc/OxJLp+Tw78/P1w2MPgxFBiWFaN8iEAiGEyIjOgi+YJjvrPbynRd38dK2OgDCkcHdq7R+ghpaDZhGJCKz+lArsizzrzWV/OR/e2Nen5SXTF5KAk67hWSHRc+IGh0q43uZGeU4mvseRAPUJLsFq1n8iQUjj0m5yUesqQJY8Y0lLLvrPF1NEH/Njs5Sspn/UWXzGjfNLeKRT88F4Ao14PMFIzG/L91p4/HPzScnuX/thhZUaq1djNnNc0al8dbd5/PVi8YTkWFXfU+/rCr0lwJKksQPrp7CjMJUPnnuqCMamwgEguPnSAHf726cyeS8ZHKPsnbrgglZMVLfY2VcdhLXzlIyqxnCF0IgEAwjRJQyCNtqutCMJZt7/Oxp6GbiD97koZWHBty+XQ1E545KIyXBSldf7KT2n2sq+dRjG3l3fwt7Gnr6vd+Y8chLScCvtn4wZkSNmc74x8aAU5P1pA7zJrcCwcnEajZhMZv0usy2OOOgxWMzKU5PZNnORkoyEvUm9JPzopnWu5aOB+C6WUdnUAZQ39UHwB9vnsV/b1/Yr/5rUm6yPpnc1xgbiMb3CxUIBKcHLdsZv0AMisv9m187H7vl1GUnH7xpFm/dfb4+TgkEAsFw4KgCUUmSLpck6YAkSYclSbp3gNftkiQ9p76+QZKkkhN+pKeYzVUdSCimHy1uH6sPtRGKyPz+nYNsr+3qt327Kpn99mUT+dKSMbS6/XqPQoANlR36dprs1khMIKpmN+0W04C9yjSjkkxn7A3wkU+dw4t3LCTdpTWeFyujAsFQaGZIfkPfT1AcaH949RQyXTb+cNMsXcI7KS9Z3ybZYWXHjy/l/iHMRIxoyorF4zKZV5Ie019Q369hPBidGX39z7fMpur+q476dwkEgpOD1WzigY/P5OU7By7BOdVIksSk3ORBjZMEAoHgTGTIGlFJkszAX4BLgDpgkyRJr8mybNSWfgHolGV5nCRJNwO/Bm46GQd8qthY1UGBSyIjzUWr248vGCYlwUqvP8TyPU0xBiplB1p4cl01oMhlR2coGYyqNo/uyNnqVrIth1t79X5fRoxSOs31Mz6Q1ALRmUWprKto75ch1XoO+YJtgKgPFQiOhoHksxqXTMnh4klLMZkkcpOV63JybnLMNsd6nd29dDxlB1oHzKRoZCVFr21jRlRMMgWCM4cbzik83YcgEAgEw5qjMSuaDxyWZbkCQJKkZ4FrAWMgei3wE/XnF4A/S5IkybI8eFHlGUwoHGFrdSfn5pgxuezUdXqpaPVw/vhM2nr9rNzXwj2XT9K3/ey/NunvzXDaCGiBaLuHqfnJvH+oTc+ivru/ZcDfGSvNVSbGqXEGSbkpysT1m5dOIBiW+zlnamjSXJERFQiGxmySuO/aqfqiUTxa7efN84soSk8Y0rhsKO5eOoG7l0444jZzitP40gVjWLarkdnFqcf1+wQCgUAgEAjORI4mEC0Aag2P64BzB9tGluWQJEndQAbQdiIO8lQTkeGX10+nvWo/hyJ2VuxT+gR+dlEJkgQ/X7aP8tZe9jT0sKuuK+a9KQlW7FZF8VzV5uGp9dX88NU9+uuH1X6EqYlWurxBkh0WenyhAQPR+EzLFdPySLCamV18ZLtmLVMqeogKBEfHpxaWDLnNhJykI7aEOZFIksR3r5zMd6+cfEp+n0AgEAgEAsGpRhoqaSlJ0g3A5bIs36o+/hRwrizLXzFss1vdpk59XK5u0xa3r9uA29SHE4EDJ+qDnCQyGabBtEDwIRDnu2AkIc53wUhCnO+CkYQ4388sRsmynDXQC0eTEa0HigyPC9XnBtqmTpIkC5ACtMfvSJblR4BHjuaIzwQkSdosy/Lc030cAsGpQJzvgpGEON8FIwlxvgtGEuJ8Hz4cjWvuJmC8JEmjJUmyATcDr8Vt8xrwGfXnG4B3h2t9qEAgEAgEAoFAIBAITi5DZkTVms+vAG8DZuCfsizvkSTpZ8BmWZZfAx4DnpQk6TDQgRKsCgQCgUAgEAgEAoFA0I+jkeYiy/IbwBtxz/3I8LMP+PiJPbQzgmEjIxYITgDifBeMJMT5LhhJiPNdMJIQ5/swYUizIoFAIBAIBAKBQCAQCE4kR1MjKhAIBAKBQCAQCAQCwQlDBKIDIEnS5ZIkHZAk6bAkSfee7uMRCI4XSZKKJElaJUnSXkmS9kiS9DX1+XRJkt6RJOmQ+n+a+rwkSdJD6jWwU5KkOaf3EwgEx44kSWZJkrZJkvS6+ni0JEkb1PP6OdWAD0mS7Orjw+rrJaf1wAWCY0SSpFRJkl6QJGm/JEn7JElaKMZ3wdmKJElfV+cyuyVJekaSJIcY34cnIhCNQ5IkM/AX4ApgCnCLJElTTu9RCQTHTQj4pizLU4AFwJfV8/peYKUsy+OBlepjUM7/8eq/24CHT/0hCwTHzdeAfYbHvwb+IMvyOKAT+IL6/BeATvX5P6jbCQTDiT8Cb8myPAmYiXLei/FdcNYhSVIBcBcwV5blaShGqjcjxvdhiQhE+zMfOCzLcoUsywHgWeDa03xMAsFxIctyoyzLW9Wf3SiTlAKUc/sJdbMngOvUn68F/i0rrAdSJUnKO7VHLRB8eCRJKgSuAh5VH0vARcAL6ibx57t2HbwAXKxuLxCc8UiSlAJcgNLBAFmWA7IsdyHGd8HZiwVIkCTJAiQCjYjxfVgiAtH+FAC1hsd16nMCwVmBKkuZDWwAcmRZblRfagJy1J/FdSAY7jwI3ANE1McZQJcsyyH1sfGc1s939fVudXuBYDgwGmgF/qVK0R+VJMmJGN8FZyGyLNcDDwA1KAFoN7AFMb4PS0QgKhCMICRJcgEvAnfLstxjfE1WLLSFjbZg2CNJ0tVAiyzLW073sQgEpwALMAd4WJbl2YCHqAwXEOO74OxBrXW+FmUBJh9wApef1oMSfGhEINqfeqDI8LhQfU4gGNZIkmRFCUL/I8vyS+rTzZokS/2/RX1eXAeC4cxi4BpJkqpQyisuQqmhS1WlXBB7Tuvnu/p6CtB+Kg9YIDgO6oA6WZY3qI9fQAlMxfguOBtZClTKstwqy3IQeAllzBfj+zBEBKL92QSMV923bCgF0K+d5mMSCI4LtR7iMWCfLMu/N7z0GvAZ9efPAK8anv+06q64AOg2SLwEgjMaWZa/K8tyoSzLJShj+LuyLH8SWAXcoG4Wf75r18EN6vYieyQYFsiy3ATUSpI0UX3qYmAvYnwXnJ3UAAskSUpU5zba+S7G92GIJP4W/ZEk6UqU+iIz8E9Zln9xeo9IIDg+JEk6D1gN7CJaM/c9lDrR54FioBq4UZblDnVw/zOK3MULfE6W5c2n/MAFguNEkqRS4FuyLF8tSdIYlAxpOrAN+D9Zlv2SJDmAJ1FqpzuAm2VZrjhNhywQHDOSJM1CMeayARXA51CSDWJ8F5x1SJL0U+AmlI4A24BbUWpBxfg+zBCBqEAgEAgEAoFAIBAITilCmisQCAQCgUAgEAgEglOKCEQFAoFAIBAIBAKBQHBKEYGoQCAQCAQCgUAgEAhOKZahNzk5ZGZmyiUlJafr1x8VHo8Hp9N5ug9DIDgliPNdMJIQ57tgJCHOd8FIQpzvZxZbtmxpk2U5a6DXhgxEJUn6J6A1B582wOulKBbJlepTL8my/LOh9ltSUsLmzWe2SVtZWRmlpaWn+zAEglOCON8FIwlxvgtGEuJ8F4wkxPl+ZiFJUvVgrx1NRvRxFJvvfx9hm9WyLF99jMclEAgEAoFAIBAIBIIRyJA1orIsv4/Sd0cgEAgEAoFAIBAIBILj5kSZFS2UJGmHJElvSpI09QTtUyAQCAQCgUAgEAgEZyGSLMtDbyRJJcDrg9SIJgMRWZZ7JUm6EvijLMvjB9nPbcBtADk5Oec8++yzx3PsJ53e3l5cLtfpPgyB4JQgznfBSEKc74KRhDjfBSMJcb6fWVx44YVbZFmeO9Brxx2IDrBtFTBXluW2I203d+5cWZgVCQRnDuJ8F4wkxPkuGEmI810wkhDn+5mFJEmDBqLHLc2VJClXkiRJ/Xm+us/2492vQCAQCAQCgUAw0nlrdyPrK8TUWnD2cTTtW54BSoFMSZLqgB8DVgBZlv8G3ADcIUlSCOgDbpaPJs0qEAgEAoFAIBCchfxl1WG21XTx6GcGTAQdE795+wBFaYksGJNxAo5MIDhzGDIQlWX5liFe/zNKexeBQCAQCAQCgWDEs7W6kx11XSdkX72+EO0e/wnZl0BwJnGiXHMFAoFAIBAIBAIB0OEN4PaFYp7r8QUJhCLHvC+3L0SbOzDga7Ud3g91fALBmYAIRAUCgUAgEAgEghNIhyeAPxQhGI4Gntf+eQ1/WXX4mPYTCkfoC4Zp9/iRZZnvvrSLDWq96FPrqzn/N6tYVy7qRwXDExGICgQCgUAgEAgEJ5AOj5LB9PiVrKgsy9R2eKlu9xzTfjz+MADBsExzj59nNtZw0yPr8fhD/Oz1vQAnTAIsEJxqRCAqEAgEAoFAIBB8CGo7vFz8uzKaun36c4FQRJflav/7QxFCEZlOb/CY9u/2R7c/1OLWf35mY40u8z3Q5I55z47aLp7bVHNU+6/v6uMLj29i1YEWbvz7Oj1wFghOBUOaFQkEAoFAIBAIBIL+/GdDDeWtHl7cWseXLxwHQJc3Ws/ZqwZ2WoDX1Xd0gej7B1up6+xjzqhU/bnDLb36z499UMn80ekk2szsa+yJee9n/7WRTm+Q0onZ5CQ7jvh71pe3s3J/C3sbe2js9vHytnr+b8GoozpGgeB4ERlRgUAgEAiOkrd2N/G/HQ2n+zAEAsEZQoLVDEBfIKw/1+7pH4h61de7vAH+WnaYqrbBJbqyLPOz1/fy49d2U9/Zpz9vDEQbu318blEJk/OSOdzSG2OCpB3Tq9vrhzz+1l7FjTclwQrAK9uGfo9AcKIQgahAIBAIBEfJv9ZU8sj7Fce1jzue2sKtT2zSH/uCYa7442o2VnYc7+EJBIJTjMOqTKX7gtFAtNMYiKrSXC0gre3w8pu3DnDpH97noZWH9FpSI/sa3Rxu6SUYlnlpazQwNAaiAIvHZzIpN4lQRKaiLfqa064IHpftaqK5x0ere/DWL9pr9V1KwLu5uhOf4bMIBCcTEYgKBAKBQHCU+IJhfUL5YXlzdxMr9rXg9ikSvYauPvY19rBzAMOR8tZe/rOh+pj23+L28bP/7Y1x6xQIBCcHWf3fGLwZM6LuOGluRH1DIBzh9+8c5OfL9vKpxzZw+YPv60HpazsasJgkcpMdLNvVqO+rvDU2EE12WMlVpbdt7gDlrb387b1yWtTgsqXHx7m/XMm8X6wAIByRue3fm3n/YKu+Dy0QNbaa6fQO3CpGIDjRiEBUMGJ5ZVs9v19+4HQfhkAgGEZ4A2E9gNSo6/SyYm9zjDTvaHhrdxMA3WrNWI+vf4D73KZavv/y7mPqPVh2oJV/rqnkYLN76I0FAsFx4VUDzN313XzrvzsIhiMxgZzHH8IfCtPjG7g29KWt9aw+1Mb+Jjcr9jYDUHaghfmj01k0LkPfTpKgrTe630un5ACQ5rQBSvD47MYa7n9zvz6mxPcx3dPQzfK9zazY16w/N1C2dKAsrZFV+1vY09B9xG0EgqNBBKKCEcsbuxr575a6030YOuWtvTFyHoFAcHrxBkJsruqIey4cM7nzh8KU/raMW/+9mec31x7VfpMcimzub++VqxNUzV0zSFO3j88/vkkfCzTTk65jyFB0q66c3cfozikQCI6dXrW9yo66bl7YUseBJjftvbHS3E89tpG7n90e876vL53AfddOBeDbl00kP8XB67saWXtYCUovmJBFYVqivv2YTCeg1H++dOciHrplNgCpiUptZ5c3QEVrtO40L8URo97o8AT44HAbAFXtXv35tt5oIGo1S+q+Bh87atq9fO7xTVz10AeUHWgZ6usRCI6ICEQFI5YeX1Cv3TgT+NSjG/jTu8fW6FogEJw8nt1Yy8f/vi4mY+ALhvGHInqGsqXHT0jV2lXEyeYGQpZl+gJhpuYnU97q4d9rq2OyF799+wDv7m/hrT2x2dIONRD9xbK9/OqNfUf8Hdp7jtadUyAQfHji25309AVp7O4jXc1UVrT1srGyI0bxYLOYuOvicfzfglE8/rl5fOmCMVw4KZv3D7byiUc3AHDB+CyK0hL090wvSAEgLdHKnOI0HKohUVqilhENUmkwQBqT5Yw5rkPNbj44pASixl6mrYZAdFSG8p7y1t5+MmCNrTWd+s91BiOlo0GWZb738i6213Yd0/sEZy8iEBWMWNy+EL2BEBGtYOMYUHqEnbhJnizLNLv9MSuTAoHg9FLd7kGWYwNMzflSyzS0GILUmg6v3lOwoWvgCVogrPQSvHJ6HgWpCexr7DEEokGae5RehBFZGZe0zESHmmFZub+F1epkcjC6+rQsqghEBYJ4Vh9q1a+zE0FvIDYQbXH72VrTxayiVFx2iy7BN5KX4kCSJCRJonRiNhazic8sKuEjM/P51IJRLJ2cw+S8JIrSoxnR8TlJgBLEGrGaTSTZLbS4fdR0RDOdYzJdMdvtqu9mc1UnVrNEXWcfbl+Qn7y2J2acGKX+vh+9uoeLf/dev+Ne+vv3uPu57fpjozqkxxccMkPa3Rfk6Q01fEoNtgUCEYgKRiw9viCyDN4P4Q53+1NbmP6T5frjXyzby8Nl5R/6WLyBMOGIfNwmKAKB4PgwSmA1F0ktyxCJyLozprYQpWVLi9ITqO7wsq22i/JWD3salL5+Td2+mImoV5XxOW1mMlw2OrwBegwZ0YbuPv19EJsRlWWZhq6+Ieu3uvu0foVC6i8QGJFlmU89tpGrHvrguPcVjsj8aeWhfotOB5sVx9tzRqXhslvoHGBBKHeA3p4TcpL40y2zue+6aTz6mblIkkShISOqSXMH2l+q08quum5dnQH9M6L/2VBDIBzhsqm5hCMyj6+p4vG1VTHbGANfUL4vDX8orLv2Ts1PxmySYhbkP/7wOj77r01HHJ+CYWV/AWGkJlARgahgxOI21GUdK+/uV1b9tEnoP1ZX8uu39vP0hpoP5VSpmRicSVJhgWCkcaDJzTk/X8HaciXjqMnOKlUZm99gGKSNH61uJWCcNyqduo4+vedfi/r8JX94j9uf2qI7amqLTYl2C2mJNjo8AT3YbOr26UFvQ1dsINrpCdDhCeALRmj3+GMmiPHo0lyRERUIYtCu4Q+jPmro6oupu95R18Xv3jnItpqumO00Wf05o9JwqfXgZpMUs01eSv9AdCDyUqKB6NhsJcPZPYDkPi3Rxo66WPOg4rigUhtbPj63CIBHP6gccD/J6jFDbEsa43gyJstFksOij2eN3X0cUM3R6o8g19XGQRGICjREICoYkciyrE8kteDvS09u5tHV0f6AvmCYH7yy64g3rH2NPXgNspzvvbyLv66KZkb3NvRQcu8ydgxRD6HdWERGVCA4fby7v4VwRGZLlVIDpWdEVQMQ47VulOaaJJhdnEogHNGv9de2NzDlR28ZAla/ug8tI2oh3akEolpGtKJNkQIDNPUov1ub/LV7AvrxBMOy3hIC4P2DrTET5G41q9vW69cDYoFA0N9FdijWHG7jtR0NAHzmnxv5xRt79deMxkBGKlo9WEwSMwsVaS7AkglZ+usOq4niDOeA743HGMCOykgcdLtUtU4UYNld5/GPT88lJcGqP3f7krEAmCQlmwnKvOOiSdlcOyufBWPSAcVILdEWDUSNwafmBHzj3EJ+es1UkhwW/fs0toOpH6QsAaILAUdYRxOMMEQgKhiRaFJYUHp8RSIyq/a3sspQ37Crvpun1tfoxf1GtBqNN3c38f5B5fXf3ziTrCQ7DV191Hf1EY7IrFEd6l7eVt9vHxrba7v0RvYiEBUITh/a9bq/yU2PL6hPsqratUA0mh0wBpgZLjuj1XqsjarL7obKjpjttZo0jxrMOu1m0p02Og0ZUY3x2S4au3z4Q2E9I9HpCcRkGrSa0ao2D5/+50Z+/Npu5XnD/l7aWs+S35TpQeqBJje760XLBcHIxWgsdCRVgcZ9r+/l2//dQYcnQGWbh2qD26yxdvyq6Xk8feu5zB2VBsDUghQSbGZcdgsWk8S1s/L1bV+6YzFfPH/0UR/zeeMyuWxqDnaLmR9dPYVXvry43zZpqnNuQWoCU/NTuGRKjp6N1fbx3Ssm8e/Pn0umy86DN81iYk4SX7loHH+8ebaePU1OsOpjFEQD0cc+qOSFzUqXgetmFZDutOGyW3VFmTHAb+weOiMqEGhYht5EIBhe+ENhrnroA+69fBJL1T5b8RgHTbcvRJvHTyAciVnhbOlRMhjGxtTd3iC76rsJqbKSZzbW8MzGGkCRwaQn2qjt9HLhA2Xcd+1UkhOUS6z1CFnVH7yyi71qPZkxEG1x+8hy2ZEkabC3CgSCE4QvGGaTGkTua+yh7ICywl+QmkBVu5dwRI6ZRL1/sJWxWU5a3H6yXHZGq/VY8fVRX7pgDH9/v4JmdTzRa0TtSkbUEwjHGB6Bkl39347GmCznE+uqeWJdtf643ROgJNPJ6kPKcXZ4g7x/sJVP/3NjzL76gmHWVbSTmmjl5kfWk+G0seWHl3z4L0ogGMbEtzPJcNkH3bau08v+JkVu+pdVhwlF5BgHbaNDbXKClUXjMnlqg3KNagHponEZFGckMjozmgGdomYkj5anbj1X//nz5w0cwGrOuVMN+9aysQAuh4UvqVlRgOtmF3Dd7AL9cZLDqv5viZkfdfUF6PYGue/1aCZYy74at9X+t1lMgxq1QWx5g0AAIiMqOAtp7PJxuKWXnXVdg25jbCzd6wvp9ViN3T5dfqdJ2oy9PX+7fD//99gGBjLaLUhLICXRysFmN4FQhL0NPXjUSWfbAA2jNdp7A/r+NJlwc4+PRb96l5X7Wnhrd+NRrdwKBIKj5+87ffxp5SH98d7GHvyhCJPzkqlo83DXM9sAuGhSNoFQhKfWV/P396PS/SfXV3Pf63tpcfvITraTn+IgKyl2Ujt/dLouiYvPiCbazPrkscowobWaJSbkJNEXDMc4YMajBbxawJxgNfHCIH2R15a38ZhaD3as0kSB4GzCGIjWDtF6RPOCyE9x8OR6JcBscfv5ytNbWbG3OWbh2mlTWqlkJym1n1ogemfpOH750elHDHhPBHZVpTUpN0l/LskeleYmOY6cd0pWA1Htf41ub5C398S6/qY5tW0t7KrvZsEvV3KoxY3TZqYwNUGfT8UTDEfwi4yoIA4RiArOOprUCV/7EZzbjAZFvf4gjYYVPO3moq18avsJhCK8vrNR3+7HH5nCd6+YpD/OTnKQmmClTZXMVbZ79YDXmBGt6/Ty9/fKWXWgBVmWYzIogXAEfyhMfVcfoYjMj17dze1PbdVrVDQau/uExE4g+BD88JXd3PviTva1R9hi6Ienudxer2YJUhKszB2VxvVzlMc/fm1Pv0BvV303LT1+spMU5cLMwtSY14vTE0lNtGIzm2h2+3hrdyOPqMGsViMKsWOV024hVzUy2admYwaiw+PHFwyztrwdUIyONIl/PGsOt1GrBrUmcdcXjGCMhoB1nYMv9ABsqe4kP8XBVTPy9L7Bvf4Qr+9s5L9banUTM1CuW1AUFCZJMSoykuG0cTJpVF22C9OidaROu1n/eahAVHs9yWHhsqlRJdm7+1v486rY/ubaAprLbsEbCNPU4+ONXU047RbyUh268/cvlu3ltn9vBhTH8fHff5N7Xtz5YT+i4CxF3JIEw4JtNZ3M+tnyo3K60zIPnd7BA9GeOGmusbj+6j99wAtb6nS5nJYR/eBwa0zh/uziND5xbrH+2GySYswBqto89KhtFOo6+vSa1N+/c5Bfvbmfrz2zjb5guJ9UxeMP6zVeDerNpScui/H75Qe5/aktR/weBAKBUhNmNAt7cn01z26qxR2QdZMgUIzFUhKs/N+CUXz7soms/s6FvHDHImYUppJgNQ+wZ2jrDdDi9utN4OPNREalJyJJEtnJdlp6/Dy6upIt1Urwm6jWiGpoY4fTZtGzKuUtsQ3ln/niAl68YyGgBK9rDrfRFwyTlWRnR123vghnpCg9gfJWDxVq1tUXjNAXEFkJwcjEmBE11nsORGO3j8K0RKYVpPR7rexAK4FQRM9EakHfLecW89/bF5Id157FMcgYcqLQ5iKlE6OmSBazSR+7jNnRgchPTcBsUsaqh26Zzdp7LwLgv1vq8AbCLBqbAShGS9pnSYrLnrocFvJTEnRp7obKDr1mfneDsnBeZ8hCv7q9XoxFAhGICoYH+xrddHmDMYPYYGgrg+29AXr9IX7y2h7a4wJY4wT058v28fNl+/QbCsBbu5v0QFTLWO5rjM1OZCfZ+w3EqYnRx3WdXto9yj4C4Qi3PrGJG/++Tm9G3+MLDXgj7PWFYmrDABLjbmLNbj8t7iO3cBAIRiq767uZ+/MV7G/q4dYnNnPtX9bgDcReV2E5doFnb0M3U/OTSbCZ+fKF43SJmtkkDVnTpWUQLlCdMWcUKhPXYjUwzUl20Nzji6kpUzKi0fFC6xfoslvIdCkBqtaz73cfn8m9V0xi4dgMzhmVToLVTEdvgHf2NpNkt3CdwQglO04efPEk5dgCoQgTchRDpTv/s0Xve+wPhWl1+ym5dxnvqc6XPUfR0qqt1x/jIiwQDAe0QNQkRRd6ugZZtG7u8ZGT4mBqfv9A1B+KIElwxbRcALRuJC67hXNGpQ+4vwVj0rl76fjj/QiD7DuDqvuv6hcAuxyKWZLDeuTp/qVTclj1zVKykxzYLWbyUxOwmZX3XD0jj5vmKS1f0gzuvPFZVpfdQn5qAi1uP/6QUlrQ5Q3i8YdYua+FeL727HYeXHHwQ31ewdnDkIGoJEn/lCSpRZKk3YO8LkmS9JAkSYclSdopSdKcE3+YgpGO3t7kKOqbtEbwnd4AK/c18/jaKu55YSfrytu5/MH36fAEBqyTCkdk7ihV6rlCkYguze1Qb1LtvQG9DgTQ68FWfauU1fdcCMRaqEdkRe6X6bJz8aRsVh1oZWNlB61uv75qOVAda68/1O/G6AvFrhp2eQMEQhE8YjVRIOjHxsoO2nr9PPD2QdZVKNLVxm4fexpi5ezaglQoHGF/k5speQMHnHNL0gZ83iTB5LxkxmUrdVlLJmSx4hsXcOv5Y4BoH7+cZDsHm3tjJLgJVjPpzmjQqEn5XA6LPrYcalEWv5ZOztFrTQHSnTZae/2s2NfMkolZMXK8iydnq+9R/r/hnEL9tRmqdHjVgVbeO9iCPxRm8f2ruENVVzy9oZrNVR3M/tk7lLfGZmP7fSc/X8Etj6w/4jYCwZmGFojOKU7jYIubyjYPc+57hw0V7WwzSPVlWaap20dusp3RmU4SrOZ+wdyc4jRdDXE0izLP3raQu5dOOIGfZmiSHBaSHJYhTQ9NJklfONPQen1OzE3S+5mmxgSicRlRu4Xi9ERkWXHo1hRktz6xWV/4iife3E0w8jiajOjjwOVHeP0KYLz67zbg4eM/LIEgFi0Q7e4LxrQ6+MM7B/ney7tittWkuR2egJ5xXLm/heV7m9jf5OZfayoHXPEPRWS+c/kkLpuaQ0NXn96oXpPmtnuUNg3Pf2khd108Hqu6Wjg600mROuE0SnMBylt7GZPl5LHPzqPq/qtYOEaRt9w8T5HRbK/tX+fZ6w/RFdfOwRPX1kUbvDvFIC44C6lu93D5g+9/6B6Yh9RMx4p9zfpzjV0+XR6moY0D9V19+EMRJhiMPozcffEE/vKJ/musX75wHN+4JHZiOS47iUun5PDbG2YwqygVgPyUhH5lBaY4Kf+FE5XAMTXBistuwWE10dzjJ9Fm1t23NUoyE1mxt5m23gCXTs0lJ1kJXG0WE/deMZnbLhjDnz8xh6r7r2JqfrKeudAytaDUwO9p6KGt189mVS5ckJrI7vpuwhGZ7TVdA34XEG3BsKNO1KkLhhe9vhAmSVmUOdTcy4EmNxEZfrf8IB/961rde6G7L4g/FCEn2YHZJHHp1Byumq4oDwrTEkhLtPLR2QV6PffJlt5+WJLslpg2Lh8GJRBVPmeaQfUVv1+n3aIHsx8cjra9W1fRTkSWsZr7B8PxcybByGPIs1OW5fclSSo5wibXAv+WFY3gekmSUiVJypNlufEI7xEIjgkt+PzuSzvp8YXY97PLSbCZeXN3I61uP7/86HRAqfPS7NY7vUH2N/Xo+3h7t+L89viaKq6dnY/FJBFS6zY/u6hEl9jkpyYo9R/hCGaTRKc3QCQi094bIMNlY/7odOaPHlh6o0lzUxKsdPcFkeVYF7r7rptK2YFWFo9TAtLthto1h9WELxih1x+MqUUF6PXHZj61ALTDE9CD4HgCoQivbK/n2ln52C1n5k1SIBiI7bVd7G9ys7ehh+yJjqHfEMfhFiW72dTj0xdtGrr7+snDfMGILiEDpaZzIBJsZqYb6sSeu20BaU4bE3IGDlwdVjMfn1ukP75oUjaPqq61RswmiX9+di5T8lJIc1q5eV4RX1s6HkmSyHTZqevsY1SGs18247pZBaw53I7VLFE6MYtDzUrgnem0kZJg5XtXTta3lSSJiTlJbK7ujPkMLW4/W6s7Y/ab5LBQ06GUPxxsiZYibKnuZFddF59drLSOOFJ7BoHgTECWZSKyco0Z6fWHcNotTMx14Q9F2FKt1DBuUv//4HAbTd0+CtOVDGCOKnX9482ziURkXt1ez5S8ZP70idnYzCYisnKvvXl+EWciLoeFYPj4Sngm5CRht5iQpFhpbnJcIJpkt+hj6BpDIArwq+un8/aeJlbEjcFhUV404jkRNaIFQK3hcZ36nEBwwtAkdFpNlycQIhiOUNnmodMbpMOjBItXPrRar8MKR2Q2V0UnXw3dPtKdNtz+EP/dXEeGKzqgfuuyiZyrZisLUhPwhyLIspLtjMiwvqKdtl4/mUNYsKcmKPscm+XUsxDGbMa47CRuPX8MSQ4r6U4b+xqVQNlmNpGfqtz43L5Qvwb3xoyoLxjWJbkDyVrKW3vxh8Lc/+Z+7nlhJ79ffpDS367qV3cqEJyptKvO05oD9bEgyzKHWnqZWZTK1y4er6/CP7TyEBsqO/jo7Njbk9tQqx0vTTOSmRQdL+aVpA8ahA6ENrYMxEWTcshNUeqy7v/YDF0Cp8lzBwqOr5yeh9NmZsGYDJIdVj1bce3sgW+9c0vSKclIpECtQwXlc69XZcsaxpYxBw2Ovd94fjs/+d9e3TX4aGr1BYLTyWMfVLL09+/1e77XHyLJbmG8ev1qng1aPPTbtw9w6783s/awcm1oGU9QVAwfm1PIVTPysFvMSJKE2STxmUUlZ+xi752l/VUbR4sWxLvsFqxmExNzkhiX7dJf11RhGk67UlbgsJpYo35/2jrAzKJUEm39c1/xcx3ByOP48vXHiCRJt6HId8nJyaGsrOxU/vpjpre394w/xpFCVUPsxGfV+2sIRtBX+l5cvpoUe3TlM80u0emXaXH7mZcZYb8JghEY7QpTlGhmR2uYa0vgEdVJfPO6D/T3djZFg75JLj+HW+ATj24AIMfSd8RzoqpbCRBln5tMm4zbB+725gHfk2oJ0QFIwEfGmLGZg1S0wrZdeylvic2AHqys5ZW3mkh1mOj0RV12127ZgdQUzbj6QzJfWuFlZpbyGQG99+E/X3+P2dmDX/LifBecKWw7qASgG3bsJdN9eIitoxzqDPNuTZAubxh6mhiV3s6fL0rgW+95qevso9AlscDVwcuG96x4bw1r6kJYJNi3dT0HhqilAnj//f4T3KG4YrSV2p4Iu9uV63LIa82nyJIlb/uA294920qK3aO/9uvzE8iyN1JW1tRv27l2mRmzYOemdTHPr9jXQqpdosuvjKOHK2s42Kkc387qNsrKyghHZBrVNhcPLNtJpvswZbXRyaMYM4YHI218X7nTR2VbmLdXrsIfVgLNFLtEVZ0PwhGaD24H0BVUGpq7/SOr9gFQtXc7nqpowHVFJtDVQVnZIYYLFqCsZd8xv+835zvoC0Wv8W/NkDFJ9ZSVKe3kttTFBpEdzQ28914bGXaZ+iAkWiDJpowvdXs309Xef2GxorbppJyXI+18H86ciEC0HjBqEgrV5/ohy/IjwCMAc+fOlUtLS0/Arz95lJWVcaYf40jhd7s+AKL1SDPPmac4Sn6wFQBPUhGuZAewi9/cMIMku4U7/qO8dvmCaRzwHOJwSy8zxhXx1YvGs6+xh8XjMrmutIe+YDim51dqbRd/2b4GgBuWzOL1ik36a9PHl1BaOnHQ46zt8PKTdauYUJyPNximckcDU8aNprS0/4rkstYdVGypw2ox8bsvXEqvP8QzP36b/FFj2OluQpK69FXa1fUhVteHeO/bpeQEwlC2GoCc4rGUqsYooPZFW7FKD0KNzJk1kyUTsvo9ryHOd8GZwtsdu6CihqSsQkpLp8S81tzjwx+MUJyRyHde2MmcUancNK+Y5zfX8ou3oj3qrrtgjp6J/N3O93A393LZrBKuWjqB76x+W99u0ow5vNdZTnGmm4suLD3ygb21DOBDXSfaW0Z/dxkWkzTkPpZ37mJbSw3nzZpI6bmj+u/vmI9AIem9t3EbFBafXjyWRz+oxBsIk5qVQ0dzExZThHafzNyF51He0ktg+RryUhx0eAIsWbKETcsPwJ5yHFaTGDOGCSNtfH/k0HqgnSmzz+XCB8oIRWSq7r+Kx8o3kGMPccXSxRRsfjemdZuRJo9y873m0iVnbLbzdHOOL0i9vJP6rj521XczZcIYSkvHYd9SBr0ePjKriN5ACH8wzEUXzuOD3r28XxdbomB1JlNauuiEH9tIO9+HMydCmvsa8GnVPXcB0C3qQwUnir5AmN8vP9CvJskbCHOgyY2WvHhwxSG++5JiWnTV9LwYF8mlk3N0eVt+SgLpThuLx2UCMCU/uV/jaa2NwvzR6SwYk8E3DbKWTNeRm1JrNaJpThujVZlf8iDF+Leofb+0RtmJVjOSpEjmuvqCTMpNJj45c6DJHWNQFC/Nja8tNdbHHI3jsEBwJtChtj1qjTP4CYQi3Pj3dXz0r2tw+4K8vK2eVftb6fEF+f7LuzhvXCY7f3Ipy+46L0YO29yj7GfBmAycNnNMq6aeviDV7d5B60NPNLt+chnbfnTpkNtlqWUAJaor54ki1Rk7Hi0cm8kH37mIMVlO6jr68AbCzFRNlhq7+thYqdTOXTMrH38oQndftI2WLxghGI7tgywQnA7qOr3c+sRm3KoBmdZ+rcXt170gIhEZty+Ey67kYMbnuGL2ccGELKxmiVvUes+ZRakiCD0CSQ4rf/vUOfr3qHUV0Ba8v3XZRB68aRZ/+aRi9Kb1WjWaFmm91gUjl6Np3/IMsA6YKElSnSRJX5Ak6XZJkm5XN3kDqAAOA/8A7jxpRysYcfz9/XIeevdwTNsDgP/taODhsvIB2y047RZyUpRJ3LWz8kmwmXVDn7zUoY1PMl12nvj8fP752Xk4rGa+evF4ktQbV8YQNaIuu4UvnDeaK6blUpKpTCDjC/o15hSnIUlQogasJpPE+GwX68rb6fYGmVOcyubvL9WddgFqOrx6Oxk4ciCaaDPrrp0QdQh9Ym0VN/09VqInEJxJaOd1a5xr7pPrq6lu99LuCfDLN/YRCEdo6/VT0eohGJb59MJRJDus/fr+ZTiVBaT5Jem6EZBFnQt19wWp7fDqrVZONi67RZ8IH4mCtAQkCcZkndhANN1ppyg9Wis6JT+ZdKeNJLuFA82KTHGq2je1xxeiqt1DWqJVr7Vv6vHF1Ij2iBovwWlkY2UHgVCE+17fy4p9zZQdUHrhtqju+VobNlDcsT3+aCCq1XnPL0kn2WHhxx+ZwprvXMQvrpvOpu8v5ZU7T3ym7mxEM2R0qf9/94rJbP3hJWQl2bGaTXown6AGqtlJDqruv4ob5xYOWCPqD4UH9LR4cn31gC3vBMObo3HNvWWI12XgyyfsiAQCA+vK2wd8/tXtDSTYzPzzs/PYXNVJi9vHT/+3V7/BZCc5ePvuC/TCem2SqRmBDEW8hDUzyY7bH4oxOBoISZL44dWKlFDLRsY3mDay6yeXxTz+6OxCfv3WfkDJrma47DgNk9bDLb16NifdaesXiHYagtSxWS7dxASiE8atNZ1srOogFI5gMX94UUQgFCEiy2esbb1g+BAKR/j0PzfylQvHsWhcpr7wZDQr6vYGeWjlIc4fn0lElnl+c526jZ8q1aBsdObAQdu/PjeP3fU9pKiKhYLUBMxhPzXuCPubenD7Q4zNdg34XiMffOdCPP5T07v32ln5TMhJOuox62j5wVWKo+7H/6YsRmntExJsZn1SqH2PPb4gnd4A6U4bueo41tTt01tkgRLIpztt/HdLHVdMy+3XW1AgOFlsqe7gxr+v4+6l43WDMxnF0E8zNjS2gFpb3kZrr1/P+I9Xr/nF4zJ5/vaFMfvWzMIEQ6ONIS4142mzmEi39J8rOVWzIm0Oo3UXiOfP7x7m5W31fPCdi/TnuvuC/PCV3SQ5LP3mTYLhzYmQ5goEQ9LU7eP6v65h8f3v6g2lNRq6+gas0+jwBPT+dvG0e/xkumzkJDu4akYen1s8mkc+dQ7Pfyl6M5mYm6QHgxdOymbp5Gwm5x2906URLRvgHMD1bTCmFaTw8p2LOF+VAQ9EfHbE6OgZP7iDEoh2qiuFY7OcMYEnQFdMIOqMCUTXlLfz3Zd20tbrR5bpl2U+Vr7/8i7uVOtwBYLjoa03wNrydtaUKw6W0YxoNJvxyOpyenxBvnflZGYXpemmIu29AaraPUgSg7YyGpXh5KoZefrj3980kztmKhPN9w4qGZTZRWkDvtdIYVoiEwfpNXqisVtiFQ0ninkl6cwr6d9+yuhoWaSWNrh9IaVtldOut7FoVlvijFGD1a6+IHsaerjnhZ08vaEGUCSQ5a29J/zYBQIjGyuV+UFtR58+ZrS5/bT0RMeN8pboefidF3fRFwhz7SylH6h2LeemiKDzeIjOVY68CJWoZkTt6uJ1SoKVvmBYL0+SZZkub4BDzb3UdfbFZEU3VyklAkIqffZxSl1zBSOX9RXtbFUbpNd1epmUG5XU3vPCTryBEC/dubjfe7TJZjyyHJWBaFw6NXfQ3z8608mjn5n3IY8efnn9dBaOzYhpCH80zC4eenJrJDfFwTNfXMDjaytZMkFpcG/MiG6u7qS6w0tusoOitMSYptGAHqQCjMt2kWCYXL6vTrg1meKv39xPcoKVn1wz9ZiOUaOq3RPz+wSCD4u2oNLc4ycUjtDlDWKzmNSm8mEsJhP/3VzHxZOymZyXrGdAAdz+EAea3OSnJBx1dr4wLZFcp4TFJLG7vgeH1cSkD7lINVx58Y5FZBuyPppsDqIBfU+fkhEdnekkO1nZtrrdizcQZnSmk4o2D919QVrVif+6ina+tGQsP3ptN0+tr2H9dy+OaX8hEJxItPZD/lBYz9K39vppMmTs411xH//cfBaOVcpdphek8Kvrp3PVjPxTdMRnJ1og6rQfefxNHCAjCkq2My3Ryif+sYGNVR1MUhcIajq8TE9U5lza33qsWqqwrryd2cWpQpF1FiAyooJTglafCP3rGivbPOyu7+lnerGhop1Em1mXySbEDTiD1V6eDFx2C7fML+7XWP5ksHBsBn//1Fx9tdalfk4tgCxOT+Qfn57L9MIUWtx+mrqjN91Ob4AEq5kvLRnDtbMKdDmdES0T+tK2eh5fW9Wvl+DR4vaFYvqbCgQflmgg6tMXN8ZlKbK5lh4/aw630eL287E5hQD9akA3V3dSknlsNZ6SJOkToan5Kf164p3tnDMqLSaDnGgYX7V+o25fiA5PgHSnHbvFTLrTpk/stRr4nr4ge9V+yJsqOwiGIzy1XsmMtntizaYEghPFyn3NbKhU7l3rK9r13tpPrK3iRtUDwWqW9PP1sqk5/OKj0/QgFJQx4Jb5xUdVsy0YnLklaSwckzFkeUOiGqg6rMpYm2wIRP+3s4GNatZT+5tpPY0B1pZriw4Rmrp93PKP9by2XWkjM5jzsWB4MLLuvIKTSl2nN8bR1YjR0KLTE/05HJFp6vERCEc41Bwr5dpQ2cE5o9KYXZwKRB1pNUbKzUNCCX4/u6iEAz+/nBfvWMT0whS9zuXBFQfZokqYu7xKvdZ3r5hMUXoi50/I5POLR+u1MAPxt/fKhzyGtl4//15XhSxHM9QiEBWcKDSTrZYev75QtXRKDgBv7m7kuU21pCRYuWiyohIoSk8gyWHRXaVb3X5GfQh32W9cqjhiXzQp+3g/wrBHk80lOyw4bWYsJomuvgCd3qC+CJaT7GCfGnRqgejXnt3O42urMEngCYQZ//039X32+kLsqO3inx9UIhCcKPoCYW5/agvZSQ7ml6TH1JJ7A9Ea7gk5SXoN4l0Xj+eTA7RBEhw/ozKcPHPbAt20aDCiNaJRaS7Axx5ey4aKjn7bV3coypfNVR3saVDGnR5fkMZuJfBscft4fnMti+9/l+21XSfkswhOPSIQFZwQguEI5/16FZ94dMOAr7sNrUPWV7TzcFk5oXCEuk6vLr/dXa/0CfWHwtz/5n72N7mZX5LOly8cx29vmMEN5xTG7HOkBKJ9AeW7S7RbYuojNMfgZzfV8pl/bgSUGtE0Q3uGZIeVH31kil7fNRC76roHfU3jlW31/OjVPTFumW5fEG8gHBOcCgQfBj0j6vbpWbQFY9KZX5LOb98+wLJdjdw0r0g//yVJ4vYlY/n0gujEcvKHqN385LmjOPjzK7hjydgT8CmGN5qMPyXRiiRJJDks1Hf2EY7IpKmBaF6Kg0ZVgTEmzhjq/PFZ3HBOIf+3oJjzxyt18b3+ENf+ZQ0/e32vGCcER0Vth5ffLT9wxPOlqcdHMCzztYvHc6G6iGQzmyidGDUZnFOcGlPPnTmE473g5KMtdmkZUa3NXndfkFe3N5AWl2x4Z28z22u7eHR1JWmJVj46u4CevpC+8NDpDfLsRkV90dQtsqLDFRGICk4I76mW6dpquUZfIMyPXt1NdbtXH2SeXF/Nr9/azwW/WcWS35bp2+6q70aWZT73r0387b1yrpmZz6cXlWA1m/j43CJ99UxjpLgzaiu8ibZYabLDGu2HaFP/7/QGSUvs71aXnDBw0L54XAbtnkCMKcxAaAO/1tdRlmV6/SFCERl/SPQRFBwfWka0yxuksUsJdDJddr580TiCYWVC+n9x2YwvXziOL14wRn98QZzT9dFis5gwmU6+5P5MRxtftHE2OcFKdbsijdMyoqMyolLenGQ7NrNJbz/18bmFPPDxmfz8uun8VK07N5Zk9BgWI7fVdFLTHpXdCQQaX/z3Zv707uEYWWY8WjlKbopDl5GPyXLqNc+fWjCKl+5czILRURnuQPdFwalFNytSFxTHZbtY+c0lAPQFw0zNT4mZ522r6eK6v6xhW20nF0/OISfZQY8vSJs6D+n0BjigynhPlZu54MQjAlHBCeGlbUorhfhgaVNVB/9eV807+5pJd9pi6jobDLWNuckOPjjcxo66btaWt/P9Kyfz0C2zYwalcdkukh0WPehyncIa0dPJnFGK4dFAPVNf/+p5nDs6Xa+v7fIGSB3ghmsapLb1ctXg6UCcoYM/FMYfUgZ2XzCsD/xtasDqDYTRfKSMUiiB4MNglPTvb1IWs9KdNpZMyGLLD5by5tfOpzijfw2oMcvxYaS5gija2J2aoIwfSQ4LVe2KNC5dDURLDN9xWqKNrT+6hHe/WUr5L6/kaoPhizY2b66Kup536i15/Nzyj/V86p8b9DFGINBoUOv9+oKDnxtNPco2uSkOw0JIkb5oNT5HKUXRpPwQXawVnD4040UtIwpKm7lCdTGhKD1Rb7VXkBptW9Xc42dUeiLJCRYCoQj1qjKrut2r1wZ3Gcq/Vuxt5tn9ynjT0NUX46NhpMcX5O5ntw1aUiY4NYgrU3BC2KnKO70BpRFxMBzhrme28faeJkCpBU1yWPUJTTxfOG80lW0e7n9zHzaziRvnFfXbpnRiNjt/cpm+6pk0QqS5N88rYvU9F+o1oUbG5ySxZGIWbl8IbyCkZkT7Z4rjg8XURCuSFK3D0yb/oAzO03+ynIk/eIuHVh5i0g/f4t39LUA0I2pswSPqRAXxGDNhR4PRfXlvYw+SFM1gZLjsTB5gEQbQHRMXjOnfjkRwbCTEZUST7Fa9pCJ9gIxoaqINl92CySTpbbI0ktQ2Div3tejPdajy63+8X4EvGKG63cuT66pP0qcRDFe0zHn3ERzZNXl4brKDGYWprPjGEj6/uERvA6KZ9Ak57plFfEZUQ+v3XpSeoC84PvH5edx18Xh9m+KMRL0GtaJN8RPZVhNd6DK2rnt9ZwPvVAeJRGS+9d8dfPelnQMez/ObanllewN/LTt8vB9NcByIQFRw3ITCERq7fbohTnWHh5oOL6/taOA/al85UKReWq3RpxeOovyXV+qvfXyuUv+5vqKDCyZk9pPhGtEGs6QRkhGVJGnQ/ogAOUnKTfflbfV09wX1ZvRGtGBR+87mjkpjXJaLvJQEMl123fUSoL6zT7+hP7lemSjG93V0GwINT0AEooIoa8vbmPGT5ayJay2k4Q+F8anZjkPNbq7+02pe3FqnZyz2NbpJTbD2C24GY8sPlvLE5+efmIMfwTgNNaIQK+fXAlHj2HKkv4/DasJskmLaaHR6AtS0e/nX2io+OruA+SXpPLm+msggLboEI5seX4geX7CfhLuqzcPBJjdJDoueYRuX7UKSJO69YhKfOLeYJYZa0bJvlfK/r5x3So9dMDBa+xZjRhSiDunF6YlMyknCZbcwOtPFIoPDcXF6ou6yW9GqKDWMQ4exp3qL209Y7ZVe19lHizpvqev04jXMV7SFzPje9oJTiwhEBcdNY7ePcERm8TjFoKKmwxtjTqSR7LCQrmY5ClITMJskrGZlMpOaaOMXH53GF88fzc+vm37E36eZaowUae5QaEZE3395N6MyErllfnG/bTRTgGlq24vf3DCTp7+4AID5o9N4/2AbEdUcwtheJ36uqUl0jfVeojZDYOTFLfVA/3pxgEhE5tOPbeTCB8o40OTmk49uYHe9sp3WO05pF3L09VwZLrtocn4C6JcRNdTga38Po1zuSEiS1M9Mrt0T4MEVB7GYJL5z+SRuObeI6nYvGyr7u2UKRg7/29GgL5Qa+4Z39wX5yat7uP7hNUQiMrvqutnf1EPpA2W8sr2BvAH60xalJ/LLj06PGQ9KMp1MP8b+34KTg9kksWBMOtMKYv8eE3KUsb84PZEvXjCGN792PmaTFFMKUJyeqJd2aYEogCQpmVSjqkYLPJu6fbT1+un1h+j1h7jiwdX85q0D+nZaICrmMKcXMZMXfCg2VnawvqKduy4eT61qKrB4XCaPr62iut2rr1QaSU6w6he+Fhht+N5SPft2tNbqWr+7keKaOxS5KVH50ecXjx6wwfNPr53KZVNzKEhLYPWhtpiJ/lXT83ljVxMHOhxcRLTPKERNZDS0jGivIRD1ioyowMCBZiWwDEdkDrf06rIrgFe217OhsgOrWeLqP60mGJaZPzqdjZUdZDhtpDttdHgCZDiFpO5UE60RVTOiaiA6szBFH1Msx9Br1WW30N0XZEKOi4PNvXR6Amyr7WLJhCxyUxxcMS2Pn7y2l8c+qIzp7SgYOexv6uGrz2zjmpn5PHTLbJoNGfT2Xj/v7GvG7Quxp6GHj/z5g5j3agvSguHFs7ct7PfcR2bmIyMzvSAlRgGWk2xX1BWSpHiMqGNTwNBzPifJQZbLHiPN1eYpFW29eANh3L4Qy3Y24PaHWHWghZ+gmKlpdciivOj0IjKigg/FjX9fx+/fOQhAbacSiE7MSSLTZaeqzRMzKGgkO6y6+6JWnJ7utJE7wMrmkYhKc0eGa+5QZBtasyweN/CEzmW3cOnUXKbmp3B7XKuKiyZlk2gz89A2H69ur6ejN+qgG++IG5XmihpRQX/6AmEONin1O89trmXp79/jcEu0P/Bbu5soTk/kta+cR1FaItfMzOcrF44DoLzVoxuPHEtGVHBiiHfN1QzQlkyM7bH6q+un84ebZg65P60MoDjdic1sornHT02Hl7GqDM9hNfP5xaNZsa9Zb90FSn3xn1YeIhQ+NjfuYDjCn989RJ8wTxs2+IPK31hTT9QanHJX7mvR7zPff2VXv/fWHcFVVzC8SLCZuWleMVKcqaIkKVnR4gwnkiTF9CnVSgMK0hJIS7Tp/el9wbDeO1brPer2BXlhi2KoWd3u1c8zbe4ipLmnFxGICo4JWZZjAo9AKEJtRx8mCfJSHUzKTWJ/k1sfFIwkJ1jISrKrUorBax6HwjHCakSHwmjapE3yjoUEm5nHPjMPiwmW72mmwxNQ/p5xCwRWs2QwKzLUiApZi0Clss2jr1Zr8qmyAy0s29kIQH1XH2OznEzOS2blN5fw4E2zOEd1hT5nVBolag1iuksEoqea7CRHzNisBaJaT1CNW+YX89HZhf3eH4+mWMlKspHmtLK9tpNwRGZsdlRu97nzSgB0MzRQHC9/985BdtUP3d/YyI7aLh5YfpC15QPXJgvOPLQAQJtT1HdFe0FurOrQS3d2xvW6vnZWPg/cOPRiiGD4c/fS8dx1kbJYaaxb14zTClITSE206ckPYys6bYErGJbZVd+t15yuPqSMEV71vOsZoJRMcOoQgajgmHhlez0LfrlSf+wNhKju8JKXkoDVbGJyXhIHm916LeGisRksnaw4syY5rNw0r4j/3HrucWU8hDQ3FkmSSLCaOXd0er8VxaNl4dgMRiebqWr30O4JkJZo62cYNS47iTZ3gOc31/KdF6Mr1EKaO7Lp7gvqbTg6B1BC/Pqt/Xz56a3Udnip6+zTZfmSJGEySTjtFlbfcyG//Oh03brfaRM1n6eaovRE1t57kT5Zu+fySfz+xpnMVRcKjhWthj/TZSfdaWdrTRcAYzKji2XJDiuJNjM9fUFa3D6W/HYVH6gmV0P1No7HrQU1IiM6bOhRM1duf4gt1Z26uZWmnCpOT9TPx5fvXAQohll/vHk2F8Zl6gVnJ5dPy+OK6XkAMRnRm+YqnRWUjKhVrxFtNSi6jItZvmCE+aPTyUqys6lKqUvvVRfRj3WsEZxYxExecExsq+nSb/gA/9lQw+s7G7hmptJDblJuMv5QhG01XaQlWnn6iwt47INKVuxrJtlhIclhZdHYzMF2f1RoEjJhVhRlx48v7WcsdKxkJ0qsa/JQnJ6o9nyNDUSn5Sezr7GHe16ItULvFRnREc11f1nD1TPy+OalE/VAtDAtgTq115vW22/lvma6+4J6A3ojWhZOW6ASUqnTQ15K9G+T7rRx/ZyhM5+DoS0UKrW/0bFkTFasq3eyw0qPL8ih5l6q2716r+IWw+Swut1DQ5fviLWkXnUc6hMLY2cch5rd+IKRfqZBWpsnty/Exx5eS1aSnSSHhZxkB+2eAMXpifzuxll4/CGK0hOZVZSqm5oJRh4Oq5lFYzO4ZEoOs4uVBbLCtAS6vEH6goobe0uPMm7YzPQzzcxw2jinOI0NFe088PYByluVspF2j59QOHJMNfCCE4f41gXHRGWbJ+bxMxtrKE5P5NcfmwHApDzlJrGuol3vA5il9v1MPkJLlmPB5bBgNkm4hFmBjs1iOu5BNMdpwhMIc6DZrRoDKN/vvJI0/vKJOSwY038SKEmxGdHuviAl9y7jfzsajutYBMODcESmqt1DhTouaKvS47P7S8Rf2qa46RYOEIhqaNmyo3VnFZy5aKUTmUl2UtV7QXaSvV9tf3KChZ6+kL6IoWU0jVmKrz27nVv+sT6mljQerY1UfM9kwakjEBq4rvfny/Zxr6GX41u7Gylv7aWnLzZQaHX7yU6y6/cebVFUW6h65osL+Nm1007S0QuGA09/cQGfWzyaiTlJXD0jjyUTskhVW07N+OlydtR1AVCS3H8+lOa0MWdUKg3dPv686jDvHWwFQJahrbe/micUjhxzrbrg2BGBqOCYiA9Em3t8FKQm6K6K47JdWExaSxZlcJiSl0ySw8LYzGOvXxyIT5w7ir98Yg6m400BCmLISVS+z4pWDxmuaEY0K8nOVTPy9AUFI06bJaZGVOsd+czGmn7bCs4+evqCyLLSIxKi/2u1ylpv0OL0RL3OS5PmDsR54zN54vPz+VKcoZZg+KEFnBlOO1dMy2XR2Ay+fdnEAbdz+4P6uaNhlNhpEs5fLNs36O/T6r1EIHpiCIUjMf2ih2J9RTsTfvAmT66r4ov/3qzL9UGZJ2iOuP5QmNuf2srFv3uPFrev335ykh2oncQozojNnifYzPqYIhjZJNjM/PkTcyhMUzLlozOdIMMj71dgNUucX9A/UZHutOmeBPEYz8WddV28uKWOe1/axe1PbT1pn0GgIFJKgqPGFwzHmAmAIrszSjjtFjPTC1NUaa6yCj4u28Wun1x2wo6jIDVBZExOAjmJ0Rt8utOGxaQ8TrJHA1INkwS3XTCWl7fV4fGHeHNXIwVpCXp9V7z8TnB20qFmsbTes53eAEl2i+6EffuSsYzJdBIMR/i2Kuke6tpdMiHriK8LhgdGs6KFYzO4ekb+gNslOyy09QZi+gACusQOovWf8QuhRrRMqnDNPTHc8+JOXtpaT+Wvrjwq74GNaj/YH766B4CDTb26FLet10+HJ8Af3jkYU0f+j9WV/faTk+zQXXSLj8PUUDBymJqfwqpvlfLsxhr+vOow37p0IokdB3lsd+ziVobTTklmIueOTtf7F1tMEqGIHNOq7vE1Vby5u4lRGYmiTOQUIJaWRij/XlfF5Q++P+R2sizz2o4G1R3Xiyz3b61gdDIDOHe0IuEcqJ+l4MwlI0HSTWJSE2y6tE77+2a6ooHoVy4az71XTFIyooEQd/xnK9f8eQ3vHVCkLgebeym5dxllB1oQnL1oWSwtEO3yBkl1WvVFi8m5SVw3u4CPzi7Q35MpHHFHBLkpDmwWU0x7qYFITlBqROONrlbsa2bWz5bzzed36DLdDk8AWUuXxeHRzYoGnjg+XFbOj17dfawfY8Ty0lZFSm/MMDf3+PRrPZ54CePhVjeN3X1squqgwxMgIsMfVx7i3+uqj/h7s5PtelAgAlHBsXDz/GI++M5FXDe7AJtZ4tcfm84Xzhutv57mtGK3mHnuSwv1/taaZ0FXXzQQbe310xcMU97aS1uvnwdXHOS/m2tP7YcZQYhAdITyo1f3sL/JPehNXWP1oTbuemYbv1t+QK8D+96Vk7llfpG+Tbypzblj0oEjr14LzjwsJonHPz+fmYUpLB6Xqf9dNYldutOmGyJpwYTTbomxPtcy5trq+N/eKz9Vhy84DWiT0ha3nxseXsvL2+pJS7QxWZXjT81XMiIWs4kV31jC3/7vnA/t7CwYXnx0dgErv7Gk3/0hniSHBbcvFJOR0OjyBnlxq9L/b0peMoFwJMYsz4g3LiMaCkdiFDwvbKnlPxtq+kmABUfGaPhy7i9XDrqA3dAdK7M93NLLQysP8Yl/rCcSN82wWUxMK0gGYGp+Mhu/fzG3zC8GICfJwTklUSMageDDctO8Yu66aLz+WFPpQTShoil0mrr7WF/RDkTVGMGwjC8Y4R/vV/DcJhGIniyOKhCVJOlySZIOSJJ0WJKkewd4/bOSJLVKkrRd/XfriT9UwckgMEQhtrbKvL6ygyb1RlM6MYtvXBKt9Yk3IdI0+OdPOD53XMGpZ15JOq9+5TwWjs3QM6HJambUbJLIULOiWnY0JcFKZVuv/v5rZ+Vz3rjo372hSzlnZFk+6qL/Tk+ASPzMRXDS6fWHmPvzFazc16w/t6ehm489vDamdzDAv9ZU8ujqipgs1ubqTkC52U/ISWLXTy6jOCOa0RiX7eLyabkn+VMIzhSsZtNR9YtOdljp6QvGZNpykpXx5dzR6fpzM4tSAWgfwFQEovcqLSB9ZlMti+9/l9+8tZ9ef4iKNg/hiMw7e5sHfL9gYDRnW63Gs8Xt58n11eyo7YrZrrFbCfrtFhPpThuHWxQXZM0128iEHBej0pXyjWSHlewkB0XpSkCQk+zgtzfM4O27L8ApWrQJjhOtu0JKghWrwdBRW0zPVwPRR1dXcss/1tPS44upTwdF9n+opXfIxM1gbK/tokokZgZlyEBUkiQz8BfgCmAKcIskSVMG2PQ5WZZnqf8ePcHHKThJ+IJHDg60C7K2w0t7rx+TpEw0jT08k+LaqCQ7rGz5wVK+fWl/YwrB8EHLZBgXGrQAVOvzlp1sp7ZDmYD85oYZPHjTLN2kCqChqw9Zlnl7TzNz7nunX0ATT68/xOJfv8vL2+r5y6rDQ24vOHFUtnpo6/XHNI//7dsH2FLdqTcAB2VR4e/vVfBwWTntA2SX0hJPjDu2YGSQnGAlFJFp7O4jK8mOSVJquQBunBtV3swqUrLr7XGTxGA4wt3PbmO7Ghhpgege1WH3r2Xl7KrrRpYVl+939olAdCiMRkOaYZGWLQK47/W9PLsp1pCuscvHVdPz2PHjS5lXksahlt5+nhIac0el65JILVDQZLi5KXYSbRYmijYtghOA2aSUHMWXlGmPUxKsuOwWWtx+ZFnJ5A8kP+/uC/YLUI+Wrz+3nQeWH+j3vOjBrnA0GdH5wGFZlitkWQ4AzwLXntzDEpwqfMEjGztoq6AdngDlrR7SnTbMJgmH1aTLNAeSXmW47KIn0zAnKU6aC1HDokz1/1xD/VdxeiKSJMUEoqGITF1nHwea3PT4QnznxZ2U3Lus38riz/63l9d2NNDm9uMNhHl5Wz2/ffsA76v26oKTT02HF4he8xCVLWkTyle31/PFf2+hqcdHuyfA5qrOfvtJFFkMwTGg3T+q270sHpvB1h9ewp8+MZvr5xRw1Yw8fbspeZrxTYBfvrGP59Warep2D69sb+BQi6LM6AsqkztjEKQ1sJ9RkKJn7gSDoylZAL3FihaIWs0SgVCETk9USi3LMvVdfeSlOHBYzYzNclHZ5qG63dtv369/9TzuvWKSPrZoLV8umZLDr66fzuyigV1NBYIPS5LD2j8QVWW6DquJFMNi+7a4TL+Rw829g752JNp6/f2UHFuqO5nyo7fFHIejC0QLAKM4uk59Lp6PSZK0U5KkFyRJKhrgdcEZyGAOg0+uq6KqzRPjXPj+oVZ9pVqSJJw2zcxGZEDORmYUpXD1jLwYu/MsTZqrngeaOypEpS6pCbED/obKDl3C+frORiB2khiJyDy1vpqXt9bphgH7mxTXxJ5jaB8gOD60QLTJEIhqixBVqqzxa89uZ4Uho/Tu/v5mVMb+jwLBUGiKGn8oQmqijdREG2OzXPz+xlk4rGaW3XUev/7YdLJVuW5br5//rK/WexUb71EATd0+Hi4rp6I1KoXbWtNJVpKdsVmuAWtRBcqi9ONrKgmGI9R1RgNIbQw+qE7CNaltV190Yt3pDeIPRchTg8vpBSnEqxhNkpKRnpCThMNq1gNRLeNqt5i5ZX6xaMsmOOFkJdlj5ioQXTANhCIxi+dbq/svrmpoi10aNe1eLv3DezR09bGuvJ2P/21tv+SO0gYpRFdfkP9sqNYdobXxK17iHs/qQ61sqe448gcc5pyopev/Ac/IsuyXJOlLwBPARfEbSZJ0G3AbQE5ODmVlZSfo158cent7z/hjjGd1XZA8p4lxaUfnWLt63QaqkmLXI3oCMj9818sloyw0eWSSrOAOKqYFpkSP/p2YUS64iv27KWsZvL+bYHgw0Pl+Qz7s3LRWfyy7AzitsHXDB0iSRGtzVFqyf/tm6mwSbQ3KxKIk2USXX+a51bsxx80tnl++ljk5Fg52hvEEZQLhCDur23h/vTJIa82lt+0+QI6n4iR8WkE8G3YrE/ryhnb9PDhYqTz35PpqXt5STa5TosmjzDBT7RJdfplEC3gNCiOTt31YjJvDcXw/G6lqjZ483S31lJX1zxDkALs2K8Znq7buxxMIc6BeOc/WNsTK28pbPfz6rf0ApDskOnwyh+vbcEgS7o5m2t2hEfl3H+p8f7cmyL/3Bth74BCJ1uiAvWXnXlK6DtHSEZtJrm/t4jv/eod3qoOk2pXtO+rKKSurxueLLfmxmCDFJhGRYe0HitlRfY8yf2jq6B6Rfw/BycV4vn9yTAS7ORBzntVWK/OU8upaZH/0fN1QriyuJlmVhIs7ICMDDjO8vfkA+b5Kfrnex0fHW9nWEuZgc4gHX1pNl19mU3WIb/1rJYGwzI0TbVhMEj0B5X7Z2OHm+y8rrt2PX+5k8wFlwbe6qpKysvqYY+8JyHiDMrlOEz/4wEuqw8S35h7ZfXw4czSBaD1gzHAWqs/pyLLcbnj4KPCbgXYky/IjwCMAc+fOlUtLS4/lWE85ZWVlnOnHaCQckfns994AoOr+qwbdzhcMw1tvATB15mzmFMdKYdZXtMO763GbkwlZQ8wZbeeDw22EIzLji3IpLZ0NQPqWMrpaPVywcB6T85JP0qcSnCqO5nxfsDjMPd6gvrqYWtvFn7atwWySuHJpKSaTRKurlmcP7GRsfiZZSXaW7WxkWkEKEB0mzBmjKC0dz2/+uJoK1eyo3SeTWTwBtuzSt8suHEVp6YQT/lnPNl7dXs+0ghTGZrk+9D4ePbwBaMMTsSDnTeH8cZm82rwTapThvjcIQVkCZL5z+SR6fEEeLivHZLZASAkGXrpzEVPykodF66bhNr6fraTUdPK7Lcpi1+ypEyhdWDL4tquX0xJOBLrp8MH5Fyxh/+oK2Ll/wO1nlWTx7v4WPBELY7NcTB2fyTvVhzj/giWYR1jmzXi+P7+5lsm5yXqfT4CGDTWwdxddlnTycpNhzyEAcotHU1o6Dja+C0SD0VYfPHcgwIzCFPzBCNeUJHHbNdNIUbNLXy9bBigmZf5QmCyXHbNJorR0EQDd3iA/XrucmxeOp7Q06mwqEJwIhhrfmzbWwL5dZGTlkpASZm+7otbqVQUTP7t+JiZJ4r7X92KSJC6ZksN/N9dxxxXTqFy+kYd3hlg8LgNoYdy4sZQdaAXaeb1C2UFhYRE/+sgUylt74d336PJHJQLOkhnUvb8ZCJOUXUBp6dSYY/vWf3ewobKd1feUElizAmtiAkuWKNfN2eg6fzTS3E3AeEmSRkuSZANuBl4zbiBJUp7h4TWASI+dBmo7YusxDjS5B6wBNUqTfva/vXz+8U0xr2vyg70NPbS6feSnJpCnBh4Zhh6AQpo78nBYzTESF61GNN1p0yVVqWrtRabLzpIJWbj9ITbHSUv2NipGIo3dfTGGWVviZDE9fUJGNxSyLPOt/+7gnx/0bw5/LGjS3A5PgM/9axP3v7k/pnUDKPLJO0vHckfpWG47fwwAY7IU98u7Lh7PnOK0YRGECs4cjPePMZlHXkjJcNrYpZoQaQZH8dJcI5rhTac3iNNu0WvBRvq48pPX9vD42qqY5zRjOM2sJTXRitUs6TWiXn9Yl9NC1OjwztKxvP31C3joltl6EGrkT7fM5o83z+a+66bxs2un6c+nJFrZ/dPL+MqF4070xxMIhmSx6u5/wzmFA563V07P49pZBWS67OSnJnBH6VjCsszv3zkIQF8wzGF1rtzQ5dMltxr/3aJUNHZ5+xsfPbepVp+HD1TKsr+ph/rOPkLhCF19QXp9IWbf9w5ff277h//AZzBDZkRlWQ5JkvQV4G3ADPxTluU9kiT9DNgsy/JrwF2SJF0DhIAO4LMn8ZgFg3Cg2Q0oLmHdfUGu/tNqfnrNND5xbnHMdsbajh11XboD6pPrq2l1+znYpOxH6w+ZnWSnMC2Bus4+3TUVwGlXJpzJDmFOMlLJdNlUl8voAoVWb5GZZGOs2jQ63sJ/d30PvmCYzrh6rfiA1RgI+YJhmrp9lGQ6T+hnGO64/SGCYZnazmM3Yfn98gOMyXJx9Yw86ruU67tNdQb89/pqxme7mF+Szs+um8rlD64GlPEAIM1pY/nXLyA1wUp28tkrGxKcXDTTkHHZLjXDMDiZLrvezxqUxZNmt2/Q7ScZnFddhkC0qy9IWpx5yUjBFwzjDYRpifvetHlBVbuH4oxEMpw2zJKk13D2+kOMy3b1c8LNGeTaf+62Bazc33JEtZRLGJsJThNF6Ym6cvA91TBobJaT8lYPl0zJwW5R5rdfvnAcNouJwrRERmc6dXdugCrVjGt7bRed3iDF6Yl0eAJ8ckExf3+vgl7/wP2RGwzXUFucE68sy1S0eojIyvgWCEX0PsuvbG/gDzfNOuuyokc1Csiy/AbwRtxzPzL8/F3guyf20EY2sizzhxWH+OjsAkYf5cT7gBpA5iTZaejqIxiWYxwwQVn1XGHooybLSgbk6Q01/PCV3frzNrNJ7zGanWynKC2R9XTEBBwuuwWTFM2MCkYeFrOJTJc9ZoEiVZ3sZbnsAzYkn1mYwo66btaWR1uCuOwWAqFIP5dFt8Gs6CtPb2XFvhYO/eKKmH5gI50u1b2yrqO/Q+WRkGWZh949DCg9GsMRmXPHpLNMNZQKhCLsaejhoknZemsFiJ14TsgRLRYEx0ea08YrX17MpNykISdYF0/OZmNVdLGqrqOP1gEyonOKU/nJNVNjxgmn3awvknWP4Iyo1nIpfm6gLQpGZNhU2cHU/BTCEZkeX4hQOII/FFFarsQJL+JNYDTOHZPBuWOOvLAgEJwJaOPCty+bRG6Kg5kGyfpHZubrP5dkOPUsqEZ+ikMPTn91/XSm5CXrgW1Tt6/fYjsovXhBSeK0xbnpNvX49BZU+xqVOb2xncyu+m5mFKZS2+GlMC3hrAhKxWzuDKXdE+ChlYd4Y1fjUb9Hy4gGDAGo5ngnyzLbajq565ltPLD8YMz7IjI8tPIQM4tSefCmWQCMykhkXLaLiyZl85GZ+RSmKRPRDEPAkWizkOSwCpe7Ec71cwq5bGqO/rgk08mNcwu5cFI2iTaL7qarcct8JUP/1PpoH7rCtASKMxKJx5gRXbFPMREYyZPIgehQpT91nX1EIkffcNt4A6xU63TnqQ7JU/OjWQyX3UKizaLb32vupQLBiWJWUepRSbpvMah7zCaJ6g7PgBnRdKedGYWpJNqi+3TZrdGMqDfAazsa9MXbo+Vgs7vfRPRMossb4C+rDhMKD94fvKNXC0RjA3ijhNATCJPhspGcYMXtC+JVS3y0eYCGSYo6qQsEw5U0VZUxOtPJrKLUQYO7EnWOkuSw8OmFo/jv7QspnZQNKMmb6YUppDlt+uJMU7evnzQ3w2mjRZ2fl2Q6aev1x9y3jW7fWveAgOF6fnd/C1VtHs7/zSr+pC4kD3dEKusMRUvnH8uku1y9Qfb0BfVAVJvIP762ip/+b++g723q8bF0SjbXzsqnss3DBROyYtp2aJktY43ogjEZWEQQOuK594pJMY+tZhO/uWGm/rgwLZG23gAmSVn0mFmUytT8ZFYdUAJLi0nSJzjxk7yB2rd0eQNkuuz8YtlefMEI912n1B2FwhE+/c+N3Hr+aC6alNPvfWcrWmucQDhCi9s/aIbiuU01/G9HI0/dei4AlQaJo3bzu2ZWAS6HlQvGZzL/lyuBaMP5gtQEOjwBspOEDFdwekh2WHn61nNxOSx88/kd7K7vobnHR7LDopeSQLQlTKJBreOym0lRW0vVdvbxk9f2ML0ghZfvXIQkSYQjMm/sauTyabmDKi6+99IuHFazfg2daXzj+R28u7+F2cWpLBqbOeA27R4lAO3uC+oy3csffJ8eX5Bx2S59DE532ujxBenpC+r1o7nJDswmCVmWiciKVFr0CxcMd66YnkcoIjMh58g16lpZUEmGU693Xl+umDDOG52m90TWPFUau/tipLkOq4msJDv71QWwURlOdtZ1M+Z7b7D6ngspSk9UzI1U9g+wUFbR6tHlvP9YXcFdFw9/oy8xgpwhPPJ+Of94P9qmolut1zgWUwXjhFQzHunpC9LlDfCHdw4yvySdP948K6Z5r5G8FCXN//VLJsQEoQCXTM3h7qXjmVEQlSx84txifq9mUAWCwShSZZ0lGcognpPs4OLJOXqfuX98Zi7fuXyibnpjM0xs3Kos7FBzdEDWpC5ry9v1RvUAFW0e1pa38+KWWCv0sx3jiqux/188/91cxweH23SZj5YFtVtMlLd6SE1Umn7fcE4hWUl2EtQMlVbHpS1GiYyo4HSyaFwmMwpTmT86nXXl7fiCEWYWpcZso/kXaP8rP0drRN/Y2Ug4IrO9totNVYpB2rJdjXz1mW28uKVu0N/d2uuP8Vg4kwiGI3pf34auwetmjTK/lh4/h1t6aXH78QUjlGQk6lnkDJedZIcVty+Ex69kRJ12M2mJVl2qP9iil0AwnHDZLdwyv3hImatWJpdnOO81RaBx4UcrX/n2Czv586po1jIryR5TF11iUIGtOayUKlW0enDazNgsJj0jaqS6w6sv0Gvzo+GOCETPEJbtauL1nQ36Yy0TeiwZ0e6+oH6Sa82n3b4QW6o76fGF+MalE7h2VgErvrGEv35yTr/35x7BcCTZYeXupRPE6qfgmClSA5gb5xVx09wi0hKtXDJZyVi67BYunJjN+JwkPVBN1CaRNjNuX5Cn1ldzyR/e1/fXqU6k2nr9MdLd3aqb5rqK9mOSqA53Oj3RMaJ2kEDU7QuyTa1j0TIemulLSoKVyrZexhhq0SVJIk2tm9HGlJlFqYzLdukmDgLB6eTcMRkEwhFMEvz2hpl869IJfPH80YAiwwVwWMxoc0tjILquop0ku4Vkh4VnNyolAq9uUxawXtoWu5C1fE8TD7x9AFDGHo8/zJf/s5V/rYkWS1a1efQxZyCXzFOB0XG8uj2qdmh1+zncoizkHWp2s8NgtrJiXzNVBmVEaqKNfNUZN8NpI8lhobXXr6snnDYLd5aO4/YlY4HBjYoEgrMRLSOab3CP/r9zR3Fn6Vi+cN5o/TmH1RxTFqCR6bKTaAhEjZ4rO9X5S22Hl6L0RHKS7dTG9e6dkpdMbYc3Ji7YUdd1fB/qDEBEFWcIHn8o5uQ6VmmuPxTGF4zo2Sctg9TjC9LQrayOaqs5WUl2rpyeh80S++cXq5uCk4EWYF42NZdf3zADSZKYVpBMTrI95pzTzs+UBCt/+cQcbppXjNsXinHJBMXxMhKRae8N6CuDtz+5hW88vwNQVvwPthxb7ddwpssb0Cfb8TcujY2VHYTVifIh9bupVOW4fYEwFa0exsT1IE2wxWZEv3TBGJbffcEJP36B4MMwvyQdgPPGZ5Gb4uArF40nQZXiagGnySTpmf0khwWbxaSXk5w3PpPLpubyzt5mmnt8vHewlbREKxsrO3RnWG8gxG1PbuHPqw4TDEfo8YVw+0J8cLhND/zqOr2UPlDGd1/axb/WVDLrZ+/EyOtOFUbzoSqD6duv3tjHJx/dgCzLfPnprTyxrlp/7Wev7+WeF3fqj9MSrdFA1GXjoknZ9PpCfPHfmwElmP/8eaO5bnYBcOTFa4HgbCMv2cHicRmcNy6a/UxJtHLP5ZP61bhrhkMaVrNElsuOy6DSuGpGPtfNymdKXjLbaroAxeuhKD2RvOT+Ro/TC1Lo8ASoNzjkl7d6+m033BCB6BmC1x+ixxfi2Y01bKho7xeIdnuD/P6dg/hD/fuCGrfTsk/ajcjtC9HQ1adfBEYS4i4cEYgKTgbXzMrn4U/OiXF/liSJe6+YxK2GVUTtdW8gzFUz8shOthOKyDR1x7UZ8Abo7gsSisj0+kMEQhHe2tMEoK9Crj3cfrI/1hlDpzdIaoKVrCR7v17CAJGIzCPvV5DksJBgNesZUa3+pDcQosXtj1nlBUMgqtbbSZIkjMkEZwy5KQ7uuXwi3750ov7cF84bzSfOLebTC0fpz2l1opq7e0hdkPnUglFcNSMPtz/Ez5ftIxSR9Xp3re7r+U21+n604LLXH6TXH9LrJreqE8jnNtfqPgw17cfmYG2kvquPH7+6+5gld5r52MzClJiM6N7GHpp7/LT2yfq1bxtE2ZSaaKMgNdob+vJpeXxucYn+uiZ1dljNXDMzn4snZx/TMQoEwxmTSeI/ty5g6ZShPSisZuVeOS7bxcfPKWR0ppNx2S59PNLqRR+8eTZLJ2ezr7GHCx8o41CLm8K0hAG7ZUxT3Xy1XsqgBK7DHRGIniF4AmG6+4L89u0DPLWhhi41sNQyPt94fjsPrTzE2vLoBLuitZdVak2IVktalB7ratfjC9LY1UdOsqPfJLJfICpWNwUnAYfVzBXT8/o9/9HZhdw8P+qCmZNs51MLRvH3T50DRA1H9jT0UJCawF0Xj8dikuj0BvVifVkmJvswuziVURmJMdfJsSLLMu8dbB100edY2VXXzef+tZFA6OgmlrIs89buxqPevsMbIC3RRpHa6zd+X39YcZANlR388KopuhlJS4+Pmg4vmS6bXqubEddXMdGqfP9Jotef4AzlztJxTDe0WkhJsPLLj07HaThno/WiynNahn/h2AwWj8sk02XjfzsaSHZYuH5OIUl2C1tqlGynsWfg3galXssXjBCOyHrd5E51G2PLB82vobsvyMHmY1NnvLOniSfWVceYiWlUtXn69fHUaOv1YzVLTC9M0eW2oXBENyJb1xBCq1gIhCP9FFEAJkkiP0WT5ioL17kp0QUq4/f60C2zKZ0oAlGBYCDe/Nr5vHD7QlZ8Ywm//fhMXrpzMXcvnaCPP8Za0WtnF5CaaKWyTekfWpSWyKVT+we701Q3+931PThtZvJTHEf0hRguiED0DMEbCBGOyLR7AopMV7uReRVnu5VqwNlikN9c8+c1fO7xTXR7g7o5kbHfn0lSMqL1XX39sh0QzXiA0s/IKSacgtOIJEncd9005hQrRllJqgNdfVcf54/P5BuXTCA10cbDZeVc//Ba/X37GpUJ4hfPH80DH5/JorEZbKhs16Wox8ozG2v5zD838vzmwU1LjoV1FW2sOtCqN7F+7INK7nlhx6Dbv7W7iduf2so/11QOuo2RLm+ANKeNovREDrX08vXntlPV5sEfCvPA8gP86d3D3Di3kI/PLWRctovyll42q7LCJROiE8m0uEDUoY4Pdqu4TQiGL1oGQpv4lX27lB0/vhRJkrCaTXzsnEIAFo/LxGo2Mas4lac31PDl/2xlf5Nbr5Xe0xBrHOJWM6I767qZXZzKq185j7JvlQJKeUCHJ8DMny7n0j+8jzcQ4kjsb+qh5N5l7KjtolntMThQ/8HSB8pYfP+7A+6jvddPhtNOSYaTHl+ITk+Aqnav3vphTUPsMez56WV8XP3s+mfyBVkwNoNJuUkUpStzhhyDOZnoGS4QHB3jspOYq5YPgDL+2CwmXbVlnG+PzXLpYwcoCaXzxse6XifazIzNVspn6rv6SEmwUpCWECPTHa6IGcZJIhSO8OX/bGVLdceQ2/pDYYLh6KS51xetF3X7Q2ytiZoQGDMeveqNcObPlvP5x5UaDmMgWjoxm3BEkeMUDBCIapp2u8UkZLmCMw4tIwrRTL82KTSaFGmZiv9bMIq8lAQWjMnA7Qvp5kUAb+1uZMlvV+EL9s9yPrjioG4UFgpH+IvqctfSM7jz5LGgTSi1RvLrK9r54FDboNtrspv4GhMjX3h8E5f+4T1l/54gaYlWitISaev18/K2er713x3M/Oly/rKqnFvmF3H/9UptbnaynbbeAJuqOnBYTZw7JnqjTE+MDUQT1ADUHxz+rnyCkUtinMQ802WPcY6/ZV4xNrOJpaqB2gw1s7lsVyP7m9wsVuvB9sYFoh5/iPZeP7sbuplZmAoo/bctJokOT4An1lbp226q6iQYjgyqsvj7e4pj/trydprVUoROb4BQOEIkIveT6cpy/0W29t4AGS4b43OS1N/ZwVPrlXpQkwQtXlkPxpMdFqxmk26+snhcBldOz+Wzi0uYV5LOW3dfoAfwRqVUol0YlQkEx4MWgCbGLeqkGu6/hWkJ2C1m7rl8Il9aMgZQDEOTHVZS1TlQcoKVwrREIc0VDM7Wmi6W7Wrkvtf3Dbmt1x97c3L7Q7o0V5aJqfsy/jyQ07TWYgHgIrXRbqc3GGM3raFNNO+5fBLfuGRiv9cFgtPJtPyo1E0LRAfK2u9t7EGSlPZDALOLlIyq0fp82a4mqtu9/fqUhiMyD644xFee3gbABoNRyUD1lkfCFwwz7xcreG1HQ8zzWr235vbr8Yf0BvEDod1YXEeY9K3c38LB5l521XVT0+Elw2nXMxigBLG+YISvXjSOX1w3XZflZzrtBMIRNlR0MDU/hVTDhDzNGdvW6YvnKzfA+FZOAsFwIpqBGPh6Ksl0sva7F3H9HMWA57pZBXowCsr5b7OY2NsYG4j2+kPc9Mh6QhGZq2copQeSJJHmtNHhCeglBVazxNrDbXznxZ3c8dRWQGm1ornsyrLMB2rrBqtZotmtBKK/W36Acd9/ky88sYn5v1wZo/BoGmCRrK3XT4bLzlRVvveN53fwuBoMnz8+C4CZRSm8cdf5vKWajo1S20eMz07ir588Z8AewUZnXJERFQiOj6g0t/94lOyIbZV2Z+k4vqXWwCcnKK+NUudCKQlWCtMSaOrxDfsWLiIQPUlo/Q0n5SYNua0nTrbj9gVjmuBqxkMlGbGrH2lxGQyIyusunpStr5wAR5TmXj0jj8un5Q55nALBqSQryc51s/KB6ODbqsrWjOxr7CE32aHXPGUlKVKydk+Abm8QWZbZVKlcj/GBqNHUA+CNXY0k2szMKU6l+igCUVmWeXDFQd7d38zhll5a3X7WHGrjqfXVuH2a4ZgSgHYYAtG+I2Q7td9rzPqCEjTHS/xufmQdLruFW88fTWFaVA2h/a4bzimMqQ3PcCnjw6EWN/mpCTF1KvHjydySdKruv4psUTsuGMY4bf1rsuLJdNn1HoLjc5J47Svn6X2Nx2S5yEtx9HOw7/AEONzSy9cuHh8jwfv/9u47vK3yeuD490qWLC9575U4cfZOyCBkkQBhFcpepYPZ0pYOfi2lm1KgiwJlFSgtZc9SVhkJCdl77zi2E+89ZWvf3x93WPLIAGefz/PwYEnX0pVzdXXP+573nOQYOw0uL7uqW5mQn8j4vESW76tnT0jrlAseWcqNz61BVVXKmzrN81pLp88szma0YFu0u45Gl9fs+wvaOe+FlaU8smAvta1ufvrmFjaXt5ASayclNpLMeIeZMXXn3EIeuWYc90xx8OQNExmR5TSvB4yK5sY5szehfYOtUqxMiC+lt9Rcwzt3TOe+S0eZy5IAbFYLDpvFzOLI7RaIBoIqVS39k711vMjw1lFiNKd12Ky4fYEepZ1DdU/Ba/f4zYPP7QuaFfhGZcezTm++raoq7e6e607io2zsuPc87FZLWMEW40s1VGhZeyFORH+6ciyXju+aoeitUEdTh48zBnS1HomyW4mxW/l8dx1//ng3T94w0ZxB2NutrYtRORa06rIfb69mzrA04iIj+HRHzSH376XVB3h4wV4KUmK4c14hAP/dXMFr68qobXXzo3OHmoNKjfq673aPH49fK3hitSi8u7mSAcnRFNe5mJCXyB59n1q7Xfg+s7SY51eUsvQnc8z7XN4Av//qaArT48KKjxizKqEpiKA1qQfwBVTS4yLDvgx7G9gS4mQXbbdiUXoW5zuUSfmJWlujlBgy4x3s76MSbvdemkkxdvY3uChv6uTayXmkxUXy0ur9JERpAWpxXTt7a7X//rupMmyQuKnDS21rz8E2gM/3dKXzb6to5aFP9wDw+roy87yYon++R2bFU9Xi5jcXj+Ab07XK5EMSrTgd4eeDwWmxzChMCWtH0Z30DRai/xgDYr0FogWpsT3aqIFWL8P47OaFBKJD9DT8fywr4TdfGXm0dvmokxnRoyAQVM0eY3tr2xj2y494fV1Zn9sbI5fmbbef5g4v+Ula8Fja4MJhszA4LZaaNjcef4BWt98sQhDKZrUQbY8gwmrBGXIROjlkxNYQabNiDemzJsSJxma1MHtomjlb8f2zBwPw64tHcPmErkIb3atFJ8dGsm5/E0EVntDXfEbZrOyt6ZpVqG1zs3h3rXm7tMFFfbuXmYUp5CVH0+Dy9vhsdmc0tU+KsbNPn21162sqX15ThtcfNAPRZXvreXZpsVlt87NdtSwvquf7r2zkK48t5wevbWLmnxbRqafttrr9FNW28c1/rqHdo615rWpxszdkVjfKZuUcvZR8XlI0PzpnCBYFsxJuXLcLz9DKuOlOh7luLspmDSteJsSpwhllwxllM88hh+uayXlcNSmH7IQoCtP6zmxK6pbSnhRjN2czh2fGkeF04PYFzcGh0NT9ZUX1Yf0/K5vdZhEkg5HZFHquWlXcNcgcOjhnfL6NgbtZh6hq67BZeeGmKYzNTTjodkKI/hFtBKJH8H07ItNpptwb6fTxUTbG5yVy01kD+deKUtaVHroezYlKpsIOQ12bh2ufWcUzN07qtbdPd9Wtbjx66wWjdPozS4q5alJur9t3XyPqD6o0dfiYmJ/E7po29jd0kBhtZ0ByDKoK/91USaQ++/H7r45iWkEyZ//l8x7Pa+Sg5ydHE9FL37Aom5XYyIgj/oIW4nj50blD+ZG+ZsLtC/DWBq2ybfcU+ORYu1lJenN5C/FRNqYWJIUFot99eSNrSrpO3iv1i7uhGU6zEt1fP93DPRcM7zUlTVVV8yKwweUNayxtt1qob/ewsrjBTOlbVlTPsqJ6MzXHaBLfXaFeGa/N7eORhUUs2l3HR9uqzbR8Y5CrIDWGC0dnmiOriqLw/bmFfLKjmm0VrcRFRvTY75SQXsJpzkhzdDYpRmZDxanpprMGmoWIjsSEvESzgved8wp5QS/8011Ct0yC0MGe4ZlOM8XeGBz676ZKrBaFYRlxVDR1Uqun5RakxLC7Ojxj44qJOfz5yrGc8fsFLNULnGUnRLG1XCtodt2UPF5efcDcPqC/yNenDWBklvOwrleEEMdObGTfqbl9ef5bk82fQ1NzAe65YDjTByeHLQ842ciM6GEoqm2nqLad7ZUth96Y8HVnxkVocS89wQzd14gahqRrF6TtHj8J0XbOG5nB0PQ4fvLmFu58dRMA+UkxfX7ZDEyJ5fZZg3j5lqm9Pn7Z+Gy+O2fwId+PECei0HT34ZnOsMeMHniGMwYkMjTDSWmDy1xnaVzMGUHsUj31rTAtltHZ2ozCP5aVsOFAE8GgSmm9K2xtZ1OHz5z9rG/zUFTbblb1NXqAFdW206yn5BoOVg13WEYcf7tuPMmxdlo7/STpz1da7zID0Q16IPrw1eP48bk9i4wZKTzObmm5EB5wpjsd5pdh90JFQpwqemuFcKRSYiNZ+ONZvHTzlB6Pda82naSfe4ZlxJEZH9Ujdbek3sWwjDgGpcZS3txBbasbe4RWwdYY2DIGkIzWKSNCzm+jsp3mrOml47L5/tmDeeqGCQBMLUgGID7axtwvEHz3ZeXPzmZRSHsJIcQX072d1JEalBqLonSt3bZaFM4e1n+f9eNBAtHDYBQdaXf72VvTxndf3nDQZvNGtc0Mp8O86AwEVbNKXnd99RgblR1vrvtKjLYRZbfyzI2TmDM01dwmOdbe54ym1aJw9/nDem3dAnDm4BRumVnQ5/sQ4mQxLCM8EE2JDb84PGNAEuNy4wmqWgCqqioBVeW2mQU8cNloQJuxzEmMIiYygrzkaD76wQwAKpo6eW1dGbP/vJiZf1pkfo6NvqBjcuJp8/gprm/nojFZjMp28vUzB5AQbWN3dSuugwSe3f3xijEMy3DidNhodfvM2ZSVxQ3Ut2szJ0Y7p+4XuIaDBaL2CIu5Jjzd6SBaD+ZlfagQBzcoNZZJA3pWkO7+2Wn3aNcLRsp8Ri+f03NGpJOTGEVVs5uqFjdpcZFhxQWNrAjjM248F3QVGNIej+RH5w5l/qhMSh64wJzB7W+Z8VEyuypEPzjYGtHDke508Pa3z+SScdn9uVvHlQSiB+H2q0z83afmmo42t5/bXlzP+1uqehQ9CbW/oYMIi8KgtPATd0lD77Oi7Xpqbve1mulOh1kt1Piyy0uO5h9fP8Pcxki1e+WWqbxx+7QjeXtCnDK6V300qsMaKezTBiWbvf42lTXT1OHD6w+SEe8wq8K2e/wMTe9K8TWKAlS2dFLepA0u1bV5qHdpAWFFSCAKWgGg0TnxvP+9GZwxIImClBg2HGg+ovdhfJ7jHDba3H5zXZmRjgtaFW2LEp4CGMoINOOjev+iM14jLS4Si0Uhxm6VQFSIwxAZYcVm7Rr4tVqUHsX+rpqUy5yhqdystz8KrTpbkBLDkPRY7pgzmOzEKPxBlW0VLVogGqV9Bh02C6P0jAyjncrFY7PM5wgdgApNtZclNkKc+JJj7cRH2RjUS1GiwzU+L/GgBVBPNrJG9CDqO1UaXF7zIrDN3VVa3UjR8wWCKBC2BnN/YwfZiVE9pt7XlDT2evB16Gk2F4zOpK7dw5I9dYB2oTggJYa9te1ho6UWi0KERcEfVM1Uu2mDkvvpXQtx8jNScy+fmMNVk3IZE9JwfuOBZrOvXobTQWrIxdzI7K7+gdH2COKjbFQ1u1HpymYob+okLc4RMiOaAGjrtAandX2+B6XG8sb68oPuZ2K0jVHZ8eb6LyOAdkZF0Kq3cjA+66D1DlZVrRhTb+u+td/VZ0QdvafbJsfYqWvzmCOys4amyvlDiMMUExlBhzeA1x8kMdoW1h4JtPYv//xm15quaHsEcY4I2tx+Xr1tKskxkVgtitluqbjexfyRGWZa/4DkGHOQyUjNjY+y8Z3Zg7AoitkTPNpu/cKzKkKI4yPaHsHGX56DjBt1kbPYQbR4tIs/o6pdm8dvpto2dfh4fW0ZP3lrC+NyE3jnjunm75U1dpCXFG3mgoPWqHbZ3nqunZwHwJbyZhbtquP22QXUtnlQFPjTFWPYUdVqBqKpcZEMSA5fmGz47Mez2VrRIn29xGltzc/nEmHpGZAZAV12QhTjQipCjs9NYOneevbVaUWLMuK1/qMpsXaCKtzaLVU9M95BVYvbLDAE8O6mSj7aVs2yvfU4bBazhDoQNtAUWoY9NJgM9e3Zg8hLimHp3nrio2xmqwSnw0a710+wReW6KXn8e6VWKCXGHkG7x3/QdgtGANr9nGHITowKSxd+4vqJfT6XECJcbKQ2QLW/oaNHoaK+pDsduDztZhAKhC2ZSXd2peamOR3m84b28P3J/GFAV2r+wXp/CiFOXN0Hr053EogeRLNHWwdqXD8a1e0Amju8fLZLK6e+taKriFF9u4c9NW1cPSkXb0D7RYsC54zIYOGuGrN34L9X7ufN9eVsONDE53vqtF5n3dJ8HDar2ffPaOlgyEuOJi85vGWFEKcbI3WtOyNlzZg9MFw/NZ//bq7kzlc3AlogCvDpD2cR64jA1m2WUQtEO0mJjaQwLZa9te38a0Vpt9fSLhpT4yLDgr9hmV0B6nPfOAOXx8+3X9oQ9ruxkTZS4+xhzwNaeq2qan1CM+OjePCy0by4ej+XT8jhv5sq+d2lo/r8mzj1lNze1ogC/OLCEbh9h79uVQjRJT85moQoO/sbOnoUKupLujOS5g5v2MBxTmJXIJrmdJiptWlxkVw0JhOPP0BWfM/zm3FOC83kEEKIk9VhrRFVFGW+oii7FUUpUhTl7l4ej1QU5TX98dWKogzo9z09DowZUcP60q51Ws0dPnNWJRBUcfsCbK9s4a43NuMPqHxt2gBzFiXGHsHMISk0d/jYUdkKwDY9eP1cn/00Zlq7p/MaX3Ry4SjE4RuVHc/Zw9J6pJyeMSCJr08bYA4uGRdziTH2HkEoQEZ8FNUtblo6fWTEO3DqA0WXT8ihIDWGy8Znm0HvoNTwNeGzClP53tmDGZ0dz7i8BOaPyuiRwRDriCA1VruwDF3vFRpEpjsjuWZyHu9/bwbfnD6Qd+6YftCKe3GHmBFNjYvs0XdVCHF4/vH1M/jjFWOAw682PXtIGmcPC+/p6bBZeenmKdwwNY8LRmeag9DjchPITYrmB/OG9LruMzU2EosSfr4QQoiT1SFnRBVFsQKPA+cA5cBaRVHeVVV1R8hmNwFNqqoOVhTlGuAPwNVHY4ePpe6BaHVI4+l6l4fSBhfxUTZaOn2U1Lu49ulVdHgDfH9uIYPTYrsC0cgIJuZr1ew2lTUxOC2WPTW9FzuK7Vb44OKxWawuaeTOuUP6860JcUqLj7Lx3DfO6PWx78weZM5q9rXO0pAZ76DB5cVhs5KdGGW2TZg1NJU/XTEGRdGKhKTERvZoIWOxKPz43KFhLVbio2w0urraucRGWkmJ65pRNThDzgO9Vd08GON3nQ5JeBGivxlFQmxW5bCLfPVVnX764BSm62n2A5KjcTpszA6pit+bCKuF0dnxjMp2HnQ7IYQ4GRzOlcpkoEhV1WIARVFeBS4BQgPRS4Df6D+/CTymKIqiqmrv/UpOcJ3eAD9/Zysf7++9rUqUzcrW8hZ8AZUzBiSxYGcNv/9gJ+0ePx/eOcNsJRFlBqJWshOiSI6xs6mshRFZToKqVmzAmAmN0GdKjDVi5mvZrfzlqrFH660KcdpJczq4c24hrXpbpoMx0uAqmjuZNTTVbEo/KT8xbJ3H67dNJeUw1mwlRHcPRG1E2yNIirGbxUsgvCXEqJx4joQxmxofLb1BhThabpiaz8zCgweNR0JRFOZ0mzXty3+/e1a/va4QQhxPhxOIZgNlIbfLge5dnc1tVFX1K4rSAiQD9f2xk8eaw2Zh1b6GXh+Li4wgPd5hVtKdPDCRBTtrWFZUz4zClLB+hkaPvtjICBRFYWxuAlvKm80CRA9cNpqK5k5umJpPINAVs88oTOG8kRlH6+0Jcdr74TmHl2EQGhzGR9n4xYXDeW1tGVndevMWHGYpdi3A7GrjFBOpnSPevH1aWCB7xoAkHr12PLOGpPZZ/bYvA5JjiLZbKUyLO/TGQogv5NcXjzzeuyCEECc95VCTloqiXAHMV1X1Zv3214Apqqp+N2Sbbfo25frtffo29d2e61bgVv3mUGB3f72RoySFkzSYFuILkONdnE7keBenEznexelEjvcTS76qqr2mkBzOjGgFkBtyO0e/r7dtyhVFiQDigR5TiqqqPg08fTh7fCJQFGWdqqqTjvd+CHEsyPEuTidyvIvTiRzv4nQix/vJ43Cq5q4FChVFGagoih24Bni32zbvAl/Xf74C+OxkXR8qhBBCCCGEEOLoOuSMqL7m87vAx4AVeE5V1e2KotwLrFNV9V3gH8ALiqIUAY1owaoQQgghhBBCCNHDYdX3V1X1Q+DDbvf9KuRnN3Bl/+7aCeGkSSMWoh/I8S5OJ3K8i9OJHO/idCLH+0nikMWKhBBCCCGEEEKI/nQ4a0SFEEIIIYQQQoh+I4FoLxRFma8oym5FUYoURbn7eO+PEF+Woii5iqIsUhRlh6Io2xVFuVO/P0lRlE8VRdmr/z9Rv19RFOVR/TOwRVGUCcf3HQhx5BRFsSqKslFRlPf12wMVRVmtH9ev6QX4UBQlUr9dpD8+4LjuuBBHSFGUBEVR3lQUZZeiKDsVRZkm53dxqlIU5Yf6tcw2RVFeURTFIef3k5MEot0oimIFHgfOB0YA1yqKMuL47pUQX5of+LGqqiOAqcAd+nF9N7BQVdVCYKF+G7Tjv1D/71bgyWO/y0J8aXcCO0Nu/wH4q6qqg4Em4Cb9/puAJv3+v+rbCXEyeQT4SFXVYcBYtONezu/ilKMoSjbwfWCSqqqj0AqpXoOc309KEoj2NBkoUlW1WFVVL/AqcMlx3ichvhRVVatUVd2g/9yGdpGSjXZsP69v9jxwqf7zJcC/Vc0qIEFRlMxju9dCfHGKouQAFwLP6rcV4GzgTX2T7se78Tl4E5irby/ECU9RlHhgJloHA1RV9aqq2oyc38WpKwKIUhQlAogGqpDz+0lJAtGesoGykNvl+n1CnBL0tJTxwGogXVXVKv2haiBd/1k+B+Jk9zDwEyCo304GmlVV9eu3Q49p83jXH2/RtxfiZDAQqAP+qaeiP6soSgxyfhenIFVVK4A/AwfQAtAWYD1yfj8pSSAqxGlEUZRY4C3gB6qqtoY+pmoltKWMtjjpKYpyEVCrqur6470vQhwDEcAE4ElVVccDLrrScAE5v4tTh77W+RK0AZgsIAaYf1x3SnxhEoj2VAHkhtzO0e8T4qSmKIoNLQh9SVXVt/W7a4yULP3/tfr98jkQJ7PpwFcURSlFW15xNtoaugQ9lQvCj2nzeNcfjwcajuUOC/EllAPlqqqu1m+/iRaYyvldnIrmASWqqtapquoD3kY758v5/SQkgWhPa4FCvfqWHW0B9LvHeZ+E+FL09RD/AHaqqvpQyEPvAl/Xf/468N+Q+2/UqytOBVpCUryEOKGpqvozVVVzVFUdgHYO/0xV1euBRcAV+mbdj3fjc3CFvr3MHomTgqqq1UCZoihD9bvmAjuQ87s4NR0ApiqKEq1f2xjHu5zfT0KK/Fv0pCjKBWjri6zAc6qq/v747pEQX46iKGcBS4GtdK2ZuwdtnejrQB6wH7hKVdVG/eT+GFq6SwfwTVVV1x3zHRfiS1IUZTZwl6qqFymKUoA2Q5oEbARuUFXVoyiKA3gBbe10I3CNqqrFx2mXhThiiqKMQyvMZQeKgW+iTTbI+V2cchRF+S1wNVpHgI3AzWhrQeX8fpKRQFQIIYQQQgghxDElqblCCCGEEEIIIY4pCUSFEEIIIYQQQhxTEogKIYQQQgghhDimIg69ydGRkpKiDhgw4Hi9/GFxuVzExMQc790Q4piQ412cTuR4F6cTOd7F6USO9xPL+vXr61VVTe3tseMWiA4YMIB1607sIm2LFy9m9uzZx3s3hDgm5HgXpxM53sXpRI53cTqR4/3EoijK/r4ek9RcIYQQQgghhBDHlASiQgghhBBCCCGOKQlEhRBCCCGEEEIcUxKICiGEEEIIIYQ4pvotEFUUJVdRlEWKouxQFGW7oih39tdzCyGEEEIIIYQ4dfTnjKgf+LGqqiOAqcAdiqKM6MfnF0IIIYQQQvQjVVVp9/iP926I01C/BaKqqlapqrpB/7kN2Alk99fzCyGEEEIIIfrX4j11TPzdpzS0e473rojTzFFZI6ooygBgPLD6aDy/EEIIIYQQ4svbV9uOxx+kornzeO+KOM0oqqr27xMqSizwOfB7VVXf7vbYrcCtAOnp6RNfffXVfn3t/tbe3k5sbOzx3g0hjgk53sXpRI53cTqR4/3kEFRVOnwQa1fC7gOwKEpfv3ZI/qCKAlgtvT/HW3u8vFfs40cTIxmTGvGFX+dEIcf7iWXOnDnrVVWd1Ntj/Xq0KYpiA94CXuoehAKoqvo08DTApEmT1NmzZ/fny/e7xYsXc6LvoxD9RY53cTqR412cTuR4Pzk8+L9dPPX5Prb99jxiI7VL9Fl/WoRFUfjr1eMormvnrMIU0uIcR/S81z69isFpsdx9/jAiIyxEWMMTIj9t2grFB8gZNIzZE3L67f0cL3K8nzz6LRBVFEUB/gHsVFX1of56XiGEEEIIIU51H26tArRU2bG5CQDsb+gA4JZ/r6OuzUNitI1/fXOy+fjh2FndSl27h5G//pirJ+XyhyvGhD3e1OEFoNHl/fJvQogj0J9rRKcDXwPOVhRlk/7fBf34/EIIIYQQQpySUmLtAOypaevxWF2bh4vGZKIC/1pRetjP6fYFaO7wUVTbDsBr68p6bNPk8gESiIpjr99mRFVVXQZ88QR2IYQQQgghTiHPLStBBa6YmMPP/7OVi8ZkMn9UZq/bxjpsAOzVg8budVwuHZeN1aKwdG899e0ekqLtWPpY92mobQ2vhJuTGNVjG2NG1Pi/EMfKyb8iWQghhBBCiBPQve/vAGDx7lqW7q2npN7VZyDa0qnNTBozoq3u8N6eBakxnDU4hf9uqmTSfQs4a3AKj18/gfgoW5+vX9PmDrudEN1z2+YOmREVx8dRad8ihBBCCCHE6ei9zZVc+dQKXli137xv5b4GAErrXQSC2kxnIKjy5vpyfIEgAE16ILirqo1gUKU5ZIYywqKQmxTNzCGpACRG21i+r56nl+w76L7UtIYHok0uH7WtboLBrtnWQ60R/WR7NRsPNB36jQtxhCQQFUIIIYQQohu3L0Cr23dY2xbXtXPvezvw+oM8v6KUtaVN/PXTPebj/qDK3GFpuLwBdlW30tDuYcmeOu56YzOLdtUCWiCYEG2jutXN7z7YERYY5iVFY7NaSHc6WHTXbFbdM5fzRmTw4qoDuDz+HvtjqNFTc786PpvUuEgqmjuZ8cdFPL+yFIBObwCPP2i+fm9+9vZWHl9UdFh/ByGOhASiQgghhBBCdPPLd7Yx5jef8MiCvQfdTlVVfvrWFp5bXsJ/N1WwQZ897B7YXT81D4A31pUz7YHPuP/DnQCUNrioaXXT7vFz0/SBXDY+m5dWHaC+vev3h2c6zZ8HpsQQGWHllpkDaen08e7myrDX2VfXzqLdWnBb2+rGHmHhoavG8s3pAwDw+IP8Z2MFwaDKO5sqALBbLTR19Ay669o8NLi8VLW4zed2+wIH/8MJcZgkEBVCCCGEEKKbzeXNACzcVXPQ7f69cj9rS5uwKPB/b24hqMJVk8L7cdqtFmYUpjIsI45/rSjFGwiaRYn+vXI/U+5fCEBSrJ2pBcl4A0G2VrQA8NqtU7nv0lE9XndCXiKD02J5c3152P2PLNjL7S+s59GFe/n7kmKSou0oikJyjN3cZkt5C39fUszP3t4KwICUaJo6vGbasGF3tbZetbrFjcvj54JHlh5R1V4hDkYCUSGEEEIIIUKoqkpVszYL2N4t9bXN7WPOnxfz8fZqimrbuff9HZw9LI0bpw0AoCAlhvmjMsJ+Z3BaLDarhTvnFvZ4rfKmTvPnpGg7g9JiAFhX2gjA8CwniSFBpEFRFK6YmMP6/U0s2VNn3r+npg2PP8hDempwpz6DmRwTGfb7oem2wzKcqCqsKm5gX107y/bWA7BbL5zU4PKyq7oVjz/IrqpWPP4Af/lkN80dXrbpAbMQR0qq5gohhBBCCBGiucNHmx6Adl+DueFAMyX1Lm57YT2PXjueQFDlp/OHkZngYGpBErOGpHGgscPc/uxhacwsTAHgvJEZ/N95Q/EHVP66YA/dJcXYKUiJBWDd/iYiLApxkX1frl87OY93NlZwy7/Xsfj/ZpMSG8m+unbz8fkjM7h2ipYSnBTbFcxOyEtgw4FmANKdkfzfeUPZXN7MT97cQkWzFhiXPHABu6tbzd9ZtlcruFRS72LRrjr+9lkRf/+8GG8gyAffP4uRWfFh++bxawFwZIS1z/0XpzeZERVCCHHaCgRVpt6/sEdqmxDi1NXS6TOrxlY2d3L5kyt48H+7zOq1gBlI5iZF4fKEr4ncpAdwACuKtJnDdGckToeN+aMyibJbyYh3mNvc/9XRfGP6QAAsFoU75gzmm2cN4JwR6Vw6LivsuRNj7CTG2EmKseP1B0nQ02r7Eh9l48kbJuLxB3lvcyX7G1z4Atp7s1kV/nTlGGbplXZDU3MvGqO97o/PGcLqe+aRmxTNI9eMD/sbbCpr5rNddUTbtUByWZE261pc5zKr8Xr17dfv71lV98evb+b7r2zE7QuEPa8QBglEhRBCnLZaOn1Ut7rNvn1CiFPbh1urGPvbT8x1jp/vqWP9/iae+nwf2yu7Zv+MQHRYhhOX14+qquZ/G8uaiNVnKf+3rRqbVenRy9PpiCDKpgVwSb2k1TodNp65cZLZjmVqQRKAGcAOTNHScxN76fvZ3cCUGMbmxPPu5kp2V2uzod+ePYgfnjOEOEfX7xv7EWO3csm4LGYUpnDx2K5AeFxuAgt/PMtcj/qtf63F6w/wh8vHALC2VAs22zx+1uhpw4bNZT3Tc3dUtrKjqpVRv/6Y659dfdD38PH2as74/QI6vH1XABanHglEhRBCnLaM/nmtnYfXoqHP53F5mfbAwl5nBYQQx0dtm5v9DS7ztj8Q5K43NgPw/hat0uz2yq4Aqrqla62mEYgOz9TWTnZ4A5z54Gfc859tbDzQzPmjMoiwKLR0+kiNjewxa6koChnxDpyOCOwRfV9uzxqSypUTc3jmxkmUPHABTj1wPH9UBkPSY7l1ZsFhvdeLx2axraKV97dUYlHgzrmFfGf24LBtYiMj+MG8Qt789pkkx0bywk1TGKAHvIY4h42zh6UB0NTh44qJuczRb2uPawH4ZztrsUdYyHA6KEyL5b+bKnhzfTmqqs3GqqpKRXMn1S1u/EGVNSWNPL1kX5/rSf/08W7q2jxmv1VxepBAVAghxGnLaBjf8iUD0Z3VrVS1uFlT0njojbvxB4J8tK2KTm/fLRE6vQGz2b2hpN5FWy89DlVVpbrF3eN+IU43v/9gJ99+cYN5u7ypkw5vAKcjgu2Vrbh9AbZVtFKYpq3JrG5xs3h3Lbe/sJ7ypg6SY+ykxmkFfvbVtVPV4uaVNQdo6fQxZ1iaOXtpbNNdhtNBcmzvjxmSYyP505VjiXPYwoLZm2cU8MkPZ3HlpNzDeq8Xj81CUbQZ2jMHpeCw9VyXqSgKP5g3JKwVTG8y4x1mOu60Qcnm7C/AFRO1asCdvgDzR2aw6p65XDgmE39Q5a43NrNkbz0fb6/mvg924vEHzTRhgPs/3MUzS4t7fc0Mp/a3/GBrFQ3tHvP+xxcV8frassP6G4iTjwSiQgghTiuNLi8un3Zx1Kz3zfsigegLK0tZq6enlTdqMykHGl09tgsGVbNoR6ivPrGcpz7fx3XPrOb2Fzfwxvq+L7a+/twaxv/uU3O24YMtVcz582L++mnP/oYvrj7A1AcWsiukyIgQpzK3L8Braw+Y6z4Nlc2d1LZpgzIN7R6zHcvXpuXj8QdZv7+JXdWtnFWYgt1qoarVzSc7avhoezWl9R2kxkUSG6kFZMuLumbq8pKiOW9kBtkJUUDfgehtswr4wbyeVXKPhnSngykDtfTeayYfXvDaF0VRGJQai0WByfpzPnXDRJ66YSK/vHAEY3MTgK73fdWkXL5x5gCy4h089OkebnthPf9YVtLrc68ubkRVVcqbOrjyqRWU1mvnzCp9NvrtDRVc+Ogy81z3p49385O3tnyp9yNOXBKICiGEOK18/5WN/GOrNuLe1Ecg2v2CtjuXx89v3tthNrova9LS+EIrZRp+8d9tDP3FR+aFFYDXH2RTWTNvbyg311oZxT96Y2xjtHm474MdAJTUd1XHbOn0ccdLG/jf1ioAdlXJuldxevjXilJ++tZW3twQXnSs0eWlpdOHqqpMvG8Bd766CYBrzsjDosC/V5bi9gUZnR1PmjOSmhY3Bxq0z/De2naSY+3E2LXZwBX76rFaFOYNT+eeC4ZhtShkJx48EJ09NI1LxmUfpXfd0y0zCpg+OJlzRqR/6eeaNSSVecPTzbWv80dlMH9UBhaLwq8uGg7AmYOSAchKiOI3XxnJXecNZXNZc5/PaY+wUN3q5kBjB499VsTa0ibe3VxJIKhS1tjJhLwEAKpb3TS6vL0WOGr3+Jn5x0WSwnuKkEBUCCHEaaWsqYNKl3aBY6TmtoakuC4vqqfgng/ZWdX3jOLGA80EgiprShvp9AYo0wPQ/Q09A9GXVx8AwoPU2jY3qgp7aroCycpmN48vKqI+JC3NYBQ9WVPSiC8QpLpbxUqAzWXNfLC1il16A3qXFP0QpwmfX/scbC0PX3+oBTNqWB/QaLuV3KRoRmfH8/H2GkBLP81wOqhudbNfz2qob/eQFBNppqUuL6pnZJaTZ78+ifmjMgHISYwGIPUQ6bfHytzh6bx089R+aZdy13lDefrGSb0+NjE/iR33nmeuJTVcNiGHv1w5lnnDwwNhRYFXbpnKs/rzvbOx0qxU/vmeOqpb3XgDQa6YmMs/v3EGoC096G2JwYGGDg40dkjv0lOEBKJCCCFOK00uL41urfqlmZrb0RWILtmrtSj4UJ9ZBK2x/JOL95kptmtKtNF4rz/IqpIGyvSZysrmTrz+8FF8p17cY3N5C8V17RTVtve4wMpwOvh4ezV/+ng3U+5f2KNvoTHjsqakkZpWLYgFaHR17bdReMmYRei+plSIU1WHT/tchla/DgRVmvVMh50h2QEd+lrsqfps3ohMJ5nxUWTEOyhv6qSyueuzmRRtI0YPRIMqDMuIC3vdHCM11+ngdBNtj+i1rczlE3N45saJ5u3ICAvpcQ6mDUpmRmEKuUlR/O2zvfiDKpeMy2LjgSZzFjU/OdqsFlxc7zL7mYYyUq2N8504uUkgKoQQ4rThDwRpdfvxBrRUVuNips3jN9NxjebxpSGzmw/+bxd/+GgXP3pNq7i5prSRwrRYYiMj+P7LG1m/vwmHzUJQ1YJRgGV76/nqE8vNC9nNZc1c9LdlzHvoc0rqu9aSxkfZGJoRZ14gB4IqK/S0M7cvQGm9y5yx3VzebAax6c5IGl1ds6dGUN3m1oLY6oOk+v749c28tHr/kf8BhTgB1bVpn4PN5c3mQExzh9ccsNmirw0FzL6dZw5KATBn9TKcWiAaCEnLT4qJND+/oKWghjJTc0+QGdETRWiAmhnvIDcpyrz/yom5+IMqE/MTuW3mIFTg5//ZCkBBagw5iVFEWBRK6l1UNIUHokv21LFDz1Rp6vhyBebEiUECUSGEEKeN5pC1oBXNneZtVYU/f7KbRpeXBn0mcXtlC7WtbiqbOynVW0CsLmlAVVV2VLYyeWASr902lfwULT1vdHY8gLntquIGNh5opkoPHDeXNZvB5h8/3m3ux6DUGNK6rTEz0oJven4ts/+82FzDWt7USaX+fCOz4mly+cy1p91nCKpbeqb4AuytaeOtDeW8uOrAYf7VhDixGYGo26etvQYtLdewRU/ZXfCjWfzpyrEATCtI5pYZA7l+ah7Q1b8zVFKsPaxibFZ8eCA6eWASP5k/lFl6L1DR5dMfzuTt75zJ9+cWcuvMQeb9V07KIdpu5drJeYzIcnLXuUNp6vDxiwuHkxkfRYTVQl5yNCV14TOidW0evvHPNTysF2hr6ZQZ0VNBxKE3EUL0paXDR0BVe21WLYQ4djq9AW56fi33XDCcUXpA2JvQdNWqZre5RhTgicX7iI+yUd+u3Vdc52Ly/QvNx1Ni7dS3e6lscdPq9lOYFsvIrHhevGkKv353O1dMzOFr/1jDquJGPt5e06Mx++7qNmxWBV9Apa7NQ4RFwR9UGZQaa6beDkiORlEUdlRqgahRqVNVISveQWWLmz36GtCRWU4+21VLu8dPnMNmzogaqls78fgDNHf4SA9JHXx7YwWgBbv17R5SDjKb4wsEcXn8JETLOU6cuOraPEzKT2TDgSaW7qnD4wvyx493mY9vrWjBHmGhICUGi0WbrbNHWPj5hSPMbWYUpgI7AW1No6pCcoydmMiu9ZaZCeHBqs1q6dGrU2gK07U05gl5iWH3Z8ZHse4X88x173fMGcw1Z+SGtbkpSIlhX107CdE2876le+sIql3r4ptcMiN6KpAZUSG+hLP++BkTfvfp8d4NIU57e2raWLGvgaV76w+6XWg6V1VLJ80dPiwhy5w2lzfT0O4hJzGKm84ayF3nDjEfMypRLi/SXmOQ3nswIdrOI9eM56zBKTgdEfxzeQmvrDnAZztrzd8dlhFHm8ePL6CSn6zNoFoUhWsn5/GVcVlmMJibFM3wzDh2VreGFVACGJGlBdjr9jcSY7eSl6Q9T1ljJ/Me+pxPtleHbV/d4uGPH2lrTjeVNZtFkBburCHdqb3es0tL+MU7Wymq1YomlTd18I1/rjHXzP7p492Mu/dTdlS2hq2/E+J42lLeHFaAqK7dw+C0WMblJrBkbz03/GO1OQsKWuGb/KRoMwjtzdCMOBbfNZvHr5tgznwmxXRVzQUtiBJfXvf1pd17rY7LTWBvbTvr9zeZ932+py5sG1kjemqQQFSIL8FYixU4RKsHIcTRZbRPKW/qWbU2VGi6XmWLm+YOX9i6r81lLTS0exmR6eSXF43gu2cXYlwvzRmqrSUzAtHBeiBqUBSFQWmxePRiRW0hF8pnDEgyf75uspYK6A0EeeCy0cwoTDVnRHMSoxme4WR/Qwef7w6/8BqVrTWhX7+/icyEKJJjtVnKtaWNFNW2mym7hvp2D6+u0dJvL318OVPuX8hjn+2ltKGDi8Zowe9Tn+/jxVUH+O+mCp5bVsJH26pZvLuO9QcazecGuODRpVzwyNKD/m2FOBY6vH4uf3IFT3++D9C+fxvaPaTGRTKjMDVsPWio/OSYQz73gJQYLhyTaX62kmLsYcFrZi/pu6L/nT1MG/TbW9vOmBxtAK57IBracqussYOHPtnNzqpWXlkjSw5OJhKICtEPeusdKIQ4doz+msb/99a0ceNza2jrNqtopOJGWLSiQo0uLwNCLlArmjvZXdMWNkK/5P/m8OyNkxigV3NctreeGLuVjF4qZRakxPa4D2DSgK70tKkFydisilk0Bbqq4uYlRTOlQKvmec9/tmKzdl0Ej9RnRH0Blcx4B4l6umxvffti7Fram8sbYM7QVG6dWcDEvEQe/awIrz/IwJQYcw2X0xHBu5sruff9HfztsyIASuu1c1poERZ/UKXTG+Ct9eUsO8TMsxD9rb7dw9efW8OD/9uFL6CyWZ/xbHR5CaraZ2hUdjx9jQsPz4zr/YFeGMttui+7CS1cJI6e4ZlxZMY7sChab1TQirGFrtcNnRF9fkUpj35WxPmPLOVnb2+l2R00q5d/sKWKFfvkfHWikkBUiH6wu1pS1oQ4now+nsaM6MML9rJkTx0fbQtPV23UL17y4yxsONBEpy/QoyUDQGps1wVoblI080akm8VMGlxeBqXF9tq6YFBa77MuE/O7AtHMeAc7753PX68eZ943IDkGm1VhdHY8kwcm8ZWxWbS5/Txw2RhzndSg1K7nnjIwieQYLUjc1MsM0JWTcs2f77lgOPdcMJxzRqSbF2f5ydEkxtiZkJfIMH0GFrpmGYyCS80dPs4YkMgfLx8DwN7aNn78xmZu+MfqXt+nEEfCKAh243NrqO2jynNLp49Gl5dvv7iez/fU8e+VWrXnbRUtqKpqFipKjY0M+4x0NyzDedj7lRwTiaJgDvaIY0tRFL579mC+d3YhQ9K7zs9z9ArHiqIVpnLrbXsW7a4N+/3fr3Zz2ZPLAXjgfzt5ZMHeY7Tn4khJICpECK8/aLZwOJj1+xt5Zc0B8wJRAlEhjq/QGVFVVYm0aV9vRtNzl8dPbauWiuuwWciNs1DWqP3O1IJkLhyTyVvfPtN8vu5rlqCrrQuEp9qGGpyqzYha9XS+0dnx5CdHkxUfRVpcJBEWheTYSCKslrBANiPewYZfnsNZhVpLiQcvH80LN03m8gnZYevVDJdPzCExRjv/FNd1tYIxxEfZWPCjWfx0/jAzhXhoSMCdn9R1wZ6T2HPdm9G6prnTS3JMJGNzEwBtdkGI/lDe1MFFf1vGfR/sZMmeOlaVNJqPefwBMzC94skVTPjdp6wtbQr7/QaXl5pWD29tKAe0VPncpGgzi2BqQRK3ziwwtx/ay4BTXybmJzJlYJL5OQbCshPE0Xf9lHx+eM4QnFFd591zR6RjtSgM0s+ze2ra+OoTy9lX5+LKiTl8c/oA7BEW6jpVtlW0UlrvorrFTXFIu6z6dg+//u82c/BSHF8SiIrTysYDTfzs7S1mu4Puznt4CX9fUnzI57n8yZX87O2t5u3dNa2H9fr+QDCsSufhqGvTTprGyJ8QoidjJtTjD/LE4n1mn06jH+dDn+7hq0+soNHlJTHaTnpM19ffwNQYHr9uAhPzE82AK87RMwUvNHC8bEJ2r/sxZ1gaf7h8NPNHZQBaRcjP/28OFotCfnI06U5H2MVtqDhHV4XIaHsEMwpTURSF7MQoFAWcDhtXTsxh5pBUMuOjiI2MIDGkqmT4c0UwOC2Wb88eZO63MfMbYVHICqn+maMXPQpVqv/9mjp8JETbGJASjUWBl0PWXxnn0W0VLXj8cn4SR6aoth1V1QqEgZbVsGh3LWN+8zH3vreD8x5eQjCoslcvpAWEBZYAH22r4rnlJVw/JY/C9DhsVou5FvT2WYO454Lh5rYDknse5325bkoer946zby94ZfnsO4X53yRtym+JGfIefGMAUm8/e0z+fYsrR3M00uK2XigGYDvzy3k1xeP5IyQZRBvbSjHH9RmzVvdPty+AOf+dQnPr9zPJztqjun7EL2TQFScVr76xApeWVNm9gkM5QsEKal3sbf28Gc3jZ6Axnqqvnj8AdaWNvKLd7Yx7t5P8QWCtHT6qG3ru+G84dmlxTy/cj9vrCs77P0S4nSwp6aN+nYPqqpS3tRJgZ6W96ePd5sXJ3tr21lT0khpvdaTrqTeRUK0nbRoLTizKOEzgt+aPgDQigb1xth2RGbvaX42q4Wrz8gzL3rTnF0zqzdMzeeb+vMfieGZTgYka20n/nTlWP79rcmAFhifOyKj198JvXgzpMZFkhhtIztR69XX/T3ZI7T7BqbEcKCxg/ve30Gjy0tCtJ3ICCvZiVFmgTbQ0nYb2j1c9Ldl/N8bW474fYnTk9sXIBBUzXRw4//lTR38/fN9tLr9vLT6AE0dPiqaO82Bm6HpcVwwOhOAsXoBm/e2VKGqcMXEHPP5jfTc7jP9ocf8kUqKsRMf1fugjzi6ou1d7XPSnVp2hlFg7v0tVYzPS2DPfeeTqw+o3XTWQC4caCMnMSqscNEn22v4eHu1WbCu0dV7n+VAUJWB/2NIVl2L01Jta8/eeUYPvsZuQWowqLKjqpWRWU4URQlrqWCstypr7DBnB/6+pJh5w9NwOmzM/vNi/v2tySzdW88jC7vWKNS2ebj7rS0s3VvPhl+ec9A+pE79yy90VFiIU11dm8cs4NOXc/+6BIB37piOxx/kojFZPBryOfvO7EH8b1s1d7660fyMbTjQxAWjMkmP1j7HmfFRREZ0XehcMi6byQOT+mzT8MH3ZhBU1V7Xh4Yakh6H1aKEXQxfMq73WdRD+d7Zg3vMBBnOH53BayGDVMkxdhpc3rB0NoOiKJw5KIXIiPAL8lw96L5yYg6KAqOy4rn77a08u6wEwJx1PWtwKv/ZWM7IrHjW72+iornTrCj87uZKHr12/BG/t7o2DwnRNmxfIkgQJxZ/IEir29/n99qwX37ExWOzwgphgdaGKKvb527DgSYCQZXLJmRzy4wCBqbEYLUojMyOp6K50yzUFTpwNDQ9joU7a81gZc09cwn0kQUlTnyh51rj55SQNfznjcwwB9FAq7hrqbYTU5/I6+vKzfvvemMzoBVyi7RZqW3VAlGXx89fPtlDo8vDn64cy0/f3MLbGysoeeCCQ57nxZcnZ35x2nB16zkGWmrZzc+v4/4Pd5ops90D0c/31nHR35bx/Vc3oaoqu6rCZ0zTnZG0efw0d/g40NjBg//bxfde2cTGsmY6vAH+8NEuqlo6w36nuqWT1fp6mD9+tIuD8egjc0USiIrTxJvryznj9wvYXtnS5zah1XC//twaYuxWbpkxkJ33zjcLAxWmx3LzjIFUtbjNHpiqCqOy40nVZ0QHpPSc+TxYr8D4aBuJBxk4Mlw0JotPfziTtLgv3+7BZrWEVYsMNX1wCpeNz+adO6bz1A0T+ZmeihjXy4wowGPXjeehkCJJoM0g2awK0wYlc9+lo7lqUi5/vnKs+bixFv6By0az8975/PYrIwFtBssoFAPawNzLqw/g0xvOH0qH18+cPy/m5dXSbuFU8vq6cmb9cVGvs0rGfe9trmR/Q/ja5rKmDuq7ff8u2aNVO50/MoPhmU4cNitPXD+B22cOIi8pGn9QxWGzhAUmN80o4NVbpxKt9/9Mczqk/+cpYPLArnX5g9NieeiqsVw2PjtsNjzUhLzEXu8vTI8jOyGKunYPHn+Af60o5bnlJbyzqZLSehdvb6wAYHdN22Gfy8QXJ4GoOCnVtrl79Aq75umVPPTJ7j5/Z2tF10WtUQThvS1VLNhZw9NLis1G9w3t4V+E+/QA8L3NleyuaWNnVfh60KF6Jb4DjR2s0YNLVe1K7dhV3WZ+IRoqm91mms/K4oaDvtdmvYrlin0N/PC1TfjlxChOcc/o67QrmsIHcN7fUsnji8Lbi4BWVfPyiTnEOWxE2a3cde5QQFtPZMz2+QJdMyJjcuKJtCoMy4hjTE7CUXkPVotCQWrvrVz6k81q4aGrxzEuN4H5ozIYle0k2m41W81019sIf5rTwZKfzOFCPe3RYlGYNzzNfDwhpHKooijmTNPtL27gDx91nXPv+c9W7vnPVv67qZI2t4/F3SpZdreruo12j59dUuztlFJS306bx99rW7PQgYvdNeH/7pXNnVQ0dRBttzJveDpxkREs3av1jswOySw4b2QGecnR5OmpmDmJ0WHHdXyUjUl9FBMTJ6fd983n5ZunmLcVReGyCTk8dPW4HtlthgkhlcrnDU/jlhkD+fE5Q7j/q6NJjYtkeVE9Q3/xEX/7rCuLZn9DB069PsD8h5dyyWPLcfsCPLpwb4/KvKJ/SGquOCk9vGAv72+uZPOvz+X1dWUoKGwtbwlLsesutLJtrf5laKy7TImNNHtSNXUrJlTR3HUxvLOqlX114TOTwzLiWLKnLiwQjYmMML9w29x+s3CK4UBjB/X6rGx5UydPLt5HQWoM543sud7LCJAB/rOxgm9NH8hofX2MEKeaYFA1L1DbQ7IYAJ5YtI/i+nZum1lAiT6b8ubt0/AHVUZnd30mpg1KpvTBC4HwANQwKiuejeVaSm9EH4WDTlbDMpzsuHf+Ef9e9xmj0OCzewuL0AJJoQNzb67X0uCaO7y8sGo/f/xoN8vvPpt9te3sqWnjnBHp+IOqWfFyR6X2u0ahKXFqMGowHGjoCGu9AV3ZSNBV6drgC6jsq3Px9Wn5/PaSUVzy2DKzV2h2Qs8Zzbzk3teCilPPwa7t+jI4ZCDw2a+fEfZYamyk+d3g9gX51vSBPLe8hNIGV1ia746qVr72j9WsLW3CHmFhz33nf8F3IPoiM6LipLS3po1Wt5+mDh//WrGfZ5cV4/IGqOmjDxl0pdxG261mkFjdom3f1OGlSX+8wxswZzPr2jxUNHVSkBKD3WphV1Ublc3hr1Got0bY3+AyZzerW9zUh8ysGs2UjRPcprJmVFXrBRgIqvzho138Q1+PBVoasbHmtLnDy7jcBFbcfTYAq0sawtKMhThZuX2BHqlP2yu7AptGl5eWTh+rihuob/ewo6oVty/Inpp2SvSWJaOy45lakNxno/nQ6rBORwRD0mOJ1wMph836pQqYnC4SulXmVRSFH84bYt6Oc0SYxWNACzC2V2j/jlvLm7nxuTXc98FO7n5rK997eaO53Q49iO0+8y1ObsZ37aFmRAGmFSQDUBAyg5+hD4oMSusKJHorFNQ1IyqBqOjJYlE4c1Ay54/qOcAfWkQuxm7lhql5xDkiKKptp77di6LAjMIUvj17EOv2a22DvP4gRbVth9Xir7uPtlVLm78+yDewOKH83xub+XDrofvUGTOMZY0d1La62adflNa29V4FDbSAzumIICPeYVarNbYPBNWwWcsGl5ei2jam3L+AT3bUkJ8czeC0WHZVt1HV0mmmbgAkx9pJiY3kXyv2U97USX5yNNWtbmpb3RiTLb6Ayjkj0vnsx7MYlBrDBv3ENm1Qsvk8O6taUVWVJpeXkb/+2Gwj09zhIzHaRlZCFDmJUdz3wU7OfPCzPt9nUA9sZZZBnOiG/fIjrntmVdh9xqANQFWLm0n3fco1T6/i4+3V5v1bypspbXCRnRCFw3bwkfLICCvp+kXHw9eM48WQ9C5xeLoHogB3zivklhkDAUiLi+RbZw00H9vf4DJnSteF9H7cWNbErupWOvVq4+aMaHPnF7q4EyeWdo+fl1cfMJe3HCwQ/fkFw3nvu2fxlXFZAMwbkW5ukxmvDR597+xCClJimDUktdeU8vzkrtRcIXrz8i1TefKGiT3uNwrh5SdHs+2351GQGkt+cjRrSrWstgcvG80LN03hp/OHseT/5vDiTdr3xryHlnDT82t7Xf/88fZqrv77SgLdzmWqqvKj1zfx9yX7wu5bV9rYY9vTkQSi4oTh9gV4Y30533lpw0G3a+n0mbONxfXtNLi85oe50eU1K9l219ThIzHGTlpcJB9ureZb/1pLS6fP7K23J2S9SpPLy/KiBoxzRHZiFMMy4thV3UpVi5vCkHSjKFsEX5uaT327h0n5idwyo4CAXml3eKbTLD2e7owkJzGazPgoM3XpzEEp5vO0uf1UhhRV+fPHu/X99pqpccbIb0unjw5v77OiZU0dPLl4H59slx5Z4sTXvUn9quIGBqXGkBxj56XV+830qdfXlhHniMDpiGBzeTM7Klt7LTTUG+NCdVBqbL8UDzpdGEVAEqJ6L85krENNi3NoFYuvHc+84Wnsqm4zU6dfWLXf3N7tCxJUYXtlC61uHzurWomLjMDrD5pLFcTJ61fvbOOe/2w16zH8a0UpVz61Imyb2jYPigLfnD6A0Tnx5vq+dKfDnPVMd2qf0YEpMXx212ye19sVdTc0I45hGXFMLUju9XEh+mIcd0kxdnOQIz85hmJ9UiMjZKlCblI00wcnc9bgFM4anMKi3XW8sb6rGu+emjZufn4dr6w5wOqSRspCBmBaOnwU1bbT4Q2YVXoBfvf+Tq54aiULdsp1mgSi4oTRfR1lX4pD1miu39/U4/G6dg91bR7O++sSnl9Ryj+WlVDX5qGpQ+uHZ7QJ+GyXtvB8ZJaWUranput5G1zesOfOSYxmWGYcNa0eGl1eMx0XIMpu5c55hXz0gxk8c+Mks6jCruo2UmIjzebaxonPGO3VXttJXMjs6s7KVor09+fXe1k1d/jMVMKfzB9mlsQ30oq7M9KiQtvMCHGi6W0GzB8Isra0iakFySTG2HH7ugaVNpe3MDzDyYT8RN5YV87umjYuGXt47VCMAZxDtYMR4R64bDRrfj43bM1UqIFGIOqMxGpR+MrYLAalxVLV4kZVtXOep5eBwc3lLby5rhyPP8jNM7S2NGWSnnvSM2aTQq0tbQq7MK9r85AcYzdT4tP0z2RKrJ3vzB4EQG7S4aXaOh02PvrBTMblJnzJPRenG6M2QGi7IKP3M4Rfp4G2HOHFm6fwwk2TibZbw65D39eLXi7erRXWCp3UGP+7TzhHbzNmLB3bUt7Mc8u1pVhfpBtCeVMHZ/3hM7N10cmu3wJRRVGeUxSlVlGUbf31nOL0YoxE2Q+xZssIWBUlPO3LUNPq5rW1B9hd08av393O797fwfyHl1Bc5yIx2hbWHBlgRJZW9baiudO84Cqua2fRrq4KaREWJawU+OCQQNR4vmEZThJj7GFFFVJiI82TmxGInhtSkCgmMoIxOfHMGpIKwM/f2Ro2k7liXz3tHr85IzohL5HHrtN69VXrJ7WfvrmFB//X1QLGKLbU2inrSMXxt72yhV++s61H4NkWss7Z7Qvwp4938cb6cto9fqYWJJOkH/Ohn6fC9Fjuu3QUE/ITuWhMJldO6r1sf3dTC5IZmxPfo3q1ODib1XLQGeSCFO08mBYS4Ocnda31++VFw5k1JJVfXDjcvE9R4KNtVTyztJiJ+YmcP1o7H5b1ksYpTh7BoNpnjYYFO2vMAdK6tvAe3qOz47n3kpGcMyKdW2cWsObncyXVVhx1M4ekct2UPH598QjzvovHZpk/G7Py3SmK1hu6vKmT+nYPNz+/lk93hM9qhvZ8D/3aMz4fjyzYS3yUjbjICN7eUM7Y337S4/y3eHct/91U0es+/P3zYsqbOvnPxt4fP9n054zov4AjL9UnhM6oRuvspShBqJ1VrURYFIZlOHst+1/V7Obl1QeYkJfAdVPy+Nn5w2hwealo7iQx2s7vLh0VdmE0Ug9Eoatgwm/f20Gbx8+3Zw9iRmEKXxmbFVapNjQQjeq2Ri03MdpsGJ8SZzfT14wv33NGpPPCTZP50xVjAHj6a5N46oaJzBueRn27l8/31FGQGoNFgU93aMFw6BqtDP0EWd3iRlVVPtxaxevryggEVW7611peW6tVAu5rRjQQVKXYkThm7nhpAy+s0tZPu30BWvR2RK2dXcfn0r31PL5oHz97eys2q8KsoanmMV+YHmvOZBamxZKTGM3rt03jsesmHHaz8Wsn5/Hf757Vz+9MpDsjuXpSbtjg2pxhqZw3Mp3Xbp3KJeOyef5bk7l5RoF53vrenMGsLW2ize3nVxeNID85mnRnJI8s3Nujh7M48RlLRHZWt4ZVqP7lRSP45IczAe379PpnVwNaxlJoZoLFonDjtAFE2yNQFEVS58Ux4bBZuf+ro0kLCTiHZTiZPzKDKJs1rA5IdzmJ0VQ0dbJgRw0LdtaGVQ6PsCis2FfPjspWs+CkodXt59U1B1i4q5ZbZgxkbG4C++pctHT6wmqjuH0BvvHPtdz56qYer93pDfCBvm2b+9S4juu3QFRV1SVAz7wMIQ6TEYh26l9sTS4vf1u4l+aQdiqqqvLpjhqmDUqmILX3PnmLdtdS2eLmxmkDuP+ro8OaHSdE20iLc3D9lHzzvoLUGBw27aOQlxTN2NwEzhuZzh+vGMN35wzmhZumkOZ0hJUPz0+OMWduo7rNsEbZrZyjF16wKAoD9dTc1LiudVYzClO5clIuoM2KRtmtPPv1M7hjzmBtP6NsDM1wmn34QlspZOgpI6+uLePxRUW0efw0urz8Z2MFC3fV8rE+o9rS2Xsg+tCnuxn564/7TO0Voj8ZWQZVLZ3c/+FOrnlaK04Ueny+t7nS/PmswSk4HTYzBT03MZp8vTpm91YQ4vhSFIU/XDGGM0J6NmbGR/H3r01iSrd1e3lJ0SRE2/jRuUN5+ZYpvP2dMxmbm0BkhJVHrxlPWWMHc/68mJX7Dt5XubuNB5pkYO04qW/3MOJXH/PE4iIzo8lYapKXFM2Q9DjmDtP60e6s0opUVbd0SrApTlhP3jCBjb8656CDnNqMaAeNIdemX5uazzfOHMDQjDiWFzVwyePLWLCzZ9/Ru9/eyuSBSdw6cxCDQq5hQ9eKvrWha/2pUVjT8M8VJTS6vNitlh6tBE9WskZUHDd//3wft/57nXnb+CJzeQM0d3i54NGl/OXTPby6tow2t49NZc3sqm6jtKGD80dlMmdoWtjzZcY7sFoUs5fdmYO1C6GkGLsZNBoprlF2K9kJUVgUSI6JNNeiDcuI4793TOfvX5vEVZNye7SEmDc83XytmEgtAO0+Iwpw+yxtrcvYnHjOGZHOLTMGMiqkz2FfrpucB2iphOPzEqjSg8WEkFniaHsE8VE21pQ08udP9pj3P/DhzrDnMmacGto9/OWT3Xj8WpW3Bfos6y/e2XrI/RHiy3I6tGO3rKmTXVVt7K1pIxBUw2bs39UDUYfNwuX6wFGiEYgmRZnrrAslED1pXTQ2kysmaP+2Zw5KCRtUmFKQzAffn0FaXCQ3Pb+WZ5cWc8fLG9hV3UrDQYoYPbG4iK8+sYLnV5b2+vhzy0q48NGlPWYmxJfznZfW85t3t5t1FP740W6z3/akfG0JizGQ9NDV4/jdpaMAbalJTasnLKNIiBOJoiiHrMSenRBFq9sf1mrsqkm5/OYrI81JiIx4Bz98bZP5eGj7oe/OGYw9wmK2J4qPsrF+f5M56fJmSCGknVVdWX++QJAnF+9j7rA0rj4jl3117afEuU3pzzehKMoA4H1VVUf18fitwK0A6enpE1999dV+e+2job29ndhYOWEeLX9Y00lJS5CnztEuMr/3mYt2L6jANUPtvLpb+1AmRCo0e7TjdEyKla31AR6ZE02kFW5boOXVR0VARrQFRwTsbAySGKnw1zld60y+95mLNi98bYSduXnaCeHPa92Utwd5eE40yyp8dPrh7NwIrAdpcO8NqDR0qmTGWrjr8w7qO1WeOy8aSy+jZ26/SqSVw04fNDS5g8TZFVZW+vnHNu1v8NjZ0cTau57n9k9duEOqhw9wWihtDS8Kkhtn4XfTo3hjt5cPSnzcMNzOvHwb967spLglSFQEPDE32ty/9vZ22pVokhwKduuR7bMQfXlonZst9QEuHWxjabmfBrfKQ7OjKG4O8timriBjSKKFuyY5zGPvfyU+Xtvt5Y5xkVgUWFHp57vjIo/489QXOb+feJo9QR5c7aa6o+u6RAFm5UZwbr6NTr/KoATtItHtV/n2gg5UtPP2jSN7FqL6xkfa4OaT86KJiji9z2n9dbx36n93AKcdWvVJoYxohbpOlYsH2XinyMeDM6LIiNEGgJvdQX6wuJOJ6VbW1wT40cRIxqTKem1x9BzN8/uaaj9PbPIQZ4PUaAvfHhtJarR2rAdVFU8A3tvn48MSbbD1qiE2smItPLxB+74zzkf7mgPct8rNpYNt/KfIx0/PcJARo/DDxZ3MH2Djo1IfVw6xcWGBNqjT5A7yw8Wd3DjCTlCFF3d6mZEdwQ0j7ESe4Ndsc+bMWa+q6qTeHjumZwJVVZ8GngaYNGmSOnv27GP58kds8eLFnOj7eDLp8PpZXdzItEHJNHV4aVu9EnegkzOmnYU9wkL7x/9jWKaTnVWtrGmwkRIL80dl8OKqA+ZzbKkPMHlgEl85bxoAP1L24vL4+WxXLXlJ0dw5r5CvPLacyYPTmD2765hPWruItoYOJo8dyWx9Qbotp56K5k5mT8pl9hd4PymbltDmc3H2nDlf5s/Sp1EtbhbXrOJ3l4zizMEpYY+5P/og7PY/b53JnD8vDrsvaI1k9uzZfNy4FUoOUOKLY/bsqfx0xQLAQ6cfJkw5i799tpekWDuF0WV895MOpg9O5qWbpx6V9yROXQt21DAxP9GcyTQ8sXsl1DdCbCrNXm1tS96wcfjrXLBpC7fNLODvS4q5ZHIh5+qp6QD1ceW8tnsz8886g9E58fy4n/dXzu8npmnT3Ly5vpxZQ1JZVdzA5vIW3ttcSWmHnTZ3gNX3zCHCamFNSSPqgpUARCWmMnv2hLDn2VPTBh9p1SpHjJ/MZ7tqaWj3ctd5Q4/5ezoR9HW8bylvZliGs8/KyN1tLmuGBcsBLQhNd0ZS0+qhukMl3RnJ7RdNJrhoH5fPH2tWqAf448aFrK/RMnyuPHc6mfGHVxlXiC/iaJ7fE8uaeWLTctp8cPbADK68YHyPbVqcB/iwRMs6+8b8qWQnRPHwhk8AOH+eds04G7h4rptgEP7zwEKiMgrY0dwJlHDXZdPY8Mxq3tjjYcDAAu6YM1jru7x4KdPGj8IZZePFnatZWuHn2tljmD0686i812NBhqTEMfPWhgp++U5XUWVj4rG+3YPDZkVVYWh6LDurWimud3H9lDymDEzmxVUHuHZyLhXNbpbsqeP8UV2FMb4/txCA80ZlEBsZwZD0OF6+eQpDM8JT+Ix1K6FFf6Z3C+6OVKy+tvNoyYh3sPDHs3t97PZZg3h3UwXXT9XWug5MiWHVz+by2toy/rpAS9c1UnONUuIr9jVQ3eKmts3DkPRY9tS0U9bUwbPLtDLiv5mmrdtZXtSALxAMu4gQ4mBa3T5u/vc6hmXE8dEPZoY/ph+H6/Y3mf1+K5o7zTWi3z17MDfPKAj7bAKcNzKdNveIsGJi4tSX7nSYa+VHZcezq7pVC0QbtFm41SWNTB+cwpbyZkBb41/X1jN9N7TqeX27l7c3VNDceXiB6Oly/qts7uSSx5fzu0tGccPU/ENuf/Pz61hVrK3h/eb0AfxzeSlTBibz+Z46Wjp9pMZFMizDyaPX9rwwnzcinX+v1HrKZvRRkVSIk8HgtFiibFY6fQGzfkF3RpFK0IpWOqO0a9B5w8OXlKXFOVBVlThHBL95bwegffcNTovjqkm5PLaoiKc+38dtMwvMYm5JMXbOGJDEfZeO4hfvbGNzWTMXnMSBaH+2b3kFWAkMVRSlXFGUm/rrucWpoa5baXejrHVdm8e8kBgSEkBeMDqT+aMyuPeSkfzyohF8dXwWDpuF+SGBqGFCXqK55ujMwSkkx4anaSXFaLcV+i99ISYyguhDrCU4Wu4+fxgrfjaXO+YMNi/aMuIdYQWc2jx+7nt/B+v3NzEq24mqam0TVBUm6cVFNusXcwBLyrsKfnyu98PqzZbyZl5fV0ZDu6fPcv3i9FKvf36NKtaqqrKprJkdla1mIFoe0ieyvKmTVrcPiwIx9ghS4yJ7XPjHOWx8c/pALAdJlRenvqHpcWaVVYui9ewD2FrRQma8gxGZTvP4C3UgpB1CQ7uH4rp26to8va6pWrizxqz+uryonsKf/++U6dF3MLuqW1FVwqp+9qXN7WPR7lra9cJQt80cRJTNyhkDk8jSWyylxPbdp9eomwBHvlxFiBNJTGQEl47XMuu6ZwAZjB7LigJJ0XYURWHDL8/hiesn9thWURRz3fSUgUk8dYO2zV3nDeXJ6yfQ5vazprSRBpd2nkuOtWOxKNwwNZ9xuQlsPMnPVf02I6qq6rX99Vzi1FTbppVtf++7ZzH1gYXm/XVtHhxmL04tmEyMtjFlYBIRVgs3ThsAwKXjspk3PJ04x8Hbu/TmgctG88iCPZwxMPHQGx+mtLjIE67dgHFBoCigqpiznZeNz2F39U4+3FYNaAUlXl59wGzADPBZmR9FAauisLK4gXn6ovvuvvKYlpY1d1gaDS4v107OJSkm0lykL04/9e1dn4OK5k52VLZyS0ghsu4qmjuJsCg4o2wSaIqDUhSFc0aks6KonsFpsawuaeC7L2/g/S1VnDsindS4yF5nRCubO0mKsdPo8rKzqg2XV1tU7/IGiA0pQlfR3MlNz6/j918dxfVT8s3e1Pd/uJPXbpt2bN7kMVJU20ZkhJVcfRZnd7VWdTO07yHA/gYXH26t5vZZBWbQuLa00cxoAG3gc9lP55AQbefz3XXsrGol9SCBaFZCFI9fN4GU2N4v3IU4mfz8whE4bNaw3qOh0uIiibJZibJbidAHWZP6CFpDXTQ2K2ygZtbQVCIjLHyyvYZ8vSe9MbECMC43gdfWluEPBM3XOdmcnHstTko1rW7SnZFkxDvCylbXtXfNiA5OjSMyQpv17P6hUhTlCwWhoFU5++MVY8NasHxZP7tgOE99refo1vGUlaClPGV1W38zeWASI7PiWVOidVgaluEkxm41Zz7H5iaYvzcqO55tFS2A1lLn9x/s4K+f7gm7CAFYvq+eXdWt/PStrdzy73V9Vm/bWt7C2X9Z3Gc7GXFyevB/u3hmSTFAWGXT/22t4p1ujbivn5Jn/lyYFktFUyetnT6zoq4QB/Pri0fw7vfOYkRWPKX1LnNW9JvTB5ISG0mbx0+nN0AwqLJ+fyPBoEpFcyej9Urla0u7Ost1D1qNNlaVetXXQFAr+ra6pJGmE2yg8cua99ASZvxxkXl7r75sY1+3QPTlNQf4w0e7zCwGl8fP+1uqzOrzEfrgUXJsJFaLQk6iPiMa13cgCnDhmMwebX2EOBnFRkbw64tH9pkFoCgK+cnRhz3wYnRkOLfbgH60PYIZhal8sr2ahnYvFiW8i8K43AQ6fQH21Jy8rVwkEBX95pklxXy8vdq87QsEue/9HdTq6ZvVrR7S9f5hkwcmE+eIwKKEp+amOSN55dap3D1/+LF/A0coKcZOdsKJVXAhPc7BtZPzuGxCtnnf6nvmMio7ngl5XbPBmfEOchKj8QaCRNms3P9VrdB1TKSVUdlOdlS2sq+unfMfWcozS0t4ZOFeNh5oCnstty9otr2B8FH1bRUt+ALaYw8v2ENxnctcWyRODW9vKOe9LVrblXo9EB2YEsPTS4r5bGctF47pWrMyOC2Wr47PJivewfi8BFbsq+fDrdVhJe2F6EtkhBWnw8aIzDhzScc/vj6JaYOSzbTd+nYPy/fVc/mTK/nBa5uoaOpkYEoMcZERrDlIIGrcrm7R/l8fEnw2hPy8fn8Ty/bWH5X3d7zsqdUC0QaXl4Z2j3nO3q2n2Bv/v/vtrby9oYIpBUn88xtn8P73zwp7HuN78GAzokKcbm6Yms/VZ+QdekO01PX1v5hHei/rp88bmU5li5ule+tIjLaHZRHNKEzhpZunmKnAJyMJREW/UFWV33+4k9teWG/et660iWeXlXD321rlsNpWN2n6h+wn5w3l1VunkhwbaQaicZEROGxWJuQlEh8tF6hfhMWi8MBlozlzkFaIKTshyjyxff3MfIakx1KQGkNCtM1cTzokI46RWfHcOiaSx66bwKiseNo8fv6xrASvP8grt2gVdHfo64hiI3vP6P9IT/vdUdnKRX9bxnt6b8hofXtjDZY4ftrcPiqbO/l0Rw0f6LNKX0SH109tm8dch2ek5t57yUhq2zwEVZVvh6wJczpsPHTVWJb99Gx+fuEIBqXG4g0EaXPLLLk4fCMyu3oxj8lJADAD0do2t1nQ6N3Nlbi8AXISo0iKteP1dw2YdQ9EjUGU6lZt9q8xJM3cyOKoaXXzjefWcPuL681jtqK587id01rdvrD31Jd2j5+yxg58gSDeQFfGitsXwO0LUFTbzpB0bW3axPsWMOyXH1FU224GoLuqtXP+/gYXk/IT+fvXJjJnWBrDMsILiGUf5oyoEKeTG6bmc9NZAw9rW6tF6VHbxDBveDpWi8Lm8pYe6b3JsZFMH5xyVAtnHm1SNVf0i6aOrgvKYFDl/g93mou4yxo78PqDNLi8pDu1D1pijJ3EGDupeiAaZbeaFxTiy7PpPaXG5SWY9+Unx/DJD2eZtx+4bDTzR2VQmKYXecrSqg4bFzgvrz7A4LRYphYkkRhtY3uFdlHisFno3mM+KcbOJn3B/Lt6AFpar/XwMwo6tbslED3e5j+81Gw8D3DB6Av464K9nDEgkRmFqWHbBoMqWytazLTtUPv1C/7mDh+by5opqXeRGG1jRmEqH35/BtkJUWGDSfFRNhRFQVG0n1+5ZSrfe2UjUwYmHZ03Kk5JOYlRxEZGEB9lM78vjFm4ujYPVSHHNmgDcckxdvY3dDAoNYZ9dS4W7qxhcFqsWVndDET1FN0Gl4fICAsef5Bd1a00urws3l2L2x/AF1B5fV05N501kOkPfsb4vAT+853pR+W9evwBGl3eXtucXPrYcuYOT+PnF4446HP8beFe3tpQzjkjMli9u6uwXFljB+9tqcLtC/Kjc4bwh49209DuodXt55Md1VTpfwuj+Fhtq4fpg1OItvd+yTg2N4GcxCgzFVoI0X8SY+xMyEtgbWlTn8WRTmYyIyq+MFVVzXWDJfVdaSg0xAgAACdZSURBVJkby7SZ0D99vBuApg4vdfqXffe0g9S4SPbVtVPe1Cmjqf1oQl4iv7hwOA9cNrrPbRKi7VwyLpsR3dpjDM90mhXcJuQloCgKI7Pi2V7VgqqqtHZ2BZRRNivxUTamD05hb20bqqryvp6uWalfzETatNNMbwVFDqbD6+fB/+2iUy8yIr68im4X6v/bVs2jC/fy0ze3hN2/tbyF97ZUcsnjy1ndS0q1EYgCXPL4ct7dXGmO5o7IcppBaJw+G949wyExxs6LN0/he3r7JSEOh8WicO7IdC4KSfvOjNe+U/bVuaho7iQ3qStwy0yIMmfrv6a3J3l7YwXnPbzEHCgzzks1rdr/G9q9Zprbz/+zjVv+vY4V+xqYWpDMyCwnn+6oxu3TzkkbDzQftff6wsr9nPPQkrCZz+oWN2WNHRTXu8z1/t1tLW/hqr+vpMnlZU9NG/XtXtaWNlLc0vU8b2+s4MnFRVwyLov5ozJZdNdsNv/6XJyOCN7eoK3vjouMYHd1G8GgSn27hzRn39/P2QlRLPvp2Sd1eqAQJ7KZ3QaKTyUSiIov7AevbWLQPR8CUFLfdWFqpGgamjp8VLdoF8Dp3b7MrpiYQ2lDB5vKmpkqRQz6jcWicPOMgi9UDMZqUfjD5VoAe+k4ba3pyCwne6rbae3049XXEWXGOxidHc+obCdD0mIpa+xkVXGjWeDCKP7RoQeStUcYiC4vauCpz/exqkTWln4Z/kCQvTVt5r9HqHv1vmWhVfo2HGji4seWceermwB4Y315j9/b3+DqcV9yLyO1RgDaVzq3EEfqoavG8bMLumoIJMdGMjYnno+2VVPZ3ElWfBQPXz0Oi6L1GLXq66ku6lbd8gevbTKDLNDSWNs9fhpc3rA2WAAl9S6GZcSRmxhNQ7uXpo6+ixh5/UGWF9Xz+Z46vvHPNfgD4Sm09e0evvvyBt5YV3bQ91na4KLd4zdbZD27tJipDyzkiqdWALCzus1c0xnqrQ3lrClp5InFRZTp5+J9deGFTJ5cvI/M+Cju/coo8z5jwLFIX+t/0dhMiutdHGjswB9USZeBYiGOmxlDtED0cFotnWzk6kAcMV8gSFOHl/9u0ma+XB5/2IyokZppCARVVhRpwUT3GdGLx2axpbyZTl+AO2V25IQxMT+Jot+fb1YuHp0TjzcQZGWxVqzj9lmDOG9kOpnxUSgKZiGjhxfswWZVmFqQbAakRkrukfYcrWrpuWZLHLnbXljPwl213HvJyB6PVbe6sVoUKpo7cXn8vLR6f4/K0h9ureLeS0aGpeWVNnQQY7eaLTEAXL2sl7t0XDaPLSo6rLL1QnxRF4zO5IH/7QLgsvHZXKr/B/Ds1yexp7otrLrlg5eN5u63t/Lm+vKwTI3ypg5aOn0MSO45szc0w4nLG2BtqZeGkHNSqzu8+vN/Npbz07e2MjY3gc1lzazb32QOsm4tb+HWF9ZR1eJmWVE9F4zOpLjOxaLdtby5vpy/XTveTIU39quiuZOMeAdPLt4HdM3cev1BimrbGZ4ZntFiVC9/bW0ZbXrPz+4FzR02C0/dMLFHpsLgtFhWFjcwc0gql4zL5pU1Zeb3fFovRVSEEMfG6Ox4kmLs3HXu0OO9K/1OAlFxxP61vJRHP9tr3t5b205pyIyo8UUZ6umlxWQ4HT2KHACHXOcijo/Q9jlnDNDW8n26oxaAcbnxjA+pwjtYX2e6uqSRucPSGJQWy5qSRlRVNRugd58RXVXcgNsXYPbQtF5fvypkzZb4YuraPCzcpf2bvd9HcaJLxmXx9oYKFuys4f4Pd4U9dtGYTN7fUsWCnbWMzHIyKDWWZ5cW8/q6MsbnJrBuf1clZWONXagfnTOEa6fk9VoJUIj+EhqIZiaEH2uDUmMZlKotNbj/q6PxB4NcfUYuTyzex2e7aqlv95LhdFDd6jZnG7ISorBHWMLSYoemx1Fa76Kpw2vOogIU1baHVSTfXK61vtqsr5m/5ulVTC1I4sWbpnD7i+tRgN9dOopfvrON55aV8NcFe8xKwH9fss9seG8Eone/tcUswjRrSCqf7+nq/by5rNkMRGtb3dz99laa9dna1j7W5N8+axBTC5J6LMkAbcAR4JtnDmBCXiIxditvrNdmbtNkRlSI48ZqUdjwy3OO924cFZKaK47Y1ooW2kK+5PbUtJnpPIZheiGIyQOSmJCXQJvbz1cnZJtpUuLkku50kJcUzYKdNQDER4XPcBmNlgFumzWIzHgHHn+QRxcWmS0Qug9QPPTJHn7/wc4+X9MoPFLV4u51neKpatHuWnMN2pf1yY6uNPlNfaxnu0RPv+6+3m3+yAx+ddEInI4Ivv/KRub+5XO8/iD/XrmfUdnx/OnKsfzt2vG89e1p3DA1j0evHd/juS0W5YRrcSROPblJ0WZAlhzTd8B03ZQ8bpw2AEVRGJXtZFd1K/XtHiYN0ALJpXu0jI+UWHtYayGLAoXpsSTF2AmqXYXYAC57YgXLi+rNegk7Knumzq0qbuSDrVVUNHfy20tG8bWp+aTERrJody1BFe65YBi3zizg4+01ZuaIUVehNGQ99g/maVlD+cnRZDgd/Pydbby0ej8An+2q5bNdtWw40Mz4kCJ13d02s6DPwb8rJuTw6Q9nMmdYGvYIC9MGpZiZLWlxMpgkhOh/EoiKw9bo8vLs0uIeQee2ihb21bUzOaQCptE+JM0ZyX2XjmZEppNrD7OfkjgxTRqQaLYzSOiW0mWzWnj11qksums2kwcmkaUHH39dsMecZWhwedha3sLzK0oBqGzppLyp00wl684odvTy6gNc/fQqivV1TiX1LlYUnVr9/AzlTR18859reXdT5aE3PgyhF8zeQLBHUBhlszJ9UDL2CAsb9RkcgAyng6e+NpE0p4NRIZUwNxxo4kBjBxePyWRgSgwXj81iYn4S913a1TJIiOPBWNoxJD3usLYfluGktKGDDm+AMTnxFKbF8vZGrVBPcmwkToeWMDY4LZabZxTgsFlJ1pvTF+nnIqNZ/b9XljLiVx+xcl+D2fIE4MqJOebPzy0vJS8pmrnDtCAwLS7SbJMyOjuB+aMyCARVtlVoReHq28KXJFw1KYdxuQmkxNopTIvj7e+cyfTBKfzqv9vZeKCJ7SEBcPd0XYNFAedBevdaLAqFIX+/0KJQBytWJIQQX5QEogKATWXNvY7khnro093c98FOs5+k4YMtVfiDKjMGd12ITi3QgtLUuEhGZDn58M4Z5IXMmomTT2jVtu6BKMDUgmSzamJva6xUFS5+bBm/fnc7jS4vNa1uOn0Bc8b0f1urworgGGtEPXp6nHGhNefPi7nu2dV97ud7mytp6Tj6/SlbOnz9/jpGOl55L4WFDlcgqPLy6gO0e/yU1HdQmBaLXU+zHpUdfoE6JCOOCKtFb3HR9bcPvej86fxh5Oh9At/SCxdNGSiFxcSJZf6oDNbcM5ezCg9vQMTI2gGYMzSNmXoxkIRoG6Oz482A7ZozcrlHL46UGK0HorXtWC0Ka+6Zx8gsJwt21uLxB/nn8hLcvq4Bn1tmFvDYdVqmwLaKFkZlO81m9ClxkeYa65RYOxl6+nptmweXN0BnSFbEHy8fwx+vGIuiKDx5w0TuPn8YWQlRPH7deKJtVl5dU8a2yhZz+6x4ByP0YHSA/r2roLVOOpKspPmjMsyfHbaTt0+hEOLEJYHoKWxtaSMuz6F7NwaCKpc+vpwLHl36hV7HCCSmh1wAGFUHpTfoqSP0oiQh6uDFZ4ZmxPHG7dO6bnebpVi4swaf3mB9VXEDNa1uvvfKRp5dWoI/EOT3H+ygrDE8GDNaCRg8/p7pq3tq2vjeKxu5552th//GvqAfvb6JH76+qV+f06jGWXuEhZ1Aa3dz43NreGJREff8Zyvf+uda9je4GJgSQ4be4iK0z9+PzhnC3fOHAdoFdnNIUB2ahjc2N8H8t/xgaxWxkRG9ri8T4ng7koI6obOGhelxZiB6+6xBOGxWswCRMQsKmEW3imrbSYy2YbEoDE6LNdNyjaUL9182mu/PLWRwaqz5WQoEVbJCeoKmhhRPSomNNIsp9dYPNfTzdsaAJLO9VpzDxqyhqXyyozpsRjQzPoqXb5nC67dNIy85BrvVQkqUcsQ9CB02Kz+ZP5SrJuUcemMhhPgCpFjRKarR5eXqv6/kVxeN4BvTB5r3B4IqdW0e88IUCOtHpqpqWCuHUB299HO8fdYgnvpcq+Y3JuQiNz85hovGZDJryKnb++h047BZ+crYLN7dXEmU/dCj42cMSCIlNpL6dg/DM+PYXdNmPhba4ue7L280fy5r6qCorp1nlpb0eL7PdoWvnaxr85CTGD7LbvTJbGg/+gWOjLYG/cmoxln9BQLRN9aVs2RPHUv0YiZrSrXP9ZxhabS6fRxo7GBohhOrRdEGn8Zlm1kK3avadm+zlB7nwG610OENMHtoqqz1Fie9nMQophUkc6UeZM0sTOHd7043B2uMNaJJIWtOjc9JfbuXIelaMDhYL4QEEFS1mdZZQ1LN777Qz1J2Ykggqg/SRlgU4qO0oDYx2sbr68p46NM9gDage6Chwww8e3PuyAyzENmwjDh2VbeRmeAgIdrO5IFJjNztpKXTR7Czjfj4I1+v/Z3Zg4/4d4QQ4nDJjOgpqrK5k6Das1Lpv1aUMvWBhWFpuO9v6VqPVtftAr6iuZPmDi+/fGdb2NpQ4zp01pBUYiMjyE2KMquszhySis1q4bHrJjAyKx5x6nj46nHs+t38w97eWGc1JCOO0PENo5Jrd+VNnWGtEUJnLXZUtfLssq4AtbfqzGWNWmGP+IOsg+ovzZ2+I25JA7C8qJ7X++ghaMyI1rR62FbRwqT7FlDe1NHrtqFUVeXfK0vN29EhAwUDkmPMmZj85GgS9L9N6N+oe6p198IkFotipueGrgUX4mSlKAqv3DqVyybkmLfH5CSYA7HOKO3cFdofN6mXn7tmJ7XtjbYxhtDPUugabWN9aXKs3UzXTY2LNIsDAfz8guE8c+Okg6bFzh2WxvyRGXzjzAH88YoxTBmYFPa9e9e5Q3nz9mncNMrOX64ae/A/ihBCHGMyI3qKMlpfNHVbw7ZWn/3864I9PHPjJECrlmm3WvAGghTVtJtfnCX1LuY99DmjspxmSfpJ+YlcOj6bF1ftZ1d1G8mxdlbdM9csOLPj3vOwWWV841RlsSg4LIe/VihWvzhLiraT6XSYBYj6Ut7UYa6TfOGmyeyobGVnVavZs/KScVkcaOxg44HmXtNXS/TiPEf7GFRVleYOL76A1p4mNvLwT6VPLC6ipM7FVZNyezzW6NI+r7Wtbpburae+3cPKfQ1cOSkarz9Iu8ffa0/O4noX++pcRNmsdPoCTMhLxOMPsLa0iawEBzlJ0Vj1YDI+2kZjh9e8cIZDz4iCVpm0uN7FFAlExWnASM0N7T/qsFlx2Cy4fUHzM2MU97ltZgE1rR6u7va5jrJbiYuMoM3jN4u4QdeMaGiV37Q4B3tqugZ8J+YnkhB98HTamMgInvraRPP2a7dNC3vcalGwopDgsEgbJSHECUcihlNUtV7oxegpZqhp0y7eP91Rw+vryggGVYrr2zlPX/+3V5/13Higif9uqiAQVM0gFLQ+YzdMzTe/RJNi7MRGRhCnf2lH2yMkEBWmGLsW7MQ6Isw02u/r1S174/YFzRTeMdkJ5kXgg5eP4dkbJ/Hw1eN4Vh9A+dMnu80m74b9eqsDo7rv0eLyBsw1rkZAvGh3rflzdYubSx9fbs7QGlRVZWdVW5/716Svt25wedlwQOvRubm8GYDfvLedCb/7lM5eUuRXF2sDTLfPGgTA8Mw4HrtuAjdOy2dqQTLfPHMAL9w0mWh7BAlRNpwOmzkLA11FWLITovj5BcM5f1Rmj9cYlBpLjN3K6OyEQ/+BhDjJDc2IIzPeEbZGFLRzFMAMvXjb4LRYnrphIjedVcDvLh3V6zrMVH1gJ6eX1NyUkDoKxn1nDkrmrW9PO2QQKoQQJzuJGE5RXTOi2oVtUW07waDKnuo2rp+Sx7SCZH777nYONHbg9gWZVpBMnCOC3TVttLl9fPWJFTy8YG+P583U15amxTlQFMw0PyF6E6PPFFoUhZwk7SLs4pCWAKvvmcs/v3lG2O9sOtCMzargjIpg8sAkZhSmMHNIKvNGpKMoConRdiIsCsV1Lh76dDe1+uDKM0uK+UxP+TWO+13VrVz46NJ+r25rBIygpdF6/AFufn4d/9Rb0yzcVcOmsmZWdet/WtfmodHl1QPZYI/nbQwZOFqkv5fNZS1htxfsrMHtC9Dh7SpEtrqkgdS4SK6YlIPdamFifhLpTgf3XjIKh81KYozdbK8SH2XrkbqcGN2VrnvLzALie6mKfOfcQv5zx3TsEfK1IU59l4zLZuXP5vYYWP2/84by8wuGc+3krnZk80dlHHTdfFpcJDF2a9jnzihWlBIS6KbpgejwTCcT8yXzQAhx6pPU3BPUs0uLmVGYytCMw+uJ1l21Hog2d/hYU9LIVX9fya0zC3B5A4zIcjJ5YBIrixv4cJtW5GBwWixnDEhiwY4aLh6TZT7PvOHpePwBdla1Ud/uMVN7Zg5Joc3tM9eFCtGbpBjtwsvjDzA4LRZ7hIWcxGiW3302bW4f6U6HmSKaGe+gqsXNprJmkmMiURSF3KRoXrhpSthzWiyKWSTIF1D588e7uXxCDr//cKe5TXOHj3aPnwf/t4vtla28sKqUVrefu+cPC5sJBLj26VXkJkXxxyv6Xj+lqiqBoGoe76EzmrVtbmpaPASCKpV6sSQjBb44pI8nENb6qLXTR3JseApsk8uLRdGKnviDKtF2K7uqW3H7AuQnR1PVolUXjrAonDEgiVduncq97+3g4+3VzBueTnZCFKvumWsGlr352rT8HutrjVmcg62tjY+29RqgCnE6uWPOkRfvGZ0dj0VRwgoBGrOfodVzjfuMqvNCCHGqkyjiBOQLBLnvg528vbH8Cz9H6IyoMWP09JJiQKusNzYnAYD/bNAaeA9Oi+X6KXnUtnn422faTOi3Zw/i/q+O4oWbpjB9sNY3MDJCG/W9ZFw2T+spkkL05e7zh3PD1DzOH5XJN84cwH/vmE6U3Up2QhTDMrRCRNH2CKYMTOJyvWhIpy9AStzhpaTNGZrK6+vKufrpVYA2a3f+qAzKmzoZ99tPWLxbqyD750/28PSSYrMR/Z8+3sUPX9uEqqqsLG7g9XXlZkXe+nYPU+5fwLaKrpT0dzZVMPn+hWbLmKaQmcvaVg+Veiq8MQC0tlRLqy2pCw9Ed1V3VQ7uLT23scMb1qrhyok5+AIqO6taqdeLOCVE2/AHtf3eVtHCc8tLGJOdwG0ztbTcpBh7n5WvAc4elh42m2P8DnQVaBFC9J+fXziCl24OH1CLj7Jx+YQczh6WZt5ntJ8x+jELIcSpTgLRE5DR+7PNfegeoKFufn4d9763A+hq/9DU4QvrDzgi08no7ATyk6OJj7KxV++HlhRjZ/bQNLITolixrwGnI4KfnDfU/GL8xYUjuGFqHrOHSjsWcfiSYuzcd+loHDYr0faIsCq4oV67bRp3nTfUvAALLeDRm0K9UuU/vzmZl/ULvKsn5fLDc4aYr9Fba5U9NW3sb3Dx1OfF/GdjBR9vrzEf+3SH9vPH26upafXwLz3NFrR04UaXl1p9JjG0CFhtm9sMQKtb3VQ0d5ptZIrruwqPAOwKmRHtLRBtcnkZn5vIwh/P4q1vT+P22VpwublMK85047R8Nv3qXF65ZSoAP3t7K4oCj1w7jtE5X7xCtbFG9FhUGxbidNR9cEhRFP5y1VimFCSb9509LI2fzh/G5AGSliuEOD3I8PcJqP0LBKKqqrJiXz3bKmz88qLhVLV0YrUoeP1B86L4vktHcdmEbHONV0qsnZZOHxeP1VJxrRaF66fm8cePdjM809kjjei+S0f311sUoleT8hMpqXf1KBDS3dvfOROPX1tjeebgFDb96hyi9cJI3VuRhNpZ1cpnu2qJsGhrTX/3/g7zsZ++tYWHPt1DTKQ26x9aObZMb6lQ1+7hPxsrzD5/MXYr++pcZmprdYvbTMudPjiZtaVNBIKq2XdzZ1UbidE2mjp87KpuIyHabgbfgaBKc6ePxBg7g/TehKqqkhoXyZrSRlrdfnMN2fi8BAC2VrQwozCFzC/QHzDU4aTmCiGOrtjICL6tDz4JIcTpQGZEj6F2j59/Li8h2MtMTSiXR0v/a3MffoGV2jYPHd4A1a1uVuxrwO0LMkpP8SuuaycuMoIbpuabF+sAP50/jK9Py+eXF40w77t6Ui72CIvZ1FuIY2nSgEQAWjsPPggT57CFtVVIiLabAywHqzT5wZYq3tlYwY3T8jl7WKo5SPPk9ROYMyyNknoX2yq0WUs15GNqVL9dvKvWDEIBrpuSx2e7annssyIAPP4gn+6oITYygvNHZeL1B83f9fgD7KtrN/tw/uztrcz582Ke0VPmP95ejarCgORo8/kVRWFsTgILdmiFiozWSg6blSsn5jBlYBIPXj7moH+rw5EUbcdmVcL+pkIIIYQQR5MEosfQgh01/Pa9HWyvbD3odgebEfX3UmkToDhkLdpzy0oAOKswxXyst5Ly547M4LeXjAqrCpgcG8n73zuL7x2kxYYQR8sYfe1yaI/LI3WwQj2lDR04bFZumzWIoRldacLj8xJ5/LoJYT0AjdRZVVXNJvNP6UGj4e7zhzM2J56OkJYqH2ytYkJ+IlMLkrFaFB5eoAWuRbXt+IMqUwYmhz3Ho5/tpdXt47fvbWdklpOvjM0Ke3xcbjxe/XOfGjJL+6crx/LabdPITvhys6Gg9Tp8/bZpXDcl79AbCyGEEEL0AwlEjyHjwtaYhemLsUa0tdsassW7axn1m4/N9WihSvTqnPYICwv11MOp+tqTfXXtvQaifRmSHicpeuK4GJ7p5InrJ/Dri0cceuM+RFi009qQ9Fi+d/ZgxuYmAFoBkJFZTl64aTIpsZEM0ytSR1gUs1qlMXgDWk/Su97YzO0vrqdTL2Tk9QcZpz8faOnsV3ZrYA8weUAig9O0139nUyUr9tWzq0orVDSloGv917zhabS5/fzqnW3UtHr43tmDe1SiPmdEhvlzWtzRm7Ecn5do9gMWQgghhDjaZI3oMWQEllUt4YFoRXMnbl/AXBfWvVhRS6ePxxcVsb/BhdsXZN3+Ri4ak8XSvXUs3FnLnXMLKalvxx5h4YYp+Ty3vIQ4R4TZaiWoQvIRBKJCHE8XjM489EYHMTonnpFZTu7/6mjG5iZQXOdic1kzX5uaz7fOGmhuZ7RGSnc6zDWcMwpTyIp3UNniZllRfa/PPzgtFrcvYH4+LxidyS/e2UZ8lM0cbLpMrwB8+6xBvLz6AH/5RJsVjYuMYGh6V0umKybmUNns5p1NldgjLMwo7FkMLLSFk5GaK4QQQghxspMZ0WOoxQxEw2c0z/vrEub+5XNz7WhXaq62/eOLinh6SbFZ4XNrudZW4l/LS/nXilJufWEdJfUuBibH8M3pAwDISogiKyEKo95Q4kHWzQlxKomNjOCD788wZ0KNwkdpzvDZxJTYSFJi7WTGdwV3CdF2VvxsLrOG9AwIbVbtwzQgOZr3v3cWS34yB9AqA7940xTe/95ZfGVsFi/cNJksPV3WYbPyg3lDWL+/ifX7m7j/stFhM555STHcc8FwAM4anEJMZO9jg8/eOIk5Q1NlQEkIIYQQpwyZET2GWvXAsrJbaq4ReK4/0MQZA5LMGVGXN0BVSyf/WlFKhEUx21FsrWjBHwiavQw3lTWTFudgbG48uUnR/OPrkxiSHkdsZARD0uLYXdNGUoyk3InTk9EKprfZxFtmFPQ6SGOkpkdGWHj3u2fxz+UlFNe5WFPayICUmB7ps0ZK76PXju/xXNdNyWNifiJtbh+TurVlyEuOZkSWk19eNIJJ+Yl9vod5I9KZNyL9EO9UCCGEEOLkITOix5BRCTR0RtTt6ypycu97O1heVI8rpPDJc8tK8PqDPHH9BCbkJTBveDor9jUw9YGFlDZ0YFHAF1CpaO6kME1L4Zs7PJ3cJK3y5rBM7b6DVRIV4lSWEa8FoqEzn4bbZg3iqjN6rvE0WsBkxDsYmhHHg5ePIV3//QHJR95sfmhGXI8gFLTZW4CbzhpozuAKIYQQQpwOZEb0GOptRtRo7ZCXFM3WihaeWFxkVg4FeGZpCWcOSubckRmcOzKDhTtrWLCzhvp2bTZ0ztBUFu2uA8LXkhny9Yvm1iNoBSPEqeQrY7NJjok0B2cOhzEjmuHsCl5T9dYm+cmH/zx9mTc8nQONrkNvKIQQQghxipIZ0X7k9gXw+AN9Pm4EgzWtbrMNS7Fe7fax68Zz4ehMKpvdZmqu4avjs82f5w5PZ+GPZ5m3Q4ubDEmP7fGa54/SKm6eOSilx2NCnA6i7NYjTms1AtHQWdTLJ2bz0/nD+qWy7LNfn8QnP5x16A2FEEIIIU5REoj2oa7NQ0NnkDte2sD2yhYCQZUPtlSZBYUAmju87KlpM2/f8u91/OI/2/p8TiM1N6hCbZuHYFBlw4EmAAakxJCdGEVFcyft3fqHjs8LXzs2IDkGh037pxuaEUe6MxKbVTFnP0MNz3Sy9/fn91p8RQjRO6ceiKaHBKIjs+L59uxBx2uXhBBCCCFOKRKI9qLTG+DMBxfy6EYPH2yt4oEPd7FoVy13vLyB5fu6Wjo8snAvV/19JaqqBac7KlvNGc5QrW4fP359MwcaO8jT0wOrWjp5eMEe/v55MfFRNpwOG1nxDrz+IAf0dF1DQUp4gGm1KGYLiOyEKIZnOhmaEYfN2vs/Z1/3CyF6l2DMiDqlXYoQQgghxNEgEUovouxWRmfHs79VS5/NjHewp1ab+dxd3TUDWlTbTnOHjzaPH7cvQIPLS5PLG/ZctW1uPt9dx1sbyoGudZyVzW526A3uH7lmHIDZ8mFPTRtJIW0aLHqPw1DDM52AVkzlwcvG8OT1E7/0+xZCaIziXhnxUcd5T4QQQgghTk39WqxIUZT5wCOAFXhWVdUH+/P5j6Vpg5LZcKAZgAirhaLadoCwVNz9DdrMZU2L25x1bOzwsmJfPfnJMditFib/fmHY8w7LiOPTHTVUNndS2dzJ2cPSmD00DegKRFvdfoZnOml0ec2qmt1966yBjM6Jx2GzkhFv7b83LoRgQl4Cv7hwOLOHSkq7EEIIIcTR0G+BqKIoVuBx4BygHFirKMq7qqru6K/XOJamFaTw+KJ9ALR0eqlo1lqu7KnRAlKvP0h5kxaIbinX1pBq2/q47pnVWBR46eapPZ43OyGK2MgIqlrcVDR3MjGkd2B2QtfsS15SFNMKkrnqjJxe929IehxD0ntWyRVCfHkRVgs3zyg43rshhBBCCHHK6s8Z0clAkaqqxQCKorwKXAKclIHoxPxEnHZo9UKTy8c+fUZ0U1kzH26tIjHajlG36MdvbDZ/T18uSlCForr2Hs8b57CRGe9gb20bLZ0+cxYUtN6FUTYrnb4AMfYIfnXxiKP3BoUQQgghhBDiOOnPNaLZQFnI7XL9vpNSlN3Kw3OimTc8jT01bbR7/GaBoO+8tIFrn1l1yOf4YEtlj/tcHj9ZCVGsK9Wq5WYndgWiiqJw3kitzUSqM7I/3oYQQgghhBBCnHAUo+Lrl34iRbkCmK+q6s367a8BU1RV/W7INrcCt+o3hwK7++XFj54UoP6QWwlxapDjXZxO5HgXpxM53sXpRI73E0u+qqq9Ft3oz9TcCiA35HaOfp9JVdWngaf78TWPKkVR1qmqOul474cQx4Ic7+J0Ise7OJ3I8S5OJ3K8nzz6MzV3LVCoKMpARVHswDXAu/34/EIIIYQQQgghTgH9NiOqqqpfUZTvAh+jtW95TlXV7f31/EIIIYQQQgghTg392kdUVdUPgQ/78zmPs5MmjViIfiDHuzidyPEuTidyvIvTiRzvJ4l+K1YkhBBCCCGEEEIcjv5cIyqEEEIIIYQQQhySBKK9UBRlvqIouxVFKVIU5e7jvT9CfFmKouQqirJIUZQdiqJsVxTlTv3+JEVRPlUUZa/+/0T9fkVRlEf1z8AWRVEmHN93IMSRUxTFqijKRkVR3tdvD1QUZbV+XL+mF9ZDUZRI/XaR/viA47rjQhwhRVESFEV5U1GUXYqi7FQUZZqc38WpSlGUH+rXMtsURXlFURSHnN9PThKIdqMoihV4HDgfGAFcqyjKiOO7V0J8aX7gx6qqjgCmAnfox/XdwEJVVQuBhfpt0I7/Qv2/W4Enj/0uC/Gl3QnsDLn9B+CvqqoOBpqAm/T7bwKa9Pv/qm8nxMnkEeAjVVWHAWPRjns5v4tTjqIo2cD3gUmqqo5CK5B6DXJ+PylJINrTZKBIVdViVVW9wKvAJcd5n4T4UlRVrVJVdYP+cxvaRUo22rH9vL7Z88Cl+s+XAP9WNauABEVRMo/tXgvxxSmKkgNcCDyr31aAs4E39U26H+/G5+BNYK6+vRAnPEVR4oGZwD8AVFX1qqrajJzfxakrAohSFCUCiAaqkPP7SUkC0Z6ygbKQ2+X6fUKcEvS0lPHAaiBdVdUq/aFqIF3/WT4H4mT3MPATIKjfTgaaVVX167dDj2nzeNcfb9G3F+JkMBCoA/6pp6I/qyhKDHJ+F6cgVVUrgD8DB9AC0BZgPXJ+PylJICrEaURRlFjgLeAHqqq2hj6maiW0pYy2OOkpinIRUKuq6vrjvS9CHAMRwATgSVVVxwMuutJwATm/i1OHvtb5ErQBmCwgBph/XHdKfGESiPZUAeSG3M7R7xPipKYoig0tCH1JVdW39btrjJQs/f+1+v3yORAns+nAVxRFKUVbXnE22hq6BD2VC8KPafN41x+PBxqO5Q4L8SWUA+Wqqq7Wb7+JFpjK+V2ciuYBJaqq1qmq6gPeRjvny/n9JCSBaE9rgUK9+pYdbQH0u8d5n4T4UvT1EP8Adqqq+lDIQ+8CX9d//jrw35D7b9SrK04FWkJSvIQ4oamq+jNVVXNUVR2Adg7/TFXV64FFwBX6Zt2Pd+NzcIW+vcweiZOCqqrVQJmiKEP1u+YCO5Dzuzg1HQCmKooSrV/bGMe7nN9PQor8W/SkKMoFaOuLrMBzqqr+/vjukRBfjqIoZwFLga10rZm7B22d6OtAHrAfuEpV1Ub95P4YWrpLB/BNVVXXHfMdF+JLUhRlNnCXqqoXKYpSgDZDmgRsBG5QVdWjKIoDeAFt7XQjcI2qqsXHaZeFOGKKooxDK8xlB4qBb6JNNsj5XZxyFEX5LXA1WkeAjcDNaGtB5fx+kpFAVAghhBBCCCHEMSWpuUIIIYQQQgghjikJRIUQQgghhBBCHFMSiAohhBBCCCGEOKYkEBVCCCGEEEIIcUxJICqEEEIIIYQQ4piSQFQIIYQQQgghxDElgagQQgghhBBCiGNKAlEhhBBCCCGEEMfU/wOaIWNTk8iyFgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "slope = rcp.RandomUniform(low=0, high=3, shape=(1,))\n", - "trend = rcp.LinearTrend(slope=slope)\n", - "daily_smooth_seasonality = rcp.SmoothSeasonality(period=288, phase=-72)\n", - "noise = rcp.RandomGaussian(stddev=0.1)\n", - "signal = trend + daily_smooth_seasonality + noise\n", - "\n", - "plot_examples(signal, 3 * 288, 5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Composing Recipes\n", - "\n", - "There are many ways to combine and extend generation recipes. For example using python functions." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:56.461867Z", - "iopub.status.busy": "2022-06-13T08:51:56.460827Z", - "iopub.status.idle": "2022-06-13T08:51:59.807846Z", - "shell.execute_reply": "2022-06-13T08:51:59.808485Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAQDCAYAAAC8mNzuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hUx9nw4d+sehfqIAlEL6J3Y0wzIIwL7iWx4zh2HDtxipP3S5w3vbzpcZrjOI5jO45b3I0LCAwITDO9SCBAVPWKel3tfH/srr2RJRDas/25r0sX2j27Z0eDdObMzDPPKK01QgghhBBCCCGELzN5ugBCCCGEEEIIIYSzpHMrhBBCCCGEEMLnSedWCCGEEEIIIYTPk86tEEIIIYQQQgifJ51bIYQQQgghhBA+Tzq3QgghhBBCCCF8nnRuhRBCCCGEEEL4POncCiGEEEIIIYTweU53bpVSv1dKZRtRGCGEEEIIIYQQYiCMmLk9CjyplPpIKfWAUirOgHMKIYQQQgghhBD9prTWxpxIqbHAPcAdwDbgH1rrTYacXAghhBBCCCGEuABD1twqpYKAcbavGuAg8E2l1MtGnF8IIYQQQgghhLgQp2dulVJ/AK4BNgL/1Frvcjh2TGs91rkiCiGEEEIIIYQQFxZswDkOAd/XWrf0cmy2AecXQgghhBBCCCEuyIiw5Dt7dmyVUhsAtNYNBpxfCCGEEEIIIYS4oAHP3CqlwoFIIEkpNQhQtkOxQLoBZRNCCCGEEEIIIfrFmbDkLwHfAIYA+xyebwQec+K8QgghhBBCCCHEJTEiodRXtdZ/Mag8QgghhBBCCCHEJRtw51YptURrvVEpdWNvx7XWbzhVMiGEEEIIIYQQop+cCUteiHX7n2t7OaYB6dwKIYQQQgghhHALp8OShRBCCCGEEEIIT3MmW/I3L3Rca/3oQM8thBBCCCGEEEJcCmfCkmMMK4UQQgghhBBCCOEEvwpLTkpK0llZWZ4uxgW1tLQQFRXl6WL4NKlD50kdGkPq0XlSh86TOnSe1KHzpA6dJ3VoDKlH53l7He7du7dGa53c2zFnZm4BUEqFA/cC2UC4/Xmt9Rcu8r6ngWuAKq31xF6OK+BPwEqgFfi81npfz9c5ysrKYs+ePZf8M7hTXl4eixYt8nQxfJrUofOkDo0h9eg8qUPnSR06T+rQeVKHzpM6NIbUo/O8vQ6VUmf7OmYy4Pz/BtKAHGAzkAE09eN9zwIrLnD8KmC07et+4G9OlVIIIYQQQgghhN9yeuYWGKW1vkUptUpr/S+l1IvAhxd7k9Z6i1Iq6wIvWQU8p61x0zuVUvFKqcFa63IDyix6UdnYTll9G6mx4QyJj/B0cXxSQ2sXZ2pbiA4PZkRSFNYABHEp2jq7OVndTJBJMSolmpAgI8bgAou520JRdTNdZs3IlCgiQ4241AcWrTVnaltpaOtiWEIkg6JCPV0kn1Te0EZFQztpceEMjpN2ZSDOt3Rytq6VuIgQshIjpV0ZgNZOMyerWggNNjEyOYpgaVcuWVe3haKqZrotmpHJ0USEBnm6SD5Ha82pmhaa2s0MT4wiLjLE00XyS0bc8XTZ/q1XSk0EKoAUA86bDhQ7PC6xPSedW4PtPXueX75/lD1nz3/83KT0OL6zYhzzRyd5sGS+41xtK//3/hE2HK3CbLGuY0+Pj+DrS0dz8/QMTCa5GbmYhtYufrfuGK/vK6G1sxuAuIgQ7p0/nPsXjCA8RBrSi+k0W/jHh6d4Zttpapo7AQgLNnHTjAy+tWwMidFhHi6h99Na89aBUv68oYjTNS0AmBQsGZfKd1eOY2RytIdL6Bt2nqrlV2sKOVBc//FzUzPjeeSqccwdkei5gvmQU9XN/N97R8k7Xk23rV0ZlhjJw0vHsGrqEOnk9kNdSye/WVvIWwdKae+yAJAQFcr9C0Zwz+VZhAVLu3Ix7V3d/C3vJM/tOMP5Vustf3iIidtnDeUbS0cTHykDfxejteaVPcU8tqmI4ro2AIJMiuUTUnnkqnEMS/Teta2+yOmEUkqp+4DXgcnAM0A08EOt9RP9eG8W8G4fa27fBX6ltd5qe7wB+I7Wek+P192PNWyZ1NTUGS+//LJTP4+rNTc3Ex3tPTdHa0538cqxTgaFK5ZkBpMRY6KyVfPB2S6q2zTXjQzhhlEhXtWIelsdHqgy8/jBDkzA4qEhjBlkorFDs7nEzKkGC7PSgrhvUhhhQVKHfSlpsvDo3nbqOzSXDwlmcnIQ3Rb4qMLM/qpuhsea+Nr0MAaFe9douzfVY2On5o972znVYGFKchBzBgcTaoL8mm4+LDUTG6r4+vQwsuK862bOm+qwy6J56lAHH1VYf+euyAhmULjiZL2FDee66NbwpclhzEj1rplwb6pDrTWrT3bxZlEXSRHWdmVItInyFs36s13UtWtuHh3C1SOkXbmQ3RVm/n6og1ATLBkawsh4Ew0dmk3FZs42Wpg3JJh7JoYS4kUDp95Wh2caunl0bwctXZor0oOZmBREpwV2lps5VN3NqHgTX5seTmyo1GFf6tstPLq3g3NNFqanBDErLZhgExyq7mZrqZnECMU3poeTESNtc186uzVPHOxgX1U3I+Os7UpcmOLEeWu7ooAHp4YxJVnalUuxePHivVrrmb0e1Fp77AvIAvL7OPZ34A6Hx8eAwRc634wZM7S327Rpk6eL8LG/bjqhh33nXf3l5/fqpvau/zrW3mXW/+/VA3rYd97Vv1pz1EMl7J031eGGoxV6xHff09f8+UNdVt/6X8csFov+++YinfXIu/qeZ3bpTnO3h0r5ad5Uhycqm/TkH+fqWT9frw8Wn//U8XUFFXr8D9boJb/bpOuaO9xfwAvwlnqsb+3US3+fp8d87339/qGyTx3PL63X8365QU/60VpdWN7ogRL2zVvq0Nxt0fc+u1sP+867+rGNJ3R3t+W/jlc2tOnr/7pVD3/kXZ2bX+6hUvbOW+pQa61/l1uoh33nXf3wy/t1a4f5v461dpj1V1/cp4d951395w+Oe6iEvfOmOnz3YJnOeuRdfePj23RlY9t/Hevutug/fXBcD/vOu/rB5/doc4/fU0/ypjosKG3Q2T9cq+f9coM+UtbwqeOrD5TqMd97X6/44xbd0NbpgRL2zpvqsLa5Qy/8zUY9/gdr9IajFZ86vv/ceT3r5+v1tJ+u0yermjxQwr55Sz12mrv1nU/t1FmPvKv/seXkp9qV0vOteuWftuiR331P5x2r8lApe+ctddgXYI/uoz/o9FCLUipMKfUZpdT/KqV+aP9y9rzAauBzymou0KBlva1h1uaX85u1x1g1dQh/vmMa0WH/PWIUFhzEr2+azGfmDOVveSd5ZU9xH2cKXMcqmnjoxf1MGBzLS/fP/dR6MqUU9y8Yyc+vn8jGwir+772jHiqp92po7eILz+4mJEjx2gPzmJwR/6nXLJuQyjOfn0Xx+Ta+9Pzej8PzhFW3RfOVF/ZxpraFZz4/i6smDf7Ua7KHxPGfL80lPCSIe57ZxfmWTg+U1Lv9as1RPjhayU+uy+Yri0d9ailBSmw4L9w3h0kZ8Xz1pf0cKWv0UEm911v7S/nLxiJunZnB726Z8qk1eRGhQfzp9qncOD2d368/zjsHyzxUUu91uKSBb75ygOlDB/H8vXNIiQn/r+Mmk+JrV47m+1eP5/3DFfw295iHSuq9apo7uPdfu4kOC+a1By9j/ODYT73m2ilD+MfnZnKi0tqOW6Rd+S9d3Ra+9O89lDe08+97Z7NkXOqnXjM1M57/fOkyAO55djdN7V2fek2g+8k7BXx4ooZf3ziZ+64Y8al2ZUh8BC/dP5fRqTE8+PxeiqqaPVRS/2JEHMHbWJM/mYEWh68LUkq9BOwAxiqlSpRS9yqlHlBKPWB7yfvAKaAI+AfwZQPKKrAmjvrO64eZkhnPr2+aTFAfYU1KKX62aiLzRibyo7cL5I/OQafZwjf+c4DI0GCeunvmpwYHHH12zjDunT+cZ7efYV1BhRtL6f1+tDqfsvo2/n7XTIYmRvb5ujkjEvnVjZPYdbqOv2w84cYSer+nt55ma1GN9W91VN9r5DMGRfLPu2dR3dzBt18/ZI+IEcDWEzX848PT3DV3GHfPy+rzdZGhwfzz7pnERYTw1Zf20dppdl8hvVxxXSvfe/Mws4cn8H83TOozz4BSil/fNJnpQ+P53zcOU1zX6uaSeq/2rm6+/p/9JESF8uRdMy6YsOe+K0Zwx+yhPLH5JB+eqHZjKb2b1pr/feMwtS2dPHX3zAsmMVswJpkfX5fNluPVPLX1lBtL6f0e33SS3WfO85ubJzNjWEKfrxueFMWTd82g5Hwb338r340l9H4fHKnk+Z3nuH/BCG6dldnn62LDQ3jm87MICzbx1Zf202HudmMp/ZMRndsMrfVtWuvfaK1/b/+62Ju01ndorQdrrUO01hla639qrZ/QtrW6tlnnr2itR2qtJ+kea23FwGit+e4bh+kwd/OHW6dcNElPkEnxh9umEhZi4n/fPCw3xDZ/3nCCo+WN/PLGSaTGhl/09d9eMZbsIbF8/618Gd20WZtfzlsHyvjqktHMGDbooq+/cXoG108dwmMbizhe2Z/dxvxfUVUTv113jOUTUrntAo2n3aSMOL6dM471Ryp577AEwgA0tXfx7dcOMiI5iu9dPf6ir0+KDuMPt03lZHULf9lY5IYSej+tNd9+7RBKKX5/y5SLZjgPCTLxp9unoYHvvZUv7YrNb3OPcaq6hd/ePKVfyd9+eM0ERqVE88jrh2nrlBtigDf3l7LuSCX/s3wME9PjLvr6z84ZSk52Kr9bd5yztRedlwkI+aUN/GXjCVZNHcKqqekXff3MrAS+tmQ0bx8oY2NhpRtK6P3Ot3TyyBuHGZcWw/8sH3vR16fFhfPbm6dwtLyRJzfLQIuzjOjcbldKTTLgPMINNhytYmNhFf+zfCwj+pn1MzU2nEdWjGPX6Tre3F/q4hJ6v7O1Lfx9y0lumJbOsgmfDtXpTVhwEL+4YRLVzR388QOZeWzv6uan7xxhwuBYvrx4ZL/f94NrJhAVFswP35YbYq01P3nnCBEhQfzfDZP6nZznC/OHkz0klp+9e4TmDpl5/Oumk5Q1tPO7Wy4+2Gd3+agkbpqewVMfnpKIFuDdQ+XsOFXLd1eOIzOh7wgMR5kJkXxz2Ri2HK9mbb5EtByvbOKZbaf5zJyh/d6lICI0iJ9fP5HS+jb+ukkGWpo7zPzi/aNMGxrPvfNH9Os9Sil+ct1EQkyKH68ukHZFa368uoD4yBB+cl12v9/34KKRjEqJ5kerC2jvkoGWP35wnLqWDh69dSqhwf3rai2dkMrVkwbbMipLRIszjOjczgf2KqWOKaUOKaUOK6UOGXBeYbBOs4VfvH+UEclRFwy9682tMzOZNjSeX64pDPgR4l++X0hIkIlHrhp3Se+bkhnPHbOH8uz2M5ysDuwb4qc+PEVZQzs/vHbCJe1jmxgdxrdXjGXnqbqAvyHOO1bNhydq+PqVo0mO6f8WP0Emxc+un0hlYwdP5J10YQm9X3FdK09vPc2N09OZPvTi0QOOvrtynHVg4b0jLiqdb2jv6uZXawqZMDiW22cNvaT3fu6yYYwfHMvP3zsa8KF4//feUaLCgvs1y+No7ohEbpiWzpNbTlFyPrBviB/fVERNcyc/uja7z+VWvUmLC+fhZWPYdKyavOOBHeL9/uEK9pw9z7eWj72kLX5Cg038dFU2xXVt/HPraReW0PsVVTXx/Efn+MycoUwY8un13hfy/WvGE2RS/HKN5GhxhhGd26uA0cBy4FrgGtu/wsv8Z08xp2pa+N7K8ZfUoQBrEovvrRxPdVMHz+0445oC+oB9586ztqCCBxaO7Fc4ck/fXDaGsGATfwrg2dvzLZ38Le8kOdmpA9rv8vZZQxmVEs2j648HbHIpi0XzqzWFDE+K4s65wy75/dOHDuKayYN5ettpaps7XFBC3/D7dccwmeDbOZc2UAXW8OQHF41i07Fq9p6tc0HpfMO/d5yltL6N7189/pI6FADBQSa+e9U4Suvb+M/uwE1auL2ohs3Hq/naktEkRF36nqH/L8faIf7LhsCdva1sbOeprae5fuoQpmbGX/L7P3dZFhmDInh03fGAnb01d1v4TW4h49JiuHXmxZe59DRvZBJXjkvh75tP0tAWuMuvfrP2GJEhQXxj6ZhLfu/guAjuu2IE7x+uoKCswQWlCwxOd2611meBeKwd2muBeNtzwot0dVt4Iu8k04bGs2RcyoDOMTMrgQVjknli88mADWf868Yi4iNDuHf+8AG9Pyk6jLvnZfHOoTKOVQTmutFntp+hpbObb13iDIVdkEnxjaWjOVHVHLDZVtcfreRYZRPfWDq63yFPPX1j6Rjau7p5YnNgzt6erW1h9cEy7po7jLS4Sx+oArh73jCSokP5/brjBpfON7R3dfPkh6eYNzLxgsnMLuSK0UnMyhrEYxuLAjac8bFNRaTEhHHXZZc+UAXWjKufmTOU1/aVcKYmMNeNPvXhKczdFh5edukdCrDOPH79ytEcLm1g3ZHAXDf67qFyzta28vCyMZc8UGX38LIxNLabA3b29lhFE+uOVHLP/OEk9WPdfG/unT+c2PBg/rA+MNsVIxixFdDXgReAFNvX80qprzp7XmGstw+UUVrfxkOLR/V7bV5vvrlsDOdbu3jxo8AbvzhS1siGwiq+cPlwoi6QHflivrRgBFGhwTyeF3ij7E3tXTy77TQ52amMSY0Z8HlWThzMuLQYHttUFHCj7Fpr/rqpiGGJkVzdy7Y//TUqJZrrp6bz751nqW8NvK2Bnth8kuAgE1+8on9r83oTGRrMAwtHsv1kLXvPnjewdL7h1b0lVDd18NDiUQM+h1KKby4bS1VTB68G4JZz+86dZ/vJWr54xYh+r/nuzZcXjyTYpAJysOp8SycvfHSO66YMYVhi1IDPc8O0dIYnRfHXAGxXLBZruzImNZpl4/uXS6Q3E9PjuGpiGs9sOx2QkyCP5xURGRrEPZe49M9RXEQI9y8YwQdHqzhaLlvODYQRYcn3AnO01j/UWv8QmAt80YDzCoNYLJrH84oYPzh2wLO2dlMz45k7IoFnt53B3G0xqIS+4fG8IqLDgrn7siynzhMfGcptszJ571A55Q1txhTOR7zw0Tka2808tHi0U+cxmRT3LxhBUVUzmwNsjdTWohoOlTTw4MKRBF/i8oKe7l84gvYuCy98dM6g0vmGioZ2Xttbwq0zM0gZwPICR3fMHkpMeDBPB9hMRVe3hb9vtkYDXTby0pcXOJo7IoEpGXE8ve1MwO03+vgmazTQZ+Zc2nrlnlJiwrlpRgZv7C8NuKUGz2w/Q2tnN192YpAFrGHy910xnEMlDew+E1iDVeuPVnKiqrnXPb4v1ZcWjqSp3Rxwg1Vna1t452AZd84dxqABLC9wdNfcLCJCggJ2BtxZRnRuFeAYS9Rte054ic0nqjlV3cIDC0c4NWtrd9/8EZQ1tLMmgBL6lDe08f7hcj47ZyhxkSFOn+/z87KwaM2/tgfODLi528K/tp9h/qgkJmVcfIuGi7lm8hBSYsIC7uL/9NbTpMSEceP0DKfPNS4tlitGJ/Gv7WfoNAfOYNXzO89itmi+tKD/mbr7EhUWzGfmDGVNfnlAZbj84EglJefbeHDhSKfbFaUU914xgtM1LWwsrDKohN7vTE0LHxyt4u7LspyKBrL7wuXD6TRbeH5n4AxWdZi7eX7nWZaOdy4ayO7GaRkMigzhqQ8DazuWp7eeJmNQhFPRQHZTM+OZOWwQT287HVB5Mf61/SxBJsV9A1y25iguMoRbZ2bw9oFSqhrbDShdYDGic/sM8JFS6sdKqZ8AO4F/GnBeYZDnd5wlKTqMqyY6f9ECWDIuheFJUTwVQJ2Klz46h4YBJe/pTWZCJFdNHMyLH52lJUBCdzYUVlHe0M7nBriurKfQYBN3z8viwxM1FFYERujOudpW8o5Xc8fsoQNea9vTvfOHU9XUwbuHAmP9cqfZwsu7z3HluJR+b1tzMZ+fl4VJKZ7dfsaQ8/mCf+88S3p8BFc6EcLo6KqJaQyJC+eprYHTqXjho7MEmxSfdXLW1m5USjRLxqXw751nAmb98prDFdS1dHL3PGPalYjQIO6cO4z1RysDZv3y8comPjpdx51zhzkdDWR33xXDKa5rY/2RwJgEae008+reYlZMHOx0NJDdPZcPx2zR/Htn4EyCGMWIhFKPAvcAdUAtcI/W+o/OnlcYo7iulY3HqvjM7EzDboZNJsXn52VxsLie/FL/z+bWabbw0u5iFo817mYY4J7Ls2hsNwdMp+L5nWcZEhfudGi8o8/OsXbyXgiQmYoXdp3FpBR3zDbmZhhg4ZhkRiRH8XyANKBrCyqoae7kLieXFzgaHBfBiolpvLqnOCA6FUVVTWw/Wctn5w4dcOKZnkKCTHxuXhY7T9VRVOX/yfbau7p5ZU8JORPTDLsZBmu7UtPcSW5BYHQq/r3zLCOSorh85MASmvXmrrnDCFKKl3YFRrvy/M6zhAabBpQhuS/LJqSRHh8RMFEE7xwso6ndbNjgPUBWUhRXjkvhpV3FdAXYMkBnGZFQaiRQoLX+M3AYuEIpFe/seYUxXtx1znozbNDIsN3109IJCzbx8m7/v3CtO1JBdVMHdxk0a2s3Y9ggRqdE83IAbIFxqrqZD0/U8Jk5Qw0bGQbr+uWVE9N460Cp3++/3N7VzSu7i1k+IXXA2X17o5TijllD2XeunuOV/t+p+PeOMwxLjOSKAWb37ctnZg+lsd0cEPsvP7/zHKFBxt4MA9w8I4NgkwqIbYFWHyyjoa3L8Hbl8pFJZCZEBEQdFpQ1sPfseT47d5jT60QdpcSGc+X4FF7fV+L3yzWaO8y8sa+UayYPHtA2VH0JMilum5XJ1qIav1+uobXmuR1nGZcWw8xhl7Zf+sXcMXsoNc0dAbVcwwhG3GW+DnQrpUYBTwCZwIsGnFc4qdNs4ZXdxSwdn8LguAhDzx0XEcLVkwbz9v4yWjv9O6z2+Z1nyUyIYMGYZEPPq5T14r//XL3fbwv0wkfnCAlS3DrL2JthgNtmDaWp3cz7h8sNP7c3ef9wOedbjb8ZBrhxejohQYqXd/n3DXFhRSO7z5znzjnG3gwDzB2RyNCESL+f7WntNPP63hJWTkob8FYXfUmKDmPZhFRe31dKh9m/B6te2HmW0SnRzBmeYOh5TSbFbTMz2X6ylrO1/h1W+/zOc4SHmLjZgPwDPd0+ayg1zZ1sOOrf2wK9tb+U5g6zS9qVm2dkYFL4/UDLwZIGCsoauXPuMEPy2jhaOCaZ1NgwXvbzdsVoRnRuLVprM3Aj8JjW+v8BxizuFE7ZdKyK2pZObjcwhNHRbbMyaeow8/5h/52pKK5rZeepOm6bmWlY+J2jG6dnEBrk3zPgXd0W3tpfytLxqaTEGDfjaDd3RAJZiZF+34C+treEYYmRTmem7U1idBjLJ6Txxv4Sv+5UvL63hJAgxU0zjL8ZNtlmKj46Xcep6mbDz+8t1hVU0tRhdmm7UtfSyQdH/Hem4nhlEwdLGrh99lDDb4YBbp6R6fedivaubt49WMbKSYMNSfLY04IxyQyOC/f7yKrX9pYwLi2GqZnxhp97SHwEC8ck8+reYr/eXeO1vcWEh5i4flq64ecODjJxy4xMNh+vpqw+sHbXcIYRndsupdQdwOeAd23PGX+lEZfsjX0lJEWHGR5+Zzd7eAIjkqL8ekTpzf2lANzggpFhgISoUJZnp/Lm/lK/Xau35Xg1tS2d3OSiOrTOgA9l15k6iqr8s1NRVt/GjlO13DgtwyU3w2DtVNS3dpFb4J8zFeZuC28dKGPx2BRDw+8c3TIjgyCT4j9+vAXG6/tKyBgUwewsY2cc7a4YnUx6fIRfD/i9sa+UIJNi1dQhLjl/mi23wat7S/x2rd76I9ZBFle1K0EmxS0zM9lyopqS8/4ZVnuyupkDxfXcOD3dZe3K7bOHUtnYQd4x/9yyr8PczTsHy8nJTiPagIznvbltViYWDa/uKXHJ+f2REZ3be4DLgP/TWp9WSg0H/m3AeYUTzrd0srGwiuunDjF0jaMjpawX/z1nz3Ou1v8u/lpr3txfytwRCaTHGxvW7ejWmdZORd4x/5ypeGN/KQlRoSwca2xYt6ObZqRjUtYQK3/01oFStIYbXDAybDd/VBLp8RG8uc8/G9BtJ2upburgxumuq8OU2HAWj03mrf2lfrkFRmVjO9uKarhhWrrhYd12QSbrzPrWohoq/XALjG6L5u0DpSwck2x4WLejW2ZmUt3UwbaiGpd9hie9ub+UwXHhzB1hfCSL3S0zMtAa3j7gn0kf39pfiknBqqmuuyYuGZdCYlToxxMF/mZTYRUNbV2GbM3Xl8yESOaNTOTN/SVo7X/tiisYkS35iNb6a1rrl2yPT2utf+180YQz3j1URle35gYX3sgBXGcbeX77gP9duPYX13O6psWlFy2AeSMTSYoO4639/teANrR1sf5IJddNGUKIiwZZAFJiwrl8VBJvHyz1u4u/1po39pUyK2sQQxONy9bdk8mkuHbKELacqKG2ucNln+Mpb+wrIS4ihMUGZuvuzaqp6VQ2drDrdJ1LP8cT3j5QisXFgywAq6YOQWtrBlJ/s/NULeUN7S6vw0Vjk4kND2a1H3bMqps62Hy8mlVT012yXMguMyGSmcMG+WUdWizWduXyUUmkGpitu6eQIBPXTB7MB0craWrvctnneMrr+0pJjgnjchcsF3J0/dR0ztS2crDE/3coMYIR2ZJHK6VeU0odUUqdsn8ZUTgxcG/sL2VcWgwTBse69HPS463hadaZJf/qVLyxr4TwEBNXTUxz6ecE2y7+G49ZRwD9yfuHy+k0W1w6W2a3amo6xXVt7C+ud/lnudPh0gaKqppdPsgC1k5Ft0Xzvp9l/G3uMJNbUMG1UwYTFhzk0s9aOj6VyNAgVh/0vwG/N/aVMm1oPCOSo136OSOTo5mUHsdqP+zcvr6vhJiwYJZNMGZ/4L6EBQexctJgcgsq/C6T/OqDZXRbtJvalSEcq2zyu73Ud52po7S+zWVh3Y6um5pOh9nid0te6lo6yTvm2ghJu5yJaYQGmfxyIskVjPjfeAb4G2AGFgPPAc8bcF4xQKeqm9l/rp4bprluHYWjVdOGcLK6hSPl/nPx7zRbePdQOcsnpBET7vol5NdPS6fTbPG7vQnf3FfKyOQoJqXHufyzcrJTCQ02+d0o+xv7SgkNNrFykuvz9I1Li2FMajSr/awBXXO4nPYuCzdMc/2NXERoEDnZabx/uMKvknMdKWuksKKJG10842i3auoQDpU0+FVyrtZO61ZRKycNJjzEtYMsYI2saunsZkOhf3Uq3txfwsT0WMakxrj8s66ePIRgk/K70OQ395USGRrE8mzXDrIATB8aT2ZChN91zD6OkHRDuxIXEcKScSm8c7DcL5e8GM2Izm2E1noDoLTWZ7XWPwauNuC8YoDsW6Jc56JkFT2tnDiYYJPyq07FtpM11Ld2cf0099ThlIw4hiVG+lUdVja2s+tMHddPdc8gS0x4CEvHp/DuoTK/ycxosWjeP1zOkrEpxEW4fpBFKcWqqensPnPer5KovHe4nMyECKYPjXfL5103dQgNbV1sOe4/6x3fO1xGkElx9WT3XBOvmTwEpfCr2du8Y9W0dnazyk3typzhiaTGhvlVx+xsbQv5pY1c78J1oo4SokK5YnQSqw+UYfGTTkVXt4W1BRXkZKcRGeqaJEiOlFKsmpLOtqIaqpv8Z8nLu4fKGZMazYQhro2QtFs1dQg1zR3sOFnrls/zZUZ0bjuUUibghFLqIaXUDYBrY5bEBeUWVDI1M97wvW37MigqlIVjkll90H8u/usKKogOC+ZyF2Wa7sl68R/C9pM1VPlJEpV1R6yzBStcHNbt6Lop6dQ0d7LdTy7+B0rqqWrqcHMdWm+83znoH/sGN7V3sb2olhXZaW4ZZAFrcq6EqFC/mqnILahkzvAEl2Wa7iktLpy5wxNZfaDMb5a85BZUMCgyxGWZpnsKMimunTyEvGNVNLT6x5IXe3RTTrb7romrpqZTWt/GvnPn3faZrrTrdB0NbV1ursMhWDS8d8g/BlpqmzvYc6aOFW6sw8XjUogJC/ardsVVjOjcfh2IBL4GzADuBO424LxiAErr2zhc2uDWixZYZyrKG9rZc9b3L/7dFs36I5UsGpvs8vV5jq6bmm69+B/2j07FuoIKRiRFMSrFfWNdi8YmExMe7DczFbkFFQSblMuTIDnKTIhk+tB4v2lANx2rprPb4tZrYkiQiasnWZOotHSY3fa5rnKyupmiqma3tyurpg7hVI11ps7XdZotbCysYun4VJevz3O0amo6Xd2aNfn+0a7kFlQyYXAsmQmuS67X07IJqYSHmPyqXQkPMbFwjOt2MOhpdGoM4wfH+k0kxgdHK7FoWO7Ga2J4SBA5E9NYm+9fS15cwYhsybu11s1Andb6Hq31TVrrnQaUTQzAuo9HNV2/jsLRleOt6x39oQHde/Y8Nc2dbr+RG5USzdjUGNb4QTKfhtYudpysZbkbZ8vAevFfNj6VD45W+vz+jlprcvMruGxkoltCkh2tnDSYwoomztS0uPVzXSE3v4Kk6DCmDx3k1s9dOWkw7V0WNh/3/f0d7bNl7lif5ygnO40gk2Jtge+3KztO1dLUbnZ7uzIxPZbMhAjW+kE+h6rGdvadO+/2OowKC2bx2BRyCyp8PjrNYtGsK6hkwehkIkLdN3gPcPWkNPadq6eiwfej03ILKkmPjyDbTSHJdldPGkxTh5ntRf4RneYqRmRLvkwpdQQotD2eopR63OmSiQFZm1/B6JRol2ez7Ck6LJgFo5PJza/w+RCy3IIKQoNMLHLhvqx9WTExjd1n6nx+XcqGwkrMFu32QRaw1mFDWxc7T/n2xf94ZTNnalvdfiMHn4SS+/oNcXtXN3nHqlg2IdVl+7L2ZfbwBBKjQv1isCo3v4IpGXFuW+piNygqlLkjEljjB+3K2vwKIkODmD/aPUtd7JRSXDVxMNuKanw+G/+6I5Vo7d6lLnYrJqZR1dTB/mLfjk47WFJPRWO7R9sVX0+c2dTexdYTNeS4efAeYN6oRGLCgv1iIsmVjIiN+SOQA9QCaK0PAgsMOK+4RLXNHew+U+eRCz9YL1xlDe0+vQ+X1prcggrmj05yS5bknlZMTENrWHfEty/+uQUVpMWGMyUj3u2fvWBMMpGhQT7fqcgtqEApWO7iLUN6kzEokknpcT5fh9uKamjp7PbINTHIpFg2IZWNRytp7/LdELLyhjYOljSQ46l2JTuNU9UtnKjy3azJ9qUui8emuCVLck852Wl0dWs2+njW5NyCCrISIxmT6v60LkvGpRAaZGLNYd++JuYWVBJsUlw53n1LXexGpcQwKiXa5ztmebalLp5oV8KCg1gyPoX1Ryr9JnGmKxiy8ENrXdzjKd9tyX3YhqNVWLR7Ey04WjY+lWCT8ukL15HyRkrOt3lkxhGsW7FkJUay1oc7FW2d3Ww+Xs3ybPfPloE1NHnx2BTWFVT4dMr83IIKpg8dREpsuEc+f8XENA4W11NW3+aRzzdCbkEFMeHBXDYi0SOfv2JiGi2d3Ww94btZk9fZ9qb0VLtinR3BpzsV+8+dp6a5w+1h3XbTMuNJjQ3z6TpsaLMudfHEbBlYs/HPH53k01EEWmvWFVQwd0Qi8ZHuSQzX01UT09h1uo7aZt+NTsstqCAxKpQZw9y71MXuqolpnG/t4qPTdR75fF9gROe2WCk1D9BKqRCl1P8ARw04r7hEuQUVHlkDYBcXGcJlIxN9OjQ5t6ASk4Kl4z1zE6KUYsXEwew4WUt9a6dHyuCsLSeqae9ybwKfnlZMTKOmuZM9Z3zz4l9c10pBWaPHBlnA2oACPjvQYu628MHRKuuMS7D7Evg4mjcyiZjwYJ+eAc8tqGBUSjQj3bzUxS4lNpwZQwf59KBpbkEFIUHuTQznyGRSrMhOY/Pxap9NcLapsAqzRbs1gU9PKyamUVrf5rMJzoqqmjlV0+LRdmXFxDQsGtYf8c0ogg5zN3nHqlk2IZUgDwzeAywck0JESJDPts3uYESL/wDwFSAdKAWm2h4LN2ruMPNhUQ3Ls1M9Mqppd9XEwZypbaWwosljZXBGbn4FM7MSSIwO81gZrpqYhtmi+eBolcfK4Izc/AriIkKYPdw92130ZrGtQ+OrnQpPbHfR04hka4IzX21Ad585T12L+xPDOQoNNvl0grPzLZ18dLrOozfDYL0h9tUEZ9alLpXMG5lErAeWutitmDiYDrOFvGO+meAst6CClJgwpmXGe6wMy8ZbOzS+OtBib1eWTfDcNdGa6TrCZ9vm7UW1NHe4PzGco4jQIBaNTfaLBGeuYkS25Bqt9We11qla6xSt9Z1aa9/O5OKDNh+rptPs2dkysGbTNCl88sJ1pqaFY5VNHq/DyRlxpMdHsNYHG9CubgsfHK3kyvEphLhxu4uePk5w5qMX/3UFlYxLi2FYYpRHy7FiYhq7z9ZR1eR72S1zCyoIDXbvdhe9sSc42+GDey9vKKyi26I9fk20r23zxXalsKKJc3WtHsuFYfdJgjPfa1esieE8t9TFzp7gbK2PRqflFlQyNTOetDjPLHWBTxKcbT/pmwnOcgsqiA4LZt4ozyx1sbMnOPOXvZeNZkS25N8opWJtIckblFLVSqk7jSic6L+1BRUkRIUyy02bw/clKTqMWVkJPtkx+3i7Cw8k8HGklCInO40tJ2po9rEQso9O1dHoge0uenPVxDTKG9o5WFLv6aJckprmDnafrfNo+J3dVZNsCc4KfCuETGtrAp8Fo5OICgv2aFl8OcHZ2vwKhsSFMyk9zqPlyBgUyeSMOJ9sV9bmWxPDeWqpi12QSbE8O5VNhVU+l+Bsy/Fq2rq6vaJdWTFxMKdqWjhe6VsJzkrOt3K4tMFL6tCa4GzDUd9qV+yJ4RaNTSYs2P2J4Rx9nODMB9sVdzBiamW51roRuAY4A4wC/p8B5xX91GHuZlNh1cchM562YmIaxyubOVXtWxf/3IIK256A7tscvi8rJqbRabawqdC3QpNzCyqICAliwWjPzpaB9WYy2KR8bjubD+zbXXjBTcjY1BiGJ0X53NYN+aWNlNa3ecWNnD3B2fojvpXgrLXTzIcnqt2+V3VfcrLTOFjS4HMJznILKpg5bBDJMZ5b6mKXk+2bCc5yCyqJDQ9mrocSwznKmZCKUr6Xi+CTxHCeHWQBmJoRT1psuM/V4Z4zddS2dHo8CgM+SXDmq1EErmZE59Y+LH418KrW2nf3gfFR20/a1gBM9PxFCz5ZJ5jrQ7M91s3h68nx4FoURzOGDSIpOtSnOhUWi2bdkQoWjnH/5vC9sSc4W1dQ6VMX/9yCCjITIhg/OMbTRUEp62zPjpO1NLT6TghZbkEFQSbl8dkyuxxbgjNfCiHbfKyaDi9Y6mJnv6Fc50PXxHO2/BPeUof2BGe+1K6Yuy1sKKzkyvGpHl3qYpcSG870oYN8qg7Bek0ckxrNCA8lhnNkskURbDlRTVun70QR5BZUEhpsYtFYzySG62lFtjXBWUGZbyY4cyUjrhTvKqUKgRnABqVUMuB7C7R82LqCCqJCg5g30r2bw/dlSHwEkzPifOrin2vL3OepvRx7su+RmXesmg6zb1z8D5TUU9nY4TWDLADLs9M4XeM7e2Q2tXexraiWnAneMVsG1sEqs0Wz8ZjvDFatLahgdlYCg6I8s91FT4vHJhMaZCLXh2YqcgsqGBQZwqwsz2x30dPI5GhGpUT71KCpNySGcxQabGLJuBQ+OOo7e2TuOl1HfWuXV8w42uVkp3KkvJHiulZPF6Vfaps72H2mzmt+D8H6N9HeZWHzcd9IcGZNDFfB/FFJRHt4qYvdleNTMCnfGvBzFyMSSj0CzANmaq27gFZglf24UmqZs58h+vbxGoBxntkcvi852WkcKK6nosE3xjnWFVQwPCmK0SmeH9W0W56dRnOHme1FvpGIJreggmCTYslY77kJsa+f9pVOxSbb5vDeMsgC1hCylJgwcvN9o1NxsrqZoqpmr7oZjgkPYd6oRHKP+EYIWafZwobCKmtovxfMltnlZKey60wd51t8Y5u03IIKW3ZYzy91scvJtu6RufuMb0QR5BZUEB5iYoGHE8M5+iQ6zTfalQ1Hq7Bo7xlkAWuCs7iIEJ/pmBWU2Ze6eE+7kmjLceNLA37uYkirpbWu01p3275v0Vo7/rb+2ojPEL3bd+48Nc2e3e6iN/YLwPoj3n/hami1ZjL19DZKPc0bmUh0WLBPrEuxbg5fyWUjE4mL9Nx2Fz2lxoYzbWg8uT7wewjWm6Wk6FCmD/WO2TL4JIRs83HfCCH7ODGc110T0yiua+Noufdvk7bzVC1NXpIYzlFOdhrdFs0HPpCIpqqpnb3nzntdHS4ck0xosMknOmYWi3UbpQWjk4kM9Y7ZMoBhiVGMS4vxmUR7uQUVpMdHkD0k1tNF+VhIkIkrx6f4zDZp6woqMHlBYriecrLTOFbZxGkf3CbNldwxJNtrb0EptUIpdUwpVaSUeqSX45+3ZV4+YPu6z/VF9T1r8ysIDTKxeKz3jGoCjEqJYURylE8k89l4rBKzF2x30VNYcBCLbSFk3p6I5kRVM6drWryuQwHWi39+qfeHkLV3dZNXWOXRzeH7kpOdRltXN1tOeH8IWW5BJZMz4hgSH+HpovyXpeNtiWh84Jq4tqCCyNAg5o/2jqUudpPS4xgSF+4THbP1tsRw3rRMAyDKtk3augLvjyI4VNpARWO717XNYL0m7j5bR3VTh6eLckHNHWY+PFHjdYP3YF0z2thuZucp749OW1tQwcysBBKjPZ8YztFy20SSL1wT3ckdndtPXT2VUkHAX4GrgAnAHUqpCb289z9a66m2r6dcXE6fY18DcPmoRGI8uDl8X1Zkp7HzVB31rd4dQpabX0lqbBhTM+I9XZRPWZGdRm1LJ3vO1Hm6KBeUa9vuIsfD2yj1xn5jtO6Id4+ybz9ZQ0und2x30dPcEYnE+kAimvKGNg4W13tlHSbHhDFrWILXh+FZbEtdFo/1rqUuYE9wZt0mrcXLt0nLLahkWGIkY1M9nxiup5zsVMoa2jlc6t35P+2J4a4c7x0JfBzlZFu3SfP2KIK8Y1V0dlu8Ivt+TwvGJBMREuT17cpp29ZP3liHGYMimZTuWzlu3MFTi2lmA0Va61Na607gZRzW6Yr+OVLeSMl579juojf2ELINR713O5u2zm7yjlexfEKaRzeH78uisfYQMu9uQNcWVDAtM56UWM9tDt+X4UlRjE2N8fqL/9r8CmLCgr0mMZyjkCATS8ensuFolVeHkH2y3YV3XhOXZ6dSWNHE2VrvDSHbX3ye6qaOj2cEvE1OtnWbNG9ORNPY3sWOkzWs8JJtlHpaats20NuvibkFFVw2IpH4SO9IDOdo/OAYMhMifKAOK0mMCmVmVoKni/Ip4SFBLByTzLqCSixeHJ32yVIXb70mprL/XD2Vjb6R48Yd3LGI4Uwvz6UDxQ6PS4A5vbzuJqXUAuA48LDWurjnC5RS9wP3A6SmppKXl+dseV2qubnZsDK+eaITBUSeP0le3ilDzmkkrTUJ4YoXNueT2FRk2HmNrMO9lWbauyykmSvJy/POvf/GD1K8vfcMV0RXGnajZGQdVrdaKChr49axIV779zc2upN3Tjaxet0mYkONu9k0qh67LZo1B1vJTgpi+9YtzhfMBdIx09DWxT/e2sSERONm9Iz8XXx5VxuDoxQlR/ZQcsSQUxoqrtU6MPD46u1cNdy4aBtD67CwkyAFIdXHycs7Ycg5jdRt0USHwHMbDxJZe8yw8xpZhzvKzHR1a5I7ysjL886ByTHxijd3nWJWmHGdMyPrsKzZwqnqNi5P7vLadmVCbBcbjlez5oNNRAR7X9vcZdGsz29l9uBgPtyy2ZBzGm1okJm1TR08vXojo+K9s115dUcbw2JNFB3chXF3ssYZZGtX/vrWhywZ6p3tirsZ0rlVSs0DshzPp7V+zvbvjQM87TvAS1rrDqXUl4B/AUt6vkhr/STwJMDMmTP1okWLBvhx7pGXl4dRZfzVgS3MyorhupzLDDmfK1zbmM9/9hQzZ94Vhu19amQdrn7lAHERVdx/w2Kv2EOvN1VRxXz79UMkj5nOxPQ4Q85pZB3+c+tp4AhfvvZyspKiDDmn0ZJGN7D6L1tpGzSS62YNNey8RtXjzlO1NHXt5K7FU1g0ebDzBXOBOZ3d/CN/HRXBqXx50UTDzmtUHZ5v6eT4ug/40oIRLFo0zvmCucgzJz6kqD2IRYvmGXZOo+pQa82Pducxf3Q8K5fNdr5gLnJV7UHWFlQwb/4CQoONuW4beU185YW9pMSc5wurlnhlRBDAmZDT/PidI2Rmz2SkQXufGlmHf91UBBzjK6uuIC3O+yKCAKKy6sh9YgddyWO5asoQQ85pZB1uOlZFe/duPr90KovGeees47TWLp7OX0912BDuWzTesPMaVY+Vje2cXLuBby0bw6JFo50vmAtorfln4WZOd0WwaFFv84QDY+Tvors53Soopf4N/A6YD8yyfc28yNtKgUyHxxm25z6mta7VWttX6j+FdR9dYXO2toXCiiavDZOw8+a9zLq6LWw4WsWV41K8tmMLn+xl5q3hT7kFFYxNjfHaji1A9pBY0uMjvDa8O7egwrY5vHclhnMUERpkS0TjnSFkGwqr6PbCxHA95WSnse/ceaq8MITsWGUTZ2tbvb4OV0xMo6ndzA4vTETT3tVN3rFqlk1I9dqOLXySTdyb25WpmfFe27EFmD50EEnRYV5bh+sKKogKDfLKpS52cZEhXDYykdx870xwZs/V4U3b8/Vkz0Ww42QtDa1dni6OVzDijn4mcLnW+sta66/avr52kffsBkYrpYYrpUKB24HVji9QSjlOX1wHHDWgrH7D2zaH78vs4QnER4Z45cV/1+k6Gtq6vPqiBY57mXlfHdY2d7DnTJ3X16FSipzsNLaeqKGp3bsu/vZtlBaMTiLKSzaH70tOdhoVje0cLKn3dFE+JbeggsFx4UzOMCa6wVVyJqaitXcmOMvNr0QpWOaFieEcXT4qiajQIK/cJm3riRpavTQxnKMh8RFMyYjzyj3AS+vbOFTS4PV1GGRSLJuQSl5hFe1d3rVNWrc9Mdw470sM11NOdhpnals5Xtns6aJ8yrqCCkYkRTE6xZjoBlfJyU7FbNFsKPS+dsUTjOjc5gOXdAXSWpuBh4BcrJ3WV7TWBUqpnyqlrrO97GtKqQKl1EHga8DnDSir31ibX0H2EO/aHL43wR8novG+vcw+3hx+tPfOltmtmJjG8cpmr9vL7IOjlbbN4b37ZhisddjZbSHvmHdFEdg3h/fGbZR6unJ8CsEm5XUz4K2dZrYcrybHSxP4OBqbGkNWYqRXDlatLahg5rBBJMd413YXPYWHBLFobArrj3jfNmlrCyqIDQ9m7ohETxflopZnp3GwpIHyhjZPF+W/rPt48N7725Wc7FRaOrvZVuRdOTv2nj1PTXOn1w8QACyfYN0mzduuiQ2tXew4WctyH2hXpmTEkxbrG9ukucOAO7dKqXeUUquBJOCIUipXKbXa/nWx92ut39daj9Faj9Ra/5/tuR9qrVfbvv+u1jpbaz1Fa71Ya1040LL6m6rGdvad887tLnqT44V7mVk3h69g4Zhkw9YCu5K3hpCtza8gY1AEEwZ7z+bwfZkxbBCJUaFeWYfeuDl8b+IjQ5k7ItHr9sjcfKyaDrPF65dpwCdRBDtO1tLQ5j1RBMV1rRwtb/SZdmV5dio1zR3sP3fe00X5mLnbwoajlVw5PtWwtcCu9PE2aV42WJVbUMGY1GhGGLQW2JXmjUwiJsz7tknLLaggNMi7l7rYpcSGMy0z3uvqcENhJWaL9olBFpNJsTw7lc3Hq2nr9K4oAk9w5ur7O+D3wI+B64Ff2B7bv4SLfLwGwEduQq4YnURkqHftZXawpJ7Kxg6fqcP0+Agmpcd5VRheU3sX24pqfWK2DBxCyI5V02H2not/bkEFs4cnkBDlfdtd9CYnO5VTNS0UVXlPCFluQQWDIkOY7YXbXfRmeXYaZotmU6H3bJPmK0td7BaPSyEkyLu2s9l1po7zrV0+cTMMMColmpHJUV5Vh3Utnew6Xeczv4ehwSYWj0vhg6NVmL0kOk1r6+D95aMSiQk3LnuuK+Vkp1FQ1khxXauni/Kx3IIKUmPDmJIR7+mi9Is9x82WE94VneYJA+7caq03a603Ayvt3zs+Z1wRRU+5BRVkJUYyJtX7RzXBO/cyyy2oJNikuNJLMwj2Jic7lQPF9VQ0eEcimrxj1XR2W3zmJgSsF//mDjPbi7wjiuBUdTMnqpp9qg6XTfCuKIJOs4UNhVVcOT6VYC9ODOdoWmY8KTHelYgmt6CC8YO9f6mLXWx4CJePSiK3oNJrogjWFVQSFmxiwRjvny2zWzExjY9O13G+pdPTRQEcl7r4zjVxxcQ06lo62XPWO6IIjpQ3UnK+zafq8OMoAi/JRdDW2c3m49Usn5Dm1YnhHM0enkBchHfmuHE3I+4ElvXy3FUGnFf0oqHNugbAV2bL7HKy06hq6uCAFySisSbwqWDuiETiIn1jVBM+ufivP+IdF67cggoSo0KZMWyQp4vSb/NGJRLtRSFk9rWrvrDe1i4tLpypmfFes+5256lamtrNPnUjZ3KIIvCGRDTVTR3sOXveZ2Yc7XKy0zhX10phRZOni/Jxu7JgTDKRod6dGM5RTnYa3RbNBi+JIlhXUEF6fATZQ7x/qYvdwjHJhAabvKpdMSlY6uWJ4RxlJUUxLi3Ga+pwy4lq2rt8a/A+JMjEleNT2HC0yuty3LibM2tuH1RKHQbGKqUOOXydBg4ZV0ThaMNR6xqAFV6enbanxeNsiWi8IKz2eGUzp2pafK4OR6VEMyIpyis6Fe1d3WwqrGJ5dhpBPjKqCRAWHMSisclek4hmbX45UzLiSI+P8HRRLklOdhqHSxsoOe/5ELI1+RVEhgZxxWjv3e6iNznZabR1dbPFC7ZJW3ekAq3hqoneucdyX5aOtyai8YblGgdLGihraOcqH2tXJqXHMSQu3CvqsLnDzJYTNayY6FuD91FhwSwYncQ6L4kiWJtfzqysBJKivTsxXE/Ls9PYfaaOmuaOi7/YxdbmVxAfGcKcEb6x1MUuJzuNhrYuPjpV5+mieJQzM7cvAtdi3cLnWoevGVrrOw0om+jFmvwK0mLDfWYNgF1cRAjzRiWR6wWJaNbkl6MUPpF8xpFSipyJaew8VUt9q2dDyD48UUNLZ7fPDRCANYSstqWTPWc8e/EvrW/jYEmD12+j1Bv7DJ+nE9FYt7uo8IntLnqaOyKR2PBgrxisWptfwfCkKJ9Z6mKXHBPGzGGDvGK2Z01+uc8tdYFP9sj88EQ1rZ1mj5ZlY2EVnWaLT7Yry7PTKK1vI7+00aPlOFndzPHKZp+sw5xs6zZpH3g4NLnTbOGDo5UsHZ9KiI8sdbFbMDqZiBDvynHjCc6suW3QWp/RWt8BxPNJ5zbToLKJHlo6rNtdrJjoO2sAHOVkp3rFXmZr863bXaTEeO/m8H3JsSWi2XDUsyFka/LLiQ0P5jIf2O6ip0VjU2whZJ5tQO0zJb42WwYwIjmaManRHm9AraP8nT43WwbWRDRXjk+1ZuT0YAhZfWsnO07W+txsmV1OdhqFFU2cq/VcFIHWmrX5FcwbleRTS13scrLT6DBb2OzhbdLW5peTHBPGjKG+s9TFbun4VIJMnk9wZm9XfLFzO2FwLJkJER6vw20na2hqN/tkuxIRastxc6TCa3LceILTQxJKqa8BLwAptq/nlVJfdfa84tM2Hauiw0dHNQGWecFeZqdrWiisaGKFD3YoACanx3l8L7NOs4UPjlSydIJvbHfRU3RYMPO9IIogN7+CcWkxDE+K8lgZnJFjCyGr9WAI2dr8CsKCTSwem+KxMjgjJzuV+tYudp32XBTB+iPWpS6+eCMHn+Qi8OQ18Wh5E2drW322DmdlDWJQpGcT0bR1drOpsJqc7FSfHLxPiApldlaCxztma/LLmZoZz+A431rqArbotAlpbCuqpandc9ukrT1cYb1P8LGlLnY5E1OpbOzgoBfkuPEUI+5M7wPm2Pao/SEwF/iiAecVPazJryApOpRZPrLdRU8pMeFMH+rZELI1+eWAb45qwid7mW054bm9zHacqqWx3eyTM452OdmplNa3UVDmmRCyqqZ2dp+t89nfQ7B2Kiwaj0UR2PeqXjAmmagw30ng42jBmGTCPJyIZm1+xcdbjfmizIRIJgyO9XAdlmNS1gFcXxQcZGLp+FQ22MKCPWHz8Wraurp9vl05UdXMyWrPRKcV17WSX9ros4MsADkT0+jstpDnoSgCc7eFdUcqWDIuhbBg31rqYrdkbKo1x40XLHnxFCM6twpwvMvutj0nDGRP4LNsgm8l8OkpJzvVo3uZrc2v8MkEPo7se5lt9lAimrX55UT5YAIfR0vHp2LyYBSBNfGIb4Yk22UPiSU9PoK1HqrDgyX1lDe0s8KHsln2FBkazIIxyeR6aJu0pvYuPjxR43PZ93vKyU5j77nzVDV5Zpu0NfkVPpnAx1FOdhpN7WZ2nPLMNmlr88uJjwxh9nDfHLyHT7Lee6pd8eWlLnbThw4iKTrUY+3KrtPWvap9eYAgLjKEy0Ymejw6zZOM6Nw+A3yklPqxUuonwE7gnwacVzjYcrya1s5un/6DA8+GkJWcb+VQSYPPhiTbzR6eQLyHQsi6LZp1BZU+mcDHUWJ0GLM8GEK2Nr+CET6YwMeRUoqc7DS2nqihucP9iWjW5lcQbFIsHe+bs2V2K7LTqGhs51Bpg9s/e2NhFZ3dFq6a5OPtykRrIpr1HkhEU1Rl3ava19vm+aOTiAz1TCKaDnM3G45WscwHE/g4GhIfweSMOI/NmK3JL2fC4FiGJvrGXtW9CbJvk1ZY5ZFt0tbkVxAeYmLhWN/Zq7o3OdlpnK5p4USVZ3PceIrTVxGt9aPAPUAdUAPco7X+o7PnFf9tbUEFcRHW0RhfNizRupeZJ7Ks2hscX78JCQkyceW4VDYcrXT7Xma7z9RR29Lp0yPDdjnZaRyvbOZ0TYtbP/d8Syc7TvluAh9HOdmpthAy94Yma61Z48MJfBxdOT7FY4locgsqfDaBj6OxqTFkJUZ6pFNh/3/z9UHT8JAgFo9NYf0R90cRbD9ZS1OH2ecHWcDarhwsrqeiwb1RBJWN7ew7V+/z9zdgrcOWzm62n6xx6+fal7osGpPiU3tV92a5PceNF2zx5QlGDZF1A9r2Fdg7B7tAe1c364/4Zlry3uRkp7H7rPv3MnvvUBnj0mLI8tEEPo5yslNpbDez080hZO8dKics2MQiHx/VhE+2gnJ3p2LdkQq6LdovBghmZiWQGBXq9k5FQVkj5+p8N4GPo/jIUOaOcH8UQUuH2acT+DiyRxHsOFlDo5sT0bx7qJxpQ+NJi/O97Ps9Lc9Opbqpg/3F5936ue8dKicmLJjLR/nuUhc7e3TauiPu/Xt+/7A1n4g/DBDMG5lETFgwufnubVf2nD1PVVOHX9RhSmw40zLjyXXz76G3MCJb8texZktOQrIlu0TesWqa2s1cN3WIp4tiiJzsNLfvZXautpV95+r9pg4XjHH/XmZd3RbeO1zO0gmpPpvAx1HGoEgmprs/Ec3bB8oYnhTFxPRYt36uKwTZwoI3FVbRYXZfCNnbB0oJCVJ+0bkF6zXxVHULRVVNbvvM9Ucqaevq5rop6W77TFdanp1GV7dmU6H7ogiOVzZxtLyR66b4R7uyeFwKIUHuTUTT3tXN2vwKciam+WwCH0ejUqIZmRzlkXZl/OBYRqXEuPVzXSE02MTicSl8cLSSbjdGEbx9oJTwEJPPL3Wxy8lOI7+0kZLzntsmzVOMmAa8F2u25B9JtmTXWH2wlMSoUC738ZBku/GDY8hMcG8imncOlQFw7WT/uAkJD7HtZVbgvov/1qIa6lo6WeUnN3IAORPS2H/OfSFklY3t7DhVy3VThvh8SLJdzsRUmjvMbC9yTxRBt0Wz+mAZC8ekEB8Z6pbPdLXlE6yd9LVuDCF7+0Ap6fERzBzm2yHJdtMy40mJCXNrHa4+UIZJwTV+0q7Ehocwb2QSa/Pdl4hmU2EVzR1mVvnJwDNYOxU7T9VxvqXTLZ93traFA8X1fleHtS2d7D7jnm3SurotvH+4nGUT0vxi8B4cc9wEXtZkyZbs5Zrau9hwtIprJg8m2A9CksEaQnbN5CF8eKLGbaHJqw+UMXPYIDITfDfRQk/XTBlMVVOH20KT3zlQRmx4sM8nWnB09WRraPDqg6Vu+bx3DpahNX4TQQBw+agk4iJCeOuAe+pw1+k6Khs7/OpGLi0unFlZg3jrQJlbOhW1zR1sOVHDtVOG+HxIsp3JpFg5aTAbCqtoaHN9aLLWmrcPlnL5qCSSY3w3S3JP10wezLm6VvYX17vl81YfLCMpOozLRvjH4D1YBzu6LZp3baHCrvbOQdvgvR8NPC8el0xkaBBvu6ld2XqihvOtXX41eJ9lixBzVx16E6OzJf8YyZZsqHUFlXSYLVw31T9Cx+xunJZunYE5UObyzyqsaORYZZNf3QyDdTubmLBgXt9X4vLPauvsJreggpWTBvtF6JjdiORopmbG88Y+91z8Vx8sY1J6HCOTfTdLck9hwUFcM3kwuQUVbsmavPpgKZGhQX4TOmZ34/QMiqqaOeyGrMnv51vXffvbNfHG6el0mi0frz90pf3F9RTXtbHKz9rmqyYNJjzExBtuaFca27vYUOhfg/cAE4bEMi4txi11qLXmrQNlzM5K8OktDnuKDA1mxcQ03j1U7pasyW8fKCUuIoQFY/xn8B7ghmkZHCpp4ESl+5a8eAOjsyXXIdmSDfX2wTIyBkUwfWi8p4tiqNGpMUxKj+ON/a6/+L99oIwg26i+PwkPCeLqyYNZm19Ba6drOxUbCitp6ez2qxlHu5ump1NY0cSRskaXfs6p6mYOlTT4XYcCrB2z9i4La1zcqegwd/P+4QpystOICPWfQRaAlZMGExpscstAy+oDpYxJjWZcmu+vz3M0KT2OUSnRbulUrD5QRmiwiZxs/xpkiQ4LJic7jXcOlrt8HX1ufgWdZoufXhPT2X+unlPVrt2K5Wh5E0VVzX7aNmfQ1G7mg6OuDatt7TSz7kjlx9dgf3LdlCEEmRRv7A+s2Vuj/hdPA3nAVkAppaYbdN6AVtXUzraiGlZN9Z/1eY5umJZOfmkjx104omSxzQ5fMTqJxGj/CR2zu2FaOq22WVVXemt/KamxYcwZ7j+hY3bXTB5CSJBy+Q3xWwfKUH60Ps/R9KHxZCVGurxjlnesmoa2Lr+8kYuLCGHZ+FTeOVjm0i2+iuta2X3mPKumpvtdu6KU4oZp6ew+c55zta5LotLVbeHdQ2UsHZ9CTLhvb0XVmxumpdPQ1sWmwmqXfs5bB0oZmhDJ1Mx4l36OJ6yamo5JWdtOV3rrQCnBfjh4DzB3RCJpseG86eJ2Zf2RSlo7u/1ykCU5JowFo5N4a3+p27f48iQjsiX/DDgE/Bn4ve3rd86eV8Dre0vptmhunJ7h6aK4xHVTbSNKLrxwbS2qobS+zW/rcFZWAhmDIlxah1WN7Ww6Vs3109IJ8pP1eY4GRYWyeGwKbx8sw+yiTkW3RfPanmLmj0ryiy1DerJ2KjLYebqW0vo2l33OK7uLSY4JY74fbBnSmxunp1Pb0smW467rVLy6pxil4Ppp/hVOa3f9tHSUgjdd2KnYcLSKmuZObpzmn+3KfNs6YlcO+BXXtbKtqJYbp/vfIAtAamw4l49K4g0Xdio6zRbe2FfC4nEpJET5R3I9R0EmxfXT0sk7Xu3S/Cz/2V1MxqAIZmcluOwzPOnG6RmUN7S7fetITzJi5vZWYKTWepHWerHta4kB5w1oWmv+s/scs7MS/Gp9nqOk6DAWjknmrf2lLsv4+5/dxcRHhvhd6JidyWSdqdhWVOOyjL+v7i2h26K5fdZQl5zfG9w4PZ3qpg4+LHLNpvEfnqimrKHdr+vwhmnpaO26mYqKhnY2HavilhkZfrHfd28WjEkmMSrUZevouy2aV/aUsGB0sl+tz3OUHh/B3OGJvLG/xGXJuf6z+xypsWF+sd93b4KDTKyaMoRNx6qoc1HG31dsgyy3zsx0yfm9wY3T0yk538YuF2X83VhYSU1zJ3fM9u867LZo3nZRfpaztS1sP1nLbTMz/Sa5Xk/LJljzs7zmhuUa3sKIO4R8IN6A8wgHO0/Vcaa2ldtm+e9FC+CWGRlUNLa7ZG/C2uYO1h2p4MZpGX6VBKmnm2dkYNHWjrzRLBbNK3uKmTM8geFJUYaf31ssHpdCYlQoL310ziXn/8/uYhKiQlk6IcUl5/cGQxMjmTM8gZd3n3PJYNVre4uxaPz6mhgSZOL6aemsP1JJdZPxMxVbjldT0djO7X5chwC3zMzgbG0rO04aP1NRVt/G5uPV3DIj06+SIPV0y8xMuro1r+81/obY3G3hlT3FLByTzBA/HWQB61YsMWHBvLzLNe3KS7uKSYsNZ8Fo/xxkARiTGsOUjDhe2nXOJYNV/9ldjEnBzTP9MwoDrPlZrpkyhPcPl9PQ6vpM8t7AiCvzL4H9SqlcpdRq+5cB5w1o/9l9jpjwYL9cR+Fo6YRUUmPD+PfOs4af+839pXR1a27341FNgGGJUSwYk8yLu84avlZv5+lazta2csds/51xBGvG31tnZfLB0UrKDA6rrWnuYP2RSm6anu7XgywAd102jOK6NsPDai0WzX/2FDNvZCLDEv13kAXgs3OG0tVtjdwx2su7z5EUHcqVfpZpuqeVkwYzKDLEJe3Ka3tL/H6QBWBsWgyzsxJ4/qOzhofVbj5eTWVjh19HsoA14+9NMzJ4/3CF4WG1pfVtbDlRza0zM/x6kAXgzrnDKKpqZucpY2fAzd0WXt1bwuKxKQyO899BFoA75w6lvcvCq3uNnwTxRkb8RfwL+DXwKz5Zc/t7A84bsM63dPJ+fgXXT033u4ygPYUEmbhj9lA2H6/mbG2LYefVWvPSrnNMHxrPmFT/ygjam7vmDqOysYMNBmcVfGlXMbHh1pT8/u4zs4eigZcMHmV/bW8JZov2+5thgOUT0kiOMX6watvJGorr2gKiDkckRzN/VBIvfnTO0DXgVY3tbDhaxU3TM/wuI2hP4SFB3Dozk3VHKg1drtFt0fxnt3XtvD/tmd6XOy8bxtnaVsOXa7y06xxJ0WFcOd5/I1ns7pw7jE7bTLWR7JFat/hxWLfdtVOGEBcRwvMGtysbCquobuoIiHYle0gcM4YN4oWPzgVEYikjWrhWrfWftdabtNab7V8GnDdgvbjrHJ1mC3fOHebporjFHbOHEmRSvGBgSOjm49WcrG4JmDpcMi6F9PgIQzsVZfVtrDlczi0zMwkP8e9BFoDMhEiWjE3hpV3FdJqN6VR0dVt4bvsZ5o5IYFSK/w+yhAabuGNWJpuOVVFcZ1y22qe3niYpOjQgBlnAekNc1tDORgOXazy34yzdWvOZOf49W2b3mTlDsdgGOY2yrqCC0vo27pwbGHW4IjuNpOhQ/r3DuHbldE0LGwqruH1Wpt+unXc0KiWaeSMTeWGnccs12ru6eWHnWRaNSQ6IQRbrYFUGuQUVVDYaN1j19NbTDIkLZ8k4/x9kAeskyOmaFraddE1uEW9ixJXlQ6XUL5VSlymlptu/DDhvQOowd/Ps9jNcMTqJsX62B2FfUmPDyclO5ZU9xYbt1/rUh6dJjQ3zy21XehNkUnxmzlC2FdUatln3v3acwaI191yeZcj5fMGdlw2jprmDNfnG7Ne6Jr+CsoZ2vnjFCEPO5wvumDMUk1KGDbQUVTWx6Vg1n7ssy+/Duu2Wjk8hLTacf+04Y8j52jq7ef6jsyyfkOr3Yd12wxKjWDgmmRd3nTNsv9antp5maEIkyyYExiBLaLCJ22cNZWNhpWGDVc9sO02IycTn5gXGwDNYOxWl9W2GRVa9faCU2pbOgGpXPjtnGGaLNmwS5HBJAx+druOey4f7fVi33VWT0kiICuVf2894uiguZ8T/6DRgLvALZCsgp717sJzqpg7uC6CLFsC984dT39rFS7ucD905Wt7I1qIa7p6X5ffhd47umD2UiJAg/rb5pNPnaukw8+JH57hq0mAyBvn/yLDdwtHJjEqJ5m95J51OXqG15qkPTzEiKYrFYwNjZBhgcFwEKycN5oWdZw1JXvHPrWcICzbx2QCZcQRrttrPX57FtqJaDhbXO32+1/eVUN/aFZDtSnVThyFbpe07d569Z8/zhcuz/HJLtL7cOXcYwSYTf9/ifLtS39rJq3tKuG7qEFJi/G9LtL4sm5BKZkIEjxvWrpxm/OBYLhvpf/vO9yUrKYql41P51/YzNHc4Pwnyz62niAoN4jY/z8niKCw4iLvmDuODo1UcqzBmEsRbOX3n77D9z2LZCsg5FovmyS2nGJ0SzYLR/rmPY19mDEtgzvAEntxy0ulR9r9vPklESBCf8fMkSD0lRIVyx+yhvH2gzOlR9pd2naOp3cy984cbVDrfYDIpHlw4ksKKJjYcdS4kdMepWg6VNHDP/OF+u8VAX768aCQtndYoFGdUNbbzxr4SbpyeTmJ0mDGF8xGfnTOU2PBg/rqpyKnzmLstPPXhKaZkxDFz2CCDSucb5o9KYnJGHH/LO+n0+uW/bz5JTHhwQKxxdJQWF85NMzJ4ZU8JVU6GhD634yxtXd0B164EB5n40oKRHCiudzqD98bCKk5UNXPv/OF+uT/whXxl8Uga2rp48SPnooKK61p591A5t87KJDY8xKDS+YbPz8siMjSIx/Oca1e8ndOdW6XU15VSscrqKaXUPqXUciMKF2jeO1zOscomHloyKuAuWgAPLRlFZWMHr+8d+Cj7icom3j5YxucuG0Z8pP9tan4x9y8YQZBSPOHE7G1Lh5m/5Z1k/qgkpg8NrJthgOumDiFjUASPbSoa8Ci71ppH1x0nLTacW2b47xYDfRk/OJal41N4Zvtpp0bZ/7qpiG6L5oGFIw0snW+ICQ/h85cPZ92RSqdG2d/YX8qZ2lYeWjI64NoVpRRfWTyKc7ab2YHKL20gt6CSe+cPJyos2MAS+oYHF46k26L5x4enBnyOhtYu/vHhKZaOT2X84FgDS+cbbp6RQUpMGI85MViltebR9ccZmhDJqqmBseTK0bShg7h8VCL/+PA07V0DnwT5y8YTmEyK+xcEViQLwKCoUO6cO4x3DpZxpsa4JK7exoiYzS9orRuB5UAicBfWzMniEnRbNH/44DhjU2O4NkDWifY0f1QSUzLj+cvGE7R1DuzC9ccPThAZEsSXAvBmGKyj7DfPzOCVPcUDvnD9a8cZals6+ebyMQaXzjeEBJl4cJF1lP2DAc7ebjlRw56z5/nKklEBkYyrN19ZPIr61i6eGuANcWl9Gy/tKuaWmRkBs060p3vmZREVGsTv1h0b0Ps7zRb+vOEEUzLiWBoAmWl7s2x8KmNTY/jDB8cHnCju0fXHiYsI4QsBNuNoNzQxklVThvDvnWcHvFXaU1tP0dRu5pvLArNdCQ8J4v4FI9h+spatJwaW0Ce3oIKCska+fuXogEjG1ZuHFo+muqljwOtGT9e08Pq+Uu6cM8zvt//py33zhxMSZOLR9cc9XRSXMeKvwz4UvBJ4Tmtd4PCc6KcXPzrLqeoWHl42JuBCGO2UUvzvVeMob2jnn1sv/YZ4z5k63jtczhfmDychKvBmbe2+YWv4frWm8JLfW9XUzt82nWTJuJSAnLW1u3VmJiOTo/jF+0cv+Ya4q9vCL947SsagCG4LsBBGR9OGDuLqSYP5++ZTA9qO5de239+Hlow2umg+Y1BUKF9ePIr1RyrZPoAMl89uP03J+Ta+uXxswM3a2plMiu+uHMfZ2laeG0CCrm1FNWwsrOJLC0cEXAijo28uH4NFw+9yL32gpbS+jac+PM3VkwczYUjgzdra3Tl3GJkJEfz8vSOXnDm5w9zNr9ceY2RyFNdPS3dRCb3fZSMTWTIuhcc2FlE7gL2Df/H+UcKCrQPYgSolNpz7F4xg9cEy9p877+niuIQRndu9Sql1WDu3uUqpGMC4zfkCQE1zB7/NPcbloxLJyU71dHE8as6IRFZkp/F43klKL2GE2Nxt4ftv5TM4LjwgQxgdpcSG8+DCkawtqLjkEeJfvl9Ih9nC968e76LS+YaQIBPfu3o8p2taeHb76Ut677+2n+FYZRM/uGZCQCU06813Voyj26L55Zqjl/S+7UU1rD5YxgOLRpIeH5ij63b3zh9OenwEP33nyCUNtJQ3tPHHD06wdHwKC8cku7CE3m/R2BQWjEnmzxtOUNXU/4GWDnM3P3g7n2GJkXzh8sCctbXLGBTJffOH88b+Uvaerbuk9/7snSNoNN+9apyLSucbwkOCeGTFeAormnjxEreoenLzKU7XtPCja7MDKqFZb/535Thau7ovOaJlY2El649U8rUrR5McE1g5HHp6YOFIkmPC+Mk7lz7Q4guMuPO6F3gEmKW1bgVCgXvsB5VS2QZ8ht/SWvPj1QW0dXXzk+smBuzouqPvXT0eBXz7tYP93mz6qa2nKaxo4ofXTAjINVE9fXHBCEYkRfGd1w/R1N6/jLVbjlfz5v5S7l8wghHJ0S4uofdbPDaFpeNT+d264xRV9W/N47naVv6w/jiLxyazfEJgD1SBNZzxwUUjeftAGWvzK/r1ntZOM99/K5/MhAi+HMCj63bhIUH86NoJFFY09Xu9ntaaH7yVT7dF86NrpQkG+NG1E+gwW/ju64f7vZb+8U0nOVXdwo+vyw7Y5QWOvrx4FBmDIvifVw/1e9u+3IIK1hZU8NUlowMq835fVk5K44rRSfzy/aOcq+1f4seiKuvf/spJaSwI8IEqgFEpMdw3fzgv7Spm8/Hqfr2nsb2LH75dwKiU6IAfqAKICgvm+1eP50BxPU9uGfhaem9lRLZki9Z6n9a63va4Vmt9yOEl/3b2M/zZq3tKePdQOV+/cjSjUqRDAZCZEMn3r5nAtqJa/rn14rNm+8+d53e5x7hqYhorJgbG/oMXEx4SxO9unUJ5Qxs/eCv/ojdzVU3tfPOVg4xJjeahJaPcVErvppTiFzdOJCo0iG/858BFE1h0mLv56sv7CTIpfna9DFTZPbRkFBPTY/nem4cvul5Pa82P3i7gdG0Lv75psnQobJZnp3Hj9HT+uqmI3WcuPmv2r+1n+OBoFd9eMY7MBOlQAIxMjubbK8axobCqX3tl7jxVy182nuDGaekBtZXXhUSHBfPbm6dwuqaFn75z5KLtSml9G995/RAT02O57wrpUIC1Xfn1TZMJUoqHXzlw0d0h2ru6eejF/USFBctAlYOHl41hdEo0337t4EWjMbTW/O8bhylvaOfXN00O+Igqu+umDGHlpDT+sP64IVvOeRN3/A/3eoenlFqhlDqmlCpSSj3Sy/EwpdR/bMc/UkplubykbratqIbvvXWYy0cl8uAi6VA4un1WJiuy0/jFmqPkFvQ943O2toUvPreHtLhwfnXjZOlQOJg+dBAPLx3DWwfK+POGvmd8mjvM3PPMblo6zPzljunSoXCQEhPOb2+eQkFZI9985UCf24lYLJpvvXKQg8X1/PqmyTJD4SAkyMQfb5tKp9nCvf/aQ0Nb35EEf9t8klf3lvDQ4lHMGxlY26FdzI+uzWZoQiRf+vdeTlU39/m6DUcr+dl7R7lyXApfuDzLfQX0AffMy2LR2GR+tLqAvGN9J4srqmrigef3kpUYxU+vn+jGEnq/y0Ym8uCikby8u/iC2ZMbWru455ldmLs1f7ljOmHB0q7YDYmP4Bc3TmLv2fM88vrhPsNCzd0WvvrSfo5VNvH7W6aQGhs4ewNfTHhIEH+8fSqNbWa++NzeC2bl/8P647x7qJxvLR/DjADbDu1ClFL8/PpJJMeEcd9ze5zeQtKbuKNz+6m/WqVUEPBX4CpgAnCHUmpCj5fdC5zXWo8C/gD82tUFdafVB8v4wrO7GZEUzeOfnRHwayh6Ukrx6G1TmJwRz1de2MfLu859apR4/7nz3PLEDrotmmfvmU1cZOAm++jLQ0tGceP0dP7wwfFekyOV1rdx2993UFjRxOOfnc7YtBgPldR7LZ2QyvdWjuf9wxU88Pw+Glr/u3PW3GHmwRf28u6hcr6zYhxXTRrsoZJ6r1EpMfz1s9Mpqmritr/v+FQ4nrnbwq/XFvKbtce4bsoQHl4amBlVLyQuIoSnPz8LgFue2MGeHjO4Wmte3VPMg8/vY8LgWP50xzQZ7OvBZFL85Y5pjEmN4f7n9vLGvpJPtSu7Ttdx6993Emwy8ew9s4mWZS6f8v+Wj2XlpDR+8X4hv1937FODfmdrW7jl79s5U9PKk3fNYHhSYGY7v5BrpwzhW8vG8Ob+Ur720v5PLR9qaOvii8/tYf2RSn58bTaLx0n0QE/ZQ+L40+1TyS9t4DP/2PmpPC2dZgs/fecIf95YxG0zM3kwwPOx9CYhKpRn7plFR1c3Nz+x3W9mcNVA93Hs9wcotU9rPb3Hc5cBP9Za59gefxdAa/1Lh9fk2l6zQykVDFQAyfoCBZ45c6bes2ePK34MQ+w4WUvu9n0UdcSytaiGmcMG8cRdM0iKDuyF7RfS1N7Fg8/vY2tRDbOyBnHtlCEUnzpBdVASbx8sIz0+gn/ePUs6ZRfQbbGu6/73zrOMSI7ilhmZnC87TVfMYF7adY5gk4m/3DFNGs+LeG7HGX7yzhEGRYZw26xMxqTGsGlPAVsrTNS1dPC9qyfwhcuzpENxAVtP1PDg83vpsli4ZUYmM4YNYseBI+w7H8qJqmbumD2Un67KDthtLvrjZHUzn39mFyXn21g5aTCLx6ZwqOAox9qi+eh0HZeNSORvd04PyH2++6uh1dpx2HWmjrkjErhm8hDOnDxOuUrkvUPlDE+K4qm7ZzJScg/0qavbwv++cZhX95YwJjWam2dkUFNymvaoNF7eXUx4sIm/3TmDy0dJBMaFPLnlJL9cU0hKTBi3zcyko6aYsKRMnv/oHA1tXfx0VTafnTPM08X0ahuOVvLVl/YD1p0Opg2NZ9v+AnbXhnK6poV7Ls/ieyvHEyztSp+OVTTx+Wd2UdnYznVThrB4XAqWimPcsGKJp4vWJ6XUXq31zF6PuaFzu1NrPbfHczcDK7TW99ke3wXM0Vo/5PCafNtrSmyPT9peU9PjXPcD9wOkpqbOePnll1368zjjB9vaKG6yEB+muGp4CFcODSZYZmwvyqI1m4rN5J7poqrV+vsaEQwLMoK5bmQoUSFSh/1xoMrM20VdnG60jrIHK5iZFsRNo0NJjpSLfn+cbezm1WNdFNR2owGFZlxCELeMCWVEvITd9Uddu4VXj3eyp6KbLtuET2aMietHhTA9JUgGB/qhzax5u6iLD0u7aLFN+CSEK1YOD2FRprQr/dFt0Xxwzsy6M13UtlvblchgWJwZwjUjQ4gIljq8GK01eyu7WX2yi3NNtnbFBHPSgrlxdAiJEdKu9Mep+m5ePd5JYZ3F1q5AdlIQt4wJYVistCv9Ud1qbVf2VXVjD1AbFmvixtEhTEmW6Iv+aO3SvFnUybZSM61muG+cZn6W9w7wLV682HWdW6XUG8A/gTVa637tU2Bk59aRt8/cnqhs4sDe3dy0YnHA7mXrDK01pfVtbN2+kxtzFklSgAGqbupg/eZtXL98AZGhctEfiIa2Lqqb2jl2cA9XL1vs6eL4pLbObkrr28jft4vrvXh02Jt1dVsoOd/Gnl0fcfNVi2VgYAAsFmu7sm3HTm5asUiiBgaoqrGdD7Zs54blC4kIlQ7ZQNS3dvL+xq1cfeUVxEXIMquBaO00U1bfRsH+PazKkbZ5IDrNFs7UtlB0aA8rvfj+5kIzt0ZcxR8HPgOcUEr9Sik1th/vKQUyHR5n2J7r9TW2sOQ4oNb54nrO6NQYkiNN0rEdIKUUGYMiSYsyScfWCckxYQyJNknH1glxESGMSomRqAEnRIQGMSolmvhw+VseqJAgE8OTokiONEnHdoBMJkVmgrVdkY7twKXEhjMk2iQdWyfER4YyJNokHVsnRIYGMyolhrgwuR4OVGiwiTGpMUT68P2NEVsBfaC1/iwwHTgDfKCU2q6Uukcp1ddf6G5gtFJquFIqFLgdWN3jNauBu23f3wxsvNB6WyGEEEIIIYQQgcuQYUqlVCLweeA+YD/wJ6yd3fW9vV5rbQYeAnKBo8ArWusCpdRPlVLX2V72TyBRKVUEfBP41HZBQgghhBBCCCEEGLPm9k1gLPBv4FmtdbnDsT19xUO7glKqGjjbx+E4oMHAYwM9XxLQ17phoz/LW35moz9rIHU40M/y5Tq80DGj6/BCx/y5fvuqR3/9mf21Di90zBc+y9vbFV/4v5R2xflj0q44f8yddXihY77+Wd7QrnjL36W/tivDtNbJvb5Da+3UF7DY2XO44wt40shjTpxvjxs/y1t+ZqM/65Lr0Ed+LneWw9A69Jaf2QP122s9+uvP7K916Af169Xtio/8X0q74nw5pF3xoTr0op/ZL9sVL/q79Mt25UJfA84oo5S6sbfv7bTWbwz03C7yjsHHBnq+CzH6s7zlZzb6sy7El38udx9z12f5c/2687O84Wf21zq80DFf+KwL8eWfS9oV7/usix1z12f5c/2687O84WeWOvTOclyIt/zMvRpwWLJS6pkLHNZa6y8M6MR+zt2h2v5I6tB5UofGkHp0ntSh86QOnSd16DypQ+dJHRpD6tF5vlyHA5651VrfY2RBAsiTni6AH5A6dJ7UoTGkHp0ndeg8qUPnSR06T+rQeVKHxpB6dJ7P1qEzM7d3aq2fV0p9s7fjWutHnSqZEEIIIYQQQgjRTwOeuQWibP/GGFEQIYQQQgghhBBioAa8z63W+u+2f3/S25dxRfQPSqkVSqljSqkipZTs2dsHpVSmUmqTUuqIUqpAKfV12/NTlVI7lVIHlFJ7lFKzbc/HKaXeUUodtL1ewuVtlFJnlFKH7XVme+4/tscHbMcPOLx+slJqh60eDyulwj1WeC+hlHrYVh/5SqmXlFLhyur/lFLHlVJHlVJf6/GeWUops1LqZk+V25OUUk8rpaqUUvkOz91iq0eLUmqmw/NZSqk2h9/JJ2zPRyql3lNKFdre9ytP/Cye0lsdOhz7llJKK6WSejz/qd87pdTdSqkTtq+73VF2b9LH72Kv10Cl1DKl1F7btW+vUmqJw3vusD1/SCm1tmfd+6sLtMcJSqn1tt+r9UqpQbbnx9nakA6l1P/0OFe8Uuo129/0UaXUZZ74mTzhAvX4M9vv1AGl1Dql1BDb80op9WdlvV88pJSa3uN8sUqpEqXUY574eTzhAnX4Y6VUqcPf9Erb86FKqWdsf7cHlVKLbM8HbNtygTq85Ptrr29bLjW9ci8pmsOBrwCPA0/bv5w9rz99AUHASWAEEAocBCZ4ulze+AUMBqbbvo8BjgMTgHXAVbbnVwJ5tu//F/i17ftkoA4I9fTP4Q1fwBkg6QLHfw/80PZ9MHAImGJ7nAgEefpn8HD9pQOngQjb41eAzwP3AM8BJtvzKQ7vCQI2Au8DN3v6Z/BQvS0ApgP5Ds+Nx7ofeh4w0+H5LMfXOTwfiW2bOds180P7338gfPVWh7bnM4FcrPu5Jzk8/6nfOyABOGX7d5Dt+0Ge/tm8oR4djjteA6cBQ2zfTwRKbd8HA1X2+gZ+A/zY0z+bm+qvr/b4N8AjtucfcWiDU4BZwP8B/9PjXP8C7rN9HwrEe/rn84J6jHV4zdeAJ2zfrwTWAAqYC3zU43x/Al4EHvP0z+YFdfjjnr9rttd8BXjG9n0KsBfrhF7Ati0XqMNLur/2hbZlwDO3Dv4NpAE5wGYgA2gy4Lz+ZDZQpLU+pbXuBF4GVnm4TF5Ja12utd5n+74JOIq1k6GBWNvL4oAy+1uAGKWUAqKx/vGZ3VpoH2Srr1uBl2xPLQcOaa0PAmita7XW3Z4qnxcJBiKUUsFYG8Uy4EHgp1prC4DWusrh9V8FXsd6MxyQtNZbsP4dOj53VGt97BLO0aq13mT7vhPYh7VtCQi91aHNH4BvY73uOert9y4HWK+1rtNanwfWAytcUFyvdYF6/NQ1UGu9X2ttb1cKsP7dh2HtYCggyvaeWD5pf/zaBdrjVVg7q9j+vd72miqt9W6gy/E8Sqk4rAMN/7S9rlNrXe+GH8Er9FWPWutGh5dF8cnf9SrgOW21E4hXSg0GUErNAFKxdkgCxgV+F/syAeuAn72Nrsc6sBqwbYuB99de37YY0bkdpbX+AdCitf4XcDUwx4Dz+pN0oNjhcQkX/qMUWEMWsY6mfwR8A/itUqoY+B3wXdvLHsM6K1QGHAa+bu90CDSwzhZid3+PY1cAlVrrE7bHYwCtlMpVSu1TSn3brSX1QlrrUqy/a+eAcqBBa70OGAncZgvfWaOUGg2glEoHbgD+5qky+6jhSqn9SqnNSqkreh5USsUD1wIb3F4yL6KUWoV1NvFgj+f7+r2TdufCel4DHd0E7NNad2itu7AOaB3G2s5MwNZJCyQ92uNUrXW57VAF1s7WhQwHqoFnbH/rTymloi7yHr/Uox5R1iUuxcBngR/aXtbr365SyoQ12uC/Qr4DTc86BB6yhW8/bQ+RxxoheZ1SKlgpNRyYgTXyxfE88QRo2+Lk/bXXty1GdG7tI3T1SqmJWHv9KQacVwQwpVQ01pmIb9hGNx8EHtZaZwIP88nNRQ5wABgCTAUeU0rFfuqEgWm+1no6cBXwFaXUAodjd/DJrC1YZyjnY21g5wM3KKWudFtJvZCtkVyF9cZsCNaZmzuBMKBdW/d/+wfWpRgAfwS+I4Mrl6QcGKq1ngZ8E3jR8e/XNmP+EvBnrfUpD5XR45RSkVhDxH7Yy+E/Ir93A9HzGgiAUiob+DXwJdvjEKztzzSs14FDfHLzFxB6aY8/pq0xixfbdiMYa3j432x/6y1Yw5kDSm/1qLX+nu2+5gXgoYuc4svA+1rrEteW1Hv1Uod/wzrgPBVre/J720ufxtrp2oP1Grkd6HY4T8C2LYFwf21E5/ZJ203g94HVwBGsDYP4RCn/PWKUYXtO9MJ2M/E68ILW+g3b03cD9u9fxRrqDdb1j2/YwneKsK6RHOfO8nor28yjPSTnTWx1Zruo3wj8x+HlJcAWrXWN1roV69q96QS2pcBprXW1bfbmDWAe1rqy/y6+CUy2fT8TeFkpdQa4GXhcKXW9W0vsY2wzY7W27/dizU0wxuElTwIntNZ/9EDxvMlIrIMsB22/XxnAPqVUGn3/3km704c+roEopTKw/k1/Tmt90vb0VACt9UlbR+4VrNeBgNBHe1zpECY7mIsvwygBSrTW9pm21wiw9qWPenT0AtaIAej7b/cyrLOUZ7DOsH0uwBIifaoOtdaVWutu2+DeP7Dd52itzVrrh7XWU7XWq4B4rGtM7QKybTHo/trr25YBd26VUt9U1j1uY7FWwEzgr1g7tgEZbnIBu4HRSqnhSqlQ4HasAwGiB1ts/z+Bo/q/90ouAxbavl8C2EPJzgFX2t6bijVpTUCNwvVGKRWllIqxf491Ta09Y+hSoLDH6G8uMMmWSTAYa10fcWeZvdA5YK6tThTW37OjwFvAYttrFmJrMLXWw7XWWVrrLKw3b1/WWr/l7kL7EqVUslIqyPb9CGA0tr9fpdTPsUYCfcNjBfQSWuvDWusUh9+vEqyJQSou8HuXCyxXSg2yDUAvtz0nerkG2kIU38OaKGmbw2tLgQlKqWTb42VYrwN+7wLt8WqsN8TY/n37QufRWlcAxUqpsbanriSA2pe+6tG+pMVmFVBo+3411o6rUkrNxbokplxr/Vmt9VDb3/r/YF2XGxAz4Beow8EOL7sB232Ord2Osn2/DDBrrY/YHgdk22Lg/bXXty3O7HNr3992LNbsePbO2rXALmcK5W+01mal1ENY//ODsGaTLvBwsbzV5cBdwGH1yTY1/wt8EfiTrePVDtjXkP4MeFYpdRhr0o/vaK1r3Ftkr5QKvGm9lhEMvKi1Xms7djs9wvG01ueVUo9iHYjRWEOf3nNjeb2O1vojpdRrWBNOmIH9WEd7I4AXlFIPA83AfZ4rpfdRSr0ELAKSlFIlwI+wJqL4C9aMi+8ppQ5orXOwJpn5qVKqC7AAD2it62wzaN/DerO3z/Z7/JjW+im3/0Ae0Fsdaq0vaZ2nrR5/hvVvGqxJ0HpNruSvLlCPn7oGYg0JHQX8UCllD/9errUuU0r9BNhi+z09izVreiDoqz3+FfCKUuperPVxK4AtkmAP1kkPi1LqG1h3hmjEmvTsBdsA/ymskyKBoq96vNfW4bdgrccHbMfex5q1tghoJbDqqi991eEdSqmpWO9bzmBbToB1eWSuUsqCdYDqLvg4OiNQ2xbD7q+9vW1R1igbJ06g1BbgalvmLWyzRe9prRdc+J1CCCGEEEIIIYQxjFhzmwp0Ojzu5OKZ84QQQgghhBBCCMM4E5Zs9xywSyn1pu3x9cCzBpxXCCGEEEIIIYToF6fDkgGUUtOx7hkH1oyr+50+6QAkJSXprKwsT3y0EEII4REtLS1ERUkeRyGEEIFh7969NVrr5N6OGTFzi9Z6H9akKx6VlZXFnj17PF0MIYQQwm3y8vJYtGiRp4shhBBCuIVS6mxfx4xYcyuEEEIIIYQQQniUdG6FEEIIIYQQQvg86dwKIYQQQgghhPB50rkVQgghhBBCCOHzpHMrhBBCCCGEEMLnSedWCCGEEEIIIYTPk86tEEIIIYQQQgifJ51bIYQQQgghhBA+Tzq3QgghhBBCCCF8nnRuhRBCCCGEEEL4PKc7t0qpVKXUP5VSa2yPJyil7nW+aEIIIYQQQgghRP8YMXP7LJALDLE9Pg58w4DzCiGEEEIIIYQQ/WJE5zZJa/0KYAHQWpuBbgPOK4QQQgghhBBC9IsRndsWpVQioAGUUnOBBgPOK4QQQgghhBBC9EuwAef4JrAaGKmU2gYkAzcbcF4hhBBCCCGEEKJfnO7caq33KaUWAmMBBRzTWnc5XTIhhBBCCCGEEKKfBty5VUrd2MehMUoptNZvDPTcQgghhBBCCCHEpXBm5vbaCxzTgHRuhRBCCCGEEEK4xYA7t1rre4wsiBBCCCGEEEIIMVBGJJRCKXU1kA2E25/TWv/0Iu85AzRh3TbIrLWe2eN4HPA8MNRWzt9prZ8xorxCCCGEEEIIIfyL051bpdQTQCSwGHgKa6bkXf18+2KtdU0fx74CHNFaX6uUSgaOKaVe0Fp3OltmIYQQQgghhBD+xYh9budprT8HnNda/wS4DBhjwHk1EKOUUkA0UAeYDTivEEIIIYQQQgg/Y0Tnts32b6tSagjQBQzux/s0sE4ptVcpdX8vxx8DxgNlwGHg61priwHlFUIIIYQQQgjhZ4xYc/uuUioe+C2wD2un9al+vG++1rpUKZUCrFdKFWqttzgczwEOAEuAkbbXfKi1bnQ8ia1jfD9AamoqeXl5Tv44QgghhO9obm6Wtk8IIYQAlNbauJMpFQaEa60bLvF9Pwaatda/c3juPeBXWusPbY83Ao9orftczztz5ky9Z8+eAZVdCCGE8EV5eXksWrTI08UQQggh3EIptbdnMmI7p8OSlVJfsc3corXuAExKqS9f5D1RSqkY+/fAciC/x8vOAVfaXpMKjAVOOVteIYQQQgghhBD+x4g1t1/UWtfbH2itzwNfvMh7UoGtSqmDWDMrv6e1XquUekAp9YDtNT8D5imlDgMbgO9cILOyEEIIIYQQQogAZsSa2yCllNK2+GalVBAQeqE3aK1PAVN6ef4Jh+/LsM7oCiGEEEIIIYQQF2RE53Yt8B+l1N9tj79ke04IIYQQQgghhHALIzq338GarfhB2+P19C9bshBCCCGEEEIIYQinO7e2vWefAJ5QSiUAGVrrbqdLJoQQQgghhBBC9JMR2ZLzlFKxto7tXuAfSqk/OF80IYQQQgghhBCif4zIlhyntW4EbgSe01rPwbaFjxBCCCGEEEII4Q5GdG6DlVKDgVuBdw04nxBCCCGEEEIIcUmM6Nz+FMgFirTWu5VSI4ATBpxXCCGEEEIIIYToF6c7t1rrV7XWk7XWX7Y9PqW1vsl+XCn1XWc/QwghhBBCCCGEuBAjZm4v5hY3fIYQQgghhBBCiADmjs6tcsNnCCGEEEIIIYQIYO7o3Go3fIYQQgghhBBCiAAmM7dCCCGEEEIIIXye051bpVTiRV7yqrOfIYQQQgghhBBCXIgRM7c7lVKvKqVWKqU+NUurtf6FAZ8hhBBCCCGEEEL0yYjO7RjgSeAu4IRS6hdKqTEGnFcIIYQQQgghhOgXI/a51Vrr9VrrO4AvAncDu5RSm5VSlzldQiGEEEIIIYQQ4iKCnT2Bbc3tnVhnbiuBrwKrgalY19sOd/YzhBBCCCGEEEKIC3G6cwvsAP4NXK+1LnF4fo9S6gkDzi+EEEIIIYQQQlyQEZ3bsVrrXvey1Vr/2oDzCyGEEEIIIYQQF2RE5zZJKfVtIBsItz+ptV5iwLmFEEIIIYQQQoiLMiJb8gtAIda1tT8BzgC7DTivEEIIIYQQQgjRL0Z0bhO11v8EurTWm7XWXwAuOmurlDqjlDqslDqglNrTx2sW2Y4XKKU2G1BWIYQQQgghhBB+yIiw5C7bv+VKqauBMiChn+9drLWu6e2AUioeeBxYobU+p5RKcbqkQgghhBBCCCH8khGd258rpeKAbwF/AWKBhw0472eAN7TW5wC01lUGnFMIIYQQQgghhB9yunOrtX7X9m0DsPhS3gqsU0pp4O9a6yd7HB8DhCil8oAY4E9a6+d6nkQpdT9wP0Bqaip5eXmX9gMIIYQQPqy5uVnaPiGEEAInOrdKqb9g7aD2Smv9tYucYr7WutQWbrxeKVWotd7So2wzgCuBCGCHUmqn1vp4j895EngSYObMmXrRokWX/sMIIYQQPiovLw9p+4QQQgjnEkrtAfZi3f5nOnDC9jUVCL3Ym7XWpbZ/q4A3gdk9XlIC5GqtW2zrcrcAU5worxBCCCGEEEIIPzXgmVut9b8AlFIPYp2FNdsePwF8eKH3KqWiAJPWusn2/XLgpz1e9jbwmFIqGGtneQ7wh4GWVwghhBBCCCGE/zIiodQgrEmk6myPo23PXUgq8KZSyl6GF7XWa5VSDwBorZ/QWh9VSq0FDgEW4Cmtdb4B5RVCCCGEEEII4WeM6Nz+CtivlNoEKGAB8JMLvUFrfYpeQoy11k/0ePxb4LcGlFEIIYQQQgghhB8zIlvyM0qpNVjDhgG+o7WucPa8QgghhBBCCCFEfzmTUAoApdRPtdYVWuu3tdZvA1VKqRcMKJsQQgghhBBCCNEvTndugUyl1HcBlFJhWDMfnzDgvEIIIYQQQgghRL8Y0bn9AjDJ1sF9B8jTWv/YgPMKIYQQQgghhBD9MuA1t0qp6Q4P/wT8HdgGbFZKTdda73O2cEIIIYQQQgghRH84k1Dq9z0enwcm2J7XwBInzi2EEEIIIYQQQvTbgDu3WuvFRhZECCGEEEIIIYQYKCOyJacqpf5p2w4IpdQEpdS9zhdNCCGEEEIIIYToHyMSSj0L5AJDbI+PA98w4LxCCCGEEEIIIUS/GNG5TdJavwJYALTWZqDbgPMKIYQQQgghhBD9YkTntkUplYg1iRRKqblAgwHnFUIIIYQQQggh+sWZbMl23wRWAyOVUtuAZOBmA84rhBBCCCGEEEL0i9OdW631PqXUQmAsoIBjWusup0smhBBCCCGEEEL0kxHZkiOBR4BvaK3zgSyl1DVOl0wIIYQQQgghhOgnI9bcPgN0ApfZHpcCPzfgvEIIIYQQQgghRL8Y0bkdqbX+DdAFoLVuxRqeLIQQQgghhBBCuIURndtOpVQEn2RLHgl0GHBeIYQQQgghhBCiX4zIlvwjYC2QqZR6Abgc+LwB5xVCCCGEEEIIIfrFiM7t3cB7wGvAKeDrWusaA84rhBBCCCGEEEL0ixGd238CVwDLgJHAfqXUFq31nww4txBCCCGEEEIIcVFG7HO7SSm1BZgFLAYeALIB6dwKIYQQQgghhHALpzu3SqkNQBSwA/gQmKW1rurH+84ATUA3YNZaz+zjdbNs575da/2as+UVQgghhBBCCOF/jAhLPgTMACYCDUC9UmqH1rqtH+9dfKH1uUqpIODXwDoDyimEEEIIIYQQwk8ZEZb8MIBSKgZrluRngDQgzNlzA18FXsca8iyEEEIIIYQQQvTKiLDkh7AmlJoBnAGexhqefDEaWKeU0sDftdZP9jhvOnAD1nW8fXZulVL3A/cDpKamkpeXd+k/hBBCCOGjmpubpe0TQgghMCYsORx4FNirtTZfwvvma61LlVIpwHqlVKHWeovD8T8C39FaW5RSfZ7E1il+EmDmzJl60aJFl1p+IYQQwmfl5eUhbZ8QQghhTFjy7wb4vlLbv1VKqTeB2YBj53Ym8LKtY5sErFRKmbXWbzlXYiGEEEIIIYQQ/saImdtLppSKAkxa6ybb98uBnzq+Rms93OH1zwLvSsdWCCGEEEIIIURvPNK5BVKBN22zssHAi1rrtUqpBwC01k94qFxCCCGEEEIIIXyQRzq3WutTwJRenu+1U6u1/ryryySEEEIIIYQQwneZPF0AIYQQQgghhBDCWdK5FUIIIYQQQgjh85TW2tNlMIxSqho46+lyCCGEEG6UBNR4uhBCCCGEmwzTWif3dsCvOrdCCCFEoFFK7dFaz/R0OYQQQghPk7BkIYQQQgghhBA+Tzq3QgghhBBCCCF8nnRuhRBCCN/2pKcLIIQQQngDWXMrhBBCCCGEEMLnycytEEIIIYQQQgifJ51bIYQQQgghhBA+Tzq3QgghhA9SSq1QSh1TShUppR7xdHmEEEIIT5M1t0IIIYSPUUoFAceBZUAJsBu4Q2t9xKMFE0IIITxIZm6FEEII3zMbKNJan9JadwIvA6s8XCYhhBDCo6RzK4QQQviedKDY4XGJ7TkhhBAiYEnnVgghhBBCCCGEz5POrRBCCOF7SoFMh8cZtueEEEKIgCWdWyGEEML37AZGK6WGK6VCgduB1R4ukxBCCOFRwZ4ugBBCCCEujdbarJR6CMgFgoCntdYFHi6WEEII4VGyFZAQQgghhBBCCJ8nYclCCCGEEEIIIXyedG6FEEIIIYQQQvg8v1pzm5SUpLOysjxdjAtqaWkhKirK08UQQgghhBBCCJ+zd+/eGq11cm/HXNq5VUo9DVwDVGmtJ/ZyXAF/AlYCrcDntdb7bMfuBr5ve+nPtdb/utjnZWVlsWfPHqOK7xJ5eXksWrTI08UQQgghhBBCCJ+jlDrb1zFXhyU/C6y4wPGrgNG2r/uBvwEopRKAHwFzgNnAj5RSg1xaUiGEEEIIIYQQPsulM7da6y1KqawLvGQV8Jy2pmzeqZSKV0oNBhYB67XWdQBKqfVYO8kvubK8rvaTdwo4cKKd58969+yyEEIIIXzfhCGxPLBwBJGhfrUKTQgh+uTpq106UOzwuMT2XF/Pf4pS6n6ss76kpqaSl5fnkoIaoeBkO9UtZmrbqj1dFCGEEEL4MYvWfHC0khe2FXHXhFCmpnj6lk8IIVzP5690WusngScBZs6cqb15PeuiRbLmVgghhBDu8dGpWr73Vj5/3NfMVRMH8aNrs0mLC/d0sYQQwmU8vRVQKZDp8DjD9lxfzwshhBBCiH6YMyKR9792Bf8vZywbC6u48vd5PL31NN0W7emiCSGES3i6c7sa+Jyymgs0aK3LgVxguVJqkC2R1HLbc0IIIYQQop9Cg018ZfEo1j+8kJlZCfz03SOs+utWDpXUe7poQghhOJd2bpVSLwE7gLFKqRKl1L1KqQeUUg/YXvI+cAooAv4BfBnAlkjqZ8Bu29dP7cmlhBBCCCHEpRmaGMmz98zisc9Mo7Kxg+v/uo0fry6gqb3L00UTQgjDuDpb8h0XOa6Br/Rx7GngaVeUSwghhBAi0CiluGbyEBaMSeb3ucf4144zvH+4nB9dm83KSWkopTxdRCGEcIqnw5KFEEIIIYQbxYaH8JNVE3nry5eTHBPGV17cxz3P7qa4rtXTRRNCCKf0e+ZWKZUMfBHIcnyf1voLxhdLCCGEEEK40pTMeN7+yuX8a8dZHl13jGV/2MzXrhzNF68YQUiQzH8IIXzPpVy53gbigA+A9xy+hBBCCCGEDwoOMnHv/OF88K2FLBqTwm/WHuPqP3/I7jOS6kQI4XsuZc1tpNb6Oy4riRBCCCGE8IjBcRE8cdcMNhyt5IdvF3DLEzu4bWYmj1w1jkFRoZ4unhBC9MulzNy+q5Ra6bKSCCGEEEIIj7pyfCrrv7mALy0YwWv7Srjy0c28vrcEaw5QIYTwbpfSuf061g5um1KqUSnVpJRqdFXBhBBCCCGE+0WGBvPdleN596vzyUqM5FuvHuQz//iIk9XNni6aEEJcUL86t0opE7BCa23SWkdorWO11jFa61gXl08IIYQQQnjA+MGxvPbAPH5xwyQKyhq46o8f8ui6Y7R3dXu6aEII0at+dW611hbgMReXRQghhBBCeBGTSfGZOUPZ8K1FrJyUxp83FrHij1vYeqLG00UTQohPuZSw5A1KqZuU7PAthBBCCBFQkmPC+OPt03j+3jkopbjznx/x9Zf3U93U4emiCSHExy6lc/sl4FWgU9bcCiGEEEIEnvmjk1jz9Sv42pWjWXO4giW/z+P5nWexWCThlBDC8/rdubWtsTVprUNkza0QQgghRGAKDwnim8vGsOYbVzBxSBzffyufm57YztFymfMQQnhWvzu3yupOpdQPbI8zlVKzXVc0IYQQQgjhrUYmR/PiF+fw6K1TOFfbyjV/2cov3j9Ka6fZ00UTQgSoSwlLfhy4DPiM7XEz8FfDSySEEEIIIXyCUoobp2ew4VsLuWVGBk9uOcWyR7ew/kilp4smhAhAl9K5naO1/grQDqC1Pg+EuqRUQgghhBDCZ8RHhvKrmybz2gOXER0WzBef28P9z+2hrL7N00UTQgSQS+ncdimlggANoJRKBiwuKZUQQgghhPA5M7MSePdr8/nOinFsOVHNskc389SHpzB3yy2jEML1LqVz+2fgTSBFKfV/wFbgly4plRBCCCGE8EkhQSYeXDSS9Q8vZPbwBH7+3lGue2wbB4rrPV00IYSfu5RsyS8A38baoS0Hrtdav3Kx9ymlViiljimlipRSj/Ry/A9KqQO2r+NKqXqHY90Ox1b3t6xCCCGEEMKzMhMiefrzs3j8s9Opbenghse38YO38mls7/J00YQQfiq4vy9USv1ba30XUNjLc329Jwhr0qllQAmwWym1Wmt9xP4arfXDDq//KjDN4RRtWuup/S2jEEIIIYTwHkopVk4azBWjk/j9uuM8t+MMawsq+OE1E7hm8mCUUp4uohDCj1xKWHK24wNbx3XGRd4zGyjSWp/SWncCLwOrLvD6O4CXLqFMQgghhBDCy8WEh/Dj67J5+yvzSYsN56sv7efuZ3ZztrbF00UTQviRi3ZulVLfVUo1AZOVUo22ryagCrhYqHA6UOzwuMT2XG+fMwwYDmx0eDpcKbVHKbVTKXX9xcoqhBBCCCG816SMON76yuX86NoJ7Dt7nuV/2MJjG0/QaZaEU0II5100LFlr/Uvgl0qpX2qtv+vCstwOvKa17nZ4bpjWulQpNQLYqJQ6rLU+6fgmpdT9wP0Aqamp5OXlubCIzmtubvb6MgohhBBCuNJw4GeXhfDC0U5+t+44L247wd3ZYYxNCPJ00YQQPqzfa26xhhj/F6XUBq31lRd4TymQ6fA4w/Zcb24HvuL4hNa61PbvKaVUHtb1uCd7vOZJ4EmAmTNn6kWLFl3wh/C0vLw8vL2MQgghhBDucMMK2FRYxQ/ezueXu9q4ZUYG3105noSoUE8XTQjhg/oTlhyulEoEkpRSg5RSCbavLPoIMXawGxitlBqulArF2oH9VCizUmocMAjY4fDcIKVUmO37JOBy4EjP9wohhBBCCN+1eFwK6x9eyAMLR/Lm/lKu/H0er+wpRmvt6aIJIXxMfxJKfQnYA4wD9jp8vQ08dqE3aq3NwENALnAUeEVrXaCU+qlS6jqHl94OvKz/+yo2HtijlDoIbAJ+5ZhlWQghhBBC+IeI0CAeuWoc733tCkYmR/Pt1w5x25M7Kapq8nTRhBA+RPV3VEwp9VWt9V9cXB6nzJw5U+/Zs8fTxbggCUsWQgghhOibxaJ5ZU8xv1xTSGunmS8tGMlDS0YRHiLrcYUQoJTaq7We2duxfq+51Vr/RSk1EZgAhDs8/5zzRRRCCCGEEAJMJsXts4eydEIqv3jvKI9tKmL1wTJ+dv1EFo5J9nTxhBBerN/73CqlfgT8xfa1GPgNcN0F3ySEEEIIIcQAJEWH8ehtU3nxi3MINinufnoXD724j6rGdk8XTQjhpfrduQVuBq4EKrTW9wBTgDiXlEoIIYQQQghg3sgk1nzjCh5eOoZ1Ryq58veb+feOM3RbJOGUEOK/XUrntk1rbQHMSqlYoIr/3uZHCCGEEEIIw4UFB/H1paPJ/cYCJmfG8YO3C7jxb9spKGvwdNGEEF7kUjq3e5RS8cA/sGZL3ofD1j1CCCGEEEK40vCkKJ6/dw5/un0qpedbufYvW/nZu0do6TD/f/buO06K8v4D+Od7dxwICKggKqBg7/XErmc3xmiixmh+JmoKajSxJBqMvcQYW9RYsffeMCJF5AClyNF7b0fvcHdwZff7+2Nn9mZnZ2Zndmdvd7nP2xcvb3dnZp99dnbm+T4110kjojwQZEKpPxl/vigiAwF0UNUp2UkWEREREVEyEcFFR3ZD+f674t+DZuHV7xdiwNQVuO/CQ3DuIbvlOnlElENBWm4hIheLyJMA/gxgn+wkiYiIiIjIW8e2rfDwLw7Dp9efiI47tMK1b4/HH96sxLKNW3OdNCLKkSCzJT8P4DoAUwFMA3CtiDyXrYQREREREaVyzF474as/n4x/nH8gfpi3Fmc9MRz9RsxHQySa66QRUTPz3S0ZwBkADlJVBQAReRPA9KykioiIiIjIp1bFRehz6j44/7DdcV//6Xh4wCx8NmEZHr74MBy95065Th4RNZMg3ZLnAdjT8riH8RwRERERUc5136ktXv5tGV688hhsrG3AJS+Mwp2fT8WmrQ25ThoRNYMgwe2OAGaKSIWIDAMwA0AHEekvIv2zkzwiIiIiIv9EBOcduhu+/etp+N1JvfD+j0tw5hPD8eWkZTA6IBLRdipIt+R7spYKIiIiIqIQtW9dgrsvOBi/OKob7vx8Km76YBI+GV+FBy86FD07t8t18ogoC4IsBTTc63URGa2qJ2SeJCIiIiKicBzarSM++9NJeHfsYjw2cDbOeWoEbjx9X1x72t5oXVKc6+QRUYgCLQWUQpsQj0VEREREFIriIsFvT+iJb/96Gs45uCueHDIHP3l6JEbPX5frpBFRiMIMbjmIgYiIiIjyVtcObfDsr4/GG9cci4ZIFFe8PAa3fjQJ66rrcp00IgpBmMEtEREREVHeKz9gVwy++TTccPo++Grycpz55HB8OG4JolG21RAVsjCDWwnxWEREREREWbNDaTFuO/dADPjLKdh/1x3x90+n4lf9RmPOqi25ThoRpcl3cCsifxYRr1Wwf+Oy33kiMltE5olIX4fXrxaRNSIyyfj3B8trV4nIXOPfVX7TSkRERETkx35dd8QHfY7Ho5ccjrmrq3H+0yPx74GzsLU+kuukEVFAQVpuuwIYJyIfGQFrQkutqk6z7yAixQCeA/ATAAcDuEJEDnY49oeqeqTx7xVj350B3AvgOAC9AdybIrgmIiIiIgqsqEhw2bE98N1fy/Hzo7rhhYr5OOep4Rg2e3Wuk0ZEAfgOblX1LgD7AXgVwNUA5orIwyKyj8duvQHMU9UFqloP4AMAF/l8y3MBDFHV9aq6AcAQAOf5TS8RERERURA7tyvF4788Ah/0OR6lxUW45vVxuOHdCVi1eVuuk0ZEPvhe5xYAVFVFZCWAlQAaAewE4BMRGaKqtzvs0g3AUsvjKsRaYu0uEZFTAcwBcIuqLnXZt5t9RxHpA6APAHTt2hUVFRVBPlKzq66uzvs0EhEREbV0fY9SfLOwFfpPX4GhM1bg0v1LccaeJSgSTjNDlK98B7cichOA3wJYC+AVALepaoOIFAGYC8ApuPXjKwDvq2qdiFwL4E0AZ/jdWVX7AegHAGVlZVpeXp5mMppHRUUF8j2NRERERAScDeAva2tw95fT8M7MtZiyZQc8/IvDcGi3jrlOGhE5CDLmdmcAF6vquar6sao2AICqRgFc4LLPMgA9LI+7G8/Fqeo6VTUXF3sFwDF+9yUiIiIiyqaendvhrd/1xjNXHIXlG7fhwme/x/1fTUd1XWOuk0ZENimDWxHZ2Zjc6WkAW8zHluehqjNddh8HYD8R6SUipQAuB9DfdvzdLQ8vBGAeaxCAc0RkJ2MiqXOM54iIiIiImo2I4MIj9sDQv56GXx+3J94YtQhnPTEcA6etgCrXxiXKF366JY8HoHBex1YB7O22o6o2isiNiAWlxQBeU9XpIvIAgEpV7Q/gLyJyIWJjeNcjNlkVVHW9iDyIWIAMAA+o6np/H4uIiIiIKFwdd2iFh35+GC45ujv+8fk0XPfOBJx54K6478JD0GPntrlOHlGLJ5nUNomIaB5VV5WVlWllZWWuk+GJY26JiIiICl9jJIo3Ri3Ck0PmQBW46az98PuTe6FVcZBRf0QUlIiMV9Uyp9d8//qM1lbr4yIA72SYNiIiIiKiglNSXIQ/nLI3htx6Gk7erzMe+WYWfvbf7zF+MTsaEuVKkKqlHiJyBwCISGsAnyM2SzIRERERUYvUrdMOePm3Zej3m2OweWsDLnlhNO74bCo21tbnOmlELU6Q4PZ3AA4zAtyvAAxT1fuykioiIiIiogJyziG7Ycitp+GPp/TCR5VLceYTw/H5xCpOOEXUjPzMlny0iBwN4CjEZkz+FWIttiOM54mIiIiIWrx2rUtw508Pxlc3noweO7fFLR9OxpWvjsWCNdW5ThpRi+BntuQnbI83ADjYeF4BnBF2ooiIiIiICtXBe3TAp9efiPd+XIJHB87CeU+NxJ9O3wfXnbYP2rQqznXyiLZbKYNbVT29ORJCRERERLS9KC4S/Ob4vXDuIV3x0P9m4qlv56L/pOV46OeH4sR9O+c6eUTbpSCzJXcVkVdF5Bvj8cEi8vvsJY2IiIiIqLDtumMbPHPFUXjrd70RUcWvXxmLWz6chLXVdblOGtF2J8iEUm8AGARgD+PxHAA3h5weIiIiIqLtzqn7d8Ggm0/Fn8/YF/+bshxnPjEc7/+4BNEoJ5wiCkuQ4Lazqn4EIAoAqtoIIJKVVBERERERbWfatCrGX885AN/cdCoO3G1H3PHZVPzypdGYtXJzrpNGtF0IEtzWiMguiE0iBRE5HsCmrKSKiIiIiGg7te+u7fFBn+Px+C+PwII11bjgme/xr29mora+MddJIypoQYLbWwH0B7CPiPwA4C0Af85KqoiIiIiItmMigkuP6Y7v/lqOi4/uhpeGL8DZT47Ad7NW5TppRAXLd3CrqhMAnAbgRADXAjhEVadkK2FERERERNu7ndqV4tFLj8BH156AHUqL8bs3KnHd2+OxYtPWXCeNqOAEmS25LYC+AG5W1WkAeorIBVlLGRERERFRC9G7184Y8JdTcNu5B2DY7NU464nheO37hYhwwiki34J0S34dQD2AE4zHywA8FHqKiIiIiIhaoNKSItxw+r4YcstpKOu5Mx743wxc9Nz3mFK1MddJIyoIQYLbfVT1UQANAKCqtQAkK6kiIiIiImqh9tylLd645lg8++ujsGpzHS567gfc++U0bN7WkOukEeW1IMFtvYjsgKbZkvcBwNWniYiIiIhCJiK44PA9MPSvp+G3x++Ft8YsxllPDMfXU1ZAlV2ViZwECW7vBTAQQA8ReRfAUAC3p9pJRM4TkdkiMk9E+jq8fquIzBCRKSIyVET2srwWEZFJxr/+AdJKRERERFTwOrRphfsvOhRf/OkkdNmxNW54bwKueWMclq6vzXXSiPJOkOD2KgBfA3gAwHsAylS1wmsHESkG8ByAnwA4GMAVInKwbbOJxrEOB/AJgEctr21V1SONfxcGSCsRERER0XbjiB6d8OUNJ+HuCw7GuIXrcfZ/huP5inmob4zmOmlEeSNIcPsqgDYALgTwXwAvichNKfbpDWCeqi5Q1XoAHwC4yLqBqg4zxu8CwBgA3QOkiYiIiIioRSgpLsLvT+6Fb/96Gsr33xWPDpyNC/47EuMWrc910ojyQpB1bocB+CeAuwG8DKAMwPUpdusGYKnlcZXxnJvfA/jG8riNiFSKyBgR+bnftBIRERERba9277gDXvzNMXj1qjLU1EXwyxdH4++fTMGGmvpcJ40op0r8bigiQwG0AzAawEgAx6rq6rASIiJXIhYwn2Z5ei9VXSYiewP4TkSmqup82359APQBgK5du6KioiKsJGVFdXV13qeRiIiIiPJfMYB7ygRfzG+Fj8cvxYDJS3H5gaU4cY8SiHBRE2p5fAe3AKYAOAbAoQA2AdgoIqNVdavHPssA9LA87m48l0BEzgJwJ4DTVDU+A7OqLjP+v0BEKgAcBSAhuFXVfgD6AUBZWZmWl5cH+EjNr6KiAvmeRiIiIiIqHOeeBcxcsRl3fj4VL0/diKk17fHQzw/Dvru2z3XSiJpVkG7Jt6jqqQAuBrAOwOsANqbYbRyA/USkl4iUArgcQMKsxyJyFICXAFxobQkWkZ1EpLXxd2cAJwGY4Te9REREREQtxUG7d8An152Ih39xGGYs34zznx6JJwfPxraGSK6TRtRsfAe3InKjiHyI2OzGFwF4DbFZkF2paiOAGwEMAjATwEeqOl1EHhARc/bjxwC0B/CxbcmfgwBUishkAMMAPKKqDG6JiIiIiBwUFQl+fdyeGPrXcpx/2G545rt5OO+pERg5d02uk0bULMTvItAi8jfExtqON4LWvFNWVqaVlZW5ToYndksmIiIioubw/dy1uPvLaVi4tgYXHrEH7rrgIOy6Y5tcJ4soIyIyXlXLnF4L0i35cVUdm6+BLRERERERNTl5v8745qZTcNOZ+2HgtJU484nheGfMYkSj/hq3iApNkAmliIiIiIiogLRpVYxbzt4fFx65B+76fBru+mIaXv1+IXZq2yrXSaM89bdzD8CJ+3TOdTLSwuCWiIiIiGg7t0+X9njvj8fh84nL8OWk5Yj6HJpILU9Jke/OvXmHwS0RERERUQsgIrj46O64+OjuuU4KUVYUblhOREREREREZGBwS0RERERERAXP91JAhUBE1gBYnOt0pNAZwNpcJ4KIiIiIiKgA7aWqXZxe2K6C20IgIpVu6zIRERERERFRetgtmYiIiIiIiAoeg1siIiIiIiIqeAxum1+/XCeAiIiIiIhoe8Mxt0RERERERFTw2HJLREREREREBY/BLRERERERERU8BrfNRETOE5HZIjJPRPrmOj1ERERERETbE465bQYiUgxgDoCzAVQBGAfgClWdkdOEERERERERbSfYcts8egOYp6oLVLUewAcALspxmoiIiIiIiLYbDG6bRzcASy2Pq4zniIiIiIiIKAQMbomIiIiIiKjgMbhtHssA9LA87m48R0RERERERCFgcNs8xgHYT0R6iUgpgMsB9M9xmoiIiIiIiLYbJblOQEugqo0iciOAQQCKAbymqtNznCwiIiIiIqLtBpcCIiIiIiIiooLHbslERERERERU8BjcEhERERERUcHbrsbcdu7cWXv27JnrZHiqqalBu3btcp2MgsY8zBzzMBzMx8wxDzPHPMwc8zBzzMPMMQ/DwXzMXL7n4fjx49eqahen17Ia3IrIawAuALBaVQ91eF0APA3gfAC1AK5W1QnGa1cBuMvY9CFVfTPV+/Xs2ROVlZVhJT8rKioqUF5enutkFDTmYeaYh+FgPmaOeZg55mHmmIeZYx5mjnkYDuZj5vI9D0Vksdtr2e6W/AaA8zxe/wmA/Yx/fQC8AAAisjOAewEcB6A3gHtFZKesppSIiIiIiIgKVlZbblV1hIj09NjkIgBvaWzK5jEi0klEdgdQDmCIqq4HABEZgliQ/H4205ttv3ppNKZX1aDViMG5TkpBa2hoYB5miHkYDuZj5piHmSktKcK1hwjKc50QatGGzV6Nm76rRTF/yxnh9TAczMfM/fbAooK9r+R6zG03AEstj6uM59yeTyIifRBr9UXXrl1RUVGRlYSGoUdJPVp3VrRqxeWXMtHQwDzMFPMwHMzHzDEP01fbqBi9vAEL1mpe3/sKQXV1NfMwA/+bX4/N9YrTuyqKJNepKVy8HoaD+Zi5HaLbCvaamOvgNmOq2g9APwAoKyvTfO4fXl6e/33YCwHzMHPMw3AwHzPHPEzfknW1OPWxYWjTpjXzMEM8DzMzXecBc2fjpWvPRmkJF+JIF8/DcDAfM1fIeZjrK9AyAD0sj7sbz7k9T0RERADEaCFTNlBQjqlxEgpbbYkox3Id3PYH8FuJOR7AJlVdAWAQgHNEZCdjIqlzjOeIiIiIKI+YFSyMbYko17K9FND7iE0O1VlEqhCbAbkVAKjqiwAGILYM0DzElgK6xnhtvYg8CGCccagHzMmliIiIqAkbbinXeA4SUb7I9mzJV6R4XQHc4PLaawBey0a6iIiICl28W3Juk0HU1HLLfslElGO57pZMREREaRBGt5Qn1DgJGdoSUa4xuCUiIipADCQoXzS13OY2HUREDG6JiIgKEBtuKd+wWzIR5RqDWyIiogIkbLulPMEKFiLKFwxuiYiIChDXuaW8ocqqFiLKCwxuiYiICpAZTDC2pVzjOUhE+YLBLRERERGljb0HiChf+A5uReQB2+NiEXk3/CQRERFRSpxQivKEQjlTMhHlhSAttz1E5A4AEJHWAD4DMDcrqSIiIiJPnFCK8oUql6YiovwQJLj9HYDDjAD3KwDDVPW+rKSKiIiIPHFCKcoXPAWJKF+UpNpARI62PHwawEsAfgAwQkSOVtUJ2UocEREROWNLGeUTno9ElA9SBrcAnrA93gDgYON5BXBG2IkiIiIib2I03bLVjHJNFYxuiSgvpAxuVfX05kgIERER+RePJRjdUo4pT0IiyhNBZkvuKiKvisg3xuODReT32UsaERERpcKwgnKOE0oRUZ4IMqHUGwAGAdjDeDwHwM0hp4eIiIh8EC4FRHmCvZKJKF8ECW47q+pHAKIAoKqNACJZSRURERF54lJAlC+UawERUZ4IEtzWiMguMCqJReR4AJtS7SQi54nIbBGZJyJ9HV7/j4hMMv7NEZGNltciltf6B0grERHR9o3BBOUJxrZElC/8zJZsuhVAfwD7iMgPALoAuNRrBxEpBvAcgLMBVAEYJyL9VXWGuY2q3mLZ/s8AjrIcYquqHhkgjURERC0C17mlfMLglojyge/gVlUniMhpAA5A7Bo2W1UbUuzWG8A8VV0AACLyAYCLAMxw2f4KAPf6TRMREVFLZQYTjG0p13gOElG+EPVZ5SsibRFrvd1LVf8oIvsBOEBV/+exz6UAzlPVPxiPfwPgOFW90WHbvQCMAdBdVSPGc40AJgFoBPCIqn7hsF8fAH0AoGvXrsd88MEHvj5PrlRXV6N9+/a5TkZBYx5mjnkYDuZj5piH6dvaqLj+21r8vKfi5wcyDzPB8zAz782sw4iqBrx4NvMwEzwPw8F8zFy+5+Hpp58+XlXLnF4L0i35dQDjAZxgPF4G4GMArsFtQJcD+MQMbA17qeoyEdkbwHciMlVV51t3UtV+APoBQFlZmZaXl4eUnOyoqKhAvqcx3zEPM8c8DAfzMXPMw/TV1DUC3w5CaetS5mGGeB5mZviW6ZBli5iHGeJ5GA7mY+YKOQ+DTCi1j6o+CqABAFS1FqmHWCwD0MPyuLvxnJPLAbxvfUJVlxn/XwCgAonjcYmIiIh9QinHOO6biPJFkOC2XkR2QNNsyfsAqEuxzzgA+4lILxEpRSyATZr1WEQOBLATgNGW53YSkdbG350BnAT3sbpEREQtinAGH8ojPB2JKB8E6ZZ8H4CBAHqIyLuIBZtXe+2gqo0iciOAQQCKAbymqtNF5AEAlapqBrqXA/hAEwcAHwTgJRGJIhaEP2KdZZmIiKglM9e5ZaMZ5ZqqsrKFiPJCkNmSB4vIeADHI1ZBd5OqrvWx3wAAA2zP3WN7fJ/DfqMAHOY3fURERC1JfCmg3CaDiIgob/gObkXkHQDDAYxU1VnZSxIRERH5xuiWcoynIBHliyBjbl8FsDuA/4rIAhH5VERuylK6iIiIyANbbilfqHLMLRHlhyDdkoeJyAgAxwI4HcB1AA4B8HSW0kZEREQuOOaW8oVCGdwSUV4I0i15KIB2iM1oPBLAsaq6OlsJIyIiIqL8pwo23RJRXgjSLXkKgHoAhwI4HMChxtJARERE1Mw4Oy3lC8a2RJQvgnRLvgUARGRHxJYAeh3AbgBaZyVlRERE5MoMJpT9kinHYucgw1siyr0g3ZJvBHAKgGMALALwGmLdk4mIiKiZCZtuKW9wnVsiyg++g1sAbQA8CWC8qjbaXxSRnVR1Q2gpIyIiIlfxltucpoKIiCh/BOmW/HiKTYYCODqz5BAREZEf8aWAGN1SjnEpICLKF0EmlEqF1zUiIqJmwm7JlC9YwUJE+SLM4JaXNiIiombGmy/lGte5JaJ8EWZwS0REREQtjCqXpiKi/JAyuBWRXj6PxcsaERFRMxJhyy3lHs9BIsoXflpuPwEAERmaYrszM08OERER+SUAIwvKOU4oRUT5ws9syUUi8g8A+4vIrfYXVfVJ4//rw04cERERuRMRxrZEREQGPy23lwOIIBYI7+jwj4iIiHKArWWUD5RVLESUJ1K23KrqbAD/FpEpqvpNM6SJiIiIfBDhMiyUBzihFBHliSCzJY8SkSdFpNL494SIdEy1k4icJyKzRWSeiPR1eP1qEVkjIpOMf3+wvHaViMw1/l0VIK1ERETbPWHbLeUBBXsREFF+8DPm1vQagGkALjMe/wbA6wAudttBRIoBPAfgbABVAMaJSH9VnWHb9ENVvdG2784A7gVQhth1c7yx74YAaSYiItquseGWck3ZfYCI8kSQltt9VPVeVV1g/LsfwN4p9ukNYJ6xfT2ADwBc5PP9zgUwRFXXGwHtEADnBUgvERHR9o3NZZQHFOyWTET5IUjL7VYROVlVvwcAETkJwNYU+3QDsNTyuArAcQ7bXSIipwKYA+AWVV3qsm83+44i0gdAHwDo2rUrKioq/H2aHKmurs77NOY75mHmmIfhYD5mjnmYGY1GUV8fYR5miOdhZlat2gaNRpmHGeJ5GA7mY+YKOQ+DBLfXAXjLMs52A4AwxsF+BeB9Va0TkWsBvAngDL87q2o/AP0AoKysTMvLy0NIUvZUVFQg39OY75iHmWMehoP5mDnmYWaKh36DklbFzMMM8TzMzKcrJmLhphXMwwzxPAwH8zFzhZyHvrslq+pkVT0CwOEADlfVo1R1ivm6y4RPywD0sDzubjxnPe46Va0zHr4C4Bi/+xIREbVksQmlON6RiIgICDbmFgCgqptVdbPDSzc5PDcOwH4i0ktEShFbM7e/dQMR2d3y8EIAM42/BwE4R0R2EpGdAJxjPEdEREQwlgLKdSKoxVNVDv8morwQpFtyKknXNVVtFJEbEQtKiwG8pqrTReQBAJWq2h/AX0TkQgCNANYDuNrYd72IPIhYgAwAD6jq+hDTS0REVNAYUFA+UIAnIxHlhTCDW8fKY1UdAGCA7bl7LH/fAeAOl31fQ2wJIiIiInLCplvKNWVsS0T5IXC3ZA+8rhERETUjEWFsSzmnYLdkIsoPvoNbESlOsckPGaaFiIiIAuB0UpQPVMEmDiLKC0FabueKyGMicrDTi6p6Y0hpIiIiIj8YUFAeUNawEFGeCBLcHgFgDoBXRGSMiPQRkQ5ZShcRERGlIGBgQfmB9SxElA+CrHO7RVVfVtUTAfwdwL0AVojImyKyb9ZSSERERI445pbyAcfcElG+CDTmVkQuFJHPATwF4AkAewP4CrbZkImIiCj7hBEF5QH2HiCifBFkKaC5AIYBeExVR1me/0RETg03WURERJQKY1vKB4pYLwIiolwLEtwerqrVTi+o6l9CSg8REREFwEYzyjW23BJRvggS3DaKyA0ADgHQxnxSVX8XeqqIiIgoJRFhZEF5gOcgEeWHILMlvw1gNwDnAhgOoDuALdlIFBEREaXGdW4pH6iyizwR5Ycgwe2+qno3gBpVfRPATwEcl51kERERUSoiDG4p92JjbnOdCiKiYMFtg/H/jSJyKICOAHYNP0lERETkD6NbIiIiU5Axt/1EZCcAdwHoD6A9gLuzkioiIiJKia1llA9Uuc4tEeWHlMGtiNxqeXiN8f/njP+3Cz1FRERE5AvH3FI+UHDMLRHlBz8ttzsa/z8AwLGItdoCwM8A/JiNRBEREZE/DG4p15TRLRHliZTBrareDwAiMgLA0aq6xXh8H4Cvs5o6IiIicsVuyZQPWMFCRPkiyIRSXQHUWx7XG895EpHzRGS2iMwTkb4Or98qIjNEZIqIDBWRvSyvRURkkvGvv31fIiKilkwgXOaWco5jbokoXwSZUOotAD+KyOfG458DeMNrBxEpRmx87tkAqgCME5H+qjrDstlEAGWqWisi1wN4FMCvjNe2quqRAdJIRETUYrDlloiIqInvlltV/SdiE0ptMP5do6r/SrFbbwDzVHWBqtYD+ADARbbjDlPVWuPhGADd/aaJiIioJeOEUpQvWM9CRPlANIv9mUTkUgDnqeofjMe/AXCcqt7osv2zAFaq6kPG40YAkwA0AnhEVb9w2KcPgD4A0LVr12M++OCDLHyS8FRXV6N9+/a5TkZBYx5mjnkYDuZj5piHmflrRS327RDF9UczDzPB8zAzj43bitr6CO49iXmYCZ6H4WA+Zi7f8/D0008fr6plTq8F6ZacVSJyJYAyAKdZnt5LVZeJyN4AvhORqao637qfqvYD0A8AysrKtLy8vLmSnJaKigrkexrzHfMwc8zDcDAfM8c8zEybMd+hpKSBeZghnoeZeXneGNSt3cA8zBDPw3AwHzNXyHkYZEKpdCwD0MPyuLvxXAIROQvAnQAuVNU683lVXWb8fwGACgBHZTOxREREhYRjbikfqLJbMhHlh2wHt+MA7CcivUSkFMDlaFonFwAgIkcBeAmxwHa15fmdRKS18XdnACcBsE5ERURE1OJxzC3lGmfsJqJ8kdVuyaraKCI3AhgEoBjAa6o6XUQeAFCpqv0BPAagPYCPJVYFvURVLwRwEICXRCSKWBD+iG2WZSIiohZNBFCGt5RjCmUvAiLKC1kfc6uqAwAMsD13j+Xvs1z2GwXgsOymjoiIqHAJhE23lHNsuSWifJE3E0oRERFRMGLEttlc+aAlUFXmYQYUHHNLRPmBwS0REVGBKi4SjFkRQa87BqTemLwNYh5m4qCdsz2NCxFRagxuiYiICtR9PzsEn42YiJ49e+Y6KQVt0aJFzMMMtd+yNNdJICJicEtERFSoTt2/C6LLS1Fevn+uk1LQKiqWMw8zVFGxPNdJICLK+lJARERERERERFnH4JaIiIiIiIgKnmxPswOKyBoAi11e7ghgU4ivpXu8zgDWNtN75ctnDvu90snDdN+rkPPQ67Ww89Drte05f93ycXv9zNtrHnq9Vgjvle/3lUL4Lnlfyfw13lcyf60589DrtUJ/r3y4r+TL73J7va/spapdHPcwp7/f3v8B6Bfmaxkcr7IZ3ytfPnPY7xU4DwvkczVnOkLNw3z5zDnIX8d83F4/8/aah9tB/ub1faVAvkveVzJPB+8rBZSHefSZt8v7Sh79LrfL+4rXv5bULfmrkF9L93hewn6vfPnMYb+Xl0L+XM39WnO91/acv835XvnwmbfXPPR6rRDey0shfy7eV/LvvVK91lzvtT3nb3O+Vz58ZuZhfqbDS758ZkfbVbfkQiAilapalut0FDLmYeaYh+FgPmaOeZg55mHmmIeZYx5mjnkYDuZj5go5D1tSy22+6JfrBGwHmIeZYx6Gg/mYOeZh5piHmWMeZo55mDnmYTiYj5kr2Dxkyy0REREREREVPLbcEhERERERUcFjcEtEREREREQFj8FtMxGR80RktojME5G+uU5PvhKRHiIyTERmiMh0EbnJeP5IERkjIpNEpFJEehvPdxSRr0RksrH9Nbn9BPlDRBaJyFQzz4znPjQeTzJen2TZ/nARGW3k41QRaZOzxOcJEbnFyI9pIvK+iLSRmH+KyBwRmSkif7Htc6yINIrIpblKdy6JyGsislpEplme+6WRj1ERKbM831NEtlrOyReN59uKyNciMsvY75FcfJZcccpDy2t/FREVkc6255POOxG5SkTmGv+uao605xOXc9HxGigiZ4vIeOPaN15EzrDsc4Xx/BQRGWjP++2Vx/14ZxEZYpxXQ0RkJ+P5A417SJ2I/M12rE4i8onxm54pIifk4jPlgkc+PmicU5NEZLCI7GE8LyLyjMTKi1NE5Gjb8TqISJWIPJuLz5MLHnl4n4gss/ymzzeeLxWR143f7WQRKTeeb7H3Fo88DFy+zvt7S9C1g/gv+D8AxQDmA9gbQCmAyQAOznW68vEfgN0BHG38vSOAOQAOBjAYwE+M588HUGH8/Q8A/zb+7gJgPYDSXH+OfPgHYBGAzh6vPwHgHuPvEgBTABxhPN4FQHGuP0OO868bgIUAdjAefwTgagDXAHgLQJHx/K6WfYoBfAdgAIBLc/0ZcpRvpwI4GsA0y3MHATgAQAWAMsvzPa3bWZ5vC+B04+9SACPN339L+OeUh8bzPQAMArDY+tt2Ou8A7AxggfH/nYy/d8r1Z8uHfLS8br0GHgVgD+PvQwEsM/4uAbDazG8AjwK4L9efrZnyz+1+/CiAvsbzfS334F0BHAvgnwD+ZjvWmwD+YPxdCqBTrj9fHuRjB8s2fwHwovH3+QC+ASAAjgcw1na8pwG8B+DZXH+2PMjD++znmrHNDQBeN/7eFcB4xBr0Wuy9xSMPA5WvC+Hewpbb5tEbwDxVXaCq9QA+AHBRjtOUl1R1hapOMP7eAmAmYkGGAuhgbNYRwHJzFwA7iogAaI/Yj6+xWRNdgIz8ugzA+8ZT5wCYoqqTAUBV16lqJFfpyyMlAHYQkRLEborLAVwP4AFVjQKAqq62bP9nAJ8iVhhukVR1BGK/Q+tzM1V1doBj1KrqMOPvegATAHQPNaF5zCkPDf8BcDti1z0rp/PuXABDVHW9qm4AMATAeVlIbt7yyMeka6CqTlRV874yHbHffWvEAgwB0M7YpwOa7j/bNY/78UWIBasw/v9zY5vVqjoOQIP1OCLSEbGKhleN7epVdWMzfIS84JaPqrrZslk7NP2uLwLwlsaMAdBJRHYHABE5BkBXxAKSFsPjXHRzMGIVfuY9eiNiFast9t4SYvk67+8tDG6bRzcASy2Pq+D9oyTEuiwiVps+FsDNAB4TkaUAHgdwh7HZs4i1Ci0HMBXATWbQQVAAg40udn1sr50CYJWqzjUe7w9ARWSQiEwQkdubNaV5SFWXIXauLQGwAsAmVR0MYB8AvzK673wjIvsBgIh0A/ALAC/kKs0FqpeITBSR4SJyiv1FEekE4GcAhjZ7yvKIiFyEWGviZNvzbucd7zve7NdAq0sATFDVOlVtQKxCaypi95mDYQRpLYntftxVVVcYL61ELNjy0gvAGgCvG7/1V0SkXdYSm8ds+QiJDXFZCuD/ANxjbOb42xWRIsR6GyR0+W5p7HkI4Eaj+/ZrZhd5xHpIXigiJSLSC8AxiPV8sR6nE1rovSXD8nXe31sY3FJeEpH2iLVE3GzUbl4P4BZV7QHgFjQVLs4FMAnAHgCOBPCsiHRIOmDLdLKqHg3gJwBuEJFTLa9dgaZWWyDWQnkyYjfYkwH8QkTObLaU5iHjJnkRYgWzPRBrubkSQGsA2zS2uPnLAF4zdnkKwN9ZuRLICgB7qupRAG4F8J7192u0mL8P4BlVXZCjNOaciLRFrIvYPQ4vPwWed+mwXwMBACJyCIB/A7jWeNwKsfvPUYhdB6agqfDXIjjcj+M01mcx1ZqSJYh1D3/B+K3XINaduUVxykdVvdMo17wL4MYUh/gTgAGqWpXdlOYvhzx8AbEK5yMRu588YWz6GmJBVyVi18hRACKW47TYe0tLKF8zuG0ey5BYY9TdeI4cGIWJTwG8q6qfGU9fBcD8+2PEunoDsfGPnxndd+YhNkbywOZMb74yWh7NLjmfw8gz46J+MYAPLZtXARihqmtVtRaxsXtHo2U7C8BCVV1jtN58BuBExPLKPBc/B3C48XcZgA9EZBGASwE8LyI/b9YUFxijZWyd8fd4xOYm2N+yST8Ac1X1qRwkL5/sg1gly2Tj/OoOYIKI7Ab38473HRcu10CISHfEftO/VdX5xtNHAoCqzjcCuY8Quw60CC7341WWbrK7I/UwjCoAVapqtrR9ghZ2f3HJR6t3EesxALj/dk9ArJVyEWItbL9tYRMiJeWhqq5S1YhRufcyjHKOqjaq6i2qeqSqXgSgE2JjTE0t8t4SUvk67+8tDG6bxzgA+4lILxEpBXA5gP45TlNeMvr2vwpgpqo+aXlpOYDTjL/PAGB2JVsC4Exj366ITVrTomrhnIhIOxHZ0fwbsTG15oyhZwGYZav9HQTgMGMmwRLE8npGc6Y5Dy0BcLyRJ4LYeTYTwBcATje2OQ3GDVNVe6lqT1XtiVjh7U+q+kVzJ7qQiEgXESk2/t4bwH4wfr8i8hBi439uzlkC84SqTlXVXS3nVxViE4Os9DjvBgE4R0R2MnohnGM8Rw7XQKOL4teITZT0g2XbZQAOFpEuxuOzEbsObPc87sf9ESsQw/j/l17HUdWVAJaKyAHGU2eiBd1f3PLRHNJiuAjALOPv/ogFriIixyM2JGaFqv6fqu5p/Nb/hti43BbRAu6Rh7tbNvsFjHKOcd9uZ/x9NoBGVZ1hPG6R95YQy9f5f2/RPJjVqiX8Q2wGsjmItUzcmev05Os/xLrEKmJdvyYZ/843nh+P2DiKsQCOMbbfA7GJFaYidlG7MtefIR/+ITYz92Tj33TrOQfgDQDXOexzpbHtNACP5voz5MM/APcjVuCYBuBtxLokd0KsEDwVwGgYM0zb9nsDLXe25PcR6x7WgFgQ9nvECh1VAOoArAIwyNj2EuOcm4TYxB4/M57vblwHZlquA3/I9WfLZR7aXl8Eh5nQ7ecdgN8BmGf8uybXnytf8tHpGgjgLsS6y06y/NvVeO0641ycAuArALvk+rM1U/653Y93QWyc4lwA3wLY2dh+NyOfNyM2gU8VjBmBEWsBrzSO9QXybHbVHOXjp8a9xTyvuhnbC4DnECsvToVlhnnLMa9Gy5ot2S0P3zbyaApilQK7G9v3BDDb+N1+C2Av4/kWe2/xyMPA5Wvk+b1FjEQSERERERERFSx2SyYiIiIiIqKCV5LrBISpc+fO2rNnz1wng4iIqNnU1NSgXbsWubIKERG1QOPHj1+rql2cXtuugtuePXuisrIy18kgIiJqNhUVFSgvL891MoiIiJqFiCx2e43dkomIiIiIiKjgMbglIiIiIiKigsfgloiIiIiIiAoeg1siIiIiIiIqeAxuiYiIiIiIqOAxuCUiIiIiIqKCx+CWiIiIiIiICh6DWyIiIiIiIip4DG6JiIiIiIio4DG4JSIiIiIiooLH4JaIiIiIiIgKHoNbIiIiIiIiKngMbomIiIiIiKjgMbglIiIiIiKigsfgloiIiIiIiAoeg1siIiIiIiIqeAxuiYiIiIiIqOAxuCUiIiIiIqKCl7PgVkQ6icgnIjJLRGaKyAkO25SLyCQRmS4iw3ORTiIiIiIiIsp/JTl876cBDFTVS0WkFEBb64si0gnA8wDOU9UlIrJrDtJIREREREREBSAnwa2IdARwKoCrAUBV6wHU2zb7NYDPVHWJsc3q5kwjERERERERFY5ctdz2ArAGwOsicgSA8QBuUtUayzb7A2glIhUAdgTwtKq+ZT+QiPQB0AcAunbtioqKiiwnnYiIKH9UV1fz3kdERARAVLX531SkDMAYACep6lgReRrAZlW927LNswDKAJwJYAcAowH8VFXnuB23rKxMKysrs5t4IiKiPFJRUYHy8vJcJ4OIiKhZiMh4VS1zei1XE0pVAahS1bHG408AHO2wzSBVrVHVtQBGADiiGdNIREREREREBSInwa2qrgSwVEQOMJ46E8AM22ZfAjhZREpEpC2A4wDMbMZkEhERERERUYHI5WzJfwbwrjFT8gIA14jIdQCgqi+q6kwRGQhgCoAogFdUdVrukktERERERET5KmfBrapOQmxMrdWLtm0eA/BYc6WJiIiIiIiIClOuxtwSERERERERhYbBLRERERERERU8BrdERERERERU8BjcEhERERERUcFjcEtEREREREQFj8EtERERERERFTwGt0RERERERFTwGNwSERERERFRwWNwS0RERERERAWvJN0dRWQLADUfGv9X429V1Q4Zpo2IiIiIiIjIl7SDW1XdMcyEEBEREREREaUrlG7JInKyiFxj/N1ZRHqFcVwiIiIiIiIiPzIObkXkXgB/B3CH8VQpgHcyPS4RERERERGRX2G03P4CwIUAagBAVZcDYJdlIiIiIiIiajZhBLf1qqowJpcSkXYhHJOIiIiIiIjItzCC249E5CUAnUTkjwC+BfByCMclIiIiIiIi8iXt2ZJNqvq4iJwNYDOAAwDco6pDMk4ZERERERERkU9hTCh1K4AZqnqbqv7Nb2ArIp1E5BMRmSUiM0XkBJftjhWRRhG5NNO0EhERERER0fYp45ZbxCaPGiwi6wF8COBjVV3lY7+nAQxU1UtFpBRAW/sGIlIM4N8ABoeQTiIiIiIiItpOZdxyq6r3q+ohAG4AsDuA4SLyrdc+ItIRwKkAXjWOUa+qGx02/TOATwGszjSdREREREREtP0Ko+XWtBrASgDrAOyaYtteANYAeF1EjgAwHsBNqlpjbiAi3RBbZuh0AMe6HUhE+gDoAwBdu3ZFRUVFBh+BiIiosFRXV/PeR0REhBCCWxH5E4DLAHQB8DGAP6rqDB/vezSAP6vqWBF5GkBfAHdbtnkKwN9VNSoirgdS1X4A+gFAWVmZlpeXp/lJiIiICk9FRQV47yMiIgqn5bYHgJtVdVKAfaoAVKnqWOPxJ4gFt1ZlAD4wAtvOAM4XkUZV/SKz5BIREREREdH2Jowxt3cAaC8i1wCAiHQRkV4p9lkJYKmIHGA8dSaAGbZteqlqT1XtiVjw+ycGtkREREREROQkjG7J9yLWynoAgNcBtALwDoCTUuz6ZwDvGjMlLwBwjYhcBwCq+mKm6SIiIiIiIqKWI4xuyb8AcBSACQCgqstFZMdUOxndmMtsTzsGtap6dWZJJCIiIiIiou1Zxt2SAdSrqgJQABCRdiEck4iIiIiIiMi3MILbj0TkJQCdROSPAL4F8HIIxyUiIiIiIiLyJeNuyar6uIicDWAzYuNu71HVIRmnjIiIiIiIiMinMMbcwghmGdASERERERFRTqQd3IrIFhjjbO0vAVBV7ZB2qoiIiIiIiIgCSDu4VdWUMyITERERERERNYcwJpQiIiIiIiIiyikGt0RERERERFTwGNwSERERERFRwWNwS0RERERERAWPwS0REREREREVPAa3REREREREVPAY3BIREREREVHBY3BLREREREREBY/BLRERERERERU8BrdERERERERU8BjcEhERERERUcHLWXArIp1E5BMRmSUiM0XkBNvr/yciU0RkqoiMEpEjcpVWIiIiIiIiym8lOXzvpwEMVNVLRaQUQFvb6wsBnKaqG0TkJwD6ATiuuRNJRERERERE+S8nwa2IdARwKoCrAUBV6wHUW7dR1VGWh2MAdG+u9BEREREREVFhyVXLbS8AawC8bnQ3Hg/gJlWtcdn+9wC+cXpBRPoA6AMAXbt2RUVFRfipJSIiylPV1dW89xEREQEQVW3+NxUpQ6w19iRVHSsiTwPYrKp3O2x7OoDnAZysquu8jltWVqaVlZVZSTMREVE+qqioQHl5ea6TQURE1CxEZLyqljm9lqsJpaoAVKnqWOPxJwCOtm8kIocDeAXARakCWyIiIiIiImq5chLcqupKAEtF5ADjqTMBzLBuIyJ7AvgMwG9UdU4zJ5GIiIiIiIgKSC5nS/4zgHeNmZIXALhGRK4DAFV9EcA9AHYB8LyIAECjW/MzERERERERtWw5C25VdRIAe7D6ouX1PwD4Q3OmiYiIiIiIiApTrsbcEhEREREREYWGwS0REREREREVPAa3REREREREVPAY3BIREREREVHBY3BLREREREREBY/BLRERERERERU8BrdERERERERU8BjcEhERERERUcFjcEtEREREREQFj8EtERERERERFTwGt0RERERERFTwGNwSERERERFRwRNVzXUaQiMiawAsznU6iIiImlFnAGtznQgiIqJmspeqdnF6YbsKbomIiFoaEalU1bJcp4OIiCjX2C2ZiIiIiIiICh6DWyIiIiIiIip4DG6JiIgKW79cJ4CIiCgfcMwtERERERERFTy23BIREREREVHBY3BLRERUgETkPBGZLSLzRKRvrtNDRESUa+yWTEREVGBEpBjAHABnA6gCMA7AFao6I6cJIyIiyiG23BIRERWe3gDmqeoCVa0H8AGAi3KcJiIiopxicEtERFR4ugFYanlcZTxHRETUYjG4JSIiIiIiooLH4JaIiKjwLAPQw/K4u/EcERFRi8XgloiIqPCMA7CfiPQSkVIAlwPon+M0ERER5VRJrhNAREREwahqo4jcCGAQgGIAr6nq9Bwni4iIKKe4FBAREREREREVPHZLJiIiIiIiooLH4JaIiIiIiIgKXtbH3IrIeQCeRmxM0Cuq+ojt9asBPIamWR6fVdVXRORIAC8A6AAgAuCfqvqh13t17txZe/bsGWr6iYiI8llNTQ3atWuX62QQERE1i/Hjx69V1S5Or2U1uBWRYgDPATgbsQXmx4lIf1WdYdv0Q1W90fZcLYDfqupcEdkDwHgRGaSqG93er2fPnqisrAzxExAREeW3iooKlJeX5zoZREREzUJEFru9lu1uyb0BzFPVBapaD+ADABf52VFV56jqXOPv5QBWA3CM0ImIiIiIiKhly3a35G4AlloeVwE4zmG7S0TkVABzANyiqtZ9ICK9AZQCmG/fUUT6AOgDAF27dkVFRUU4KSciIioA1dXVvPcREREhP9a5/QrA+6paJyLXAngTwBnmiyKyO4C3AVylqlH7zqraD0A/ACgrK1N2zSIiopaE3ZKJiIhist0teRmAHpbH3dE0cRQAQFXXqWqd8fAVAMeYr4lIBwBfA7hTVcdkOa1ERERERERUoLId3I4DsJ+I9BKRUgCXA+hv3cBomTVdCGCm8XwpgM8BvKWqn2Q5nURERERERFTAstotWVUbReRGAIMQWwroNVWdLiIPAKhU1f4A/iIiFwJoBLAewNXG7pcBOBXALsZyQQBwtapOymaaiYiIiIiIqPBkfcytqg4AMMD23D2Wv+8AcIfDfu8AeCfb6SMiIiIiIqLCl+1uyURERERERERZx+CWiIiIiIiICh6DWyIiIiIiIip4DG6JiIiIiIio4DG4JSIiIiIiooLH4JaIiIiIiIgKHoNbIiIiIiIiKngMbomIiIiIiKjgMbglIiIiIiKigsfgloiIiIiIiAoeg1siIiIiIiIqeAxuiYiIiIiIqOAxuCUiIiIiIqKCV5JqAxH5LwB1e11V/xJqioiIiIiIiIgCShncAqjMeiqIiIiIiIiIMpAyuFXVN62PRaStqtZmL0lEREREREREwfgecysiJ4jIDACzjMdHiMjzWUsZERERERERkU9BJpR6CsC5ANYBgKpOBnBqFtJEREREREREFEig2ZJVdantqUiIaSEiIiIiIiJKi58JpUxLReREACoirQDcBGBmdpJFRERERERE5F+QltvrANwAoBuAZQCONB4TERERERER5VSQlltR1f/LWkqIiIiIiIiI0hSk5fYHERksIr8XkU7ZShARERERERFRUL6DW1XdH8BdAA4BMEFE/iciV2YtZUREREREREQ+BZ0t+UdVvRVAbwDrAbyZlVQRERERERERBeA7uBWRDiJylYh8A2AUgBWIBbmp9jtPRGaLyDwR6evw+tUiskZEJhn//mB57SoRmWv8u8pvWomIiIiIiKhlCTKh1GQAXwB4QFVH+9lBRIoBPAfgbABVAMaJSH9VnWHb9ENVvdG2784A7gVQBkABjDf23RAgzURERERERNQCBAlu91ZVFZG2AfbpDWCeqi4AABH5AMBFAOzBrZNzAQxR1fXGvkMAnAfg/QDvT0RERERERC1AkOD2eBF5FUB7AHuKyBEArlXVP3ns0w3AUsvjKgDHOWx3iYicCmAOgFtUdanLvt3sO4pIHwB9AKBr166oqKjw/4mIiIgKXHV1Ne99RERECBbcPoVYa2p/AFDVyUZAmqmvALyvqnUici1ik1Sd4XdnVe0HoB8AlJWVaXl5eQhJIiIiKgwVFRXgvY+IiCj4bMlLbU9FUuyyDEAPy+PuxnPWY65T1Trj4SsAjvG7LxEREREREREQLLhdKiInAlARaSUifwMwM8U+4wDsJyK9RKQUwOUwWn5NIrK75eGFlmMOAnCOiOwkIjsBOMd4joiIiIiIiChBkG7J1wF4GrFxr8sADAZwg9cOqtooIjciFpQWA3hNVaeLyAMAKlW1P4C/iMiFABoRWzv3amPf9SLyIGIBMhCbpXl9gPQSERERERFRCyGqmus0hKasrEwrKytznQwiIqJmwzG3RETUkojIeFUtc3otZcutiPwXsXVmHanqXzJIGxEREREREVHG/HRLZlMoERERERER5bWUwa2qvunnQCLyX1X9c+ZJIiIiIiIiIgom0FJAKZwU4rGIiIiIiIiIfAszuCUiIiIiIiLKCQa3REREREREVPDCDG4lxGMRERERERER+RY4uBWRti4vPZ1hWoiIiIiIiIjS4ju4FZETRWQGgFnG4yNE5HnzdVV9I/zkEREREREREaUWpOX2PwDOBbAOAFR1MoBTs5EoIiIiIiIioiACdUtW1aW2pyIhpoWIiIiIiIgoLSUBtl0qIicCUBFpBeAmADOzkywiIiIiIiIi/4K03F4H4AYA3QAsA3Ck8ZiIiIiIiIgop3y33KrqWgD/l8W0EBEREREREaUlyGzJj4pIBxFpJSJDRWSNiFyZzcQRERERERER+RGkW/I5qroZwAUAFgHYF8Bt2UgUERERERERURBBgluzC/NPAXysqpuykB4iIiIiIiKiwILMlvw/EZkFYCuA60WkC4Bt2UkWERERERERkX++W25VtS+AEwGUqWoDgBoAF2UrYURERERERER+pWy5FZEzVPU7EbnY8px1k8+ykTAiIiIiIiIiv/x0Sz4NwHcAfubwmoLBLREREREREeVYyuBWVe81/n9N9pNDREREREREFFyQdW47isiTIlJp/HtCRDpmM3FEREREREREfgRZCug1AFsAXGb82wzg9WwkioiIiIiIiCiIIEsB7aOql1ge3y8ik0JODxEREREREVFgQVput4rIyeYDETkJsTVvPYnIeSIyW0TmiUhfj+0uEREVkTLjcSsReVNEporITBG5I0BaiYiIiIiIqAUJ0nJ7PYA3LeNsNwC4ymsHESkG8ByAswFUARgnIv1VdYZtux0B3ARgrOXpXwJoraqHiUhbADNE5H1VXRQgzURERERERNQCBAluZwJ4FMA+ADoB2ATg5wCmeOzTG8A8VV0AACLyAYCLAMywbfcggH8DuM3ynAJoJyIlAHYAUI/YOF8iIiIiIiKiBEGC2y8BbAQwAcAyn/t0A7DU8rgKwHHWDUTkaAA9VPVrEbEGt58gFgivANAWwC2qut7+BiLSB0AfAOjatSsqKip8Jo2IiKjwVVdX895HRESEYMFtd1U9L8w3F5EiAE8CuNrh5d4AIgD2ALATgJEi8q3ZCmxS1X4A+gFAWVmZlpeXh5lEIiKivFZRUQHe+4iIiIJNKDVKRA4LePxlAHpYHndHYqvvjgAOBVAhIosAHA+gvzGp1K8BDFTVBlVdDeAHAGUB35+IiIiIiIhagCDB7ckAxhszH08xZjH2Gm8LAOMA7CcivUSkFMDlAPqbL6rqJlXtrKo9VbUngDEALlTVSgBLAJwBACLSDrHAd1aA9BIREREREVELEaRb8k+CHlxVG0XkRgCDABQDeE1Vp4vIAwAqVbW/x+7PAXhdRKYDEACvq2qqYJqIiIiIiIhaIN/BraouTucNVHUAgAG25+5x2bbc8nc1YssBEREREREREXkK0i2ZiIiIiIiIKC8xuCUiIiIiIqKCx+CWiIiIiIiICh6DWyIiIiIiIip4DG6JiIiIiIio4DG4JSIiIiIiooLH4JaIiIiIiIgKHoNbIiIiIiIiKngMbomIiIiIiKjgMbglIiIiIiKigsfgloiIiIiIiAoeg1siIiIiIiIqeAxuiYiIiIiIqOAxuCUiIiIiIqKCx+CWiIiIiIiICp6oaq7TEBoRWQNgca7TQURE1Iw6A1ib60QQERE1k71UtYvTC9tVcEtERNTSiEilqpblOh1ERES5xm7JREREREREVPAY3BIREREREVHBY3BLRERU2PrlOgFERET5gGNuiYiIiIiIqOCx5ZaIiIiIiIgKHoNbIiIiIiIiKngMbomIiAqQiJwnIrNFZJ6I9M11eoiIiHKNY26JiIgKjIgUA5gD4GwAVQDGAbhCVWfkNGFEREQ5xJZbIiKiwtMbwDxVXaCq9QA+AHBRjtNERESUUwxuiYiICk83AEstj6uM54iIiFosBrdERERERERU8BjcEhERFZ5lAHpYHnc3niMiImqxGNwSEREVnnEA9hORXiJSCuByAP1znCYiIqKcKsl1AoiIiCgYVW0UkRsBDAJQDOA1VZ2e42QRERHlFJcCIiIiIiIiooLHbslERERERERU8BjcEhERERERUcHbrsbcdu7cWXv27JnrZHiqqalBu3btcp2MgsY8zBzzMBzMx8wxDzPHPMwc8zBzzMPMMQ/DwXzMXL7n4fjx49eqahen17ar4LZnz56orKzMdTI8VVRUoLy8PNfJKGjMw8wxD8PBfMwc8zBzzMPMMQ8zxzzMHPMwHMzHzOV7HorIYrfX2C2ZiIiIiIiICh6DWyIiIiIiyjsTl2zAwGkrcp0MKiDbVbdkIiIiIiLaPvzi+VEAgEWP/DTHKaFCwZZbIiIiIiIiKngMbomIKK/c9vFkvDR8fq6TQURERAWGwS0REeWVj8dX4V/fzMp1Mlq8petrsa0hkutkEBER+cbgloiIiBLUN0ZxyqPDcMuHk3KdFCKi0CxaW4PKRetznQzKIga3RC3Q2zPqsP9d3+Q6GUSUJXWNEdTWN6a9f0MkCgAYMWdNWEkiIsq58scrcOmLo3OdDMoiBrct0LPfzcW0ZZtynQxqZj37fo1HB8a6eg5d0oj6xmiOU+RsQ009Vm/elutkEBW0nz7zPQ6+Z1Da+0dVAQBFImEliQpYJKqYu2pL1t9nxJw1OOOJCtQ1sjs8EaWHwW0L9PjgObjgv9/nOhmUA89XuE/Ss2ZLHTbU1Ddjapwd89AQ9H54aNbfR1Xx9uhF2FrPQhRtf+atrs5o/6gafzC2JQBPD52Ls/8zAnOyHODe/eU0LFhTg+UbWcHZkl307Pc45dHvsHR9ba6TQgWIwW0Lo6qpN6IW6dh/foujHhyS62Q0FaqzbPCMVbj7y+l4dBAnLiJKYvwO2XJLADBxyQYAwIpNzRN08qxr2SZXbcLS9VtxyqPDcp2UvLVi01a8PXpRrpORlxjctjCR5oociPJc9bbYeMSNtQ05TknmPptQhXfGLM76+0Sj6ru7YH1jND5uk/LTptoGvFAxH1GH+0Ik3i25uVNFLZlZ/16odSpfTFyGddV1uU4GtQDXvD4Od385Hau3sJeDHYPbFqaxgILbjyqXYv6azLrWUYxT4ZW2H7d+NBl3fTEt6+9zzlMjcMBdA331ANn/rm9w0iPfJT1fW9+I5yvmsaItD9zbfxr+PXAWRs5bm/Sa+f0USsvt4nU1eTGsolDUN0YDzW0gxnmQ7d5fanQZkAJsu125aRtu/nASrn9nQq6T0qLV1jdiTe32X7G63rjeRbf/jxoYg9sW5u+fTsl1Eny7/ZMpuOCZ/B8bPG919ifZyFSE3dEpQ2u21MXHcfo9nVZvqUPVhsQxU08OnoNHB85G/8nLwk5izkSjisteGo397hxQUGPEthi9FxocJpczJ5SSAgluT3usAmc8UZHrZGRVNKpYsWlrKMf628eT0fvhoWj02bvCPAuyfSsp5FuV2VNleUjfUXPbtLXwezEBsRbN20YU5ncQRIFcmnOCwW0L8+Wk5blOgi9m7fDWhvye7GfA1BU468kRGDR9ZbO83xs/LMSPC4OvzxYt5BJDlrXE+8OPC9dj0dqaQPtss/wWg5xNJ/87ccxUdV2jcbzCqW7+ZuoKz9/4tsYIfly4Hg0RxaODZjdjyrLHbLktpALUhu1giIGX5yvm4YR/fYfF64L9dp0MNM7nfOvNlY1uycNmrU64fmWLmeZCvN1+N2sVjrh/MMYsWJfrpGRsbBplpEJUiOdZc2Fw20KZ46jWVtfhjs+mhjbt/uot27BlW+YFjHy74bqZuWIzAGD2yuZpvb3vqxm47KXg67Ox20qi2vpGvDxyQbO+Z2MkmtG6o2G67KXRKH+8Iu39s9U18Y7PpqJn368zOsaYBetCbz29/t0JuPbt8a6vW7tQFlAsGOf0bTZ1S87ue9c1RnDBf0di7HZQqM62743u48s2Nn+rlHkeaKCqrfSd8ugwvP7DwoyPM7VqE655Yxwe/N+MEFLlzbws5uvEndsaInhr9CLH9I2eH/v9TV66MatpiEQV17z+o2sl/UP/m4E7P58aynv94/OpWLKucHrSUHjyOrgVkddEZLWIZH8wWQtjdjX759cz8f6PSzBwWjgtj73/ORRnPjE84+MUyni8PL2HJRg5dw0+HLck18nIK08OnoNZzVQhYbr+3QkZrTuaa9ZzPZ3T/qvJy3HDe95j0d7/0f08rWuM+CrUX95vjO8ZNv/8/kR8NG6pr229WAv8+dbS6VXQ9kprc61zu2BNDaYt24x7vpye1ffJlv6Tl+OjyszPIbst2xpwzINDcOw/v41XGJuVKGHcd4J2M24ac5v5e1s1RKL4w5uVmLZsU9Jrj3yT+Uz262tj4xIXZyHIWbq+NmE+C/M3k6/Fl8cGzcY9X07HoOmrkl4ze6cXh1Cb9cg3s/C7N8Y5vrauug7DZq9xvRe88v1CvDs2nPLKe2OX4JaPJoVyrHy0egsnLnOT18EtgDcAnJfrROSraFTx6fgq32NmEvY1LsJmi21JUXingtMPbsm62nh3RD8KpeXWlGfl2QS/efVH3PdV9mutB05bgZXNtExEpsyxhs1pyIzkAkWhSqeb+5/fn4ivp6yIPw56iFs+nISTHvkureudm68mL8ftIcxDYP0s+TYBU7rX0uaaUKoxEnufkuL8yLfxi9cHWiP4L+9PxO2fhD+XxbDZa7Cuph5rttRh6MzVAADzNh3mMJOgxwo7uJ27qhrfzlyFv3082Th+uG/QNHY81MNi7qotOOXRYXhxRNPa8eZvzSlPpy3bhI+zUAkShDkB0daG5PtfmJVZLw6fj+9mrc74OOTuswlV8b+bqzdFIcnr4FZVRwBoGZ3nDVvrI7jny2m+uvZ+PH4p/vrxZDw7bB7u6z8dW+v9dy02r731jZkXLAZOW+nZ4gIApz42DL8K0J02EimsZSiyeWnZWh/J+9mO6xujuO6dCfjNq2Ob/b2/nLQsUMUJkH+ta4XAegNNVf7Mxvk62GhtyLTiKxuTplhTlG+nlhk8Wn1UuRTjF3vfWrMVFNg1GGMmSorzozhyyQujcdaTwXsfBb0GpcNsuQ3j52V+r36D26ZuydkV9vHNYDmMFskvJi7DJS+MAgBUbYj1Ihm7oOl3ZFYIOX2GC/77PW7LQiVIEGZeOM1EbaY9jHzyTENWj57/whoCWLl4Q/zvdK4Hl74wCtdZhtrc9cVUvPZ95sMA8kVJrhOQKRHpA6APAHTt2hUVFRW5TVAK1dXVnmkctKgB78+qx9qVy3HZAaWu2y3YGME7M2O1cE99Ozd27LXLcMHe7vvYVVRUYPWaWEvbrBnT0HqNcxeg5dVRtC0BOrVxLnxcNzA2ucXutU1jGJ0+4/Tlm5Oen7shAgWw/07FCc9vrjcvwsnHSpWHzWnx4th3sHDhQlRUhD/7a1QVvxtUi9N7lOCqQ1rHn8/k81v3dTpOOsc2v69l68P7bvwcZ9GmCO4bvQ3H716M645o4/vYK1Y09S5YuWpV2mlO51zM5rmbzbSsrGlqMR0xYgRKiwWqiuU1im7tm64NS7dEcfcPid2Hre+zfEWs9XbOnNmo2LrAMw+tz5uFr+HDR6B1SeoCmNMxK1c24tlJdbjr+DbYt1Ox57Z+jwkAtQ1NpYtVGZxP6fLKw2HDR6Btq8T8ut24Zh/ZJZYH06ZNRavVMxO2qdoS+77rtm3z/Dx1EYUq0MbHd+Jk9vpYYa92S/L9IR1h/Zbf7D8Ue3Uodt/B5vp+Q/H7w1qn3tCnGcubguUZM2ei06a52Lghdr+ePHkydHlmxbeoUakwYuT3aNcq9Xe3bl3svadOTT5XTOlcD5ca55m5b11d07U5Eo2m/X1GorFr09qtseNvWL/e81iNUUWxeM8OfrPxu6moqMDk1Y1Jx12yOXYu19XV+bqmOQmrfFNdrxizohFn7lkS/0wrVxnlvZkzUbFpLhqiirkbojh4l2IsXRbL9/nz5qKiflHG7w84f9YN22LfR0N9fbPcOzdt2uTru/jb8Frs3bEIfzrSfznCNGVNI5ZsibqWvwcvasB7s+px53Ft8M+x23DT0a1x1K6Z/X6XL2/6nYwaNRpd2garHKxcHDuX//PRtzhq1xK8Myb2eO/GxfFt8qmsHVTBB7eq2g9APwAoKyvT8vLy3CYohYqKCnilcd7IBcCsmei6RzeUlx/iuM2o+WvxwMDkFrI99+qF8vL9vBMwsGmylvLycrw8bwywdh2OOfJInLxfZ8ddzAleFj3yU9TWN+LOz6fhH+cfhC47tk44Znl5eeLfDu9rf/5qy7GtVm3eBnw3FCXFRUn7pMrD5lRZNxtYMA979/KR92mob4wCg77ByGURvH5DuXv+ehmYOEGP6/fkcezGSBSbtjZgl/bOhbeFa2uA7yrQoW2bzL8bSzq+nbEKYxeuw50/Pdhx09Hz1wGjxyDapiPKy09wPWR1XSPWbqlDz87tAACDN0wFqmK9DXbbrSvKy49MK6mBzsV0vju/gh47jbTMW70FGDkCAHDKKadih9JifDFxGe4cNAmvXV2GMw7sCgB4d+xiAInTJFjPuT123x2oWooDDjgA5b33TMxDp3PVNOhrQIETTj4ZHdq0SuuzffflNACL0WrXfVB+Yk//+ZBiu01bG4ChgwEA1UXtMC3aFTeekd71YNqyTeixU1t0bOvxGW0cz0MjzcefeBJ2blfq+FrnzrsAa1bjkEMORfkhuyVsMmP5ZuCHkWjbdgfP/Dns3kHYUteYdA33q3TeWuDHsdhl506ev2Ev0agCAwcAaPqOVm7ahldGLsAd5x/kqzWqoqICx590CjBwIABgIXbDVS734ARGXrbusAvKy8tcN9vWEEGRCBatq8G+XdqjyJYmVcXzFfNxWVkPdNmxNTZNWgZMmQQAOOigA1F+VHe8vuBHYN0aHHb44Sg/YNfUafNQPHQgEIngpJNOQqe2qSvF31lcCaxehUMOTT5XTOncm2euiJ1n7dq1R3n5qSgdNRTYFgvCioqS7/9+/fPrGXj5h4W44ycHApiFLp07u34/a6vrUPbQt7j3ZwfjmpN6uR/Uch2IzloFTKjEzrvsjPLy3gBik1dh1PcoaVXquwxkF1b55ndvjMN3s1bj8rN649BuHQEAn66YCKxYjoMPORjlR+yBe7+chjfHLcb//nwydlu3GFi6FG/NqEdNm13xxGVH4D9D5uDpoXMx958/Qaviovhjr9/6rJWbgYEjXT/ryk3bgIqhKC1NziPVpt+xEz/58uWkZQAmxR936tgR5eUnJm7k8F2sHfg11m6N4KM08t4sxz7+u3McX7/3sWEA6jGnsTOAKmxt3w3l5QcFfh+rQeunAktjZZjexx2HvXZpF+wARh48PaEOA/7S2/E7y6eydlD50Q+I4sybsFdPoV+/7Nz1M52hKg0BuyV/NmEZPp+4DE8OmRP8zQJo9NlFZvLSjaiYnfnYjg019WktFZDtsQ7N1TUwlXv6T8cxD33r2vV9s9HVs21r/y0dfvzhrUq8PNK9q4zf/L/ylbEJswO7Zefa6rpmWTIiW5wmZfHi9llHzVubtPSNdairme8zjNnC565qGqOYrUnWzONGHLrZBj9WuIm0Hm9y1SY8PnhO2ufRBf/9Hr/qF3xGdDfeY5TdLyx+x+BtybA7rnmtb5VBt2Snrup//XgSXvl+ISoX+R/ZtMGYfAgAlgSecdv7nDrw7oHY/65vcM5/RuClEckztU9auhGPDZqNW40JcJxO0XjXYI/z98NxS3Bf/9STczV1S065qe29/W3vl/30SpicLeCxtmxriHcPH29021xjzAHiVZRYtTkWTH9cWeW+kU18ySLLc41Ga7jX9+N3yMao+WvxgzE7djrM8bX1lt+/PV1zjOv25q0NCZN4fmqM53zFWFHAvJY9PXRuyvcdMWeNr/Q5XVbCOLdu+mBS5gfxMGz2ahx+36D4ygdu3YwjUY3nm3ltM68pu3Vwbh2evXILDrp7IJYHnA0902EKzTGkorkxuM0zZkHijVGLAk8+kM4kE+Z4J783EXOR8tIMxujW1jfiycGzY62SLprG3Hq/z0XP/YCrX3eelS+Iox4cgsv7jcn4OGHLl1mjB0yNdSV1W3d4szFGvG2p/+B2W0MEGy2FyUykOhsn2ZY3cDutyh76FteEcD7lygX//T7lNtYCzq0uM0n++pWxuPbt8Rg4bSX6T16ONVvqcO5TIyzH8Di+79Smx++YW6cZ4OMzxIaYHiD82VHTncn7H59PxT9sy2g0eCbO/bX4OrdppcQ/MyAIMtbvo3FLMXdVUx45XSfNitsgX431nhR0bFyQ2++EJU3j5VQVqho/r2uNCkSnijvzfui1tNvfP52KN0YtSpkGM7f93mOarpnhnuzxGaCN42YyK/th9w3GoffGZqQ3u+KawZ3X+dW6JFYU9vudq2p87L61G3MkPqFUbK4MpyC3wee6fL9+eSz+7xX/c1gMnLYSjw5sGlrmtOau+WdRvGKjKUJ3Og28uminy35evzlqER4wJrz0U4ZdtXlbTucg+fc3s7B5WyMWrY0Fqn0/dV626NaPJuHAu2O9QEqN4LbGCIjbtHIuJ70zZjG2NkTw7cxgk0+GOcHc9iKvg1sReR/AaAAHiEiViPw+12nKNmtXpTdHLwrlmJ9NqELPvl9jxabE2qAFa6rjwap5rZi/php/enc8bv9kMq6wBXv/HjgrfvN/c/Ri3PzBRF/vb7/APzN0Hp75bh4eHuA8bgdoKvCY2XHSI98lFdrStWRdreNsmPYAKAzbGiIYlsGsgRFNvuFbRaOaUYDotwUr1S3OPI+KA9wML31xFI58YIjr6/a0Ldu41bXCJ+g92GlCDdPoLKy3mU/rHloLsyPmeLcMXPfOePzl/YkYZusd4XkzdXgtzM/vtzDutK6lW2Ft9eZteOSbWWkXmprz+124tgbzVlc7Toz13tgleM+2jIaf2aXNfDn6wSHoZ8z+al57vH5bYawnbE5qGKTl9vZPp+Ds/zRVtjR6BAxel4bv567FknW12FTbgKsH1uDTCU3zJjSE0EMAiAXi9ntANKro2fdr3PLhJPS6YwBu/nCSr2OZ30VNfWPG68k3Le3j/jnnra6ODUewyPapHtbhzc9V12CWJdzPBPPcq/OocLe6+8tpuPWj2OzOiS23sffctLUBB90zEC8Mn5+0r1elfiaue2c8nq9oer+mdCVHtze+NxENkWj8FYF4XtPtr2RyvbPvem//6XjNWM841eV3+catOO7hoXjKRwtytplB+si5zi3VX05aHv+71Kg8MSf3CzsYzTTYt/407vhsSlKsUIjyOrhV1StUdXdVbaWq3VX11VynKVtUNeO1Zt1O70/Gx7qYLFhTk/B8JKrx2m3zx9b30ykYMHUlPqqsSirkv1AxHys3Ny318oXlx+vF/rszu2p41S7Hl6EwottlG7cmFdrSdepjw1xnw3z627kYE2Jw88Tg2bjmjXEpZyZ1oynugy8Mn48jHxgS71YV+PgBr4luNzWzbBnkGjtt2WbP1+3HuqLfGNz2yRTPWcE3bW3ATR9MdF0PVR0K7F6BblimL/f+rM3JqeWzuq4RPft+jc8n+uuW5/U1O50DmXZdtfIKZKysq5v9MG9tQjdh+2l8+6dT8OLw+RizML3fflgNCX4Kjac/XoGznhyOI+4f7OuYfoI0833X19Tj4QGx1h+zwOQVFJxjCTDTZV7rW3n0BmqMRPHjQvdrqNOM0H5c+epYnPrYMCxaF7s3vjqyqbtwQ8Alp9xScPunU3CNbc1Ps+Lg84mxYNpaEI5EFcs2bnW8NpsB6U0fTMJh98W+/4HTVuLc/4zAjSnWkLYzf0de5+5ZTw7HWU+OwD7/GIB11bFK1GxX41g/t9MZUd8YRb8R831/P2bLrX2MsxO/we07Y5rKItafh73i7cuJyWWksCpN/EpsuW16UFsXiX+ZIs6Vhm455lXBmOoS5rVvqqDvxEe+AxAbVxvk97l6yzbPa2uQYD25gjT1eRUPbs3ZtG3vN2zW6kCrndhlev+xfoL3f1yKf3wWTkNSLuV1cNuSDJ6xCte9Mx4vDbfWvAUrdLsGHvHp35OZN1lzm1S1iunUEFkvWGMXrPO13qd5A9hY29CsXVD+8+0c1+7J/x44C99MXeH4mlv5b9Xm2HifpevTqwmLpLjoDjbGRaa7vqzT0Zeur0XZQ98mtMqYF3S39JjPhlkjab8Jrt6yzXiv2PMDp63EtW+NT9jm6W/n4stJy12/p+bqamlX73Ejrly03ldQaR/DeV//6QnXC7+s+WpeM5YZy1o8P8zf8by+ZqdzwP49pTqGF78tt2Yvgnmrt+D/XhmLu7+YlrD8ifV6aV730k2T07U3nWOle6mra1TXcVPelQHuvwTzGmzm2eZtDUn3B7dhCkE0dUt2L47859s5uOyl0QndeROPkdl1R23/B2IB88pN2/DROH/Dg4IUkJ2Sa+4+aelGnPTId/F7h5VTfHbdO+Mxe9UW/G+K8zXPSW19I7Y1mMFt6nRHohpfeiTsllt7d+Q6ayWUw/av/7AQDw+YhTdTdL029zXPWa/Y1vw+Mm1VtZ+HTnmb6j3Gr2rEkQ/4q7hyYgZ98ZZ5y2vW5ERU43kvcLm3m12bbUlOVS7x0tQTOvkL8XvYxetqcZPPnoML19ag9z+H4vUfFrlu4zQGPhUzrX5GU5jdks0egwOmrsQGY0z0gjXVuOaNcfi7Zb11axn57dGLsP+d3zhcX5oeh90SnOn1NB8wuM0DdY0RXGusN7UizSAFcL8wxC8mDhFYNB7cmmnxvvCaN8QgrIXRX/Ub49qq5raPU9eeXHihYj6ufzexdjzVNaXDDrEJydNdWzMejIlL4ckcg5Xmxc1pvxeGz8fa6jp8PnEZ6hujuO3jyfHJKdwCC/M4mY4RnmzpGu72mcynr3tnfLxF0LxRmmN/O+7gPNNsU1fL5g1vvbprX/riaNzy4WTP/QdOW4kD7x4Ym1nU8MaoRfhXGl1p07lxJaXe4xBOX5u1F4j9e61tUKwO0PMgElV8MXEZevb92nM/s6XG/O3NW1OdUKAK8/7tdKh0fpPp/n5urqiNjzW089Oq2eft8UnXlz+9G7snmS23h983GL9/M/zx6GYQ3cpSStxU24A7P58ar9CZbYxBXrulzvF8d8q3IJP9afw+2LRPQySKq177Ebd/OiVeEAVivYis432b3s8/P7/ZBWuSh86kmoPCr421TfejSFTx+cQqX93XAX/5+vCAmbjspdFQVcfPunBtTfy7tf9MUvXy+Nc3sZ4FtT5buuriwW3qydMyXYPUnodO1wBri+NnE6qSeux9OLs+4fsJqqauEW+NXhSfUMuaBOtERY3RaFOAViSO35OZY/bP4bPzjCOv62KQa+aAqU35Nnj6ynhFv90647c7ar57r5wgvSbtZ5HTeTXbNmeCfcLW0QvW4dp3YtdX8348c8VmS1fnpuFCD/xvBuojUdQ1RvHPr2c4TjIWejfnPBpGlS4Gt82spkGNqcqbrHaooU2H202nKbh139e8sHm1MAHp1dSn80OxtjZ8Pze9GQPXbKnDA1/N8H3TzgYzyPIb3PafvDxhfKM176IuN6lMOH011u7fFbNX4+PxTa2KToXI7+euxX+M2bMzvShe9NwP8b/duq1n8h5eN+VsjpvMtFBqdsn8ydMj8dG4pfEZQAHExyv5ldBya/w/aPIUijOfqHBsPUn1/dhPob4ja9H74aG+x29Goor/TYl195voMU6+SARPfzsXb41eDCC5UJLYgu3rrV05feZ0Dpkq79xmYN5qiwfWW4Ixe/c9+xhKk73SY4OlgG1eQ0emeS32EjF+lNYC4JNDZuPdsUsSrj1ArFLKms6ausbY8BqPa7yfiqx4y60lCxoiUaytjv3OrC1VJz3yHc7+zwhsa4gkDDdx+urcglin1nT79WdNtVPLbTjBrfU8+6hyKW75cLKvSagAf7+VfiMW4MeF6/HW6MXY+x8DsM7yWWrqGnH64xW47ZNYS5X5O1Qk55f901rPXb8TkJkBq1fWxcfnptVy23Tg5JZbp/Q0vcetH03Gde8k9mrJ9Bvesq0R93yZPFv2jOWbMbmqaTb9hkhTiVHg0i3ZpfI8k5Zbt2vcuuo6Yxm5YN4duxh93h6PPm8n9w6yMicNc2I/l0bNX4upVZuwyaOS4YL/fo/hc9YkDNUzJU6+qI6V2+b9zhzv7VZZ06YkNvnUtoYIXh65MD7JmDUbM6lscJLuMI98wuC2mb05vQ43fTAJU6o2xtYDQ2JtofUGF7jA6XI+ei7poInbpOoyk15w63/b9TX1uOyl0Vi+semCYb0Y1jdGMXlNcs3uff2nJ41ZuOfLaXjth4WomL0m612bHx88J74eMBC7EPXs+zWeM7p51hi10aqKt8csjrcw2v3l/YkJs/VabzjWfDAH/LvN/rplW4OvCUciUcWPC9c7BnaO3dgd8vHKV8fGZ3eds6o6tMqER76Z5fh8Jl9lxOG3UFvfiGhUszpRirXHpVsQ/ex3czHWZbz3Hp2alg64/dMpuPnDpi5ZUywFFj+cvp+gnz2qwPw1NWkVBu3LW2024rBTHh3ma//GqGJXYykF+1hza4BcLIL/fDsnPp6xSCRhBlGnQla6BUun/AtSWbJ5WwM+n1iV0GKzdH0tnhs2L+E4W7b5G7t89INNE7XZC9xnPek8Ttbt2l/XGE0IdN2k2+psttyWWCaUiqfZIQ+t39sh9w7CbZ9M9nzvL2yVySZrvqrD21nHRjp9lf/4bCoueaFpySb7JpGoulY8+ekB5VghGlKHE+vnMQP4qg1bfXXLfWXkAkyp2ujrfcxgZbWlMs68ZnxvTMRj7yqbkE7Erldmy/k/PmtaPztVoG8eyvxM3mM9E/cJwmvMbaqWW8fj+XjPB76agevfcQ7mnq+Yl/DYXCpxvq0nQGMkGv8N1EeinhNq2rPOc8yt6yvOxzLd+N7E+Hj/IO78vOmc8CrneY3pt6pvjOLXL4/Fz579Hmc6zM1i/b6veu3HlMeLKrD/bju6vn7BM7H1Ze0Vl+b31rpV7LroVfbOtFHB/lPKl1U6MsHgtpltro+dNH3eGo/znhpprKvZdLHL5Jxy27UpuE3e3twnElXUN0ZRtcG7RTDoSf/N1BWu3eWcfDhuKX5cuB43WCbHsP5uHx88G/8ZX4cfF67HaEs3kzdGLcJbxuzSpzz6He79clr8pvbx+KXY+x8DAs0A9+f3J+KMJyrw+KDkJYsaI1Hc8N4EzzVF7d2KzBbx8Ys34O4vpuHOz6dBVXFf/+mOxzEvdNb8tv7dtjTW3dlpun8gtiSCOeGIlf0i9sx3c3HZS6N9zxDsZxKH5yvmx2+aqhqvvFmxaavvNfCcNBVAnWqY/R0jElUMnbkqvrQRAHwzbSX+PWhWVrviWAtiUY21jttbPR8fPAe/soz3rrF0z3vo68SZxdfXNJ1fG116BWza2oCefb/G67YCdlrdkm0ZbP8ONOE172NZX3/1+2CtzkDsOzR7RFRt2Ioj7h8crxSwjpe3TyAjklhwTPV9Vy5aj559v3bsHgrEfgvmue10rCDZfOUrY3HLh5Pxi+ebei5c9dqPeGzQ7IQWPL+TadnTCcS+s488lpdz+21v3tqAdTWpexeZ18nF62rQs+/XuOfLaQktyKne19otOZ51tvNuy7aG+PIaps8mLPM8p90mIky8l5mth03PNUaiTddXh7vr1BRrSr/345Kk363JqQXe/g5Op2dYLbdOrT5vjFqEs//jPNGi1eSqTbjw2R+Snp+9cgvqbC0+5jqqrUuKEInG7gVNXV3N/8f+mLe6GrNWJPcqeOjrmTjqwSGxPLN8fL8rR5nBtNe9K5PCvNNsyaZ0xtw6Rbdm+cz02g8L8Y1LV9qK2Yn3WHMGZftntM6W/OD/ZiZUQMSTEi9f2D6X5Vgbauo9f+dvj1mMS18Y1bSvy3XXqadCUF4tyl9MWu5YsVtb35iQt9b0rQ0jTVH1vNfUGI0y9pZbc4nL1kbLrb3xJuE37HD87+eu9T3RqP30X7i2Bi+nMQ45nzC4bWY7lMSuFmZXhtq6iGuNTNDuyq5jbo3/iwjK9trJtk/s1agC+9/1Tcr3sF+833Cpmd60tQFPfTsH7wTsZuJ077b+cM0ZnzfU1uP7eYkXcTNtS9dvxZujF8c/96DpscH55o3Wj68mL8eCNTV4dtg8fDgusXC0YG0Nvp6yArd8OMl3Ada8eJoXsI219dhS14g3Ri1KWnIJAA68eyBWb9lmmQxMEmu4bRMjPZPm1Pjm+A2/E1Kd9eQI18K+6ckhc+J5/sG4pTjgroGo2lCLEx/5Dr91qOm858tpCWPanERdgnyTW5DvdJzfv1mZ1JXo0/HLEm6M2xoimLR0Y1ILu7WrYhDWbk+qin98PhX39k/uOmYaNms1Drl3kOss29YuVm5d3qs2xFoxP7RNiGNtdfEzZMGJVzanGpPXVPHhvFxPKtZr0MQlG7Bpa0O8AGftrm1fWUYgCcFKqgKt2eL7vcMYJyA2k+wBd8UCLcfzzuXwqzZvQ5+3KuOVF2MWrIu3vlvnXIgXTCzHSae7mLnPpKUbcfsnUxJes37vbkNSSorFV0ujeY0bYXRdfmv04vi4XS/m92BtuW2adCbx8TKXylenoD/VUBDreeTUclsf0aYUOGS7vUBpDwDWeVwn/PR4cGpJC7AUsCdr2q2/18Xr0lvaqba+Eec+NQL9ptQ5jlsVEVz/zngccNfApIDJet01Z4821TdG45PrVG3YmhD3+e+WbAa3Xi23GQS3lmQkjbmNJm+XqkuvU6H88n6jsf9d3+DOz6e69vqK7+9yMbeX3eobNV5+sc7l4CSp5dbyGY56cEhCTxG7u7+YFp+MLHYso+xib2wJoXI51ff4me38UlUcfM+ghIqqVPcFP93b7Wny03Nwa0MkvnqJ6btZq+L3eq8x5k6f+8pXx+LCZ1Ovew8kf+Z1NfX454CZ8ca4QsTgtpm1tq3dLJJcI2NauXlbUquLF7dCpXneigA7lDYl4IWK+fELvt8LS8RWiLjvq6bCqTXQffB/M/DUt3Pxw7zMl9VJ/OGardAS7/Ib3y7qXNgwL0b2GlNzFkz7Z0/VRcO8yLQtLU7Kj6ZU2m8kyTNTRlIUVFds3ObaLdm8UZktasMtLaLWcUnXvJ4YTNpvfGah2unrd7uIp2qxAGKtPUCskgCIjdUz38Neg/7W6MWuXZBNbmOP3bht4lawiM2e2/T4ri+m4efP/YDD7xuMiZYZWv/28WSUPfRt4G7u1nKYdU97FzKTObZx4pKNjq+XWoJbe4FqbXUd7us/PX6e2scaXfdO8pIhwbsl234zCa9572t2rU23QGn9zZkVg22MrlvWAM1pnFPTGLLU6TS/M7fv2hoIOHZLdjkLHx80G4NnrIqPG3abnb3W+GzWz5ROq7ufJV+A5ML/2Qd3BQCccWDXhOuQfc4I+/tY+ZkgMd4tuUhQ1xjBi8PnW2Z8Tbl77L0drqWpKjMTglvb/2OvN7XcDpmZPMN/qtPXq5DsNnY6ldBabi1/p9toOW3ZJoxbFKt8M681czdE8HdbBQoQ+80ONoJUe0VCwqzlkeR8MSegXL5xa+ISbj7zwgzchsxY5ZrvYXXasZ+HCcPMjP+nbCV2+FjjFsXuQe+OXYL/pqjIdpt03H4da4hEU35w9wml3PdzmvAocV/n59P5Dmpsk4+l6thSZ/v+nT5GJuOJnb7bBWtq8PJIf+X4D209a373RmX8OuUd3Do/7zTjOuDdEp94XAa35JPT5djrRne/ETwuXleD9TX1Kdbqcn5+rdGaUSSS8OP7fOKy+I3D7Qfd563KhMdeLQfWQHdzmrMDO+WP9Xdn/u1UaWv/fZqPzcK9Pai63Zh63b5fK9vdocTWBFRrXFB3KC1O2ldVcdvHkzHKFtSbBVRzcxFp6i6Y/FEAxGqmE4M6S2BsXMWd8ss6pm6YrYuSW3HA7SLmVICwLjmyeF1N0uvW45n/v8Oybpr9hgSkvqFEtSmf/Fxw3dfjdX7e3nXI2mpiXaPWbM1rCNg91Joc69+PDpztsG1TWtwKs07jBU0P/W8G3hi1KF6xUOoxkYY9AJu72l/vBvvHT6h+SvH1DJ0VG0uU7o2zMdJUEWFWDO7Qqjhpu6R1Le3dki3nglO3fGsgbDfHNluu02d5ZeRCfDhuSfx3Xt8YxdtjFjfN2J1idJ15yJeGN3UPs1dk3P3FtIThGU7M4LFtaXIeWdkr/5qyL/G38dS3zoXrps/VxM9XbH6mkmLBKyMX4pFvZsXXZrfnkWulVYqAwfyu12ypwx2fTcWGmvqEykXzdevvynqvu/PzaUnr7Ca33No+l0ea0lkVIRpV9J/sb215qwlLNqBi9up4Tw7AfS6HIC747/f45YuxMcf1lhmJKxyGnljzYvCMWHfaLcZkYNZssrdcWW1tiCScD+YQym0NEbwzZrGvCsePXbrl+8mD2nrn8e7WNNl7PyzftC0++WN8Ob2o4rMJVa6VRKkK5db7r1PvBLeZ+e3no7Vbcip+J5RatXlbyknn3PI6nfPwbNuY2FTHsL/qVE5I1ejgdd12OgXPN8bUJh/HH/P+7VRuir+vvTt8it+C/XrpusRj4ca24Qa3ItI2zONtj5x+N14zFO+5cyxLT3usAqc/XuF5w3T6oY5btD4ewBaJ14XF+ZiDbWvS+h2bEmaNzySH5WGWOMysmlTYMP5vrjHWEIk6jnex72fv7lRie2y2Fu3QqjgpP7Y2RPDx+Cr89ePJCc/Xmd36LMG52V3KLRCLLaze9PjZ75pa+cznrfexkx75Drd/kvi+do1RTRjPbHJKgYigclFyt9g7P58Wv3ie9liF4/sMMMYDOZ0uTutx/rhwvWc3Prcg33175+fdfj/RqLoW+JyCw4aIYvryTXh+0jZf45Ctb7uh1rsL9rPfzXMdJ2/y6tZoXmPMml6v4NYvezK8xn76/e2nO87NeiM286GNQ3BrL+TZg65UFSrWNXHtzvlP4qRMTts8O2we/v7pVLxodJl+5fsFuPuLafhswrLkBHl4e0zT0A77+fv2mMW44mXnlt/4PvHeOd7vYz+Pzf3e/3Fpwm/TrWvovV9Oj42pTOilkPo7Nu9/RSJJ1wZ7Od0pn4skOV/clmT5Yd5avG+MhbVWUFln7LWmy/r29kroVJ8s7ElZKhdvSHlMp3vJxc+PwtWvj8PJ/x4Wb1VL6JZs22X5xq345YujUg4VsTLzpliAndqWOrzelNd//7SporOuMZLwmbzKQo0RTTgfzMqrf3w2FXd9MS3eimymx+2e5sTPV2Vf3qXpmE1/O90LzPVLrS23t340GTd9MMnleN4XBmsL3hH3D8ahtuErSZV6aBoKY9UQST2JopmWG9+bmPB8JBpbJ/yVkYnjMo97eKjrsczfZKrhc0Est1USpbqm21+2f++HdevoeYyFa2s8y+CRqKbshRaUOZuy94RSiY/taVy8rgYvDZ8fn9/l7i+neW5vKuRJk0MJbkXkRBGZAWCW8fgIEXk+jGNvb5JbF9XzwnrGgbvGL6qbtjZ4tpw6/Sat64YKxLXbht8Zbht83rCztQi0edj7v0oeq/f00LkJMxabN/pSY0B+fWMU7zmMAbYXmOz3hlb2lluztai0OKkwYW3lszJv2tYWOfO5mvoIzniiIml8pbWlvT4STVhovDEaxbzVW+LdlYBY962PKhOXznDy9ZQVSc851fRV1zW6Lm7eGPUeRzJizhps3tbgWNgyWz+tlqyvxTEPfet6vEGWNezmr65JqqSw16ZGVTFxyYakz+pWOIzYfofWz1ZqH7wJoKExip8+8z1+XBlJGq9c1xjBtoZIQmHIWsh364Zq+nrqiqbzpEgcW2usn9/+ibYaLQzmzdAp/aZtDdHYTNEBixb2fEwMHLMc3Fr2M6+HTgVCpwmlmoZQupy/ll3M4Nj6cdzS7PVJlhotZvbhJ+l0ME1rzG009WyxQHLLrfUabu1hYGb1+pr6hGN+M20lPpuwzDZ7adPxIlF17KVU71HojY+59Uh3kUjS/ese23h2s8BqLjdUW9+YkPbhDjP32o/ZrnUJrrMsN5JcmWoPsIN9V6l+Nn5WKkh13zW76Hq13L40fD7GLdrg2rJo9+D/ZmCzMdSguMh5jfH7XOYX2LKtMeH97WNurRqj0YSeLCKCV0YuiI+jtA65etql6645Y+5vXh2bEJhZ07Bs49akwL5qQy3edZmYLCGNDt+5ObmkmXan78i6tJ/9umC//tu7p1bXNeK/lopvp5Zbp8rQWMttqlbKGPv472gU+GHeuoQJ0+ytqHbxpZ9CbLlNOkaK83/h2pqEpSXtnz/iUq7Z1hBB1YZanP54hef45GUba/Hi8Pmur6fDfL+kCaUsaX/km5kJyxbZK5/PenI4/vXNLFzw39gY3Pd/TOzB4L5kWfrpzrWwWm7/A+BcAOsAQFUnAzg1pGNvV+zXPrcfk6kxGk1YM8trkgzzKP1GzI8HA4lrWrrP2ma9OHqxj1lwk62pxNOZbdfsllwfiTpOQmFddghILijbF+A2a2eLi4qSLtRmNy07s/uutVu1tTC5YE0N/jMk+Ybs9n1FouoYJKbLqcb5hQr3i3QkqvHF0d3UN0YdK24eG5TcFTcVay33la+OxXEPuwfCQCyff/H8KNzw3oSE4NM+i7XJ/jtcZBlPaa/cABK7JVdt2Iqefb9Gz75fY9qyTSh76FscePdAnPvUCPz9kymoa4wkFPIXrnXuym1PPxA7F//y/sSk171m3Px2ZqzbrxnYm7Mtutm8rSHlWCV7ecleQFuyvhYjjQDBadZNJ+mWZX7z6o94/8clCelYur42oWILSK6kEuM/872dzs0JlolPzODY+ht8fLDzuesV0NfUmeOCE78Hv2MGrdKbLTmWNqdCpSRsl3hs6zU8ocXMeOA0iYx9wqdlG7fGg6Qb3p2QNNMx0NQVVaFJBfvkSWeSdk8abgMkz5BsZps1+LB+XmvX7/g+mvj+pcVFGGipZEvqmu9QcR2WaBSOY1ntUs3Ea/5evNZ4Nrcp9qgUs3r1+4XxuUGKxHmIgNsyM8c9PBTzfA6FaLC13BaL4PUfFsUfr6tuuh9t2dbgeLKUGEOORs5di4e+nhkfumFOVAnEekAd9eCQhEkaz396ZLyrvF2qSdni10pzQimH3/CJj3zneDwASdd/p+7R1oDX6bw776kRSc81RKJpX4MjqqixpSPVkBaz4sJMn71rfhhrtaYqdr4xahGufHVs/PHxtpbmqGrSvW3T1tgM7U5rB9ttsi84HqJaj7L35KpNOOKBptUx7PMneE2mBrjPoxLSqo45EVq3ZFW1D2ZIb8aE7dzKmuTuUt4TTyRuf/y/3Lt9mBeqhwfMwrVGDbO1QOPVFc9PgRvwMY29Id3gNqT5MgA05Ye5Tlh9YxS7tG+dtN1lLzkHpCZ7wcc8buy785eW+WtqEsZSApLQGgk4T2RlX5vO1BjVNBecdxZ0/eLGaBSbtnoHt40R7ynwM2Ffd/P7eWuxyHIOL7b8/dePJ8X//pnL7IFRdU+rU7feJZbgd/ryphvDz5/7IWEt0g8rl+Kyl8YEahlVbQqW3MZPWb/7VC2lqbolb2uI2ropJh/P/pT99/3u2CX4zas/4r2xS/DW6OTeEU78TNxx4r+GOna1Nyv5zADFaUZj+3hlEdualA7v//jgOQnb27ez/2ZNXh/F7GqbFNy67+IqrQmlIlFsa4g4Vkxaj2YNMnr2/TphIrV2rUvif3tdo53GopsVU2Zg2LPv15ixfDM+n1iFsoeGYPWWWCFX1alHgG3MrVOA7tAt2c48vxssrcR+7mXW909ag9VjzO2CNdV4w7bUVype14ipyzYlzfDuxBqwO3UrNrtMWvMraTxl1Pva48SsaPW5lGgC+/h1N7GlmRLfwHodvOaNcfZdkixZX4vTHhsWf/zn9yfi0/FV+NvHydeYJ4c0XQs2+1xf2qmSOBpVrK2ui+drqhb9qi3e52Wdw8zl1vHgTj+FRQ6zYKfqlrxpa0PCb91auRKJalq9SIDE3401UF+20f9SjW6Cljvt5Qin8ri5OsJ3xlwRXlKViTKxzWMpIDu/PTFNbvMoNBbwoNuwgtulInIiABWRViLyNwDOC7y1YIOnr8SKGvuNxLuG16220InTzTFh0owUXaD98BtQ2Sff8CvVJCtBmPlhjpl1W+9wja2lyZ6CGbZuKOb39fWUFYGmr49q0wXph3lrXS8o1vdxG5cTjarvVnQ/quuCHSsS1ZQ3fLeW27SlONZFzzWtvWi9EfkpxDZE3CdrMc+f2ywFoEstLfSpZrOdvHSj542oW6cdEh5bJTvsLQABAABJREFUb7DuY279f19OLc9WNfWJXQP9fGduhYh+I/x3yXIaz223fNM2z672XuOdRzlMtBTv5qqpl2cwg2Nr61Cty+/E61Dmd2Vv0UoVO9iXj2qMRB0Ltqk0RBUH3j0wYQ1lJ7fZWgZrLIUpa2A+Z1W163IkqSZjMZ3/zEjc8uFkrK2ut4wDRfIwCImtj23+np2GxRSJpGzRjsSD29j/V27elnKsMpD4HdlngbUnxXr/vdiyrmcY/AbK1mud09wKpsQeXYnMa5h9rgk/tjUGr6BOFSSZ6WiIJrbs/+Pzqa7LsrlNxDdx6cak5Y4mWCpxnAx0WU/WNGDqSjxp9Ohw+iwRVZzwr6HxPPcq70WjmnKcY6pfmN/eHareVa5H3D8Yay2t4daZfGMtnOlVrlt/N+9Y5hMIQ6aV6VFNPsbvfFSamDbU+J9INWjPnSANENZyyJYUS0d5HyftXXOuJPUmvlwH4GkA3QAsAzAYwA0hHXu7Mc1hPGZjNBpa65bTYRJabpF6TEIqfmvXgrYwRKPqOBFCJsxrrxkwz11d7S9dDslwm53Wb0s2EPuuzeM4Xajcuoc5HyvclttqnzXT1ve/+HnvAlx9JBLK2nV+WbvsW/PGb4WJ0zhuoKkg+LFLRZPXDJ8mr2zYZ9f2Cb8rhbX7ukvLbYAgx/qzcuoCWFsX8RyDB6ReHsvk1ELgxuw+7cdjg5wn6Qjy+ysSSfgcbtddVYWIxPPNWvnltM9tH092PTfM991U25DcTVqQME7Krrioqbvt+z8uTZoQxq8geeTG/jt+yWVcWToty+YuTkVtATDcMuO703lXJKkDJPO+ZxbI3brJerEPp7BXrFizyG34g6c0LpXmclIm63Vvuce92pqP9nMw3nKbxv14zw7B20tSdZmMXQPVaLn1d8y3Ri/GEd07Jj2/S7vkya68Ttm3Ry9ynEnd7pnv5qF1q2LHMeWNkWjCZ/T6jdi7nnbt0DppOZfxlqETTnz3rlNN+/4ciaZeJxwALnMYpmXd7+EB4U6+lGlZet7q6qShf0HWfrZPJBqmdIPbw+4bnPBakBigxQe3qroWwP+FcayWJhoNr1+747TmCWNr/F2QciGiiiJIuN2SHUoLDb66oiWzZpu1G5XX2mN29mUP7OytcV4XoUjYwW1dsMLYLR9OSrmNvburaa9d2uILj4lDwhBm3qQqsPubLdn9GMndG5u6SLvtt8Uyq2yq+3ljVPHrl8fgjp8c5Ngtu6a+MaF1108BIVsTxrmxr2mdTjoSZvFV9wB909YGdGpb6lix4JQ3XoEtECucW8dDxdMD5+dNrYoEZrtJuoEt4N3K7/dyW28LQEpcFtN0y1O3ll6gqVLKadwrkPgdOwWxNfWRhN4T9381Ha1LihKuAWa6UgVSQdiDCPPIzVmhZ5/F1mu2YdOKTVsThuLYu/SbQXE6wW1r7+H9jlK2ABrJiA1z8X9cp27cTp/I6/u6+8vpuPCIPXy932ODZif1wgGSz5P1HnNV2MfTpup148RtbVO7kXPWprx3uIlEk8emOvnRoXdONtdO9VPRnMqFz/6QeqMQLNu4NWWvAKvkCaXceXVLvv+r1GOHTZwtWeRREelgdEkeKiJrROTKMI69PXnGYQa/iMdYv6DsR7EHs+rQ5SJfuLUEZMI6NtZkr/2yXzAA5+4iiyzrub7y/cL4316D/O3mrqr2zH/rzMeAd8E9FtyG1y3ZzyzLVqnWsgOA175fmDDJh6kxorjZR3CciXpr3mRYYZKqlnrWSvfZE01evzr7KaGW5/yMS001nnfmis0YNX8d7vzCOUBasr42oYB328fJE9ckj7nNrypdP8sdNUSi8RmsFe6/L3NSOKfrQDqVg24Vdqlq+WsCVJx58Wrlty/15sZeKegWkLhV9PT9NPVkSE7ENhOy2/taW1Vf/2FRUuWW+bUFHYvmdQ3eYlu2yByKY1+exC+/Y0+9WPN/09aGpEnWAOC5Yd6TR441Pkc6wW06heFUre5mMhosPZ/8cArynO6/qcpE9gklvXjNBm7ympgoKYDJYnHtw8qlgWfJN6WaK8ZLNj9TmGWi5nDdO+NTb2RwOrfs+k9ejiEzVnlW4r3pc04MoPkrscMU1pjbc1R1M4ALACwCsC+A20I69nbt/bFLQgs47Zfgacs243nLjLdVG7bmPLh1mkkRSJzIJSzmJ7V+ZvsF4qB7kmfvdCqMnvmE8zT3W10Wdndy0XM/BMp/r5tHJKppjb9rTp9NXJY0IyLQPBUsflow/LrhvQkY7TB+0+Sne63nOCuHiWnM6f/9ZFWqbdy6Npv+NWBmwhhip7HH9jSmO5lI1vhIzpgF6+PfVV1jJGmtWtPc1dWomL3acUKdDbUNOPTeQRkl1dRcvWi2hVDgswetbi3pH4yzzysZM6XKeTbOVASJBSy3QluqroO/eXUsZq3cnPQ5duvQBm1L3Zsb7fMx+HHlK2NTb+TgPpdhEUFYWwntk+WY3hmTekkbIL0xt+lcdlP1fDGvX5EQJih0GrOd6lrmtZSaH0Hu0/aeYNm+V2bUcpvmPdacQC4bCjkYS8XaMLNkXW3Sd9e1Q2v85f2J+ONblWmPh7Yr5G7JYQW3ZvfmnwL4WFXTu5O1QB9WLg2tkGNvabB3Qbz5w0mhdstKR7o1hUF1bt86XuC1XvD81H4BsQuFH0G6JQPBbiZe50VjVEMN4JpTujcgP+eOuU2Y3ZIBJCwfkA6vLub2AszCtTWYZWlhzFSqrv5uhWArtxlV80XQQqB9Fnq7q18f55pv1XXBxqenqlzItjAqwTK91lRtSG8mVJHEgDndHgOzVm7BO2MWJ93/WrcqCjWAWLFpq++VB7IhjPHVJj+9RuymrYsEvjb4vR9sbYhgtc8ut67v5XAep1q6zK3Cxol9eRwg2P3O3rsvzO/TSbpnflRjK0Ck45YPU49Ldere7UfeVbqGyNqqf+pjw/D11MRKaOvcIu/7WJPZDx8dovJWWEn/n4jMAnAMgKEi0gVA9qpntjPNWU506obbnFIVKsNSXdcQD3SsXer8DMoXxILQk/ftnHLboPnpdPNz491yG82LAMOtJd5LOq0hfn02ITaW11ouS3fm7jA947GOtNfXGMb4PTO2yuRQ9gJavtWQBw1Q7DPfOvnKZfbsoHIc2/qu0POSy14i1knQMjnvunVqm9Si0bqkKNT77wn/+i7jlr5MhFnhaR/P6+/9m7o1+5Wq5db8bT9fMT/lWqpuOrVtBcA5+HFaRixdTuUbvxMBRaOKb2xjMIMu0ReU3zWG7cYsWJdWJY7T0Dwn6V4znZYi217YzwX7uWbNsyBdj93s06UdDu8S1pzDzS+Uq7Cq9gVwIoAyVW0AUAPgojCOLSLnichsEZknIn3DOGa+yXQGY9Po+etww7vu0/8DwVsdrHrsnF5tWhBBp0d3s60hGp8ExToZip/gWiQ2S6mfcXxBW27v/Hya720jUcUBXXd0fG3cog0572IOAB12KNyLX3MaMWeN+4seX6Pb8lVWqQp8YSyvZS8UptOqk01BL6Fmy7iXVT7WFQ3Lr8p6ZOW4u3Vok7DucrrC6NqcDvv3mknLzLKNtZhuW7GgTavi0CeAuuSY7qEeL4hst/RlQ6pK2jAqxK3LCeWr858ZmfRc0PJFc3ls0Oy0Ktetawd7SbcYuD233KaqpAy7DjXdlvl8kVFwKyJnGP+/GEA5gIuMv89DLNjNiIgUA3gOwE8AHAzgChE5ONPj5puRIdUczl61BV9PXeG5TTrB7dF7dgLgPkNmmML8gZrre1lrhv22YjRG1VcNvH12wzA1RhUdd2jl+Non46uQD5WU7UpzH9y2CjDhRz7yqqTwE4SlYhYUnFpIOrdPXhrDib3QvD0XIkxhVbRVzPao2DDss2s7jLjt9FDez6pd62LPmYr9SmtpmxDYfxt+ZiZ3886YJUnfReuSItceDXt3aed6rEs9Ath0xqqGpRCD2+ZIszk5VrrjRJtDGNd6L1f0Dq8C7YLDd89qz7F0K2QzuT7ku1QVHWHdr7YXmUYrpxn//5nDvwsyPDYA9AYwT1UXqGo9gA8QUotwPvFs1ckDrUtiXU/DvGkftHuHpOe2bGvA+z+GM1YAADZvjQWe9QG7Jdc1RHy33Gaz21BU1bObTT60nrVJo1tyutzupenM6plPst0Cb+aOU+HJ71IT9u6OqWZcpWCKRLDnLm2xU1vnyqx0tW/TynO903xn79UU9lj63TruEP/9tbFdysz7nhOve0NYk7mkI1eVEJlojl4BZsX89hz8pBLm2P+d2pZmtfyR7i39wf9lPilbvnIqa158dLf43ys2Fe51PhsyanZR1XuN/18TTnKSdANgHc1fBeA46wYi0gdAHwDo2rUrKioqspSU7dPTp7fFTcO8Z5qs3rwRALBtq//FrL1cc0gpBixMLmjbF5vO1Nrq2NhO67IwS5alXlfMXIJj3ZrUs+Bmc4KuKdOmY/1G58LKDiWpF3NvDvVb0xuzkw7XmuJ8aMLOwMZNqZcSysSWLcm/tcO7FOOX+5fiqfH+ut5+OiZxrNSkpRvDSFqSA3cuwqz1+fF9NjY2X6Awf/58VESWYKdWEYT5q961qBqT12Svd0m29f0scfmqlWvCGx8JAO22rY1XmrUqUmyLNJWq62rdr22rV7iPx15S5d176uhdizFhdXYCuiGVhVe4X7U+uy2WANBQH7vOrdvQcuc6Xb48nDkEAGBJ1TJsqM7edXrr1vQCtWy3fufSxi3J5e+d6psaxrLRkF5dXV2wMVUofQpFpCOAewGcajw1HMADzTFrsqr2A9APAMrKyrS8vDzbb5m+gclrzuXa2aefAgzzXtpit107Y+raVejYoT2Wbsm8IH7vb87GsMeGAbXhBMupWOPPDjvtAqxKHbQCQM8ee+CH5eG1JAd1wIEHYtjKBcDm5Av21mYur977s4Nxv8NSFbt13hnzNoZb4AyqVasSbIsUbgF+xx13BDZl71LZ3uH4+++5O37zsyPw8sxhWLct9e9wwabmCTh32XknYL37skvNqaioBEDznFf777cvyk/qhf/OHAVs8g5vf37kHvhikr+C6jEH74shi2eFkcS8sEP7jsC68ML//ffbF5gdu66VFhcBDU03i6LWbQE4B7i99uoBLFno+NrOXXYFPAKJEw/phQmrs9PzYVNRBwC5n0AviDVbs98DqV3btkBtTbNdx/LRbrvvgUGX9MS5TzkvgRZEl667YZNUAxs3Zp4wB+b3VYgO69YRU5eFfz/XohIAiRWuxx55KF6d5j3PTibat2+PvI6pPIQ1iPI1AFsAXGb82wzg9RCOuwyAdaBAd+O5Fqd3z52zclw/XVXMLiJtW2VeF9Ick1J5CTK7sVe3NCdHdO8YNDmebvlwMhqi0YSxv8/9+ujQz4XDfaT750d2c3y+TavczhVfJIXfLXlymmuA+uXVuyAbeXfKfqlnGXc7b5pr2Rw/s3w3Z7d/83M7ra1rt2Mb/12XOwTYthDUhdyF1Xr62+fG85pJ1qs7f3WKMc5+hruka/G6wgwI/Bj619NSb+QiH+4QJUWCm87cr9nf99pT9wYQm3l/xzbhzJExat7arPXeAZAfX1iaslUmcuqW3L519q7vBV6sCi243UdV7zXGxi5Q1fsB7B3CcccB2E9EeolIKYDLAfQP4bgF5fDuHbO2nISfwuSxPXfGhUfsgXt+1jSX19Un9kzr/ZpjUiovQcbIllgmKnKb2MnqqD13SitNdq0thZ9t9ZGEG9KZB+0aeuGo+07eFQ6tigXFLpM2ZbOg5ofCX0CQLbu0yf87wMwV7r0tshHc+jmmW3DZXEvO+DllmnO5oyIjz9qUpg66SwJMoBZWYTZfmOfHB32OD+V4RZZztU2J/3z1uu4NSzGBWOssXjMLcUIpv/bp0j79nfPgMv2viw/znKQsW7p2aAMgNrdDWJWHyzdldyb5XK8N7kc7y7X6wYsOif/92xN6eu7XtUNr9Ooc/DxwmjU8m40LhT5BVVg5s1VETjYfiMhJADIe3ayqjQBuBDAIwEwAH6nq9EyPW4jsP/a/nr1/KMd1K4ge2q1pwqc9Ou2AZ644Cj12bptyv1RyXRsUZLZoa54f2aNTyu138FEw9cPaUru2ph47tWua0VYksUAWhh47tfV8vaSoyHUysR1CaM3PhGr6C9FbdSjwIODXx+2Z1n5eFQPnH7ZbWsf0UzBxm4gsk6XKgvDzC8pFoNDOxzUkyEyiHXxUyhWSbY0RlJYU4fi9dwnleCKCf19yGLp12gFBLt9+J2JzkkmF4Mu/LcPFRzn3ogGyOwdEIcuHYnqulu4zK8NUc7/mtl+5Tqafxoy+5x8U/9vasHHMXt6NHKrhTWwWtHdhELn+DjIVVnB7PYDnRGSRiCwC8CyAa8M4sKoOUNX9VXUfVf1nGMcsNALA3uB5aVk4a+m5xUn/+MlBSduYNc5nH9w17Qt1rruQbqxtQNcOrXHVCXul3NaaVPPv0w/o4rq9n66OfrS21MbVN0YTLrTFIqFXEHRu39rz9eIicQ1Ydih1voT46eoclvU19Rkf48g0W93zpbCQ7rnnVVGSbgHeT5a4pTfMpbV+d1Iv19dyVSt9ffk+js+bswKHVUFm2qWd+1JPblnglW+5tnT9VrTOILC0EwC/OnZP/ND3DN+rARzQdceMfveZBLfFRd7nbjYrh1KlO6z7Xy64rScf5r6RaGyW4ebw5zP2jf9t9paLqObN/SqVXLfctm+durL7lH2bht8c2q2pvOP2O9m/a6zngSK8pfRy3XMun4WVMzMBPIrY2NvPAHwB4OchHZtEkmrrw+re63aj3NvSBcjcpk2rYnz319Pw3K+Pdl0bMBXzohV2Heap+zcFnfvt6t59aUNtPdq0KsauRlcd02nG/tbg23qBNf/2qikLK3C3r6+rlsz2uuin3ZpeJHj5t2Wur0ei6lrw67SD8836kYsPTystTn5zfKwiwq1LV7pdvbwqKvwK+xbctYN3RUO3Tjvg/xxaaYOmw9zeK07wE9w6pcWP1q4tt+GNqTz74K6ur+Wq6PTr3s75ZXaBtq8b7TSOX6EJhVcv1t42dub3e1i3xPe452cH+1rjO1f8FOje/n1vX8eyXk/tPfzOPcT5/Ol7/oFpr8MJZNbaUpSFyk2ru356kOtrY+4403Pf5ohHeu6SeD63DakyKEhXf7vPbzjR13YRVZyyX2fP61IYdmhVjL+ec0D8sXnvVk1//dhU9yW7bp0ym1vFnO/gl8d0R7/fHJPRsdLhZziHW3nL7b758C8OAxB2y21m1+mnfnWka0NPoVSEuAnrDvYlYmvbbkNswqdqANvvzAbNTJB8orXK4GJ84j6JXboO3C1W82jtmrlbxzbYo2MsALR2Xdy7S3uUlhQlLctiTlqQSiY3ES9XWgrZ//31UUmvm4FMJKpoU1KcdFP8pdESbq2xs7ZqmQF+ui3WZoDmh73wdnj3TglpchsKePSenZxfSKFIvAOBxmjU9UJ+ffk++P3JyS09Ttu/cc2xuO3cA5KeT8U8lluh8IM+x+Pms4JP1GG9CZkVCL+wdfm7/8JD4CWsG8BJ++6Ct3/fG1elGMv+Q98zsKcRsOxsaZXbyaOFzonZO8CrW7Kfa8yZB+0a6H1NbmOFtoW4bnS2rjWZcCuMR4zlrHbrmFjpZv2tn2apwOu5i78KnY47tEJxkTjOkWAGsE4F0Xwu2Kxz6alhveScsp+/iivrPvZT8vcnu9/TMgkwM2ltiQW3mX85bgVar54DOwe8xmTDoFtOxYwHzo0/fvFKf4FPqp4ameSp3xbrSCQKEcGFR+yR9nv5Yf8oTd2SNe3ztmyvYJNYaoZdsM2J4w7cvQPOOSQ2PGbvNMapBnHJ0U29If203LqViawVg9bKX2t5I6z5HFp7jLl9+vIjU+7/86O64QaXitJMKvDyQVjBbXdVvVxVH1XVJ8x/IR2bkDzRSklxUdqThbz3x+OTHt/xkwMx7G/lCc+b4+KcGontQZ7fbn7xltsAv+0nLzsC/W88yXMba+He3voBAGdZgrc2rYqStjEvPNYxb+YnOv+w3eI3jHpLjVuQltIgNxV7zd++tpZotxvHq1cfi/ssk375T5t34hoi6vj9HrjbjmjXugR3X5D8nk6Vl+UH7OrrpgHEKgMO2j027tused7HpYV21x3b+C7MWjnlojUvLj+2R8pgM8zL/yn7dfHdNRIAGo1z8bT9u2DXHYPVrLcxKgq8frder+3TpR3atCrCGQcmV4r4uRS4bdIQiWKntuGME/XMyxzdt9163JiXlT+esrftecXI20/HyNtPj/dOUXW+JruZ//D5CZU/Zx4Yq5AwC73tHH6T2QpurXM5mHaz9aJJVyejy6cZhPk5j6yf017R41U5Yr9m/u0c/3NgZNLaUiQSyndz/0WHOj6fSatyc/ykWpcUo21pCS45ujteu7rMd1Caaiv7Yf5x/oH40OekZX7LPmZP1EwaJvywH70oXjGf/nCM4/cOFtzWZ9jt1j7fwaR7zsY3N5+S0TG9HNmjU8L34md4iNv9xXqcf/7iMLz/x+Nxy1n7W8qLGr93Z6pNSTF+5lJZkqrS5ZPrTgAQKz+ZDVzbk7CC21EiclhIxyIH9mCypEgw7s6zQjn2zu1Kce1p+2AXl7GXTjcQ+3NqCxX6/uRAx2OZH8O+vZeLj+6OvVxaKvr+5EDcdOZ+OMYyZtKpW8julhaR1q2K0bZ14g/frE0vsbbmAai86yw89auj4sGp9Ws4xjZOs4uRf/aWcSDYTcWet/bWHrfW4w5tWmGPNLoDeSXttP274BWXLssD/uJ+syl2KX37HcfZuqQoPg7RnKnZqyCTToHBWpi99JhYre1Buzdd5P1UXti32LtLO1xw+O6B02IK0oJgjq/bu0u7wC0PZo2v9SNeFmAcfySq2KNj+l3P3CbsiEQVP/Q9A38/z/n6cdK+/icS8vr+clUn7TbruNlyW1pShEWP/DQ+TCCqih47t0WPndsmpNn8vv3OlmnthWKfZKpd6+RCkNP5tKdHF2e/nHpCWGfhX/iv89M+dmlxEb699TR8en2sm+gHfU5IuY/XdbmVyzXMaY99d/VfOMwsuM3uePEglWu59MRlR+CMA7v6rjROlWWH7JFY6VIkgrYOleSZODheWZvdLv/288N8qEi/x8Flx/ZIvZGF3yW7fnmM8z2nzghuzeR2aluK1iXFWZvLQ5GYb249bKyzHLvdX+zPn7DPLrjprP3ilWVRDW/it447tMIzlx+JPzj0nnOqtLTqkqpCvDAuBa7C+pWdDGC8iMwWkSkiMlVEpoR07BZPJLkbQyazNQblVNBJ+mHbfqs7hzxxgttNd/eObXDL2fsnFN6cAh3remBtWiV3SzYLMvZ9O7dvjdKSongXjYuObKolswfoh3briM//dCLe/v1xmPPQTzD9/qbuU0GCD/umScGtR6Wfvbu4r/cz/v/VjScnvfbm73ontHpbeU1G5Nbd1W+XvIN274BG44P6KXAduFtyi1AqD/y8qaB90ZHdsOiRnyYsi+SroGfb5OoTe+KkfVOv82oXr/QJ8PWZreA9d2kX/z1az08vTi231nHrQKwg9MQvj3Dcf8n6Wo+je+fbH07u5TqxSmNU0ba0xLECJ+g4UPM3ZxYqE1KYo363bueU/freVBByPiHM79vvdcXpfc1DW1spvr31VNfjelUg+e3FYv84Zx64K84/rKkyyM/38sdTkgtyQCzP9t21fbwA6qcC1fo57Vu7xSCd27dOOnaQJTkyCZrEMubWa26JdKU7E/+bv0s9xjlI65/XRGhWfn/HqbpY3vuzQxJ6whWJpDW5W3KQHPv/Y5cejhOMSu90h0vYhw/8qsw54HRtuY1q2l1NvYavvHHNsUnP+Z1pvkjEseeX25JwQVN/0r674LlfH+1rW+tHdPuNWlcQcKukcDsnrdvf47OHndv911RUJBARx+uvdUWCK49PnuuhJI/nVQhDWJ/uJwD2A3AOYmNvLzD+TyEQJActXjPYhvrGcC642AtL9oKB11gAIFghHojVQvXumXxzdCyEOQRQ1htKm5KipIuXed2xVhrsaKn5MicAsNaG3XhG4jjPjm1b4ag9d0JxkaC0pCi+be9eO7vWHB/XK/UN355Wr3G/6QzlMHc5rHvHtNZfc+JWMPTTwnrIHh1w8dHdcOI+sSBx53axGkavjxZ0HNvdFxyMXXdM7g5pPZ/M1ucrervXWod1AU1niNIvy3rg6cuPxG+O3yt+fvn9/s3fp1NroCkSBS5xqVmPKrBgbfBpFQ7ZowOuPW2flKUUp673x++zS1LhrHP71imXz3HKEqff45T7zvFOlA9XuEwYZXILAu3Xd/P6an3ammbzu/J7B7B+t/Z9rLMPmy2QTvmTzjnaqW2rhEK5PYj3CqacujAD7ud41YbE1QfN9HpNOmR9e3tK3Aqvh3brmJQXQbrzmi3gXt2xnSpkgFh6ze8yrAkMX7zyGJxsVMilu2Z4WYrlTwDgz2f4nxfBb+V9WA3NbVoV42hLT6wiCTZZ1YKHz8fCf52Pr229mczvyjqW3s9nu+unByXNwvzSb45J6K33h1N6OfcCsOVJU7dkhQS4YVnHM7uda+1bl6D8gKZ5F/59SawD5167+OvlUVTk/B2aLb9+Tsc/le/j+lvap0t7/NRPTyrbeGS3perM38fNZ+3n2gvHZG+VbprYS3Hl8Xv5mofF78/R+TradJG63aEnVLa7x+daKGUzVV3s9C+MY29PTtkveIuOyWl2tWzFtvaLqtP7pKr1SXWzf+Ai74l6nPzKoWuMU9qcLvilxUW4+OjYZEE7lCa33DoVZK4+qWf87zXVdQCQMLbxtP27YNEjP8Wch36Cb246xXFilsn3nIO3f9/b9SZsH/8MJBci7Wn1KmT29hEse7k9jQmfnNhrL+3LSXk5skcniAju+dnBGPa38nj3mWysE3jx0d3iN2Qg8SZuVoh4nssO32smP8sg3fWLiwQXHdkNRZaKrqjP6NZspfWqIDMDzCcv86499uuEvXfB1385BV12bJ2yBeF3J/fCzWftl1BT7nQvrrzrLPzO0iXL/I0D3tdHp5fCqCxMVVn1/+ydd3gc1fWw37ur3nuzLMuybMuWe++WewFjegs1EAKBhNCSkEIKSX6ElA+SkAIBkhBC7wFXsMCAcW+Se7ckS7Jsq3ft/f6YGXm12l2tpNXu7Gre59Gj1czszJ2jmXvvOfcUR8qDrdKnPYf2/p9KYhhVue3Fyq0Wk9VV7LlGm5P3z1EegL/cOIEvfjC//W/bEhjOlJMbp9if/LnaDWj9hTN36o7GrI777A1xjtrrysqtlhAnOSqYF26bxGonMYR5DjK5K0bti5/dwdJRVu+Yg9voKvu0K+9OdwyQUaGurW67utLsymtiPb6YTaJbpY20FTRH17WWj/W76Cjr+Z2zszo9A5EhAR1cSa37/Q7XtG2bukHK7vVxo61cgB31M7ZGuesmZ3Dg8aWkx7oawtBxJND6z3mqwuxKa5OjQuyu/oL9+9XmINbKnbQ51l5+j/9+Y2qHB8mZZ9eJJy7htzarrtr7qknMlaRSzo6xjvPXmiIE7WFR1kYUe+OOddiF3We3y9bpG/9el9YZjsqtdDXhF0LYdTftzcP3329M5cFFnZNgbPzePN68p2Oskt0Xowurj6OVW23ybi8RTVfMtTPg2++8Og9KAWbR3hmFBpo7rYbamyhYdw6aG6dtNlNQBu0RDizt0WGBBAeYHXZSrkxQbN2jnCl5iZHB3VZGrE+3bHQqJ564pFvft4ftXWn36coER/uXBppNDE4Ib18VuHFKRidXvEgXE1TZoll6/3DtOK6bfHG1zXqyZLaytDoiK7r7rmuzhybwyUNzu/09Z2jvgatu6e1u3Ort3pM3xK53CCgx793B0fzpyatdLw8VFhTAdxcO6+CKbDsAa6sD2r9n4qBYu8qlvf+fvcG8p6tW1nTVl5tMgv/eObXTdlsl1ro2pT20/42rLe7Qz6gfNYXM7thi58TO+h1He2xP3WoTU+Gs/3M0eXTVyKXV756X4zij98C4iwZJ2yHLXt4AR6+XKyu3b9w9ndXfnY0Qgvk5ye0JsOzh6FEU4qIS5c74WG1ctjeeJkcF203YZ52BW4iuDS32wgpyUiJZ+8CcTtv/cO24TiWq7OFO7zXr50oI0Z6X4xuzB7P9xz3Lb6LJxLqZ1gsDzlazbR8127HTUXKxzjG3F1duu4Mj5d76/2KvfwoJNLucLdm2NNrItChOPHEJA9TwINt7sTd/EMLxvdl7PlaMTeP7S3P4jo3stWN/tmKkXbfkGUMSOkyWumtcupi1WvnbkSHa2oXY0Xj+7r0zO3gOamOXWQj+78rRPHn1mA7/J3ty0GM1AXdiKLcexJGrw0NdZFoU2O9EetKxa+ViZgxJ4DsLOnesA+PCiAxR41PVS9qzjtq+2LadWbCb/PmtO9iEiOBOtfZc7V8Czab2QSUk0NwpicpFN0D7nckfbxjPk1eNIbWHSXQaHcSQ2MN29c42s7O7VjA1txl31VyzxraF2iAVZFbknhAR7PKEIS0mlBNPXMLM7AQ++HbHuOC4iM4TxN91Eafy2KUjO6wIWuPIwg7w6LIcdv5kUfvfn39/HpOSu6/cTs6MIysxokOGQu1/3tN/rfa6WT8bju7RGu0Op2fFdxpIuxvXr7mxOXolO5bWcu2c1pMbJZnOxX3vfEvJoK7Jbt7wxA7rAN2NL3PHPNkV402GHZe9Tm7JXcTcaqK0t//eeUMAuKSLWFZtPGqyEx9nb2yxF+v/wm2T7H7WsO3LbFdunSlE1mOMdX3TZaO6fq5BWdHZ/MMFPLzYsTfKRKsSJ7bKrfX7f+DxpR32dTcMByA+IrhHuQGssXZLth2Xk6OCeeq6ce1ZUHuC2STa63FqOOqThll5eLny7th7NwLNpg7nAaWEyagB0Z36enu4M/+V9X2ahCA4wMyxXy/nh8tHOEy22RVa8zrUU1bf7ZyUSKf9ha3yY2scMAn7fa3t/8I6ZMXZ3OH1b3Z8bhy1LTTQzN/V2rOOFDRXhrETT1zSYXUYuq6m8fT14/nmnCx2/GQR7983k2lZcawcO8D+wdj3RBAoxlzbxHoaFuma4ai7xlDbObMjw2VUyMV2OVJus2xWloVVnxAZEsi1kwZ26FvtKbJdje9eSkvhNgzlVgdMsMm6a4sQrlvXnREUYOLtbzkvqWNNUaUSw5RqZ7WyU8ytTfNcqQGmcZWTlSHrmnbQeTCzfoFf/+Z01j9of0Us0GRqb3NIoJmwQPsrt4461ZTokG5nDLTG1eyB9uicLbnHpwKUjvH5xWEkq6uX9c3222abmfC+edn8+cbx/PqK0Q7rJDpCGwi0gT00yNSt7Nwa1gaimdnx/L/rxnU65uqJ6U6zri4ckexwUm291daNKDjA1GFATI8Nszu5sj61vdgjbfcLt3VOxNHTf60my4FxYXz2yDx2P7aYv3ztYszUOjurI9Axfs/Ryi1cvCfbOsAAjywZbjdbY+drXfzck3FTCNFhQNZKvmjN7k6SKHtHumMVyJUVPHvX6ZRQqt0t+eI2bfVsxdi0dsXGXl/wyJIcTjxxCc98zX4iFU3pD1bfJXu1he091/YmxtOylCQ5UireOIttks9ZT9SATtncncnc+vkbrdb6jgwJYGqW6xmzk6NCnMYLWhNsMwG0Vh5tV+Q7x9x6ZiplskooZTsGt1mUupWT7OSm6ArtfkwmwcKRHVe6HY031t5bPXVLtjfpXjnOsbJiizsTw1mv1mndjCN3Y1ex55asPY9afxsSaLIf427zt/2V285ftN1yUWGUDpPyDYgJZcrguA51WR0peH+6cXx7RQhHClpPjbSd53cd/06LCeXR5SOICw9iTHoMr941neiwwA6y6pAYzM49aM/z9VMGtic5s3bZtkjpeFXW2tja3ZVb1RNEWwhyZBiwzuuieZgtsPI+Kfj5kk79aleePIFmE588NLeDka4r5dZemJ0vYSi3HuafSy9aXFZ/dzZfPbrApcHI1uIN3e/Yu+vGpLmM2HvIbV22bFvnKA35n+xkrnNWY6vTPTr5c8rguPaasLbuqgHmi+s4oYHmTq6+7opfcoSrsZAa/7ljKvHhQVw5YUCnlO1dnamrupFmoWTX02RgT7ld98AcXrZxn3x4yXAuHZPGjVMzHNZJ1EiwWVHVxKsN0M7imbr6T3z4nVk8uGgYL985rYNh6H/fntW+atvTCYn117TC9dJKebJ9TGwndbZloJyVy7Ge2NlmSx6WHNGhNqk1sTb1PEFZDX7+1kl8b+lwMuLDiA6zP/jZYv0aO1o9hIv3uXBE53CCe+dl8+NLR2LvyXziSqt4ZuukRg7+PVlOEpoJm/NpXPz/0OHhsb5GWnRIh2Rp9q5vK6LLXcw8bY0rK3h241kdxdxazRKzkyI48cQlTMqM6zARs8ZZveNpWXEdDFZXjh/AirFp3L9wKEEBJu7JG9K+z97702aRfPidjqtpthOk3LSL53/x9smMHRjTYf9Im2yyzjzjrJ9Z7Th39tO2sls2OLCD0S6gg3FH+WyvzBs4z+TtbKV54/fm2X2nHHkdSC5OqjuV4+uBRhFo4yppFvbiOLsOqXFJubUjo94alFz1YnJlPIiyUoq6Ov4OF4x5YG08vLhNe2e0th94fBkPqSFid83J4i8LOoZb2H6v/dwm527JWqy5tZdHSKCZj+2ExGjjsnXODkfKT3JUSPs+R+K33tyVIdz6WO3Z7k7uCaUdF4+39kQLsWNs1I4NDjDzw+Uj2q+nycAkhN0FHfXL3WqXNdr4p53BUaia9p7EhgWyYEQSBx5fyt9uvmiotjePd6VbzEqM6LA4YP3+/mJlbofcBM/cOIFX7OSD8SUM5daLBJlNdmM47aFNfp64cjRv9NDtqLtuFD9dMZIjv1pmt6NfOS7N6UQqISLYbja43lqDbAd9R4PjX60y/YHSUbeoMgwNMhEUYOoQ62O7SuduuqPbRoUEMmtoAtt/sog/XDuuk/ztKcrWBednZCfw+ffnOTy/JjNtRbihubXTMUOTIy+6p3eDhxcPY+KgWIIDzOz+6cXss7YJcGxd9G1X6J2RmxZt16V+1IDo9nq1zrCN+7PGunzMLDUBnDbQ2osr03SZzPgwTjxxCdlJkR2e0aQox++IvSRm7S62OUnckzeEy8amdRq4rp6Yzm+vHtNptXTBiGSHK4eO3hOtrRYpO1nhAzpMXpXfrngqW1/qequYKnv9yH3zLiZUeWDhsPYapfYwCUGSHcNN+//HpnfQLiclfPnoAt75lvW57U0QOm77f9eN6+Si2RX2VvA6u5B13J+TEsldc7I6bNMmj47c0sx2lNvI4AC2OKl9/upd03nfqtxXaJCZP90wnqTIEA79clmH2sL2npaYsMAOyqt1OzTus0qQM2+441jX9mOcxMNaP3/axNP6eu/dO5MfLs9p9ya4e+4QuoOtYhQSIDoY7WwV6d2PLeZFteyJ7eTbmXvpn24Y36EsnDUD48KICevczzoaqtsslvZ9tquezhJ+3WJHwdj3iyXtfbR2P/aqMFg/go9fPorJmYpB0drF2tHk+korTw/rd0ObB/TWVuFqjgHry1j/X2+bkcl89Rm0XvHraq7kKIGRo+ta930XDVcXj9P0seAAE2GBHd/tr03N4IfLczqNmQ7dktXf6x6cw/5fLLUyhCnbhyR2LiE1Uc1rYa+d9uhq1c9a2ezKEG6N1oO3Gyxd/uZFtBqy4YH2+4QOsdVWV7hvfja3zcjkxqkZzLAp52fr5dEjbG7G+n21XuC5WNZvAEIIQgLNHeRtT/baYpO9EBNXmJwZx6r7Lya4u2RMqt2x1pcwlFsv4mpMm0C0T8iHJEUwuQduR9B9NwohhMOsyGkxoU4nUkEBJn6xMpefuVDPqzsxpLaTCkclZ2y3B5oFLeqLr60aWsf6WFs375uXzeM9yObsDGf3+PtrxnZQTv9ix51w1f2z+au63Z7Fz9ZVz1m2Qm380mJ5HbkldwetlMR984e2KyjWbmvaNTUXSFuLqrVLmLtczY79enmHTK0aziZE2pXtTTjtoc2HHA0qv7pidKcYYO32nE0eBErM1x9vGN/pf2kyCa6ZNNClOnXbf7yQ3Y8tdngt63iszq6xnZM59WalxboJWt+XEBHE+CTlWRiRGkmsTX1LR5PSDliv3DpBS+CTEBFEaFBH2d0wJaNT/yiEcOjt8turx9g11NkzLsyymSjZtvPde2cy0Cajr70JsL1zWO93ZzZx2//zLy8fxT9v75wxVztMc+/rzsrq7p8uduqC2jFzubqqYrVt7MAY7pozpH2lw9XyIxpd6UW2Co6WHNAe0aGB/OTSkR36cY0As8mhJxM4CDlycGxrm2wfv2xtdM76tcfsKGNhQQGdEucIOwqTtaJy87RBvP7N6Rz65TJGpFrH3Npfa/6DVdiI9XxHO6dtX28b29wVPanrnmgVDvPIkuHt4SHXWNWN7W5pOWv+c8dFjyd7/ab2XFm33WJHHpqMspMiuGtOZyXN2i3Zuj67dorgAMVDrd3IZ/VdzegQGxbI/749i19dMUo9p+P7+smlI9sNhNq7+c25WY6/4CLWsul0fRfHG9nBUKD8cdOIYLu1ih09MhHBAfzsstxORoR/fX3KxQSQvRj/NOOOFsrRpirhDy4axmtW8c6a0cqREd5+8tPez5n6vLSohzGUWy9i3YHaWoZmZsd3SEeuTTy7m+Tl2/Oz29P496XrbWcXGqXjvW3m4C6z73ZnfLK9jiNFyHZiEmg2tbur2E/sdXEEeHjJcG6enul6o1zA2bzzqonpHdz37FnMRqRGsUxNENPbBFDac6CtTF7joBh8d3jhtsmd6oR2cFtTP2tup7fM6F7Mbk8wmQRpdjwjnD5uVqt97cc7sSJrcXqOlNuI4IBOq8naM2tbisD2uhf39VxpiY8IJjos0Gn2VeW60k7GXnsrt477EOu2v/2tGTx9/bgO+62/q7l9nalubH//7Q6uwsFnK9onhti3sFvL75OH5vLR/bNZYJOtXVvZ+uftHeOgbRXeb8wezIHHl3LNpIHcr3oP/HD5xRVPeyu3tvflivdJVwnutG90nCDbPbQTCZGKku8owaHSpo5/3zRtUKd42QkZMQghWPfAHJ6/tXP8eFdEO0jootHRLVn5bNclz04yNVdodvDOvnj7ZG6fmem0jqW9ceiOWYMZFN/9OuH2jJWOxvlWi2wPU7lQ3+y0TdZ0NXG92Md1Xrm1Pa0QSh337hohrevPa+e0HaedPZP26Eq51SpUnKtrsrr2xe9YP2OjBkSzSI0ZdzbP6qos0iyrko/C5rf1Na3brn3HulykthpnLyQNFD1La/5zt0yyMorb71+sjRSah4UQglEDotuNNs6ekztmDWa8VRjQiScu4dFlI+we25130brPbG+ry992fL0QB/Ykex4O9pqrGcvmDku8OCfrhQExJNDMugfm8Mfrx3dox/CUyA59YXumfJtn+4XbJrHSQahMd/UCe/iZbosb1toNeor1A7nq/tl8fqSCR9/eC8DLd05j09Fz3PDcVyAudnDOYnusiQ0LxCQEDy0eTrGaGKovLTN352VxrKKW/INnlXbaTPK2/mghDQ5WCLvTEdoe6+iebF22Asyi3V3F3gBqz7rpTqzb/fDiYfxu7aEO+7tjeOiucvu/b8/i0j993ulaWhZidxAUYOr0P7euo6ZNYpKiQjpcszeZPV3B3gTMtpyQNfZiGds/2TmXlnS7ySopj22MtCPCggJ4aNEwfr/uUKdJnvWf7liQs35P1nx3jtX2i9fQJtmXjEmlvLqRG6ySi7iSeVhrpkAwISO2U6I86/+F5n2SERdGZZyZ3Wfb7GYRdnQPHa5rtXK7JPdifKOtixsocUcAP75kBLOyE/jWyztobrO0nzvPxpXWtrt9YNGw9v7j2skD25PM/fqjA4D9mFvbZneO2+58TwFduCXb+3c4c0u15t552QxNimSRnVjP9tO7MFZoVxua7DhnQm+w7hMHxoWyeGQy37TjZqjFoNsm3usp84YnMW94EvV2wjW6oieGqDY7KzS3TM/k9+uUMWJwQjjHK+oAVblVVx7P13VUbp0pet3x2hI2j7Cr+SIW56bw1o4ih/ut+7iLCaxcbpZdulJuZ2UnsGxUCldNSOfOf2/rcG3obCxpVcfWoADH8rJXFskR2i1bv04mO4aryZlxHP31cswmQf4JZZtW0cGRZ5XZauU2KjTQyrW443HTsuJZOS6tQ+lHRwmI3D1HfP7WzhnUw4PMFP7i4gp9UAfltuOxPWnN7TMzefGLEwyMtP9wxVp5ZVmHrtjy9j0zuFDf0oMWOMa6r9SeXe0Z3PbjhbS0Wdh4qALobNSYn5PssISmo7I+v1iZ22UOFg1DuTVwG9Yv9cC4MG6YktGu3IJ1LBnUqQNtpCNzlA1brVyGtWfWTdV57JIUGcI/b59C5g8+BDoqNuB8wt8d16KY0CCbvx2nc7cm0HRx5daelUuTUU+ScriC9WntKdfdiYdu6WFchYY7M0w6o2PpF/vXtJdMra+a97MVI5maFe/0/u2VInC2chtkZ+U2z049ZkcMTVaULe11sff8uVu5HW4V39P+3HNx5TY1KoRnbBK/mexMAv54w/hutuHi56lZ8ax/cA5ZCRGk1R/j25fPdOpKD3DtJPvx1FqTTEJ0eOa0vtJeDeoAs4mFVpl9HfWNmvv8lMw4loxKsVv/0Bp7bqu2hgHb569nK7edv+Nq3xUVEthlbLorxrY+6irbsXaLDw0K4FkHdeK/s2AoCRHBXOakJEhPaDcCupgXAy6GvEzJjGPLifMufcfeypy1keSDb89i1E/XAIoirLnX1zZdVL4HxoV2KHn06ytG88N3Ls4lAPb+bDGjf7bWbhvaDVPCTqIql+4CnrhqNLOjzvHd/Aa7+61PqxnStGv9/pqx/GfzSRevdJGu5g4mk5J/w/o462/YPueaAdwdK2HK9Tu/R/bcku215WLCR/tGFpOVK7hJOB6nggJMPH19x77aNgfGxe3K71gXw3IcobXFlZX4Dn2mnfG3O9ebMjiOxy4dyaPLRvDl5591Ou7xy0dx1QTX+on4iODOFR3cODlpfwdUoWt1ubXnwFHCKXs4el5v6YYHor+5JRvKrRfpyk9ee9gCzab2l9fVwHbreDxtgmQvgU1f4aqleNHI5HZrKSgxgvERwe1Ksi2hQWb+uTScaTNns+nouU7ZODUuqFbtqYPj+PnKXEwm0a7c2rPKtrtnutTq7qP9D8akR3PL9Ex++eF+m+u7fq5m9T7e+dYMrvjLlw6PuydvCJMGxTI4IZyQQBN3zBrMMxuOurU2oKt0Z67Q3fqkrnLbzMFdX7t9Bd/6SZAd9gEsyVUUI23l1nog6o7xoL1mZSfX1Yu4I5bScWUDVYmyXLwHe+6Yv792LH9Yd6g9djApMpjLxnYvm7DtPWYnRba3oSvF9rdXj3G4YuJIPmkxobxx93RG2SRBskZ7l7TVP1sWjUzm2/OzuXNWVqcM1PYIsbNy29VKrb3HpT3mthsTnB8tt+8i2BM0w+uH35nVI1dbWz7//rxuJzuxlpOzuukhgWa+7mL2Wmu6UuCDA8z8/pqxzMjunCFZMyQEmU0dsnDHhAWx+ruzyYwPJ+cnq11qh7MyfwEmQbjVivT0rAQOl9cAHZXijd/rmFvgxqkZnZTbyJBAnrtlkuNMsNq1rT4vyElyOTNwoNlETIiJL34wn5lPfMJwdZXqOwuG8u9NJzo859pYrPUJV01M5yoXkgHaYp2Q0yTgjbtncNVfv7TaJtr3AcSHB3UwAtn21c1ODOC2vHznVOqanK/u21MYtD4is4v3qqucGErM7cXPF+N2nZ4WsFq57dQ3KRu6Kk/ZFdahIl0R7Gzl1sWhVLteemyo6jbf8Ys3TMnglS2n7CY5hW7M+9xo0RscH8ZnKM+kNdoqbHc89LqbLNYe/qXaGsqtV7Fd3bRlcmYcX585mG/MGcz0//sEcFxixxna4NkXMbePLBnO0x8f7tF3NffU36w+0H4uV4ulhwSanWba1NwPb5+Z2Z7VUbPK2lPyncV0uQNt/nLvvGy7ySq6oxBpsWKpTsrMAB2ynx54fBlbT5xXlVvPd2N9pbC6m4sr+Pb2KXsP/XJZ+7sUYBKEBJo6rJrYIzI4gBp1ItTBRc2BBd3tbsmOSgG1K/NKbNFvVh9gaW7n0iVLR6WydFQqW9XVKHsJtzqU5LFDT/ofl9yh26/b+diuku/dOn0Qr2073aHf+fihuewrqQYUI+FDXfxvrbFd2b1qQnoneXT+XztbubV/He0rkzNjmT4kgWxZzGUuGG9c5blbJvHqllOMTI1yi6dHV8aLF26b1D6Z17C+98W5jl2oe8Ibd093yV3PkcKlPXPfmDOYR5bkdNhnnUXYFVrsKbfqc58UGdxB/qFB5vbVsBYnWd9BWQmqqG3qsG3RSAdytGqC9fjwvJ1a3F0xICaUzx6ZR2y40kc8uGgYDy4a1kGpbG1Xbrt9+g6MSI3irXumc9VfNyGEaHfN1bDuX5+8agzTsuK54i9fODyfM+8uW2baJIqzR1RIQCf38ZiwIF64bRLjBzpXIDU3e3t1qEFzH3e8MuyMi0pxx+3a1MjVEAdHtH/dhf+vtZfCxcWbnl3f0Xjxf1eO5v/slJG76Jbc8/u1V8rLFX54yQjmj0hmjFrDWyNK9UbsKieBNVrrr7RTh96Wz78/z+4c0N9WbnWbUEoIcY0QolAIYRFC2PdH8nG6Wt00mwSPrRjZQYnpSRa/vlRu752XzaFfLuvVOfqifdlJERz51TKWjkpt3+Zs4BoYF8q38obwjx4kRnEFrfN0h4VNsy47qxVrD0u7K1ivm9BtXLnmk1eNAeCszYTMk7SvZFrH3NqMe0EBpg7P6oHHl3Hn7I5ZI20nWdZu+dYDsPY4mNsH2c7H9CahlIbDUkBW9zsyLYoTT1zSIWmILdpqUYyDlU7lnN3b7gquSKAnp//5ylEceLxj/zUkMYIV3VyVtubeeRfjQpeNSum8Ku9CQ9tjbruYdAkEDy4aRlSQe1/qwQnhPLp8hF3F9m01Y6o7vVzm5yR3yviuZQudPTTB6fPWEyZnxnXKUN0drOPLe4s9g2pQgInfXj2G1+3kJNBWurqaj+c/ktfttgjc43mZER/WqZScEKI9k3CyuuLqjgm1Fsdob4yx3nbt5IFkxIc5fW5b292SO5/MdoXNFSIchJHNz0nulBnelhVj07hmYjqPLLVvXDNbrdyCUt/+rjlZ/LuLhFdgf5wBJakWwE1T7a9w9gXWbsm2brSuvl+agrhwRNflx3py/otf6Hj8iScu4R924opdITjAzNxhnb2R8oYl8vjlo9pr8LqCdOSTbof02LBOyQHBscHDV9Hzym0BcCXwd283RA+MTI1i35lqu/vumpPFs58dc/hdbaLuiYf2g/tmsb/UfjsdoSmd7l41tS2VcjHjdOfrCCH43tKcTtvdRXdchrqiPTFWUPcMHTlq7OG35mXDmX29b4gLvP2tGVz5ly9dclOfPkSZ3I4e0L2Vj664akI6C1wc9NyVWOy1u6Z1UEyevWUiC//QOQbINlOwdeybhnaaR5a4voJoi0O3ZJtrdEVVg5Jgw1Gsu/M29GDl1s5Xnr15YofwDK34fFqMMmF+9a5pHD1b2+1ruYsBMReVprAgc7uQrV0Iu0LrCx2tKLT/3/oskMIx7a3v46BbafNu6BF3NO3/rhzN/N/lU2fjfuooi72rGYW7U5vT+jnqS3HPzI7nL1+bQJtF8u1Xdna7PKE92ldn7czs7RlnnIV5ODOA5z+S123X+t4YP0ICzfzWpoycNdYxt1Iq9+qqQmRvnAEld4p1wsdlo1JcKjnn6PyuvLtav33vvCHtizddeQHZMjwlkoO/XOqwVJcjBieEExMW2MHLzdsIIRy6T/f1db+7cGiPV6L1hm6VWynlfvBc8htP8scbxrNq75lufeeNu6dT09g5vkPriJwptxlx4UzOjPXICzw6PZrR6Y5j3OxhmzWurxgUH8b2kxfcvgrgCt3p7LviqevG8cyGIy5nztaIDg1sf17yPaTcxqmyduW+B8aFsf3HCx3GP/aU31/reIJgiz1lr7sDLSiGFevONTspkm/OyeLvNu9pu+GpXZnpfC5NAb6mBzFpGo76Uc31yV4JG3tUNSgudnbdkrtQtHrltdDBRbWj2/RtMzIZmhzRXk92WlZ8ey1BbzN9SDwbjyjZLzXXdVekYK9ciDXeHBc9dW13evS8fOdUvvaPzUDH0k16IDkqhD0/W8I7O4t5+I3dXR7v6rvaE4ToXArI3edfPjq1ff7jjiG//RwunsuZTebhxcO5/9WdduNhI0MCcTUv+ISMGHacqnTx6J5hnfyru0YuzcDflffCX2+a2KO2tdcxtrPPNolkemwYG783r8NqYjcWItvprmILipv/rscWd32gznGXJ8l3Fw7r+iAfQbfKrasIIe4C7gJITk4mPz/fuw3qgtraWqI4xHXpOG2ro30HXLyO7ffvzYHaE3va08zriVOnFTfUY0ePkN9yssM+e3Kora3t0f95SZwkc2IwRfu2UWSj2/XkfN35TkVFIwB79+5BlF587eydo6vzRgI/GAeffvppj9oCPZdhdymtUyzdTY0Nun83AaqalGEiN7y+vb0lZ5Tn89DBg+TXd1ROuyPHk6cUxfD4saPkcxqAvaWKwer8uQry8/M5fkI55uTJk+TnKxPAnOg2Pq+F7Vs2EeqkRIUzGlovTn6s2zs/VmIaHoQ8U0h+adcGj6BGC5FBMDb4XKf73ndGuZezZ8/alcmnn+bbVYycybC0VJH9gYMHyK876rRtnxZ32fw+Iy89gPyiVvLz8zl0WlndnpMewKeffspp9f9+9Ngx8kURja0dJ6L27l2bHM4aEGB3/8HzyipfZWUV+fn5HnufAY5VKteurq6xe83wQKX+c1ft6Wr/7r1KQqQL5zs/az3hmQVh7D/XxjDLafLzT3fa3x0ZHj+u/E9PWL2njnD1nNYRnI6+k5+fT7Od7Mq9lXWlWi5w586d1J64qDy72nbtOFdlqPV75yoqun0NW5q098liIT8/n/kZAXxyqpXkMPvPYF4avHfU/jkDgGfmh7D5y40utckR942QWHLC+OVXSvKv7du3c/6Ia8qXqzL8fONnNDcr/eOXX24iPrR7Ro97xwUzIq7RLe/WE7NDqWiQ7efKS2hj1yk4d3QP+acu9vmPzwwlMbTO7jWte3dtzD1oZ8x1lb7oE0+q4/OJEyfIzy/psO+escGYRM/mkr3lQJEy5pSVlZKff8Ft5/XkuOJuvKrcCiHWA52zl8CPpJTvuXIOKeWzwLMAkyZNknl5ee5rYB+Qn5+P0zauVrIEd/s+1O998YP5tLXJLmtG6omPKnZDURG5I4aTN1mtrelEDl3K0AlLbDf0RN49+M4/jmyGcxWMGzuWOcMS7Z/DQ22B3smwOxwpr4GNnxEeHuaR67mDpQvaCDKb2hWxjyp2Q3EROTlWz6dKd+TYmlTG6hPbuDJvYvvKYt2eM7BrB0mJieTlTaQ6toR3j+xk/qRc8tTkEDNmWSirbuxVjGBdUyusV8qJ2La3uxHzVyy1v712Twns3klSYhJ5eValhNRndN68eXa/50yGH55VZT88h7zJ9t009YB180s2n4LCvQxISyUvbwzbmg7CsSNkZg4mL29oh/+F8t28TucDKJjRSmig2e7KZfiJ87BlE1HR0eTlzfDY+wwQe7oSvvqCiMhI8vJmddq/d05Hb4ROdNVnqfvnT5/In3Z+yZzRWeTluWdFwVlV7+7IcFfrIThymMGDBpGX5yBcwJ39udV2i0XCuo867O5Kll214U/7v4TKC0yYMJ5Jg2JhzUeYTaLL7w3Zns/Rs3Xtx7kqw5rdJbBrJ8lJNn2Fg/Y7u4da9X0KCDCTl5dHRm4tn/z+U8LC7I85eXmw6keraG6z9Pk783Th51BdxcSJEzslDnKEq3PEeXl5DDm0ifMnLjB75gySXKxnquHkCr0mD7j3aqsNaptvXjHf3uGdcDbmukpf9Ik7Wg7B0cNkZmZ26pPce6XuUb71NBTsITUlhbw81z3VusKT44q78apyK6Vc2PVRBq6w4yeLaGmzkNzNDk4PaEkczB4sVdQbxqZHs7uoqlvf0dyGNDeir03N6LKMgD8QZFas1QPsJDDQK7buTe4KLVw4Mpldjy3q4BZv65a8YkwqGXFhjLVy7Q8KMPVKsYW+SSZnS1/XPfUVbF0EtTgy7X/g6v/CWcykN4N1Lsal2/+HdxVHuWJsGh/sLnF6DMD4jFjeumcG4xyUe/MmF7PBev4/ocl3cmYsW090vUqT4EIFgusmDWT7yQtkxocjhOA787M7uf/b4517Z1JZ19J1o22w7fd6Q4j6fj26rKO7ubMMuJ9/fx7n65sd7ncX2jvSF9UCTAL+fvMkPj9S0W3F1tMEmkV7rhBXMMaS7uGN3At6x+fdkg0U4nqQyU8vOEv01Nc8uiyH4SmuRtIovHXPjG6nyteqNmhzoV9d0TktfU/Rs+KYER/G09ePs5sV0FdwZ2ZU23jvi8ne1KQoQvTJZN4Tc/A5QxMZkhjOtxdkd9geGmimwUE5C1fxpcH7YlkxZdL9jdlZVDW08HW1VE9IoJn37p3JymcclyRxld6UsPAWf7phPH+6YbxLx9pmHdcbnhqxctOiWDbqorK55YcLCA4wM/YXa51+r+DnS1yKdb928kCutfKMeNDF8ldRIYFEhXQ/uZw7k1wGmE0dkiC5QlJUiO4Vwq4QQhAXHtTteuPeYOdji3tUr11vJQS18kzdrVTR12gZwycPdl76rj+hW+VWCHEF8CcgEfhQCLFLStnJq9TA95mUGcv7u0sYotam9STfnDuk64NssE0W5AruzJZszZt3T2dQF8Xgvc3KcV3XXtMz3anZ1108lcncExlno8MC+fihvE7bV90/m91FlT065wOLhlFW08Ty0aldH6wTrpgwgENltdy/cCigJC35yaUjOxwztpcGjIurp55HK03nC5Nqb/L8rZN6VJfeHh9+Z3aHv5OiQmhq7dpg1J2MyZ5EM/a6mmRuZnb3E8T5YzJSX6W7z6FeTXa3z8yktc3CbTMzvd2UDkzIiGXTo/Ndqt3dX9BnzwdIKd8B3vF2OzzNc7dMarcO9RdunjaI+TlJpMd2dL3U84pkd9EUJHfUubXGNvOggfu56FrmfrRJXl8rn94sp5KZEE5mQs8MMGkxofz7613XbdQTwQFmHlsxsusDe8FAta9cMcbzCmZiZDAHHl/ap1l79Y4rXskL+rikhp5LJHXFRWOv83tIjAxmaW4Kj18+yuVz60kxGpYcSUFxtcN6twb2uWZiOm9uL9JN1nuN4AAz980f6u1m2EUzOhooGG+czlg00j9qTHUHIUQnxXbfL5b49OBti6uDuYH+0Eou9UXcapuNW3Jf4S+F2Q0UkqJCvKpgulpr1W+RfRdL6Sq+PD6Gqgb8WDslxazZ+iPfTsvy6ytGc/XEdAb30LjXX5maFd9tV3MDA2sM5dZAl4QF+dejebHOreNjshLCOVZR55H2GLjOD5blEBYUwKV9sEqmxUx2s2RxtzGMKv5Hv1cwvYgeVgd92WC1fFQqP13RxA1TepYJ11cICTQzY0hC1wd2gxGpUew/U+3WcxoY+Bv+pUEYGOiU+TlJbD95gVQnrtYf3T+bNosepk0G1sSEBfWZm+ngBCXOfNxAfSfOMTDwFOsfnEtjLxOQeQpv2ow0g9WMIfpy3XQFk0lwu5pgzaB7vPbNaZRVNXq7GQYGusZQbg0MPMA9c4dw/eSBxDspy2CsxPQ/pgyOY8PDeWR6oC51kNnEA4vcUy/UoPf8aPkINh075+1m6I7sJM8nFuwueklSveHhPJKjui710x/x4YVtp/Q0Q7WBQX/CUG4NDDyAySScKrYG/RdPxWMd+tUyj1zHwDW+MSeLb8zJ8nYzDHpAXyaZ6w5GLGdnEiOVcfbGqf7t8mxgYOAYQ7k1MDAwMDAwMHCRWLVedUwXCZEMPE9USKCRjMjAoJ9jKLcGBgYGBgYGBi5y24xMwoMDuHbSQLee9955QzpVDjAwMDAw6B6GcmtgYGBgYGBg4CIBZlOfZPp9ZEmO289pYGBg0N/ov1XYDQwMDAwMDAwMDAwMDPwGQ7k1MDAwMDAwMDAwMDAw8HmE1EtOezcghDgLnHSwOxqocuO+np4vAajw0LX0cs/uvlZPZNjTa/myDJ3tc7cMne3zZ/k6kqO/3rO/ytDZPl+4lt7HFV/4XxrjSu/3GeNK7/d5UobO9vn6tfQwrujlvfTXcWWQlDLR7jeklP3iB3jWnft6cb5tHryWXu7Z3dfqtgx95L482Q63ylAv9+wF+dqVo7/es7/K0A/kq+txxUf+l8a40vt2GOOKD8lQR/fsl+OKjt5LvxxXnP30J7fkD9y8r6fnc4a7r6WXe3b3tZzhy/fl6X2eupY/y9eT19LDPfurDJ3t84VrOcOX78sYV/R3ra72eepa/ixfT15LD/dsyFCf7XCGXu7ZLn7lluwLCCG2SSknebsdvowhw95jyNA9GHLsPYYMe48hw95jyLD3GDLsPYYM3YMhx97jyzLsTyu3euFZbzfADzBk2HsMGboHQ469x5Bh7zFk2HsMGfYeQ4a9x5ChezDk2Ht8VobGyq2BgYGBgYGBgYGBgYGBz2Os3BoYGBgYGBgYGBgYGBj4PIZya2BgYGBgYGBgYGBgYODzGMqthxBCLBVCHBRCHBFC/MDb7dErQoiBQogNQoh9QohCIcT96vZxQoivhBC7hBDbhBBT1O3RQogPhBC71eNv9+4d6AchxAkhxF5NZuq219S/d6n7d1kdP0YIsUmV414hRIjXGq8ThBAPqPIoEEK8IoQIEQq/EkIcEkLsF0J8x+Y7k4UQrUKIq73Vbm8ihHhBCFEuhCiw2naNKkeLEGKS1fZMIUSD1TP5N3V7mBDiQyHEAfV7T3jjXryFPRla7XtICCGFEAk22zs9d0KIW4UQh9WfWz3Rdj3h4Fm02wcKIRYJIbarfd92IcR8q+/coG7fI4RYbSt7f8XJeBwnhFinPlfrhBCx6vYcdQxpEkI8bHOuGCHEm+o7vV8IMd0b9+QNnMjxcfWZ2iWEWCuESFO3CyHEH4UyX9wjhJhgc74oIUSREOLP3rgfb+BEhj8TQhRbvdPL1e1BQogX1fd2txAiT93eb8cWJzLs9vxa92NLd2sHGT/d/wHMwFEgCwgCdgMjvd0uPf4AqcAE9XMkcAgYCawFlqnblwP56ucfAr9RPycC54Egb9+HHn6AE0CCk/2/Bx5TPwcAe4Cx6t/xgNnb9+Bl+Q0AjgOh6t+vA7cBtwP/Bkzq9iSr75iBT4CPgKu9fQ9ektscYAJQYLVtBDAcyAcmWW3PtD7OansYME/9HARs1N7//vBjT4bq9oHAGuCk9btt77kD4oBj6u9Y9XOst+9ND3K02m/dB44H0tTPo4Bi9XMAUK7JG3gS+Jm3781D8nM0Hj8J/EDd/gOrMTgJmAz8CnjY5lz/Au5UPwcBMd6+Px3IMcrqmO8Af1M/LwdWAQKYBmy2Od/TwH+BP3v73nQgw5/ZPmvqMfcCL6qfk4DtKAt6/XZscSLDbs2vfWFsMVZuPcMU4IiU8piUshl4FVjp5TbpEinlGSnlDvVzDbAfRcmQQJR6WDRQon0FiBRCCCAC5eVr9WijfRBVXtcCr6ibFgN7pJS7AaSU56SUbd5qn44IAEKFEAEog2IJcA/wCymlBUBKWW51/LeBt1Amw/0SKeVnKO+h9bb9UsqD3ThHvZRyg/q5GdgBpLu1oTrGngxV/h/wPZR+zxp7z90SYJ2U8ryU8gKwDljaB83VLU7k2KkPlFLulFJq40ohynsfjKJgCCBc/U4UF8cfv8bJeLwSRVlF/X25eky5lHIr0GJ9HiFENIqh4Xn1uGYpZaUHbkEXOJKjlLLa6rBwLr7XK4F/S4WvgBghRCqAEGIikIyikPQbnDyLjhiJYvDTxuhKFMNqvx1b3Di/1v3YYii3nmEAcNrq7yKcv5QGKC6LKNb0zcB3gd8KIU4DvwMeVQ/7M8qqUAmwF7hfUzoMkMBa1cXuLpt9s4EyKeVh9e9hgBRCrBFC7BBCfM+jLdUhUspilGftFHAGqJJSrgWGANep7jurhBBDAYQQA4ArgL96q80+ymAhxE4hxKdCiNm2O4UQMcAK4GOPt0xHCCFWoqwm7rbZ7ui5M8Yd59j2gdZcBeyQUjZJKVtQDFp7UcaZkahKWn/CZjxOllKeUXeVoihbzhgMnAVeVN/1fwghwvussTrGRo4IJcTlNPA14DH1MLvvrhDChOJt0MHlu79hK0PgPtV9+wXNRR7FQ/IyIUSAEGIwMBHF88X6PDH007Gll/Nr3Y8thnJroEuEEBEoKxHfVa2b9wAPSCkHAg9wcXKxBNgFpAHjgD8LIaI6nbB/MktKOQFYBtwrhJhjte8GLq7agrJCOQtlgJ0FXCGEWOCxluoQdZBciTIxS0NZubkJCAYapVLc/DngBfUrTwHfN4wr3eIMkCGlHA88CPzX+v1VV8xfAf4opTzmpTZ6HSFEGIqL2GN2dj+F8dz1BNs+EAAhRC7wG+Cb6t+BKOPPeJR+YA8XJ3/9AjvjcTtS8VnsqqZkAIp7+F/Vd70OxZ25X2FPjlLKH6nzmpeB+7o4xbeAj6SURX3bUv1iR4Z/RTE4j0MZT36vHvoCitK1DaWP/BJoszpPvx1b+sP82lBuPUMxHS1G6eo2Azuok4m3gJellG+rm28FtM9voLh6gxL/+LbqvnMEJUYyx5Pt1SvqyqPmkvMOqszUTv1K4DWrw4uAz6SUFVLKepTYvQn0bxYCx6WUZ9XVm7eBGSiy0p7Fd4Ax6udJwKtCiBPA1cBfhBCXe7TFPoa6MnZO/bwdJTfBMKtDngUOSymf8kLz9MQQFCPLbvX5Sgd2CCFScPzcGeOOAxz0gQgh0lHe6VuklEfVzeMApJRHVUXudZR+oF/gYDwus3KTTaXrMIwioEhKqa20vUk/G18cyNGal1E8BsDxuzsdZZXyBMoK2y39LCFSJxlKKcuklG2qce851HmOlLJVSvmAlHKclHIlEIMSY6rRL8cWN82vdT+2GMqtZ9gKDBVCDBZCBAHXA+97uU26RPXtfx7YL6X8g9WuEmCu+nk+oLmSnQIWqN9NRkla06+scPYQQoQLISK1zygxtVrG0IXAARvr7xpgtJpJMABF1vs82WYdcgqYpspEoDxn+4F3gXnqMXNRB0wp5WApZaaUMhNl8vYtKeW7nm60LyGESBRCmNXPWcBQ1PdXCPFLlPif73qtgTpBSrlXSplk9XwVoSQGKXXy3K0BFgshYlUvhMXqNgM7faDqovghSqKkL6yOLQZGCiES1b8XofQDfo+T8fh9lAkx6u/3nJ1HSlkKnBZCDFc3LaAfjS+O5KiFtKisBA6on99HUVyFEGIaSkjMGSnl16SUGeq7/jBKXG6/WAF3IsNUq8OuQJ3nqON2uPp5EdAqpdyn/t0vxxY3zq/1P7ZIHWS16g8/KBnIDqGsTPzI2+3R6w+KS6xEcf3apf4sV7dvR4mj2AxMVI9PQ0mssBelU7vJ2/eghx+UzNy71Z9C62cO+Cdwt53v3KQeWwA86e170MMP8HOUCUcB8BKKS3IMyiR4L7AJNcO0zff+Sf/NlvwKintYC4oSdgfKpKMIaALKgDXqsVepz9wulMQeK9Tt6Wo/sN+qH7jT2/fmTRna7D+BnUzots8d8HXgiPpzu7fvSy9ytNcHAj9GcZfdZfWTpO67W30W9wAfAPHevjcPyc/ReByPEqd4GFgPxKnHp6hyrkZJ4FOEmhEYZQV8m3qud9FZdlUvyfEtdWzRnqsB6vECeAZlvrgXqwzzVue8jf6VLdmRDF9SZbQHxSiQqh6fCRxU39v1wCB1e78dW5zIsNvza3Q+tgi1kQYGBgYGBgYGBgYGBgYGPovhlmxgYGBgYGBgYGBgYGDg8xjKrYGBgYGBgYGBgYGBgYHPE+DtBriThIQEmZmZ6e1mOKWuro7w8H5Z3s1tGDLsPYYM3YMhx95jyLD3GDLsPYYMe48hw95jyNA9GHLsPXqX4fbt2yuklIn29nlNuRVCvABcCpRLKUfZ2S+Ap1GCneuB26SUO5ydMzMzk23btvVFc91Gfn4+eXl53m6GT2PIsPcYMnQPhhx7jyHD3mPIsPcYMuw9hgx7jyFD92DIsffoXYZCiJOO9nnTLfmfwFIn+5ehlIUYCtyFUqjZwMDAwMDAwMDAwMDAwKATXlu5lVJ+JoTIdHLISpQaXhL4SggRI4RIlVKe8UwL+w+tbRbe21XCR3vPUFzZQHJUCEtyU7h6YjpBAUZYtitIKfn00Fne3lHMkfJaIkICmDM0gVtmZBIVEujt5vkMBcVVvLLlFHuKqjCbBJMGxXLbzEzSY8O83TSfoehCPf/dfIpNx87R0mYhNzWam6YNYnR6tLeb5jNUNbTw6pZTbDhYTlVDK1kJ4Vw9MZ284YkoTkUGBga+wq7Tlby65RQFJVUEmU1MHhzH7TMGkxId4u2m+Qwnz9Xx382n2Hz8PG0WyagB0dwyfRAjUqO83TSf4UJdM//dcopPD52lprGV7KQIrp2Uzuyhdj1rDXqBV0sBqcrt/xy4Jf8PeEJK+bn698fA96WU22yOuwtlZZfk5OSJr776ap+3uzfU1tYSERHh7Wa0U1Zn4S+7mzhZbSExVDAgwkR5vYWSOklKuODb40IYEKkvBVdvMqxrkfxjbxM7y9uIDISsGDPVzZLjVRYiA+EbY4IZk6iv8Ha9ybDNInn9YDNrT7YSaIZhMWZapeTIBQsIuG54EAszAnSnWOhNjp+cauHVA820SsiOMRFkFhytbKOhFRZkBHBDThABJkOGziioaOW5vc1UNUkGRZmICRacrLZQ2SQZk2jmm2OCCQ80ZOhvGDLsPXqTYatF8t/9zXxyupUQM2THmmlukxyttGA2wY05QeQN1JfxWW8ylFKy9mQrbxxqRqrjSqBJcKSyjaY2WJIZyLXDAzEZY7NTdpa38sLeJmpaYHCUiahgwfGqNqqbYUKSmW+MCSY0wJBhd5g3b952KeUke/v0NePuAVLKZ4FnASZNmiT17B8O+vJh33+mmof+sRmLNPPMjeNYPjoFIQRSSvIPnuV7b+3h/7a18NIdUxifEevt5rajJxmeq23ia//YzNFzFn64PIfbZw4m0KwYAwqKq3jkzT08taOa312Tw5UT0r3c2ovoSYYtbRa+9fIO1p0s4+Zpg3hk6fD21e6SygYee6+Al/eXE56YzqPLcnSl4OpJjr9bc5B/7zvC3GGJ/PrK0QyICQWgprGFP6w7xItfnKAtNJZnb56kK48MPcnw/d0lPLV2F9lJEfzn6rHtq90tbRZe2nSS/1u1nz/sEbz2zekkRAR7ubUX0ZMMfRVDhr1HTzJsam3jG//ezmen67lj1mAeXDSM8GBlynv6fD0/fGcv/yysIDplEA8sGubl1l5ETzKUUvLLD/fzyoHjLBqZzC8vH0VylLLaXVXfwm/WHOC/m08hw+N45sYJBJiNccUeb2w7zZ/W7GFkWhS/vXps+2p3c6uFF744zm/XHOTpAjOv3jWNmLAgL7f2InqSYXfRz5PYmWJgoNXf6eo2AzdQVt3I1/+5lUCziTfvmcElY1LblQYhBPNyknjv3pnEhQfx9X9u5URFnZdbrD8aW9r45kvbOV5Rxwu3TeauOUPaFVuAUQOiefPu6UzLiueRN/fw2aGzXmytPpFS8th7BazbV8bPVozk8ctHdXDjTosJ5dmbJ3HztEE8+9kxnv/8uBdbq19e2nSCP284wvWTB/LCbZPbFVuAyJBAfroil19dMYr8g2f5/lt78KbHjl7ZfOwcD72+iwmDYnnj7ukd3LgDzSa+PmswL90xleLKBr7+z600trR5sbUGBgaOkFLyfXXM/c1Vo/nJpSPbFVuAgXFhvHjbZK6emM7THx/m5c0O89L0a/6x8TjPf36c22Zk8vebJrYrtgDRYYH8+orR/PiSEawpLOOx9wu92FL98umhs/zg7b3MzE7g9W9O7+DGHRRg4u65Q3jhtskcO1vHN/69jeZWixdb6z/oWbl9H7hFKEwDqox4W/dgsUjuf3UnVQ0tvHDbZIYk2nc7SIsJ5d9fn4JFwrdf2Wm8dDb8ZvUBtp28wB+uHecwZiI8OIC/3zyRoUkRfPe1XZRXN3q4lfrmrR3FvLLlNN/KG8JtMwfbPcZkEvz8slyW5qbwf6sOsP3kBQ+3Ut/sLari5x/sY35OEr+6YjRmB27HX5s6iAcXDeOdncW8uvW0h1upb87VNnHvf3cwMC6M526eRKSDOPlpWfH86YYJ7Cmq4pcf7vNwKw0MDFzhP5tP8e6uEh5ePIzrJmfYPSbAbOKJK0eTNzyRn7+/j4LiKg+3Ut9sO3GeX6/az/LRKTx26UhMDsaVO2dncffcIfx38yne3WmsP1lTVt3Id17ZydCkCP5600TCguw7y84dlsjvrh3L1hMX+N3agx5upX/iNeVWCPEKsAkYLoQoEkLcIYS4Wwhxt3rIR8Ax4AjwHPAtLzXV73jxyxN8dew8P1uRy8g058kAMhPCefLqMewtruJPnxz2UAv1z5dHK3jxixPcOn0Ql4xJdXpsZEggf75xAg3NbcaqmRUllQ38/P1CpmTG8dDi4U6PNZkET14zhrSYEL772k5j1UylsaWNB1/fRXxEEP/v2nEOFVuN++ZlM3toAj//oJBT5+o91Ep9I6Xkx+8WUNXQwjM3TiA6zHkM3qKRyXxzThb/+UpJOGVgYKAfTlTU8esP9zN7aAL3zst2emyA2cT/u3YcceFBfPe1XYYBX6WuqZWH3thNemwoT1491qFiq/Hw4mFMzozlx+8WUFplGPBB9R54aw9NrW385WsTiAh2HgV62di0dg+1r46d81Ar/RevKbdSyhuklKlSykApZbqU8nkp5d+klH9T90sp5b1SyiFSytG2iaQMekZJZQO/XXOABTlJXDPJtRjQJbkpXDl+AH//9BjHztb2cQv1T1NrG4++vZfM+DC+vyzHpe9kJ0Xw0OJhbDh4lrX7yvq4hb7BT98vpE1KfnfN2C6VMoCokECevGosp8838Jf8ox5oof7526dHOVxey2+uGtOlUgaKkeC3V4/FJAS/+J/hRgawfn85qwpKeWDRMJczfz60eDhZieH87P1Cw9BiYKATNENVgFnw5NVjXMrPEBsexK+vHMWR8loj7EXljx8f5tT5en579dgulTJQjAS/v2YczW0Ww6NF5f3dJUoY0NIcshx4R9ryw+UjSI8N5bH3CmhpMwwtvUHPbskGfcCTqw8gJfx8ZW63EvM8unwEwYEmfmrEVfDvL09y8lw9P185yqGbiT1um5FJTkokv/hgX7+fEH95tIJ1+8q4b342GfGul/mZPiSelePS+Fv+UU6e699x4KVVjfz902NcMiaVvOFJLn8vJTqE7y4cyvr95Xy8v38bWppbLfz6o/1kJ0Vw1+wsl78XFGDi8ZWjOHmunmc/O9aHLTQwMHCVTw6U8/mRCh5cNIzU6NCuv6AyPyeZRSOT+ePHhzlT1dCHLdQ/p87V8+IXJ7hqQjrTsuJd/l5GfBjfyhvC//ac4csjFX3YQv3T2NLGb1YdIDctilunZ7r8vdAgMz9bkcuhslr++cWJPmtff8BQbvsRu09X8u6uEu6cPbjbdUMTI4O5f8FQNh6u4Muj/bfjulDXzB8/OUze8ETmDutebbIAs4mfrsiluLKB/3zVfxNYWCySX/5vPwNiQvm6gzhbZ/xo+QhMJnh6ff92k//d2oO0SckPlrrmPWDN7TMHk5UQzm/XHMRi6b9u8i9vPsnxijp+tHxEtzN9zsxOYGluCs9+dowLdc191EIDAwNXaG2z8KuP9pOVEM5N0wZ1+/uPXTqSVouFP31ypA9a5zv8ZvUBzCbBI0uchwrZ4+65QxgQE8pv1hzs1+FXz39+nJKqRn58ieNYZUcsHJnM3GGJPJN/hJrGlj5qof9jKLf9iD9+fJiYsEDuyXMeh+KIm6YNIiUqhD+sPdRvO64XvzhOTWMrjy4b0aPvTx8Sz6zsBP6af5S6plY3t843WLe/jH1nqnl4yTBCAs3d/n5SVAi3Ts/knV3FHC6r6YMW6p+T5+p4e0cRt0wbxMC47hmqQMn+e//CoRworeHDvf0zT19jSxt/yT/KtKw48oZ3z1Cl8eDiYdQ1t/J3Y/XWwMCr/G/PGY6dreN7S4d3qFrgKgPjwrhhSgavbz3db/MRHFTHgztnD+6QGdlVQgLNfGdBNrtPV/Lx/v6Zj6CuqZXnNh5jfk4S04e4vvJtzcOLh1NZ38ILn59wb+P6EYZy20/YV1LNxwfK+frMwS7FUNgjJNDMvfOz2XbyAl8c6X8B7zWNLfzzyxMsyU1meEpkj8/z4OJhnKtr7pert1JKntlwhEHxYawYk9bj83xz7hDCAs38sZ9a2f/26VECzCbumuO6K60tK8akMSw5gqfWH+qXq7dvbC/ibE0T35k/tMe1k4clR3LZ2DT++eVxzhurtwYGXsFiUcaVYckRLB6Z0uPz3DsvG7NJ8MyG/jmu/CX/CGFB5h55VGlcOSGdQfFhPPVx/1wEeXnzSSrrW/j2/J4tIgGMTo9m8chk/rHxmLF620MM5baf8Ez+ESKCA7rl/2+PayelkxgZzHMb+99KxUtfnaS6sZX75g3t1XkmZMQyMzueF7840e+SBmw8XMGeoirumTukVwXf48KD+Nq0QXy09wxFF/qXlf1MVQNvbi/iukkDSeqBdV3DZBLcOy+bo2fryD/Uv6zsLW0W/pZ/lPEZMT22rmvcNy+bxhYLL/dDY5WBgR5Yu6+Mw+W13Dsvu9tuoNYkR4Vw7aSBvLOzmLM1TW5sof45UVHHB7tLuGnaIGLDg3p8nkCziXvmDqGguJqvjp13Ywv1T2NLG89tPM7M7HjGZ8T26lzfnj+UmqZWXjPK9vUIQ7ntB5w6V89He89w07RBLmVUdUZwgJlbpw/i00NnOdSPXEKbWy288PkJZg9NYHR6dK/Pd+esLEqrG/mon7mE/v2zo6REhXDlBNcydTvj1hmZAPzryxO9Ppcv8eIXJ7BIerVqq7F8dCopUSH8Y2P/yhL60d4zFFc2cG9edo9XbTWGJkcyd1gi/9p0kqbW/p0ozsDAG/z9s6MMig/jktHOy/K5wu0zM2mxWHipnxmr/vH5MQLMJu6c1fNVW43Lxw8gPjyI5z/vX4sgmlHk3h6G/lkzOj2aKYPjePGLE7T2s0UQd2Aot/2Al7ecxCQEt87ofpIFe9w4dRAhgSZe6Edp81cXllJR28Qdbuj4QSnaPSQxnOc2Hus3rjtHymv54sg5bp4+iKCA3nc9A2JCWT46lVe3nO43rjuNLW28vu00S3NTehRra0ug2cRtMzP58ug5Ckuq3NBC3+ClTSfJjA9jfo7rWaadcefswVTUNvH+rhK3nM/AwMA1Coqr2HmqklunZ/bKG0gjKzGCBTnJ/Oerk/2mqkFNYwvv7ChmxZi0XnkDaYQEmrlp2iDW7y/vN+UjpZS8tOkkOSmRvfYG0rhz1mCKKxtYU9i/qxr0BEO59XMaW9p4fetpFo1I7lZqfGfEhQdx1YR03t5Z3G+yhP5n00ky4sKYM7RniWdsMZkEd8zKoqC4mu0nL7jlnHrn5c0nCTQLrps80G3nvHPWYGqaWnlre5Hbzqln/rfnDJX1LT3KBuqIGyZnEBZk7jelB/aVVLPt5AVumjaoVy6M1szKTiAnJZIXvzjRb4xVBgZ64D9fnSQk0MRVE3vvDaRx5+zBnK9r7jfGqnd3FlPX3MbN0903rmhG7P7iWbXjVCX7zlRz8/RBvfYG0lgwIpnM+DBe/KL/LCS5C0O59XM+2nuGC/Utbu20QMmc3Nxq4d1dxW49rx45UFrNlhPnuWlahtsmwwArx6URERzAq/0gpqK+uZU3txexfHQqCRHBbjvv2IExjB4QzatbT/cLpeKlr06SnRTBtKw4t50zOiyQy8am8b89Z/rFCvh/Np8kOMDE1W6cDAsh+NrUDPadqaaguNpt5zUwMHBMVUML7+4q5vJxA4gO7V3IlTVTB8eRnRTBq1tPue2cekVKyUtfnWT0gGjGuiHkSiMhIphlo1J4Z2dxv1gB/89XJ4kMDuDycQPcdk6zSXDj1Ay2nbzAkfL+EwboDgzl1s/5z1cnyUoMZ4ab3CQ0RqRGMTY9mle3+L9S8fJXpwgKMHHNRPetOAKEBwewYmwa/9tTQrWfKxXv7yqhprGVm9244qhx3eSBHCitYXeRf7vV7imqZPfpSm6e5j7LsMZ1kwfS0NLG+7v9e6WiurGFd3cWs3JcGjFhPU+aYo/Lxg0gJNDEK/1gQmxgoAfe2l5EY4vF7cZ7IQTXTx7IjlOVfp9bZMvx8xwqq3XriqPGdZMHUt3YyqoC/84tcr6umQ/3nOGqiemE97AaiSOunJBOgEnw6hb/XwRxJ4Zy68ccKqthx6lKvjbV/Z0WwHWTMzhYVsOu05VuP7deaGxp492dxVw6OrVXGQQdcf3kgTS2WPze/emVracZnhzJxEG9yyBoj5Xj0ggNNPOanysVr249TWigmSsmuM8yrDFuYAw5KZF+n5nxg90l1De38bWp7jeyRIcGsnx0Ku/vKqG+uX/WsDYw8BRSSl7deopxA2PITXPfiqPGFeMHEGj2f6Xi1a2niQwJ6FVpPkdMGxzPoPgwv5fh2zuKaG6z8LWpGW4/d0JEMItGJvP2zmIjYWE3MJRbP+atHUUEmASXj3N/pwVw2bg0woLMfj0hXruvjJqmVre6MFozJj2aEalRfi3Do2dr2X26kqsnpveJkSUyJJBLxihKRV2TfyoVjS1t/G93CUtyk4kKcZ/7nYYQSiz0nqIqv04s9faOYoYmRTDGje531lw/OYPaplY+3OPfKxUGBt6msKSaQ2W1fTY2x0cEszg3hbd3FvmtUlHX1MrqglIuHZNGaJDZ7ec3mZRxZfPx836dWOrtHcWMTY9maHJkn5z/+ikZnK9rZv2+/lWyrzcYyq2f0maRvLezhLzhicS7McbRmojgAC4dk8r7u/13peKdHUWkRYcwLcu9bt0amvvT3uIq9pX4Z6zeOzuKMQllhbWvuGHKQOqa2/jQT0srbThQTnVjq1tKKDniivEDCAow8cY2/0zOdfJcHdtPXuDKCX1jZAGYnBlLVmI4r2/zX2OVgYEeeHtHMUFmE5eO6X35H0dcP3kglfUtrNvnn9lqVxeU0tDSxlV94A2kcfWEdMwmwRt+mvTxQGk1+85U9+nYPCs7gQExobxmjCsuYyi3fsqmo+corW7kivF998IBXDE+nfrmNtbv9z+L0tmaJj47XMHl4we4NZGULSvGphFgEry32/+Sc1ksknd2FjN7aKJbSgw4YkJGLBlxYXzgpzGjb+0oJikymJnZCX12jZiwIBbkJPG/PWf8sq7e2zuKEQIuH993RhYhBFeOH8DWExcormzos+sYGPRnWtssvL+7mPk5SW6PnbdmxpAEkiKD/TZs6O2dRWTEhfVJuJBGUlQIs7ITeH9XCRaL/+VneWdHMQEmwYqxfTeumE2ClePS+OJIBWdrmvrsOv6Eodz6KW/vKCIyJIAFI9xTx9ERUwfHkRIVwvt+mDX5/d0ltFkkV/ahVROU0kqzhybwgR92/ltOnKe4sqHPZSjExc6/vKaxT6/lac7XNZN/sJzLxw/A3IdGFlBW1ytqm9h07FyfXsfTSKkYWWYMiXdbSTRHXDZWedb91dBiYOBtNh6uoKK2uc/HFbOqtOQfPEtVvX8lfTxT1cCXR89xxfgBfebJorFyXBrFlQ3sOOVfZQ/bVON93vAk4vogJ4s1K8cNoM0i+chPvdPcjaHc+iF1Ta2sKijl0jGphAS6P47CGpNJcNk4pfP3t5q3b+8oYkx6NNlJfRNHYc3l4wdQUtXINj+refv2jiLCg8wsHpnS59daOS4Ni8Tv4h0/2F1CqweMLAB5w5OIDA7gPT9bqdh+8gKnztdzZR97sgBkxIcxPiPG72RoYKAX3tpRRGxYIHnD+9Z4D3D5uAE0t1lYXehf48q7O0uQUglH6WsW56YQEmjyuz5RMaY3eWRsHp4SSU5KJO/54UJSX2Aot37I+v1lNLS09blLssZlY9NotUhWFZR65Hqe4Eh5LYUl1R7p+AEWjkgmNNDsVx1XU2sbq/aWsmx0ap8kq7AlOymSkalRfjeAvrermBGpUeSkRPX5tUICzSwdlcLqglK/qk343q4SQtV78wQrx6ax/0y135cRMTDwNHVNrazbV8alY9IICuj7KeyoAVFkJYT75bgyISOGzITwPr9WRHAAC0ck8+HeM7T4UcjLe7tKiAwJYH5O3xtZQFm93XGqklPn6j1yPV/GUG79kNUFpSRGBjOpD+MorMlNi2JIYrhfKWZrChVFfdmovktWYU14cACLRiqdf3Orf3T+Xx49R01TK5eM9owMQVm93XW6kpPn6jx2zb6krLqRHacquWS0Z5QyUAbQ2qZWNhzwjzh6i0WyprCUvOGJbq9B6IhLxqRhEvhtrJ6Bgbf49NBZmlotLPfQuCKE4p226dg5yqr9I+Tl5Lk6DpTWeEyGoIwr5+ua+fxIhceu2Ze0tFlYv7+MRSOS+9xDUmPFWOX/9cEeY1zpCkO59TMaW9rIP3iWxSOT+zQJkjVKvOMANh8/T4mfJFFZU1jKuIExpET3XRIkW1aOS6OyvoWNh8967Jp9ydrCUiKCA5iR3TeZpu2hJXXwFyv7WjVL55Jczym304fEkxARzLt+YqzaVVRJeU2TR2WYqCb/em93MVL6Vxy9gYE3WVNYSmxYIJMzPWO8B8U7TUr/iaPXjPee7BPnDkskOjSQ93b6x7iy5fh5qhpaWOxBGabHhjE5M5Z3/USGfYmh3PoZGw9X0NDS5tFOCy4qFav9wDW5pLKBPUVVHpfh7KGJRIUE8NFe35dhm0Wybl8ZecMTCQ7wjFUTIC0mlMmZsX6TdGFtYSlZCeFkJ0V47Jpmk+DSMankHzzrF3WD1xSWEmASzPOQ65jGirFpnD7fQEGxf5b4MjDwNM2tFj45UM7CEckEmD03fc1KjCA3LcpvxpU1hWWMTI1iYFyYx64ZFGBiSW4yH+8v94u6wWsKSwkJNDF3WKJHr7tibBqHy2s5Um6EvDjDUG79jDWFpUSGBPRZXVZHDE4IJycl0i+U27XtVs1kj143KMDEwpHJrN9f5vNxKTtOXaCittnjBgKApaNSOVBaw4kK33ZNrqpvYdPRcyzOTenzbJa2LB2VQlOrhfyDvu1FIKVkTUEp04fEEx0a6NFrLxqRjNkkWFXgHxNiAwNvs+nYOWoaW70yriwblcKOU5WUVvm2a3J5TSM7Tl3wkgxTqWlq5Qsfd022WCRrC8uYMzTRI/lErNH+b6v8YBGkLzGUWz+iVY0BWJCT5JFEC7YsyU1h68nzPl+KZXVhKUOTIshK9NxqmcbS3BSqGhSlxpdZXVBKkNlE3nDPWjXholHC1xOcfXygjFaL9LiRBWByZhzx4UE+r5gdKqvlxLl6r0zkYsODmJYVx+qCUsM12cDADawpLCUsyMysoX1X79sRS9X8G5pLr6+ybl8ZUsKSUZ4fV2ZkxxMZHODzitme4ipKqxu9Mq4kR4UwISPG5+c3fY2h3PoRW46fp7K+xSsvHMCy0SlIqXSevsr5uma2HD/vNRnOGZZIWJCZ1T48gEqpJPCZmR1PZIhnV8tAiUsZkx7Nah9XzNYUlpIcFczY9BiPX9tsEizOTWbDgXKfzpq8prAUIWDxSM9P5ECZEB+rqONQWa1Xrm9g4C+0qatl84YneSyBjzXZSREMTYrweYPf6oJSBsWHMTy570sc2hIcYGbBiCTW7S+j1Ye901YXlGI2CRaM8Gyoi8ayUansO1NtZE12gqHc+hFrCksJDjAx1wurZQDDkyMZnBDu067J6/eXYZF4rGSILSGBZublJLG2sJQ2i2+u9uw7U03RhQavyRCU/9/uoiqKfTTBWUNzG58eOsuS3BSPJYazZemoVOqa29h42HddyNYUljIhI5akKM8lhrNmSW4yQuDzE2IDA2+z89QFKmqbWOwFTxaNZaNS2HL8POdqm7zWht6geYUt9UKoi8bSUalU1rew+fh5r1y/t0gpWVtYyvSseGLCgrzSBm1u5W+1l92Jodz6CVJK1u4rU1f+PFPuwhYhBEtHpbDp6Dkq65u90obesrawlAExoeSm9X1NUUcsG5VCRW0z2074Zue/prAMk1Bq93oLrYSTrxpaPjt8lsYWi9c8CACmZ8UTFRLgs4rZ6fP1FJZUe8WtWyMpMoRJg2J99jk0MNALawpLCTR7PjGcNUtGpWCRF7PY+xobDpTTapEezfBry9xhiYQGmn12XDlSXsuxijqvjisD48IYNSDKcE12Qo+VWyFEjRCi2s5PjRDCSA/pYfYUVXGmyjsxANYsG5VCq5op19eoa2rls8MVLM5N9ppVE2De8CSCA0w+23GtLSxlUmYc8RHBXmuDluBsjY/KcE1hKdGhgUwZHOe1NrQnONvnmwnOvFFGyR5agrPjPp7gzMDAWyihLmXMGJJAlBdCXTRGpkaRERfms8aqNYWlJEUGM35gjNfaEBpkJm94ImsKy7D4oHeaFnO9aKS359qp7DxVyZkq3/RO62t6rNxKKSOllFF2fiKllN5b9uqnrClUYgAWeikGQGP0gGgGxIT6ZNKF/INnaW717moZQHhwAHOGJbKm0PcS0ZyoUIrDe1uGoLju+GKCs5Y2C+v3lbFgRBKBHix3YY9lo1Kpbmz1yQRnawpKyUmJZFB8uFfb0e5C5qMTYgMDb3OgtIZT5+u9GuoCinfaslEpfHm0gqqGFq+2pbs0trSRf/Asi0Ymey3URWPpqBTO1jSx49QFr7ajJ6wpLGPcwBhSor0T6qKhvQtrC31vIckTuG3mJIRIEkJkaD/uOq+Ba6wpLGXq4DivxQBoCCFYkpvCZ4crqPWxGplrCkuJCw9icqb3Vss0luamcKaqkd1FVd5uSrfQjBreSuBjzdJRSoIzX+v8Nx87T7WXyl3YMntoAuFBZp/zIqiobWLryfNedb/TGBAT6hcJzgwMvIWWGM6boS4aS0el0NIm+Xi/b40rGw9X0NDSpotxZX5OEkFm3/NOK65sYG9xlS5kOCTRPxKc9RW9Vm6FEJcJIQ4Dx4FPgRPAqt6e18B1jpTXcPRsnS5eOFA6/+ZWC/kHy73dFJdpbrWw4UA5C0ckYfayVROUQTzAJHxuBXxNYSm5aZ4tDu+I4cmRZMaH+aQMQwJNzBnqncRw1oQEmskbnsS6fWU+leBsvVbuwotxUdYsyVUSnBkuZAYG3Wd1QSmTBsWSGOm9UBeNsekxJEcF+9y4srqglMiQAKZlxXu7KUSGBDIzO97nvNO0MCe9jCtL1QRn5+t8M8dNX+KOldvHgWnAISnlYGAB8JUbzmvgImvUlSlvZhG0ZuKgWOLDg9rb5Qt8ebSCmqZWr7s9aUSHBTItK541PlQjs7y6kR2nKlmqEyOL5kWw6eg5n3Ehs1gka/eVkjcsyePF4R2xODeZitomdvqQC9mawlIGxoUyMlUfETKa4dHXvAgMDLzNqXP1ugl1ATCZlHHl00NnaWj2jTJprW0WPj5QxsIRyQQF6COP7NJRKRRdaGDfGd9J0bOmsJRhyRFkJUZ4uymAMq5YpFLlw6Aj7njKW6SU5wCTEMIkpdwATHLDeQ1cZE1hKWMHxpAaHertpgAda2Q2tfpG57+msIzwIDMzhni+OLwjloxK4VhFHUfKfaNGZnsCH50YCEBpS6tF8skB3+j8dxdVUlbdxJJR+jBUwUUXMl+JGa1pbOGLI+dYMtJ75S5syU6KIDspwmdkaGCgF7QVUr0ot6C0pbHFwqeHznq7KS6x5fh5KutbdLPiCIp3mkngM0kfz9U2sfXEeV09h7lpUUqOGx+RoSdxh3JbKYSIAD4DXhZCPA0YaSE9REllA3uKqnTVaQEszk2htqmVL4/oPxFNm0Wybl8peTneKQ7vCC1u1Vfcn9YUljI4IZyhSfqwagKMS48hKTKYNQW+odyuLiwlwCSYP1w/73NkSCAzsuNZs883vAg2HDxLc5tFV0YWUFzZtpw4zwXDhczAwGXWFJYyMlUfoS4aUwbHER0ayFofGpuDA0zMGeb9UBeN+IhgJmXG+YyH38f7y7FIfRlZNO+0jUd8L8dNX+MO5XYl0AA8AKwGjgIr3HBeAxdYq0OrJsCMIfFEBAf4hGK249QFKmqbdSfD5KgQxmfE+ETnX1WvFIf3dhklW0yqF8Gnh87S2KJvLwKlOHwZ04fEEx3mvXIX9liSm8Lp8w3sP1Pj7aZ0yZrCUhIigpiQEevtpnRgSW4KbRZpuJAZGLjI2Zomtp+6oLuxOdBsYsGIJNbv13+ZNCkla/eVMWdYImFBAd5uTgeW5KZwsKyGEz5QJm1NYSkDYkLJTdNHqIvGktxkmlstfHrQN7wIPEWvlVspZZ2Usk1K2Sql/JeU8o+qm7JThBBLhRAHhRBHhBA/sLP/NiHEWSHELvXnzt621R9ZU1hGdlIEQ3QSA6ARHGBmXo5vJKJZU1BKkNnEvOH6sWpqLMlNYW9xFcWV+k5E88nBMlotUneTEFBk2NDSxmc6dyE7XF7L8Yo6XWT4tWXhiGSE0L8XQWNLG/kHylk0MlkXieGsGT0gmrToEJ8wVhkY6IF1WmI4HYVpaCzJTaG6sZXNx857uylO2VNUxZmqRl2Ozb7inVbb1MrGIxW6M94DTMqMU3Pc6FuGnsYd2ZKvFEIcFkJUCSGqhRA1QginEeJCCDPwDLAMGAncIIQYaefQ16SU49Sff/S2rf7G+bpmNh8/pzuXZI0lucmcq2tm+0n9JqKRUrJmXykzsuOJ9GJxeEdoA5LeYyrWFJSRFBnMuPQYbzelE9Oy4okKCdC9UqH9j/VQRsmWxMhgJg2K1f0A+uXRCuqa23RpIBBCsDg3hY2Hz1LfbLiQGRh0xerCUgbFhzE8OdLbTenEnKGJhAaadd8nri4sxWwSLByR5O2mdGJgXBijBkTpXob5B8tpbrXo0kCg/G+VHDfNrfr2IvAk7nBLfhK4TEoZLaWMklJGSim7WrefAhyRUh6TUjYDr6K4Nxt0g/X7y7BIWJqb6u2m2CVveBJBASZdd1z7z9Rw+nyDbjL82jI4IZxhyRG6lmFDcxufHjrLktwUrxeHt4fiQpbMxwf07UK2Zl8pEzJiSI7ybnF4RyzJTeFAaQ0nz+nXhWxNQRmRwQHMGOL9chf2WJybTJPhQmZg0CXVjS1sOlrBklz9JIazJjTIzNxhiazdV4pFx95pawpLmZYVR0xYkLebYpclI1PYcaqS8upGbzfFIWsKy4gPD2JyZpy3m2KXJaOSqWlq5cujFd5uim5whwN+mZRyfze/MwA4bfV3ETDVznFXCSHmAIeAB6SUp20PEELcBdwFkJycTH5+fjeb4llqa2vd1sb/bm8kPkRQcXgH+Uf01/kDjIgVvLvtBLPCy9w2QLlThu8cbkYAYReOkp9/zC3ndDc5Ec18cLSW99duICpIfzLcXtZKQ0sbKa1l5Ofrs3NNp5XK+haee3cDI+PdlzTMXXI8W2+hoLiBa4cH6rYPi65XDAN/ef9Llg12n5eDu2TYZpF8tLue3AQzmz7f2PuG9QFtFklEIPzrk92EnjvotvO6833urxgy7D3ulOGmklZa2iRJTSXk5+vT6ybD3Mrq6iZeeP8TsmPcM664U4YltRaOnW1gRkKLbp/tOHVc+fO7G5mfob9xpcUiWVdQz5TUADZ+9mnvG9YHtLZJQszw4rqdcMZ9taB9uU90h3K7TQjxGvAu0KRtlFK+3cvzfgC8IqVsEkJ8E/gXMN/2ICnls8CzAJMmTZJ5eXm9vGzfkp+fjzvaWNfUyr7167hxyiDmzcvtfcP6iPLw03zvrT0kDpvAqAHRbjmnu2QI8MSuz5icGcllS6a75Xx9QcLQKt7/0+c0xmZz2eSBbjmnO2X4/uu7iA4t564r5hFo1kcNPVumNrfxXMFaSgOS+VbeKLed111yfP7z48A+vrViJpkJ4b0+X1/x4uGNHGk0k5c3w23ndJcMvzp2jpqWr7h53ljyxujTmwVg2bndrC4sZcasOW6rOenO97m/Ysiw97hThq+/vJ2kyAt8feV8XXoEAYyvb+GFgnWcDU7jzrwRbjmnO2X4zIYjwEHuu3w2KdH69AiSUvKPg59yvCWUvDx7a1w9w11y3HCwnMa2rdy2cBx5OfoLGdJYWLaDr46dY/acuW7LN+HLfaI7RtYooB5YjJIleQVwaRffKQasZ+np6rZ2pJTnpJSasvwPYKIb2uo3fHrorG5jAKxZMCIJk0CXKfNPnqvjQGkNi3Uas6zRXstMhzJsabPw8f5yFuQk6VaxBcWFbM7QRNYWlunShWxNYSnDkyN1rdiC4pq849QFymv050K2prCUoAATeTpMDGfNktwUahpb2XRM/2XSDAy8QWNLG/kHz7JoZLJuFVuA6LBApg+JZ21hmS7LpK0pLGXswBjdKrag5SJIZtPRc1TVt3i7OZ1YW1hKeJCZGUMSvN0UpyzJTaGitpkdp/Sb48aTuCNb8u12fr7exde2AkOFEIOFEEHA9cD71gcIIaxN75cB3XV99mvWFJYSGxbI5Ex9lbuwJT4imMk6rWWmx+Lw9mivZXZYf7XMthw/T1VDiy4T+NiyJDeF0upG9hRXebspHThX28S2E+d1mxjOmiWjkpFSyWKqJ7QySrOzEwgP1le5C1tmDU0gLEj/iWgMDLzF54crqG9u0/3YDMq4cryijsPltd5uSgdKKhvYU1TlE+PK0twUWi2STw7qa1xps0jW7SsjLyeJkED3hTP1BXnDEwkym3SffNRTuCNb8h/t/DwuhHCYIEpK2QrcB6xBUVpfl1IWCiF+IYS4TD3sO0KIQiHEbuA7wG29bau/0Nxq4ZP9SrmLAB2vlmnotZbZmsIyctP0VRzeEUtyk2lus5B/sNzbTenAmsJSQgJNzNVRcXhHLBiRhNkkdKdUaInhlozS/0RueHIkg+LDdGesKiyppriywSdkGBJoJm94Iuv26dOLwMDA26wpLCUyJIBpWfpMDGfN4pFqmTSdKRWat5xek2VaMzY9huSoYNYU6Gtc2XHqAhW1zT4hw8iQQGZmx7NmX6kuvQg8jTs0oxBgHHBY/RmD4mZ8hxDiKUdfklJ+JKUcJqUcIqX8lbrtMSnl++rnR6WUuVLKsVLKeVLKA25oq1/w5dEKappafcKqCbS7/epJqSivbmT7Sf0Vh3fExVpm+un8LRbJmsJS5g5LJDRI31ZNgJiwIKZlxbGmQF+d/+qCUtJjQxmZqq/i8PbQvAg2Ha2gqkE/LmSrC0oxCaUery+wJDeFszVN7DxtuJAZGFjT2mZh/f4yFo5IdltMel+SFBXC+IExrNmnn/kNKCWAhiZFkJUY4e2mdInJJFg8MoVPD52lobnN281pZ3VBKUFm/Ye6aCzJTeH0+Qb2n6nxdlO8jjt6jjHAPCnln6SUfwIWAjnAFShxuAZuZk1hGeFBZmZm6zsGQCM9NozRA6JZrSPldq3qVukryq3ZJFg0Uqll1tSqj85/d1ElZdVNPiNDUKzYxyrqOKITF7Kaxha+OHJOt+Uu7LEkN4WWNsmGA/rxIlhTWMqUwXHEheuz3IUt83KSCDQLVutstcfAwNtsOXGeC/UtPuFOq7EkN4WC4mpOn6/3dlMAOF/XzJbj531qbF6Sm0JDSxufHdZHmTQpFeP9zOx4IkPcl8W5L1k4MhmTQFdzbW/hDuU2FrA2DYUDcVLKNqyyJxu4B4sWAzBc/zEA1izJTWbnqUrKdFLLbE1hKZnxYQxL1r9VU2NJbgq1Ta18eVQfiWjWFJYRYBIs0HEGQVsWjVQGe714EeQfPEtzm/4Tw1kzfmAMSZHBupHhsbO1HC6v9SkZRoUEMmNIAmt0mojGwMBbrC0sIzjAxBwfCHXR0PqetTrJRdAe6uJDfeLUrDiiQwN1M67sO1NN0YUGn5JhQkQwkzLjdJnA1dO4Q7l9EtglhHhRCPFPYCfwWyFEOLDeDec3sGL7qQtU1DbpPsOvLXrq/KvqW9h01LdWywBmZMcTERygi9gezao5LSue6DDfsGoCpESHMG5gjG7cu1cXlpIQEcTEQfpODGeNSfUiyD94lsYW73sRaFZqX0hqZs2S3BROna/nQKnhQmZgABdDXeYMSyQsSN+J4azJTAgnJyVSN4rZmoJSBsSEMmqA/kNdNALNJhaMSOLj/eW0tFm83RzWaKEuI31vrn2gtIaT5/SV48bTuCNb8vPADJQ6t+8As6SU/5BS1kkpH+nt+Q06smqvEgMwPyfJ203pFtlJEWQlhOvCorR+fxmtFslSH0g+Y01wwMVENG1eTkRzsKyG4xV1PidDUDr/vcVVFFc2eLUdjS1tbDhQzqKRKW6rS+cpNBeyjYcrvN0UVheUMjY9mgExod5uSrdYpCWi0UGfaGCgB3YXVXKmqpFlPjiuLM5NYduJ85yr9a7DYk1jCxsPV/ic8R6UcaWqoYUtx897uymsKihlcmYcCRHB3m5Kt1g8Un85brxBj5VbIUSO+nsCkAqcVn9S1G0GbkZbLZs9NMFnYgA0lFpmKbqoZbaqoJTU6BDGpsd4tR09YUluCufqmtl+0ruJaFbtLUUIfM6DAGiP5fK2oeWzQ2epb27zyYnctKx4IkMCvD6AFl2oZ09RFUtHpXZ9sM5IjAxmYkasbrwIDAy8zeqCUgLNggU+khjOmiW5yVikYjz3Jp8cKKe5zcKy0b43rswZmkhIoMnr48qRciXUxRfH5oFxYeSmRfX7caU3K7cPqr9/b/XzO6sfAzezp0hZbfLF1TJQOv9Wi+TjA9576WqbWvns8FmW5Kbouji8I9prmXm5819dUMrkQXEkReq3OLwjshIjGJoU4fVkPqsLS4kODWT6EP2Xu7AlKMDEgpwkxQvCiy5k2gDui5MQUIxV+89Uc+qcPhLRGBh4CyklqwpKmTEkgehQ3zLeA4xMjSI9NtT740pBabvhzNcIDTIzd1giawpLvVombXXBGQCfNJqCMq5sP3mBcp3kuPEGPVZupZR3qR//CqyUUs4DNgBVwMNuaJuBDasKSglQ4918kbHpMaREhXhVMdtwoJzmVovPToYjQwKZNTSBNYXeK2dz7GwtB8tqfNbIArB0VApbvehC1txqYf0+pdxFoA/UqrbH0lEpVNZ714VsdcEZclIiyUwI91obeoOWi8DbxioDA2+z70w1p87X++zYrJVJ++LIOWoaveOd1tDcRv7BsyzJTfZJ4z0ofWJZdRO7iyq91oZVBaWMz4ghJdr3jPdA+9xMDzluvIU7ZlU/llJWCyFmAfOBf6AovAZuRErJ6oIzTB8ST0yYb5S7sMVkEizOTfZqLbPVBUoCn0mZcV65vjtYkptM0YUGCkuqvXL9Vapl2peV2yW5KVgkfLzfO+VsNh07R3Vjq89O5ADmDEskOMB7XgTlNY1sO3nBp5/DjPgwRqRGGcqtQb9Hq1Xtq8Z7UMbE5jYL+Qe9U87m00PlNLS0scxHVxwBFuQkE2ASXnOrPXWunsKSap8em4cmRTA4IbxfjyvuUG41LeUS4Dkp5YeAb2pfOuZAaQ0nztX79EQOFKWiscXilVpmjS1tbDhYzuJc30vgY83CEUotM2/FjK4uKGXswBjSfCyBjzW5aVEMiAn1Wue/uuAM4UFmZg31jVrV9ggLCmDOsETW7vNOORuljA4+PZEDxVi1/dQFztYYlfMM+i+rCpRa1fE+lsDHmgkZsSREBHltXFlVUEpsWCBTB/uu8T46TAnVWesl77TVhYpLsi+PK0qOm2Qlx02Dd3PceAt3KLfFQoi/A9cBHwkhgt10XgMrVheoCXxG+rZyO2Ww92qZ+XICH2vi1Vpm3rBsFl2oZ29xlc/LUOv8Nx6poLap1aPXbrNI1haWMX9Esk/VqrbHktwUzlQ1sqeoyuPXXl1whqyEcJ+qVW2PJbkpSAnr+rELmUH/5kh5DUfKa31aoQAwW5VJa2r1rHdaU2sbn+wvZ9HIZAJ8NNRFY3FuCscq6jhSXuvxa68uKCU3LYqBcWEev7Y7WZKbQqtFsuGAd7zTvI073oBrgTXAEillJRAHGCWA3MyqgjNMzowjMdJ3rZrg3VpmqwqUBD7TsnwvgY8tS3JTOFhWw4kKz9Yy05Jl+LpyC4oMm1stfOphF7Itx89zrq7ZL2S4cEQSZpPwuLHqfF0zXx07z9JRvlfuwpaclEgy4sL6tQuZQf9m1V7l2V/iY7Wq7bE4N4Xapla+PHLOo9f94kgFNU2tPm8gAO+VszlT1cCOU5V+MTaPS48hKTK4344r7qhzWy+lfFtKeVj9+4yUcm3vm2agcaC0mkNltVwy2vc7LbhYy2zzMc8lomlobmNtYSlLcn03gY813ur8399dQm5aFIPifTOBjzWTM+OICw9itRdkGBak1Cz2dWLCgpg6OM7jMvxo7xnaLJJLxvh+n6gkoknmy6MVVHspEY2BgbeQUvLe7hImDYr12QQ+1swYEk9EcIDHsya/v6uE6NBAZmb7bqiLRnJUCOMzYjw+rvxvt+KSvNwP5tpajpv8g2dpbPFOjhtv4vuz/H7Ae7tKMJuEX0zkQKllFhpo9qhi9vGBMuqa27h83ACPXbMvGRgXxqgBUR7t/I+drWVPUZXfyNBsEiwakcyGA+UecyFrbrXw0d4zLB6ZTFhQgEeu2dcsHZXCsbN1HCmv8dg1399VwtCkCEamRnnsmn3J0lEptLT1Xxcyg/7L/jOKS/LK8f4xrgQHmJmvlklr81A5m/rmVtbuK2P56BSCAvxjWr80N4WC4mqKLniuTNp7u4sZkx5NVqJvh7poLM1NpaGljc8OeSfBmTfxj7fAj7FYJO/vKmFWdgIJPpxowZrQIDPzchJZVXDGYzUy39tVQlJkMFP9wCVZY9moVHaequT0ec90/u/vLkEIuHSsfxhZAJaOVlzIPOWa/Nmhs1Q1tLDSTwwEoOQBEAI+UK3efU1xZQNbTpxn5bg0n3dJ1hg/MJakyGCPydDAQC+8t7uYAJPwG880UMJ2ztU1s+moZ1yT1+8vp765jcvG+s+4oiVP/XCPZ/rEI+W1FBRXc9nYNI9czxNMzYojJiyQ/3lIhnrCUG51zo5TFyiubGDlOP954QAuHzeAitpmNh6p6PNrVdW3kH+wnBVj03w6S7ItWif83q7iPr+WlIqRZergOFKjfTdLsi2K0SiId3b2vQwB3ttdQmxYoE9nSbYlJTqEGUPieWdnsUeyW36wuwTAryZyJpPg8vEDyD9Yzvm6Zm83x8DAI1gskg92lTB7aAJx4f5TZGNeThKRIQG8vbPII9d7f1cxKVEhTPHhLMm2DIoPZ0JGDG/v8My4ohnvV/iRchtoNrFiTBpr95V6rfaytzCUW53z3q4SggNMLPaDRAvW5A1PIjYskLd39L1SsargDC1t0u8MBAPjwpgyOM4jnX9BcTXHKur8asUR1M5/bBof7y+nqr5vO/+6plbW7SvlkjGpfhH3bc0V49M5db6e7Scv9Pm13ttVwviMGDLifTubpS1XThhAq0W2K+8GBv7OtpMXKKlq9LtxJSTQzKVjUlldUEpdH2fjv1DXTP7Bs6wYm+pXxnuAKyakc7Cshn1nqvv0OorxvpjpWfEkR/l+3Lc1V0wYQGOLhVUejgH3Nv41w/IzWtosfLj3DAtHJhMR7B/xeRpBAYpSsbawtM+TqLy3q4TBCeGMHhDdp9fxBldNGMCxijp293Eplvd2FRNoFn6RRdCWqyak09xm4X97+1apWLuvlMYWi99N5EBxIQsNNPN2H6+AHyqrYf+Zalb6kXVdIyclihGpUX0uQwMDvfDermJCAk0sUhMk+hNXTkinvrmtz3OLrCoopdUi/XJcWTEmlUCz6PNFkD1FVZw4V+93CyAA4wfGMDghnLd3eMaLQC8Yyq2O2XBAcVHzlwQ+tlw5IZ2mVgur9vZdPMDp8/V8dfycX8XnWbNsdCrBAaY+7bha2iy8u6uEvOFJxIT5j+uYRm5aFMOSI/p8AH1zexEDYkKZmBHbp9fxBhHBASwdlcL/dpf0aWbGN7cXKfF5Y/xvEgKKsWr36UqOnvV8fUcDA0/S2NLGB7tLWDwyhXA/M94DTBoUy8C4UA+MK6cZkhhObpp/JNezJiYsiAU5yby3q6RP87O8ub2IoAATS3P9J+5bQwjBleMH8NWx8x5NzuVtDOVWx7y29TRJkcHM84OSIfYYmx5NVkJ4n3b+b2w7DcA1kwb22TW8SVRIIItGJvPB7hKaW/um8/94fzkVtU1cP9k/ZSiE4Irx6Ww/eYGT5/qmbvCpc/V8ceQc100eiMnPXMc0rhg/gOrG1j7L+NvcauGt7UUsGJHk8/W+HXHZuDRMAt7xQLiGgYE3WV1QSnVjq9+PK18craC0qrFPrnGorIYdpyq5fnKGXxrvQXGrraht6rP8LA3Nbby7q5jlo1KIDgvsk2t4m8vVTOTv7eo/IS+GcqtTzlQ1sOFgOVdPTCfAz+LzNIQQXDlhAJuPn+d4hfuVijaL5PVtRcwZmsiAGP9JgmTLVRPSuVDfwvr9ZX1y/te2niI5Kpi5w/zTyAJw+XhFqXhdNYa4m9e3ncYk4JpJ6X1yfj0wMzuB5KhgXusjGX68v4xzdc1cPzmjT86vB5IiQ5gzLJE3txd5LJO8gYE3eGXLKTLiwpjmRxUMbLly/ACkVFZX+4JXt5wm0KzMo/yVeWp+lte39o0MP9p7hprGVq7z43FFy8/y+rbTWDxUnsrb+J8viJ/w5rYiLBKu81Orpsa1kwby1PrD/HfzSX50yUi3nvuzQ2cprW7kZ5e597x6Y84wRXn/z1cn3V58vKSygU8PneXeedl+a2QBSI0OZX5OMq9tPc39C4a5tVZga5uFN7afJm94kl9lmrbFbBJcPzmDP35ymFPn6t2e8OnVradJjVaUP3/mxikZ3PXSdj4+UM4SH0sk2NjSxsHSGgpKqjh+to7ymiYu1DcjJQgBsWFBJEcFMzghglEDohieEklwgNnbzdYVbRapliWp4sjZWsqqG6mobW6flEaFBpAUGaLUOk+LIndAtM/l5Dh2tpbNx8/zyJLhfuvJApCZEM6s7AT+u/kU9+RluzXhU1NrG2/vLGLxyBTi/aRMpD2CAkxcO2kg//j8OGXVjW5P+PTa1tNkxocxLct/Mk3b42tTM7j/1V18fqTC78dQMJRbXWKxSF7bdpoZQ+IZFB/u7eb0KUlRISwZlcLr24p4aPFwQgLdN9F5ZcspEiKCmJ/jf8kqrDGbBF+blsGTqw9ypLyG7KRIt537DdXIcq2funVbc/P0QazfX8bqwlK31rrLP3iWsuomfrHS/2V4w5QM/rzhCC9vOcmjy0a47bzFlQ18dvgs354/1O8ygtoyPyeJtOgQ/vPVSZ9Qbitqm1hdUMqGA+V8cbSCxhZlxTkk0ERyVAixYUGYTYI2i+TU+XrKqhvbjwkNNDMzO5684UksHZXiN7Xcu0t9cyvr9pXxyYFyPj10lko1c3ugWZAUGUJCRBABZhNSSs5UNfDZoQpq1Sy8ZpNg4qBY5ucksWxUik/MGV7bdhqzSXD1RP/1ZNG4adog7v7Pdj45UO7WxFlrCsuorG/x+wUQgBunZvDsxmO8suUU3104zG3nPXq2li0nzvP9pTl+69atofSvQbz01UlDuTXwDp8cKKfoQgPfW5rj7aZ4hJunDeLDPWf4YHeJ22JjT5+vZ/3+Mr4xJ8utq3B65dpJA3lq3WH+89UpfnZZrlvO2dxq4b9bTjJ7aAID4/yr7Io9ZmcnMCg+jP9sOulW5fZfm06QFBnM/Jwkt51Tr6REh7B4ZDKvbz3NAwuHuc1Y9dKmkwjgWj9269YIMJu4cWoGv1t7iGNna8lKjPB2kzphsUg+PXSW17aeZv3+MlotkoFxoVw3aSBTs+IZPSCa9NhQuxNGKSWnzzewt7iKzcfP8cmBctbvL+dn7xeycEQy100ZyNyhiX69oqex+3Qlr249xQe7z1Db1Ep8eBDzc5KYOSSBMenRZCVGODTmlFc3UlhSzdYT59lw8CxPrDrAE6sOMHVwHNdNHsglY1J1uSre0NzG61tPMz8nye/Krthj4YgkUqJCeOmrk25Vbv/95QnSY0OZle0/NdMdMSg+nLnDEnllyynunZfttlJ6//7yBIFmwVUT/detWyM4wMx1kwfy1/yjFFc2+HWoHhjKrS75x+fHSI0O8cuyK/aYOjiOoUkRvPTVSa6emO4WC9q/vjyBEIJbp2f2voE+QEJEMMtHp/DW9iIeWTLcLdknP9xbQll1E09cNcYNLdQ/JpPgpqmD+NVH+9l/ppoRqb3PPnmwtIaNhyt4ZMlwv6tt64ibpw1iVUEpH+45w1VuWJmpa2rlv5tPsnRUCumx/m9kAbh28kCe/lgxVj22Qj9hFS1tFt7bVcLfPj3KkfJa4sKDuG1GJtdMGsiw5AiX+m4hBBnxYWTEh3HJmFR+fpnkYFkNb20v4u0dxawuLGVYcgR3zx3CirFpfvfeSCn57HAFf9lwhM3HzxMaaGb56FSunZTO5Mw4l5X6pKgQkqJCmJeTxPeW5lBc2cC7O4t5fdtpHnx9N79ZfYA7Zg3mhikZRIboJ1HO2zuLuFDfwh2zBnu7KR5BM1b9Yd0hTlTUkZnQ+5X1nacusO3kBX5y6ch+YQQCZVy541/bWLevzC3hV1X1Lby+rYgVY9NIivR/IwsonlV/zT/Kfzef5JEl/r145l+jhh9QUFzFV8fOc9uMTL8b1B0hhOCWGZnsKapi8/HzvT5fTWMLr249zSWjU0nzc+uUNbfMyKSmqZVX3ZB4QUrJPzYeJzspgrlD/d+FReOaSemEBpp5buMxt5zv+c+PERJo4sYp/puswpbpQ+LJTorguY3HkLL3ySve3F5EdWMrd8zKckPrfIOkyBCWj07l9W2nqarv2zrgrtBmkby+9TR5v83n4Td2E2ASPH39OL56dAE/vnQkw1Mie2yUFEKQkxLFjy4ZyaZHF/CHa8cC8ODru8n7bT5vbi+izU+SoGw8fJbL/vwFt76whZPn6vnxJSPY8qMF/P7asUzNiu+VojIgJpR752WT/3Ae//76FIYkRvDrjw4w84lPeGbDERqa+65El6tYLJLnPz/OqAFRTB3s3zGO1lw/eSBBZhP/+Nxd48pxIoMD+oUni0be8CQGxoXy7GfuGVf+u+UUDS1t3NmPxpX02DAWjkjm5c2nqFPDGvyV/qE9+RD/2HiM8CAz1/ejyTDANRPTSYgI5pkNR3p9rle3nKa2qZU7Z/cPy7DGhIxYpg6O49nPjtLU2ruJzKZj5ygsqebOWYP7jWUYlLp6N0zJ4L1dJZw+37uacOU1jby7s4RrJg4kNtz/6gM7QgjBPXOHcKC0ho/3964sUJtF8sIXx5mQEcPEQf5XH9gZd88dQm1TK//88oTX2iClZMPBcpY/vZHvvbWHhMhgXrhtEqvun83KcQPcHvIRFGDiygnprL5/Ds/fOom48CAefmM3y5/eyCcHytwyqfUGB0truPWFLdz8/BYqG5p58qoxfPa9edw5O8vtq6pCCOYMS+S/35jGe/fOZHJmHL9dc5C5v93Afzef8moW7g0Hyzl2to5vzM7y+xhHa5KiQrhqYjqvbyuivLp3ZYGKLtSzqqCUG6bqa0W+rzGbBN+cM4Rdpyv58ui5Xp2rudXCv748wczseEb6YX1gZ9yTN4TK+hZe3nzS203pUwzlVkccPVvL+7tLuGFKBtGh/afTAggJNHPn7MFsPFzB7tOVPT5PQ3Mbf//sGNOz4hmTHuO29vkK983Ppqy6ibe297xOppSSp9YfJjEyuL0+Wn/irjlZmIXgb58e7dV5/pZ/jDYp+437nTWXjUsjPTaUP2840iuF5N2dxZw8V89dc4a4sXW+wYjUKBaOSOLFL497xcpeUFzFTc9v5vYXt9LY2sYzN07g3W/NYH5Ocp8rJiaTYMGIZN67dyZ/vnE8ja1tfP2f27ju71+x89SFPr22OymvaeTRt/ew7OnP2HnqAj++ZATrH5zLtZMHeiQXxNiBMTx/22Re/+Z00mND+eE7e1n81GesKSz1uKFASsnTHx9mQEyo27P6+wL3zB1Cm0X22ivomQ1HMAvBbTMy3dMwH+LqiekkRQbz5096twjy2rbTlFY39stxZXxGLDOz43lu43EaW7zvzdFXGMqtjnh6/WGCA8zcndf/XjhQsgpGhQTw9MeHe3yOf286QUVtEw8udl9GPV9iVnYCY9Oj+Uv+kR6v3n5x5Bxbjp/n3rwhbs1e7SukRCtW9je2FVFc2dCjc5ypauA/m09y5fgBbomx8jUCzSbunqtY2T87XNGjc7S0WXjq40PkpkWxJNe/M5474lvzsqmsb+Ffm0547Jpnqhp48PVdrPjz5+wrqeanK0ay7oG5XDIm1eOrbSaT4NIxaax/cC6Pr8zlWEUtV/zlS+77745ee1b0JfXNrfzx48PtbtW3zRjMp48oK7XeSPI0ZXAcb90zg2dvnogAvvnSdq79+yaPGgrW7y9nT1EV9y8Y2m9CrqzJiA/jsrFpvLz5FOU1PVu9PXmujje2FXHDlIH9KuRKIyTQzF1zsth0TJmj9ITGljb+/MlhJg2KZc5Q/0/GZY9752VztqaJV7ac8nZT+oz+18PolMKSKj7YU8LtMzP7bTmEiOAA7snL5pMD5XxxpPsT4qr6Fv726VHmDEtkcmb/ieexRgjBQ4uHU3ShgX/1wJ3RYpH8ds0B0qJDuGFq/3KNt+a++dkIAU+uPtCj7z+9/jBSSr6zYKibW+Y7XDMpnYFxofz6w/09coV8dcspTp9v4KHFw/qVC6M1EzJiWZCTxF82HKWitqlPr1Xf3Mof1h1i3u/y+d+eM3xzzhDyH5nH7TMHez3jfKDZxM3TM8l/ZB7fnp/N+v1lLPj9p/zyf/uorG/2atusabNIXt92mnm/y+cP6w4xd1gi6x6Yy2MrRno9NEEIweLcFNZ8dw6/vHwUxyvqPGYoaG2z8Pu1B8mMD+PKCf3PG0jjOwuG0txq4f+tO9Sj7/9h3SHMJsG987Ld3DLf4WtTB5ESFcKvPtzXXvu5O/x70wnKqpt4aPHwfjuuTM+KZ8aQeP748WFd5HToCwzlVgdYLJKfvFtAXFgQ3+yHbhLW3D4zk/TYUH754f5uJxH57doDVDW08P2lw/uodb7BnGGJ5A1P5E8fH+FcNyfEr207ze6iKh5eMlyXZSQ8xYCYUO6cPZj3dpWwo5urG7tOV/LattPcMj2zX5RQckRwgJlHl43gYFkNr23rXpKzc7VN/G7tIaZlxTFvuP+XUHLGo8tH0NjSxh96OCHuCotF8sY2JVnUHz8+zMIRyXz84Fx+sCxHd+ExEcEBPLR4OPkPz2PluDSe/+I4c3+bzz82Hut1noHe8umhs1zyx4187809pEaH8ubd0/nrTRN157kRYDZx07RBHjUU/HvTSQ6U1vD9pTkE9MNVW43BCeHcMj2T17aeZv+Z6m5996tj53hvVwnfmJ1FUj8ooeSI0CAzjywZzu6iKt7b3b3wq9KqRp5ef5h5wxOZPiS+j1qof4QQ/OiSEVQ2tPCnT3ruKaln+m8voyPe2H6aHacqlclEmL4mE54mJNDMD5ePYP+Zap79zPXYlN2nK3l58ylumZ5Jblp0H7bQN/jxJSNobG3jsfcLXf7OudomfrP6AFMGx3FFP4y1teWevGySIoP5wVt7XJ44t7ZZ+Mm7BSRGBPPdhf131VZj2agUpgyO44lVBzhT5bqL9/+tOkBdUyuPrxzVb63rGtlJEdw8fRCvbDnFV8d6l0jFGiklnxwoY8WfP+eRN/eQGhPKW/dM5883TtC9USYlOoTfXjOWD789mzHp0fzyw/0s/MOn/G9PicdjSfeVVHPz85u59YUt1De38ecbx/POt2YwSefeQ54yFJRVN/L/1h1izrBElvaT8obOuH/BUGLCgvj+W3tocdGjpam1jcfeK2jPiN3fuWL8AMYOjOHx/+3vlkfL4x/uo8Ui+dlluX3YOt8gNy2a6ycP5MUvT7CrF3lu9Iqh3HqZ4xV1/OKDfUwZHMdVE/pPWndnLBuVwvLRKfy/dYdcsm7WNrXy3dd2kRwZ0m9jbW3JTorkuwuH8eGeM7y/u6TL46WUPPLmHuqb2vjl5YZCAcrk7zdXjeFQWa3Lq2ZPrT/M3uIqfroit19lsnSEEIInrxpDa5vke2/uccmNbNXeM7y5vYi75mQxNDnSA63UP48sGU5GXBgPv7GbmsbeuZFJKfn00Fku/8uXfP2f26hubOHp68fxzj0zmDhI3wqZLSPTonjpjqn86+tTCA8K4L7/7uSKv3zJxsNn+1zJ3VtUxV3/3sbyP25kb3EVP7l0JOsenMOlY9J8qv90ZCh4Z2eRy8qXI9oskgde20WrRfLzy3J9Si59RXRYIL+8fBR7iqpcrg7x5OqDHCqr5fHLcwkN6r8eVRomk+C3V4+htqmVR9/e69K7/vaOIj7cc4Zvz8tmULy+vCm8xaPLR5AcGcyDr+/SRakwd2Iot16kqqGFe/6znQCziaeuG9evSq44QwjB4ytHER0WyF0vbXPqWttmkTz8+m5OnqvjqevHEWUoFO18c04W4zNi+MFbeygsqXJ67NMfH+aTA+X8cHkOwwyFop15OUncMCWDv396jP/tcW4kWFNYyjP5R7hmYjqXjOl/2UAdkZkQzo8uGcHGwxX8ft1Bp8ceKK3me2/tYWx6NN9daBiqNMKCAvj9NWM5U9XI/a/u6lHd18aWNt7YdppL//Q5t76whYqaJp64cjSfPJTHynEDfHr8mTsskQ+/M5snrx7DmaoGbn5+C8v/+Dlv7yiiudV9pW/aLJINB8q57cUtrPjz53x17Bz3LxjKpw/P445Zg306lEMzFPxbNRQ88Npu5j65gec+O0Z1Dw0qT645wJdHz/Gzy0YyWGfu2d5k+ehULh+XxtMfH2b9vjKnx763q5jnPz/OLdMHMT+nfybWs8ew5Ei+t2Q46/aVdWkk2FtUxY/fLWBKZhz39NOErfaICgnkyavHcryijofe2NWjGGa94jXlVgixVAhxUAhxRAjxAzv7g4UQr6n7NwshMr3QzD7jQl0zd/xzK0fP1vLnG8f3y8x3zoiPCObZmydSXt3ETc9vsZtdsLnVwvfe3MPqwlJ+dMlIpmX13xgKewSYTfz9polEhwZy6wtbKSjurOBKKfn7p0d5av1hrpqQzq39sLxAV/zsspFMzozlwdd2s7rgjN1jPt5fxnde2cnY9Bh+vtJwebLla1MzuGFKBs9sOMqfPzls19K+/0w1t76whbAgM898bYLXkxjpjUmZcfzsslw+OVDOA6/tcklps1gk206c56fvFTDjiU945E3FFfL/rhzNhofzuH5Kht9krjWbBNdOGsinj8xTvQUsPPj6bqb938f89L0Cdp660KPJm5SSg6U1PLX+EHOe3MDt/9xKQXE1jywZzuc/mM8Di4b5VTjRnGGJfPSd2Tx/6yQy4sP41Uf7mfqrj7n/1Z3kHyx36bmTUvL0+sP8/dNjfG1qBtdOGuiBlvsW/3flGEYPiOa+V3aw4YD9euCr9p7h4Td2M3VwHD9cPsLDLdQ/d8wazBXjB/C7tYf4h4MSS3uLqrj9n1uIDQviTzeO79cx3/aYNTSBHy4bwUd7S/n+W3u8WgfbnQR446JCCDPwDLAIKAK2CiHel1LuszrsDuCClDJbCHE98BvgOs+31r20WiQf7jnD/63aT3l1E09dN57ZQxO93SxdMj4jludumcTd/9nOJX/8nB8szeGSMalYpGTzsXP8etUBdp+u5IGFw/plLVFXSIoK4aU7pnLL85u55m+b+M6CodwwRZloHC6r4fdrD7G6sJRLRqfyxFWjDbcxOwQHmHnulknc/s+t3PPyDm6ZNohvzMkiPTaMC40WfvHBPl788jij0qJ54bbJhAV5pVvVNUIIfrEyl8aWNn639hC7Tlfy4KLhjEiNpL5F8txnx3hq/SEiQgL419enkB6r75hPb3HztEHUNrbym9UHOHq2lh8tH9Fu1GuzSC7UN3O0vJZDZTVsPn6er46dp6K2ieAAEwtGJHHT1EFMHxLv1+95SKCZaycP5JpJ6Xx66CxvbC/ila2n+demk8SHBzEjO4EpmbEMT4licEI4sWGB7RNeKSUX6lsoulDPgTM17Dx9gS+PnuPkOSWb8Iwh8fzokhEsHJHs18YXrc7wghHJ7C2q4pWtp/hwzxne21VCWJCZaVnxTMuKIycliuykCBIiggkKMCGlZP+Zan635iAfHyjnyvED+IURN2+X0CAzL9w2mdte3MId/9rK12cO5o7ZyjympLKBv+Yf5aWvTjIhI4Znb5nUL8vydYUQgieuGk1Taxu//HA/O05d4LsLhzEsOZK6FskzG47wp08OEx8ezL/vmEJyP07E5Yw7Zw+mpkkpX3a4vJZHl+X4fMUR4enkCwBCiOnAz6SUS9S/HwWQUv6f1TFr1GM2CSECgFIgUTpp8KRJk+S2bdv6tvG94PpnN7H1+HnaJAxNiuCJq8YwcVCst5ulewpLqvjem3soLKnGbBKYkLRYICEimJ+uGMmKsWnebqLuKatu5Efv7GX9/nKEgCATNLVBaKCZ++Znc8/cIT7tlugJ6ptb+c2qA/z7q5NICeFBZuqa2xACrp+cwU8uHWEotl1gsUie//w4f1h3iIaWNsKCzDQ0tyFRXEt/c9UYUqKNCUhXrC44w0/eK+RsTROBZoEZSaNNyFRSZDDTh8STNzyRRSNTiAjuv89mdWML6/eV8fnhCjYeqeBsTcdQl8jgAJpbW2mTglar1d2okAAmZcaxcEQyC0ck9esstU2tbXx2qILPDp3l8yMVHK+o67A/PMhMY0sbbWrf+MAixehsKLbOqW1q5Vcf7uOVLUpG+WCzMjabTYKbpmbw6PIRhmLbBW0Wyd8+PcrTHx+mudVCWJCZejWGdNHIZH59xWgSI/tnic3u8N6uYn7+wT7O1zUTHmTm67kBPHTdQm83yyFCiO1Sykl293lJub0aWCqlvFP9+2ZgqpTyPqtjCtRjitS/j6rHVNic6y7gLoDk5OSJr776qofuovt8cLSZ6oZmRiaFMCbBjNlQJlzGIiUHzlvYd66N+qZmsuNDmJBkJiTAkGF3OFndxq7yNirrm0mPCWZispmYYP9dgegLztZb2FbWxoVGC2GihWkDw0gJN2TYHWqaJdvLWjlTayFAtjA+LZTsGGMC1x2a2iS7yts4WW2hoamZ6LAgwgMFKWGC1AgT8SHCUCzsIKXkQpOkqMZCWb2ktllS3yppa2khLCSIqCBBfKggNdxESrjAZMjQLtXNkuIaC2fqLNQ0S+paJLKthbSoYCamBBAVZMitO5TVWdhe3srZmmaSIpWxOSnMGFe6Q3WTZFtZK6V1FgJlC5MGhDI42hhXukNjq2RHeRvHKtuYEt/CsOQIbzfJIfPmzfNf5dYava/cAuTn55OXl+ftZvg0hgx7jyFD92DIsfcYMuw9hgx7jyHD3mPIsPcYMnQPhhx7j95l6Gzl1ltmoWLAOsNAurrN7jGqW3I04L4ifwYGBgYGBgYGBgYGBgZ+g7eU263AUCHEYCFEEHA98L7NMe8Dt6qfrwY+cRZva2BgYGBgYGBgYGBgYNB/8YpbMoAQYjnwFGAGXpBS/koI8Qtgm5TyfSFECPASMB44D1wvpbSf6/viOc8CJx3sjgYcFfvsyb6eni8BcORa7e5r6eWe3X2tnsiwp9fyZRk62+duGTrb58/ydSRHf71nf5Whs32+cC29jyu+8L80xpXe7zPGld7v86QMne3z9WvpYVzRy3vpr+PKICml/XIzUsp+8QM86859vTjfNg9eSy/37O5rdVuGPnJfnmyHW2Wol3v2gnztytFf79lfZegH8tX1uOIj/0tjXOl9O4xxxYdkqKN79stxRUfvpV+OK85++lMqtg/cvK+n53OGu6+ll3t297Wc4cv35el9nrqWP8vXk9fSwz37qwyd7fOFaznDl+/LGFf0d62u9nnqWv4sX09eSw/3bMhQn+1whl7u2S5ec0vurwghtkkH2b0MXMOQYe8xZOgeDDn2HkOGvceQYe8xZNh7DBn2HkOG7sGQY+/xZRn2p5VbvfCstxvgBxgy7D2GDN2DIcfeY8iw9xgy7D2GDHuPIcPeY8jQPRhy7D0+K0Nj5dbAwMDAwMDAwMDAwMDA5zFWbg0MDAwMDAwMDAwMDAx8HkO5NTAwMDAwMDAwMDAwMPB5DOXWQwghlgohDgohjgghfuDt9ugVIcRAIcQGIcQ+IUShEOJ+dfs4IcRXQohdQohtQogp6vZoIcQHQojd6vG3e/cO9IMQ4oQQYq8mM3Xba+rfu9T9u6yOHyOE2KTKca9aa7pfI4R4QJVHgRDiFSFEiFD4lRDikBBivxDiOzbfmSyEaBVCXO2tdnsTIcQLQohyIUSB1bZrVDlahBCTrLZnCiEarJ7Jv6nbw4QQHwohDqjfe8Ib9+It7MnQat9DQggphEiw2d7puRNC3CqEOKz+3OqJtusJB8+i3T5QCLFICLFd7fu2CyHmW33nBnX7HiHEalvZ+ytOxuM4IcQ69blaJ4SIVbfnqGNIkxDiYZtzxQgh3lTf6f1CiOneuCdv4ESOj6vP1C4hxFohRJq6XQgh/iiU+eIeIcQEm/NFCSGKhBB/9sb9eAMnMvyZEKLY6p1erm4PEkK8qL63u4UQeer2fju2OJFht+fXuh9buls7yPjp/g9gBo4CWUAQsBsY6e126fEHSAUmqJ8jgUPASGAtsEzdvhzIVz//EPiN+jkROA8Eefs+9PADnAASnOz/PfCY+jkA2AOMVf+OB8zevgcvy28AcBwIVf9+HbgNuB34N2BStydZfccMfAJ8BFzt7XvwktzmABOAAqttI4DhQD4wyWp7pvVxVtvDgHnq5yBgo/b+94cfezJUtw8E1gAnrd9te88dEAccU3/Hqp9jvX1vepCj1X7rPnA8kKZ+HgUUq58DgHJN3sCTwM+8fW8ekp+j8fhJ4Afq9h9YjcFJwGTgV8DDNuf6F3Cn+jkIiPH2/elAjlFWx3wH+Jv6eTmwChDANGCzzfmeBv4L/Nnb96YDGf7M9llTj7kXeFH9nARsR1nQ67djixMZdmt+7Qtji7Fy6xmmAEeklMeklM3Aq8BKL7dJl0gpz0gpd6ifa4D9KEqGBKLUw6KBEu0rQKQQQgARKC9fq0cb7YOo8roWeEXdtBjYI6XcDSClPCelbPNW+3REABAqhAhAGRRLgHuAX0gpLQBSynKr478NvIUyGe6XSCk/Q3kPrbftl1Ie7MY56qWUG9TPzcAOIN2tDdUx9mSo8v+A76H0e9bYe+6WAOuklOellBeAdcDSPmiubnEix059oJRyp5RSG1cKUd77YBQFQwDh6neiuDj++DVOxuOVKMoq6u/L1WPKpZRbgRbr8wgholEMDc+rxzVLKSs9cAu6wJEcpZTVVoeFc/G9Xgn8Wyp8BcQIIVIBhBATgWQUhaTf4ORZdMRIFIOfNkZXohhW++3Y4sb5te7HFkO59QwDgNNWfxfh/KU0QHFZRLGmbwa+C/xWCHEa+B3wqHrYn1FWhUqAvcD9mtJhgATWqi52d9nsmw2USSkPq38PA6QQYo0QYocQ4nsebakOkVIWozxrp4AzQJWUci0wBLhOdd9ZJYQYCiCEGABcAfzVW232UQYLIXYKIT4VQsy23SmEiAFWAB97vGU6QgixEmU1cbfNdkfPnTHuOMe2D7TmKmCHlLJJStmCYtDaizLOjERV0voTNuNxspTyjLqrFEXZcsZg4Czwovqu/0MIEd5njdUxNnJEKCEup4GvAY+ph9l9d4UQJhRvgw4u3/0NWxkC96nu2y9oLvIoHpKXCSEChBCDgYkoni/W54mhn44tvZxf635sMZRbA10ihIhAWYn4rmrdvAd4QEo5EHiAi5OLJcAuIA0YB/xZCBHV6YT9k1lSygnAMuBeIcQcq303cHHVFpQVylkoA+ws4AohxAKPtVSHqIPkSpSJWRrKys1NQDDQKJXi5s8BL6hfeQr4vmFc6RZngAwp5XjgQeC/1u+vumL+CvBHKeUxL7XR6wghwlBcxB6zs/spjOeuJ9j2gQAIIXKB3wDfVP8ORBl/xqP0A3u4OPnrF9gZj9uRis9iVzUlA1Dcw/+qvut1KO7M/Qp7cpRS/kid17wM3NfFKb4FfCSlLOrbluoXOzL8K4rBeRzKePJ79dAXUJSubSh95JdAm9V5+u3Y0h/m14Zy6xmK6WgxSle3GdhBnUy8BbwspXxb3XwroH1+A8XVG5T4x7dV950jKDGSOZ5sr15RVx41l5x3UGWmdupXAq9ZHV4EfCalrJBS1qPE7k2gf7MQOC6lPKuu3rwNzECRlfYsvgOMUT9PAl4VQpwArgb+IoS43KMt9jHUlbFz6uftKLkJhlkd8ixwWEr5lBeapyeGoBhZdqvPVzqwQwiRguPnzhh3HOCgD0QIkY7yTt8ipTyqbh4HIKU8qipyr6P0A/0CB+NxmZWbbCpdh2EUAUVSSm2l7U362fjiQI7WvIziMQCO393pKKuUJ1BW2G7pZwmROslQSlkmpWxTjXvPoc5zpJStUsoHpJTjpJQrgRiUGFONfjm2uGl+rfuxxVBuPcNWYKgQYrAQIgi4Hnjfy23SJapv//PAfinlH6x2lQBz1c/zAc2V7BSwQP1uMkrSmn5lhbOHECJcCBGpfUaJqdUyhi4EDthYf9cAo9VMggEost7nyTbrkFPANFUmAuU52w+8C8xTj5mLOmBKKQdLKTOllJkok7dvSSnf9XSjfQkhRKIQwqx+zgKGor6/QohfosT/fNdrDdQJUsq9Usokq+erCCUxSKmT524NsFgIEat6ISxWtxnY6QNVF8UPURIlfWF1bDEwUgiRqP69CKUf8HucjMfvo0yIUX+/5+w8UspS4LQQYri6aQH9aHxxJEctpEVlJXBA/fw+iuIqhBDTUEJizkgpvyalzFDf9YdR4nL7xQq4ExmmWh12Beo8Rx23w9XPi4BWKeU+9e9+Oba4cX6t/7FF6iCrVX/4QclAdghlZeJH3m6PXn9QXGIliuvXLvVnubp9O0ocxWZgonp8Gkpihb0ondpN3r4HPfygZOberf4UWj9zwD+Bu+185yb12ALgSW/fgx5+gJ+jTDgKgJdQXJJjUCbBe4FNqBmmbb73T/pvtuRXUNzDWlCUsDtQJh1FQBNQBqxRj71KfeZ2oST2WKFuT1f7gf1W/cCd3r43b8rQZv8J7GRCt33ugK8DR9Sf2719X3qRo70+EPgxirvsLqufJHXf3eqzuAf4AIj39r15SH6OxuN4lDjFw8B6IE49PkWVczVKAp8i1IzAKCvg29RzvYvOsqt6SY5vqWOL9lwNUI8XwDMo88W9WGWYtzrnbfSvbMmOZPiSKqM9KEaBVPX4TOCg+t6uBwap2/vt2OJEht2eX6PzsUWojTQwMDAwMDAwMDAwMDAw8FkMt2QDAwMDAwMDAwMDAwMDnyfA2w1wJwkJCTIzM9PbzXBKXV0d4eH9MgO+2zBk2HsMGboHQ469x5Bh7zFk2HsMGfYeQ4a9x5ChezDk2Hv0LsPt27dXSCkT7e3zK+U2MzOTbdu2ebsZTsnPzycvL8/bzfBpDBn2HkOG7sGQY+8xZNh7DBn2HkOGvceQYe8xZOgeDDn2Hr3LUAhx0tE+wy3ZwMDAwMDAwMDAwMDg/7d31vFRHP0f/8xdjISgwS24F3cL1kJpS72lTtunfdo+dfmVKnXvU3ehSp+60WKF4O4OAYIEiEACSSByd/P7Y3f2Zndn9/b8kuz79eJF7m5vd3Zudma+blPlsYVbGxsbGxsbGxsbGxsbmyqPLdza2NjEFFM+Wok+T8+NdjNsbGxsbGxsbGyqGLZwWwMZ//oifL/mULSbYWMjZMW+4yg8XRntZtjY2NjY2NjY2FQxbOG2BrInrwQP/bQ52s2wsbEJEeUuN8oq3dFuho2NjY2NjY1NVLGF2xqG20Oj3QQbG5sQM+zFBejy+OxoN8PGxsbGxsbGJqrYwm0Nw+XxRLsJ1QpKKRbtzgelttLAJnoUlFREuwnVmn35JdhfUBrtZtjY2ARAWaXbXqNtbGoQtnBbw/h21UHVa5fbg0W786PUmqrP92sP4frPVuOn9TnRboqNjU2YGPPaIox+NTPazbCxsfGTnKIz6PL4bHy7+qDvg21sbKoFtnBbw3jqj+2q128tyML1n63GsqyCKLWoanO48AwA4EjRmSi3xMbGOo/8sgXf2Zs9Gxubas7evBIAwN9bjkW5JTY2NpHCFm5rKA4i/b8ntxgAUGRnpw0I29PJpiry7aqDePjnLdFuRrXB7aHo8MhfuOPb9XC57dAPG5tYwS0v0g626bERsju3GOkPz0K2HX5hUw2whdsaTqW8EYt32hO/jY1NzeLLFdlYm30i6POUu9xweShmbT6KdxZmhaBlNjY2ocAjJ9G0tzjm/LBWKg85Z1vwFu5DJ05j25GTQZ+nuuBye5BXXIaySjem/74Nx0vKo92kao8t3NZQWNLkcpck3CbEGQ+FwtIKnK5wRaJZNjYq9heUYsHO3Gg3w6aa8sRv23DpByuCPg+Bd+e8L9+2fNjYRJvTFS7M356rVIhw2pZbU5jDCd9Pbg/FqTKvV98fm47g2k9X+TzXiJcXYtJbS0PexqrKC3/vxMDn/sFHi/dhxvJsfLRkX7SbVO2xhdsaTgUTbp3GQ6HPM/Nw9n8XR6pJNjYKo1/NxI0z1ka7GVUGj13qKypQePud2HtoG5uo89ivW3Hzl2ux/egpAIDDx4M5Z9sxlJbXXCW+W66kwQu303/fhrOmz0W5S6qhfufMDViyx87P4i8Ld+YBANYeKAQANExJCMl5S8tdWH+wMCTnqm7Ywm0Nh7klswmNUoojRWdQ7nLjTIVbOY4lTrIRY+9no8c/O3JVY7UmM+XjldFuQo2E1yn42kTb2NiEnwPHTwMAjstl0syey735Jbj1q3V46KfNEWlbLMJik39YexhLZQH2lw1SFQhmBLGCnXNAD/OMPHVGsoKnJMYJjys6XYFpP29BWaW1/czd323Exe8tR2GpXQpQiy3c1mAopaiQJyI2sb2zIAtDX1yAzo/NRtcnZuu+sze/BOkPz8Lyvbb2DlBbbESUlLvww9pDdo29ANBaISmlukV2+5FTuOmLtXjy962RbFrMsmq/f/GjOTUsy7fbQ/HPjtyQP48e7ny2aGtjEzjlLjd2yNZWf8kuKMWhE5JQy55xZnU0c0tmSn6WYLMmwty3tx89hWs0rsfa2dLMQ+h/cuxuKFm8O19XxjLWWXegEG/9swcAkBjvBOAdZ0bd98b8PZi5+qAS/+yLLTlFALzhhTZebOG2BrOvoBSVLukpkz1S8I/sPiHi9Xm7FY3eX1uOKu8vyyrArM3S63UHCnHguB1zxnjp75148MfNWL73eLSbEnPc8uVapD88y/Bzt0YAef6vHej02N/KAgEAJ2VNaLaspbfxjZtbWa+uYZbeT5fuw01frMXsreqkKXO3HUP6w7NQEGCiD8rtLYhtubWxCZhHft6KiW8uQX6x/89ixquZGPHyQtV7ZZXSw2mWLTkpzqk6trpS6fZg1uajiuBPKcUJ2erncuslLtZjWl2gy0S49eXaTSnFG/N3Y78fWZmv+2w1HvkldrP7f7JkH27+Yo3qvUveX47X5+0GACTJllumnF9/oFDJY+Nye3D/95uQlVcCl7wRt00hwWMLtzUASqkwO5vHQxUBgv1v5g7x1j97cOSkZOlJlBcDALj6k1W449v1AKQHetQrmaFqepXntOwuW9MsZFaYu12fKIrX2Ls1C+hXKw8AgEq4ZdjihHX4/iso8c+dadbmo/hj05FQNylisPCK3FNlqvdnLM8GAOw6FpjlhrfclpRXYt0BOw7KxiYQ1h6QvE9CFf96Rt7TWMmWbNUdtKry5vw9uOPb9cjclQ8A+HTpfvR9Zh4OHj+tUyYD4KRb9dueIDxf8kvK8cb8PbjmE9+JqaoKz87agfk7jA1DzHK7R665/MuGHNz7v40AgJ3HivHT+sO4c+YGv69rOwQaE/PCLSHkXkLINkLIVkLITEJIUrTbVNX4dOl+9Ht2vtCiyjR4zM3EV2wF+/zTpfvx5G+2Kyij0u1RrIiM/OJy1KklxVbYMRHWmPjmEuXvGz5fLTyGn9B9uYVXZ9YdKMSuY8V+J5HihVt/3HPzi8txx7frcefMDVU2cZXBXi1o+M3enG25uOT95Yo7pI2NjXXYsxSsAwR7IpnAahZz67Gg3AckJfXcEJTKiRZMyV50RtqPzN8hKZgPF57WKZMB73ypFWbNLLe+lhT2eUU1ic21Eo8sWi83H5ZKJcXJWhe+IskTv23zec6dx04hLwDvhppCTAu3hJAWAO4C0J9S2gOAE8CV0W1V1WOB7GqsTQpF4Z1o2MS234dL8ely7+T/xYoDoWtkFWD53gLDAudvLchCr6fmKq+Lyyox4Ln5+HxZNgCgSCP42vhm5T5x/ChbaH/bmIOrPpa0v4FshFxuD16Zs1OnlKgqXPL+cpzzxmJ8uFhcVoBSis+X7Ueexkopcj8DgNX7T5gm5uI3frEs2g56fj6e+XO78DPmMkypesMh2pCVu9z4ZtUBS4K86BBbq25j4z/suSEh8scpl12NzQQyr3BrLqhc8PZS3PLVupC0KxowZSbrW6WvCREKtwytVddtsIYAvtcG7+9rzrsLs/C2HLMayzwqcJfmPfUopejWvI7uGHb/E96QFPql5S6/1owvuf13TVbyGxHTwq1MHIBahJA4AMkAqq5PXJjIyitB22mzDGMYzDSh7DMPpZj++zafD1dpDa53e9XHq5DxaqalY0vL1UJCdXd3AoAZy/Zjb35JWM5NKVXGJosPv/u7jcrngWyE/tp6DO8u3IsX/toRghZGj605J4Xv7ysoxVN/bNe5O1V69Bu4I0VncPmHK/B/crbQG2eswbjXF6mOUVnMwyy5Ld9bgJ3HAksqk3uqHJ8u3W96DIV+wwaoN1zvLtyLR3/Zit825fi8ZnVNGLfz2KkaXR7FJnqMfGUhflp3OOjzlMkeFGYWNibX+bImHuc8sCrdHkz7eQuOaASZV+fsMlSCRxuPIsxK/1PutdByKx+otdzyc+e+/BJk5YV+3X9lzi68Nm83svJiO8nXwl16d+RhLy5Q/vZQ8d5b29vaPSOz5P6w9hAGPjffdI0xU0zUVMT5qGMESmkOIeRVAAcBnAEwl1I6lz+GEHILgFsAoEmTJsjMzIx4O/2hpKQkZG0sLPPguVVl6FDPAUqBt39bhgva6+tnFcoW282bNqneX7N6DU6fkaw6m7dsxYyNehcHbVsPHs0z/Nzo71ATyj4MhAULF2LmzgqMbhWP/TnqjR9r14ky9SK5/8BhZGbmo6SC4j8LTuPB/knonuaEv8zcWY4O9ZwY0DS4RzfUfVjhppg+7zTqJxL8d3SyX9998st5GNYiDgkmQVELMzPhkYWyxUuXIjVBfWxRUaHf97MlR7LYHsg5gsxM/7IMMyI5FimlIITgULEHTVO89591WB27/Pf8hVh82IWO9STdZe7xIlUbc0u9Y9PldiMzMxM5xdJ7a/ceRWbmSSzYKW3O+O/lnfZ+L3PRIsSZJGjxB1Ef3jBbuv6MCSkBn1f0u+TkSHNcVlYWFpZnK+8XFUkxshs3bULFYem53LZHOnbtZq/ygz9nUbkHlW6gUbIDhWX6TfGixYuRaCXQLwSEYxxWeij+Nfc0zkpz4r7+1T8aKNrrSnUgFH145ozX0+ThnzahYXGW3+fIzMzESTk/yPEiSUk2e9sx/LNgoTBr8qFij+q7Vs6/Od+FmevKsW1fjvJ85J/24J3FZ/DT6r14YYR/6yAjnOMwN1fq2x07dqBu0R4UyX20aeNG5OapPZgyMzPhcknvLVu2HPWTvLawxUuXol6i9Fo7V+/bV6E6hxY2V1ZUVFi6z3GvLzY9nxFm/ZhV6EbeGYqhzf3fRxWWebA0x4Xz2sWDEAJXpbffRNdbmJmJ7AP6sLTy8nLV8Wcq3diV7VWkjn5xLl4amYxpc0vh8gDzFmSq9khHcrz79eUrVqJxcuhtlVV5Toxp4ZYQUh/AZABtARQB+IEQcg2l9Gt2DKX0IwAfAUD//v1pRkZGFFpqnczMTISqje9lZqHgzC4UnJE0Pm3atEVGRkfdce/sWA4UFqJvnz7ofXQHNh4qAgD8mpMEOD0AytG1W3dg43rddxt36gvM9sZB1qlbH8j3lgHKyMgAZs8S/x0mQtmHfiHfW4uu/TFvzmIcrkjG8A5Ngf1eK9HIkaNw+YcrMKxDGgCvS02Dxk2QkdEbS/bkA1iN5UUpuOPSwT4vSSnFI79swSV9W6J/egPcMHsW5sCF7BfHBXUroe7DYyfLgHn/AM446+eV+/OL7RVISmuJaed2Vd7TMnzEKDj+mQN4PBg8ZCgapSaqjq1fvz4yMgZj17Fi3P3dBrx5ZR90bppqevnj6w4DWzahaZOmyMjoba3NGiI1Fhfvzsd1n63GxX1b4Of1OZgysDUknR8Qn1wbKPRaOZcWp2HmzoO4ZWQ7APvQqEFdZGQMVT7nM1Q7nU5kZGRgd24xsGwxUpJTkJExSulb0rw7Kl0ejOvWRLJGLM4EAIwYOVKVVC4YhH0YzDyi+S6lFO8v2ovL+rVCq+K9wIH9aN++PYYPag3MmwMAqFevPnDiOHr16iU/u0DmqW3AwWy0b98B2LFd1x7Wj9kvTpKsN5lebT0AjBgxAskJkVliwzEOS8pdwNw52HsqvPN5rBC1daUaEYo+TFq5ACiThC6Hw6E7365jxTjnjcWYe+9IdGqimeO5Z/+NbcuAk0XIKfFatY7X6YDL+7fSXXPbkZPAsqXKdw2Rzz9y5CjQ3fnAujVo0LABMjIGAoBUhmjxQjjikwLuh3COwx+PrAeOHcUHm8px32VjUGfHSqCwEH369MGC/F0AvErejIwMJCyei9LKSgwcPAQt6tVS7n/Q4CFoVreWdKBmvt2BvcDunar3eI6elObKxMQE4ef78ktQ6abA7MW6z/zpF7N+vEGeux+5yv991KXvL8faA4W4ZdIQdG6aiqTl/wDlZer2cXuTdj0HYM7cRbrzJCUmqvbMALA212u9zT1NkZGRgeTMOThV5kK/QUORnBCHeCdBnNOBOSe2AIelPcDAgYOQnha4ItiIqjwnxrpb8jgA+yml+ZTSSgA/Axjq4zs1At5NU3nPwO+euZQ4HUBqkneztSa7UAlIF2bKA3DuW0tUr0WZaq3w6pxdWBHD5XB2HSsWZpQWUSK76SXGOaDtjjKXG2sPFOJNTawIi/th3iMsucXsrUdNSx5Uuilmrj6EKz+K7ZItLEGFUXFyAMg7VWZYHzmvuNw09pV3ixJlamRuPx8v2Yedx4qx8ZB5ttqi0xV48ncpaUNVyLS8TO63n9dLmt31Jtl4T5VJ47NAHldJ8cZCqC9v2us/W42bv1wLQN3vVcELl7l1bT58Ei/P3oX7vt+ocsfjY/BW7JPmJn4ssGdUNN6WZanHseiYqu4pxu7JLBGPjU2o8eXi/+GivQCgK+dlBZZvoKCkXJXARxCpYcqZSrey3+KfDu/8EpsPP9+s0xUu5Rn/aPE+0xrpS3bnq167PRSVbo8wqejP681dyX3Ni2NeW4Rz3tALtrEC2/+xsj2+HJjGvKYXbK3ywaK9qJUgrd+nK9zo+sRsVTgWw2j/XpOJdeH2IIDBhJBkIjn/jwVQtQPkQsSUj1filTm7VO8ZTRreOAtimExmp8Wi6Vrf/mMnywyOVPPOwixMieGamue8sRjnvLEY6Q/PwvTfzTPVsUUxJdEJt2ZVfN4gfpNlTuU3jKXlLvz76/WYOkOcFZg/PhRk5RWjuEwSIH/LqsAYi/HDVig6LZ23tolwO+LlhUoCKC2/bMhRJeTS8uLfO5W/zeJLjDbkL83eqbJYvjxnl7JIVQWa1VG7hSbFe6du7RBhZW5+3pAjHxu8hdXl9ig1+0TXjEXu+58UhsEUcqXlLi5bMvWZKIptWvhn8NAJqZ7y1ZoyFqL+iPYGd39BKdYfDLwkEavda8u2NpHE11PD5jWRe7Gv88TLbp39n52Pi95drrzv7zrb/ck5uHGGpPTj61qztSkWFFtbDp/EZR8sV+X74O/T7fGaQ1jWZC1sHX34Z3XSJLeHYvHufFVS0eVZBZj282al3A3jt405uOMbr1dgVc20z+B/73UHCnHE4h44EF78e6cypli+m1lbjsqfcgr/Kt6n4SCmhVtK6SoAPwJYD2ALpPZ+FNVGxQAFJeXiTLIGE7Q3Q56xhue9zL2Wrl2peYgGv/CPpe9VBVjNT1bz8tjJMlz50QpdGR+WYCU5IU7Xn1+vPCg89z45wQRVhC9vgosDBaeV427+Yi2mcQsJm9hCscEc9/piRbj8JatSaZO37Qfw20bfyXNEsCy78U71lEIpRWFpBUrLXSiX7zeQ5FozlmcrU/m6A4W6rL6+Ekq9rxnfqsWgCmzep/+hzv7L97N2XVut0cAnxhlP8yyBiq+93awtR/Hn5qPKayvZGXccPRW2BGNW2JJzEi63R7HQEkJUlluRkiSf895gm2feO4PVJtQSi5bb0a9m4uL3lvs+0AA2tzlCFFttEzwVLg/WHQgsP0CwbDhYiGEvLlAUpKHC46F4btZ2HDx+2uexu3O9yYX4NfGIpo787K1HhZPaidIKJcHertxipD88C2WV7qAsX/zTwRRpsZC99rHftmJNdiG2c4YL/jYr3B6f8z7fx4s5663LQ3UJuq76ZBVmrj6kO8fd323kBDJuTyP33JSPVqLL43/7vJ9YY9rPW3DJ++r51eOhlpWaxOKmjimntQmneGzLrZ6wC7eEkAZm/3x9n1L6JKW0C6W0B6X0WkppjS/s1P/Z+cL3RZupSrcHm+R6Wg5CgtbwVFqo6VUduOXLtRj8wj9Yue+EoilmsKLwIrdkI/bll4JSqhzvIETJ4sgzf0cuZq72Cshm5QsCYYtBZl0AeOzXrUKXFyuwzb1WYPhsWTb6PDMPV3FW+2BL79w5cwMufHdZUOeIhjVq3YETeHeh/8lRRPgTHmAWG+v2UFU9VqN+Kdc891aG5cQ3l2BsEC5ZweJ0EHR67G/FpZ/Aa4kwypbMj38m1H2yxFtqKUeziWYI+6MK7DdOnqnEB4v2CtcF9iw7bdNtzPD8XztwyfsrsOtY8Blk3R7qVybs1+buRk7RGWw4WBT0tXl25xXj4yX7cds3Uokds336Y7943WDZuPx82X4MfXGBSvBdmiUOf1m1/wT+2KQuuPHG/D2q0mH5xeV+CfD841Hpjh3LreKlQtn/FLO5Gr3llR6/vEuu+8zrYebxUJ2hwyraeXfFvuNKCaZoe7tYgfUrq1PLU1LhQttpf4X0eszb8rSmUgnfVf661dcEImG5XQdgrfx/PoDdkDLt5Mvv2YQIkbbwRy6VvoOQoDU85QKBjBFoPK4RS/cU6Gp0Roq5271uOvGajKdsIvlz81G/lAVuD+XKMhElDtfsDFXF3YQ1U2vBmi/34yZuIQhY4OFOvStXvbmzuv/29mfkN+yXvL9CF0oQKKc5y7WvDYEvw1txmXfR3J0rtrRqT8GuWen24H9rDpq6iofKeutye3DytPVNZ5yDqDaZhEC5EQ+lPssnsH7jy38YfUdkuS0ojX097JO/bcWLf+/EEoEw4OYs3uGkrNKNsa9lYrmBQGKVxbvzw1KSJJos31uApXu8/cLKY1nND2HGE79tRfcn58Blcd1WvB6CvrIa9uh4XXpNrsANRaeDoNzlxlOyV8vhQt+W3zpJ+rCZU2WVKoF9wHPzMfj5fwIqgcUEkVgQ0ryPrdSWxXvUz1eF22P6W973/UbFm02Ly0MtjxstiiehqDxO9LvNJ2bT4dGi0O9Xj8l7YLPxGMrwtepC2IVbSmlbSmk7APMBnE8pTaOUNgRwHgDjIDsbvxHtu0q4jauVODNfmBU57/io2LUk0Gte8+kqXPx+4G51oULrastPJKKaoUa4OJcVBwH2H5fcgkvKXfhVYx1+5s/t8Hio16UySGEs3EIy25jsPFassiqIJt1IxLoazfVuk4U1ljh5phLTft6s09Yyzvjh2l1c5kL6w7Pw64YcvCoQrkvLXX4vjuzoT5fux//9tAU/rNW7ozG0yoyTZyrx7J/bTetOinjkly3o9fRcyzX9tO60WiHN6DxMSSeyWBr1k2gzO/71AJU4EYQpNkS/hdWEKcGyL78Ue/NL8fSf230fbMJ1n63W1WauyqzefwJXfbwK13y6ShH8vUnOgj//D7Li26p3EHt+wiW4KRZGk2P4seggBI9yllwWAwsA/1tzSHgeUXI00dpYWuFG9yfn+GqyjPecbD8QC7KG1nJbdFotqFa4zN2SWfJCEW5ub2IVVvvXTCYOlZBWVunG8TP+rS8Ld+Zh8+Ein8eZ7R2O+6HQzCk6Y+iFKULrlsx3lV3nVk8kY24HU0oVez2l9G/YmY9Dimhe4CcgDw3eN9/ILc8Ms2seOnFaSdLCwxacw4X+X88Xf24+onL99YW2nic/Afuj3a1we5RNydack5j6+Rrls3s0sXyfLt2PzTknQzZphTMmg1KKLTlFyutz3lisxH0aXTYQK78/cUxGiyTrz1gKI/xnR66SAZTxzoI9mLn6EGauPiT0lvAnbvmA/Hx9tmw/3hG4RReXufweZyzZELMg+eNq/uqcXfhk6X6dQgeQfh+je/tJ3mxZHTva51bllkyNXbn+/dU6uD1UaLF0eahO4dDhkb9QKLAoeyjw8E+bdZvKWET0OLD+8ZW4J1jY75lgEhteEznGeS3lFkt/s98iGpYarbAUsvNqhhd/fgpg4a48nPf2Erg9VCWcOh3E0Npf6aZCt1GRK63VvjQS6vn2uxS3ZP2xpytcEfVE40MwAL0AVO7yBDyO3B5qmJzUiAvfWyZsh+q8IRpcN3+xFvcv8m/vOHXGGlzwTnDhTidK/ZvrC/zwwNC5JXP7ITvmVk8kV5MjhJDHCCHp8r9HARzx+a0aRlmlG8//tSMglxjR5KstoRJiz2FD3B6qCDjaySwrrwR9n5mHoyfPYMTLCzHi5YW67/tjEfWX/3y7QZW0SYt2sZ2/I1fVt7yrjj9WyCHP/6P8HqIMe1s0i7FT40YejMY8WCF57rZjGPf6IqErUvtH/sK7C9XCmaKlNWjzsBcXCN8PlCV7CvAsZ/kxum6oLOGh5KYv1uKFv3fi1q/WKmUUWOwWAdD/Gb1294zKLdn8/L5kkxKN5daKld9M0eDxUKHyyCO7sjFhRvQb3ff9RnR5fLbwvGwMm1kMvpCTwQFiK413g04Vy6SWf3bmYeTLC4VCXdHpSnR7Qm3RcXkoLvtghfBc3605hDfm7xF+ZsS6AydC4nbqD6Ie9VpuIyPcapURVYX1Bwuxcl/oy9yJ5ntCQifcst62ei6vW3KYLLfyebUb/sd/3YqtOaewv6BUtTY7iP85KUQ5Q8z2ROw3WJZVgPPfWSo8hh+1bH0sPF2pU9Jd/uEKDHw+fAk4p/28GWdN985NrK88BvNmucsdsKLC5aE4dtK38Mjvs1hFBSU0S3B8qGQ0FnO94+ipkIfLme0dwjEPMEorjBXaseAGH2tEUridAqARgF8g1attJL9nw/Hd6oP4aPE+oYXFF2x4P/7rVqUkDf9gUxq8W7JV3l6wB5d/uALfrzmE6z71JiJYd6AQt3y5FidKK0zjD/3VCgaDdmKId6gfiznbclVuYHy7ebdvX5RWuE3dyV6avVP12uEA3Fw/BDp/vTx7pyoZRCA89NNmZOWVqOIzGaJ7evL3bdJ4EzS6dYNkpb5yKPlk6X7TNgFiy22sCLpztuXivu+l8jXekkZAsUCBwi90vjabfIZgEXvySlTKD3EdYa33gvh9QMqsLFIe3f2/jehgELrA+G2jb32nWazXC397S3HFaWLlHZpsyWab+pyiM1iTHZqstKf8TKB2yfsrcPmHYmE5EMw2PmZyq9VM7Ze8vxzDXwpcWcUydmvDP6oKF7+3PCR1yN0eiqf/2G7qHSUqTxUo7He1qvgMm+WWm39FY7V9o9oAgAPHS1WKlsd/22Z5HWF5MyoEc8dPJnVZz3t7KSpcHlz9ySpszRGXS1QllOL6ssvjs7GOq0du9P1QMXP1IaXG+YDn5mNNtnTtK+Sxqf2dK1zmMbdm/LHpCDabJKf0tkmg5DQYQJsPFwW9T9Ey8c0leOnvnb4P9AOz+dCoWkYo0Bq81G7J/p/vyo9W4D/frvd9YBUlYqsJpfQEpfRuAMMppX0ppfdQSqOT0z6GYbLMsqwCv0umMMH1q5UH8NFiKcMnP6FtO3JKOLmHg+1HpIn8oZ82YzW3Sbzk/eVKCRqzmA4m3EZCma9d20UWm1KD2Ed/40fNlAtaS5LTQbzvEbWlK092UztT4caSPeoC61rey9yrKw8Tbs5UulF4ulIoZEYiPsTjodhx9BQyd+UJr22UJGfutmOWSlKEG0W4tfAA+Lbcmp/ji+XZqnFs5eehlGLSW0swc5V+MTdyUdZmKQ2UShPFF5/VWXvfhHg30m5KMektsSWGselQUeCN5GDKCY+HYsHOXJRVuvHtqoOmc8He/FLDz/xFZN2avfUotvrYnLoURZD5+Fl3oDCo8BH2e8aKW/Ke3GIctWCV0rLDR634nKIzKCgpxytzdurKywHAxkOF+GzZftwrZ+wWPddKzK3JMp65Kw+fL9tvfIAMexasOknxLv3hQFI4qd+rcHmwR04eWO7yBJzcrG6tBAD+h8NsO3IKr80zTwLIC+daxdsjJh5i4aLC5UG+RuinlOoUjlLMbWA/5ozl2QEbIIzW/wd+2BSWfcqGAOfxH9YeCqpOeKgxLQUUwJ5q5b4TqvJ+B4+f9stNOtaJ2GpCCBlKCNkOYIf8uhch5L1IXb+qwIwNmw+fxBO/bTU/WINoePOD/onfthkmqAk1wQowzC053PFegLW2njVdnPtMZMk0Qxtby6NN1uXx6N3KGSwr36O/bMG1n66OWD1Rf35Vl9sj3MAHErftL2cq3Zj45hLcwMU1A5ICQetGyO+XbvlqHca+nhny9vgTa7Vy33Flk2fFJXSPjwyx7AxFZ8TxQFl5JbiW866wYhXyUGnjJ7Iqh1t14fJ4sHBnHtIfnoXjJeXYl++1PPNN18XcEu9vXVLm0pU30hKqLMFszv161QHcOGMtxr62CI/8sgV/bz2mOzYc7mWiDf2/v16P8972Cvei60YqPp25igZjuQ1lv43/72IMecF/S/Tr83abfj7sxQXo/+x8vLtwL578fRsqXNL8uO3ISRwvKVeeeabEFHlksN+i0u0xTMh2w+drlAzCZihuq366JYc63pe/T1GoAAvhqXR7Ah6LiuU2gFKGOT4UN6JSQAxRX4VbufuMIDGbyKjh9tCAFRXXDG5tGNbhC6PQrGgmReINSZRS3PPdBjz442ZVnfAzFVJWd1EsdyQw27sH80ymPzwLecVlGPnKQr8SXMU6kVSV/hfAOQCOAwCldBOAkRG8fpXAyS3w231ogrVoB/jCXXl4L1MdC+mPGy1jYLpUjrhFvVqWvxNoDTSG13Ibvp3VqTJ1DAjDn0uGMvPvRo2GUZuRkF9LmMslE2r9FbL9RVuuwQrBJKwQYWax0/K9QfZet4fi4veWY6dJnUh/rmOVQ35Ytqb/vk1RCoRk0y4P6EMn9G1IFFjLek7XZwnVlQIyEWGttjngeC83xXdrJIvxF8uzMea1RXhPEMZxQpPIacfRYry9QDrOyqVDJdQxyw6zpjDljiivQjj2d5Wu4CwsZnNwKOo2VypuydY7fMfRU6qyUKJ56UjRGUz/fZtfcxY/dhfszDU5UvRd68eernCh02N/4+Yv12LSW0txPqdocHkoDp04bWq5ve2b9ej0mOTiv3r/CXy0eC/+2nJU/wULWE9Go05QFCoUxRTM15dg5uU4E7dkXyT4ULqoEkppBD5R3wYiYPvDMkGSLZEiL6+4POD4abcncGGU/wn4ZIlWhuHyrAK88PcOHAmxgvypP7ZxbfLgV0F4zM5jp0LqUeMvZjG3V3+ySlcm7+TpSstjLbsg+t5qoSaifkCUUu2O0z+/2xpAMEk1tJPDVI3VCtA/IFumn+3zvInx0jDxx20s0BpoDKtJRpbsyRdmXbXCmFczAUDnnufPL3DaZMIJlkqPRxHyCdQLgbKwhLk8AyC5q7Dza4XV/5pYK46eLFOSSEQaXnDgE3VFSzus9UC4acYaXPzeMuFzQqm3naFor9nYSBXUfRRtIs0ymmoJd1y/y0PRukEyACj1WbWKIUAqMcPDZ7L8lIvPNrxOiJQcrO9qJTg1H0j/bT9yCrM2H8U1n6wKS2ZlKxt6ZqX+35qDihuoknzNZEIMRd3mQGJuJ765BJd84LWqiMbsAz9swozl2X7FTp/ilIR/bPJXWBSPl7GvZeLu7zao3mN9u2CnFDZx5GSZ8kxtOlSEES8vxFFB0kGRouHyD1fg+b924vZv/IufCzihVIgfbyYPZuWVYG+esfBQyVUb8BeWR4OvZ2uVn33sL3i3ZK2XhKivRNnvRRw6cTqgEBlRF90v53LgefL3bQH3p8vt8TuZF4Mfb3z/WBmHV32yCh8u2oe7Zm4wPKbL4+Z5HUTs9FG+8NjJMr/K74UDXcyt5vNeT8/Vvb7DYkxtrJdGDIRICreHCCFDAVBCSDwh5AHILso20gb0x3WHVQ+WKNGN2WY3EAHHittvUry0KfNHs758b3BZ45Rakz7ad+2nqw1dfSvdHizfW4DSchd+F8T7sazHl2oynQbqjpis3bwGidtDleyv5S4Pej89T/mMz6YLhFabTinFpkNFoJRi57FTGPnKQmXTp41DfPMf40ywl3+4IiIuyLzShWVp5l28n/7Tq5UVPT8/rjuMXzYYJxUJBXzNVEop/tmZh/UHizDlY30iGgrKuSYGj6jU1ujOjTD33pEBu4KazUO+4qyD3Ry73B6l3WzBT4p3qpK3hIJAN29aHITg3YVZyMpVu4+zEXHuW0twx7frsTSrAJcEWdd77rZjmLddbXG0EmfI1o7/+2kLznljMQA+qZnU0k2HisJSykSJueXGIqUUB457BZ05244h/eFZqvkki3PHF2XXD0Q5wVs//I0/MxrXe/NLdYnSrCitdufqvUscIdyxMUW3mXepx+NNQsnNYEFfe3duseIKyls3mUcGD+9SHKjiLKybd+7cWkuZ6Hf2FQ7BGPHyQox8ZaHfzRFtmbRzAiPLR0iLET+sOxyQogBQKz8/XLRP+dufcjZrDxQaPp/a8C4rqDJea36zE6UVGPzCP7jq41V+nzeU8MJt0ekKS+uo0e+upRrKthEVbv8N4A4ALQDkAOgtv7YB8PfWY3jgh014T1NSRYvZRiWQad+K2y9zXayXnBDAFQKDTTBMuO3x5Bzco9F+++L1ebtx1cercNF7y3DXzA2WkwMQAE3rJGF4hzS/rnfFgFZ+He8Ll5vih3VioUubyTRQgUGkEPlt4xFMfncZ/tx8VKc5vuWrdYoQEUi5qnDAC47r5QXXSMvKJ1DgeW7WzrBav/lNKb92soyWPB7q/T1DIV+JarA2SElEpyapuozCRmjbYSY4iDTfLAFaKKh0e53p2O+cFO8MWjDUEipNvYNIFk6tBUikRMu2YKmZ9vNm3DVzA9Yd0Fskb/lqHf715VrVe+bCrb4N7LeeJT8rbA6e/O4yTHrbOAlXoM+PqM7tT+tzMOqVTKyQlaQ/yGEG23JOCq9jNh7NRviyrAIcOnEaZyrc+L/Fp7Fsr9el06oQwvDn7q0ItyLLbajiwHkPATOhYsiL/6D7k3PwxfJsLuY2uGuXlrtw9n8X4x45cRbfFyLBhCmyKt2eqMZlGjFr81FlTFoRbsPtlhwXSg1IiDlRWoGXOW+P/873en6JwmbMsJpR3soTwz9Xbs1cUhhib5omdRIVzyN/4Nej3k/PMy07FMxzcvmHKxTvnapMJLMlF1BKr6aUNqGUNqaUXkMpDV9RqCpEpdujuBRps9wxPl+2H4t254c827GR2+8LF/dU/h7ZqRFuz2iPJ87rFtJrm8E2PIWnK+H2UJSUu4RxEGbsll1NdssWk8LSCizcmWf2FQm5fp4oHtGM2ol6F89gMJugmDsr+/X+DjDeSrSvYS46+wvELmLMFTkc5Xz8xUHEY5jfQPAeEEZulFIN6PBtnPgNhy8hwOOh2CArYsIlcLO13OpGSGsx8bcOtUjrHeg+nY9rY79z9vHoxUL5wkiB6Ov2T56uFGreZ64+hN83HcEl71vb3Fmx3L42d7fuN54he40QQhRFltH6JF1H+n5BSTnGvJaJ1+fuUrmC+2ofr2hh4z8rT73JIoQIn1PRPVqJJ7z6k1UY8fJC7MkrRu5pqkrGU+mWsslaDbER1pk3mFNEihPt90X3FKocFHx4UnmlG+8s2COszpB7qhxnKt148vdtigt1sFMSe2ZX7pe2f7wybNYW/RrPlJdlle6ABY1QKQWMuPoTaX7TKkREij5fbskeSn3WuV6wM9fQ2yiWXUz7PjNPGEISCNqwEyOKzlSi+xOzDTMxHzpxWtXfWsvtrV+tC7yRAij1P2s3oM/vYuYVF0xt39X7T+C5v6q+U23YhVtCyNuEkLeM/oX7+lWBY5yGlhdet+ScxFo5XuipP7bj+s9W46sVBwzP4/JQ/LbRv/hTI7ff7s3rKH/XSYrDQxO6oLkfCaUCxeX24MsV2TjDLb5vzDfPQqll/cFCKSGH/JpZBMpdHktusgTSBprFGlsl1HUazQQIbzyc9Pt9YiGGUIRon/LJEslViEC8KViaVYBKt8ew5Euo6dqsjuFnHmqtXI4v3B4almQ+DKeB5RYAhnVoqHq9r6BUseDtOGpNg3rt4DZ+tYftuaxmI9dad/y13PKKkkCTmCjX5jqQCTqhdkkOJUYba1+b0Fu/Xot/yTXBfbHjuBuLdotLglmxQO7KLTacb85UuJBrwR25TN60/731GPbll+KtBVm4/RvfG8MKQbZk5RcWdBLvifDNqgPYm18S1GYO4D0lvGOrwuXBf+ftRodH/1YJfusOnMCcbYJM15rXLrfHMGzjjCBXg/b7vNsna1aokpzxQvfXKw/i1bm7VS6iIpjywsrzuyb7BH7bmIOi0xW6WqeKBViQV0DoUiof/8GifaaJAM3w1W3+JMsUwcKwtMaHoyfLdEoD/h6f+mObLm/Fj7sr0c9H1tobZ6zFvf/Tx9EC0c06HA3cHoole/KFibQAyfW6tMKNjxaLvSJHvLxQ5TGj7T9/XbeHtGsofL9Xq3oApOc8kPnqtEkpIC3+nl87zVaHMRQJy+1aAOtM/tUo3B51LBFgnpRoyscrVVolswQe3646iLtlVx+rEELQvlEKAKBRaqLyfs8WdZW/mbaYj7m9cVhbv65jlf+tPYQnftumyvJsJSHID2sPKYvlxe8tx4iXFyqa8FpyzHBZpRtptRNV3xPVeiSEwOWmSIrzL4Y21ApTrXsMj8vjQUm5y3BT/8APm/DAD+LFj4dt5nirgZVYQ5eb4icDl+lQwSyyg9pK2brbpqWYHmfEagvjRxJuwzeh86fepdmgOU2spz+tt9bHumRFPvBabq2NWu1iabZ4+ho+2q/+vrcCl7y/XFj7U4TL7S1hEWhcbJKfiqtgmL9DHPfkywq36ZA0N/GWQ6NQgJfWlOH6z1YLP9MmW7rta/Gya+QuWXi6UpWN3ei3d2nyAABi11qj9iU4HaCUYmvOSeX31fbQidJyDHjOu/F/9JetuODtpUEn//LOg3y7PPhGruPMW00ueX8Fbv1qHb5ddRDpD89S3tdOH1+vPGAo3AaaiDBUUxR/HjamFu/J181NgXLZBytw93cbcfd3GzHt5y3Yk1uMU2WVqr0Py+PgM45W/jiYygS+FEl1a8UHfG7G6/N2C5UWj/2qLunIPz+fL8vWjZG1uf7dZ3ZBqWr9Dodgcm7PpiE/Z6ho/8hfuPbT1Yr13IhEwX5O6y3RrVmdgEscMfq1qS98f/r53eRrBuaaXuqjjGfzuknK39o5/+TpSkNPPNYmnmCVhbFA2Fd4SukXZv/Cff1Y45esSox6JRNrsqX0/ZRS0/pVdWsl+NTiBcv/bh2CaRO7YP69o5T3CCFoJwsTzLpTOzEONw1vi1l3DQ9b7UO2iVrAuQ/zc43bQ5F9kiXC8D6RD/64Gf/TlH9hH7ONbLnLo5u4zhPEkLncHpRVuoWWW96ircVsAb1uiH+WNcB84+5yU3y0WK1pP3mmEmWVbrjcHvy47jB+tCB8njpTifcys4TXMrufSo8HX6009iIIluuGtEGHxrUBeJUqLLGZllBZbvlNwebDRbj+s9XCzUog8N17/jvqMReK7ML+uqIxhY9VN8dyjUVFu4EqKXcpG1dfSgLthuLnPZVYd6AQfZ6ZZ/ANNZsPFymufZUBxq+Fs8SYVVbtP2Fan5q5rvKWV6tx7rzQxW9Ujp48I6yvq70OADSTN0u9W9VTzQ/Tf98GEcxllO9aKwoj3i351405OO/tpZi9VQqzYL8TO03eKb27ZmmF23RDesVH+qRtWlgr+ebyG1DRbXy+TO0toz1EFOvOOChI8uaLQydOCxMjBgLvicF+o3UHCpVkYmY88+d2LN0jtpJpYd4EhBBc/N5yjHolUzXOyirdPpVhoUjsJkrOyROKMNW3/tkjfLZY/CJ7Lnzdj6ilJ0orsL+gFJ8s2adya16wMxcZr2birX+8Jbla1A+9h12dJP+E/5ZhaIMVzNbS5XsLdGuP9rmmCEw5kNG5kfL31GHpwmO8nik0oPBCXwoxQgjez9yLL1dk64TTi99fhtGvZhp6dvqTU6OqEDH1NSGkESHkVULIX4SQBexfpK4fK2QVSQP0sg+k9P2HC8+YbqDHd2sc8jasmDZG9TqtdiJuHdUedZM1E5g8yzLhlhCCx8/rhu7N64bVhVMLv0F6d2EWpq8ow6ZDRfhmlVq40rrvsW8xoeho0RlLD620WaIqYYpNXk3rJBl9DQPSG6Bl/Vr45uZBmDosHXeP7ah8Fshm2mzD5vJQnNZsdHs9NReT31mm0mAeLlRvorTNeHbWDrw8e5fQzQ6ALjkNwx8XmUBISYxTFpk4eVFgHgZaQpHYyk2pasN3//ebsGh3Pro+MVto3fcXs01+oBbj+tzz2rFxql/fZZZeqwmltHFi2rH59oIsjHolE4Bv6xJ/vx8uMk+gJ+LZWTvw+bJsuV2BCbfRF22BmasPYuxri3we9+LfO5W/A9kUMQVAdkEphrygXnL5+UBrTTirpeS907xeLdVvtoLLhM9b/se+tghbDp/El8u98zI/TCrdHhSX6QU+NrYchHjzI8iCoa4ElfgWUSGo5XvchyeAOoO33uW2wuXxJuwTXFn73Go3zv5agHw9N2aKEKM2AMCVH61Az+lz8H7mXsULwKMSbv1qJnJPleOaT/VWsuV7C1BaKT6Zg3jdOwc9/4/y/oXvLlPqzRsRiRIsoVJ2iSxeSggRe+1jDyJqyqiXF2L0q5l4dtYOvMslHb1xhrQ+84mZlhgoHvxNkMnz8MQufh0fKbdWrWHILDla4elKzNmm9qLRPsMeDw1ImTK2axPlb37fuOPpCVj72Dj8/p9hinBLKdC/TQO/ryHqU60H0kuzd+KJ37bp5nJWn5d5dmpLzmnnqt25xXh93u6wJtkMN5FMq/YNpNI/bQE8BSAbgL4QazUnOU4/c5lpZMJRR7VZXf+0aqK4vHC6cJpda7NcszT3VJku861Wa8ceTDapvLUgyy93C760D0tqwW8uB6Sr3U9qJ8Vh6f+NwbAOaXjy/O64d3wn5bNA1k63h6K/gYuLy0OVGDeeXbnFWMUlThj+0kLV59pm/CJncBUpWIpNhMabvgjvo3tbRntFA80SdRnFLjasHXwWb77kBaBeJDdzdXJ3HD2Ft0zKHxmeP4TCbecmkiDLksJcM7i1ImRc0Ku5pXMk+Wu51SyWorqigOT+9LuPxG+smykFXuAEt0BgG5EEP+Pdw51gJpTM4pLFBaJRZ3OWL2FP+xuza81cfVAdGiJ33dxtx3Qbwfk7crGLy7SZU3RGieG/7et16Dl9ri5+l3kFUKqfn7SlzoweFZEg6SvhDL8WUKr+HwAq3FRpwfESfd/prD5htH643BQ3COrWaxEpe1buO4HiMhdemr1T8W7yCAT7YCguq8RVH6/COxvKhK7NRsLOzmPFhsJYKPH1uA9tH7jgx6P1cAG8987mWpfHgz82HcFfBkkgRTMZvxYfOxlYeb1WDZKREmC5wlQTy+3iB0fr3gtU6egv4zTKQV9CtTZrv/bogpLygFxyG3HhbnzW91oJTqTVTsRZLespimQK4P1r+qK3HIMbDM9f5E38ynsf8Pcw9XN9uApfVhLQlwM7VebCW//sQXHoy65HjEgKtw0ppZ8CqKSULqKU3ghgjK8vVTdECXXNJgJtfbxI0EvW2DOcgpUhXMKtaA3i5yu+9uIqTfa746UVqmLloiQcRptyEXwmWbYZ5hNPXNSnJQAgNTEOA9LrK260PE+e3w0/3TbEL80wc8Ndm12ISoPJ2uX2BKT4MNrUi65ilmBk25FTfl/7zSt746EJnX0ed/Wg1qiTFI83r+iDd6/qq7g4GW3Cvr15MC7r19Lv9vC4PBT9Ofd/fmPMZ82++L3leH3ebp8xMy63B2uzT2DdgUJQSk2tMv4oijMfyMBFfVsA8C7kabUTFddsq88lU9xY9ejWxr0bbdx7PT1XJdyIYK6V/tQ19IW/VjLRbX98Xf/QNCaMaDdeGw8V6bTw+u9I/eyrDrfWOs/PPd+u8iYFYnPZLYIsoqK17NlZUubN+TukUJNBz/+Dn9cfxlN/bEP6w7NwuFDarIvGrt5yqz/G6SC6eV07VzBhrqzSjR/WHkKFy6NSVCoKF+47FS63cv2Jby7RlcfQWW41bfNnrRF9n+e/FpMq8sKVyEWTKTFdBoo8dsw7C/b43ORf/sEKDHpemjOZdTWnxCOM/TZLBBVMfN+D5/heT6yeh1+/H5vUFZf3939NESV/c3sosgtKlT53eSjunLlBqZChxddWIdDYY6cDmH//qIC+a7RO1Ip3onVDfVmbUIXz+OKIJqbfd0iM+nXHR/9WvT5eWoHLLGah562m53T3Wm6N8ljEO5jlliI1KR7dTELcrMLHivOu9/zeeOEucaJBHqP10xOCmtbRIpLCLfM9OUoImUQI6QPAf9t8FUc0hoINYA8lK6eNxcxbBqvesxLTOKJjcJpPpVC84FJ86ng2eR0TZO+csTxblYCHbRZ4wdIsvlkLb7Fmfw7jXHumDGyFPc9NxJanzsEP/x4qTFgwdVhb9GvTwK8YZWZp/mrlAUMhyuWhwtINvnB7qC5WDAg87rOWQRysiMm9WyAtJdHnceznqpscj0lnNUN6Q8kd2UjT2apBMi7s08JyO4wwckfiY6/ZJq7S7UFecRnmZFfqNtJL9uTjsg9X4NIPVuCS95ej7bS/TIVbfywn6WkpyhI2ZWAr3Dy8LW4Z2U4ZX1aF23FdpXAHM6ULn0Rk5T61cOtvKSARbgub2vUHC3Hw+Gnf5ZP8Hb6C2x7ULvaXI61b8oXvLsOVPmJKKwWuqMJzc3PNsqwCVSIrvsxZVl6J4e9htWzOfd9vUlzLVyklYaBKJAh4N2yK27Dgsg6iF5C045UJcJm78vDgj5vx2rxdKgUNUxSpsiW7PaphcuRkmco1WDvmgk7KYvLzGCXm0q4BvILitXn65JNM0cDfu/Y+3lqwB6/O3Y2ffSSzW519ArlyDHRZhRw37SBCT687Z24wPI/VfvrzzuG693q1rGfpu748NZwOolJcOwjBpf38r1svChtweygyXs1UXvt0S9a8Pqqx1PLJ3fzFHyX7zH9594F8//HJRrWW0ren9AEAtDMIIbJKIHVgRe3R8sWKbJ8Z3M081njYvgRQ94/RWOMtt4B5wlDG/Zz3n4h6XGgS/+xP+3mLz3PzGPVbVc4rFUnh9llCSF0A9wN4AMAnAO6N4PVjAu149tDwZmk1Yt69I/HOVX107zetm4TkBLV5WbRYaetjdm9eV3eMP1iNc2Bdpc1AKEK0/w7E2nlF/1aKwOXQTGJWy//4E8fBu7WUlIvjkY6XVASsHX3qj+269wJ1I0pJ9M/NyUp5JW3yj16t6mH+fSNx0/C2aFJHLByHusYwj0hpUeHy4KJ3l2PmzgocPVmGXzfk4LeNOTheUo5rP12tKuMB+HJLDqxdyQlxeOy8bkhOiFO8K9gilZzgxNc3DTL8bgc5Rpdfhy/pq7ZUmLn6hsLl0sopLn5vOUa+shCnzgQfV80j2n6IPFSiCT/vMuFO1O++yqMw4cHXxu8IVybt6k9WKeVNAP3zZZTYyEhQMVPEsWat2Ccoe0+AffklivVBdA8OObs9z5SP1QK/m7OaAVJyJr6ty/dKrrFGCaUAqSQeHyOtbQv/3Z/WHQ5rwj1Gl8dnq17z8/iszca1z3mFunZuYiXerFqen/pjG07I3gNOoq66YAWrmWN7tNDvMUKRCIrB94PTQXx6OlhF7+6vv9+vubGiFY60cfKBrvsegdu/Ge0biwXUkZ3SMP8+yQKstfqf36s5sl+cZJqbxAqB5oj0pXPdl1+Kv7aI84v4y3+v6G342auX9cLce0eq3lOEW7nLjBTEfPLRNB/PUu1Er3CbK0i2Z5UvDUqMRsi7PCyEb0eogVL6p/znSQB6J/0agna9cHloVDKTdWySio5NzJPQHC2StMWizHfxmkQ0CRYT0xjxw7pDuHpQG59ZDY1qOYpgllt+E+IrnXrrBslKJktKpYQACXEOTJGtI/VTAisZYLQg/XbHMEx+d5nqvVrxThTJjg65p8pRK96pS6rx0uydQSWI0BKIFRiArAjRu2I9fl43PPOnXojmBcW2aSnC9PQiGYMJY/PvG4We0+cq7zMBoEmQi6kZIhmvwu2tmbxq/3Gl5mBng2fKTLj1N/mG6GiWDK5xahKyX5yk+3z+faMw7nV98iJ+IzW6SyOV54OZx8aM5Xrrv7+4/bD+Tp0hLnMTKKJ7s1rzNxzUS45HkSa7Lj8uKt0UCXEkIBdOJjwIM6Jzf//7a7GbJKAfc3sNaj8aKfGe/E2cYRnwClObOA8dvn28FVZ0/w5CfHoSsL7kv8///faCLN13PFQ9F2nHhy7zKtdL91sow6YlmFI3DK1ruZFHDv876RJhuVndYWvPw+fLsnFIXjOdDv+8eQD/yqLMmDoAeafKcaqsEkPaN7RsxbRyJ/wc7XCQkClM9cn49L/JY79uxTVyrXJf09DWI4ElOKSU+pVrINEp/h3vG99ZuSejtSvYHW2gCb4i6QXZIMU418elgjAp3i0ZMO67esne8/oyivj7rAHqTPoMo321qOx0VSGS2ZK/IITU417XJ4R8FqnrxwJnKtzYkKee6MJdX1PL0PbiAtMi3r+mL6YMbCVMQKXNshpsgpZHf/FtifUXNi/wrkK+svxqM+/WSnDC6SA4XippxfxNxsUwsoz2Erja8tn2KlweQ014KCfyQF2djLTbfGp8Hhan0qxuEhY+kKG8z28czUaSNrEF0xA3rRs+4ZYNnze4uDe+NiGfbMYo3tRsjQpFQpch7Rriv1f0wiPndhV+biS4sXdvGt5Wt6EwUzQtyxJY2fzEHzltvcYSbgWzeDzRnWnvf82j4/wu4fXmlb39Op4xjsu2KWLkywuR/vAsPGlQhseMSjdF/2fn4bpPA1cQaAWQrQYx999wsbk82jJtVnEQoprnRNZEp4P4LAnFLEz8fewxENB5+GeAt2Tz52QE+xiLYpj9pYzbjR4vrUC7R/7SHXO48DQu+8AbV6i1ZLENtVn9bS0snjoQHbc/GcAzOjfG5QNa4eYR7dC9eV3LCikzJQWD91RxEoKUEAm32rmfKXOMOHDKvD/K/JQ4pgxsDUDaa/qjv+M9yHicDuIzgV/Qa1qA28lQ5nHwhdUa8QylrJn8mhdc+VPxsby+QnfCXa89FGW4okUk3ZLPopQWsReU0kIAer/YasxnglhHl5tGzK89wenAt/8a7PtAmYzOjfHCxWcJP9O6JfvzCHx6fYQSt8iN4pNs+HJLrsMF6POa+Dev7IOrB7VGmwBjQfxRYGg15o054ZZZBrs0TQ1pun1f5RiMqKctHyWjnfjZS2a51SpH9j5/ruVrfnvzIFzctwUm9miKD67p50drA4NZGN+Y7xVo+QQ7Vly6zRb7TYf908SLllRCCC7q01Ip8cNY9vAYrH50rKHLLVtwRcqIcHvpvjQ7uEzJvhjU1jiGVqSM0+5V0monoIef4RZGtZgZax4dJ3y/a7M6+OZmYzdylmMgkERuZZVuFJRUBGUZ1Aq3fB3ycEKI2hVbZLktKXep+uUnQX1vZsGskM/115ZjmGoh+zA/TF7UZPbW9gnbCBaUBO4eGCz8XGSksMyQS3YZsUq2lPu7eQcCk0mCSShl1cLHH8Zntv3qpoF496q+ANTJeZyO0IW6aJNMmYVUaa28qSFoA4uR9VDz/mqYkqBaB7T7kEv6tsR7V0t9xcrz3Z7RXniuYHcmgS49kUxfE+dnhn6mLGBx4izm9pzuTTD33lHKcfHc3rpP6/qm56xvYj0OBVXZchsxt2QADkJIfVmoBSGkQYSvH3VE7jduDw1I25RWOwEFgvIEZoTS7U7nsmTxHlo3SMbYrk0wpktj4QYpVBvqxDiHIlDyC4ZRTdS3pvTBXTM3qDSSvAttjxZ18RyXdt1f/BFEtRYzvtTNH3cOx3WfrUJBSQXWZBcG3B4touLzVmhuYMnWLqLsNYu5TY43fvR9eQEM7ZCGoSF0yfbFd2sO4ZzuTQ0/L7fg0v3zBnHx9EBgi6SV8jcsSQpzG9TC1lECotPSxlYEqv+w+a578zo6oVAYc+sgGNahoWKVJkSfHKdfm/q4bkgbJMY58MLfO3HguLpffQm3Rq6eTgL0bOmfIG0Vszqhc7fnGn7Go910RwpCgKe58AYjbxXek0LkEszGtj8usL4o1LiRrzsgzcdWhOZwYWUu8mWNYeEWgewXWtXx317ib1ZpHl9NHJjeAKuzT2gSaHn/HpDeQHlmeXdQB69xbHQAAECbSURBVCGoleDEnHtG4nhJOXKLy5TQEy2B7MWMKNEoJOomx1tOcGQEm3M8Hmoq3M66awRW7T+OTDm+Xfv7v3Z5L9VrUfgLI1i9e6BuyZGcp6y67TNqJTjxy+1DlazcbC67pG9LVaZupvi/fkgbRTHRrVkdbD+qV2xazfkSKFVZuI2k5fY1ACsIIc8QQp4FsBzAyxG8ftR5U1AfM3NXnqWsoVp+uX2Y398JpXCr1Vpp57IHzhZneWMPrijWMpRQ6m0Tr802irll5V54i+LUYekhbU+g8BO9U85GmWXBpc4f8osDszbwlm4ebUwjG3vMgqm1MMYymbvydWWneH5a71tw/dbAXZPRqoEkhF7Y23ed2qsGtcbtGe1x+2ix1lwE/+zzGRjZ2PJQqouBjXMSbH/6HFV2zKqEd8zpP9PunWZMHQBCCL65We3ZovUwmPmvwZjcuwUm9GiGfoIa1L5ioIy0/Q4HQZ2keF0ZtlAQaDw9j5mAHE60smyggtDvG4+guKzSbythoY8yS1ryTpVhS05gMZGhIJT1Rf3dvANSqIG/csmB44HvBXyNhhk3DsAtI9vhqQu6C7/DCwf8fMre79w0FUM7pCll/0S8H0LvoVJN2FQovGzZHOahFMRgx9+8bhKa1k3SJcwMFKtuyX1b1xO+H+ilQ6m88oXWe9EKfVrXV0KrmJKJ/T5vXtkbz1zYQxl7FW4Kh4Ngw+PjdRVMAKBHC6mU0IsXB2508YXtlmwBSumXAC4GkAvgGICLKaVfRer6scpr83ZbyhqqJRCNTSiF20v6tlQeLkA/CbcycN+ND2V6QxMq3B7FSssv+Kcr3KidGIcxXRqrjhdZXHxZYfyBt9z6iq/T1jvkj3eQwLWa4eCawa0tJTXQjj1mUVw5bSxWThur+izQ26trIGiHArNyKzlFZww/s0p6wxRkvzjJUu27xDgnHprQRZfV3Ay+/+8c21H3uYdSneAQ73QgOSEuqpv1YNDGOPFord5GCclGdWqEtmkp+PPO4dj05NmqOLTnLuyJb24ehJcv8YZu+BRufczB4UhqFYqak8Fk4gwGrVdToC6sT/+5HZ8vy9ZtfpvXTTL9zfyNbxz4/D/o1iz4+pWBEoqkVIzv1vgfJx2IbBGM1dOXR5SDEDxyblcMSJdCFBKcDpXgxT9vjVOTcHY3aa31J5bRqERdIGhLHIbCEulVYBrvHdi8Fqr5h39s+dwaWjoZJGAMdI/jT/x2INwysh0A4N5xnQJy2+epL3sKpMjr+OTeLXDt4DaKUokldqufkqDa21w3pA3WPjYOv90hlca6cmBr3DS8bVBtMcK23FqAENIewF5K6TsAtgIYxyeYqslYqTE6WFODMd5JMP++kQZHiwlEE2tEo9RE/HnnCOW1ViAz2jBoLXg8K/YeR16AFkQRTOvOL4BFpytQK8Gpq8vLLLfhUlTxrlAXCKxz6YJC6AzeLVnkKhkJtGViGB0ap2LHMxN8fp8tVn1b18f087vheVnb2FTWGPP4yphtxLz7RuLPO4djy/SzA/p+LBCufBhGewVeANRuFJkCLZRZuSMJu2fRXHPziHaq1/wz9dCEzkrJqXrJCVj4QAZ6tKirU57USnBiWIc0XD6gFfee+ZJqpJRkbpPheLZ9ZYiPZbSCeXkQuy2nQ59tOinBGfKEjgPSzePkwkmgmXRFMPdUf1if57aUqCtU+Ko0weY3h4PggbM74bf/DDOdY5lwZJRMSUQoXUMv/3CF6rXWkmuVj6/z5jVhfeCm1NCiekHvFqpjg4XtB1OT4tA2zbjmbUpiHG4Ymq57P9B8IsG4uPMY5RLh52ezagJWeGpydzxzYQ8MbKvd20vjychq+vh53ZBWO1HVlnDtCRsmxY4hxV8i6Zb8EwA3IaQDgA8BtALwbQSvH7N8snSf6ee9WuqzAsbHOdC6ge9C2V2apuK5i3oAiKzFz8jtlBluRY/tlI9X4qPF5n3hDyJrQ9HpSiQnOHVZd+OdxkJ3KGBnvXVkO5x/VjPVZxufGI+fbhvqPVbThNQktYUuGpZbs8yzIuro2iz9TwjBDcPaCq2sTCuqLVpvlcapSejRoi5Sk+Kx42nfAncsEe4kj8YJpdj1qa7+Iltk+Y2Slo+uDX9Cr0DhlSQfX9cfP902FG3TUnDryHa4cXhbrH7U6zHAZ0a9PaMDVj0iTvzkC1FNZB6jTQjbzIXSW4RdT1tiqCqhzQ59Ogj36G1HTmLhLnWeh1rxzpA/exU+NtgX92kR2gtyrAthHoZACTTEJRC0QtDAdLWgwD9v/xnTEV2b1TFVZjDLfoJBGZxw8sLfO3TvBRIOUCveifHdeG8v471NveR4bHribNwje/Ow/hrXtbHuWH9glzJL+HjX2I64b3wntBZ4+QUaBhFMcjIeIy+wUNZCr5MUj2sHt9G5f7PQFaN7EVmMw7UnTK9bdcLHtERSuPVQSl2QXJPfoZQ+CKCZj+/UCKy4fGmtWQlOh6W07rPvGYlRnaQMeMG6UZihnTd9FUCPYMZ2FcdLK1Ar3qkTGP0pexAIzDrfP72BbjKrl5ygcjHtr9H8awXxSJaOYvhr9U9NiseSh0Yrr61oFu/I6ICGKQm41s/yKyKsxPTyC7g/JbLCAdN0h+uXNep/xWXNo9cUs9rVor5s3SAZ7dJScLYg0VZG50Yh9RIJBeO7NUG/NvWx8IEMTJPLJTVOTVI8OJqHqJRUoMIp6/sUP1zNrdAuLUWXrbUqUxaEi/VfW45ha446KUuyieW2XSNj5fGUga0MP/MV99cywIz7VjhgkDiuusInGHMQ4Pt/D1F9Lpr2zOZYRbj1w3IbKj5cFBrFvlbOYX3g9lCkJsXj2Qt7eI+FlLSKWSH5Y4PByhblvvGdkJIYJ/yNAs0TUBxg1Qct9QTC7UuX9PSrlFKgsIoYwzQeU1/fNAhXDWotjIUWOQ+8fKm40klNIZJPcCUhZAqA6wD8Kb8XviC56gQhuoc93umwHPDPJipnGDec2tgoXxaMaFIrQS/cMsGfbXRYTGioYOc18mDiZeunLuiB/3EJBLQlCSId4x/nIIgXLPYbnxhv+j3e3diKZrFucjzWPT4eQ9tHxg2Wj40Ld9ZBq7DHqGeLuvjrrhHY+/y5aFk/+LFoNFcQ4h332g1NkomC4OCJ09hnkBSOIHD3MK2Llr/w4QZet2Tj4z++rj82PXF20HW6GVY2xczlmYcl86qdFFrhtmX9WliTbZwMraoR6sRWLerVUubmJM1wN4vFNctUXuYjTjKY2pQvXdIT/QWJzBhWsiVXBdJqWytxwic0FK0xoufaLEEec0tO9FO43fD4eEwwyagPAC9c3BOPTRLXIQ8l2jtmgiszBF4zuA3+NUKK0dT2T8fGkmDFlJbz7h2J+feNgr8wZa2VaVX0G7HwgxuGpgvL1Blxz3cbLR9rhihR5hUDWofk3L7o3DQV6x8fjysHqBVowzum4XmDih0iizJfQrImEskd3VQAQwA8RyndTwhpC6DGJ5SyAoFeeHQ6iKkWae1j47D2Mcm1TsnKFkbr5MiO6glIm2U02kzq6XUSqBXvRB2NNTROcUsGtj99Dv653/8J3Qy21zfaRPOTU0KcA4PaNcQzk7vjoj4tdMlurMRoh5J4p0O4meNLJzD4RF1xIYxPCYSHJhi7Up93VjPcPU6c0TsasMebbQqGdmiIbs3rwOkgIfFyMLLcsmHnoV6B9NrBbXDD0HRVLJTXrdz3tYIRFIP1Ljm/lzeeXRFuTWw1SfFO1DWIrwoE0ab4Oo0ngqjWOOt7K7U1tfkXzOjXpn7ElWHhhAm3ocoQ2rNlPaV/EuPE7oEiEk0E3/k+yislBaH4bZyahDYNjS3Kpwxq21Y1np7cw1KN176t6+ONK3oDsJ6IkNVqNSPRRAHRvXkdvHqZuixO/ZQEvDWlD5Y9PMbwe5QCjQ0S14US7fwrcku+dnC6/Jn6u60bJmPnMxMUwapjk1RVmRojvrl5EJ48v5vymj1TVvJniNylmYKoVYNkzJg60Oc5GKEa/1rjR6RpkJLg1zrK9ldxDoJecoKzajTtB0QksyVvp5TeRSmdKb/eTyl9KVLXr8poC9l73zce/Gm1E5EmFytnrnKdmviepPzlwXM6I8HpwLAOach6bqLyflMfk7jZhjMc9Grl1dYmCyy3TLikAJIT4kIe+8YmcKOYDZHwce2QdPz3it66z4zc6BoEWNBbVNJEi1XL5ifX9cfe588FoB6foYxVscrtGR2w7alzhJ9N7NFM1a/RXggU4VawKQiFG7pR//NKi8v7t0S/NvVxx+gOmH5Bd5WrPNsgvTPF98bQCkYWzmASY2gzoLM+jKQXv2je0FqURMcwq/lYC7FuVjabDJECqiqTlVeCpHgHrhwYGisKP9y0lttNh4oMv2dm2fNVjieYtYUQ37VdqwPn9myGLQZzt5Zxcnwpe95vy5BK+hglaUxNisece0bisxv0uQTentIHt4xsh06NxVl8Aake7KX99AkWE+IcOo8v/tF3eTxhy+mhuqbmNRsv/DrCvPhEe8ikeKffCsphHdIwdVhb7xtUfW0tv/9HXMpyeIc0JDgdyOgszYORHOoXcIpRfyoRxAJsfScEmCzfR6v64Qt/qApEMlvyMELIPELIbkLIPkLIfkJI6LIHVXOCCZRvUa8WvrxxIF67vHfoGiRzx+gO2C0LtbymOyUxDm9eaXy9SIeNdmvmFW5rJcTp4lh598xwwDavRu65/iwmRvEwgbqhdPSxWXZ5PJaFDodDnM05Whsy0Uby6cndcW5PtQsZSyBxeX/jeobRIhRj0mh4Tb+gO64f0gZjuzZGw9qJ+Om2obrs1YB33FrRcVj5qY0slL6y4WpdtLNfnITb5c1svzb1I7oZ4uETqPF1hAHjGDge5l0zomMjxWUQkKxEWvzxwKkfgHBrlBk9Vgil4pGfj1PirY8eM7dkXwTjluw0mF9rMlqvksv7G8dDMzo3TcWYLvqSfG0apuCRc7uGzNOIH18uN1XcfsOJbr5RQq687ynCUJjacLM8h4lK/aQkOHFWy3rC73Vtlordz01UciCwe1n1yFhsf9qasiMQereqp0oqmGIhZwfDirdNuGF7b0qBqcPSsXn62SrlDl+20/I5q/g8E0m35E8BvA5gOIABAPrL/9v4gCD4YsojOzWK6EMY5yA4/6zmuIMrjA54tavhbMvUYem69+KdRMlSmZLg1F3fSnwe44GzO/mdTZAJKKGYL4yEnc9uGKDrbyu0NilDBADN6vqO+Xz98l6Y2MM45igabsmAuL9HdGykKBPOalkXd4/tiGcv7IHHJnXVJXHwRTCp8s3iuvkNCvu5jeJtrGC0IW6UmoinJvfwaZln8pQVJYwVPY1RPOMpHwlB2gjGKv808O1r3ygFk3o2w39lt8VwMv++UYo1omFtr5Lp9ct76VzzRAouPlP1o5O64d2rJAu5SJHlj1HFzJvDaEy8dnmvoIQ3M366bYjuvYu47MFWBLdQZn92OAgeObcLAMAfT8Rg8lcEI5w7CQlZfLiIi8KYydkqotIwVjDLChwt+OFcPyUe3ZrXwaPnhjfulo0PloXYIVDcM8+5cGXZPbt7U2S/OAn1/fQm09YmZ61rUicp7NZUfspr18hc4c/6b/GDo7FYTpzZo0WdqJUBU2rjeigIIaiTFK8yNn114yDh976/VT8fM6LgbBdSIincnqSU/k0pzaOUHmf/Inj9Kk2w2esiDSEEDgfBf0Z3VL3/9pQ+AMzLiwTCZK527L80NSwByWWIuULWSnAiIc6hKi7OnmMrC+N/xnTEJ9f7p5dRYlDkGePbfw3CjKnWz/H65b2UOBijsdC8Xi30be3/5JrgdODlS8SZ9d6/ui/+d6s+RlDLxX1b4n1B2v9MuY+jZW0QbQR5QeL3/wzHveM7oW6teNw8op1KyDu7WxOfAmUgt9WiXi18fdMgVWZPJVuyPP7407JfO5jyDMG6hYda05+SaCDcnvFfcFFcuYk663Wc04F3r+6LHiYJZEJF4zpJQmtEvzb1dWNE9FNolZfMukeplETo/yZ0UYVSmCU74hEpAxhMgD27m96CJWqjWUZpq1p+7fTapmEyXrzE+4yxkIZg+eHfxps2HgcBbhnZHtkvTkK8xXv4fOqAoISCYCy3hHhzbfjyuDHDKFyjT+t6ht/xtWZbHZO+eMRP4Y95MmhdhUOtBJgysDW6NvPPAsYUW1f0b4UL5VqyzUOcrFJ3Tfm25903EjuenoA+reuhWd0k3MPlmPBQ9bHRhI9f1yrBtb9hl6bhsXxTeAXrpy7ojjq1vHPthO5NDeeT1g2TFQXin3eOwA//Hio8Ltz4SoAmUsb98Z/hGNi2QbXNqhxJ4XYhIeQVQsgQQkhf9i+C16+yEOItPn/XmA6m7r7RRmsRrZXgRPaLk5TX6XJB71YhLofAx0uIHvR4p0NJGsXKbfDFxbUaw1BDNZbboe3TlLgSK1zctyVelAVQMz1HIBZ+ByG4fIDYlWtiz2Y6y23mAxn4+XZrk7ibhldDHAhmiWJ4IbxxnURcNcg8ti+Q27piQCsM75im2gzqYm658w6SMwibZS/2RbDd31eOy7aWKM73MbUMtPDF5cYJQUZ2aqSygv511wgAvEKAhH3j6A8X92mBNg1TdIod0bOgjUFmY9RNKa4Y0Bq3ZbRXNqeUAs9w5TzMaCYLpOO66gVYdk1tiAYgVkaZjT+jWefiPi1w15gOyusKTXhNpyapfmfWNyozxdemHKCpd2oE/1tob+/1y3vBCG33aMMczKgV79sCZeRGyLslm81jvkgx8Jwys46NFyhBeAKZY9IbJuObm9VWJX/L8CTEObD1qXMw/YLu/jfAD164uCf+vnuE8lqU9VwL65MLejdXBLVQlUl788reQg8LdvbEOCdqJUjJM1dMG6vKrcGelSsM1v1wMqGHugIor+zx1l0Xf9cskVtQUKqycJ/dzfs8Tzu3i+X5JFr48rwSKbcbyhnJLxPEjwPWkoHFMpF0FmczGDPvEEhronF6OQCEkHoAPgHQQz7+RkrpijC1MSYh8CaUGtC2AUZ0tJ4aPdLMu28kjhSV6d5Pq52AgpLA6i2+elkvtG+UgoveW254DJ9kRbQ4JsY5lFT4yQKrUfN6tdClaSoeDVOqfiZzhsKCaWZdDsTCz9qUVjsRBSXmNZfbpqUgPS0F6TDO2MnD2hoL8RtD2jVEg5QElVJDC99OK7GNortKb5iM7OO+603yC4527eEXllcv64W7x3bUZfj2h2CtGO9f0w9ZeSXC+oNLHhqNCrcHq/adwCO/bLF0PqP9XaXbgz/+Mxxv/rMb83fkqT5zEIAXjbrJ8aiU+zwWYFZ4JeOqLuZW/cZtGe3xn9EdVO+xDTCfGZ3/llW5hhCC7U+fg7JKD/o+Mw+A5Hr6y4YcZczxVor/m9BF2EYAppo/oznpkn4tMaxDGt5akAVAnxjRzKPggl7N8fumI7r3rxuSLjw+JcEpbfjl+f/Rc7viub92GDca6jGjtdwaZSUm0G/8Jvdugb+2HDO9FoOtVXeMbo93F+4VHjOqUyNdTV5A+t3ZbxOOOTXS9amT4p1+h4KIiEbc4+KHRvsMY2K/Ff88icrqBUK3ZlI2fWimZCuK5NqJcdj97MSI/95rHh2Heprs9LySV9v2cOrEE+IcSl1j3nLroWrlT8sqkJjJZ1iRoCPZdwgh6NI0FTuPFYelbdEikjNCpuA9KzvxNwHMppReSghJABD7Iy3EEOK1yPmKhXrzyt4+k7KEk2Z1awljNDMfHI1KH1kkjbi0X0ucNHBXfO2yXhjYtoHKEpwi0D7HOx2K9TtZoP1LiHNg9j0jA2qfFf41oh3WHVjnV6ZTI8xqiJrV8DOC7ZF+uX0oRry80PC4jU+M9zterF1abUwdlm64IY0UTgfBzFt8u1fzblFWLAjaJePpyd0R53CYCnnsO7xrLlMwiH7ZpHgnOgoScwTCXWM7+j5IQO3EOPRuVQ+r9ukjSdiztye3BIC1DYkoaRUgje2eLeuiW7M6OuHWSQhSU/QCvsdHsrZIw4QOtnlg7RrWoaH8Wn38/eM76axw7LtGnhj+3GtyQhwo9VrE2TdZv/GCAcs0Kzq9thwdDwVQPzkehZp4WO1XtIkRzZR9Q9s3FAq3RjkH8kvKVd4wIzs1siDccgomzWdma60223+yBa+KCd2bYva2Y2iUmoh9z58Lh4MYCrdGSG7JUktDFerx7IU98PfWo1iWdTys4SNf3zQI13y6SvWedo7N5EKFYh0jj4OBbRtg9X6ptjQbXny3BhrP/uaVvVFc5sJjv26VzmlQDtLq1OCvhTwYNjw+Hm5KlQoePIkC4VapkxvGNlVo9qMN5LWFJZP68saB2HbklPqZiJE1RouvZiXFO9C5SSp25XoFWJ/jMDZv1TKRdEsu4f65AEwAkG72BUJIXQAjISWjAqW0glJaFNZWxiguj/QgiiYk3j1mcu8Whi6m0aR2YpxhcgErCSSMYgrinETn4ixKXpQQxwm3UdDyTughJVgIRWmOcpfeesZo1SDZ1J1OiDwzSjXlBqC+Qd3PeskJfgu3DgfBk+d3N7WWhpuPr+uPhfdnWDqWtyQxIcVsfIoWFV8LDfs8zunAB3KcsjcZirVzBEL2i5Nw3/jgavvyz5bWnZDhq+mz7xlhWOuTeR5MHdYWF/VpgbFceR9CCJ4VuONq48d+/PeQqMYRXdSnJW4a3hb3ny3VWWZjanBbSbi1kmCKjT0jTwzmVWA1zlEktDCBWvSZ6D1RObo/7xwOQBq3K6aNxYiOaiuctuSatma3WaI5I0HLSMbWKv2slJvj+157tNH1h7bXWxqt/A5vX9VHyfjqK8GekUugk4u51VpuG6UmYun/jcZyk1qrIq4Z3Ea5XqDW4C9uHOjzuRfFGmuvlx6CdSLa2Uk+u8GbS0OkiLBaVk9Lt2Z1cM1gb81sh2FysdiTSuqnJAgFW0Bd91lR8ioZpdT3Mkng/n+lyX530lnNlPAVBsvLwOdpAaTY++nnd8NlcrbtkZ0aKcq+WIf1l1FCOEII5tw7UhUi6Eu5EXujyD8itsunlL7GvyaEvApgjo+vtQWQD+BzQkgvAOsA3E0pLeXOcwuAWwCgSZMmyMzMDGWzY4KTJ0/iTLkkmG3dtAEn93kH5WODktAo2YFnVxLkn6FV8v7PHNdr53nYPZ3dJg5zD6hj8nbu2IG6RXuEx/OsWbUSOUcll9vsPbuQWbLX53eiha+2FBXrXV6fGpqkfG9Hjn9Jefbs3o3Msv3K6/+OTMANsysttaUqEA9gXx5gpe7Y1gKv4iDn0EFkZh7D4cPGrtqUesAvA7t374GvfDH79+9HZmYOAGBHnjSeiwoLkZmZif3Zkuv+gQMHkJl51EKLI8ueQql/mqYQVB7eiszD3s+2HpPupaCgQPjdaQOT0LmBE8d2rkdurnGfsjE3uQnw4SZviMOJ4wXYsGqZ7rhD8u+zd+9eZLoPAgAaA8jM9M8qFkpG1AY2rJIszwcOSr/pPvl3P12p3n4vXrxI9/3sk1I/nykrU+5zb7b0TB4+fBi1T0tjg3qMFV2At494ITk3NxcA4PRI59u7L1t/fKV+DjlTpg83ObprvfL3ymVL0MzhDT25p28iCvduBP8zFOzZoPp+QV6uao7h/96ze5fyd/eGDmw7Lq2BnRy5yMzM17VF+/2Dp6S+aZXqwKFisdfQrl07kVksuUy7XZXgn+UN69fqjncQYPnSxcjarw6x2bZ5g+5YLcuWLNa9x98Xz4EDB4TnWLtuHQ4fk+6rpPik6rOy8nJkbVrtsx0AdH1+ovAMAGDH9m3C4+/rl2i6FpQd3Aq323wsbt2k76PiU6cMf3+zNpvhoRTjWsdhTGtP1Ncvt1uaEzdu2ICSbEmIyyry9tMrI2vhwcVndN+bNjAJc7IrsT7Pe+zGdWuQk+xdXNasXqWcf3L7ePy2V3pmXZUVUb9vfzhW6h3/HelhZGbmIOeINKdr9yYdKcX745KxrcCNDzaXw+UB4kpycXvvRLy3Ub+mlBXlI2+32r0/rvwkZkxIgctThOxGTmzKd+PUqWIsX7oY6QCWLBY/ewCQLa/P2dnZyMw037dGErbny83N1f32rVIdwvGwfOliRZlQWqofgx6PByUlJVVqLPFEs0BTMgBfBfXiAPQFcCeldBUh5E0ADwN4nB1AKf0IwEcA0L9/f5qRkRGe1oaA71ofx5UfrdS9f//4Tnht3m7D79WrVw+7CyU3l7EjhqiSpmTI/08a54GHRtbVJGhmzwIAdOzQHthl7D7GftOU9BOY+4E63Lpnj+7I6CklKIif9xf6tq6PjIwhuKZoC75eedB7jpHD8cexjUBuHnqf1QMZ3Zuq2hAT48ZiW8jS+QDUE/n1F4xV/j6x/jCwZZPly3bs2BEZGrfhOplzcMfoDsgYVTU0l6EiPqsAWCu5zo0Z0B0ZvVtg4cmtwEHxgpcS7wQfCdqpU0fJ3Web5JbcoXFtZOWVqL7Trl07ZGRIMZau7bnA+rVolNYQGRkDkNjqOH7NWokrR/fF0BDEooUaz85cYNVadGqRhoyMgarPyrYeBTauR1paGpCXq/vueWOGKuWP/sjbBBw5rDsGUI//33I3AkclRUCTxo2QkdFP95xkntoGHMhGxw4dkDG8bZB3GHrSOp7EH28vxU0TB6FHi7ooKXcB/3j1uqLnfeexU8CKJYiLT1A+379sP7BzO1q0aIGzOqQBG9chLi4OcBsn4WLfpZQCc/8CADRp2gQ4koOGdWsj/0wxGjdvCezbrzo+cek8FFeqBbj4hATMv30wxr3uFcbHZGQo583IyMCoURTfT5Ne33P5OO+X+d9M/hsAHrxokJThXfD5WT26AbLQ2LFVU2w7fgR1kuJw1XljVOcU3S8AlJS78MTyOXh0cm/8++v1umMBoF8v71rwxbY5kJzKJIYMGggsVSsePFS6xk6yF9i1U3l/xJBBwHK9kgKQLJZllR7h75yRATz4wyb8sE79LKSntwH2ZemO79mrDwqS8oDsvWjYoD5wwhsm4IyL915D0Dfq62ao+vyjPSuB48fR+6yzcEvt4/hosVcV2Dg1EXddNk533q7N6mDHUUlwGDVqJJyL5wEmAu7QwQOBFZKA36ZhMg4cP4369eshI2MIrju5FV+uOKDvI+56/qzRY0ZbPjQ8yO1OiI/HGVcl+vfvh96t6gEA0nJOAiuXonOTVFx27kg8uFj/W9168VgUzNqO9XlewW7UiKFonJqknHvokMFIWLMUZ1yVeOCS4ZjmdGDwC/8gMTHBr76KBbr1KkLnpt7kcnNObAEOHUSnTp2QwVmrGRMBXDepDI//uhX/d1kvLNqdD2zUK09at2qJjIzuqnHUpElTZGRI3m2NOxXhgneWoXZqbWRkjNB9X8v6il3A3iykp6cjIyM4L6hQkr/2ELBlM5o2bYKMjN7K+7uGu+EgRO0tIPfFWO4hqb1pCVCsVgI4nQ7Url2ryo0lRsQkIULIFkLIZvnfNgC7ALzh42uHARymlLJAjR8hCbtVksHtGgrfb1HfPMMn7x5Qp5bYZTTO6ahagi2HWRKk2fd4J5wB6Q3wuaZ8Du/VtPvZiZj5Lymu8tye6ox8CU4Hyl3Grt1ViQrZLdkoPql7c2txt8yFsFwQC715+jm4tYYJtoD3WUuIcygZuNnofGxSV2x68mzl2IcmdMbEtvrnkfekmn5+d9M4No8mm/SQ9g2x4+kJMSnY8vQzKTnF3/8f/xmu/G2WQMsKRnGmLeX50yiON9r0aFEX2S9OUkoSWbl1thnh40sHyW7N47o1MR1TLNPuwLbeDJ8i90XmIsxch/myQaLj0xum6HIGsGawGuL+JC7LfnGSaeky3mWVhUP4kyG4dmIcsl+cpMvOyjOeyyKdoDk1vyFk7sQMrWu0WbjGnHtG4v2rjbctorhqo150eTxoKIf3lJSplRpuk1wMdwti7fu1qa+sAex+nA6Cm0eoFURGZ72WEzoI8f3b8+6nbFyzOeHpyT1ULpPVBTaE+Z7xxtOb5yDRjjFtjK/TQZR5lBBrbvixylkt6wljmM2GVOPUJHx4bX+kJsUbhiqIEtbxuQOYO77V0sjd5L2VvyWhwo0SzqSZORLjnAG7wdvZkq1zHve3C0Au5bNcCKCUHiOEHCKEdKaU7gIwFsD2cDYykjx+XjfkF5fjwt4tcN/3akvb/PtGYuOhk3jgB/X7KUGUA4lFEuIcpqVtujRVTyLdNZMKUW2YvZO9NtNtvNNbTilWhdvlD4/BqTLfLsVMGDWKYe7cNBVbnzoHPZ4Ue/23bpCMf3ejOJZQD0v2FKC03NydrEYhj5++respY4stHPFOB1K5eO3bMzrg7R+yVV9vWb8W8ou9VvXhHdOw9/lzkf6w2JLiFW6979WK4Wd8dOfG+OCafsKyIPwCe2m/lli0Ox89W3oVLfwjGciyabTRmTqsLdqmpWBMF+ultaKJlX1UvNxZvOKvW/M6igCwcJfk8izaIP95p7kFgm1aJvVshkk9m2Fyn+aY0KMpmqR6lQPaTeHnUwegj2x5YrBnZNOTZ4dlXeLncFaCihd4Z98zApm78rFi73Es2p2PTk38S9ZXOzFOFftaJ1F9z7wCwaxEDmC+prRpmGKYeRnQl0cCgFGdGykZpmvFO3FGzlLuclNFmZN7Su29Y5bw666xHfHmP+rwnZ9u05dzczqI7rc3yoTNZ9q1kuCMj7llwzZa9c8jhSSwqdd0NpbZo/32lD5YuCsPP6/PUR2n3Rdp8444uORiDkKUkl6snm7VxlvezQq8EjA1KQ7FsuJHVN+VH85s2FoVbif0aIoF949Cu0bBJwYNJUoCrgAfp6lD0/HQT5tV70nJSc2rZ8QykYy5NXZkN+dOAN/ImZL3AZgaulZFnhkTUnDDbClkeGTHNMMsqB0apyqb6/7p9bHj6CmcKnOFvDB5NPnn/lGokxSP79cesvwd7f0bLapMWVU7MQ5PnNcNcU5v2ndtljjeYhFNmterhebwXadzXNcmmLXlqOmG0qw0QmKcA81rU5Q4pGNKyv2L0a3O8OUAtBCiTwTDNmftGqXglUvPQr82DfD9GvPxzA9ZdxXb5BFCMKGHuKYnnwPk1cv0Sc18WW7rJMXpvscfZvysE4wV1HGNVawk7WEbYOOEUvI41chFN5u4Za9/fDxcbg9emi3FshICJXmKVomobeJoQU1u1rK6Bt5EPIlxDqGHiBn8xpSV5mjXyCskdmlaB12a1sH+fGk9vWGofy7p2r49Jz0eHdq3xwt/S+7G2prO71/dV7Fca61kDZITcOvIdhjcriGmzljjVztcAuGW975Z8n+j0f/Z+QCkZ4Al5tFWELi8v3FiHV9Djs9Oq33OjJTP/BpjVNKJL+fEW+aYotlXYi3GD/8eYum4WKNBSgKOnVLHqrO+Yoqp83s1x/4CaQzfOqodesdLJaWYwHbD0HS0b1xb5x3g4JKLOQhB7cQ4bJ5+Nmr7UMRUBYJJrMhnQe4gEEIDKZfIE2uCLeCdLzI6B1Ym9PIBrTDprGboLhtEfvj3EHRqkqrKcVHViPmngFK6EUD/aLcjHPCT/WOTuuLtBVmqBat9o9qYd+9ItGtUG9cOTsfRk/qg76pMe3mS0KZk9wejtbFILknRr019JXt056apWH+wCA25rH2rHx0rLB0Uy7x+RS88fl63gAUi6XsUtROlTWlxmakDRY1C2dhx659ZWQKWDLa80oN+bWQ3UMGBfE09HmZtsbrJq8rw45X18xPndcPHC3fgaCnFK5f1wtndNYIz1y0PntM5Es0MO0nxTmFZFB6tdUeLVwnjPaB2YhweO6+b4TkbyJ4eTLdntsUL9Xhc+9g4vzeV8ZzltmW9Wvj4uv4YmN5Adxw7zKhEkBHa4+McBLeO4oRbjffPRC7URXsph4Ng2rldA1qjRVmo2TQU7ySKGzIglZPadkSKjePLKu18ZoJKaTv7nhGY8MYS7nwEL1zcE9N+Fpco82anFQm33vbtfnYiTpVVYu62XIxWZTIX39tbU/oowi1v3VaEWwvDLDUpDgMEv3tVgM15fP84BYop1seJTgdqxTGPIem99IbJKhdw9XnU5w+mFnos4eejrDqeKdEyWsbh0n76tD6ieaLqOnRL9GhRF1umn61Y7wOBf+6r6vPGU7V29dWMRM5N5+YR7XDziHY690Vm2W1aNylmY8qChS10DVIS8PDELnjox82Gx2pdpIw2Yaw80MV9vS46T57fHRf3bakqS9M4ter1aWKcE03rWncD1CYsY5PYwLZSvNvoKuLOGQnY/M4vgEZlCQCgliyElFV6Xbsn9miqG8M9W9TFugOF0mk4iY1qYs+qMr42JLzXReNUScFUeLoCjZMdOFrqNu2DVy49S3mm/7prhGrurIoM72geUy1yS+ZhPcW7oloVHq8bko784nIMMcgBAXiH+uPndVOSgGnxZwPqa9P1/tV9dcfwwyE1KV7oCg8A47s1wczVh9CndT3rDYI41wAAXD2oNb5ZdVBnubUCEzBbNaiFQyesCbqVgt+NCdbXDUnXhd6wmrp8rK7Wqqe1xAPAlIGt8deWo+jXRh/n7JVtCYjm0fJw10mIcyCtdiKuGtRadYwVjzL+EFa2yde8N/++UYal6WKZN67ojT15xVi8W585no0rPqSgh2x5O6tlPSDvqHyc9EOI3NYBdVmo6orV2xPFG/ds5BSOS97y6nVLrurire85lnHD0HShF1Q12IKoqNo7hCpOoMW8qxtMuL11ZDtc3r+VaWIJbVyRkatipyap2DL9bEzm4k+S4p3VQiPlDyM6pumEV6Y57tA4FfuePxfnaK1lNRiHSLg1Ob6WrB48XeEVbkWLzEfX9lNi1NRuyfqY26qO0SLJW24Hy7UGm9ZNQo80aWNutcZlt+Z1FK+P6kp8nLlwC2VT5n3LLOaSp0eLuvh86kBdfXCey/pJ3i6X9mupc0O/X66VHMrt4MSezXQCP3/v551lnBRqTJcm2PPcRMuJ9Hzx3EU9kf3ipIBqvjasnYgZUwf4jHvmSReExTgdBFnPTcRjk7rqPrMaky+Kqf3qpkG4Z5wgyyvnBqpdU63+ziM7+VDYcPudCotuyR0a11Z5WlUVLuzTAg+e00X4GesH3so6rlsTLP2/0RjHKXCYK36JQU4M4hArY6sD/ibH4q3g1w+RrNwtauv319/dMhh3jemgvG6YIo2tYTGewDGUTL+gO544X+/hYyVuviphS1dRpKpbH0IF0+JaSfTUICUBCU5gVCcptqBjY+NNbjAuGtWBHU9PwGc3DEAj2UrGLDX8fqImuMP6g5JEinvPmyhJT5LsQnam0jwpV8PaiUrGUj5WTRFuq8Hv4GtDwltphrZPw9x7R2LKgNYY1zoOax8bp8vEC3DZLEPb1JhHiak12LSKEq2E0vp/55gO2PnMBGE8rSKEhnlDzYT1UZ0a+cySHGhGUDOY8nnKQH0sK7P0jOvaGP+9Qh0nntG5saU4ZMYj53bFo+fqhdg4p0NoeaplkpmZR2ShtQI/FQ3vkIZ3r7JWoOL1y3vjxRG1FPd3xoL7R+Gdq/rA6SBY8+g4OB0ENwxN112rppBWOxFPT+6OGTeqS6m1rK9WcrDkhdqs2AwnIX5n+60q+Btzy27/vLOaYfoF3bHusXFomuKdEyb3liofDG7XUDWXNK2bhEUPZmDaRLEioiZR3Z5F2y05itiWWwmmxbVS5iExzomPxqcgI2MgKKXVKsFWqGEa/iZ1krDqkbE4cPw0Vny4oloIUuGCaS/VmwV1JsL7x3dCf9kDIFHeZ2o3kn/eORxHitRuibeMbI+UxDhcOcC7WdaWxKjKGJUjYGhCGNFJDrkgXJIcLdWgWwKCCWvJBlY61i9ptRNRUFIOJxFb6gKFEGJY3sbXnNu9eR3LApgZrLRNOJKtNUxJUHn1iIhzOrDpybOFyfnYWO/cNBUX9dHH9flDUrwT/xrZDv8aqQ9LEhGObOpGCaW+vnmQ5XMkxTvRNMWBdY+NxmtzdyulD9s1qq24gjZKTcTe58/Fn5ulONyqkkgv1FynqSsvgpXoMkr46HQQ1K0Vj2OnyqrdPMm7yVs6nsUsx0muyFpr/5tX9sGbV/YRftcsk3lNorpZbm3hNor4U7OvOsOyRSb4GeNkC7ZA/eR43DLSdz3aJnWSkC1nZKwOglS46N68Dib3bo47OdclrdB2J1czkhCCv+8eoatV3aNFXaWuKSMhzoGpw9QZXTs0lgQ8viZpVYUJAQ1ri0tU2ePOOk4HwRPndcPITuLsl6wn26Wl4OfbhiJr8yp0ax6Z2ovs2kbGoll3WXfJNYPFlIZDAFr3+HhLxxlZYP3dfIeScCjFvZYyErSgRAjBAz6Sv3nDMar3nBBM7dmJPZvh5w05uGN0B+HnhACf3tAff205imZ1fVdZqErcMDQdv286glEWs/+ytbaqlIOLRdijyJQqVZ3qcRc2VRqWRVabndLGNxueONvyse1lt89rh7QBivb4OLpmEu906DS8vlykgino3q9NfayYNgZN61S9xGZaMjo3wvMX9cRFfcQWsaA2stXM7Q4AbhzWFgt25hp/blLWh0FB0bphMvZFUEjwtzaklr/vHoF9cvkeM1iCqOuG6DPF+kvDlAQcL60I+jzRpLdcZ5gQggfP6Yy+retjyscrQ3oNUcxtOFA8VmqI5TYQJUjdWvH4/lbjEkhOQtCyfrIl5XZVo0eLutj97ETLx3dtVgc7np4Q0zXiYx1CCJ65sAeGtTdONFiVsIXbKPDL7UOxNrsw2s2IGdiElGJSm9UmeNJqJyrJujIzbeHWKmalgEJBddG6E0J0WVR5AnGH91oJq590+8T53YSJPawQC14rgf4mXZvVsaQQalInyTS5oD/8dfcITPt5CxbszMPXN1l3tTUimDqcgbDxifEqN/E7RndQZWg3YsbUAajjR/wvECHhltX3joFxHE5Y0qhwCPE1RTFgFVuwDR5Ryamqii1NRIE+reujT+vAkj1UR6ad2xUt6yfjbINSDzY2sUA134fFJK3ljL5GMbk1lWCtp8HASqndkSF2l4xFmtRJwqfX90elm1pKXOiLcCu8tNRL1rv6WxFuMjpbc9O8fmg61h4oRPtGtZXEMuf3au5XG/2BJQuLBSVNOHnzyj74bWMOujZLDfm5q3vf2dgEgy3cxhhjujRWFW2vCdRJijeMK7GxiTa+EiXZmNOrVT1sOlQU0Hdvy2iPbs3r2LFUGnzFvYaT1KT4kFlUIwkhBAlxoXmGzWpfM96e0ge1wxi/FkoL6/m9mquE2fWPj7cUe/fuVX2xNCvf7+ud1VKKkTSqXVxdaJSaiJtHtIt2M2xsahy2cBtjfHbDgGg3wcbGhsPjzR5jEwDf3DwIx06WBfTdOKcDY7tW7w1wIHgtt9XPXbsqYGVKCKflEwhv6Q5tOR8jJp3VDJNMahAb0aVpHex+dmJIrOg2NjY2Wmzh1iYmmX5+NzRKrfpJdmyqD7ZsGxi1E+OENWxtgqc6irZf3TTQsLZnzKC41UavCYQQ3J7RHmd3bxq9RgSBLdgGRq+WdbHp8MloN8PGJqaxhVubmOQGTckUG5tokd5QivtsXA0yGttUD3q0qIthHRpi2sSu0W5KyBnR0Vr5j2gSzVJAPA9N6BLV69tEnm/+NRgFxeXRboaNTUxjC7c2NjY2Jtw+ugPOalUPowxqjtrYRJrEOCe+uXlwtJtR47Fz+thEmtqJcUpNcRsbGzH2E2JjY2NjgtNBbMHWxsZGIVyhzi9c3BNN6tiZwW1sbGyCwRZubWxsbGxsbGwsEq5SQFMGGteJtrGxsbGxhh3Rb2NjY2NjY2NjkbZpUoK0NnLNXxsbGxub2MG23NrY2NjY2NjYWOSSvi3QNi0ZfVvXj3ZTbGxsbGw02MKtjY2NjY2NjY1FCCHo16ZBtJthY2NjYyPAdku2sbGxsbGxsbGxsbGxqfLYwq2NjY2NjY2NjY2NjY1NlYfQcOW0jwKEkHwABww+rgvgZAg/C/R8aQAKInStWLnnUF8rkD4M9FpVuQ/NPgt1H5p9Vp3716gfq+s9V9c+NPusKlwr1teVqvBb2utK8J/Z60rwn0WyD80+q+rXioV1JVaey+q6rrShlIrrNFJKa8Q/AB+F8rMgzrc2gteKlXsO9bX87sMqcl+RbEdI+zBW7jkK/Svsx+p6z9W1D6tB/8b0ulJFfkt7XQm+Hfa6UoX6MIbuuVquKzH0XFbLdcXsX01yS/4jxJ8Fej4zQn2tWLnnUF/LjKp8X5H+LFLXqs79G8lrxcI9V9c+NPusKlzLjKp8X/a6EnvX8vVZpK5Vnfs3kteKhXu2+zA222FGrNyzkGrlllwVIISspZT2j3Y7qjJ2HwaP3Yehwe7H4LH7MHjsPgweuw+Dx+7D4LH7MDTY/Rg8VbkPa5LlNlb4KNoNqAbYfRg8dh+GBrsfg8fuw+Cx+zB47D4MHrsPg8fuw9Bg92PwVNk+tC23NjY2NjY2NjY2NjY2NlUe23JrY2NjY2NjY2NjY2NjU+WxhVsbGxsbGxsbGxsbGxubKo8t3EYIQsgEQsguQkgWIeThaLcnViGEtCKELCSEbCeEbCOE3C2/35sQspIQspEQspYQMlB+vy4h5A9CyCb5+KnRvYPYgRCSTQjZwvpMfu9/8uuN8ucbuePPIoSskPtxCyEkKWqNjxEIIffK/bGVEDKTEJJEJJ4jhOwmhOwghNyl+c4AQoiLEHJptNodTQghnxFC8gghW7n3LpP70UMI6c+9n04IOcONyQ/k95MJIbMIITvl770YjXuJFqI+5D67nxBCCSFpmvd1444Qcj0hZI/87/pItD2WMBiLwjmQEDKeELJOnvvWEULGcN+ZIr+/mRAyW9v31RWT9bgBIWSePK7mEULqy+93kdeQckLIA5pz1SOE/Cg/0zsIIUOicU/RwKQfn5HH1EZCyFxCSHP5fUIIeYtI+8XNhJC+mvPVIYQcJoS8E437iQYmfTidEJLDPdPnyu8nEEI+l5/bTYSQDPn9Gru2mPSh3/vrmF9b/K0dZP/z/x8AJ4C9ANoBSACwCUC3aLcrFv8BaAagr/x3KoDdALoBmAtgovz+uQAy5b8fAfCS/HcjACcAJET7PmLhH4BsAGkmn78G4An57zgAmwH0kl83BOCM9j1Euf9aANgPoJb8+nsANwCYCuBLAA75/cbcd5wAFgD4C8Cl0b6HKPXbSAB9AWzl3usKoDOATAD9uffT+eO495MBjJb/TgCwhD3/NeGfqA/l91sBmAPgAP9si8YdgAYA9sn/15f/rh/te4uFfuQ+5+fAPgCay3/3AJAj/x0HII/1N4CXAUyP9r1FqP+M1uOXATwsv/8wtwY3BjAAwHMAHtCc6wsAN8t/JwCoF+37i4F+rMMdcxeAD+S/zwXwNwACYDCAVZrzvQngWwDvRPveYqAPp2vHmnzMHQA+l/9uDGAdJINejV1bTPrQr/11VVhbbMttZBgIIItSuo9SWgHgOwCTo9ymmIRSepRSul7+uxjADkhCBgVQRz6sLoAj7CsAUgkhBEBtSA+fK6KNroLI/XU5gJnyW2cD2Ewp3QQAlNLjlFJ3tNoXQ8QBqEUIiYO0KB4BcBuApymlHgCglOZxx98J4CdIm+EaCaV0MaTnkH9vB6V0lx/nOE0pXSj/XQFgPYCWIW1oDCPqQ5n/AngI0rzHIxp35wCYRyk9QSktBDAPwIQwNDdmMelH3RxIKd1AKWXryjZIz30iJAGDAEiRv1MH3vWnWmOyHk+GJKxC/v9C+Zg8SukaAJX8eQghdSEpGj6Vj6uglBZF4BZiAqN+pJSe4g5Lgfe5ngzgSyqxEkA9QkgzACCE9APQBJJAUmMwGYtGdIOk8GNrdBEkxWqNXVtCuL+O+bXFFm4jQwsAh7jXh2H+UNpAclmEpE1fBeAeAK8QQg4BeBXANPmwdyBZhY4A2ALgbiZ02IACmCu72N2i+WwEgFxK6R75dScAlBAyhxCynhDyUERbGoNQSnMgjbWDAI4COEkpnQugPYArZPedvwkhHQGAENICwEUA3o9Wm6sobQkhGwghiwghI7QfEkLqATgfwD8Rb1kMQQiZDMmauEnzvtG4s9cdc7RzIM8lANZTSssppZWQFFpbIK0z3SALaTUJzXrchFJ6VP7oGCRhy4y2APIBfC4/658QQlLC1tgYRtOPIFKIyyEAVwN4Qj5M+OwSQhyQvA1ULt81DW0fAviP7L79GXORh+QheQEhJI4Q0hZAP0ieL/x56qGGri1B7q9jfm2xhVubmIQQUhuSJeIeWbt5G4B7KaWtANwL7+biHAAbATQH0BvAO4SQOroT1kyGU0r7ApgI4A5CyEjusynwWm0ByUI5HNICOxzARYSQsRFraQwiL5KTIW3MmkOy3FwDIBFAGZWKm38M4DP5K28A+D9bueIXRwG0ppT2AXAfgG/551e2mM8E8BaldF+U2hh1CCHJkFzEnhB8/AbscRcI2jkQAEAI6Q7gJQC3yq/jIa0/fSDNA5vh3fzVCATrsQKVfBZ91ZSMg+Qe/r78rJdCcmeuUYj6kVL6qLyv+QbAf3yc4nYAf1FKD4e3pbGLoA/fh6Rw7g1pPXlNPvQzSELXWkhz5HIAbu48NXZtqQn7a1u4jQw5UGuMWsrv2QiQNxM/AfiGUvqz/Pb1ANjfP0By9Qak+MefZfedLEgxkl0i2d5YRbY8MpecXyD3mTypXwzgf9zhhwEsppQWUEpPQ4rd64uazTgA+yml+bL15mcAQyH1FRuLvwA4S/67P4DvCCHZAC4F8B4h5MKItriKIVvGjst/r4OUm6ATd8hHAPZQSt+IQvNiifaQlCyb5PHVEsB6QkhTGI87e90xwGAOBCGkJaRn+jpK6V757d4AQCndKwty30OaB2oEButxLucm2wy+wzAOAzhMKWWWth9Rw9YXg37k+QaSxwBg/OwOgWSlzIZkYbuuhiVE0vUhpTSXUuqWlXsfQ97nUEpdlNJ7KaW9KaWTAdSDFGPKqJFrS4j21zG/ttjCbWRYA6AjIaQtISQBwJUAfo9ym2IS2bf/UwA7KKWvcx8dATBK/nsMAOZKdhDAWPm7TSAlralRWjgRhJAUQkgq+xtSTC3LGDoOwE6N9ncOgJ5yJsE4SH29PZJtjkEOAhgs9wmBNM52APgVwGj5mFGQF0xKaVtKaTqlNB3S5u12SumvkW50VYIQ0ogQ4pT/bgegI+TnlxDyLKT4n3ui1sAYgVK6hVLamBtfhyElBjlmMu7mADibEFJf9kI4W37PRjAHyi6KsyAlSlrGHZsDoBshpJH8ejykeaDaY7Ie/w5pQwz5/9/MzkMpPQbgECGks/zWWNSg9cWoH1lIi8xkADvlv3+HJLgSQshgSCExRymlV1NKW8vP+gOQ4nJrhAXcpA+bcYddBHmfI6/bKfLf4wG4KKXb5dc1cm0J4f469tcWGgNZrWrCP0gZyHZDskw8Gu32xOo/SC6xFJLr10b537ny++sgxVGsAtBPPr45pMQKWyBNatdE+x5i4R+kzNyb5H/b+DEHYAaAfwu+c4187FYAL0f7HmLhH4CnIG04tgL4CpJLcj1Im+AtAFZAzjCt+d4M1NxsyTMhuYdVQhLCboK06TgMoBxALoA58rGXyGNuI6TEHufL77eU54Ed3Dxwc7TvLZp9qPk8G4JM6NpxB+BGAFnyv6nRvq9Y6UfRHAjgMUjushu5f43lz/4tj8XNAP4A0DDa9xah/jNajxtCilPcA2A+gAby8U3lfj4FKYHPYcgZgSFZwNfK5/oVMZZdNUr9+JO8trBx1UI+ngB4F9J+cQu4DPPcOW9AzcqWbNSHX8l9tBmSUqCZfHw6gF3yczsfQBv5/Rq7tpj0od/7a8T42kLkRtrY2NjY2NjY2NjY2NjYVFlst2QbGxsbGxsbGxsbGxubKo8t3NrY2NjY2NjY2NjY2NhUeWzh1sbGxsbGxsbGxsbGxqbKYwu3NjY2NjY2NjY2NjY2NlUeW7i1sbGxsbGxsbGxsbGxqfLYwq2NjY2NjY2NjY2NjY1NlccWbm1sbGxsbGxsbGxsbGyqPP8Pl4JS579vfjMAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAI/CAYAAAB6VfRnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXhT1xvHvyepCxQoFKe4e3ErblMmTBnbGHM3xhhjyOA3gQljGxOYbwzYYEjRFrdSpC0UaEsptNSpa5L7++Pm3FxNbtqUFjif5+GhSW5uTm7OPef1l3AcBwaDwWAwGAwGg8FgMGoaQ00PgMFgMBgMBoPBYDAYDIApqAwGg8FgMBgMBoPBqCUwBZXBYDAYDAaDwWAwGLUCpqAyGAwGg8FgMBgMBqNWwBRUBoPBYDAYDAaDwWDUCpiCymAwGAwGg8FgMBiMWoFbTX1wYGAgFxwcXFMfr4uioiL4+vrW9DAYNxBszjCchc0ZhrOwOcNwFjZnGM7C5gzDWbTmzPHjx7M4jmvozLlqTEENDg5GZGRkTX28LiIiIhAaGlrTw2DcQLA5w3AWNmcYzsLmDMNZ2JxhOAubMwxn0ZozhJBLzp6LhfgyGAwGg8FgMBgMBqNWwBRUBoPBYDAYDAaDwWDUCpiCymAwGAwGg8FgMBiMWgFTUBkMBoPBYDAYDAaDUStgCiqDwWAwGAwGg8FgMGoFTEFlMBgMBoPBYDAYDEatgCmoDIaVq3klGPbRblzOKa7poTAYdgmetRmLt56t6WEwGAwGg8FguBymoDIYVtZHpeByTgl+O5Jc00NhMBzy7Z7Emh7CTcXxS9dwPr2gpofBYDAYDMYtD1NQGQwrhPD/c+BqdiCMaueLXRdwx/L9NT2MSmGxsPlZHdzz9UGMW7a3pofBYDAYDMYtD1NQb1Li0vJx5/L9SMwsrOmh3DAQCBrqLc+CTWfw0h8nKv3+tLxSFJWZXDgi17J0x3mcvpJX08OoFOVmi/B3aYW5BkfCYDAYjOvJ5ZxijF26BxkFpTU9FAajWmEKag2QnF2MCZ/tRXZhWaXPMeffaPx3KlXz9S93xePUlTzEpuZX+jNuNagHlQH8sP8iNtqZXwBQZjIjKvma8Nhi4fDtngQUlpkwcPEu3PP1weoe5i2JWEFNz2dCCoPBuHHJyC/FxawiZBeW4Y+jLL3GEasOJOFCRiE2nLC/PzMYNzpMQa0BvtuXiLi0Amw6fRUAL9jr9XQu23EeD6w8hF8PJ+PFKni4KGl5pSisxZ4uRzy5+hhGfRLhknNR/ZQ5UPUxb+MZTFlxEElZRSgpN+PPY5exeGscFm0+AwCIS2P5fGI2nEzB879H2T1m8+mrOJSQrXjebOHw2l8nEZOSh3KTReWdDAaDcePR/8NdGPlJBF74/QTeWR+Nv44xJdUeZgu//rsZq9eiXm6y4I09xdhxJr1aP6e6qDBb2F55g8MU1FrA9/sTMerTPYhJcRxy+PmuCzicmOPwOOoNNDvIVxu4eBcmf7FP1zhrI7viMpCYVeSSc9FrdrPm+J1IvoYD8VkuO9/Zq7x3Pqe4HPd9exCz/4kGAOSX3rgGj+rk5T9PYrPVKKXF879H4cHvDiuev3KtGOtPpODZ346jQuRBrTDfnHPVFcSk5IHjXH994tLykVdc4fLzMhi3MmnWaJC310XX8EhqNyarfOJmNGBFRDziMypvCC6tMOOerw/ihCgSinI1rwRZJRzmbYyt9PlrkjFL96DDnK01PQxGFWAKai0g6lIuALi0vQmxaluv/HXS4bGXsm+etir5pRXYdyHTZedLzi7G8t0XqkXQvd7cveIgHv7+iMPj9CqxRgM/x3IKyxGTIgolv/EvlctYvvsCXtNxDzqCKqXuRoPEKnzkotLbmltcjs92nr9pDS1mC+fwu22JvorbvtyP/xwYBCrDhM/2YcrXB1x+XgbjVkbNmB6bmoeBH+6qUjrUzYbJapQ0mS34KOwcpn6rNGhSTl3ORfCszapK7LId5/H2utM4fuka3tsQo3i9tILfZ7w9jJLnl2yNc8me5irmbYzF4MW7FM+7Uq5NyS2Byew6b2yZidWO0INDBZUQ0pEQclL0L58Q8orsmFBCSJ7omLnVNuKbAHmuo8H6KxSXu27SGm7SfMq+C3bgwy3a/R8f/u4IHv3haKUK9NAiSUnZRcJi9Pjqo/hk+3nBunsroEeJBWwK6oyfI3UdfzGrCAM/3IW0vJv/WgbP2ow5/0bjk+3nsf5EisPjHYUilZt4ocRDpqC++49SsJi7IRaf7byAPef1G2oSMguvuxEmKvkaUnNLNF/PL63AHcv3475vDiJaVNCq45ytmGQn6uNMaj4WbebXiKyC6hFsEzJdE7Vxo7Jkaxx+OZRU08Ng3ESoKQA/7LuItPxS7I7LqIER1R4GfrgLn++8AMDmQaX7QJmdvYPWkQiPy0RydjGSRNFmn++6gA0n+deFApEiist5GcrbXaqgfrMnAetPpOiK+LserD6YhNRKyhQrIuLx08EkBM/ajJiUPMRnFKK43ISzV/OFAoSZBWUYsmQ3Fm+Nc8l41x6/go5zwnApuwjd523D3SuYsVMLhwoqx3HnOI7rxXFcLwB9ARQD+Efl0H30OI7j5rt4nLUCKsC9/OcJ/HPiisvOa7BqrK//fcpl5zRqVPxZd/wKCkqrPzwtJiUPGdWg1GUXlWPlXmX/x9NXcvHML8cRbV00i8rtK6gxKXmCxfar8HgEz9osvLbzbAY+s24GBdZw1ZvUGVUl3DSsIBaZopNZUIa84gr8dDAJafml2Brjeq9WZXGFlzE5uxhLt59TKHi/HlbPpZJ/5t4rFegwZ6vdCAqJB1VFkNt4KhVrj/NrEhUsTDq/W8S5DIz+dI8grFwvpqw4iBEfh2u+vu98Fk5fycOxpGt44qdjwvMmCyfJb87Il1aMnvTFPqRYFd/5m84g/BYXbquDb/Yk4L0Nrgn9C561GW+vPe2Sc9U2covLhfuSwbP3fCYupBcoFNICFaNygI8HAOBacbndc3Kc46iKG5m0/FIs23keAGCy5qBSBdXdTi4q3ZIIAYZ/HI5QjXodauIilX283NXVhNu+3O/SaDW9DPhwJ57SaRTXIr+0Aj/sv4iPws7hfWsI829HLmHM0j14YvUxTPx8n/AZdO79sP8iMjUMnhYLh7fXnsYZB0VJy0xmbDrN77PxGYUoKDXhRHJulb7LzYyzIb6jASRwHHepOgZTm4nPKETrd7Zge2waNpxMxat/VV2ZpAKtwUH52JJyM174PUoQusRczilGbnE5zskK0hCVc0YlX8Prf5/CO+ujq30xv+3L/RhuR/h0NS/9cQJhsWnC49JybatiTEoebvtyP5bvjgcAfLztHACpQL88PB7rjl8RolXLZO08Rnwcjkd/0OdpvN68+fcpdKzm3ItDCdmSXEgxcsWo36Kd6PfhTiRYC4FRz+tHYXGY8Jl238mLWUX4KCyuWj17akocx3E4fSVX9zlm/hKJL3bH6w4pkn/m0TR+bsXbKZRGPQjuRqLqbX3pjxN4o5IGLrp2rIu6glUHLlbqHJVFbw6tjyzMTMyYpXvQ9f1tmq//o8ODfStyPr2g1rQp+ivyco19tsXCVVsxlVf/Ook3/j6F+IxCXEgvqBajbU2SUVCqe322WDgciM/CtB+PYuyyvRj2kVQ+KBDVLiitMMNs4eDn5QYA+HBLnKCEqoX7LttxHm1mb7kliuLQEF9qqHQzaovx1Fj8xa4LwnNzN8Qo8krVWq7R4ple7tprb01EQ6XnlzlduKm0wow/jiYLcu+cf2KwYNMZyTF/HOXXIFrjZd8FZarTL4fVVZ+dZ9PxV+RlPP2rUnHOLCjD35GX8eP+i+g4JwwR53il3pHcz3BeQX0AwB8arw0ihJwihGwlhHSt4rhqHZFJ/KTdedb+jeGoKBEARTCFo3DcrTFXsen0VXwcpgwxGPZROHrN34HxMkFf7ZzZhbwlaNPpq3hr3elqD+mjOQzXA/kiXVyh7kH9fl8ibvtyPwDg5GVpYQB5XsDrf58SLJDyhfhSdrHqAlYb+Pv4FbthP1Xlck4xHvzuMI4lKQsrAOqhWuUmi3C9qIK6IiJBtdLvwYQsbItNwxOrj2FFREKlw3f0oHa//n38Cu5YfgDbRQYPe1BBQW9ILbWAy9EyGnEch8+tAoa70eBQqXP2tqYfu+9CFj7470ytzLeWh5mJoUW5Bn64SxIKTAn085Q8PpKYjSdXH9O1Vm+LTUOYyONf27w08RmFmLcxFhYLh/iMAt2/XWpuCcYt24slLgpbu5GZtf60rmIqqbklCkMwwM+JlXsTVKvhU6NyhdmCscv2YoBKrpyc348kS0IxayvxGQXov2gXfjqYpOv4AwlZkvSRq3bW9U7vheHFP6Ik91uFmcNX4fHou3AnRn0agREfh+O7vYmIzyjAKusYih1ETt1opOWVYtY6aXQB3T9oSpi7HQGSrgfiwoU/H7qE1Tp+My0DtBg/TzeHx9QGlu08j3fWR2ObdU/PKbLvkRcjXlI93dRVppm/HAcAuBmkrydkFqLfop14c+1pzJcpxCpR1QwZumcXIcQDwB0A3lF5OQpAK47jCgkhkwD8C6C9yjlmApgJAEFBQYiIiKjEkK8fhYWFwhijk/iw2Kx0m9AqH39GsQVv7S3B0z08Maip9qW9ksJbAC/ExyOi4hIyMmwWwYiICPx2tgwZxRzu7+CBcguHxDx+ocjNth+qJh5PWpr0nGvPl2NToi20d+3xKzh2IVX1vXK2J1WgsS9Bj4bOL0au/I3FwldERAQi02yLblmJ1Hu1//AxpAVIhdoSE4eFO23HZWblSMZ3PiFJ8Znl5fx1fOj7I/hmjA+83AiKKqTjEFNYWIhla3aiXYAR/h41uwLt2h0uKINi7P0miblSJT0iIgLrL5TDZAHu78iHW6UU2N+4MrJshXs+/nOn4vX4C+cRUWLz1MnHMz2MF84CPPmx/+/vfZjS3kP1s3YnV6CgnMOd7dRfp7y0uwjBdYx4LcRL8nzE3r3wdpNeo11n+d9899FoeGQ6FuBLrXPv/Y2xaFWepHqMOIQ8fM8++LrbPtNiNgEgePInm/V1+65weFhDt7Yl2e7bzJxcHDsubS8lvn4RERHIyuYFv5iYaLhnaOdrUxISpJv1jt0RwmdfD7TmY6zo/o5LK8CaLbvRyMcmAMjfl5Zfivf+OqQ4z+UrlxERwa+d+65U4IcY/vv+tyMcAZ5KgUN83qetc3H1BF8AUu93Te5fdG+ata8YaUWcIHA+3MkDY4PdheNOZJjQqb5RMcePXuWv7an4y4iIqHyYniuvQU1dzzWRRbo+n65LHw71RlM/27yJSjfhixNlOBgdj+ldpcaQwkJ+bYiK5O9tjrP/ORzHYfa2Yvi6A1+N9nX2qwAAlh4vxbkcM74dK32/WJ5xBXT//e/oOQRX8J4lC8eBQBnBVWri8Pd5pVJgbzxbotMwqbVtLr/w3Q6cyeb3p0RrDviiLWexSFSTYtee/UgusKCprwFBvgYUVXDwcVOO52y2GRnFFoxo4S55flNCOXo0NKJlHansEHG5Ar0buaGu5/Xd0z+PKsWJDNueHBERgfQMfn2/kMR7/CrKyzSvI5U19SA+x5pz5dhzhd93cnJyNM+fcC4WEdnndH+GK5GPKSIiAjmlFiw6XIq3+9v2+bs+DYPVEY+o0zHwzj6HnGvatQ/k50zKs13/7yLO46td57BijPq9WVpSLBnXyQxtg0nMaZvhobbrQs7gynXGGY1jIoAojuMULkSO4/JFf28hhKwghARyHJclO24lgJUAEBISwoWGhlZu1NeJiIgI0DHGhscDcefQonkz4DK/GMvHv/NMOrA3EgkVdfFOaD/N84bnxQDJl/Db2XI8OKY/mmQkAalXhHNOD+OF2VOZ/E309oROwJk4NGzUGLisnc8iHk9Y9mkg5bLinGIu5dsUDXu/xXSrcJ20ZIzmMQqsn9e5z0AE1fFycLB9ykxmpOeVoWmAF7CNt3Rf9mqN5SdtBWIC6vjjcoHNe7LwcClmTeyEZ0a0RV5xBdZFXcH8MKkFq05AAEJDBwpj3XJRmZtrdHMHyvnnn91VjJNzx6HX/O3C6/0HD4WPh+022rIjHJ/vL0aflgFY/9yQKn3vSmP9Pr0HDEF9Xw/F86GhoeA4Dh/8dwb39m2Obs3qCodMnyWdJ+K588LtA9GlaR2cTy8ADmiH5vrXDQCy+YiDA9neAKSbZNfOnRHat7kwngy/tujcuA66N68rGafRzR0oK8fGhAoseWyU5DrLx7tsxjh7VwT5YZtxOstsm+fWzxg0eIiQ50SJyI8FLiWhfft2CB3a2u55AaDOyb1ILeQ9K6GhobzVP2yL5vHNO/XG9FVHERJcH2M7B+HMNWX+3ZorfggJro/SCjPOFWcC4IW7Ds0boXO35kCkTZkNbN8bCNsvfP5PF48CmZno0b07QjsHORx/jOUCcOG88LjPgMEKr2O14GCNKDp9FThp6xt7orQhFk/qLrwvxtIML4xqLzwGAC//ukCmtA1Xs2bNERrKB/WI5/cr4SU49u4YNPT3lIxHshZan2vVrR9aB/ryIbHbw5THuZDv9iaizGTmv5sGdG/yi9oDFNlCw0u8GyI0tBcA3rs6PWwPbu/ZFF8+2BsArwDN33QGFd4WAMlo37IJQkN7Oj9ItWtVWVx5rip8/vDhI2CwF85kPW72/hJ8+WBv3N6zKQAg90QKcOIkYq4Z0HvAENT1tik9XpERQFERuIZtAfD7lb3vWWG2ANu2oqii8tdjusb1FMszrqDgVCpw8gSaBDVCaGgfAMDD3x9GZNI1nFs4EZeyi+DtbkSjOl54/rco7EpW1h7oFjIICFMaMSmNmjQDLiYBALZfcuwd7dm3H15fuhcGAux9aySG/i8ccyZ3xoxhbSTH0XXg/UfHCs+ZLRymh23BxkQzzi+aKDx/OacY08PCEVvki7+fGYyjF3Mwb2Ms1j832G74qz3ySipgIIC/lzssFg7pBaVoUtdbcdxPF48CGTYDUmhoKH5JOgZkZmB/Cn89cssBn1Y90L91fcX7d+XysqYeLI07Y1Qnfr8Qy4sB9ephxIgBOJSYjUFtGkj2tt69emFIu0B9X9pKbnG5Ys+lmC0c9pzPwMiOjVTT1AAo1wvr46HDhuPbvYnILj2HBNIEAF+r5GSmGZO6NwaupuHPCxZsvWKBv5cfAPv5ovQzopKvAYcO8mMv4w2UAwYPk1Y3to7B388XoaEjAPCRFWH/RANQT1/o2bMncPyo9LvcBLhynXEmxPdBaIT3EkIaE+tsIoT0t55X2f/gBiO9yCKEgdFcHc2bBrbQRfqeC+kFSMwsRGpuCfot2ok1xy7DYuGQV2JThL7cfcFhiG9GAW8x+9tBsQVxOIx4mHpC2fSEc1QGZyqJavHO+mgM/zgcOaJCCe/9K61eqta0+ktrWORb604pwyugr4jMNVG/Q44Den6wXRLy8ZosF5lG1kYl50o8vnpDj0orzC4LsVy0+azm5+aVVGD1wSQ8pNJzU4x4LLRyapmD0G2TKAS1aYBS8ZAXV3pr7Wncvny/8jyi36fL3G04lOD6JUVtDtC8HTUnotq9JA9TdjSv7vzqAK4VV2DHmXS8tU69OMzOsxlYsjUOn+28gBhR4YUmAV5CRV/KwQT1UPMPt5zFnvOZKC43aRYKSsoqksxxACgucz4v8XJOMR5YeQgpuSW4mqdunS4qMwkhj+K1ioZHOcLTzSB53yfbz+NfWX6pWiV0e/dTv0U7ETxrM645CPma/MU+fLr9nKJH7bWictWK4eUmC0oqWZV90Zaz+GT7eccHQnkviRUsus/8dypVuG4lFWasOpAkFPByt5O/diQxW9feYY+4tHzM+CkSWYVlqmF1NR0yLU5H6P/hTsVveSG9QLVFh7iCKb1GWYXliuItZuvcmyPbr8wWTjUkWHy9v9ubiOBZm1FusuD4pZzrnu/HcZzdKtviwm2UA/HZKDNZEDxrM0Z8HIH+H+4Cx3HYHK1eGG/57njNYnsAX8zGGehaZuGACxm84WavzlQcmr9aIUvBoLIfnb9zN8TgzNV8XKxCGHbPD7aj+zze0P3ZrgsYtHg3UnJL8OP+i7yjw4r89vjjaDJ2Wddy+lqFmcP93x5CxzlbJfPn7NV8iazpiCdWR6oW6uM4YHP0VTz03RH8flRa+E9Pxf/zooJY0Vfy0Gv+DsW6Tfl2bwKeWB2pqNpcWmHGnV8dwPFLOarvA/iCePT7u8tCbWlaTEGpCVeulQg93B2RXVimmtdM9zj53mIgBGYLh4LSCvx8KAl/HtPOrWcpqI7RpaASQnwBjAWwXvTcM4SQZ6wP7wUQQwg5BeALAA9wtTGRyQmSsorw9r4SfG6tnEaFDXuTigoHVD4fu2wvRn26B5eyi5FZUIa31p1Gm9lb8K+oWqaFgyQMM1jmwQKAVQeSdI25wmLB4i1nJRVqAccVbQG+NYWcyKQcxGdoF27Rw9mr+fjgv1hhPFrCK8ArcVtUNjKau5hvZ7FV27yLys0InrVZM1fSFXmaUbIG1xWS687PmcOJ2egyd5vD/qI5ReXo9F6YapViZ6BzdF3UFXwUph5+Q4cpFmjVbln5NcosKEOqnd8QkF4DNa8nIdpGE/EY5Mf8dSxZ8lqyC/qcmS0cKswWiaBKP1ceHv3PiStoO3uLZBOXC9gVZkuVhXo54g3SYuEUVXyNBvVlPCGzCI/9eBRd5m7D46uPqQpUoZ9E4If90sJIdL0oM5kV+cThcRk4nMgbCgpKK7DLmpM/7KNwHE7MwZAluzFo8W7V8Tz0/REMWcK/JhYCY1PycCFdqQRwsoa6Xu5GTF0pDeGV93lWK/ah59fovWCH8PexJKUQVFxuxpe74xUVF3sv2IExS/cojr9j+X50nhum45N5HvruMF5bc9Jp45TcMCeu3v7MrzbFn+ZeFZZK9wItBfVMaj6mrjyMxaLwyZTcEqf7Ub619jR2nk1HyMKd6CO6xhRzDYsJmaLvk1VYzkeHiBi7bC/GLFVGi4jXRXHV8lOXcyXHaa0F8zbGotv72xSG4W/2JAh/f7qDX7tLKsy45+tDGP1phP0vI6Oqe/efxy5j8JLdioJxHMfh18OX8Noa3jhrT8EE+Guohae7wa6RZH2UcwXO7vvGtj7Que4vypMsLjdpFlISquLK1lM6R+l+QH9vVxW52XOOV8Yy8ksxf9MZSds2eUX8d9ZHa56nzGTBnvMZmPDZXiRkFmLi5/uENjN6UevPyXHAC7/zaSWLt6invByMz8Ivh5KQmluC2f9EC/N619l0jFu2V/gdz1zl12ctWSg+nZ+zuTKj6YX0Qpy6nKsqp1K2xqQJ+5V8TlW2h+nirXGq8yWzoAxfhcej9TtbJDK70UDw+pqT6D5vO5IcyCfi+ZOoUSCxzGQWDFkR5zIEh0NphVm13sLNhi4FleO4Io7jGnAclyd67huO476x/r2c47iuHMf15DhuIMdxB6trwNcL2veSVvSiG5K9/ZQKB3KhVb7ISF6zcHa9ss5QWGrCt3v5IkBrIm3e1tl2FjXKH0eTEX7OZrUqrTDj3m8OqQpfalzKLsKoTyIUZbhXHUjCqgNJOJKYjbCYqxi0eDf2anhV5/wbg+d+i1L016LX9bcj6m07APsFF7QS4uXCRGXw83JDYmYh5v93BhYLBzXnIi2w5cgDSK2dvx6pWpFscSL/pWx1Ky8ttJBbXIGuVkFazdoqt2D3W7QTTzvweImva1ya0lJZYeY0q/ANXmJTbuQehn9PpgrW7M93XXBJlegKswW9PtiOER9HCM8JAohM8Np8mjeeiK2vcmVxfdQVhQXelWyNSVP0nxTrKCazRVMh0+vRo16kjnPCcP+3UoXw8dXH8MBK3ov44HeH8eRPkZql9+XQeWEyWyRedpOFw9hlexEWcxXBszYj1xopIRfe80oqNI1N9vj50CWrsU2pBKshFnIp9oqBqK09asW/7HEwIRvro1IUCs322DQEz9osCDAcJ43AkRflMIomg/h3IYQgNbcE/T+UFunRalFB14dfj1xC8KzNiEzKwZhP90juEz04Ul7sGXM2nEzBOlHUUHYh367KlZhkBcf07sXlZgvi0vJx8nKuZH+XG/S0PMTroq4ojn/tr5NCezPAVmSQ3gdFdu5ftbVb796txuWcYkEZOm9VGvZfyMLfkZdxLOmaxCNsr4osYF9RXh+VgpJqqiRN9w/xvdtl7jZJ1JC4ui1VzuSGSTpHqUJBf9K0/NJKVcHWMkIVqUSuOGvsfGJ1JOLSChQRZnpRG4PYUKjm9Qd44+N7G2Lx9rrT+P1IsmDEpP9nFpbhz6PJOHKRl4UM1vVIHrFA7wdPWWubHVZDqL31hOOAcuv9LK+2q7flmpySCrOqglpmsgjdH8S4GYjggLriIM9VvNSM+nQPCkorYLZwaPPOZvRdsAOTv9iHkAU70e39bUjKKsL0VcfwlrUd15vWqLMsJw2GNxrOVvG9ZaBz52hSDswWTtiE7IXCUlnBZLFINiZ7N4eF4xyG+OqlVMMyqLck9+OrjiGjoBRf7LqATu/pt/4DvCKamFWEzae1LXbU+zDtx6MInrVZoTjSwgfyTZ5uGHo9ydebZ349jh8PXERiVqFEQTWZLeA4TuRZt79I0nmQX+J8JcKYlDyhv62nmy034nx6oeomJ64EW1Ruxt0rDmDKCqVdyZ7XWt+4lAqqyWxRvY9KK8x2DQ0AMPXbQygpN9sN9XEGs4VDUblZ0sKJ6peZBWUSYYIqA+L7WT5X/zh6GT3mbUd1kVFQplDSxOMprjBrGtHkgpeWoCTekKPs9Gijv60zYWQAX1FSrhgAwI/W+/uM1QAgFwzU2mzphTe2aXtyghv4SB6XmcySHn9qa7Q9b4YeTGaLwlsr3yv+sxpFaH/nVQeS0POD7UgrsuBMar5CwdTqf20gUuOP8LyBIK+kQiF42lJb+N/gl8OXUFJh1hRQASCrsEwhMNnzjok/R42X/zwp6Q3ed+FO9Jzv3L31z4kruOdrbXu53MD05a4LKDdZ8FFYHOb/Z0sLkadKlJssmPDZPtz11QFoiQRlJrPEQyuG3ot3fGlLbVivEfYoXivV7rUNJ1PQ84PtiEnJc8oDfzGrSLP38mM/HlV8/iM/HMGba08roqBoQbWdTrb+AKDbuFUZqPLj6+mGw4nZgnc68pJt/Vy6wxZKT9dy+TpJ9wO5B/WxH4/i5T+lBevscTiRb8323T71CKlHRG3rVkTwvdkPVjKtpbLeNbV0hYRM/aHMdPrJp6GbgWDW+mjBk2ow8OuRPCKGGgnEMgxgMyTYyxHnOE7wlMrXocp2XDCblRFLgHoqCSC9Vo46fhBZGd/u87ajuNwECwdkF5UjNjVf6A1MjTg0wiPKOocrm0Zyo8AUVB38HXlZWJTEgtXlnGIUlZkQlXwNe89nijyokCxC6XaE7nNpBVUOxaEMURFAAOdCWWf+fFyyaGux9vgVIWwMsFmDNDtgqKwr8huYboTyUt4aEYwu4eNtVWuzYCAEWYVU0SYSxa/X/B1o/c4WXLQuWmKjxXv/xiisnPT7i72WB+KzVMMfxVgsHG77cj+eWH0MgPT6peSW4CPZdyytMKNCNidOJOciUSUEND7Dde0O7g9pDoBvL0N7gYlJsNMHlHLqSh7e/TfabtsRR4iFODXjETUkfLbzAr7fx4e/mi2c0Gf3yjWbUCcPiTpZRa98Zcr2izfQyKQczbxvo4HAZLYgLOYqOE594wV4a7gjbhcJ1gV28sTi0vIFKzrlWnG5qpfZ11p0gubAlssWE63IC1cgD8dKzyvDoz/YhHQ1weiPo9oRHWJ+2H9RaM4u5vNdF3DfN4ckaQLi+SgOS6NTlka5LDteiklf7ENqrnRvkddBoGgplhYLh54fbEe397cJBgCzhVPsGWJPkVaYb8jCnQhZKC1441BBreYQ31f/OoXjl66p5uIXlZkQmyo1oO2Ky0CHOVuxIiIBP4p6AsujRtaKPLvyCCl6rZ77NUq1JdTzv0cJPT8Ts4o088Mp4pD5L3ddUORL77cK37Gpeaq9mLXki5GfRCh6kVIui9Y4k9mCf07Yvm+BRpj4DFn+bU1D76UfD1zEAysPO2ypROd8YZlJ0lOaRhPQe0v8c+86a/+3oxy9mIMHVh7GB//F4kONMFkxWqk5eimwY0hy9n1VMSLQiIREmZJLn5cbsOlv8N+pVDy+6qjCkC0Oi03PL8UJ0dpp5rhKe0q1MFksqh7UXRrKpz0Dnhx5PQNAuzUjvcfUDLs3M0xB1UAc6lNUbhY2fLFgNeyjcHR9fxumrDiIaT8eFQIhzBwn8XJoFUIBgNS8UiHsoTZgT8A+lJCN4FmbcTWvBG/8fUqyaVPlnOM4TSuu/Nk6XlJhnC4E9vKqXM1X4QmOD7JDfEah4AkmBKohvhuseSAWjkNOUTnWHb+CXw5fUoSh0OI34sv38PdHhByemJQ8LN56VnF9qaJB55w8PGbTKWle71M/R+ouirV4q+M2JXqhi2xyTrEQ4iZGb2+y9VEp2KkhGGyLTROsp2Exaaq5HctEYXRqHhyxIWHRlrP458QVPCqybn+4JU6ISnB1Y3itHqn2yC60Xbd1dnO2OHy7NxHP/BqFbbFpVepTHC0Kw7e3KU/4bB8eWHkYn+20Gb3ySipUN9pwq9GC5sA6MsxUJ3LPl558s8s5xQietRnHRR6aXw5fwoJNZ4QcLjHUGi7Onxfn4Ld7dyv+k+WQUeNTerF6Tn9sah6KykyK+1vrNxILdEOW7MZTP0ei7ewtQhi32vuf/91WWXmtg8J9asXrxJhF82C/i/pKH72YI9zDNP+QKvIVZgu2x6aB4zi88HsUXvpDnwfMngdGrqCuCI8HAKGYjRyaKkB5fPUx3bmC3++/KORLL9kah27vbxOu8ZnUfGQXSeftq3+dxJile4T1i+M4VYWV4zh8vy8RG06mIK+kQqJYJ2UX41VRMUC58cLNaHB53r0r0Dsmk9mC/4XFSfIixfOarvG2EF/beeUGGLOFn1diD+YH/8UKqRK0OJmY2nTlYlPzne7Ba+8607v/r0hpsaDfNdK1qHFn46lUhJ/LVPQdFnu3xy3bi7tFUV+5xRVI0khpqiw7z2ao5uVW1RCthfz+pdD1XG7YrTCrK9A3C0xB1UAsjxiItGKaFnRTFIcE30xQi484l5IK6gaR5V5tvcovMWG9TCnxFXmLjl/KESrwTfhsH5bvtikRdkv/1zIqVL58PR++7YDZAjz9S6QkbI3y86EkSQhjfEaBQmh5cOVhfLsnEZO+kFa8lQsM8vAY+esH4rM0vWdy1CzylcWRN8WZ5tly5m6Iwe64dDz9y3FMX8V7vp759ThGfbpHodD/KfJ8iYvAUORenbfXRitCrZ76ORLBszZjuIYHorJUJn1VXORIK+cY4JUROseW7bjgsvwVtZB0efVPaW6d2a6BpKjMjJJyM34+VLVc7KogvzZ6ViDq3fwozOYhsZcLRkPGxcpfRr56tA3NA5Pf28GB0n58x5Ku4a11pxXXd+NJdQVI7pXWSgcRe83ECvUbKmuZGLV7PnjWZjz3G2/cPC0ydNAQxzKTtJJ5fmmFROmnrD5wUTJek5mvHnv/t4fQZvYWlJSbBY8Q/T1XhCdg5i/H8e/JFNVzVgZ5nqlWqo099CrKYr7Zk4DCMpMgtP906JKiwvc/1rDhfReykFZkweqDSRizdI/Ea7/59FWcupKHhZvP4uU/T6LnB9Iw6mvF0nVZLhCvi7pS5VSQHrTFmAvRCqWVU2qy4OuIBLy/0VaAR6wI0b2SPpcuukflBpiUayXYdPqqpECZODVJHpIfm6oeiusod9tVPD4kWPL4i10XEPpJhFPnEEcUKex4Tn4Nuawif3xU5MxRC3dXi8yqKttjlWviBRdFPcrJyFffk2lBsnKTRajRAPC5q72cTHu4kWAKqg4IbJuQPDRSDLVG5xaXK8pk1xTinmyuQpyn8NTPkXj6l0hJAQE15Xzh5jOiUFgeanmLTc3DPV8fkgiFn2w/j7azt+B/YXFOVctrUV/ZS6yqNK2rr4/r+qgr+CRSucDQ32DP+QzVIi9HL+Zg7oZYSYuCMUv3KoQWqqifvZoPs4UTLJ1ygUG+uZWptK653i0LAGXothyxgOAsPx+6hCdW89cvKatY8n3lRiXxo3DRhkbvcbmNwZ4y72rHQWU8qGJyCrWVfJOZE+SFc+kFeFHFq2cPrciI3BLlZ6rlO1Ke+eW4ZmghwAs8rkp7qCy5MqGcEIJ2jfw0j4++kicI6VoRMXJFht7PtPAF/Rz19/L/y++hUpUcpHNpBYo5H6mhjOnNLxMLg2phdPK5UVJuxtId5zWNIFui+XB5ca4jwHsEOs4Jw0eiAiRPrj6mmkc6778zkjUzQxaKOE+0nlBBlxY/fPWvU/D3cs3eKN/XrodH40XR3iCOMLK3fpSbOUHAPynKLX/+9yjMshPlJa+kK/co0Q4FVYH2xWxv5x5zFnklWC3UUgc8rIaVXw5fEkL96fcWR554GNXTkbTau8lvnclf7FetGeDMtvJsaFsnjpbiirkqr2wO2NJ15HmW9qgwWxRV2MtMZoUX9XqjFQkBANtfHe7Sz9LSG2hhxvT8MvSav0PizCguN0sKnN5MMAVVA3HYwrz/zggFDMJEeZdyqCXcUXlpPTSizeOryIgODVWfbyUrCuIMhbJKb9ti00HXaQvHqYZ8qOXBUiFKXrWXYrZw+DoiQXeIb7MAb+x9c6SuY/Wy4fkh+OvpQbqO1QoXpm1AtIRBeaVULcTC6dId5xD6SQS+jkhQVBKUC7mlJrOkh66FA5786frnC3k4UFD1ChSOKCwzCZUnAWVhM63gBjpHa7I3ozMfvenFoYrn5MKyGLOFk1i4L9ipaiu+h+/66gAA7egReesSilaFy3yN4ykrIhJU++JeT+ThzwZiPz/49uX7FXlWcv4+Lg1zU4t+1erHauY4PPfbcUV14FQVQ1Ndb3eHIfy39Whi93U54kgKeXh2WEwalonqFpSbLOg8Nwxf7LqgEF7F0QtqY7xgvW/FObtqArAa8ly54yIv4Z5zmZJqyADg7+V8vrcay60hvZTVB5PQ4d2tLjm3FuLQb3GEkb3ffe7BUsFAKr/3nak6rbaX6y3E+OfMgarP+3nykQEBPq43qDviud+iFM/RvWqBqH96TEq+QhGQe1CpwqdVcVlNNpK309I6TosH+rXQfaycMpMFwzVkRL2IjVB0b/3gvzP4YtcFSdskLTiOwy+HklTzOvddyML4z7SL2+nBVfe5Gh2C/BVFtarC6oNJlXrf46uOuWwMtQmmoGpQmZwKtYWuskwb1Mol5/HVEKochVvaQ63S2z9WK6tFI7y5vtVCKiajoBQfb4tTFPqQozfENyW3BIQQzJnc2e5xUe+NxaMD9V1fd6MBLeqrK/Ny66kW9npw/SrLQ7WHOLf0QDwfcvq/sDjJopZfWqFoQl1h5mrcCgnwOTyuXMztId7UxAI1f1+r39tUoaqqF/N68OqYDgiqo/Ts2/P2ykOX7aUrhCy09ayk+TZaxZfkRZAo/wurWgGymkQe1phRUOYw70irCitFbjwQ96+la8k1DSNNam4JtkSnCRWO7VHHy82hZ2R050aVFtzkHtRnfj2OL3bblDR7va5niSofq6UP0PDJpnVtkTB6C5/caTWkCOcSKe+04JFY2XW2FZAz6E2hcAXiiBkaRaIFVSYyCyqfTvF1hPN1G6b0aYbbezbFwDYN0Kmxv+J1X2u/bHnbJD18dG8Pp9/jCAPhQ6jl95FcEUjPL5MUNaS/O31fukbIviupSsHAa0XlGNK2QZU+f+FmW5qM2ECip9gmwCv+722IxXsqPU4rM9fkVMbZM7BNfd3H3jgJaDceTEFVgeM4PKyjkmV10ryeulK049XhmOyE9ZtaJuVUJcdBreAGteSbOfUcVDXC4zLxVXgCPhf1IlPDXl6dGjOGtUH/1toLTH1fD2WuhJVvHumL50faQmbocV7uyltFXoxIi1KVJHvKHCf6lYnzz8QhdeLm8lrV5ZwJ5fHxkM4ZV+QHje0ShOmDgxXntkdVNl4xy8Nt82v2+mhNL+OH1nzUqhQPqi7Ozp8gedyxsZ9mD0stzBZOksNjDzVFSat6a7hG3o8r2kJte8W1IVR6EefMVhdi+xY16uWphEs7O546OjyoBkIU1Vj14siAM2udvvY76v0F+bWyKgZUSqFKmOX1VByvF5UpdyFuoXQ9WHp/L3z5YG8AQEcVBfWevnyF9zfGd1C8NqiNfQVqcnfnogH0cK24wmHVX8r8/84gs6AMczfEKIz3enrQVxXPSuyTP04PAcAXg3NlvFBlquhuOMkb9qqr5VBl1pI/ZzqOmvvfPd0B6Cugx6gcTEFVQW+z7urE082A8wsnSsI3pg1qhfZB/mjox1uEZk3s5PA8bRuq53Q4Cre0h5oHlfLZzguqebpqXtWSCn0CklbPKXs48oBrFbGa0K0xnhzaRnhMFx+1RU6vAnU5p/L9Gyl5xRWSEF+xN0xcXOiPI9IwQoo9BbVXiwDh7xb1vRE9bzw+f6CX8NzPT/THa2M74PA7oysxcp7vpoWgnq+HQihuFqCdM+yoAqjuz95nKyIkryYo5u/jV1BaYcbpK7lOf8ZfGqFrrmB4h4bwlin2HYL84Sabk47C4z4Ki5OEPjvL9d6IOwT5qQqzgD6r+JIp3XF8zhgsntJd92dSoaM6oEYlk9mCq3klEs8+FezOuaBy8YaTqRj16R67x8gjGewZ9OQ4CsU/pOFRl6OmLFLjkL1Ii9CPw4WWWva4CesUugxnWs+5GrW9OaRVPSQtmYy+rZTzsFk9byQtmax5Pl9PN2x8YYjT4xjdqZHT71HjWlE55m2Mxc+HLmHHGWkIsJ4lUytFYkLXxliiY+2Sd0PQw6A2gajn446XR7eXyEJ39mrq9LnEVKbw2PeiIn/VgaPaF2IWT+muW86pQ3PYa15duGlhCmotQpyf4eFmgIebQVCWF9zVDfPv7AbA5v0U7+FvT1BXVu/q3Uz1eTWFS2/4ZZFGAQAKLYMvRq1Ca1GZ84qnXrQseZO6NwYAzebqgFQxokUbxIvcyI58zoarqqDqoef87ZKefWJFT3xtjyape8gKyrSFynoixcbdYIDRQHBnL9u8CfDxwEuj26NxXS9dGyYArH68n/C3vXw3GmbYU6QkU6qjsqMjOr0XphlmqUVox4YY0KaBptI0Y2jrKo3J2+qpHywKxQqq46WIgugQpK7MUdQKdDmDq3vMAUADX2XoP2XZ1F4AgI/u6SEJ4zv67mi01Ai7FxPg444Gfp5oLCtyJhd2OwTZjHhT+7XUM+xKQeXAt9aexqDFu1VDgl1hzNKDPK//5yf6q4ZeVifFKobOV/46CcB+kZik7GJJMZGcovIabUlUXQTV0ReaqKd/tKupSg0Leh+0b+QnGHnlxja145vX81aEXtJUne7N9O0VbRraql63llXAriwcbL3Lj8n230A/x7+hVs0Sbw8j+rSqp/m+V8a0x+cP9AIhxCkjHD33ibnjMLpzkHB9nwtti88f6O3UeW4IZGvdgju7YvNLyvoNAPBg/5bCfnFg1ijJa/KIJVr80lWRXnoJ9FPfM2uydkZ1wRTUasRZC91AUSgLVSDVLHBG640iFhi1Krl5adw8aiG+evNuK6NYZqsoqK7oJdUvWH0BV8v73PryMKx4uC8AaYisPIfFXZQHQ/NfxQo9dXzU5Hogzt/S0xyaVs1Uw0AIjs7mrYZD2gXaPc8D/fUJ8L1b2H4Xe5setUKqOUvbBPrh4uJJuj6vJqFhy1rT4ZnQthjWXnldqaFjVAt9FvAxnYMknym+h2cMbY2AaqjYTem/aKfLe8z5e7rhmRHaFSi7NuWFzvv7tcD9IbZIkkb+XpJrPX1wMDY8PwTxiyZKhHoaJdLQgZDYyJ8XSMSKanVQajIjPb9UoZjqVUSqwvTBwRgl2o/kef1e7sYqF0txlofspNGUaRTYUqPvwh1Cr+ibCb2eHK0Q++rEy63yQvkLo9qhVQMf/P3MIJyYO9bh96RFhPa/PQp/zhwkuV+etBr/9ES9tajvjbtEhle1HP7KYOE4oX6B3INYlcJ/Xu5Gu1Err4zpIBiS7+7dDA8PsL83J36ovpdSxeZmDVU1W1MShrYLxB9PDcSD/VsKBe/EXR/GdQmSvE8e3XVhkfT61bHut/Pu6FKlQlVyujWrY/d1raizmzF9gSmo1YhWcR09UAvlowNbwcvdIFF2qWBqlhU50Sp68bFKEYGq5PhoFUupThrX8RKarlP+e2EoXh1ry1kRLxJqIUydm9hufBrW4ufphlay30kttFS8eNMF73oV/HFESSVCoMUYDASN6nhh1+sjMPf2LsLzvz45AC+Nbq84ftX0flhwVze756zjbfutxNdJ/r7OTbS9NgZSO8LtAWBqiPYGtPAudev1nMmdseLhPgj088QvTw5QvD64bSCSlkzGtK76FJT7QpoLfxNRwSmjgWDObV3w1oSOus5TGTIKyrByr76+gs5Q2Z9XbGByMxD0bBEAN6MBL4xsJzw/vD2vcHVrVherpvdTnAMAvn64j/D39MFV83Q74qvwBAz4cJfi+XSN3neuZN4dXbHy0b7CY7EHlbZKcPa30LLkuwKtVj1qXK9QXhp9o8aKh/toVqht5O+JYe0D8e/z+sNQG/h61Jq1T40W9X0woav29bBH5yZ1sOfNkQjw8YCXu1ER4bDvrZH4VjRX5R6q/14ciu+nheDLB3sr+gBT6qtEZiy9v5dkrgxtH4g3xilzXp2F49TTkH46mGS364MaQ9o1EIyZAT7uumuFeLkbsehu2z4kTuEKbuCDg7NGwWAg+OmJ/nhHlhpGDe3VLc400dmuz9XQVAqjgWBQ2wZwMxoEZ4yREKx5ehBeHNUOK6eFOHVe6kG9u3dzLLlHKmO3beiLdc/q6/4gZ2xn+/dVAw2Da02G7VcXTEGtItMHB2u+Js8bc4ZWDfiFt3OTOohbMBFNRVYTWv1RXpUzet54iRAyz6psiBUzCt37HPVJ1fJQuppFd9tXeNSUwdYNfTGoTQMsntIdp94fJ1kkHBUFotfku2khCoVUbVMQ52nMmtAZnRr76w4rqm7shV4+MlDbqkrDlunXbdvQT2K4GNo+EK+NVW7gIzs1wqMDW6FH87qqhXqmDw7WFK7ukuW4vDOpM14Z0x6rpvdXHJtbxebvrsSedVIuDA1rHwg/Tzc8PqQ1Jtkp4KE2p2lY869PDhA8erSXnL+XOza9OFRQtgghmHtbFyFcqV2j6xui6Qqo4cdXtlbKjVEAsOfNUOx/m28jJZ7xRtEcbG41Ns2Z3FkSNjhSI5plYvcmgoeG3vd9WgY49yVqGK1q4vJr6GY0CGHi4rkXbN1rnOlZCCjX2PFdgzSV1mPvjnHq3K7CkTfCGeTtdcRM6t4EPZsHqL624YUh+OXJAQpDKOXB/jbjF52DL45qpziuKoUNXU3P5nXxjUjWAIDbezbFxG424Zoq9GNlnilHtKjvI+mH+rZMoWrk74UxXYJwe0/1fMlAP09M6KYU8r3djSg32xRJd6MBXZpWfX7sOZ+pWhG6Mn296/l4CKH2db3dnTaCfz8tBHf2aoptrwwX9o+G/p6C/DiiQ0M8LYtaEWQb2Z59+J3R8HZhh5Z7+jR3fFA1QGsziOcUlXOa1/NB/9b18fo4fcZdsROkjh3Z2d1oUKwHozo1wkf3KJ1FchxVV9fydF+P/svXG6agVpEpfdRzPAGl0OUqBA+qhcOYzkGSfKwxnYPw1oSOiJ43DtOH8B4Be8VmtIoFUewJ2M5CQxrVcBSGl5ZfqgihdDcSEELwYP+WCkXb0c06fXAwNr04FIPaNlDc8FS5EodUiq9T9+Z1EfbKcNXKvo4YpSPsuzJFD7SgwqcaS+/vBaDynuANzw/BhUWTsOnFoXhQFPr7/EilcEXx93KXCNRe7ka8MqYD6qoU+KFhONdDLgt2kFMlngtaVnd6Xz45tDViPhivuK7y1lFq9+VvMwYg/I1QiXFA3CevW7O6EmXriaGt0amxTcg6+u5o7HvLtb2Aqw1iq4T98MBWEq/JRpUer60a+ArVzcXLljgkf2THRvhz5kA8McSxN5Ra9GlRWvp7qQm3Yubf2dXhua8Xi6d0R9grw1Rf26ryPP2O4iWPelueGBLs1GfL2xT1aB6g2dasoYv6ejvLwNYNqtSyTez10UqBoYKv1jraxNoyx12lWEuvFgFYPKWHELZHvYX0k8Tew37B9gtZOdMao6qo5Ua+PLo9vn7Edg9/9VAfRM4Zg+UPOZ/XSBWIQD8PWzEanRgNgLvKb+HlbkCZqEK7h9HgkmrRQOXaEqrBcUCJNVzYx8MoCcUXdxfQYkyXIHz+QG+0DvTFvNv1rVM0GkV+yRrX9YIdm4zTqDlKXMH9IfYV314t6mHV4/3wlqhOS4v6Pvj8gV6652bkHN7AJnaCOJLT5OsBxylbMD49vA3kyFucKc+r/nyZnW4RNypMQdVAnEwPaOeD+NtZPL09pBNY7RyVCcujE99k4fD9YyHYKxJIDQaC50LbqY6rU2N/oUobzZkoKDXh9LxxiJ43Dl8/3EfwulLUws9orP6gNg2cEtaGtW+oWYjD0TpotnCSsD5AKpjKcXSzEkLQzeoB9VTJpzn27hh89bBt8aL7z7pnB0vGBEASVgjYzz3+4A7b9WpZ3wcLVK7fHZWopKelxNmr1mwRNqbKaYBUke/WrK6kfQz1KN7Vq6mqcLj7jRF2z9unZQCW3t9TqFL9kIPcGlfgaPMUt3YaI/II/PCYLSyItvbQCu2ff2c3Sf6ImkDr7+UuFO/oaFU8HSlMYhr5e0k+3573wl7+5/Xi3r7N8cyItnhpdHuMF4UMqoXoiZF4UGXXcWCbBqq9k7e9Mlyo9rnvrZEIs7awETyoVoNBmZ02Q3/NHIhpg4Ltjq0y6BE+1Xiwf0u0aeiHA7NGCd5lgE8RUWtVRo0oFo5D60BfiXGzUR0vp1qYdRV5n4Z3aIhnR7QVjEqOqGxhET3FscQYDMSukc4eqx7vJ8wRQD1SpVUDH3x6f08AUg/nu5OUvbjVqon+8dRA67n5OSdvXTZUlLtur73PlN7NNFtjyKNWXIE8Omzna8PRzqqor39uMJ4e3gaEEAT6earur46g96Iz4dvLpvK/A99vW3mtCSGSSBg3I3GZguoqOHC4t28L9G1VD4PbBkpiGspNFoxwIk9cb//4qf1bonWgryTPn9K6juuujzMt5tQQ54uK+ejenkKaghgq65aUmzCyYyOFLHRnr2YI8NGXpqBW7MpeCH5QHS8QQuDv5Sa0QcoqLEd7USFDb3cj6qnsc47WYK1ewcyDegvx18xBeLCTbfJoud3tuePlm3BQHU9sf3U47utrs/hUptiAUeRB1YMtgoMIuUe0CuwTQ1qjjpc7/L3cMbF7E4zuLBVotXofAsDdfZph2qBgdNFpGfN0NyjCdShapda/V8kL2PjCEHz+QC+7C7AzN6taKHZDf+nGSgsJtKinbCAv9hrM6O5ht/1PA1EI3Lw7uqChvzIv452JnYWCB1q5j3JBUMtQYq/xOVVQXZFLS+fi3Nu6COf77IHeQuVpMVo9fsWvT+nTXPhOH9zRDbtft6/UDmlX+Wbjv80YIBgr9ECL6jwxpLXkfnlrPP+7N6+n3TpHvKfJK6nKaR3oi7gFE3B378qHRi29vye2vKTuYXu7GnNW9eLpZsSsiZ2E+UwjIRxGEYgkV739YDs29kcPa9hVi/o+iqgLOm/t9S0eIOvJGPXeWLx3WxeNo/XzyMBWwn5RGXtRswBvNK/ngx1WQU3LgywYN80cdr8+AuFvhEpez3QiH9bbwygU5+sfXA8GA9GtoMrRm58mbn+lBwLtQoGUyDljFPmhHm4GjOzYSDIP1fbbe/s0F+aUeD+ic1L8W6q2KrPuPfTcVEkYZs2f/vyBXkKl6z6t6ml6oulavuH5IZJoFgCYUg2hlfKwcnF6QZ+W9fCOioLuDHTfchThJaZ/a/7e9HI3qkan1PFylxif3I2GKrXbqw4sFt6rvu7ZwWjXyE/y/Ud2aoSfnlCmwmih1/DcLMAb4W+EStLIKC/38cI/zw1WeZcNum6J15IvHlR6Ju2lvM0c3ka4Z7TWAq2WiQBfwf6l0e2x+vF++H5aCPa+ORJD2vLGncJq7BYh5tT7vKNn2dSewjoVPW88Fltbl7UO9EXfVvWEtcbdSPD4kGBFGp04IkoNLXnNmXvlRkHX3UkISSKERBNCThJCIlVeJ4SQLwgh8YSQ04SQPmrnuZFo6O+J8cHueGxQK3zzSB9F6NK0Qa3wzSN97SqocosRIQQdgvzx8X09hefkFlM9tLAK+PZ6SIqxiEI46OSmrWLkY5RPfrWWMnSfpsKI3hvD3WjAiPYN8drYDvhEdA22vzpc0zosXjTppwQH+kraoKhxn0yxo42p1dBjzVdT5mhFQHGYN8dBsCSrId40KsycqnDt5W4U+hIO1lC81ss2jbySCiSoVOnjNHzT7UWbnyNFSQ9UwNLbu7RpXS/NfDV5yXyjgaCBr/0QwVfHVL7YxZB2gZK2CfQnbhbgjX1vjcTeN6Uhs/V9PXB+4US8d5tUCLu/XwskLZms22OgJzfLkXDtCG93o6ZgYM8C/Pczg9DRQdsaZ9CbC7jxhSH45pE+DgvEiGd1oypW46TLl619l/77ob6vB54YEoyl9/d0fLAdGvl74fA7o3H03dFY/6x9gdAe7YP8cXT2aDymURvBKPKgigttUebfpR0REyIL66wwW4TK0c2sRpmhoirgaq2jtNBjUKzv64HeLevZbduk8LASx56bQD9PRXQObb0lnoc9W/BGLHHqjtZUMRoNODBrFI7O1pd7S42dA9o0QNKSycIe4uPhJiicfh5u+G2GstgaYNuTe7YIwOIp3SUVWx1FI+hBbsypbsWOzktnRO6mdb3w4qh2WDW9nyJfd/NLQ9HQ31Oi4HsYDRJFe9Xj6oXUAHWv1rRBrRD13ljhsTh3fYMTBbHEyGUp+rBZgDcGt7VfYV8OndPO5paL90Ifd4LeLethzdM273xPUfs3IpIpxe3q1KLI7N2HBkKEfZO2TKSGmR7N6+Lje3vgDQd5oq+N7YDQjo0wpksQWjbwEWT2Ih1dDpxh52vDsUklBaWuN+/oubt3c4lnto6XO7a9MlyQa5oG8PuVh5sBnm5G/P3MYLvh+fJWbGoK6m09mtyQNSgc4cwqM5LjuF4cx6lJ+hMBtLf+mwnga1cMrjbwwZ3dMKGbcnF6algbTOjWWLip1BLAqXAZ6OepuWCN7RyEut7uml4ONSZ1b4xfnuwv9ABzBPVYzRjWWpjc1GMpF17FylqzAG/Mmaz0DtBFVKs4hxblJgsMBoKXRrfHvX2b4+9nBmHhXd3QIcgfd/VuproJiHMT6WJtL7SXMve2LjgzfzyWTe2J76aFYFQnbWVAj4IqVH0TLQ7TBrXC+YUTEVTHS/j9OWgL/p9N7SXZOMtNFtX+b0YDwR09myLslWG4rUdT1YIxagUz1BYurd5YP07vhwBvfuGz5/HTS6g1v7hPS31Ftfa9PUozbF4tj02eo0pzQgBg4V3dEBJcX1fOt5ZSKJ4D214Zjl+e7I9/nx+CFvV90FIlP1Xco7gy7HkzVFGNz5VVUf99fgieHt4GbkZDpYqr9GlZD2ufHYSdryk915XJvR7ZUV/LrVYNfFXXWzl0DXpqWGvcW0UPEb1DaFjgMyPaOhVKSgjBlD7NETlnDI69OwYn545VGA9pakOoLA9/YJv6SFoyGUYDQV0fdzTy97LbYkwP9hR26pnSKqymZb3/bGovrJwWgh2vDheK05jMHJ4Y2hpL7++JO3vyRrrnR7bDtleGI2nJZM09T3zv8p/pL4TH24NO43v6Sn9vcZV6eZXwxnW8dIUW0nuZhuGqeTtfHdMBYa8Mk4T9aq0BbgaCZgHeunNvaUV+tTBgcUpPhyB/SSFEivzXFHtzuzWriz+eGoggH+cmlFjJvVvWT12897dxUT9RMXSkzjiFCCF4fVxHBAf6KtY8mjbx4mhbOo5RFOLbor43RnZshPdvV8o7bgaCrx7qIzFU/jlzIN6d3Fmi/PuIUro62alOLyfQz0MoLiW/Lal8JjfwVWeBxo0vDFXUMejfur5QYI169wHg9h5NMdvqLRfv276ebop+046MrdToERJcD1tfHiZEZ3Ac73AQh9nqiZjy9eQ/r8SJllV6aNfI36mIK4CP3qHXh+bui9eYP2cOwogODVUNufICTmpyXm2u+F0VXGUGuxPAzxzPYQABhBDXVdephYgnSdKSyfj0/p5YdHc3vDm+oxAWRPM82zT01bQmN6rjhVPvj3OqmhwhBMPaN9SdY1DX2x1JSybj7t7NhYlMe5nKlTPxIjP/zq6qYR9qypo9aM5qqWyh6BdcH49YlWxPNyPeVLGQiS23d1gFIz1eOoOBwMfDDXf3bu7QU+Xl4fg2oD0ZxZZjQojwmF4Ke/vp+K6NJdeswmxRLeZAz92pcR0YDQTRH4xXhIHoDe8WH3evSLDz9jAitGNDrHi4D15UaSXjLKM7B+H8wom6F26jgdhtzm6PsV2CJJsVFW5HdXbskdQyRtDNs3fLALQP8sew9g2rtbCL3Et3dv4E7H97lMbRztOrRYAQZteivg/+eW4wot4bK2mrYg+jgcDfyx1tGyqFzyPvjBGs3Gq8Ob6jopWBeAOlCm5VtlQa9vz0iLa610FNZB5UX083u9+PIg9nDfTjPTQBPh74T2Zhr+PFr8GhshwytQIwQiEj3V9AP3rSQ2YObwMPo0HYx5KWTMZdvZuhvq8H2gf5Y6FVCXxuZFu4Gw2Y0qe58BsYDAQdNeoMUMT3bvgboQh7ZbjdSuS0ym2OtZe2XPm4L6SFEMkk/02mDQpGBx2RAD2a1cXzI9viS2tootz46uFmgJvRgE6N66BFfR+H+dtae+N9fdWNKbQiv5qC6ib7zcZ1bYzIOWPwu8ibqmWIpDmLg9o2UO01bQ+1kGUK3fdOvT8OW17Wb1zXi5/193xlTOX2pi5NpfuQQTBAGAVl28NoEArOUKP340NaCzmD9OvT39LdzXYNBrZpoIiUEStgzhjvP5vaWzD6yD2ogX6eWPvMIKGgIQDEL5roVMsiZ6nr7a5aR0FuLOgQ5IdP7++Jhwa0RNKSyQ7zeeXXZKHImESIdO53blIHnu7S8HexLKjHKzykXSCmhrTAApU0I738757u+Gxqr0q/Xw0/qyFjsqwA6U9P9MemF/l7iaY0De/QUNGtQy3i7eZUTwG9CSMcgO2EEA7AtxzHrZS93gzAZdHjK9bnrlZ9iLUTtQ3o4QG8ssVxHD7Zfh4hwfXg62FUCGsAn/dWE0nNdLNr2cAH8RmFinBUsQKmJfgJIcOicDF70IVFrqDKUWvlIfaKLbq7G2ZN7OTywgZ6NpNvp/VF3NUCiZVUDN0A7V0Kg0EqqFeYLbqbK8vPq/ca0Cp8zQK8Me+Orlh7/AoAXlEjhLi0SvP1yuf56iGpkkUV1PtDmuO/U6mS1/q3ro+jop6K9LpNHxyM1QeThOep0uSiYoxOU5WWVHrobfVsT3Ty91azzNb1cRfClNS4vUdTNK/njZyicqEFA72+w9oHYvmDfdBz/nanxiHniSHBeHRgK5fMOVpQTbL2Odjxj88Zo1qVlRIgC4mkofryfUOtAJajnNqBbeojMikHldk+5MqOGrMndcbsSZ2RUVCKzAJlTio1eOrhmRFtkZJbAgD4fcYAhdGHflctBXX7q8PRrqEf1kWl4EVrMTqxYUueDiBOuWlR3xtGA5H0ypwzuTMWbj6r+ByDgeDN8Z0Qk5IHQDoX1j07WJEXp5U6If9ecpbc0wNvTuiI/ouk/XDp91dLDzCqXKNAP08EtvPEVw/1wfO/R6nuwVHvjRW8SADwQm8vRBbVx/oTKQD4tkDbYtNVxyku/gZAYUyk18dRm7rK4m406J5jakzo1hg7Xh2Oscv2ApDed/+7pwfentAJHm4G4ZqKjd42uYZ/TO8ZGnGkhTiyxFmPlr16ECGy6s16Dbuu3sroGGlxtNmTOivkEEKARwbYIvvuD2mONZG8zCEvCNSjudSI0KmxP67mlQrXwNMozUMWX19H9x/Az6H/iaIrKsPUfq4v0FjXxx3H54yxW6CpTUM//PxEf/RsHoB1UVckrxmdtTTdwOhVUIdyHJdCCGkEYAchJI7juL3OfhghZCb4EGAEBQUhIiLC2VNcVwoLCzXHeOjQQQR4qi8U3QzA6gm+iD91FF+N8kJe4ilEqPS4JwAi0s5Innu7nxe83FBt1+ZqKi9w9KtfjofaesGSGouIVPVjY6NPg1yVTpHejYwYUb8Q0Z4EhZdiEJFKYKjgBZDGvgRpRcqFo15FJgDAlHUJEREpmmMrM3MI8CTILePP0a2BEXv27BFe37/P6SnnNI6ue8Ql9efT0vjrWlpaJjnHzB6eWHmaf23/3r2SDcgzOx5H45VSptoYigtLJI+TYo7h1b6e+DGmHHnW6yV+n7sB8HYDzl+IBwB0C6hA5KH9wutHDu6rdPXe6kbrN3itryd2J5twYN8eiQBgykxCRARvH5ve1QOrY21l2htC2p8uI51vnG66xk/6NnUNiIiIQGIur6Tk5eU7ngNVuDdvb2nBd7nA2RNHkGDdaOytM9WJvc909FpMCt+jdlATI6Z29MDJTDPWnCtHsQk4dvQwEr0NGOQD9OjK4VgDDxhy+BunJP8ajh3m5+GkVoZasQekZhcDADITTiPiCr+mn0m35S3V9yK4v4MH3AyV++0/HeGNesYURESkIj5Z2tu3fn48IiLiJc/llvFrwtiWbth2iR/H1I4e+OscP68fbV2KKY04eHn76h4PPa5uBf/515LPISI/3s47RO89r+swVQZ6A/C2fX4KgJSzgNnC32/HjhxGvJcBFRradurZ40g9C6wc4w0gBRERKcgsth1bdvUCIiISYTbx1yk66pjwWmlJqfC53m5AiQloZ07GnW3dsSHB9juIryFdB8qKiyTPFwAQX4bkZP63uHgxERFEKkACwLm4OETkaV/ft/p5wUBsn22yGtlORUUi47xUrrh0kR9r0qVLiIhIk7x2No3/3hmZmQ7nQh0UY0QAwXrr4/rma5rH5lyMRUS6TZFPuZwsef3ooYPwca+d+4ca+/buUex3cYCwd3bxt+3bl1NLJcdxFrPi2qpd6+ysDM3XZ/X3gsnCITLdjI71jPj2tM3wc+rUKVwp5H9/S2G2y9bEuBy6p+VW+pzivema1dB06cIZrJ7gC1w9g4irUvl11XhfAFnCeyYFAmusr0Ue2o/VE3wxPawIABB1/LjwvsvJybivtTt6+Hri3IkjOAcgIZWf2/miMTzT0xPfnCpDTs41zBnghTqepFbsIdXFiVQgO02aQxtQZjMqeRiBcjOQkZFea66DK+UZXQoqx3Ep1v8zCCH/AOgPQKwtpAAQV6Vpbn1Ofp6VAFYCQEhICBcaGlq5UV8nIiIiIB5ju6g9iM8oBAAMGzJEkUPmCkIdHlE1cupcwc7kU5g4uBeGa5UsD9sMAOjdqxeGtAsUHid8OElQsGbcbTu8a98yhMVcxaODgvHr4UuY82+M5HSv3BuKxydXCP3g7DF+NDDhs72ISyvAx48M5tt/WD+/OufLi+Xn0C+4vvY1ccD2a9HAlWR4eHry47SOefZDY7DyNP/3qJGhvGJlfe2uCaNwKCEbK04dllj21b7nL0nHcCbbtgGGhoYiFMA/SeHIKyu2vc967tj5E0EI8P2+i8C5OAS3bInQ0M7C66NGjkRtwz98GwrKTJq/cyiAl8RPWL/Lc/fYclmvHk0GYqOFx21btwIu8oLit4/2RcS5DCDlMrp06ojfhvige/O6qOPljvpXcoHDB+Dr54fQUI2QNRfMw1AAbz8ofU6+zlQ3B3uVwMJxfG669TvJEY9nVZMMtKjnjTFL9wqvJR9KAqJj0bZVM9w1oTvuArB+3jbAZMLQIYMRJMqDnAw+qoQ0SMTUfi0Q4OOBJNdFM1eZH9vlYefZdNw11lZoq012Mb48EQ4A8PDwxKyH1POl7dEr9gCCG/jgnom9hefSjiYDZ2zzU+t3HzyoFA39PfH6mlPYdPoq/vf4WPw1i/+tRocOx+ED+/TNmbDN8Pd0E44dwXF4MrfEYSXt6sa4KwwwmzF8KL+PcirzsE/LAISGKkMZU3NLgL27AQBjhg9C83o+qH9kN4qvlWDk8KHAnh0AAB8fb+F7h/cuRXJOMfq3ro8RIzh8BqD1O1sASH8D36Qc4PAh1K9XF6Gh2sWqDhafBS4mom2btggNtYX7Djh3CEcu5qBnt64ItROtECp7bLF+/2FDBip+mwS3i8C5M2jSrDlCQ6VFrPqXmxBbEoX3b+8q8RSrERERgR79BgPh/PV58a6hGHM1H0/+JK17+cWDvYV0Gro+tGvTGkiwqeijQodXuYDbdUHHfjdiWDnqeLkLntOv4g4CmTbl3dPDXZgjTQ7tQvdmdREaKvIwWz+jcVBjIJUXe8V7MQA8M8W2flzOKca3p8OFxz169sAwb3f8EXcAL9zWX4h2qSpeidnA0cOoGxCA0FD1FkSOEO9NX8UdBK5dQ5/evYUijroIU5d/QkJCAKvRvGXLlpg0thPEZR5Loq8Cp6Pg7e0jjMEjPgvfnDqCugEBmHF35b7TjcYIjsNXJ/m1Km7BBJRWmLHiJH8P7397NJ79LQpL7uvp8P6/XrhSnnGooBJCfAEYOI4rsP49DsB82WEbAbxACPkTwAAAeRzH3XThvTtfG4G2s7fAbOFc0pqjJri7dzP0bBFgt2Q3hYa2LL2/J/bHZ2l+54b+nnjU2hvw4QEtFQqqu9GgSzmlUEunq5pf60GeiO4sD/Vvid+PJKNHQ+1NWy3sZ1DbBvjnucHo1SJANfSMEtqpEXbFZSiep+ekuYX39W2OcrNFCMEa3bkR/hcWJxSg6hDkh/Pphfq/2HXkwDuj7PagVCNYVsBIfoWbW3NpXhvbAeO7NkZkEh/u624kvPHFipD3Z+e2XnBnV8Sk5Ds1vtqIWl65PdQKHNE2VWoFrbSKODxdC/quqtG9eV10l4WbtWzgg12vj8DoT/foCidTQy1PTG++LC10tHRqLyy15kC1rO+D5Jxip/LbTs4dKwkJJITUuHIqRi1MetqgVnj/9q6a+404B5V+l5+f6I+tMWmSSqLidzeu64XG1jBde+GXNO3GUZg1LbojL6ZFQ14rKx+ohfj6WcN01V7z8XDDqsf1tx4R56+5GYmirRxgq/UgRl73wdkCibUZeahlXok0ykEchn9Io7AfZdX0fsLcoByZLX2P2vTr0TygSiHNavRuGYBRnRrZbXvnDFQcq2zglfy+Ez9UO6enWtoNrfVx83VU0URav8EoCfVvVMcL66pQ9b22o8eDGgTgH+tFcgPwO8dxYYSQZwCA47hvAGwBMAlAPIBiAI9Xz3BrD1UuzFFDEEJ0KacAHwcP8H3U9PZSU9v8na0iuuCurvjgvzNCfuxPT/SH2U6T8tpAt2Z1kbRkcqVCG/RYTB8Z0BLvyRR/wCaE0aIG4hZGAN8fTLzxrX12MHIKy1EbqePlDjjRMSRuwQRF2BZ93KN5XSyb2gttAn0R4O2OMVZB7NWxHayl4KVVKTs3roPpg4M123MAEIwwNyP3hzRHbGo+YlP1KeC0ouP4rjbhjd77rmhbVBtwN6gISFWkKtdmzdODEJ2S59Teo7cRfU0hvx5rnh6EXi0C7Cp4aq+1aeiH5605qsum9sSrf52qVGXL9kH8nvOYg3v9gX4t0DrQFwNknqQP7uyKej4eCNVZtVqOWtu5KX2aIy2vDE8Nb12pc2phr0e2nM6yXuc3qvyjB1qMa/lDvRHSqr6kd7kaH9/bA2+uPQ2A71VKWfV4PwR4u0uiSQCljNSqfvV4vjzdjPhxunbrHGehbWtc9dM7SjHyMPIGGXELQuro6BfshAf3JqMyVflvVBwqqBzHJQJQNHmzKqb0bw7A864dWu2ETo3amr/nClY/3g/bYtNdVsXUWUGhb6v62PiCrQrmiEqG3dYWBrVpgEOJ2Q6Pox4SNQghGNGhIfacz5Q9z/+vt1hMHS931cqhNyJqIWb0erRr5CcYYsaJlCgfDze8pFK12GAgmHeHdg/Im52P7uWX+OBZ6iG/cnq3rKdp8b9ZlkZajMKV1vqqRN6IvYA3Ou/f3gXz/osV7uE6Xm7ILzXpCh10pFh1bxYAwPE8HNKugaLqbyN/L12eLEIIBrZRtrpoUte7SoVZvFS8pO5GA16uZDVbOWIFWM9cXPV4PxgJwfAODbHj1eEoLDNh34Usl4yltpJlNeCGdmykmB9q2AokShcKR621mtT1wvZXh8P/BtmPXxzVHo+vPob2TvbHXvP0IEQlK/OdxQU61aryUplG7JtoHeiL3a+PQKsGtSOctSZwdZHQ2ozeIkkMK3TTu1m8BGqEdmxUaQuwmLXPDLqlbiYx308LwQVrvvKP0/shp9ix13L7q/bbLfz0RH+FAnGz9r+qLJN7NMHuuAy8Nd41YU0M/bQO9MXJy7k3jXeFWqrlgmdVuFFTQ1zNA/1b4oH+tgqZm14chpjUPF3vdVTFkvY97eSg3c1vMwbq+rzriaPQ4qoiNurJ5+L300JQX+YtFCtZVDFxVY7k9cBepWItfnqiP45dzNGlnAJAoNWQ70zvZIB3dtwoyinAe4crE4bcv3V9VcOTu9GA18Z2wNId6lXYaNXeRnWkjpI2OiMAb1aMBoIZQ1tjUo+bupMnAKagVhonomNuWeTl0W8lxnQJwhhr/1VvDyOaeTjO+6tM0QkqYzhq9XOr4OPhhq8fUTayZ+hjTOdGusP55fw4vR+iLl27aTz01DPiyntrbJcg3NGzKTae0iidfovSsoEPWjbQJ+A7CnFrGuCN358agJ7NA1wwsuvDpO6NsSU67boYHNsE+iIxq0jYOza9OBQHE7KE/epm4quH+qDC7Nz9O6JDQ6eitkZ0aIjvp4VgREfnIr3Yjm3rWyxuD0Xp3KQOXhnTXpJGwuCZc1uXmh7CdYEpqE7StWld3kvAPFea/Dg9xPFBjEqx4M6u6NrMVtDl9XEd8fxvUWhRiwqfMG5cvn9MO2fJ18OIonLtXsb1fT1uKiGXephcKUh6uRvxxYO98dLodrh526tXL3q80IPbBjo8pjbx+QO98b977PcJdxW/PTUAhxKyhZ7e3ZrVRbdmdR2868bEzWiAStS0y7mZ1r3ryaODWsHCcZimkvPtbjTglTEdlG+6Bfl+Wgiu5pU4PvAmgymoTrL68X44n154y4au6mFUJ7ZY22PTi0MVTav1Ii/UM75rY8R/OEn9YAbDhex/exQKy0yOD7xJEKITqqGaeLtGzuVxMWzcjOk17kbDdZMpmtT1rnSUBKPq0ErPU/o0c3DkzY+70YAZw9rU9DBqPbeqAYQpqE4S4OPhXA8oBkPGzWqtZtx4bH5pKNLySh0fCKCer0elDSs3IoS4vkgSo+rcLDnOjFsTP083nJk/XrUgFoPBsMEUVAaDwbhF6dq0Lro2ZQYTNWgoqd4K2Yzrh4ebAa+4qLItg3G9oeHVDAZDG3aXMBgMBoMhw8/TDa+N7YBJ3VmRjtrG+YUTa3oIDAajEvw2YwCa13NcNJLBYAoqg8FgMBgqqPXMZTAYDEblGNLuxipgxqg5WOwSg8FgMBgMBoPBYDBqBUxBZTAYDAaDwWAwGAxGrYApqAwGg8FgMBgMBoPBqBUwBZXBYDAYDAaDwWAwGLUCpqAyGAwGg8FgMBgMBqNWwBRUBoPBYDAYDAaDwWDUCpiCymAwGAwGg8FgMBiMWoFDBZUQ0oIQEk4IOUMIiSWEvKxyTCghJI8QctL6b271DJfBYDAYDAaDwWAwGDcrbjqOMQF4neO4KEKIP4DjhJAdHMedkR23j+O421w/RAaDwWAwGAwGg8Fg3Ao49KByHHeV47go698FAM4CaFbdA2MwGAwGg8FgMBgMxq2FUzmohJBgAL0BHFF5eRAh5BQhZCshpKsrBsdgMBgMBoPBYDAYjFsHwnGcvgMJ8QOwB8AijuPWy16rA8DCcVwhIWQSgM85jmuvco6ZAGYCQFBQUN8///yzquOvVgoLC+Hn51fTw2DcQLA5w3AWNmcYzsLmDMNZ2JxhOAubMwxn0ZozI0eOPM5xXIgz59KloBJC3AFsArCN47ilOo5PAhDCcVyW1jEhISFcZGSkE0O9/kRERCA0NLSmh8G4gWBzhuEsbM4wnIXNGYazsDnDcBY2ZxjOojVnCCFOK6h6qvgSAD8AOKulnBJCGluPAyGkv/W82c4MhMFgMBgMBoPBYDAYtzZ6qvgOAfAogGhCyEnrc7MBtAQAjuO+AXAvgGcJISYAJQAe4PTGDjMYDAaDwWAwGAwGgwEdCirHcfsBEAfHLAew3FWDYjAYDAaDwWAwGAzGrYdTVXwZDAaDwWAwGAwGg8GoLpiCymAwGAwGg8FgMBiMWgFTUBkMBoPBYDAYDAaDUStgCiqDwWAwGAwGg8FgMGoFTEFlMBgMBoPBYDAYDEatgCmoDAaDwWAwGAwGg8GoFTAFlcFgMBgMBoPBYDAYtQKmoDIYDAaDwWAwGAwGo1bAFFQGg8FgMBgMBoPBYNQKmILKYDAYDAaDwWAwGIxaAVNQGQwGg8FgMBgMBoNRK2AKKoPBYDAYDAaDwWAwagVMQWUwGAwGg8FgMBgMRq2AKagMBoPBYDAYDAaDwagVMAWVwWAwGAwGg8FgMBi1AqagMhgMBoPBYDAYDAajVqBLQSWETCCEnCOExBNCZqm87kkI+cv6+hFCSLDLR8pgMBgMBoPBYDAYjJsahwoqIcQI4CsAEwF0AfAgIaSL7LAnAVzjOK4dgGUA/ufqgTIYDAaDwWAwGAwG4+ZGjwe1P4B4juMSOY4rB/AngDtlx9wJ4Cfr32sBjCaEENcNk8FgMBgMBoPBYDAYNzt6FNRmAC6LHl+xPqd6DMdxJgB5ABq4YoAMBoPBYDAYDAaDwbg1cLueH0YImQlgpvVhISHk3PX8/EoQCCCrpgfBuKFgc4bhLGzOMJyFzRmGs7A5w3AWNmcYzqI1Z1o5eyI9CmoKgBaix82tz6kdc4UQ4gagLoBs+Yk4jlsJYKWzg6wpCCGRHMeF1PQ4GDcObM4wnIXNGYazsDnDcBY2ZxjOwuYMw1lcOWf0hPgeA9CeENKaEOIB4AEAG2XHbATwmPXvewHs5jiOc8UAGQwGg8FgMBgMBoNxa+DQg8pxnIkQ8gKAbQCMAH7kOC6WEDIfQCTHcRsB/ADgF0JIPIAc8Eosg8FgMBgMBoPBYDAYutGVg8px3BYAW2TPzRX9XQrgPtcOrVZww4QjM2oNbM4wnIXNGYazsDnDcBY2ZxjOwuYMw1lcNmcIi8RlMBgMBoPBYDAYDEZtQE8OKoPBYDAYDAaDwWAwGNUOU1BVIIRMIIScI4TEE0Jm1fR4GLUHQkgSISSaEHKSEBJpfa4+IWQHIeSC9f961ucJIeQL6zw6TQjpU7OjZ1wPCCE/EkIyCCExouecniOEkMesx18ghDym9lmMmwONOTOPEJJiXWtOEkImiV57xzpnzhFCxoueZ3vXLQIhpAUhJJwQcoYQEksIedn6PFtrGKrYmTNsrWGoQgjxIoQcJYScss6ZD6zPtyaEHLH+/n9Zi+iCEOJpfRxvfT1YdC7VuaQJx3Hsn+gf+EJQCQDaAPAAcApAl5oeF/tXO/4BSAIQKHvuIwCzrH/PAvA/69+TAGwFQAAMBHCkpsfP/l2XOTIcQB8AMZWdIwDqA0i0/l/P+ne9mv5u7N91nTPzALyhcmwX677kCaC1db8ysr3r1voHoAmAPta//QGct84Nttawf87OGbbWsH9ac4YA8LP+7Q7giHX9WAPgAevz3wB41vr3cwC+sf79AIC/7M0le5/NPKhK+gOI5zgukeO4cgB/ArizhsfEqN3cCeAn698/AbhL9PzPHM9hAAGEkCY1MD7GdYTjuL3gq5mLcXaOjAewg+O4HI7jrgHYAWBCtQ+eUSNozBkt7gTwJ8dxZRzHXQQQD37fYnvXLQTHcVc5jouy/l0A4CyAZmBrDUMDO3NGC7bW3OJY14tC60N36z8OwCgAa63Py9cZuv6sBTCaEEKgPZc0YQqqkmYALoseX4H9G5hxa8EB2E4IOU4ImWl9LojjuKvWv9MABFn/ZnOJQXF2jrC5wwCAF6zhmD/SUE2wOcOQYQ2j6w3eu8HWGoZDZHMGYGsNQwNCiJEQchJABngDVgKAXI7jTNZDxL+/MDesr+cBaIBKzBmmoDIYzjGU47g+ACYCeJ4QMlz8IsfHMrDS2AxN2Bxh6ORrAG0B9AJwFcCnNToaRq2EEOIHYB2AVziOyxe/xtYahhoqc4atNQxNOI4zcxzXC0Bz8F7PTtfjc5mCqiQFQAvR4+bW5xgMcByXYv0/A8A/4G/WdBq6a/0/w3o4m0sMirNzhM2dWxyO49KtgoEFwHewhUOxOcMAABBC3MErGr9xHLfe+jRbaxiaqM0ZttYw9MBxXC6AcACDwKcIuFlfEv/+wtywvl4XQDYqMWeYgqrkGID21gpVHuCTfDfW8JgYtQBCiC8hxJ/+DWAcgBjw84NWPnwMwAbr3xsBTLNWTxwIIE8UesW4tXB2jmwDMI4QUs8abjXO+hzjFkGWr343+LUG4OfMA9Zqia0BtAdwFGzvuqWw5nX9AOAsx3FLRS+xtYahitacYWsNQwtCSENCSID1b28AY8HnLocDuNd6mHydoevPvQB2WyM5tOaSJm72XrwV4TjORAh5AfwCbQTwI8dxsTU8LEbtIAjAP/waDzcAv3McF0YIOQZgDSHkSQCXANxvPX4L+MqJ8QCKATx+/YfMuN4QQv4AEAogkBByBcD7AJbAiTnCcVwOIWQBeEEAAOZzHKe3iA7jBkNjzoQSQnqBD9FMAvA0AHAcF0sIWQPgDAATgOc5jjNbz8P2rluHIQAeBRBtzQ8DgNlgaw1DG6058yBbaxgaNAHwEyHECN6puYbjuE2EkDMA/iSELARwArzhA9b/fyGExIMv/PcAYH8uaUGs5X8ZDAaDwWAwGAwGg8GoUViIL4PBYDAYDAaDwWAwagVMQWUwGAwGg8FgMBgMRq2AKagMBoPBYDAYDAaDwagV1FiRpMDAQC44OLimPl4XRUVF8PX1relhMG4g2JxhOAubMwxnYXOG4SxszjCchc0ZhrNozZnjx49ncRzX0Jlz1ZiCGhwcjMjIyJr6eF1EREQgNDS0pofBuIFgc4bhLGzOMJyFzRmGs7A5w3AWNmcYzqI1Zwghl5w9FwvxZTAYDAaDwWAwGAxGrYApqAwGg8FgMBgMBoPBqBUwBZXBYDAYDAaDwWAwGLUCpqAyGAwGg8FgMBgMBqNWwBRUBoPBYDAYDAaDwWDUCpiCyrjl4DgOPx1MQmGZqaaHwmAwGAwGg8FgMEQwBfUGJ6uwDCm5JTU9jBuKgwnZeH9jLN7fEFvTQ2EwGAwGg8FgMBgimIJ6gxOycCeGLNld08O4oSg3WQAAmYVlNTySW4f0/FIEz9qMNccu1/RQGAwGg8FgMBi1GKcVVELIj4SQDEJIjOi5+oSQHYSQC9b/67l2mDcPG0+l4udDSTU9jJuW7/clYkVEvN1jjAYCADBbLNdjSAwACZmFAIB1UVdqeCS1hyOJ2fj9SHJND4PBYDAYNzn/nUpFnwU7UGFmcg/jxqAyHtTVACbInpsFYBfHce0B7LI+Zqjw0h8nMNcFoaUpuSWYuyHG8YG3GAs3n8VHYefsHuNm5BVUk5kTniszmTFu2R4ciM+q1vHdslgvNSE1O4zaxNSVhzH7n+iaHsZNx1fh8Zjx0zGYzBZwHOf4DQwGg3GTM29jLHKKypFbXCF5PjW3BOFxGTU0KgZDG6cVVI7j9gLIkT19J4CfrH//BOCuqg2L4YghS3bj50OXanoYNyRGQj2oNuH1eNI1nE8vxHv/MqW/OqCX2sA0VE2KykwwWa3bFWYL/o68DIvl1lWwws9lYHtsmtPv+3jbOew8m4F2725lBgDGdSe/tAKxqXk1PQwGQxX5Fjz5i314fPWxmhlMFZm+6iju//ZQTQ+DUU24Kgc1iOO4q9a/0wAEuei8DBVKys01PYQbGiryV4iE/4e+PyJ5TUxaXilOXc6t9nHdCJSZzFi85azTFZAtVk8WU1CVmKzzsOv72/DkT5G4mleCr8Lj8eba09gUfdXBu29sLqQXoLRCfT17fNUxzPzluO5zXcouUnhM/zh6GcXlJnb/Mq4b0388islf7Gfeex2UlJtxOadY9TWzhWOV9q24IhqEvltu9Lwm86jeSEScy8TRi3J/GV/zQm803F/HkpFbXO7qoTFcgJurT8hxHEcIUb2TCCEzAcwEgKCgIERERLj6411KYWFhtY3xn7DdqOfl2D6QWmhBY18iEeyvFChzCMLDw0EIwSeRpSg3c5g9wNul473RsPe7xWbxAnFuXr7iuKLiYsVzM3cUodwMrJ7g6/Bzq3PO1AZ2J1fg5zPluHL5Mu7r6KH7fdGZvKCRlpVzU18fSlyOGQ29CRp4G1Bi4nCtlENTPwMyiy3YlVyBO9vZrt3q00VILtgFANhzPhODFu/G0Gb80nwiOhb+OXzIOiEEkWkmNPMzoIkfv3b8frYMfYPc0LG+8Tp/w6pTUM7hxd3FGNLUDU/18NQ8Tj5f8so4pBZa0LmB7Ttfyjfj/YOlqu/vMncbAODj4d5o6MNft/hrZiw8UorPQr0RoGMdrm3c7OvMjUxUchEAYHd4hFDvoCqcyjShXYARvu5VO1dtmjPvHyyBnzv/d2y2Basn+GLt+XLkl3OY1sUDbgaCX8+UYWeyCd+N84G7ynW8VmpBgCcBuUGMnqczTVh6vAxLhnmjsa9za870sCIMamrE0z28VF9PK7KAAAiyc96Kcl4J+2TdXkwMdldct93h4QoDsrNzxmThkJhnQYd613c/ko/x1fBiXCvjJDJbfjkHHzfg3/gKDG7qhqZ+BiTnmzH3YCn+2HsGQb4EE4LdBbl868UKJOSa8UJvL5SZOPx9vhz3dPBAepEFq2PL8VIfT9S3HltYzsHDCHgYpdfv7b3FmNTGHSOau1fp+xWUc9iXUqH6u9U2XLnOuEpBTSeENOE47iohpAkA1YB2juNWAlgJACEhIVxoaKiLPr56iIiIgMvHGLYZAPBqRAn+fmYQ+gXXF166mFWEnKJy9G1VD9FX8rD6YBLWRV3B7EmdMHN4W+G4w4nZwIHDktOWBnbCxO5NMN16fvm4y0xmGAiBu5G/oR778Sh6tQjAq2M7uPb71SCXsouAsAgAyu8PABkFpSirsACZhUDkMXj7+KJ1975IyysFwF9PTy8vyXtLys0oDwsDALTt0R91fdxRx4tfbE5ezsW8jbH4c+ZAeLnzC3K1zJlaRPy+RODMWQQ1bY6QQR2w8WQqdpxJw4P9W2LmL8cR/kYoWgfymwLHcYhJyUe3ZnXAnc8Ejh9DfK4Frbr1g8lsgYUDOjb2x8nLuUjNLcGk7k3sfnZBaQUMhMDX0+V2tSqRUVCK/ot24ftpIRjduREIIZg+azN8PIw4M38C7ly+H6eu5CFpyWQEz+LvT+96QQB4z8H+NIL9aVLlyuxZF0A2VsWUY1VMOV4a1Q6vjeuI6db3vzWhI54Y0hrTw8Kw/ZIJSUsmX8+v7BKSsoqA3RG4Uuahfs9Y17L/nTLi1THtMa5rYwDA8I/CkZxTKvnO22LTgIP2va2de/ZFt2Z1AQDr/jgBIBWkcUeE9mrmku9zPanudSY9vxRBddSF4VuZ0gozcosr0LiunWtjnbdDhg0X9oXKklNUjukLdmBQmwb4Y+bAKp2rNu1Nl6zXiDJ8+AhMD9sCANh7xYT/XhiKvTsOAgAGDh4Kfy+pgB+fUYDpS/eiX3A9xGcU4sjsMfBwq92Gpg1/nQSQAvfGHRDat7mu92QUlGJFeAKAIhxKNeOPl0IB8HLJ078ex9zbuqBNoC/azN4CL3cD4hZMxPO/RYEDhxUP9xXO89+pVBRUnAAArDlXgclDemNEh4b8i9bfYvBQ5Xylc2bw4l1oGuCNtc8OlrxeUm6Gt4ftPQs3ncH3Ry5i04tDhbW2WtGQd69Znx8+fAQMBoIykxkd54RheIeG2JuYidO57tj7VijvfT14CCczzUAmUOwegF+eHAAAgiw9fPgIrIiIx87k8+jduS0+PsQbjMMy6mDltBAAQPCszQhpVQ9rnx2MtLxSHEvKQb/g+kgP24VVMeV48/6ROJSQjREdGsLN6Pw8nfHTMew8l4Gpo/qhb6vaXYPWleuMq+7ojQAes/79GIANLjpvreOF36Pw+ppTmq+vOXYZz/2mLywtLq1A8njkJxG452t+Ub59+X6h4ik97tPt5zB3QwxKVELilofH2w1T6DgnDH0X7MAvh/m81T3nM/H5rgu6xlmb4TgOPx9KQl5xBUZ8HGH32P6LdmHYR+GYvorPtyg3WzDi4whMXWlT9uWFfU+KQgOHfRSOyV/sEx5/8F8sTl7ORUyKNN/oq/B4JFqr1tZmUnNLkJpbgs2nr2LnmXTh+QvpBVgTeRmxqXnYcDIF45btwYdbzireP2vdacz+Jxrh5zKFUMyRn0QIeZRRyddw+/L9WBGRIAkrGvlJBMYu24vxn+0FANz11QE891uUw/F2n7cdvefvqNJ3djUcx6H/It77OePnSLR+Z4sQslZsDcU/dYWfHxtOpgjv++dECuxxKDFb8njVwSTJ44/CzmH0p3ucHu/Jy7kYs3QPsmUtlg4lZKPnB9uRX3r9wr1M1pvNkZfp7NV8yZqbbL2+JlE1SmeFUzeDslCaFrvj0rFybwI4jkNeyY0bDqeX/06lYsCHu3BENgdrmh/3X0R6vrqX/Hox85fjGLh4l65jzS7IH6ct0RKqeT9Jzy+VhNq/9McJPPVzZLV+ppgK2cZ7/FIOyq33t9o9GpuaDwA4lnQN14orcM3FIZoX0gtwTiafOSIyKcduSDJNc3HGqz57fTRWy9Z+gHdS7D2fiQWbzqConP/M0gr+em2Ovoot0dLc/Rf/OCF5nFPEr//idDF71X1T80oReeka1kReRp41JDghsxCd54Zh3XFbZf5z6fw1y6olLfzoHKL30d7zmQCAa8XlyCgolewhAHAkMQfHknIk+2BGQZlQWMpd5CF1t+45NPQ68tI1AMDAxbvw4h8nJOtEl7l8+s6Xu+13mNAiv4T/jW+1CsyVaTPzB4BDADoSQq4QQp4EsATAWELIBQBjrI9vSjadvqpolWGxcMIkfWvdacXioIXedWp9VAqOX7qGL3fH4+dDlxBzRVmAITY1H700hHeaf5VfasJ7/8YIN+nNwInLuZi7IRaz1p+WPC/Ps1ATbOhNL4b+jp9sO4cJn+1VtKy5nFMCgBforxXxm2KZybZoFFVw+HjbOTxszWm9XmyNvoquc8M08/nkHL+Ug8FLdmPwkt14/vcozLAKI9/sScDYZXvx1trTmPzFfrz850mcTy/Eyr2J+OtYsnB+QmyKgpx2727FxawiXCviF/WdZ9NxIjlX17jm/3cGn+/kDSeXc4oRPGszNp+25WGW61igzRYOxy8p81KqAzUh9D2N6tov/3nSpZ+dklsi/K03L33WutOIzyhE34U7JYaVZTvOI6+kArEp+SguN+FqXomdszhHXFo+2s3eguTsYsSl5QvPV1gFT3eDchvadTZd8ljtd49KzkVydjFiUvKQVeBYIBKncFEh0aSj1dQTqyPx4ZY4/Hr4Enp+sJ2P1LiBOZyYjYMJyvysnKJyWCwcjiXx987Zq/mKY2qK5OxizN90RjUn+dTlXM08RlfjzN7pyPiRUVDqUPGk8zOjoMwlCm9ucTkfuSBjwIe7MOMnm0K68VQqdliNliazBVHJ16r82QAf5USjSMRUyK7VvP/OCH9vjUnDlBUHJAb4fJmhaPSne3D3igOKfZ8qILGpeYhLy8el7CL8LyxOoZjIERtQ9ZBbXI57vzmEl2SKoBj6++mJ0CytMOO3I5eQUyRVvFOtaz5VBAmxKV9yfjl8CaUVZmSoyD70628/Y5NVswrL8epfJ3EoQdsw9dba03hjLW8spEaC3edsAZM0RLi2pF9TeUV+7xSUmtB/0S6cka1x5WYL7vvmEHrM2y48l1FQioJSXla8lG1bZ3ytnmOxUSLTwT50MasIvx6+VOn7qbZc1+tFZar4PshxXBOO49w5jmvOcdwPHMdlcxw3muO49hzHjeE47vpIh9VMfhmH53477tCrcMdX+xXeOz3VN41OxJJTzyoArDl+2eHx8RkFSMgsxPbYNNz51QHJa9N+PCr8vfb4FZyo4uZjsXD4YtcFhVemOrmcU4zCMpMgmG+NkRoF5F7m277crziHmpXPZOEQmZSD5eHxiEsrwL4LSkEut7gcD353GEnWxSqnqBz7LvCCCy28JN9Yqkp2YRk++C9W04L20bZzKCo342qedDOKScnDRRWB5J6v1SvfLdkapzmGt9dF45Pt54XH9goexabmoaCMv29OJOdiebi65VCsJHEchx8PXMSynfxn/LD/IgBg4yn73kY5n++6gHu+PlSpTaCk3Iz7vz2EM6nawvn6qCv4yvp95IIVAMl75d71qmBPQM2x40H4bOd5QWEXG1MkxhfrT0kIH/4/aPFup8dXbrKoKgqr9ifBZOHw0p8nMOGzfQi3CjR0LG5G5Tx68iep94YWkhIL9Pd/ewjDPw7HbV/ux5trpQYqNQ4nZiPC+tmCB9UJof89a3uwgwnZ+HhbnO4Ky7GpeQietRnxGc55ZKpKQWmF6nrxwMrDeOg7qQEtLa8UfRbswIqIeEEISswq0mw/8fnOC+j+/jaXj1kLs3VQalFCd351AMM+Cpc8R/eGMpPZ5WsxoH0vnk+3/caOjB+DFu92GAUhvl+/35foxAjVmfDZPoR+EiF5jhpl92sUlflidzymrDjokkJje1X2UwB2Das/HriIqORczP4nGteKyhE8azO+t+4NlMIyE04k52Kl6BrlFJWj3btb8cuhJEz+Yj8mfLYPIz6OwNcRCZrftbJQ7+XuuAyELNwheBnF0PtKjwf1k23n8O4/MYiSGXaTrMYxuk8bCJHs72LF+71/Y/DG36fQ/0Olx5+uXWKj6chPIvDPiRQ8+N1hxfFiqMJbZv3NPEUhq/SrWa6zJmW2cFi5NwHP/io1YIVZ5UItw/bCzcrIMDl3LD+AvyJ5mXu7KNKMRu2I2/Y4ip40Ggjm/BuDKSsOqr6+Nfoq3lWrPF+7006rjdodtF/DbEgox5boNEkIgxoxKfkKb1KxDk9WUbkZCzadwdtrTzvVToJ68ewxZulejP50D45fsi+kv/H3Kdy94qBEsHx/Q4yqlZNyMD4Lrd/ZLHgQDydmY+mO83j3H+0WLaUVZtVqawCfHztkyW6F10ROXFo+SsrNWHv8CoZ9FI5u72/TXAipd6mk3IzU3BKHli1KudmCe7+xX7acWtMoL/5xAo/+cBTn0goQmWa2fif1BTHiXAbe3xCjafVU42peCfou3IlVB5I0r5GHdZMY+UmEYAkvKjPhti/345W/TkqO1aoGuHS7/f6x0nPYjwB44fcT2B3n2NsgNhyILdZmCyeENhkNRCEcpeSWoLhcPZwqzmoVVbMcO+JoUg6OXszBoi1nVF//OiIBr605hY+38ddKbePLEM01NcNIpeDsh/dUmCyIvpInWNgBPi8zeNZmfLbzAu6zzmnxT6Y2DTiOD5sDoPAyXCsqx5Vr2p6qt9aewrCPwhXe3KvW34Ea+qgCr9fbD/Dz4Xx6QaXCmimLtpzF9FXHkJpbIijFckXjnfWnsV9DiLYdE42vwhNwWqfxYeOpVADAtlj765ur6T5vO54ReRzziis02/ZQj/mOszaF9OdDlzTbTyzbeR4F17HCql7B12LhUFphRrf3t2Hg4l14/rco9Fng+rQArXtRbOBTU2K/Co9H8KzNKC436fKIiveJxXaMh/bYdDoVwbM2o9TEIU3Vm6Y9jjKTGeesUQ/itUWLw4nZfCRGap6ql7JIY87YC92mssmW6DTB4yf2ZImJE3nEqGHiPZW+8/5erq1jYBbNy6zCckQlX1OE+9LrrKeSvVaILAFRGHXF8kq7d7dKjt90Wr0K/FvrTkvSl+Rsib6K4Fmb8c0p5e9y6koeFm0+g1Lr3PR052WPNZGXEX6O3/PFU6q0wqz5fehccRazhcPSHTZjeUmFGR9uiRMcFTQUd9b6aOQWlwtpOFVFLEf6e7kjKasIW2Ns1zg9376c6cg48exvUfjtSLLiefouTrXPxM0LU1DtYDWKwcPNAJPZYte7JKegtAIfhcXhl0NJ6LNgh6oXdsGmM/hh/0X8FXkZWUW2iS23AlWFb/fqs7oO+ygc2YVlqDBb8JO1v+rcDTF47rfj+H5fojD+/NIKPPPrcXAcEGNdWKi3sqjchDKTTeg8EJ8lbEjvb4jF/d8eUvXmpeWVIiW3BE/+FKm5UeUWl2PCZ/vwzvrTWBNp8yBr7a3jlu1FRkEpJn2xD4OX6PcGyZtYqyH+jmLGf7YXv56VWuvlhofpq47hp0OX8JNKXokWWoq9GLpJAHxILWBTCOTKnVoOM8BbyvXy44GLyC+1L6D+ZxXM9XI+3eYdEyufhBCsOiC1mA9ZshvTfjgKNapS5I6GjtWRFeU4fSUXxeUm/C9MugZcr5yQgjITXv5TO3ws9JMI3L58PwYv2Y3lu/kQ6dUHkoTXPd34cCRnro1cwBr+UTiG/i9c42ggzKr8jFm6B7eLFHOqiHpZx1BcbgLHcdh0mp8fsan5sFg4PPL9EXR/f5tmePa4ZfpD7uwxeMlupFzjhe15G2MFg016fin+OHoZT/9i897aa+2g51JezilGqQvbgp1LK7Abgidnl9UDuu9CJnrO3+5U2x49FJWZdCkuznAmNV8R1UOF+ss5Jfh4G38PHkzIwjKRkArwdQE6vccXtcsrqcBOq8Jd2fu0tMKMOf9GK7ywVNkoM5nx6+FLQpqPeL5UWMOlxc/Rdf+1v7TrWIhRM3RuOJmCAidyxWnKxMYE9ffYS5u4c/kBwbBS4UChDotJwwMrD6PnB9sx+Yv96PHBduQVV2DZjvO47xveY6SloB6M157T4mvw9jr7fY1NFg5lJjOCZ23GmKXaxqykrGLNe9vZSDCLhROM9ZTHVx9Dt/e3IS2vFFeuFcNi4VzSai05p0hi9KQKYWW4SxZZJ4bWhDh8VX3t+m7fRXxujXSixvG3RFEsYkPSQ98dRsjCnYI8IpafHv3hCCZ/Yfs+J5Kv6bpX913IxBeiGipiY4jJbIGbKG1ErwzsLAHe7rh9+X58uMUmEzhyjrvpzOujc3Or1VCQ4uI19kaBKah2oOuih9GA7WfS8c2eBOUxohtDfOPtu5CFFREJeG9DLHKK1PM+xJy6bLMiycNVrxdfRyRg0ue2IkA/H7qELdFpWLj5LHrM246EzELM+ClSoZjQMMd9F7LQ1drSoaC0Ag9/fwSP/MCHksVezROelyO24M7dEIN8UWjavguZKK0wC2FJp6/kSTYDe5bX/ot2qSrEVcVRgRvKD/svos3sLdijkreUW6I/7ExcVvyZX/mN44nVx9Brvi1PwkOlMlxZhW1u5pdW4P5vDuGfE1dcFvIWn1F9hTvEXrjNp68iUyQ0UKU/0kF0gJZuUWG2IDW3RFVAod5xsYJaVGbCHcsP4IXflQqiXEB2BR2D/FWf1+uBo55ncWpnUB1PvPLnCSRk2u4H+vU3n76qagSR52hTj9nBhCzVa0fD3FJySxAts/IDtlDe4nIzws9l4NfDNkvx+hMp2B+fhYIyk2b4uSsRW/qpJ2GbVcFu09BPOO4rjdB0QF+o3rCPwgWDn7N9DDedTsXAD3dJBLbxn+0VQvCyC8sQPGszFm0+g/c3xNj1iDyqYcyh0JFp5XLml1Zg5s9KA+LITyIweMluvPB7FA46CJu8cq0Y9397SDX8UcykL/bh7hUHUVJuRlxaPvacz5SEZH4Vzu/DD313RFHoj15rOfKolwqzRcgntVg4bDiZoupJ/PdECn49nIylO6TRJZtPX8Wkz/eh45wwzPk3Bv+eTMGAD3dJFIZ1x6/gvm8OYcNJm6GOVtEPU/Fk/3IoSVC+Ab4eQJwsR+7U5Vy8/OdJvPTHCVzKLsLwj8JxNa9EyO0MnrVZ8RvRebrlovp1rzBpz0txIUd7eZscxwmGUUpxuRm9FmzH57su4FjSNXAcJxiG5CxSKcJXGfg0A8fC/Ot/n8K6KH4f3x6bxndGAJ/73nfhTqc+c9GWs5qRMhHnMjD0f+FYuS9RMKarLRvU+OkoqsSRgl4d0PQlOVmFvBzhqVKpWrzW0TDlHvO241xaATrOCcNWa3/v09Z6KuUmCw4mZOHuFQfxoyh8u7TCrFqYrrRCOhfFqTZP/hQpMcJ/HaGU211BdEqeYl0xONgTxLYJi4UTIlfkTg/6/Wj0zRXrfaOjZMJNRe3q11CL4DhOsBhqWbxOJF8TJg7AV9akvCXLiXIkm+itmOdmIE7lTTmDh5sBF+woHWev5ksEWQJlmBwd2zvr+YWUFseh35+o+B3E798Wm45tsdvRpUkdTO3XAu9vjEX7Rn6CZ9PDzSCx+Mqv8/WACkiOWLCJDxNdd/wKhrYLBMdx6NTYH3FpBSgq0+dVySuuUC28sFuWG6ZWxVR8nZZuP8+Hrybl4O7etb+txjhZgYoDIgv7oCW2cJ2dZ9Lx0p8ncOzdMUL7GbU5Jmb+f2eEatbbXx2ODiKFkFp56/rYFFRqwVdr/K0WjlNVzqVXLVcxq7AcO86kS9at9kH++Pek1KNNrdzP/26roCwOIdKqWPvQd0fw4d3d8dCAlg7HciG9QAgZpsJIcZlZIai+8bc+j1J1cPeKg7i7dzPU9eZ/8zYNbb3zlu3UrnQuVhw7zNmKcV2CsPyhPsJz8ugJtT2gtMKs2Ypk1rpoFJaZUFBqQn1fD8X8G2UNd/5uHy/Q/XToEt6a0BHPhbardEEdNeOV2cJhw4kUbD+TjkB/T3x4d3fhNRrOvun0VWw6fRX/PDcY0Sl5GNelsaIVy1fhCTh6MQc952/HwVmj0DSA79V9JDEbz/4WhYg3QyWGobkbYvC3g/QaveSXVGDHmTQMahOIOt5ueGDlYcSlFeDf54cgJiUPc/6NQfSVPMy5rYvkfbQSt5uskNdb66T7TlZhmSS0H7AZ8M5ezcddvZuB4ziJoU0ODUV9c3wnFJWZVCO2XrWma4Sfy0TwwSQk5xRjbeQVyfp/9GIObu/ZVHjsrmK8tFg4QZguM+vbi15bcwrtG/mje3Nb+5CYlDycSytAhdmCtSq/lXjOf7ztHNbrNO5Wlu1n0iV5gvagocs0qmBslyChMJQzqH1vCo0Kiky6Jqy38j6WUcnXsGRLHI4m5aCutzueGdFWsVbXJI6MWx5Gg8KwRZcfuYGPFmDbfiYdE0Vt5UoqzIhN4X8PsQx65/IDOJdeIGkptnjrWXy7R+oVFa/Fag6B6kAtfJrj7Mvo4vX1u32JWLw1DveHNMeayCs4PW+c8FpRuQkFpRWKdBNqXPd2N6KeL99L/UhiNpoGeKNFfR9XfK1aBfOgavDQd0dwzJpPWFJhVnXN373ioKR8d7RKdV1KcbnZJeGAjiw0VcHHw37Pts9lwtofx5JRYbYoikFkFJQqbl56v6rp+mYVye3M1Xy8v5HfsMULVlxaARIzb6wqmpkFZbhj+X50mLNVEHjkZfG3x6bh8VVHkVFQinf/iRYUpZ4iL6n4fHI8ZQqq2cJJPKjbRBZ7vR5gLdo38tN87a+ZA9EvuOp9uuyFWovzPJbuOI/icrNqNUwOvCc24lyGEE4KQGLp3yQKQ/5h/0VBKBRfT2rdlIfbJWvkQdUGnvo5UhKiqxa5wEHpFdktykG01zLhsp1cVMqRxGyMVQnL/Svysq5Q+uvJPydShDlE79F9FzId5OfZrl25yYJNp6+C4zgs3X4OF7OKFKH08jOtPX4Fnd4L06wKTK8/DW1OExVA+zOuTNWAQI2kevaaP44mY+3xK+A4TlK0Q57nVG6yCEqOo9z55JxizN0QKwmTjkzKEcLOKe/9y9cr2HM+E1NXHkZOUTnWHJMW/4u1U6jMWXKKy/H2umhM+fognvo5UvAMVpgtwvX/fv9FyW8RlXwNiVn8nBCnUKhRUq68LnTufLs3EVmFZdhwMlX1+h1OzEbHObbcwXkbYzXTOsQG8VXWEP6c4nJJkTT5b6/m6RcbL52ph3D78v3YdDoVqw9cxLd7EnDbl/vx+t+ndBUdWlFNnqzKIk/jqIxyCtiPjPjRmpri52kUFNSnfo5Ep/e2Yu/5TFzOKcaUFQdx1Kq4Ldkah7kaVeBrKxcyChRFyswWDun5pUKtBsoc631fYbZI9p6YlDxBeRWn96gZa+XKKcBXzHYkv14PMgvKYLJwaFHfW/V1cRQUNSyuieQNHOLIwMJSE/p/uEuR519utgjdFyhTVx5WXP+bBeZB1UDch7C0wqxqhZRjbxP7fl8iIs5pC/Z6ODl3rO4ebJVBq7APRe5d3Xz6Kvq0rCd4HihqCel0Ed9wMgVf7LqAN8d3RPsgf4Sfy9Adl19ZBrapj8OJNVdY+lpxuSAQ0WJaFWYLSivM2HgyFSM7NRKsuK+vOYV9F7IwtksQQjs2Uj2fuKIzRe5BXbL1rMRSK6/uWxXUDAqUAW0a4O9nBmPEx+GahSyqQqCfp6Tggq8nvynN/icam14cpji+89ww4W9vdyMKy0ySqrHioiHU4w3wQtvW6KvYFpumac0e/nH1bAq392zqdP6uGuLWPnkqLZV2x2VgtCxPS1wds6SCf09mQZmiyIWee1bcX1jO4YvV12OzWYC3kLNDrdN6jqUVu3ecSUdU8jWHnoP4jELM/DkSP07vJzyXUVCGL3bH47/TV7Hm6UGS47fFpiGrsAzz7+wGwBa+lZhZhFYNbF7bGT8dQ5emNi9VVmEZvt+XKPHshiXZMR7kFEvmuNg4I4ZGuQxu20DyvFzZKjPZjKuOlJkfrUpTtkjYokVcxB739IJS/C8sDlGiMP2Fm89ixrA2wuMAH+m+IsbZcOknrMWesgrLJGGUu+MyBEER4IvvtGrgi8TMQonSTnO4tUjJVa51VOkAgKu5pYr2dJTjl65J9t7VB5NUe18Cyn6hAG/Ma+TvaTvGbIHZwmFd1BVM6d1M9V6tMFsEz728ErlaCyIxaqkOVcmrpDzYvyX+OOr6iBQt6tqZX5SVexMwc3hb4bHJbEFRmRkFZRVoXo/3WOmZib6ebpJ7orTCgmk/HpX01aT8rBGmXltRC6k+lJiNz3Zqp79Ep+RJCjqJ2/LRNUZcnPTRH45gaLtASfqFmOrai52FGhUndmuCjPxSu55w+Z46SxS+rZU+RddhrToiNxvMg6qCfPNLzy/Fp7IcFLV8n2I7xTB2xWVUOVk7wMdD0ZpmsihMQk5QHU9seH4I6ltDARxRmSbC14rKHYbnHb+UI4T6fLfvIrafScfUlYdxIvkaHl91TNL2pjr4+uG+iueWTOmueK5r0zqSxy7YcwFI83go5SYOn+28gLfWncZgUcgq9Y7aq1YprhidVViGnw4mKfITv9t3ESurqTiArhZKGgrMWxM6Vumz5d4BujnGpCi9LbTQA+XJnyLx8p8nJRvqmsgrCJ61WVEYo8xkwbO/RVUq1MpbI2QTALa8NAyLp3TH7zMGCM/NGyQNhXx5dHsA/Hy8rYf2/e0Maj0tzRbOrhHh0+3nkZRVhH6LdmKiKDcd4EOZOI7DmsjLKCitwGuyStGOOGCnKIoWjet4YevLSiOEnDmTOwPgQ3U/uren3WP9PNVttPbaDAmf828M8ktNQrg4ACGHP6+kQlHNODY1Hz8fuiR4CGibhotZRTgYn4U95zPR6b2t2Hk2Q1IABOCVN3v7C6VNoC+GfRQuaROkplCIkefpyxWpyKRrokb19kUGWpBNNVJGpAjFpOTj64gEHLFTAO6gnWJQp1Wile7/Vjt3WeyxF6+t8vw0WsRn+ipp9WIvBx5UNSOIONLl9uX7VVuWAVB4meyhti0UlZkkCu6yHRfQdvYWvLX2NL7dm6iatvP6mlPov4jPtRQbHbZEX1W0INLDRhcY1J4f2dbxQS7Ey93ocC8TF8AB+Hup5/ztGPq/cFuurw4N1cvdqPrbqbUp08vRd0fjs6m9Kv1+V6HWJuz3I8mSegdy7O07O89mgOM4SW/7fReysHhrnO5UOEcMaF3fJefRwmggMKr097aH2Ck2Q+N7iuWf53+Lkugqjnr73ogwBVUFs4XDFFGe3nf7LioEYLUKaGlOeKnULGd6EFsqN780FJ8/0Av73hoJQClszZncBT1bBFRLHziKnnzYLdFpirCxnKJy3G21UFdXy6xh7QPRu2UA6vl64IWR7SSv9WoZoDi+Y2N/nJ0/QQjPWP14fxyYNQpzJnfGE0Nau3RsFWaLUHRLvElRQePlP0/q6psYsnCnEApdFToEKS2TU3o3U1XkTRZOkX/42tgOWP5Qb+Gxu8bi3FXkGaoM8rBGsQeU9tesjGFhlyynV8uDoYd1zw7Gs6HqwlajOp54sH9LDG4XiIndGmPBXd0QXNeIbx+1GVHaNvTFe7d1waK7u6sWv7pexKbmK3omUpaHx6P1O7wQPOffmGrPLQOkv3WHID/VNfTk3LHo2JjPKabC5z/PDdY8p7dGWJhccbm3b3PNc4iL4FAvSU5ROX7X8Ab1WbADu+PSBeVs/qYzeOj7I3h9zSlF8Q8xxTry1h1Fwagh9l6oMePnSBRaleq8kgrM+ddxoRYCgkMJ2Vi02RaVoKd/t17PqNq+o6faOWDfkEwNOfJjcgrLsbOSIaDVzY6z6ZL1SnyfrD6YpBoKvv1MOjIKynDqcq7EQCE36l1PmgV4o52d9BE5Tw5tXSUDnsnM4ZJGUTAx22PTBI+WuLhVTlE5LBZOV7ulH/ZfrFLv1Yb+nvjo3h5YcBcffeHrYUQjfy8H75Lyz3ODsejubsI5KN9NC5E8nn9nV6fO6wrvuZytMWlVUt4dsVhFrqE8M0J97x7bJUj3+UvK1dMCq8qrourfm6Ov4j9RKl11yvk1BVNQVXAzGvDebV3gbEi7M6WgG/jaQnJmTeykeF2cFC7GaBXKPpvaC12b1oWb0YAW9X1wYdFE3BciFaLEhRKqC3tVdCmXc4olLURcgb2bv0OQH7zcDfj5if5Y/6y6cEo9AZ5uBrw7ife4GAmBt4cRzazFOzyMBjQL8MaMYW0UG+en9/WstDewX3A9zetGWzYUlJrw5E+usRZqMal7Y+Hv76f1U7zu6+mGni0ChMevjGmPqSEtsPLRELSwhjeFtKqHN8d3xEuj2+O2Hrb5pmZVBfSXWa8Mj686hoyCUoWyqQdXFtvy83RD/2Clhfb0vHEI9LPd918/0hePDmwFABjf1fZbEELw5NDW6CW69vag87Wm2FDJgh59VIxEjqDRIKEdGwkCzPu3d8GYzkH44I6uCPDxQNMAb3i4GfDGeP7+7N1SOyeahojLEa/lU3o3Ewr6OINa1XeAD+97YrXy3tbqFUiRtzhSo7raERy3FrraeTZdUn1Zi+ScYjz43WFJ+Kwe3TNbp5C1ZKtrqr7K+WJ3PDrO2ar4Lb7ff1HTq1HT2Luujvp/3/nVATzjwrZ2epHXKZg+OBiEEEVYvJhBbaSh6G0a+uKt8bzs9P7tXdTeYpfZ/0RjpIYBTszMX45jzNI9+OeE1EtuIESS++tqpoa0wO7XRwDgW1rdH9JCCOWm6Tti3fDB/rzRWMuoWcfbHQ8PaAV32R48tksQDswahbXPDMKWl4Zh2qBgnJk/XrfyXxmjmCO0qj27CnnRs5Nzxwp/Pza4lep7hshSIeSI5cFrxeWCrA4Aq6Yr5StXIC6gaa8A240KU1A1qOfrgW/G+EhyO5whaclkfHRPD83X59zGK0UTuzXWtNiIoSGTVEBrK4vFdzcaYNJpcRKHF1JmDm+jGcZkT6fQo6DqrarnDEF1lNbDsFeGIfHDSdj+6gjELZgIQoiwkAcH+kqOpR4+QmxeFKpUzbujK6YPDpYoCPI1/56+zfFcqNQrq5fknGLVsF9AuthXRw6nmJHWHNd7+zZXVNwE+DnXuYkt7HlEh4b437090KVpHcEjHhJcH8+PVF4HN5VNcubwNqoK6tMj2iieqyyf7bzgVNGP6sDNSBQFG7o1q6MoyqGHGcPawEAgMRTIccbrUFOEtLIJpFShDlFR4sU8ObQ1JnZrLHkuqI4X9r01Em+NtwkD9/Ztju8fC8Fjg4MB8OF05xdOlBhMxLwnqtTq4+G4DMOn9/eEby0owKFXeasOHLV0chWfbtfXtolWhq4OqkPgvlVoXs++IWdA6/o4M388fpsxELf1aIJ6Pu5Y/9xgQcHUCrn/5pE+klxvgI90a9nAB0lLJuNxOxFO9/TRjn5whldlvWstHCcpsudqfD3dhDxh6qWkyqd8F729Z1PMva0LPn+gF0JEyr/YIErPRXNnxTQL8EZIcH10saY5+Xi4YflDfeCto0qNo9Y4laE6OlV8+2hf9LYaRVvU98Y8kVEjwMeWBuflZsSCu7opou78Vfbv8DdChb/v6mWLuiwuN0vS8UZ2Uq8n4ipeGNmuytFptRGmoNrBQEjVwhc03upmIBjftTGeGNJaKJhB+WxqL1VryxNDggEorYhixF4YewxuF4gtLw3DJ/fx+Vkf3t0dsyZ00mw/Irc2ibGXJ+Rqujez3YDywkzfPNIHnRrX0axyfE+fZpL2CO5uVgskiKD800IYnRrXwbw7ukrC//q2cl3OgrgKravx93TD0HaBqq+9PcHmqTcaCAKtxpfm9bwl4ZIvjuIXZvoc9QaKhXlqtdcyXqgporMndVbkpv4+YwC6NKmjOBbgi6QMaWffainndxe0fQluoL9ce//g+opwITcjURSt2vj80EqNpUvTOkhcPFkSav33M1Ivw3OhbYWUBLXfXu36DmuvPkeqC3FrChou66XSGknMe7d1UVSnBoAW9X0kBhBfHUqmmCeH2oRZueIpjzr54sHeIIRgdOfqFTBcQRuZEa6q/PBYiOODXIy4SE5ljcMM1/P3M4Pwz3OD0dDBb/LHUwPtvv74kNbw8XCDh5sByx/qgxNzx6FPy3qCIdndSFR/994t6ykM6PIK2wPbqO/Ro6pJOVi5NxHz/jvj+EAnoSG4JRUmITGKbptCDrhse+U4Dt4eRtzZq5mwNz89vA3+e3EIGluN+T5WBXVo+0BseH6IrrHoiXoQV911FfkqVeedRb53dGlSB2ueHoS4BRNACMH0Ia1xR8+mWPFwH8lxXu5GPDqwFV4Z014S5dNExYjfWrTmio3SxeUmzToccQsmOP1dnh5u34jv53Vz1rtlCqoDqmTJ0XirycLB3WjA3Nu7KBb8u3o3E6wtJ+eOxbF3xyB+0UTMtoahvn97V3w3LUQi8FGGtg/UDA2W06VpHdzbtzk2vTgUU/u1gMFA8O7kLhKrku1rVF8ugDOIF1XxZmU0EEzoZj8chRCCkZ0aCo/pQk8IMKVPMzw5tDVeG9dB8/3tGvnpvrbO8uP0EHxwh3N5H1psfmmYZg6mOC8y9oPxCO3QEN8+2hfPj2wnqfhLLa1UCVjxSB98fG8PSZ4qzRXTMuDIFdSW9dUrHvYNrqepYLw8uj2a1K3e8NVfn1RGEzwyUD3ER43m9b3xYP+WuF8UXu9mMCgU1Kq2h6LGgiZ1vdBP5Hnc8epwDGjTAFP7tQAA9G9dH92aaRf7uq9vc2x/dbjdIlzVgXjMpda2PZ7uRiy9334RI3mkiBgaHl2Vayvf2B/qL82tpqGI7Rr5a4anJy2ZjGVTewohdvb6DE8NaVHpsTpCq5+qGmoh6HIGt9VnxKhTTcLRymmuUZCrKwReHNUgr4Rcm6nMWOv5uKN3y3r4a6ZNAVXzTIp7MT4+JBgJH07CkdmjEf5GKLa/OhwTutk3ohNCcPTdMcLju3o1xbKpPRFUxwuEEKx7djDu7MUbkeQK6m8zBuLU3HGQI1cUxNEcVUGtXZuaEkOx58nd9OJQbHh+CNY9Owh+1rSDojJbHmMzq2ea7gP0G9F9W3wlqLw2omNDNKnrjU0vDcWn9/UU+mYC9iNyxOjZJarD4O4oNF2LP2cOFIoMyiMh3I0GuBsNknXyiwd7Y5Ks0ChVbN2MBqx/ziZz9mlVD9880gexH4yXnZcaVwyC17WozKwalQY4t05T3pnUGb8/pZRVbGO4OVW5m/NbuZDCsspbcmg7DrllW63B/Yn3xuLU+9LFNcDHAw39PeFmNAgLkYebwWGy9mtjO+i2fndrVldYwP083fDY4GC8IVPUOM6+0OUs4mI6ABRhfFqIBdHXx9lC/PRU9gSAIFFRASHEF7zn9L3buugKwdz80lBsf3W4rs/Ty6hOQQqFRg09Xq+WDXwEpVHN2/7rkwPw0qh28HI3ghDeky9f3GioON0cA/08cV9IC4kSa6+vLWBbMH+cHoI/nhqIvdZCXvTcA1rXR9KSyfB0M6ou2I8NaoXp1pBNiriQUGV5UKaADFW5phaOUyh5FBqC1sC62at5+AxEmmPuCtxE8xUAvp8WgiVTuqN9EF8QaECbBvhr5kA8F9pWEiY3U2Z57dEiAB2C/FHkoOCOWBBdPKW7UyGuaopcgI+7kNNE+/N6uhkwpU9zwUCz4K5uQlrEU8N4L+dzI9vhtxkD4G4keGSg9LdbcFc3p41Gnz/QCwAvPDev5y2JCgjt2FBh+GssSiU49M5oxdpI0zPu7t0ci6d0tyqrvTS9fx/aKc5RVfSsIRS1+1ae+uHtYRSEPXu8ba2hoBUJAehTCuQeskA/ZfV5casdvdhTGqpCO5HxJLvQ+fBrR5WBq4u+lVDQaEVScVTRPX2bCUYiQJlnZyB8dFJQHS+0DvRFB+ta5QyfPdAbd/e2KXZ9W9UT0nvkRjajgaCujzs+va8n1oqiTOTr0RI7qVdVxZ4s0qWp+v0xqlMjdGtWFz1bBKBvq/oY0aERmtb1wszhbRBUxwufTe2Fbx7h9z536z1O73UahSI2EtHLQmDbv++xU+TNHvRcNHS7b6t62PwSHw1krw1UZXltLL++rhW1mJF3V7DHwDYN8JSGt1FvYVItg6enmwETujWBrywMfeW0EAxtFwhvdyOmWyMdJ3ZrjBmiSB1XYC96spI1V2s9TEF1gL2qigDv5fn5if7o1Ni2+FKFjy6g/VvXx+rH+cX7yOzRWCgL6wX4nFd52GpleWl0e4zurL/imBhCCF4YJRVKLByHZVN7YXxX/pxfPdRH7a26mdy9iSTs5utHtBUPrZYdQ9oFCtYqvRufwUDw0qh2+PyBXiA0UsbJEO6uTes6/DxxFbz+onLmA1rXx2ODpN45qqzrcWjpLZpD19cZw1orwkGHtg/Ea+PsF3cyWXvtaYWoAMBkq7JBrdly6Obl6WbEIJHFnp5bXERJrX9wXW93EEIkgq3eEHYA6KjyGw1sU1/IJW7k7yl4x+TGl7IKi2Ze+O09m+C7aSF4wRoGrRb+7uVuROO6Xtj0YuXCetWQ/xZjugThAZmyPaBNA7gZDXhsUDAA4OCsUULkBaW9NV/143t7qG54dB0Tb8L2vJgAMFoWQqeutBN88UBvJHw4SchZ8rTe26M6BeGxwcF4dGAr3N+vBZKWTMa7k7sI33tIu0BcWDQJC++qunJ3hzWE9/3bu2L/26ME4+HANvWx8tEQ+Hm6CYLFrImdJOtDQ39PtGvkbx1zIyQtmaxa4A4AfnjMJqzveTNU+NvePQVANYJFD50a+2NEh4Z2jwmq4yl4z9TaDnVtVldhTBW3KNPKL+zWtC6Ozh4tCJdqLLxbuefJOSnyfn1yX0/VXLnKhDFXV472K2Ns++Tla9J6AY38PYW1y1/Dw/zKGO3rpRe1ezhpyWS780xP3rUcquT5uNve27Sut0RJpF4+el2qIjO3spNmQdewlvXVj7mnb3NJYTS50ak6DQNy5UWM/Ho82L8lTs4dq8itre/rgYPvjEY3a0rTXb2boYE1l9RDKO7Ir51jOgfh7QmdJOv8S6Pbw8PNoKkQOwOVftc+MxjrnuX/dW1aF0ffHS0YnauCeJp2auyvWo9i3h1dcW6hLSz2+ZFthTVVbAikxS61jKmeDjyXdzgoKireC9Y/NxgR1vzTkR0b4dcZA2AwEAT6eeLs/Al8vQ2Z4f/7aSHY9grv3Dg+Zwwi54zBpheHYqGsqvKD/dWjbOzJqiUO9JQbFaagOuDzB3ppxn8fnzMGr47tgOEdGgrhJu9M7ISDs0YBEOXpGQhCO/ICTVAdryqH+znL1peH4fcZA7D68X66+2ZJLHKy18TDlwvhdb3d8ftTA3Dq/XF4c7xUEaICDiEEKx7ug7t7NxOuFUUeekJbvlD+e2GoYE18Y3xHpz0or43riDt7NYO/pxvu69scPz3R36n3a/HxvbxVtmsDA6YNCsaTQ1vjm0f6Sqx2fz09CB/IjBNjrIYE8Ubv5+mGKX2UHmuqDKnlAS1/qLew+FEPqoWThlbqhYa12wsbaduQD3mmArucRXd1x5vjOyoEKHpusWKnVnWQbiZT+7XA/Du72o0IoIYTSqfG/vj5yf5oXs9bEhZj4Wz35Auj2uHvZ/gKz8um9pJ4p9s18oOXm/ZmNrZLkHC/uwkhV/z/C+/qJniEuzWrq36CSuCMHWVi9yZIWjJZqDxLDSp/zhyIgdbfo32QP/6YqcwXU6sO6eNhhL1Mhx+m95NYi6l1f4wob9NACAwG3qMy2Jon26t5gP4v5SLkm/x9IS2w87Xh+HPmIGHcNPJF3nMasPWh02pPQxELxXrbQXRuUgfTh7TG63YUPYAP0wakERVtG/rh2dC2mD3JpjAPbReIxA8nCWvoiof74tcnByB+0UTkl/J5Y+JQX083g6SoCiCdB3veVBdI3YwEjep4ochOLppW8Rsx4kgKcYVxMXpbT1Cvyy9P9sc7IuFdrFRWBR8Po6RQn9grt+v1Edj71kj88uQA7H97pGAwku9t8kJqjgj085AoZYkfTsKvIq/3H08NFOosbH5pqGZrJD0pO3IDH1V4vTxsa3VwoK/kTDSUmn6vqpTv2PjCUKF9npx7+zbH+ucG203roePt37o+gup4IWnJZCEaQpyW8sjAlhJvqyPEjgg13AxEiBSZ0qcZBrVpgA/v7o6XRrdXGEIXT+kuKc6jB7rfUKOuwUDwbGhbSQGfIe0CcX7hRF0OD0fh77P6eeGhAS0RVMdT4nlv5O+liDiLnqcMr3bEAZH899+LQwXFmxK3YAL6BdeHp5tRiLQzEIJWDXyRtGSyEM12b9/mgudUvMaL5ShHUUCfP9AL8Ysm6hp3n5b1FIU3Kd4eRlVlckyXIKEFWgM/TwT6eaJbs7p4ZCAfLUblusrUvSlwQc5ubeTmzKx1IXf2aoZh7Rvi272JitcaiDbzu/s0w0dh5zC6c5CwcdHFW03QuZ50thN6pcWBWaNQYebQZ8EOYWF4fEhrbItNR99W9TCuSxCa1fNGt2Z10b6Rn9AM/LFBrYTcpedHtsOJ5FyM7twId/VqhuJyE65Yy4d7uRuxTEVZ/ve5wTh+6Rru/YZvuv7h3d2x9vgVvH8775Xs3ryuav6tsxBC8PF99vPf9LB4Cj+++0Ja4L6QFoiIiABgqxT686EkABCUajFi5Vrc/y/GmuMQmXQNyaI+bVSwUKua17ahn7D4EUFB5Y9f+Whfp0qQzxjaGvEZhXhkgP5cTDl1fdxVq/u2DeSt35NFeR/y0MROjf2FvrOEEEyzCngAL7juO58l6T3Xp2U9bIu1VYp+sH9LBNXxwv63R0muK8dxwiYg37wfHtAS+y5k4fcZAzC4XaCkErCvhxHBgb6ITc0XFNxyq6IiV64dechqgkV3d8NdvZsJyqmYT+7riY5B/rh9+X70aF5XUADEHn0fD6Mw91oH+kr6JlIDgLiBuKebEXELRsPdaMDtX+7Hmav5EqPWHT2bYkT7hqhbDSFiWnzzSB/sOKNsP2Q0EIWRZXDbQKw6kKTaK7nE2h/TR0cekbe7ESUVZni5G/Dlg70V/Sib1PXCVVHv7C3W0Ln6KqGtYnxlYeYAf697uRsxc3hbpOaWYvXBJDwxNJg3ChBaBM4Ag4HAAILHhwRjfVQKmgbYlCwPowHLH+qN/h/uEp6ja8lDA1pqzm1qbNIqzsaP1bZX+noYUWSnFykATQNRiWzte6BfC/x5TNpf9aN7e+B+Wa7vowNb4ZfDl4S1xs1A7NaXWDylO34/kozolDzhuX1vjURBqQkR5zMwuG2gZN26o2dTvPtPNApKTajv42GrmOrhI6zDYzs3wqnLucJ7HPU4bhPI90M+l16Aoe0C0biuFx6x9qwd0q6BwtA9qG0DIVqlU+M6+OS+nujbqh7eWS/tW9tYpQK+HPlvTT2o8jHT9XXO5M7CvHRFentdb3dNBYsQgj52WkdR9r01Eg38pPcIIFUA7EVlLJnSHbOs1y64gQ+WTe2FQD9PDPsoXDhmTOdGGNGhId7bECuMbdnUXlh4VzeF8lko2rPE964z0BQZuSJXGc4tnCAYVrVoV8+IGaHa12hit8bYGsP3htWKdgP4tUecEzprYifkFldIPPJqBnGx0eq2Hk2xNSZNEsEW4OOBQ++MUq2wCwBL7++F9VF8rrCjaDlCiGp7vAa+HpWuoL73zZEoNzuucjzvjq7o2Ngf76yPluylcj5/oBde/vMkAD4ceukOvup5oY5evDciTEHVgZ7cnudC2+Gh/i0li9I9fZrh1OVcvOrAIl4boTf8kdmjhXDNgW0aCEqVuIBF2CvDsXTHOXwVnqDYNL8Xeb68PYwSpV4NQoik/UTLBj7VmjNSVR7s31KR1yiGbtbiMK8/Zw7ESZGgAigLPgB8Hh7d+ACbUmWv0Txg83BbrOccpzM09pcn+8PX0w0N/DwVzbtdRcsGPohbMEGy8cg9wu/f3lXTQ7XiYV7R7zhnq7Dh3RfSAou32npEis8n3pQ4jr9PmwZ443ZZC5IJ3ZpIDAYebgZ8fG8PvLn2NP6YORDRKXl4958Y4fekgoK42JYa218drlBMKkM967ryyCDnjQY+Hm6a4Z/UyxLxRiga+Hng/m8Pq77fGpmNF0e1Q0ir+hj+cTimDw4WjFHl/2fvrOOjtv8//vpcFUpx1wLD3Z2VwdgYc3emzH37/pizMTbm7htjYxuMCROKS3Et7lIKFKhR95P8/kg+uSSX5JL22l7L+/l48OCay+VyySefz9vfCs9W07oR8v29pl8r7D+bK4f/cSpTOQXE++uvkBrn4u7NsP3li1XhrRxesdKfBxUA/ntsBLYczwJjTLcn9cpnYrH+aIbcX5OPVT1v46y7B2FUpyYIcTC8JfUAVYaQKZWCZ8Z3Rudm0XIbKT4nK9exV6/ogVev6IGcQid2nMqGyy3A4RA9oUq4ciuYaB1cqNPO7UqhVHm9/nl0BMZ9sEb3WHUiQpFf4jKMMsorVgtieh4gMw9EnYhQvHZlDwzr2AjjP1yD+0e1x2W9WuCaLzao9hvXrRluGdwWMVPi5G28AJAydPLa/q3QW4qUGN6xEZbsS/UZG/zKaQXksBAHPrixD56et0vedkWflvhPal3SqkEtjOnaVNWi4sq+LXFw8SG8f0Nfw9+o5JbBbX0U1GEdG+H7SQNx74/bENulCS7v3RIfLT+M5KwidGgShduGtMM8jdLPFVbGGJ4Y2wmjO4vPPb/WytDW6wa0Rtyes6atXyqDNpoQ4OsHtMYX8cdQ10/vlD1TxyM1twQXNK0jK6iz7x2CNg1rI03TVu/CLk3RTLN+hYU4dD2jtcJC0KxuBK7t31pVSdwO/DEsq4KrJBBK7pe3D4DHI8jP64LHRuLVf/chQdOW6oHRHfDJyqMAgC9u6y8XJioykWV2azyyE3u3QEzjkT7tVPQKKS5/enSZihHpsfLZ2DK30mlroyMADz03Syu8ondLWUG9e4TYCvHOmVsqvJhkVUEKqgWUOVUvX94dv2w6gUSFF4GjnZRqh4fKrVyqK3r9RrWEOJhsiSurt3hw+4a6IRhl6R0ZTPBWLsrJcmiHRj7eLK6fKgsD3TEsBkfT8vHjxhN47coe8iKgp8wqLztvkWO399aoTuY5bIFCu3A0rhOBTc+PxcO/JGD7yWzTvrucjc+PRZHTrSugahXeX+8bglu/2wy3ICA81OHjXTHihoFtMKpTEzSvFylXFeQLzrhuzfDBssNyVcr/XdpVt5hYWQqD6BEVEVphVaQB3z7BSmqFh8geY5fUe3Dxk6NUuamjOjWWW4QoQ8HuG9UeNw1uU+2eYz3lFPAKvb0thCdf0DTaMAQeEIt2jOveDB2aROHmQd4xydtp3TU8BrM2JAEAYrt4n2V+LZXzgDJFIDoyTFWIz0xhq1c7zDB0F/DOK9xA0adNfZUXEPAWnFPy5W390bVFXUz+aZscXbPgsZE4cDYXFzQVc81yi5yYs0VUhPjcv/zpC5GYkS8f54o+LTGkfUPMXH8ciekFyNBEgnBl8JIezRAZFoJ/dp7x6VmtRBAg98vlz5PS+8Bbqfhrp8L54Ma+8uuPb+6H09lFPvMbvzfa29C6QS0M6dBIpaDeNLCNrKDqeawfurAjbhnUVlWR9bYhbWUvkRWiI8MwtlszLHhspJjOEBaCy3u3gMsjyMaRXzefUH1GmZKhNLg/M74LPIKgmvca14nAv48GLv8+UDw7vgseu6iTPGaMig5GR4b5eOR4SK3Wy3dpj+aWlcUQB8PmF8b539GEnq3q4pmLO/vUH6hKlMaknq3qYdLwGJWCmjRjIs7ll8gKqrJqrlnhomgdQ53VXp/KeXdUp8ZI1RgW7GDmzQ8k3GBQ7HRj4eOjcNkna332UV7r8FAHRndugl/vG4IhJgWUqjOkoFogLMSBvx8ZgWX7U3DPiBjcPTwmSBqvBA88b6us+bXzHtDPA9EruFKdmH5NTwzr0EjVT0sPr5VdvZ3LoMrLem3/VogMC1H1/FQWFGlZvxY+vlldKTnYaV4vEoPaN8T2k9k+Xhw9tArE0qdGY/yHoldGWzyjb9v66NS0jlxEwe55AWJRnJl3DcSFnUVFoXvLuiqFsWFUON6+vnye/tYNaskh8FXF7UPb4sX5e1WKvzJXjgsNXZur0wYu69UCe6aOx+rD6Rjf3euxZ4xVO+XUjLHdmiHu8ZGmFWutwj2gK5+JVW3v0KQOdr0yHnVrhcoKqpK6krBUUOLCV7cPwIM/J5iuRyGakH878HmHh3jPvncwek9dqj6+jpB5ac/mYIxhweMjZUW6Z6t6cl728xPEZ5ErqPteF4ugNK8XqWrP8Okt4jy2ZF8KEtMLZEPRF7f1R9PoCGRI1XMFwauw6ynkfJOeJ1hpVO1nEDr6lIWCRpFhIfoFxRRVVV+7sgecbg/6tqmvihTijOzUGN/cMQCTZycY/A6mUk4BYPo1vTD9GuMwTB5qPqpVKL6cPFZWQpU58lqlWmsE1bvHgDjvvXVt8EY4KXE4mKycHpx2qW61caMwdX59whTyyB1D28mGjGcu7oz1xzICfco+MMbwmIXK2lXJFb1boHFUOG6VwtEB35QajllKjN0ClkbM1mklF4z0llLXrurbylKBKx5uP9wktaK6QwqqRfq2qS9XUa3ilNKghIeTBioH7/tJA7F0X2rAJqmqoq7Gm2EE/5VaC61c0EJxHWqFhWD6NWLrj2/XHq9Qz1pl8tz4Lriuf2tV82urdG4Wjev6t8af25N9vP61w0Ox7OkLy3VujDFc1LVslbGtsvzpC3W945XJbUPa4TZN7nFYiANLnhyNY+n5pn0MoyPDcHlv80qINQGrVvzyYBYCrQz19ypexsf69NZ++Cr+mKotilX4/MvToupGhqFLs2gcSs2T93HrFC7in/MXRvjK5d0tNZl/aWJ3vDh/Dx6K7YjH5+zAiI6NUa92GPafEasR92/XAHuSc1TfbRWzNWvW3YPAGPNbIdkMpQd1kqZ1lhLe2onXEpjYy1pIuj+2vjQObo+AHZvXWypWBfgWo6rqOhqBRquQT72iO1JyS3yqcvdrWx87TmbLhnKlx2+aovrqY2M7Bb3iWFkwxnyUJm1FW+W+gPW+rDWZ1g1q68pyv9ynr2BXd9nYCqSgEgGBC9aBWsjGdmtW5lY51ZFbBrfF8YwCuX0JR+lBHS2F4N4ghai+OLG73I6jJhAa4ihXSOx7N/TGjOsqrs9kRROonJmKoEvzaFlwJqoWrqDmFjtlL5tZjmjnZtH4wGL1di28pcfAGK9ncfa9g/F7QjJqhYXg9QX7UT+q7B7yeyzm4nVpHo0/HhKrbnNvKyBGMqx85kLENIrCmiPpiNtzVjdapZaOB4xjpqAqQ6vLi7+VkYfptWsUhUNvXBqQHEHAWgVlLXw9H9+9GZbuT9UtHlOTuMsgX3bWXYNxMCVXvhd64eyENaLCQ1ThvZxVz8aqQupfmtitzDmfNYlv7hiA0BCxzdr5CimoREAob4jv+U6t8BCVRZYjtypiDG0a6lvYCBHGmOVm3IR/lj01GsfSfXPticpjVKfGPmGH3VqIhoLI0BD0k5Qxq4qeXfq1bYC1/xuj6oHatG6kXKG7or7XDh0kzzBv5abH42M7ITSE4YYBvvnnFb1k3TSoDX7ZfFJXODciUMppWbl5cBt8tPwIPripLxzMvOVYTaZe7TBVfh+Xb2idsY/SsKREGzF13yj9to7nG0bFLVc8cyEOpeTpvlfTIAWVCAg8Z61FPWs9/whr8Mpu/loSEESg6dQsGp0CVOSJ8PL9pIE+hYaM0MufahodiSf7R+CG8WLbi0AbrR4dc4GqaJa2Gmp1JCoiFM9d0lX3vYoOlbugaTT2GwjnwcoTYzvhkTEXnLeKqRkzru2liiggiMqkY5M6+rnuNRBSUImAcPeI9mjfOAoX2awcS5jz9MWdERUeiiv71vzcPoI4HwhE+kLfpqG6FawDwbOXdKmQ4xL6LH5yFLIKyt+KKpBQNIoxwVRBN5j59f4hlVL9lqi5kIJKBIQQBzuvckYri+jIMBIYCYKoFix5cjTO5FRtJeqyMnl01YQWaitiE0RNgPfIJoiyQgoqQRAEQRDlproW06LcfoIgiOCCEgwIgiAIgiAIgiCIoIAUVIIgCIIgCIIgCCIoIAWVIAiCIAiCIAiCCApIQSUIgiAIgiAIgiCCgoAWSWKMJQHIA+AG4BIEYWAgj08QBEEQBEEQBEHUXCqiiu8YQRAyKuC4BEEQBEEQBEEQRA2GQnwJgiAIgiAIgiCIoCDQCqoAYCljLIExNjnAxyYIgiAIgiAIgiBqMEwQhMAdjLFWgiCcZow1BbAMwGOCIKxRvD8ZwGQAaNas2YC5c+cG7Lsrgvz8fNSpU6eqT4OoRtCYIexCY4awC40Zwi40Zgi70Jgh7GI0ZsaMGZNgty5RQBVU1YEZmwogXxCE9/TeHzhwoLBt27YK+e5AER8fj9jY2Ko+DaIaQWOGsAuNGcIuNGYIu9CYIexCY4awi9GYYYzZVlADFuLLGItijEXz1wDGA9gbqOMTBEEQBEEQBEEQNZtAVvFtBmA+Y4wf91dBEBYH8PgEQRAEQRAEQRBEDSZgCqogCIkA+gTqeARBEARBEARBEMT5BbWZIQiCIAiCIAiCIIICUlAJgiAIgiAIgiCIoIAUVIIgCIIgCIIgCCIoIAWVIAiCIAiCIAiCCApIQSUIgiAIgiAIgiCCAlJQCYIgCIIgCIIgiKCAFFSCIAiCIAiCIAgiKCAFlSAIgiAIgiAIgggKSEElCIIgCIIgCIIgggJSUAmCIAiCIAiCIIiggBRUgiAIgiAIgiAIIiggBZUgCIIgCIIgCIIICkhBJQiCIAiCIAiCIIICUlAJgiAIgiAIgiCIoIAUVIIgCIIgCIIgCCIoIAWVIAiCIAiCIAiCCApIQSUIgiAIgiAIgiCCAlJQCYIgCIIgCIIgiKCAFFSCIAiCIAiCIAgiKCAFlSAIgiAIgiAIgggKSEElCIIgCIIgCIIgggJSUAmCIAiCIAiCIIiggBRUgiAIgiAIgiAIIiggBZUgCIIgCIIgCIIICkhBJQiCIAiCIAiCIIICUlAJgiAIgiAIgiCIoIAUVIIgCIIgCIIgCCIoIAWVIAiCIAiCIAiCCApIQSUIgiAIgiAIgiCCAlJQCYIgCIIgCIIgiKCAFFSCIAiCIAiCIAgiKAiogsoYu5QxdogxdpQxNiWQxyYIgiAIgiAIgiBqNgFTUBljIQA+BzABQHcAtzDGugfq+ARBEARBEARBEETNJpAe1MEAjgqCkCgIQimAuQCuCuDxCYIgCIIgCIIgiBpMIBXUVgBOKf5OlrYRBEEQBEEQBEEQhF9CK/PLGGOTAUyW/sxnjB2qzO8vA40BZFT1SRDVChozhF1ozBB2oTFD2IXGDGEXGjOEXYzGTDu7BwqkgnoaQBvF362lbTKCIHwD4JsAfmeFwhjbJgjCwKo+D6L6QGOGsAuNGcIuNGYIu9CYIexCY4awSyDHTCBDfLcC6MQYa88YCwdwM4B/A3h8giAIgiAIgiAIogYTMA+qIAguxtijAJYACAEwUxCEfYE6PkEQBEEQBEEQBFGzCWgOqiAICwEsDOQxq5hqE45MBA00Zgi70Jgh7EJjhrALjRnCLjRmCLsEbMwwQRACdSyCIAiCIAiCIAiCKDOBzEElCIIgCIIgCIIgiDJDCqoOjLFLGWOHGGNHGWNTqvp8iOCBMZbEGNvDGNvJGNsmbWvIGFvGGDsi/d9A2s4YY59I42g3Y6x/1Z49URkwxmYyxtIYY3sV22yPEcbYJGn/I4yxSVXxW4jKwWDMTGWMnZbmmp2MscsU7z0vjZlDjLFLFNtp7TpPYIy1YYytYoztZ4ztY4w9IW2nuYbQxWTM0FxD6MIYi2SMbWGM7ZLGzGvS9vaMsc3S/f9NKo4LxliE9PdR6f0YxbF0x5IhgiDQP8U/iAWejgHoACAcwC4A3av6vOhfcPwDkASgsWbbOwCmSK+nAHhben0ZgEUAGIChADZX9fnTv0oZI6MB9Aewt6xjBEBDAInS/w2k1w2q+rfRv0odM1MBPKuzb3dpXYoA0F5ar0Jo7Tq//gFoAaC/9DoawGFpbNBcQ//sjhmaa+if0ZhhAOpIr8MAbJbmj3kAbpa2fwXgIen1wwC+kl7fDOA3s7Fk9t3kQfVlMICjgiAkCoJQCmAugKuq+JyI4OYqAD9Kr38EcLVi+0+CyCYA9RljLarg/IhKRBCENQAyNZvtjpFLACwTBCFTEIQsAMsAXFrhJ09UCQZjxoirAMwVBKFEEITjAI5CXLdo7TqPEAThrCAI26XXeQAOAGgFmmsIA0zGjBE015znSPNFvvRnmPRPAHARgD+k7dp5hs8/fwAYyxhjMB5LhpCC6ksrAKcUfyfD/AEmzi8EAEsZYwmMscnStmaCIJyVXqcAaCa9prFEcOyOERo7BAA8KoVjzuShmqAxQ2iQwuj6QfRu0FxD+EUzZgCaawgDGGMhjLGdANIgGrCOAcgWBMEl7aK8//LYkN7PAdAIZRgzpKAShD1GCoLQH8AEAI8wxkYr3xTEWAYqjU0YQmOEsMiXADoC6AvgLID3q/RsiKCEMVYHwJ8AnhQEIVf5Hs01hB46Y4bmGsIQQRDcgiD0BdAaoteza2V8LymovpwG0Ebxd2tpG0FAEITT0v9pAOZDfFhTeeiu9H+atDuNJYJjd4zQ2DnPEQQhVRIMPAC+hTccisYMAQBgjIVBVDR+EQThL2kzzTWEIXpjhuYawgqCIGQDWAVgGMQUgVDpLeX9l8eG9H49AOdQhjFDCqovWwF0kipUhUNM8v23is+JCAIYY1GMsWj+GsB4AHshjg9e+XASgH+k1/8CuFOqnjgUQI4i9Io4v7A7RpYAGM8YayCFW42XthHnCZp89WsgzjWAOGZulqoltgfQCcAW0Np1XiHldX0P4IAgCB8o3qK5htDFaMzQXEMYwRhrwhirL72uBeBiiLnLqwBcL+2mnWf4/HM9gJVSJIfRWDIk1OzN8xFBEFyMsUchTtAhAGYKgrCvik+LCA6aAZgvzvEIBfCrIAiLGWNbAcxjjN0L4ASAG6X9F0KsnHgUQCGAuyv/lInKhjE2B0AsgMaMsWQArwKYARtjRBCETMbYNIiCAAC8LgiC1SI6RDXDYMzEMsb6QgzRTALwAAAIgrCPMTYPwH4ALgCPCILglo5Da9f5wwgAdwDYI+WHAcALoLmGMMZozNxCcw1hQAsAPzLGQiA6NecJgrCAMbYfwFzG2BsAdkA0fED6fzZj7CjEwn83A+ZjyQgmlf8lCIIgCIIgCIIgiCqFQnwJgiAIgiAIgiCIoMC2giqVoE5jjO1VbGvIGFvGGDsi/d/A7BgEQRAEQRAEQRAEoaUsHtRZ8G3iPAXACkEQOgFYIf1NEARBEARBEARBEJYpUw6q1OB3gSAIPaW/DwGIFQThrFQNLF4QhC5mx2jcuLEQExNj/4wrkYKCAkRFRVX1aRDVCBozhF1ozBB2oTFD2IXGDGEXGjOEXYzGTEJCQoYgCE3sHCtQVXybKdpnpECsdmpKTEwMtm3bFqCvrxji4+MRGxtb1adBVCNozBB2oTFD2IXGDGEXGjOEXWjMEHYxGjOMsRN2jxUoD2q2IAj1Fe9nCYLgk4fKGJsMYDIANGvWbMDcuXNtf3dlkp+fjzp16lT1aRDVCBozhF1ozBB2oTFD2IXGDGEXGjOEXYzGzJgxYxIEQRho51iB8qCmMsZaKEJ80/R2EgThGwDfAMDAgQOFYLfMkPWIsAuNGcIuNGYIu9CYIexCY4awC40Zwi6BHDOBajPzL4BJ0utJAP4J0HEJgiAIgiAIgiCI84SytJmZA2AjgC6MsWTG2L0AZgC4mDF2BMA46W+CIAiCIAiCIAiCsIztEF9BEG4xeGtsOc+FIAiCIAiCIAiCOI8JVIgvQRAEQRAEQRAEQZQLUlAJQoezOUWImRKHPxOSq/pUCIIgCIIgCOK8gRRUgtDhWFoBAOCvHaSgEgRBEARBEERlQQoqQRAEQRAEQRAEERSQgkoQBEEQBEEQBEEEBaSgEtWKQdOX461FB6r6NAiCIAiCIKqMrIJSjHx7Jfafya3qUyGIgEMKKlGtSM8rwderEyvt+wSh0r6KIAiCIAjCEmuOpCM5qwhfrj5W1adCEAGHFFSC0IEx8X9SUAmCIPyz+nA61hxOr+rTIIjzBrdHFFBCWBWfCEFUAKFVfQIEQRAEQVRvJs3cAgBImjGxis+EIM4PuILqcJCGStQ8yINKEDrQdF8xHEnNQ0GJq6pPgyAIgiCqNVxBDSUFlaiBkIJKECYIqPkxvmeyi/DvrjOV8l0Xf7gGd8/aWinfRRAEQRA1FbeUgxRCCipRAyEFlSD0OI/m+xu+2ojH5+yQrbEVhUc6/pbjmRX6PVXBufwS/O+PXSh2ugNyvKSMAqTnlQTkWISaRXvOIi23uKpPgyAIBfklLqw6lFbVpwEAOJVZiJgpcVgd5DnVcg4qKahEDYQUVCLoKSx1+YSFBkoRMKTmO05lzuYUAUDFK6g1uOLUu0sOYd62ZPy943RAjhf7XjwGTV/us73Y6caY9+Kx7khGQL6nPPyz8zRipsQhr9hZ1adimcJSFx76ZTvulPIljSh2unHgLLVuIAgjXvlnLx79dXvAjvfc77tw9w9bcSqzUPf9C99dhVu/3WT7uIdS8rA7OdvWZ7afzAIA/L7tlO3vq0y8RZLsKains4sw5c/dKCqtYDmqhvDYnB14Y8F+v/st3HMWMVPiyLgcIEhBJYKePq8tRY9Xl6i2vfDXngr9Th46sykxExe9F1/xCnEQUNEKqltHQb3j+824twaE/PJrZ1NOsE1yViGOZxRg6n/7KvaLLPDFKrG1wensoio+E3MyC0oRMyUOS/aloMTpAQCczTH3oE75czcmfLwW5/JJ0CAIPX7aeAILdp8N2PGOpuUDADLyS5CvU6fgxLlCbDh2zlCBNeKSj9bgys/W2/oMq+iJPEDwdScxo8CWjDJ74wnM3XoKszclVdCZBTdFpW5baU3/7TqD79Yd97vfz5tOAACOpOWV+dwIL6SgBikLdp+hYjISTrevYrPTpkWUIwgCnv19F57/aw9eMxHylbpaYkYB9p0HjbBdHk+FHl/v8GuPZGDFweAI6yoPfLxUtGDjkI7v0RgTSl0evPz3XqTlUeiqloOSJ/SH9cdR4hIHYViI+dK3NUn0oBSSh4EgKgU+dV7zxQb0fHUJ/t11BoOmL4fLrV445mw5WQVnF5xwBXXtkQw8PW+n5c81rhMOwL+hrqYy9d99eHzODtlTHihqcJBYlUAKaoA5ca4AmQWlAIAl+1KQJb32x4OzE/C85BVMyijAo7/uwJO/7VTt8+vmk0HrrdiWlIlj6fnlPs6pzELD/DBB8fQ7yqgIeATgj4RkzNlyEj+sTzLeT6MAnAnS6x5IAqWfOt36B6rJIb58bJZ1XFqhsNSF4xkFAHy90Yv2nsXsTScwY9HBCvv+imL7ySws3uv1xGgF0vLikp7lsBCH7GUIlxoHnjxXiEd+3Y4SFymiBGGEy+1BTmHlhvK/NH8P0vNKkFNk7XuPpuVh7ZHA5owG+4qlXAc2J+rXdkjKKMCRVNGjJwgCXvtvHw6l8L8r/hyDkZOSFz4QIc4FJS7Z419RRTWTMgpsh6nXBEhBDTAXvhuP0e+sQkZ+CR6YnYAHfk7Q3c/p9qgE+cX7UmTLILfybzp2Tn4/p8iJF+bvwaSZW1DicuOO7zcjZkocdp3KloWuUpcHf21PVilySRkFiJkSh31ncsr1u0pdHpS6jAXH67/aiLHvrzZ8P7/EhUV7/IcDjXpnFQa/uUL3PaXOqJdz4XR78N+uM0jPK0FRqRvP/r4L5/LVC5xZGGt+iQtFpW7c/M1GPKLJrano8NdAsv5oBmKmxCHFonWUe/30PKilLg9e/ce6Z27hnrPo9OIiHNUJcdEL8a0p8F+25nA6vog/6vN+brETcWUIh1M+cw/MTsC9P24DALg0UQUFJeIcEOao+CldEAR8vfoY0gMU/nrtFxvw4M/i83bfj9tw8Ydr/H5my/FMLNmXYun4fFyHOBjipDkoLFS8Ti/9sxdxu8/ixq82qoQV2eBAxUeI84x/dp7GUxrj+HN/7Eaf15eqZIuKJrdYFPqLNXKH0RmM+2AN7vjeOLfcTghsdXjq03KLsf2E1wOoFIn6vb4U134hhjXHvhcvz6kz1yfhh/VJ+D0h2fC4OYVOxEyJwx3fb66YE69gFuw+g5gpcabpGWUtLvXMvF1I1Dhihr65Ar2mqlPQmMkIipkSh0d+sZe7HftevO0w9ZoAKagVQH6JSxYgkySPh5YRM1aixytLdN8rKBUn5lKFAssfqIz8Euw9nYu1UpGUqz5fj64vL0ZGfgk+W3UUT8/bhUV7vYLb8gOpAESvISAK0FYm6pwiJ/5TxOgPeGMZ+k9b5vdzRvzvj1146JftuoqLVZRKop7g+GX8MTw2ZwcGTV+OnzedwB8Jybjl203o89pSrJLCSM28eD1fXYJhM1ZgU2KmT2ifHQW1sNRVIQVWBEHAigOpfs9l9kYxD2KHJnxFEATTz2rf238mF51fWoQfN57A4OkrcCglDzlFTlVRnC/jjyFmShwW7TmLz1Yekcfe7mRfg4jSK10R1vhAF3yIP5SG95cesrQvH1f/7jqDdxb7fubp33bikV+3o/+0ZSgstR66v0jhWVyrKIykHcf8mLXCQywfu6wcOJuHtxYdlCNFrJCRX4JfN/sPzVt+IFX2EispKnXjn52nZQH5xq834oHZXuOftlBTTpFTHm98Lt5xMhvvLhHvTViIAwdTcrFGqtK5KzkHX60+Jn++Gtmjqi2FpS7ETImjkM0g44m5OzFfU+yN/10eQ+20BfvRe6q+zAMYC/VFmvmyrDpyrkVPbHXhko/WYPkB3/SYwlIXsgqd2H4y2+e9aZpCP3oGh/eXiXPk2iAoxGeF/3adwfN/7ZbH5k8beB6ocUQfN1raNUT8uT1ZFdmYXViKvBKX7TEZZ8FZQ5CCagmPR7Addsa9RUYKUVpeiayALtQMVp57Gh7qvT3c2yoIQImOgpmSU4wUqRqrciLmDZzdHgEHzubizplb8Np//quRPfXbTjw2Z4csLOYVu3QLF1jleIYYUlHsLHv4nvJa8hSyqf/uw10/iFbT01neMFwesnc4VZyk7p61VbyPfhbYbAPFSc/7d/KcWIr+t61qAeuJuTsx4eO1Ac8hXro/Fff+uA1frzmm2r5g9xk8OXeHz/7aM/5u7XF0fGEhsgv1FQvtb5y1QV0UYOGes+jz2lL0mroU4z5YjYISF95eLIaUPvTLdry39DDiJUNAYanb5/crL/2F760y/J1l4Vh6Prq9shh/mliG7XLXD1vx6Upfb6ge/uQ2/hxlFpRi3tZT+CMhGT1eWWwYDs2pWytMd7tWUORGp9qVoKBq5zQri/PT83bhhfl7cCQ1Dxn5JXKImRFawentxQfxxNyd2KCIKuEs3puCXlOX4qeNSQDEa9zntaW4/qsNmLPlpHytlJEUYSEO3PyNuiKo0iDIQ7W0of4VhTIS5nzhXL44D31m8RkLFgpKXFhq0XsfSHg01OHUqivAolcPwqyWg5Lv1x1HbrELTrcHl3y4Bsv3p2KPjiFTC48O4WiLJJW43IiZEuf3OBsTz+Hmbzbis5VHDPfhlcnlZ1Hn8T+Wno/n/9pjqKy73B7bslKx020YpVTq8uC7tYk+80OWj6wiynov/b1X3vK9orCPnjKq9xP07rFVPB5zI3hF8NicHZiz5ZSsfPMgIrO5m59jqQW5XnvdXG4B209m4Yf1x3HpR2vl7UWlbnktrMnpTJUJKagWmDw7ARe8uMjWZ5xSWIqVh/VhjbufT8h5xS4s3puCJftSMEQKexUEQQ4BVuJgDPxZS1OUuA5RKKgfLT8MAJi/I9lvXkdylrgIBCo3yy1ZrEJDyh48oyxUxEN8Z21IQvwh37wTvUl2a1Kmz/3Yctx3mx7afTYlnsPod0Ul6w+NUrRDslzmFQdWQeWly09lqvNhH/11B/7e6fV281Af7Rw5TyqZrxwfG4+dk3+byy0gJadYDmHRhnTzdjSAWHFx56lsn3OsV1tUqF76e69P5WXlNcwudAZUyOMe6xUHUwN2TDv4C307lu71CqbmleDVf/aioNSNQoXwlVMkhlYpDVYRofpTtHYB5IafEpcHmxJ9lbhAIQgCNhyzb1nnRrPcYifGvr8al3xkHsarNSTxcGJlSBuHn88r/4iCMq8Guv1kNp7/a4+uUSo8hPmESYfqRGX4M2hZJT2vBLOlCo9akrMKcdXn6/HKP3t136+p8LVAL7XA7RGw6mBauUJK0/NKbFd8tcJzf+zC5NkJhtFRFQX3umhbWeUWOyvkdyrhj4aeQG9Wy0GP01lFOJSah/t+2oYrPluH/dK6bpS+f66gRBVVEbfnLFxuD6Yt2I8Fu8/g1m+thaI+MXcnNiVm4r2lhw33eU+KmOFrpF5O4SO/bMecLSdxMEU/Sup/f+xGz1eNPcVKnG4PBEHAvT9uxeDp+qlNX60+hjfiDuDP7V45Qy98lV8/paFe6TFt//xCn8/M3nQCP25IUm3zUz/OlJu+2YiOL/h+T2XAK0rLhQR1po60vGIxkkyaV0osOEyW7lfLFG6PgGu/2IDX/tuPFEW9lNTcYmyWeryfzirSjQQyY/3RDCzfXzXyS7BCCqoFeJisHfhEbtealJpbrAoBfPDnBFUomwDoKqifrDiCXVIS9QfLDss5lCGSOamgxIUl+8TfUez04O4fzPsAcrnALJbeDvw6cCEwMT0f7y89ZEsAue7LDfJrf7lhep6pwlK3z/248euNmLZgv9++VdrwxK3HvQUJ+IT46YojSM7zyF6s/BJfI8Du5GxsLqMC4V3Aza+ZrKAa7Ke85Lco+sq5PQKGvrUCF0m5xP683XpjO9xAoRK/V73/ZMW4NstvtgI/lYosUqRHwolMScjQf7/zS4vw1sIDqm1fxh9DgRSOvP9sLu5aXIB1RzJw4py4oH2+yutRMrTSa7bzn/39uuO4+ZtNtsKI7fDf7rN4c6G6EJOVOY4/E4WlbkPjmNLiXeLyoPOLizBb8opGSFLT+8sOq3JPS10e/LTRq/gVO90+z7Le+bVuUNsn/0hpcOH3M1DegEd+3Y6X/97rk78EALlF4r3SC4uvKOZtPYXn/9pt+3N7T+fIBgC7/LPzNLYleedNbmTUu8Zfxh/F3bO2YtWhslf4HjR9OUa9E9hIDQCyQhWonHqPR8CbCw/ISmaqJPQKgoBfNp+QPWd8TdMaUu74fgtGvbNKnl8/Wn7Yb59fu/A6BUaFEO2s41maCB5/9Q3umbUNY96LV21bfTgd3687jkd/3YEEHaMVx24ERCDknb8kA4K/784pdKLTi4vQ/vmFWH9UlAk2J55DzJQ4bFHIF1wRfjPugPzs7T7tO1eU9cxf/VftATfrqSoIgum95tXPqxKuNHIjriAIWLD7DBJOZGLw9BX4PSEZTpekoGrkjtxip8/6NH+72iDkNKgm+Zli3f7fn7t9xiw/FyNu+24z7vtpm+H75yOkoJaDZ3/fhQkfr9V9jwvcfDwWlLgs5d0NeXOF6YQL6FsxF+9LUQkOvCALt4YlnVNbWHf5EYb4Y6Sdq95bckhXyPIHF0K4AjHphy34dOVRpObqK4ZL9qUg4UQWrvxsne772klUuxh8Ea8OgwVEIVFPGJq1IQmDpi83Pf89igUhp9CpUv0cjMHp9uD9ZYcxbVORLIznFPkqCVd+th43fWO/2TjgXTwFQVR04w2EN76fNkeQT7xfrz6mGyamFLiKnW4U+Qk5tBLGUux0y4KVmUBXbOKpt1JBuTKq6Go5nlGA677ciKn/7jO8FqUuD75ek2h4DO7tfHfJQczdKnq4lcYVl0fAV6uP+YSwacex9ncrF9ldp7Kx/qi513Pv6Rw5H9MMvXthZRwoFVQjlGOgoMSFUrcHr0seAKXhQ+lFXa/x5uYVu3xCy3WjQBh8BJG1RzLkyBF+eQMVqsWruZvlRWkpdrpxJrsIucWBz53735+7MWfLKdufu/zTdRj3gXExPDOemLsT13+1Uf6bX1m9aBcecZBZ4Pvbd53Kxpc687sZi/acxf/9YV8h14OP4bLONQfO5mLw9OWyYrb/bC6+WZOIx+fuQNzusxjy5gpsPHYOi/em4MX5e/GhFPnEPf6hGhfXLsmwwluGfLT8iKVnmfPtmkR0e3mxz3Z11Xzx/2u/2OCzHwC/a4USrYLK0TO8G8GLxfnjVxv5zTtPZcvVXc3gyrq/qcHlEZBZUOqTAsTJKPCVfbhscOPXG2V5jo+zglI37v9pG37fdko3fYgPx7IMy+SsQjk818z4f4GkUE/9d5/lOhI7TmYhZkqcbNipOASsP5qBRGnu8AgCzuYU4a/tp/HorzvwyC9iGtSmY+fkmgXataH31KXo89pS1bZ+beur/jZK3bIiFwciIienyBnwehvBCimo5eCPhGTDYjilGqF81Dur0Of1pbr7ajGtTilY9zaN/3C1nIOgrejKrbDfrDlmqzT7Z6uO4j6TxWHVwTTETInzsbLzB5NP7tw7p5xMlWFKD8xOwHVfbjD1Kih/U56FnI/CUne5Bc5tSZno8/pSlVc9xMFkhaHE7S1UE+iiDMrQ3Ss/W4+7ftiqel9rnXvln31wS4tO/KE0OWzprx2nVd5ojnIsPzZnh2EIE0cvtFrrtB0wbRmu+FQ0Mph5o4zy735YfxzDZ6z0m7PokRVU090s8ebCA3LDbTO4Irnh2DldYcWKV4E/h7uSc2QvvTL01O0W8I2OgptX7FLlEmu9gU/O3Sm/vurz9bjtO/MwuMs/XafyuiRnFeLL+GOWfoOVRbdWeCgA80JWyueZX39ubFH2LVUquXdrnoHCUhf+96daESnVUYCMKiqPfJt73MTPBMqDyoXMB2YnYKMmjzZVx4O0dF8Kur68GMNnrMSEj/SNoPklLkxbsD9oc1f/2p6Mqz83rjzJr63yGh9Ny0OPVxbL4XF6ERlXfb4eby8+iEd+2Y4Mi5WkH/plO37bZl8h14OPYWVdinVHMvCtiSFKyexNJ5CWV4IlUkE5/oiVujyycXrfmRw5rD1fShXhz5k2TYZfI+21sOo9nL7wAIqcvtFFSsOBv/7OCSeyTD2hyvQQbeoLn7u1hc4CgZm3f8WBVJWRSm+s6k1/VpcYl8eDx+Zsx//9uUc3HFwvpUDJSildRTm3H88owHN/7Majv+7QOS+m+t8OI99ehZFvr8SY9+JVKUBa+BiZtSEJUyxGYPACW5d9srZMdUzO5hT5jXADxHt1UCEnCAIw7K2VeOb3XQC8nlXGmHzfjYwi25IysXDPWby58IBPz2wjp4peUSotRjUn9JRej0fwkfUFQUCf15Zi/EdlMxJWN0hB1cHjEfDjhiQcznLLk4Q/MgtKVQn/PAeVT772Kl4a75tX4rLcW/Vwar5cJKhAE/LHJ8c3Fx40Lc2+/ECqz8JzwsTKyPMAtA2Q+cTmDbsQtyvXPTvhWNtOZGHoW96cjdwipyXlszwWLEEQZOFSqTg7HEwlePMJzcyqrBQG9p7OMc3HPJqWjyOpebLyZfQ7nW4Be5JzVOGdr/yzFx1fWOjjldcTapWL3rL9qYYTMWeWJncFABI1C3FBqVteNMxuz/4zuShxuX2eE/4deuHSSvi8HwgP6jdrElWFJozg35RZUOpzTzwewVKxiZ90FGHlNXR5PIal8Pu+LlbVzsgvwQfL1HlVm49nSvnq5srL24sP6s5xz/2+G28vPqha8AH9e3ijwitmRK0w8ZlQjrsT5woQ+673mVfmS/HiVKVuDwpLXSpFxazq67QFB3y2vWzhXhphpKB6PAI2JZ6zHNqoHJZHNJXMtUo2oE4rMep9/dnKo/h+3fEKq4K742SWbDQ8lVloqRCNkqfn7dLNU+fwZ0aZgzpnyykUlLrlz4Wb1CyI23PWJ//fH3b316NQDrn13vvbv9+M6Qt9x54ezaIjASgFZu97DoURkq8pPPpAruOgmQ+4IqoVfq32D+Vo0wJUVfP9TKt3fL8F13/pnQdcbg+W7kvBhI/X4qL34zHsrZXye1ql4Fx+KdweAZ2bRds6Xyvo5TcDYouWe3/chkc17eQ4XDFIyyspcwSD0y3gbLZ4jxMz8uVepBx/U0d0ZBjmbTtl2UiWkluMf3ae9r+jAWdyinEys9ByOzQjT7gW5Zps1QhR4vJWbR/21kqfCLekjAJ8tPywz/qmjBQykpOKXW45xYYXHP1t60nVGnr9Vxvx8C/b8c2aRMvtzMwo1pkzOGdzinzqdQCi4ajzS4tUhjD+eW0dkppKaFWfQDDicDC8tegALmzlwI+HrFWoG/NevGpBKHWrQ3w5RaXucreCsLoQKtEqJNowIc7//bEbB1JyZcHrncWHfNpmcK+cnuAsz0WK373/TK4cfiTICqrgs195+Gj5EVURASP0KiBbpcTlrc4XHuqQF7E1h9NVFUH5ZTGr0Lpsfyou7dkcf21PxtPzRAtf0oyJKHa68fmqo3hkzAWIDBPHCQ+pe+e63gCML9neMzk+IVi/SF457f0viyI3b1vZhbt7Z201DeNVeoPX/d8YnMosUuXH6q3R2YWleOnvvXjz2l5eD2oF9K30GIQ98cUit9jpc34uj+C3Qi8Av5Zh3h/UiH1ncjDXIFRz/IdrMOuewfLf0xbsx8uXd1ft82X8MXyp81nupUnJKUa3FnXl7Xp5zVaMPtyqP+WvPfK2x+fsUKUeGBnxpscdUFUzNvu+stQL0MNfDuqjc7Zj4Z4UTL2iO+4YFuO3n57yeeMKRanLg40G+ehWisbzZ9ojiJ6VMe/F45s7BmB8j+b+PyxR4nJjy/FM1A4PwYB2DVXvXSPNJUkzJmLlwbLnggqCoOuB07vG2vXyo+VixdVLe7bQPbZdD/ezv+/C6E6NUTsiFIUlLjStG2nr88rvNFJ+ADFXM7vQiQHtGvi81yQ6AgCQkiMV4pF+QrHTja2SIdHlEWQDZy1pHeDjPkTT65jPfXtP56ruYU6REw2iwlX7CoKAGYsO4pr+rdC1ufhch4c4JEOQG9GR3ufM6fGgFsTvtrJeKMNjZyw6iO8UFWSVaKMonvtjN577Y7d8XQKJMhVocExDbJFyoHlkm9YAx+FrVcKJLDzyy3bMvneI/J5REUItB87myvfsnlli1FnSjIny+2bjBwCeV8yVVnli7k6MuKCR7c+VBX+/f9epbGw+fk41dqxG/3247Ai+Wn0MdSL0VZSLP1wNp1vA+O7euc4jCKp5ymidUEaKcWPJ//1pfK03K/KBy8LSfSmYPDsB/z06Ei3q+843yVlqZZPL1ryonvJ3WKk6XJMgD6oBjaIikF+qXgCNQmb+2Xnax1rJ80JKXB6VZ7XbK4vR6UVvlbPv1loLCyovWstNmIFl+rdtp7A7OUdVdVQP5eSq9CLwo+YUOWXr1qeKsu78EvJP8IevvA3ArSingL08Fy0P/7JdzifUTrSHFNZRPiGbfVdOkSiMc+UUEC3YX69OxKcrj8rhnsoQpR+lgjFGl0ovP4jLzdrxGeJglZAT4mXFwTS5EIQ/Tp4rVCmngDciQck3axKxYPdZ/LzphCIH1fu+y+0pd/ElQJ07W1TqlsO13PLYBbRmA5cnMN/tj4mfrDNUjo6k5avC5r83EBj1aCp5eV76ey9ipsTJxW2Mxh6//sczCiw/y9o8eKO8+F82n6zQysRaft92CuckZfmqz9cjZkocPlt5BDFT4uD2CDh5rhAL94hW9an/7Zero2uJP5QmXzelTiFATON4cf4eTDIoZmMlGoRf5xAm5qQDYuExfzUM+L6AaJC84/stuO5Lcy+4HcOPdk0zEhT5b3S6BVUIqJKDKXmykSbhRJZPH0flmjx/RzLeWuTfeOvyCLj+yw0Y/KY3AufEuQI8/9dulbfiUEoePB4B6XkleP2//T6t5swiJMa+v1o3jQLwKjh/bk/Gd2sTcYVUZ+FYeoEsN7y9+CA+WSGumxFcQeU5qFoPqnQa2mI3egpQbpELX69JxC0KgyqvFO7T+1vx+6woqJFh3kG+zMRQZJSHnp5Xgpb1zA0Gg2Mamr4PqAv58Lm7X9v6quI23GCWnleCO2du8cmnVFZ31fYD5ZfCn4J58zebfAwoRaVu7E7Oxn0/bquwomiBKmypRWtw9TdFXfX5ery58KBqTVYWDvJ4BEyP2y8XB+RsSjwn96RWRo8on3X+7CnnDe08oywuqiRRIduWRx60Ci/0tvn4OZ/K8S63R+5bz5EjGaRdlWuBUg6KmRJXrtaP1QFSUA1oGBWOvFJBJZzyB2DhnrOqSptfrPIt2KAsZX6FptCPcmF7I86+NzQQhDoc5VIKlROv8jWfvKcvPCB7FZU5DcrKasrPmuU9BJLyTEhWvQj8GugpKDxUUe88UnKK5XBq7sFSFiThbXaUXix/97C2lPuXqynYFMIYbv2ubMWaKho9K6HeNmXlXr0Q3+u+3IDOL9lrD6WHcnxPnr0Nse/FQxAElcCjlcGnxx1Av2nLyv3dVjDLZXp/6SGfbd+tTfRbZKa+1C6ICwj+lNsSlwfbT2ZhzHvxuu1Uyht5vcNCfk+geE6nmA6fz3OKnHJuIOfTlUeRluubf3fXD1vlokDKcZlT5MQDsxPwuybcVOnNseKVlse/g6mExfs1lSCdbg+OpuXLSvaVn3lz7ZTtqTgFJS6feUVviF360RrM2+rrvdeuaYUlbh/hNjmrUBWm9q90HkaVxwHg+q82+IxDfg2+Wn0MT/22C1+v9m/wZcx7rbkR9XGplyIvhrc7ORuXfLQG36xNxMt/78XM9cexRlOrQa83eqnLg9cN+ozP23oKD/2coLq3Vtb/HSezkFfslBUis1ZtTk04oMcjYPHes7q9HDkRYVxBVa8RyvlNO//q9S8ND3HIXQjMUpreWXLQ8D1/tST8RSoAYm5239eX4Z5ZW+F0CWheNxINaodris95X685nI5rv1Tnn+qlr3C4AuhWGNd/23pSN21Gq8Sm55Xgys/WY/mBVEwx8dqVB23huLJSTxG1svNUNjppWi0maNK4lCjXTOU9U05rh9Py8O3a43LHCf45ZTQabx0G6BdZVPat1yp/VqiMnsK8GN0bcQdUUQbjPliN2ZtO4N9d6jmYy4aCTh0E7XNoN4y/ukEKqgGygqqjiD38y3a8u8RX8KtOhIawcjVkXrY/VbbeKBfcZYo+TlyoVC6O3lxUSP8LuOrz9XKf14pmVTlC1azChdHE9ALc+u0mXKro+cinar3FrLDULYfkRkcaR98r52l/Cje3jmtzkB0OZqkHWFWgJ/zwsaosDMTHFYPX8KEMJeQeOSNhqdjplu+DIIh9gvXyFZUWTG5Nn/DxWjm/SLsP4A2trgxCTARWvbL/b8QdwNuLD5qGR0Zp0hD8Ven8dk2i7MHXyzusjOLK/rwvgBguaUXINeLxOTtUxknOYM389ctmtZKuHJdmod88R8tKj2C9MQ/4Kk7T4w5g3AerTfs/AmKe6anMQvR4dYlP9VOtB03sA5knF6QyqmwJAH1eX4qJn3gLPQmCgJFvr8Lt33sLd7VtWNv03Fxuj65fyO3xIKfIiRmLjJUe32N5x73yGQa815L3ktx5Mlse+4wx1fyjV439WHo+Zq73KtExU+JwoZRn/b8/d2PR3hRdxdaM5QfS8MTcnfJ5hzmMxTalUdTlFjB70wk8+PN2zN9xGqfzPNh9OhuAWtiPCNWvsL1QkYuoNbZqje6AaHwd8uYKXP7pOtO1xcymeuewdsZvwreiqh7peSXIKXJi5cE0lLo9CAtlCHUwVds0rUHcX8TY4dQ8H+PIC/P3oKjUjZUH0/B/f+5B7LvxPs+tdo49rvAWNq6jDr8OFMrraxQpx2kYZXwOTrcH8w6V4v2lh3y8fID4236XCo8VlrpUc55ScdJWsZer+stF0rzvmdVMOJ5RgF5Tl6gKTinzg8082p2a1tHdvmD3WXR43l5uvR2e/m2n6u/Fe73j42havk/BPEC8Ph6PIN9H5c/ShsdnFZTimzXHsO5IYIwSwQYpqAbUiQhFsVutoBo9AEZ9kYKZiFBHueLZn5i7Ew/9LIZQKK9Rlk7pceUULaeeKjyou0wKaQSaj1cc8b9TOeFCzsz1x7Hh2DkcTMnzSbQvcXpUwg6g9qBEhhrnKSsVfmX4tBlaoTjEwfxWEawq3l/mK0g73R4cSc1D39eX4Zs1ovfPW7mXya/1Uqsfn7PDZ1tBiQu9pi7BoDfE4gsHU/Lw0fIjut4/vRyUgyl5eGyO1/KrW9G4kjDrW6dFKWjmF/sqFc9IIedaazVfGI089sp75mAMhaViMbe7f9iCgW9Ujie5jR8lBxAFtvJU5l13NMMwkkIZqvbifLWhQ/momRkGj6Tl490lBy1FeshjnjFNVIV6P6vh0aPeWSUXcFIaGj0ewceDqsyPS0zP1y3yoYQX6wP0vcNuObJG//PXfbVRNw89Pb9E19h38pxxIT+n2yP/Hj3Di8vtwUO/iM+2R/DKAKEOpvLuAKLBUylU63k0TmjOpSyh/wfO5srnYfa4a/PVeARERn4JXlxfJBdEVD4D4QYhvlMVnmB/io64j3icxPSCMssWvVrVw+8PDjN836zPNqegxPs7ikrdCAtxICzUoRonRu1yjJjw8VpMW7BfyqcWtx1Ozce8bafkMZSSW6zq7Q34FrxUhvQb1QEJJP6cEF/dPsDwvcJSNxYed+LTlUcNU6j+knqETluwXzXnmfVY7vTiIsRMiZOLajmYWLwst9gp9yfV44+EZOQVu+Q+swDwmmKMmv3WUZ2aqP6+tl8r+XWACrXrojxXACrjFQAs3e8bCv/16kR0eGGh/CyfyvLOH9oK2Jd/ug5vLjyoMvbVJEhBNSAizAGnR+0ZMRJsKiPXLNAcSy9AT4VQMW3BfnxmUdnhcG+SWTiatr2NHOIr/R2oNg7BRFGpr+D/wOwErD2SLv/e95cdxpMa69qzv3vzUTclnjMMw1QKVb/phNjpsSlRrWQ5GEPvNvUsfTYYSMstxsUfip7oNxceRMyUODkcb9Hes3IokJ6ypq2CeiQ1Dz1eXQKnW5BDysz6c979w1bM0iwsgP2F7YHRHQLSBkeLXs9fJUrhUjl2zun04ftzezJOZRbic03aQrHTjXVHMixVDwxhDOM/XIN+05Zh1aF0SUirWGPIgsdGysKrmYc0V0cpDxRmOWXKMzIr1HYkNc/n2hvB7aLan2ul5ZYRPD8rXCE8d3hhoWkRESu9I5XoKd8utwCX26PKmVZiZMScs+WUj1IAADd/Y5xT6/IIskeYG+6Uj7LSu7Z0fyrWSZVBQxzMp6jO3bO24q2FXu+tVoHlKKMK5u+wX2n1bE6xLOxykeRIap5PeKC2ZY+s1GqeP6UhQM5B1Rk3+87k4OdNJzBIyv00U1TP5viGudslOjJM/i49GBh+mzzU9BjKaKHF+1IQ5nAgTONBtYu3MJbgs91KCxQ97D43FUF5okkAMRR+/5lcn57KWqOMHnwtOpyah2d/34X//b7b1LCh127NCg/HdvQxXJe1mGJ5r5cVtDLd5Z96oxUqohVTMENVfA2IDAtBqRsIUyT+X/7pOvRv61uVL5AKau3wEF1h+YHRHfDDhqQKU4btFFBRsuNkFhabhKMpW8EACqFe+r8yktQrG72wSkD0sikXODOv2486ITWcJfu8Vjd/FtJzBuGtDgbLRYuCgak6eV1c6Vb2H9OrFup0e/B/f+zGb9tOIWnGRFnRVWJU0ET5/XrnYIfnL+uGBbvPGrYNqShuG9JOzqk6rgiPWnNYf/zpKVrFTo9lK63D4VuZsKJDfDs3i5ZDFcNDHCjyVH5v0P1nc9GvbX20buDryVWOUbNnW+lp1LLuSAYiwxwYKAnwygiCctaYk+EWejuCmN53nzPpT6qnoJe6PXh3ySGsKEMKhp7ymqpQGrRCndPtEQVUj4BZ65PwwU19Ve8bFWzS9kPkGCnVSpQ9No0qx1qFe5v15jFllJfSqKCt/O9Rhfh6Pahab/TET9ShvBVtUDaq2sopdrkxpIO6Sm10RKjKKKPNpT2UmoeW9SMt98w1w+0RVKo+Y2ovXrDxzMWddSOSOOXVtwpK3bhMEb7PMcuT1sLH1J7TOfhtq4XUGJuTXaiDwS0EZgGKDHXILWoqimZ1I1TV7ZUYyXM1FfKgGhAR6oDTI8gl3gFR6NJaLIHAKlltJOHmhgGt8dLEbvL2Ts2iUdckL1HL7UPbBuyczLjmiw2WClNwPIKAmClx8oJilrtUFpRl3Dn3jmwf0O8oK4FYILWUNUneX1GqK/u0xOInR/k9zpQJXX22vXlNrzKdUyA4kpaHtxYdUFX8c3sE/Cblyny83DdKYGtS+crI2+GRMRcAAHa+cjE6NIkCAHRvVLHTcG1FPqlSUDZSuLUCHqCuUu0PvYqfv1ZwTm54qEMWtCMURsVHpetdGXwZfwwj317lM6c9MHubwSd8MSra4fYIuP37zbj+q42ygYOPcI8g+MhsZVUkuIJqpw3V3bN8+7gOeGO5zp4ieh5/l1swbLlTFpTrdq+pS1XvncsvlS/eXzvEXovcKMOgLrxihcrwqigxu7dWlGVAVHILSlyYtmC/nKv/08YkdH15sennPIJxNwM9LuzcxP9OCsxqLwD6tRu+uL2/6m/e0kXJqgClYGhTZao6SWbW3YMM32MMeGxsJ3w/aaDu+9GRoQHpG65HqEmetBbeTu90dpHfPHkAmGsxakw+lxCHTzpTWX+10gBulr9bHoyUUwB4TCddqSZDCqoBkWEhcLqBFhYKbwSykhbvkdqvbQPcN6oDGtcRe4OFhTBLIYU9WtbFI2M64vkJXuW2MgqUWEWbw1YZZbIHt2+IFy/r5rN9Yi/93noVxT86FTODlbtGxMh98sy4pEdzWdECgFuHtMWtQ7zGkVGdGlfI+Rmx/ug5fL06UaV0KnMtP9RpCXLDV+YtNsoDb73QtbnYhP7WIW2RNGMi6tcOxz+PjMDmF8YivIIF3No2+y6XNwy2ooQewLwQEldQlZ6uO/wUXQGAJ8d1svTdfdrUt7TfHE2BIWXEgz9SdaoBA8DY9+Pl1yNmrITbI+APqQrwN2sT5VYGHC5Irz6cbstjp82Lrwj0onXO5ZcEbNz4a79w58wtqlBCZaqLAOOUFaN5wo63KBB8uvKIfO+1+GsXxBEEoMerS1T3wqjNk5YOLyz0vxOAi7o2xbhuTeW/H7ywo+5+47o1k18r+7DqwWUt5bNoFhLMuaJPS7/7WGHZ/tSgEqiGdTTuedrNYP2+Z4RosL+8d0t0b1kXE3sHXg7SK5RnhJ0aCoD9jg8ut8f2dxihDHH3V9jNH+X9/PkAKagGCALgEiDnuVUWURGiMMktPiOlpssuTcEmI/q0qY/nLumKqIhQxDQSHwClwLb3tUsCfcq20P4Eq/1Ly8KWF8diwWMjcUmP5rq5DTcPbuOz7avb++OhWP2FVIsdj3Yws+2lcWX+bHioA/eP6iD/Pe2qnvLr1g1q6RausVLoorwoW4GUJyevvPCQtZcmdvd5LzoyDM3qRqry3/55ZATeuLqnz77lwSg00YjcchrcAu1RUrY7qC1dz2cu7uyzHw9bVOaERYaZK+eNosItR1j83yVdcMOA1n73e0+ntY9VjFolaK3qm1O8nqTE9AIsUFRcBcTK1Y/8st2wz6oRPM8xbs9ZP3sGlveXHbYl1AYSZcie22NtnVXCe+JWFqm5Jap6BcGKIAioo1gjjYz9yvXWnweVP9vzHxoub7Myv90yyHetLwtPz9sFtyKM+kiacUi+HYZpwpaNqs5qCTf57UYevuGSUntZr+YIC3Hg81v7++xz/YDW2Ppi2eUCPb663fd7AP32MYHguUu6ABANrtqc035tG2DXq+MxV5HP/PpVPfweU7m2lXedC9IalUEFKagG7DsjKqaBzpH057WLkvpWcmGLV3qzunAqw8sWPjEK21++GFf39VoP/eV4VDTa8CDl4t6qfi1LxzCaGLQLYJ2IUPRsJRYC0hP8tJ6luMdH4tKeLXCNosKbkiVPjsbMu7zhMqufG4ObTRa+ptERhu8FE3zMKbE6d4aHOHDLYK/HlN+blc9ciLjHRum2VHjYogGgPJSlJ1pFwPMirXpZ+rSpjwa1Axs6ZHchzS1nIQY7xupGFsKknpUEDcD7zI5QeOa5l2bS8Bifz0b4MYYwpr4+g2Mayh4Gn2OFhZh06fRSnmIsiRnm7S44eaXmZ/LUbzttKZl9LXqHazqrDqZVC+VPSzAZS/nz7xaA6AivccnIi6lUsvw9r83qimu8UuGwMr0F0mi293Su/DpQ7cS068NNklzx5LhO+OK2/uglyTENaqs9zHo1Fzgf39wXgG91864topE0Y6JPZVvVcQE0CbD8cmnPFrrG6YrKa+braFGpW/ag9m5dD7teHY9bBrdBvVphsuzTq1U93DksRhUNpuWHuwepoovK65WtyEijmgIpqAZo+xqWFy5YPTzGXDiPkhRIp6K0vfi3xzCXQInyoakdHoqGUeF469reZTpnO0SEOmSPrRlmVdqa1o3ATQP9Wzr1wkbvG9keq56N1ZyTVwHt1MzXIqn1ruiFCCrp0jwaF3X1hiM1iArHzYP1c33r1QrDa1f6t8gBQPO6kfJiokc7C9e1PESG+f5es4VPiZE3tEOTOqhXO0xVxImHElXGxGzWa7Iy4fmQdlr66N2PD27sI7+e0LN5+U/MhB/WJ1Xa57u39IahLXlyNP7QaTFRJ8L7nF7RWxRylcafL6VWCf0UBez4XKTnYbh5UBv5Gj4zvotqPAoQ0MigP2FkmMNSu43KYM5B81BcvdZIZkRF2AsDr6l8tuqoaUXvYKU4iIoN1pbWVY/H60Ht06a+4bOjVM7M1p0OTaJ011Qra1Vlh2HbRauYh4c6kDRjIp4c1xmX9WqBr+4YgNuHtrXl1WwkpYd1bhaNtf8bIxsDreSHVlQtLL1lsKJyuPmcVuh0ywaNerXCUK9WmDxmwkLF/7kyzsX+B0Z3gJYxXZqqipQqL2Or+rVQv7Z5eLqW8rR5PF8gBdWA168qW5idkQVmyZOj8eFNfdCjpXlrD56Dyh+Eu0bEIDoiFGO7NvOpXqeHnmJtNgHYmRu2vjgO396pryTHPxeL+hY8P2ZFkcJDHLoKjzKPhe+n5aXLu/sonMrffVmvFljy5GhVifpaYSEqgTjEwRVU34sSbeB5NrP4TujVQg6n8UeESd/Tp3XCGe2iLaagVHqtKqN6KH+/3jhTTsLc+qvdzZ9HdbCFHCMt/qobVxZcMbWzCPdv20B1jcZ3b4Zr+7fGNCn0t2FUOHq3rme5GFVF9rstbx6Ncvx0aR4tV6hVUivM++zdN6o9tr98MVo3qC177vUMSvMeHIYf7h7kE9o19YrumHFdb3x5+wAkzZiIWwa3VSmoLo9gaNxoEh2B2jrRBtWVLs2i5ddmfZeJ4GfUBZWb669k6hXdEf9sLL6+YwDuGh6DKVK9B2XF2zAHM5wDzUJ0lREWIzo2lg34WsxqHTw1rrO8tlcWbRp6o8HMctf/71KxyGCERnbRinGt6tfCG1f38ts7VS/1QTyf2rJn28ql0MqRS54c7f9DFtC2OwLMW7yVlSPTJ8iF0gpLXPLY03qFuzSLxhtX98T7N4gGYP67bx7cFnPuH+ozrj69pZ+8nvJx26NlXax6NhZr/zfG1jmWJ9LmfCGgTy1jLIkxtocxtpMxZr10YRDSsUkdPDfQf4EkJcM7NkK3Fr6J6W9c3RNtGtbGNf385y9x6yMXkro2r4s9r12C5lL46s/3DjH9vNOC6UupgOlVYTWiTkSoobAbZqBcalE20dYSHuo9xrX9vWG2yhzHu4bH+JyzMuzWjC7NozGkQyP8et8Q9GldD60b1MbAmIayd5v/Nq4AMwZc0LQOnhzXCfHPxeoe0yjHjS8GVhzxAgRTz4y/PDorxHZRK/mrn1NPpv8+OgLxz8bil/uGoGl0hO0cmOVPX4iNz1/k875TMrS8c11vQ8vt/y41H4NlyVkNtAdVG1rFqR0eYur95sqPmdVaO0QaRIUj8a2JaC6Fs70qeQ0ERVuRfx8dqSpGZUZtHaHui9v084HsYuRttIqV/DGlR5kxJudWvXVtL92q3QDQNDoSYzRjvnuLurhcJ8xQKTgPaNvAMDy8aXQkomwWnNJbD/R485peGNjOt4VZRaK8roHIA1vw2MhyH4OwT/vGUYaRPJVBhyZ1ENM4Cpf0aI6pV/ZAM0kJ8AgC2jUSDfY3DGxtaNzha5+eEfjvR0bI672ZHZVHVugd+4lxnSrUSKeHIk1VriOiB1fA/YU2W+Wh2I4Y2kG/KCRHT0nUolVQuzSPNtjTHnYL9pWVUAeT2311aBIl/x5edJTDGMPtQ9uhgXQf+M92MLEA1U/3DFbtf0Wfljg47VLcNqQt3r6uN/ZMHY8/HxqO8FAHoiPDfKL4XprYzdCQfO/I9pj/8HDd98qCtgBpTaAizEpjBEHoKwiCNa0hiOGyU8OocBydPgHtGxvHpwPiBKr36FvxnlzdtyU2Pn+RHBLoNAjZGdmpMZJmTJSFmecU+VkAdHP+ALH4yvKnLwSg9tZpFRczIsMcplZQK5PsS3/vNXwvI79UFlg7NvEqSEoFbeqVPdBYYwXr07q+3+9VMvyCxvjn0ZGy4sOfax4GxM9BEETF68lxneVwGQ4v5hCohSXLpLVBoIoKxT0uCpA8vLFP63py7lnv1vUR0zgKIy5ojC0vjpMt1V2bR6NV/VrY+9olunlq3EN1QdM6aBrta9DhimKT6Ag8PKYjLuraFLcPbWcrbLksi1qJy55V9nk/hhoja+c9I9qbhizz90yd1AbryiMXiS1SGtZWL552Hd56eeddm0dbvq5moUv+ckj9KcL+FNQPb+qjmgv88eFNffDJLf1031v4xCgfAQVQe/T/b0JXOD3Gxo0r++rnpxsx2sCzM+8BdShzncjQMhUHffyisrfRUVartapIm6F3bQn//O/SLmWKEuH89sDQSglhHdNFP2dRa0AtklrBNK4Tgeb1InFk+gTcNEhUoC/QMXxymWK0TkuaupFhiJTWP+0vfPGybujZShq30pvXa4qY8UiasoSR/nLfEDziJyVLy/2jfPPXzXIVeYSR9hpaaWHyw11iVNTTF3dG6wa1kPDSOISGODB38jDcrxOiaoeKygv99f6hqr+b1Q38nDGxdwswxtC9ZV38+dAwPHdJV9noaFZUClD3lgb0o8tCQxyYfk0vtKxfC9GRYap7175xFN66tpdsdGlcJ8KnSvJDsR1xw4DWuHtEDPq1bYCkGRPRuJyGXiB4osYCCYX4msDnfI8gIDTEoZogu7eo61Nt8+3reusOaKOHvU/reph9r2ih6dK8LlrUqyULbP48QPxreNEAjpH1v0+b+vLiwJWq9VMuQmdFmNddOkVG1N/JDC2R4SEOpOV6q2caFUQo0uljxil2ulG3lihMhzoYOkgGAa0Qq51ktIvPTQPb2CoGJUC9iPlb7H9/cBiWPcWVff1HyI4xSxDE5H0jImxWYTWiR8t6ODJ9Aj6Tqvb98+hI/P3ICNPPLH5yNNZPuQh1IkJ9Kixa8VxzITgsxIGm0ZGYedcg1K8d7uPBNSNMcY2tCnI8bMio4NULl6kVUq2yduewdqrwHj0P6oLHRuLpizubK6jSqZclp/2Ooe2QNGOiHPZ/w8DWuH5Aazw1zhvG9ceDw/CjxsrLad2gFl69oruuImqnsq9ZLnXdWuZ5N7X8KMH+PBvX9GttqdWXcv8rbbaUUM7ZYSEO0wJbegK2Gc9d0kU2DCrRzlmRoY4y5X09Pb6L/50MULZriAh14N3ry1eroDKqcysJlHEwkPgTgJXcOFBUphpFhauME8rwUAB45fLucpsqPZpGRwbcQ6hnjJ9xnf740ObM81Sf4ZLnUDnX6PUxbd2gNmbdPQjvK/Ls5WOHOzCgnTjna43p94/ugAWP+fbq/vfREfh+0kA8cGEHzJEUImWqhdUoiIExDWyHvveSjOXK+6lMM+jaPBqf3doPr13ZA9Ov6SlfD+X3PDWuMy630PplTFfxejw+thPW/d9FPkZ0LTdI9T2syEZWlisrNUe0KD2xy54ajU5NA+OZ5fx63xBVVeIB7RoiPNQhy+DalA8tvGJ8efJibxncFhdJ9yY81LcHa9fm0Xj3hj4qxZavQWZf60+ZD5a6G4Ek0DO8AGApYyyBMTY5wMeudPi8yh9WZRjU4PYNfZSK1g1q6w6wUgNv6I/3DMaoTk3w2+ShmCxZvG4f2g7DOzbCHcNiTM+Nh2loQ0Nfvty3nYUWM0FC2Vh7UEwDH0ue0QMeHurAsXRvyfXLbBRyUeYF3DOiPR6/6AJMGh4jO5a056sVrrWTydvX97bVTkf2oMo5qOaPxaCYhnLItb/wW8FC3U8BYiGDAQYhfhE6RXMA4LfJQ21XxA0LMfaC+0P7OWXBKCO4h62OTpXJupGhplWQOWGK751932D8eM9gv4rqR8uPADBWkNo3rqNqX6LNAY7t0gTfTRooF0t4/aqe+Oimvqp9eraqB4eDyc/8pT18xzxXXs2UD6t6Se3wULx3Qx85HAkABsY0VD2zyvNf/vSFuHtEe3Rq5isE2FFQlc/nNE0pfn/CTmuLlbnNCA1x4K7hMfhKKoZkl8ExDS1VC+ZMGhZjWxE1IjTEoXss7bwdERbiE6I1uL01Y0z/tvUt7ac9j4aKmgEMTBZgtViNdtAr7mVEIJrcl8Vje5vFsHgj+rWtjyEG96VT0zoY1F49h5vlpXHjnYMxeZ749JZ++N8lXuNZeKgD94xsb1j7gRPoQjN6xzO63tq588LOTfDvoyNwq07YsZEiHdulqe5aGh7iQK/W9XDojUtlhcwfvVvXx9huzfD8hG5yn1D+exisz7fhIQ6/BjYtetWUu7eoiz6t6+HzW/tj8ZOjcXnvlpg0PAa3DWknh6Eqi8Vd3a9luepCGPHc+C44OO1SS79Jz6mifL5vGdwG8RaMzGbzaKdm0QFpKfvRTX3lc+tlYOj3ekbNj/XdpIGYekV3tCznusVl/nCNvHXH0Ha4TKeTB38uvp80yOc9jr9aJDVRQQ10xYeRgiCcZow1BbCMMXZQEIQ1/E1JaZ0MAM2aNUN8fHyAvz6wlBYVAWAodToRHx+PwsIi+b1TycnYLnhbpEzqHo74+Hikpfo2Wj94+AjiXSfkvx/uG4H6EQw7t2yQt61VVCuf3AnYl2DecDsnRzyX44cPqLYn7d2KJD+/6+oYAd/uAfYlbMIRhaB0KjkZ13YMx+rD4t8Pdi5BccdQPLJCrBgZHx+PQ5n6HtC1a1YjlAngJZAiMw4iOhzIs9D3/c7OwPsJQGFhITatX4v+4cCm9WdRWCj2/tu2dQtu7BKGNnUcumNmw7p1iAgt+0zH+5pt3LAeUWFM5e3yN0a1E3m3+gIOZDO4XOKYyc4W79ODfSLQoZ4D9SMYJi9T9zQsKSlFfHw87ujgQavQMCSkunA633vcPTt3+Hzv0BYhKDq5B4MjgQZDIhEVxvDCuiKf/az+DitkZarHtpVjjm8koFHPcGQf24n4Y+r3PomNAJDp9zipaany643r1gIA8nKNf6uScylndLenJ+6D0+kNqz58+KDq/cP798KREoJhtYGhl9QGSzuA0kL1AsDPe1+KOOrT0tPx2UW18ehK7/3Nz8sDAGzbloDsY/qCgcvlAsBwUdvQct+nS2NCcX3ncIQ6xGeJ8+W42pi6oQipheK42rJpI9xu77M8uXcEvtnt9ai9MjQSMfUccDCGM4d3y9uTjh1RfV9mqv71BYBuDR04fSDB9HxTUsV7y+A7nj6MrSVvi60LICMd8fHq+2SFh7sC6Bpm6dryfV7qD9y1WP89I+7vFY6MIgHzj3rHldFndmxXX5eDe3cjJ0c9WV7bughbjvs/3/s6CXjYpNtFlwYOXHVBOIpcTnyaJm67vlMY6oSX4JD0aCUlHUd8/Gndz4e5fdc0LVOHRWLLhnWYdWkU7lrsv1VOaan3tzavzZBS6F9t+Pri2jiV68Ebm8XziRRK/HzCl5SzxuPVCiEleXioXyQ269yXgoICZLvVc/ux3cZ9aM+eFeWHw4cOIjtbnEMOH9wPlT3b40F8fDzOFRkLn2brclnJL/C9h2vXrFb9HeYAnB7gyO5tOHvQd/1dfdT3uA92F7AlJQzzjzhlRdHsuVq9erXhe0oOnxafubTUFMTHZ/m8nybN3R5BgEua92qHAoUmLbJXr16NsFzf6zqhfRgWHfc+45EhQLG02/69ewAAJcXeZyY8/SCe6gkg8xDi49U9kiMEAa8MjUSj3CMIYWJrni2bN+N4bXNjT1RYYNZ0zqN9I/DZTu/zlJaejvj4eFzX6WGdpgAA4B5JREFUXkBUrQjEx8fj9q6h+G6P+NwOqZ1h6fsLFeNIu398fDwOJheivNTPOYK7uodh/pFSbN24Tjei6XiSeN4nTyQhPt58DogBEB9/QrWteW1m63qnZojyycH9e8BSxHV/cPMQjK2fgfVr1/jsX1oiXvsD+/bggd4RyC0VVJXab+oSjtSkw6bfGb92HepHVH1USX5+fsDGZkAVVEEQTkv/pzHG5gMYDGCN4v1vAHwDAAMHDhRiY2MD+fUB5/SClQCKEBISitjYWIRvWgkUiQOvVatWuPOKHjgbfhB3DPVawv5N3QmcVS/0rdq2R2xsJ/nv2ACc28aiAzi0OhETLxyCj7Z7B7yVaxoL4P9uUWxYHAcAaNGyJa66pBfa98hGVESonPv1yIo4+djCoTRgy1bfY8bGYmabDNz67WYAwJgxY1Bn0wrklRZjeMdG2HDsnOH5DB/cH+8nbERkrVqq86+1dRVQWIjBgwfjZm0emnTO4nePNq2C6w/HskUAPBhz4ShvIYclcWjTsJal64ml3nPp0TQcB7KdaNMoGrGxo/HV4Y1AZiZGD+6L4R3FkNGF3XJx2Sde5SE8PFz+nqsBXPrRGiA/T35/2JDBwEb1pHbvxf0Q2130YPIzfGFdHIwIxLPWvlcB3og7gGX7U20d8zIrO0n3M/7ZWGTklyCv2IUvVx/DluOZaNS4KXDmrOo7F2bswoHMZL+H7dwxBktO+EpK1116Id7auhxwiRJKz+7dgT075fevvXiET07t6ewiYM1KAKIllp9Lyb4UYGcCGjZqjMvHD8Rb21fidHYRVj0bix/WH0fixhMYM3KIYS7le1sXA3DjzrH9bOWEq5Cu31cPGkcOvLMzHigUBYYLR41EyPoVgCSsPX/LWFwVm4uJn6wDAIwcNlgV/l+r1VnkFjtx/YDW+P7FRfL27p07YEGiWugCgG/vHIjYLk1ET+1i9bi8dUhb/Cr1D2zevBlmjm+Bjk3qyAVV+P7XXOpbdKvCWOyd47TbOPJ70vY1z41BkdONSz4Sn80Xb7sYADB/SpzhZzjDhgwGNnif6SGDBmDh2X1ATjYGt2+ILcczcUnsSExZuwyAON70vPD8+LXWLNZNn6hfOwzzHh+DerXCsHRfCrAjAb1a1cN7944U78E+UaBu315aozTn2ap+LTx7eTc8+PN23y9XcPNlsV4PmOIYMY1qI+mcrxAaGhYGSAair+4ejqs/X296/PHdm+GSsQORmJ6PNzaLSku3ds1wbPdZhDoYZlzX27B/aVgIQ/N6kTiVWYR2bdoAJ/1o/Sa0atEMsbH9fK4TAETWro2G9WsB5zJwZZ+WeCi2o5jbq7NviIOhcdNmwNkz6NmjO46WnsaBzHT07NlT9ITsEo2SD8ZegNjYLkjLKwZWr9A9p9jYWESfyAIUBm8tDWqHmdY5UPLD3YPw6j/7gAL1fYuNjVX9lkNvXIa8EpcqEsUKNwN40+lG15cXe4+rodmG5UjNLbG8xgxzuVFa5wCeGtdZFWHCOSPN3YwxsaKv2423ru+LJ+buRO3wEMQ/F4vB073XN6ZRbfm7X93g/c1X9GmJT2/phxjFMx4WGopit7iODOzfD9i6EbVq1QKKCg1/nxLuh6y9egnyil0YOWIYWtQz9uBtH1SKsBCG6Eh7192M8KMZ+GznZkSFh6Cg1I0Le3eUZNZ4+fxjAXwn/e7LL45FaIgDK3rkY+z7xkaE2lFRQIEYWaedC7UytR4vTeyGN+JEJ8y1/Vrhrx2+RrTY2FjEAphi8vs2Fh0AEhNxQccOiI21l7cf37MADaLCbY3zzw9uAM5lYWD/fhjaoRE2DihCw6hwQzk1assqnCsuRP9+fTFU6tbRYPFBfBF/DNf1b423b+yDhBNZ+CDB+BkfNGQYWgUgYqm8xMfHW35u/REwdZsxFsUYi+avAYwHYFwRpxqgzEFV/s9fOxwMz0/oJiunAORk/QHtGuAxqYCF3YItVnhufBcseGykKnyvPIUWAKBRlBjC07t1fR9hmoc1je7UxCf3lj8U3TWFNnKKJAHkjgFygR49+EOrzXvoIJ2DXkgKz98Byt8wmYfhKi1vP987BH8+aK3CWtKMiXJF1dqhDB/e1EfOC3z64i5oXCcCPVt5Q098K+KZew/0Kvya5SRVFO0aReHbO8XcHr2w0vLCGBDTOAoDYxpiTNemuFvKieahK8rcwqlX9sB3dw5E6wbmE7JROFNEaIjqqivDcI5Mn6Bb8KlV/Vpy3s3dI7zFMLhgzvt1/vbAULx7fW+0bxyFlyZ2x18PDzct9DOoufg5O8WAyktoCFM9b4wxVQssbX7fxN4tcMvgtj6hwbUNQtwv7t5M3vfJcZ3w9nW9cHH3Znh8bCdVKOtFXZvioq7NvMppFWIl70tJ20a1y1zdMsTB5CIngBQ+J12X/7u0K7a+OE4laEdHhuGOoe1Ux7hHMQaNQjxXPztGFqx42CDP6VWmrPCPvzSxG24Z7A31XT/lIkv3Rpl7qZyOtekZjaLC8dXtA1Rjz1/Y3ejOTeS8+Q5N6sipEHzdubJvS9TXER55wZpLejTHrYPFaxcWwjDMQrs2I8xC45XX4LoBrU0LT4WFMHg83toH/F7nKJTIy3o1l3OMm0ZH4s+HjNcjsyrwTaIjfMIxf7pnsG7xs1b1a2FMl6ZysUWz0GKHg9lWTjl8zhzaQV9mWfTEaN3cbSMiQkPw+lU9dZVTwBtCyQCMldrW9ZbyRYudbtV8P3l0B8Pw1Vs0KSmf39pflvk+vKmPXL+iLCJJlGQc95eL3jAqPKDKKQAMiGmAy3o1x7+PjcR/j47EowbF1+Y9MAyPjOkot7vR1kCxwrKnRsu1V2Yq5kAtS54cjftGdcArUtpa3Vphcluz/11qL/deftbKcGNiGkfZHud1pfvDU2Ba1Ktl6kTRa0cXI827fFPnZubygVFh1epMIP3BzQCsY4ztArAFQJwgCIv9fCao4WsrV0yV4ZxGSeR8YN45rJ38uqQCBk5oiEOl9ADAz/eZt6DxxyNj9Celo9MnyNXXQhxiWW5l4RJeEEm7eP90z2DcNLANoiNCdcMuJg1rh/q1w7zVdDWK2kc398XMuwbqWhPfud5bUKG8+TejOonKljI/ZmSnxmhqY/LlE2e9CIZr+rWWJ+7B7Rti20vj5LHAz9dOThxjDP89OlL+7LE3L0MbG/0n3yln8RMtz0/oZliYp6zsePli7HxlvGrb8Asao0PjKDw+thOSZkxUVWetHR6Kcd2b+S0OorcocKGok2LCD3EwLHx8FFY9G2sqhPKWOMoCEaMuaIznLumC164UDTetG9SW8/nCQx3o31Y/t5gzunUoDk671NY9LS+hIcw0P9ost/rrO7y5oFbyuZ4c1xk3DWqLb+8ciKcv7izPna9c3h2XG7SHqGwOvzEBn9zcz/+OFtAzxj1wobqqZqiDYUzXpnLuVGRoiCyYhjiYnPf7kCLHnN8vPuaVRcuMHoMwRepDbJcmuGNoO9nAeJ2ilRe/3/eN6oApl6pbVGiVH71cU2VtgkPTJsivtf0nf3tgKC7t2Vxl7DUrMgYAb17TU6XofnfnQFzUtSnuH90BO1+5GG9f1xtjuzXFezd414Q/HxomP3dOt0dWuEJDmKlQ/OS4Tj7b7hzmNQyYzQ2RYSGyEcCoKNr0a3rKx3ErhGaubJe43IZtQIxqFAC+bayeu6SL3OP7zWt6yT0hOV2aR2OETu/URU+KRYd4YbpeGhmD8+z48vfm3j11PH66R19maRgVHrA8cEAtI7x/Yx+s/d8YOQdbqxBqrxXn+FuXYbjmmikrtI64oLHKSPH0xZ3xjkFhKT36Sbnk5TW4l4WI0BB8cdsAdGxSB71a1zOUqQa3b4jnlDnSZSjg2KlZtCxzdWkerWts79e2Pjo2iZK/EwDGdfOu9+O7W69xAgA8PTPQudpGvHtDH0y7qgd6tDQ2Uim5fWg7MAZVez9tRWE9o4TSCFYTc1ADpqAKgpAoCEIf6V8PQRCmB+rYVYXXgyr+r/TG3Daknc4ngGcv6YJnLu6Mib1ayAnbZhVaA8Gv9w/BoidGlbmK4pV9WuKGAa0NPx+qU1jnr4eHY6Q0WReUiOEt2sV7YExDvH29WNlYTwh57aqe2PnKeMNFv25kmKVCPOUtKPD5rf2x8pkL/TbBNuP+UR0w866B6N/UWqgxFwg7N6vjU/xF+3sYgJb1RYU3LMS44bkRNxoUPwkm9EJo6tUKw8pnY1WePb3PAcDYrk0x7eqeKq8UoN8bjI/FmZMGYaJUsKBzszro3rKu31ZSE3o2x6/3D8HtCm+Ww8HwyJgLUM+kHYsZjLGA9Lr1BxeOASDM4ZA90tteGuezb10TC/0lPZpjkiS0cyF7XDfrocl84a2snnhWCA91+K3waJW2OoaG5yeolT4+1/C1JSLM4dOPGQBukNpmKKcE7t1Wzqlju+nPk0rFJSzEgWlX95QNb7XDQ+XIjwjF+NNWMVcqmVteGIuJvcRxY9T/V7mOTL1CW7RPOrbisXT5cRlpla8GUeGYedcgNK4Tgfq1wxEW4gBjTNViZEC7hvK64nIL8neEOsTCN09f3FlVyfuOoe2wfspFeGKsV0Fd/vRozLxrIF69wlsYjFfSnHP/UDyqMehGhikq/St+kjLahLdE69S0jrdIkoPh4dgL8NhFF+CGgW1Me2jrtWIBfIvRDGnfEANjGiJpxkRc3L2Zz9oe6tBfk/lz/8Ndg/DE2E6GlUMfvchXkbdL3ciwSqv8zMcQY6Iy1qZhbURF6M8/nQw8VUZyBt8awpjXgwqxuu6NFooAct6/sQ/m3D9ULsBYHdDevzoRobhJIW9Y6c2pHYdHpk/A/IdHyHNkz1b1kPjmZRjZqbF8fe22weF1RipLQW0YFY47hsVYlk3vGdkeR6dfJlfABrxrg3L6Uz7noQ5vFMaEns1VxQxrClWfURvE8MHMH7L7RolW8NXPxaqqrimpExGKx8Z2QmiIA0M7NML6KRfhKpu98+wyvGPjcvWx++SWfnhXYX22Qot6tXCDFGabVSgmc5uFGSnnhWVPjUbSjIk+79ntxKFXMa8s1AoPkcOJy0qIg+Girs0sT0h8gp151yAM1IRmX9RVFEJ+vW8I7hnRHm0b1pYncSvVV9dPuQj/PDICX97WPyCW7mDmy9sG4PkJXfHdpIG4Y2g7jOnaVNX8Win8vi5VoOVKbYOocHx2az/semU8LrBY7p4xhuEdG1dIlcWKhudAA6JQ/OY1vZDw0jjd6pz+KrJyhabU7cHa/43BZ7f2x5InR1s6D28zdP1rOOvuQfjs1sB4M6sCK0IQ95JwASMyNAQf39wPT43rrLK6K5Uzft0mj+6I0a1Dcc/IGPm9Gdd5m8Err53ZnAx4234oQ7q1YYpcYY4Mc6Bp3UhMu7oHZt410CelQ48hHRohacZEuWUY89VPUerymKanlFWm5F7AUrdHnm/5b3l8bCdcoqi6Pe3qnmhVv5bqub6gaTQu6tpMjlqZdnVPPCzlrw3r2AjPanqQR4aFeNcyxS9URn50a1EXz13SBd9PGiQbakIYQ63wEDwzvovohZX21VsPp2vSazj+Kt0DwMT2XqNTqMMB7dBQKuwdmtTBUxd39pnnFj0xSsfoEPyE6DwHRgbpiTpVVq3gYEyhCNsftLXDQ+Wqw9WRmwe1wdzJQ3G11NqtTkSorpdei9ILPapTY92xy42H3PNat1YoXprYDd9P8t/qDvCmM1SWgloWtOd2RZ8WiO3SBI8rjGYTFN0xGPMae+8Y2k6l3NYUAl3Ft0bBo6O4jHvH0Ha4oncLWwMhGJKWK4oG0nXgCqrZpKx8Txt2yScku60H4h4fhX1ncm19JljgE4veZPz0xV2kMOpackgRn2DNQmr+fXQEDqfmo1X9WmhVvxb6tKkf+BMPMprXi8QDF6pb7fRrK+Z/f7ryKEqc3rCXO4a2Q6nLgxsGeC28jLEyez6rO6EhDsPeef4ErMt6tcA3axIxulMTOTS5S/No3DSwDQb5aY8i2wwMvqLMhaIqiJhGtf22/VLiL2RVCZ8HIsIcaBAVjic0IaYhCo8Mv2z1a4fhnp4RqpAv5Zx6ee+WiGkUhfhDaX7vI08/USqoYZKQPUn6zXyO4ttrh4fioq7NkJorVip93CBfTdmD+N5R7fHi/L1y6oPSs+J0e/DjPYNxIrMAl37kLR7XtXk0DqbkIbKMnnbensrp9sDJPSgKRcUolFOPEAfzyQHW0rZhbSRniQVflMqlcs4OkaItAKBny7pYeTDN0GOmF4JvNQ1Ab125rnMY4qTqs6EhTKXULnpilCUjd7cWdctlDK8qjFJBpl3dE30lrzZH+8z8et8QnMw0rjar3L8a2i0DBu+Ty+eFnq3q4uXLu+OnjSdMP/dwbEfcPqQdsgpL0dRPr8/nJ3TFHZJsxB1GVuDRr3bm5qomOjIMs+5Wp1I9Na4zPl3pLfrIZ4jyRP8FM6SgmsDvuTKfpCZaKcpK37b1ER0Ziocu9F8VTbk+aL0zLevXwrSremC8Th9JM9o0rF2peXuBZNLwGLy75JBu8n2Ig/nk3TasHY5r+7fCnSaCcu/W9eXCD+c7XOAudrnxcGxHjO7cBIwxW4saYUzfNvVVURCcty3kO984sDX+3J5crmI1lUF0RCjySlyW+v0psWOlb9OwNk6cKzQsoKEUrLnX1UrYXM9W9XxqFOjBDTjK73c4GI5Mn+BTuCNM46VrVjcSm18Yi6Y6oWVJMyaqzvO2Ie1UaTEqD6rbg1rhIejaXK34fHJLPxSVuk3DzfXghUn4+TrdAlxuySCo8EhHBDCs/p3re+PKPi3x/brjWHkwTdVHURsyzXl8bCdc3L25z33yJ0Mz5j/aSC90Vimch4Z40wqmXtG9WiqdduC/Xbuu+jM6AGItBLNyid1aRGNTYqaq8Fz1UYMCT7O6kfjlPrFqvZWIL24ktmIoDg1xIMZPGo4eyoJk1RllGoogeH+X0RxT3SEF1QR+z+2Gnp4v1I0Mw56pxm0tlChTBvSEMTseiprAI2MuMCxKpYfDwfDBjX0r7oRqGFGSkOrxCHj+sm5+9q7+XNe/NYqcJk39LLLsqdHILyn/cczgYZ/BzopnL0Rarv9emwPbNZArlgP+i5zUqxUmR4vMnTwUu05lGwpOfDtjzJtTaTP/yox+betj+YFUn9xrpWDpjfbwPUezKp5m3tsnxnbCW4vEnrY9DXLMa4WFqFodWeHA65fKCh4PK755UBv5/rSo7z1fozD2Ae0aIOGEby9NPaZM6IpGUeFyUbSHLuyIS3s2V1XkNhoPoSEOuU6FHkZyh9H2Px8ahuu+FPun+yteE+ZwyB7kIqd5cZW4x0ciJcd/L9xgJjzUgY9u6isX3AkEHaQiPl/fMRD7z+QiOjJM9h6e1xoqYCm0tzJ59pIuKHG5cVXf4CjKVx7+eWQErvp8PTyC4J2bHeRBPe/g67Gy+AJRNpQVxiL85LcRRHm5ZXBbJGUU4GEbRoDqzPs3WsshX/j4KBxOzTN8v5NNhaAm0zQ6Urfd0OYXxqKw1Ns67A9N+w+jYksLHhuJerXCVFEfLerVMu15qDwSVxCdbn0NZdrVPdHZZuXThy7siMt6tTAtDtYwKhy9WtXDc5fYa+1gxgMXdvQJzddSFsOwspBhozoRsiHE7RHQrlGUqpiXkRL3y31DVPfXjAc1v8HhYD7tosQiah1tVB41125eu7IHvluXiFOZ6v6RA9p5lS9/xYccDiZ7kPX65yrp0bKeaaG66sLV/QJXC2T/65fIxqN6tcLk3NH2jevg6r4tMXm0+diuSXx350BL1dyrkibREfgoQFXaqxre2swjeB0/5EE9D2GMYc/U8bZyVQigi46Qq1JQK6lyH3H+EhkWgteu0i8ocj7TvWVdwwJvhDXK0vsPgKWQWyMYvF5Np9sD6CxJVsIVtTgczG/l6rAQB/57zLiPdSAJC2GyAm7WBskuIQ6Gi7urKx0beXgjw0ICXlVb2ZrDKka/ftLwGEwaHoOYKXGGn/VXHAvwepBL/CiohC+1w/VF5xAHqzGKkFXGdfffaYEIHMq0D178zcrzXh0hTcEP0ZFhNTYBuSLY9cp4/PPoCJ/tzRVCXXWsgEoQBFHZ8EJIj4/tJFvJXTWw3x3nyPTL8N2dA9E0OqLMhgA7PHNxZ8yRenwHC4FYHrX5wnqMlVq4aRV3giCCF+65f+yiC+Q8f22/6ZoCeVCJgGKU6N60biR+f3AY9p3OqeQzIgiCqJ6EhzrkMNXPV4nVG0sNQnxrCuO6N6s0r8xjY8vfzzMY8ZeDCoihgtUhF7yy+O7OgWhcA3tJVjV/PjQMDaPougYKxpj83P6RkAzAuEp1dYcUVKLSGBTTEINM+t0RBEEQ+vDcxvaNawMFVXwyRIUxpktT3DyoDZ4cZ97DunGdCAxu30C17Yo+LfHfrjOWqqcSaihUtWJQ5kYTgcUb4lszn3dSUAmCIAgiwNjt6+yPS3s2x58PDUf/tvWxenViQI9NBA/hoQ65p6QZ214a57Pt/Rv64OXLuxlWhX7wwo6I23Om3OdIEETVw4sk1dAIX1JQCYIgCCKQ/P3ICLSsH/gcygHtGvjfiThvCQ916Fae5kyZ0BVTJtgv2EQQRPDBc1AdNbSuCymoBEEQBBFA+rapX9WnQBAEQdRgeDWCmqmekoJKEARBEARBEARRbfjlviH4IyE54OkkwQIpqARBEARBEARBENWEbi3q4uXLu1f1aVQYNTS1liAIgiAIgiAIgqhukIJKEARBEARBEARBBAWkoBIEQRAEQRAEQRBBASmoBEEQBEEQBEEQRFBACipBEARBEARBEAQRFJCCShAEQRAEQRAEQQQFpKASBEEQBEEQBEEQQQEpqARBEARBEARBEERQQAoqQRAEQRAEQRAEERSQgkoQBEEQBEEQBEEEBaSgEgRBEARBEARBEEEBKagEQRAEQRAEQRBEUEAKKkEQBEEQBEEQBBEUkIJKEARBEARBEARBBAWkoBIEQRAEQRAEQRBBASmoBEEQBEEQBEEQRFBACipBEARBEARBEAQRFJCCShAEQRAEQRAEQQQFpKASBEEQBEEQBEEQQQEpqARBEARBEARBEERQQAoqQRAEQRAEQRAEERSQgkoQBEEQBEEQBEEEBaSgEgRBEARBEARBEEFBQBVUxtiljLFDjLGjjLEpgTw2QRAEQRAEQRAEUbMJmILKGAsB8DmACQC6A7iFMdY9UMcnCIIgCIIgCIIgajaB9KAOBnBUEIREQRBKAcwFcFUAj08QBEEQBEEQBEHUYAKpoLYCcErxd7K0jSAIgiAIgiAIgiD8ElqZX8YYmwxgsvRnPmPsUGV+fxloDCCjqk+CqFbQmCHsQmOGsAuNGcIuNGYIu9CYIexiNGba2T1QIBXU0wDaKP5uLW2TEQThGwDfBPA7KxTG2DZBEAZW9XkQ1QcaM4RdaMwQdqExQ9iFxgxhFxozhF0COWYCGeK7FUAnxlh7xlg4gJsB/BvA4xMEQRAEQRAEQRA1mIB5UAVBcDHGHgWwBEAIgJmCIOwL1PEJgiAIgiAIgiCImk1Ac1AFQVgIYGEgj1nFVJtwZCJooDFD2IXGDGEXGjOEXWjMEHahMUPYJWBjhgmCEKhjEQRBEARBEARBEESZCWQOKkEQBEEQBEEQBEGUGVJQdWCMXcoYO8QYO8oYm1LV50MED4yxJMbYHsbYTsbYNmlbQ8bYMsbYEen/BtJ2xhj7RBpHuxlj/av27InKgDE2kzGWxhjbq9hme4wwxiZJ+x9hjE2qit9CVA4GY2YqY+y0NNfsZIxdpnjveWnMHGKMXaLYTmvXeQJjrA1jbBVjbD9jbB9j7AlpO801hC4mY4bmGkIXxlgkY2wLY2yXNGZek7a3Z4xtlu7/b1JxXDDGIqS/j0rvxyiOpTuWDBEEgf4p/kEs8HQMQAcA4QB2Aehe1edF/4LjH4AkAI01294BMEV6PQXA29LrywAsAsAADAWwuarPn/5VyhgZDaA/gL1lHSMAGgJIlP5vIL1uUNW/jf5V6piZCuBZnX27S+tSBID20noVQmvX+fUPQAsA/aXX0QAOS2OD5hr6Z3fM0FxD/4zGDANQR3odBmCzNH/MA3CztP0rAA9Jrx8G8JX0+mYAv5mNJbPvJg+qL4MBHBUEIVEQhFIAcwFcVcXnRAQ3VwH4UXr9I4CrFdt/EkQ2AajPGGtRBedHVCKCIKwBkKnZbHeMXAJgmSAImYIgZAFYBuDSCj95okowGDNGXAVgriAIJYIgHAdwFOK6RWvXeYQgCGcFQdguvc4DcABAK9BcQxhgMmaMoLnmPEeaL/KlP8OkfwKAiwD8IW3XzjN8/vkDwFjGGIPxWDKEFFRfWgE4pfg7GeYPMHF+IQBYyhhLYIxNlrY1EwThrPQ6BUAz6TWNJYJjd4zQ2CEA4FEpHHMmD9UEjRlCgxRG1w+id4PmGsIvmjED0FxDGMAYC2GM7QSQBtGAdQxAtiAILmkX5f2Xx4b0fg6ARijDmCEFlSDsMVIQhP4AJgB4hDE2WvmmIMYyUGlswhAaI4RFvgTQEUBfAGcBvF+lZ0MEJYyxOgD+BPCkIAi5yvdoriH00BkzNNcQhgiC4BYEoS+A1hC9nl0r43tJQfXlNIA2ir9bS9sIAoIgnJb+TwMwH+LDmspDd6X/06TdaSwRHLtjhMbOeY4gCKmSYOAB8C284VA0ZggAAGMsDKKi8YsgCH9Jm2muIQzRGzM01xBWEAQhG8AqAMMgpgiESm8p7788NqT36wE4hzKMGVJQfdkKoJNUoSocYpLvv1V8TkQQwBiLYoxF89cAxgPYC3F88MqHkwD8I73+F8CdUvXEoQByFKFXxPmF3TGyBMB4xlgDKdxqvLSNOE/Q5KtfA3GuAcQxc7NULbE9gE4AtoDWrvMKKa/rewAHBEH4QPEWzTWELkZjhuYawgjGWBPGWH3pdS0AF0PMXV4F4HppN+08w+ef6wGslCI5jMaSIaFmb56PCILgYow9CnGCDgEwUxCEfVV8WkRw0AzAfHGORyiAXwVBWMwY2wpgHmPsXgAnANwo7b8QYuXEowAKAdxd+adMVDaMsTkAYgE0ZowlA3gVwAzYGCOCIGQyxqZBFAQA4HVBEKwW0SGqGQZjJpYx1hdiiGYSgAcAQBCEfYyxeQD2A3ABeEQQBLd0HFq7zh9GALgDwB4pPwwAXgDNNYQxRmPmFpprCANaAPiRMRYC0ak5TxCEBYyx/QDmMsbeALADouED0v+zGWNHIRb+uxkwH0tGMKn8L0EQBEEQBEEQBEFUKRTiSxAEQRAEQRAEQQQFpKASBEEQBEEQBEEQQQEpqARBEARBEARBEERQUGVFkho3bizExMRU1ddboqCgAFFRUVV9GkQ1gsYMYRcaM4RdaMwQdqExQ9iFxgxhF6Mxk5CQkCEIQhM7x6oyBTUmJgbbtm2rqq+3RHx8PGJjY6v6NIhqBI0Zwi40Zgi70Jgh7EJjhrALjRnCLkZjhjF2wu6xKMSXIAiCIAiCIAiCCApIQSUIgiAIgiAIgiCCAlJQCYIgCIIgCIIgiKDAr4LKGOvCGNup+JfLGHtSs08sYyxHsc8rFXbGBEEQBEEQBEEQRI3Eb5EkQRAOAegLAIyxEACnAczX2XWtIAiXB/TsCIIgCIIgCIIgiPMGuyG+YwEcEwTBdjUmgiAIouL4Z+dp7DqVXdWnQRAEQRAEUS7sKqg3A5hj8N4wxtguxtgixliPcp4XQRAEYYMn5u7EVZ+vr+rTIAiCIAiCKBdMEARrOzIWDuAMgB6CIKRq3qsLwCMIQj5j7DIAHwuC0EnnGJMBTAaAZs2aDZg7d255z79Cyc/PR506dar6NIhqBI0Zwi6BGjN3LS4AAMy6lBqr13RoniHsQmOGsAuNGcIuRmNmzJgxCYIgDLRzLDsK6lUAHhEEYbyFfZMADBQEIcNon4EDBwrbtm2zep5VQnVoUpxX7ITLLaBBVHhVnwqB6jFmiOAiUGMmZkocACBpxsRyH4sIbmieIexCY4awC40Zwi5GY4YxZltBtRPiewsMwnsZY80ZY0x6PVg67jk7J0KUjeFvrUS/acuq+jQIgiAIgiAIgiDKjSUFlTEWBeBiAH8ptj3IGHtQ+vN6AHsZY7sAfALgZsGqa5YoF3klrqo+BYIgiHLz9G87sXRfSlWfBkEQBHGesGRfCh6fs6OqT4PQwZKCKghCgSAIjQRByFFs+0oQhK+k158JgtBDEIQ+giAMFQRhQ0WdMEEQBFHz+GvHaUyenVCuYyRnFeJ0dlGAzoggCIKoyTwwOwH/7jpT1adB6GC3ii9BEAQRQNweAR4PBZwEgpFvr8KIGSur+jQIgiCqJdmFpSgqdVf1aQQtZ7KLkJRRUNWncV5ACipBEEQVcu/SQjz0S9k9h4Ig4M2FBwJ4RkR149Fft+OB2cFddJAgiOCn7+vLMPHTtVV9GkHL8BkrEftefFWfxnlBaFWfAEFUJqcyC3E0PR9jujSt6lMhCJkl+1L972SAyyPgmzWJATwborqxYPfZqj4FgiBqCInp5CEkqh7yoFYgCScy8fxfexCoelElLgq7KC9jP1iNu3/YWtWnQVRz3ll8UG7rUhkIgoCT5woN3qu006gwqKYeQRBanG4P1h5Jr+rTIAiiCiAFtQK56etNmLPlJJzu8gtfcbvPostLi3EkNc/W54pK3Xj1n73IK3ba/s7dydlwuT22Pxds5BY78UdCMgCg1BW433MqsxAHU3IDdryahiAI2HAso0YqH1/EH6vQ4985cwveXXJQ/vv7dccx+t1V2Hcmx2dfTw24vu4KyMFNyy3Gh8sOY9WhtIAfmyCI8uN0e5BTZCybfLjsMO74fgu2JmVW4llVPw6l5OGDZYdN19pipxtPzN2BlJziSjyz6oMgCEjOKkTMlDgsqeJq8k63B6sO0rpFCmoFInaGDYwAuXS/+MDsO2NPIfpl8wn8uPGEbYH6SGoervxsPWYsOuh/5yBn6j/78Ozvu7DjZJa8LRBK06h3VuHSj2pOrsaOk1k4mpaPaQv2l7toT0Z+Cf7ddQa3frsZP208EaAzDD4qSvleczgdn6/yPrNbjosC2qlMXy9qDdBPURE1oga/uQIfrziiiph4/q/dler5JgjCmGfm7UKf15Yavs9DTTPySirrlKolN369EZ+sOIJCk+JGS/en4p+dZ/BG3P5KPLPqg0cA9iSLBuC/tidb/lxesRMJJ7L872iDD5Ydxt2ztmLDsYyAHre6QQpqBcIgaqhl9Q78vu0UYqbEIb8cvU6LnW7pXOyRVShaNXeeyi7zd1cl/+w8jXRpUcuVvMfpikUuEF7tmsTp7CJc88UGjPtgNb5fdxwHU+x56neczELf15ciPa8EszedwMA3luOJuTsBAIdtev2rE4H0/OUU+noSpvy5G3O2nDT9XE3woFbWb5iz5VSlfE9lUhOiXKoLgiBUiLf/fGTZ/lS5vYeRoY8b+fm7aXnFuka68x2e/mU2MrkMqL3Uj/66vUY4IspLVmEpXvp7LwCv7J6aW4yRb6/EcZOqvRM/WYfrvtyAwtKyy+laEtPzAejLBOcTpKBWJNKM4Crjgvbd2uMAxN5+nFybobpcEQsNsXerQ0PEk3dWw8U4Pa8ET8zdiclSVcvoyDAAQG6xdwKJp7A/FbmaMKta4SG2Pv/6gv3ILnRi7ZF0vCxN8pxiZ80VoK0820dS8xAzJQ5H0/JN93t8rm+z8LlbT+H5v/bIgpoe5VXulu1PrZKF0On24Jov1mP90QzD3zB70wk8XI4Kx+cDF7y4qKpP4bzhhfl70PGFhVV9GjWC+3/yVp1WTqNT/xUjngCvgrrigLheD56+AqPeWVVp51jdcEvy3tmcIh8ZxyFdTEGjxi7YfRZfra7YlJXqwIfLDuNcQSkAwCGJy/N3nEZyVhHmbDkJQRB8UsRyipw4KRlM/LXmEQTBcsQVtzmGOOy6lmoWpKAGGLfHO4iZYpuWvGKnae4FAISHirdH+VC88s8+W+fj8oifDbM40HOKnIiZEodl+8WqosFinc/IL7Gcf1sgeZx3nMxGdmEp6kaKxaqVStjk2aLQu2x/KmKmxJFVVkOImUakw46T2QD0x7q/4l7peSXVtu+aFQX1n52il2DhHrHSalZBKY6l+yqrfKHTy5nkAhpf35TW2vLYkNJyi3H/T9vwyK/by36QMpKeV4IdJ7PxzLxdPuPG4xHQ5aVFePnvvVi4x38+UKnLg9f+sz43Hk3LQ/yhNOQWi/PdzHXHbZ8/IfJHQjJmb6q5YfxKaqIHPhhweTw4ea4Qby48gFkbkvBHQjIy8ktkT9af25MNZZE/EpIDHmJZnTiTXSQbgQudLqTlFePKz9bjLkVqg9PtkaPpPMEh0gUdJQo5m487LktGhYfip40n0PklrzHwxLkCVXh6iZ/6Ju2fX4j7frTWCswt3STuKDpfIQU1wNz741Z5EDPZg+o7cHtNXSoP7h0ns3A2p0h+70hqHp79fRe4Tum0oCQaWWZcNj2ovAHxt1LbCivfXRmMeTceF3+4xtK+pYpzfn/pYUSGhfhsB0Qh+E+peNLe0+riM2sOp2PEjJXypF6dyMi3r/Bph49bEJBb7ERBiUsVYr7zVDbeWngAucVO3ZCWAp1wdH8T96Dpy3HNF+stnWd2YSm+Wn0saAovWTHgcIv1z5tOIKfQics+WYux76/22Y97EfWqTCsV4Vnrj6P7K0vk0OnyXAt+XH/e3YqAz49uQfBRskvdHr/jRsnifSn4YX2S5f3HfbAGd/2wFWm5YsGQnzefHwpWRfDs77t8oiZqOjtOZukamQLBqUyxUMt/Uvjr+cBPG07glm83qdplDXxjuSo3Sbt+3/DVBrz2n+htve7LDQCAH9YfR8cXFspzYnJWoa1iMyfOVW57lX1ncvD16mMoKHGV2Ug+fMZK+fXDv2zH4OkrVOlMAHDPrK14RvJKm0XcVFX4+ofLDuP3bVVr/FHW3eBrU54UdVcnMhT/7Dyt2l+7Zprl/3JWWByLfF0OcZzfKtr5/evLQInLjdPZRYbvxx/ylkS3moN6zRcbMOytlUjLE4Wlyz9dJ1kQS6Xv1BfUZm9Mkl8bfQUP8Q0LYZi75SRipsQhu7DU8Fx4GIhbmsRcQZKrmWcjD7dEEVLq8giyFWreVvUEmGZQeKGgxIXn/9qD09lFSM4yvtdalu1PRXZJ1Sr0giBg4BvLcc8sXyVn47Fzsmec72s0Nt9bcgi9py5Fj1eXoOerS+TtV3++Hl+vSUTvqUtVCyNnxmLfXBYrlZOt5ry+9PdezFh0EBuOnbO0f0VjxYPK5YG0vBK88PcenDWoomhVOOAexTPSPFQemYKHEHEj2uK9KZUWTcDHhccj+BTlKtEJCx/9zipcbtBAvqiM+T/8a+1GDNQUFu9NQcyUOFlR15KUUYCvKfzPh2u+2KBrZAoEeyRjKY+4UHLGRPbgzN1yEtMWVK9CONMXHtCVq5RPpXJOmLftFLYmZfkYpV77bz/cHkGelyd8tBZ366yFevyz8zQufDceqw9XXlubyz9dh7cWHcSt320OSOgyj2Ti8Hl17RFvsR2z9ULPmVIZfLziCJ77Y3fAjldY6sLcLSdNZQ+X24Pv1noNIsq1nMvB3DgfHRHq4+Thjg+OkTNDEAQcTfOVbwRBwLl8fRmUywKhFOJL2OHp33ZhxIyVKs/JW4sO4Amd/DHZg+oWY8+/Xn0MGQYDEhDzKwBfhVRPQU3LLcbLinBf5cSyJzlHtvbw7aEOJnsJTmV6F4IPlx3G1Z97vVdyUQLpWdVaLasDSs+eIAiy8JmoSXT/bm0iFuuUE+/x6hJ5seQCfFpuMf7ddQZpucUqJY+TVVCK+3/ahne3lq2E++nsIkMh0Q4p0jE2JvoqcLd8u0mV9/Pe0kPo+MJClLo8PnkpcTrCkZZsnbxFo3zTvadzTA0jABAzJQ5f6lSbPpVZKPcA5R7aYPFs7zuTa8vqvFlxX/KKnSrvZ6nL47dtkQB4c9sl41F5clD5Z/lC/uDPCbjis3UAxHlEmf8OACfPFaqiPcoD/07Rg6r+DcWasPCYKXE4mVmIvadzkZ5Xguu/3KB6XrSCiNk8q4Rfw6Pp+bjvx222ek0LgoB5206Vq4hdVfOLtCbsP6s/7m76ZiPeWnSwTG3KgokX5+9RCaPBDI9a0grEaw6nY/iMlVjkZ26e8tcefB+EIeulLg/+2p5sK+KDKQxHSjnof36UGX4N7Ri2eQXXQ4o5+HhGAbYmZWLxXv/rIQDsP5OLqz5bpxtJpAe/FLtsFKPMKXRaz2XU3c+7LVUjc+y32SUiWHn+rz2Y8tceVecGJbnFTkz8ZB3eiDsgb1NeKz7seBre//7c7XNPteu+kQf1t62nMO4D3+i/r9ckYsAby3UNwlxZdpynhlMOKag24QqN0try9epEOc9MiTIH9WhaPt5adBAP/2w914tPQiVOj08V3sFvrlD97faI1hhBEHDFZ+vkCqrKIkla7yggWq6UlXq1z0OweFDtUKhQXjyCYOjl+s7CIs4nj3t/3IbH5+zANV9swP0/qQXZk+cK0W/aMgBASkHZrteIGSt97mlZOCd53XnerRm8CFep21OhrUo8goDLP12HSTqhq1reXnwQyzUGgFHvrMLod1dh5NsrsUqKUChr4bFAM2nmFryj8BonnMjEPE2okvJMeVQEIIb5t3/eW3AlLa/Eb9ui3ck5cssZLoSVp68dX2RdHm8BB254uOKzdRj5ttqqP/rdVRj2lq/nHAAen7MDj/66HYIg4O8dp/2mB3CB0+0RVHPSqcxCXQ8q59fNJ7HtRBZ+lvIe9yTn4Fi62vg08I3lpt/N4YqwIADLD6T6hPqbsf1kNv73x268NH+P5c9UN/hYYNVcUPpl80mVMBrMcGNLmCb/bK/UA3lncnZln1JA+HTlETw9b5etHpMqD6of45EyBJPn7HO4QyEtt9hQCdMa5/OKnRjzXjxu+GojHrQgt32+6igu+2QtdiXnYFsZc2L1FE+lIvTX9mT0eX2pKhTaDD3jqXITL0YFiCko13yxQf578d6zOJVX/RwUAJAkGbSNujVM+XM3DmlqmrgV+/6z8wx+2XxCZejUtnjUGsmLdIzmO05mGd6rldIY1Ysc8MghvtV73i0vpKDahE8gVrwWfFF3eQREhIrhACcy1YKUmdeMC21FTrXlRhsLD4jx8APeWO5TrIJPzGEhDLslC6HRuQuCIIclc4IlB9UO+cVKD6q9vAptXuWdM7dg35kc2dLIJ5PcIu9+SWXMW3G6PfB4hHKVJ1+yLwW/bfW2IeH31mFhYlMqCFZIOFG2ZuncCrn/TA7WH83wUUC13PeTfiEBZbh1MLV6UOaVXPflRh/rfiCVf2W1RV5h+/JP15X5eDzwwuUuf/uMf3edwYLdZxG35yye/G0nvlhlHhpaogjxVV6jcwWlPh5U1TlLO/P59YrP1mHWhqQynbNWyLCT88PzvI1SBTiZBaW2FN9ggkfQBEvOd0WzYPcZxEyJ052TzVJ7ysIt32zCD+t9jaRcqI4I1R+L2jU62DiaJlYt5x5JQFynPl15FIC4HtiJVOD4SxXhRnkAeGzODtX387nmwnfjcdkn+kZAJle5FTGq43Dfj9t0PaofLz+iu/+hlDx0enGhTzQK4BvCye99TqETby8+iH92nkbHFxbKbU6enicqlLM2JCFmSpyuLKhkwW7f81TKf0qv4EuaPPIHf96Ol9cHdsz7Y+epbJUxoe/rS/1GFekh12/xeND++Tg5emL14XS43B65v64SbTTdi/P3+oRMKzmp8XzqjZdrvtjgE7lnhWAxwFc1pKDahI8bOwPI7RHkEMqsAic+W+mdyMy8Ztx76XSpv2tbkq917uFfRAvfco3l0K0TKqDN9wKA9Ucz0P75hT6FHzL9hGUGGyUuNx6b4w23FmCv56meN2riJ+t8hNCcIu91UToXrH7TsfR8dHpxEQa8sQzdX1ni/wMGPDA7Af/3p9eDw8elmQiz5nA6JnzsXaStKibXfbnRZ9vnq476FV55wYYGtcNx23ebDRVQJf6OaXbOhaUuw9yOsqAXTqyUK/SqcSvDdrTh04HCqECTHUWTpwA4PR7VnGbW980f/Hqk5JoLN1zgLCh1Y7vC48Cgn4PKkY0wjFkOpTPibLb6efcVGD2GRkStx8WIqz9fXy4jQmXw6+aTup4l/tuqqvLnhI/X4t0lge3R6HR7MGPRQd3n9iNJydCrPWBlrPWaugRT/7VWTXpj4jm89p9vrqgc4mtgLFEaJANFsdNta95Yui8F2zXhk0dS8/DZyiOyDPLfbjGqbGtSJh6Y7W0VVVTqRpeXFlv6HuXaaqdoGqAO8+dzjdLL5fEIKkV5zmb1dTW6GssPpMoeVUEQ8O6SgziYkgvl7VLOInO3noTTLWDJPl/DrNZDxufj6Qv348v4Y7Kxc1uS2jjM6xj8qxO5p0TpIeV4BDHlZum+FMsr03tLDiFmShwu+3itnNKQllscsHQPztWfr8cHyw4DEGXZ7EInZmnyjF1uD/7ZeVpXjuXwq+p0idFhb8QdwPqjGZg0cws+X3UMWQGQa7URGTtPZSNmShzWSfm+/lI/uFwwf/tpn9ow/Fm0klpx76ytuoaumgApqAbE7T6LuxYXGA4yt47Sw0PvOMoQXy78lbo9eG/pYUvnwK3X2jxQvdLTfEFVCvZujze3q1gxues913yi8wlPFIC1R9Itt3iparQTthji639he+gXMTTRarikUrhRKv9WHQ3co5IV4P6TfNIuLHXjju83Y+q/+3wUmRfm78EBRc6Zy+3xGxGgrQrIeXfJIVVOsx58MW0YFS5v49fPsPq0H2HJ7Hwn/5SAAW8sVy1gbp1CPFY4lp6Pri8vxvwdyartynuuV2BHVfCigoyhRtENw94SjV5L94kFcDo8Hyfvr608yK+jIKjnmTHvxZf5vPj1UAq8Ho/g08NZ+X2/aIRDMw8Lz/VxMBgWnLLKMxoBjjExGoWf+9R/92Hwmyt0lRO58b2fG6y1tAcT3Gu0dH8qLvtkLW7/brPufnrP25fxxxAzJS7g51Tq8rbEOHA2F58rPPGnMgvx4vw95Wp/Fif1fZyxyF7Ir1E+2EM/J+CO78XrllfsMvXmezyC3/x5/lwfSs3Dbp1w3qxCpy2PvCAIKmVt/dEM3PXDFtV82PXlxXjqt50ocbktzZOTZyfgWkU4KCDWOHhv6WH5WeFXS1tkS9mP3P+5e19/JnlgraJUaPWU2zfiDqDLS4vl36vNV9XLDdSuV9mFTny+6hgmzdxiaFDgRi+9MetjEJOcETxCi6+ZevUeACDMZn97AEhMz8fln67D5NkJlgrszdt6Cp+tEq/9/rO52CQVKBz85gqfdI/MglJ8uuJImdZaDpdN+LyqfexmbzqBJ+buxO8JxlV/+bM6WWEY4VFwqw+nITU3cAZszoZjomL665YTGP/haox8Wz8VJjE9H4np+bLj5DdJ5j5xzjve+Ppz74/bDHPOl+1PRYnLjRUH03QNXTUBUlAN+GQFt6TqCxd6AvSNX3s9TIIgeNsoaIRjq2Hl3OrndHvwt0LxOmBQ0EJLicstT0CFislXT9jgD0mezuJxx/dbLLd4qWi2JWX6KAuAqHRtPHYOmQUay5hg3YO6aG+KXGTIH8pFVnk7BcBvMaCKhI/LEpcHa49kYNaGJPy5XX29tN4Bl8c4T5czaLpxTl+h05rA0aC2V0H9avUxzN1yUg5Z0uIvnMssN3rdUXGhUIZed3xhIa763ForGyXHpVCgBbvUi4RSWI0MM59GKypYx2hcc2//t1JYE7+1r/yzF+M+WK16Rn7a6E0JKGu++R8JySpFhY835ZiavekEek9dqppPlfdYaQj8d9cZHE41buGRJTdTZ6oCb2Zc+O4q/ztBVE7HfbAaHy0/jDlbTsqKs8+8AsgPfjBFv57OLsJf233nR6vwZ0dLuk5EwtsGFbuv/WI9NpajyvbIt1ei68v6Hrbn/tiFXzafLFffS64A7jqVo/J4AAqjg849NTKmLdqboqqSCojjRc/I8u7SQ+j68mLTNmDccLPleCau/Ex/fNspXvjaf/sx8I3lKJKUnwd/TkD8oXSftf7fXWfQ5aXFePFveznV/Lrw57lEllsEJGUU+ER1cQ+ZFf5VtNrRK2hohvIa6a0n3Biv9abx23z9V+qIIaU8xVkgKQ8hjBnKdbzYld4aqy2Exc+Zj9GmdSMBiFXuP9S5blb6ZOZolFvl+m+lONNvGqdFap6vjPTb1pPYcTILU/7cjfeXHcbCvWcRMyUOfyTYn4t88929f/+36ww+lmRzM8O4Wcr8dpOw3fLAZYKFe1JwODXf0Khw0furcdH7q1W1XwD1+FAad/Xm5K1Jmbj/p2248etNATjz4IUUVAOUYWR6+AuH8QjKHFSPqghIvVphhp9TCnrayYqzKdE4F1C5hh5KyZMn+IJSdWiLEVa8jYIgFlT5Iv5opTfIvv6rjXjqt10qgbbE5cavm0/ilm83+Xg6PIIgNz32x8O/bMcXOlVk9XAqFjzt1RwihW0vkTxYMVPi5BZC8mcCINTqFkDQ2fZ/f+7RXdw4Lrfgo4DZ4fJPrIUvNqzjVVDr1wrDlL/2YP4O/Rwaf7nPZs8fLy6itZrvseh1WHckA/vO5GDD0QzMlEJnCjQ5acppIelcIfKKnT7X/lx+Cf7ecRrHKqjH6Et/7zU0oAFqBdbjEbBUCjFTPiNqBbVsXint2NoqpSAo7xGfJ5TKwCZFRWPl8/z9uuN4waTwULbkfS92ui1X0FVap83gwtvSfal4/i/vOeh9T3lyAXeczMJzv+8KeG7nnd9vxtPzdqGo1I0z2UV4Y4HYduPbNYmWK5HqjYPxGgOlUb/IpHMF2H4yG7d8u8lnzrOKUU7vB8sOy2tfWXO0BMHr7+aVi5ft9yo+fL3XM+LqKYU/GnhL+09bptvPmPd6zCsxjpzRpvToYTTyXtfxpHCPbok0H4RLSlF+qQvxh9J87vecLdb7UT4xdwfaP78Q+SUu2ZvHle+Z649baotTUZSqPKhu1ZqSnlciP9N6xhc9Xvl7n8+6w/v/RoaHqMJ1letDmLSdpwso80a1hbAe/DkBLrdHHmv1JVnxrx3JsmKmxEoRHTtFqfTQynh6yv7//blHlW95SGobp43IU7LuSIbu+w4Tw99jc3bIip/Z3K9X1M1fpFd5KW81d+XYUsrhynucVVCKmClx+FNS/O1Uf66OkIJqgFdB1X/fnyLn9qg9qMrBZ7UyF39A9XJljAhXFFZQVmRThviYre17T/v3zt767Wa0f34h3ll8SG6QXRHkFjsx8u2VPpYmAHhEyrn9bm2iKp9Fa5H8e+cZnwnV7PprQyCNUAr/2kWLK0bKvJvDKfqhlVp4AaG3Fh0wDZ/LKihFxxcW+mw3Etz0FjfOHwmnZEWsLFgVFiNCHGhZT7QI+8sn8utBNc0/4SFV4j52J/Hbv9+MiZ+sw63fbZb7rRaUuFX9OrWGq3tnbcMFL6rvx4A3luPJ33Zabs5dFrRVdpUo5yinxyMvoEYhhv68Mnpen/wSl2HxmJUH0vDAbDHfmIeqKUvxZym8knZySbnH41ObIX83fe2bQ62Fjxltm5pcnTlYzkG1+P1KZfTOmVvwe0KyqtiaP05nF/k1InBPb16JE//35258t+44tiVlYvrCA3jw5+3YfjLLb5/bYoNnT5nXrdcD1OX2qHKmLvvYvCK1HmapJJ8o5jClsnEwJRcD31hmmIag9CDpzRtKYVaZV1xQ4sIX8Uex8dg5nMos1I1YeNUk31SvV7NciMdk0BjJFsrPGD1zZvM4/+nc6/b3jtO464et+NpiRVg9ePeCnq8uwTlp7Cmf8aqs9VLicstrfWGpG38rjKHKiCBtmoBRyP7m4+cMDaPFpW7dAmtHUvPwiTRPudwC7vphK56Yu1OW6bTrSMKJLBxLL5DHt5myBkC3e4QWMyNmWTBbm7n8xJ+VLcczcdcPW3w+f+lHa3D795t12wVpi1WdzdGf94wUwg+WHfZJtwOAD5db99yXBauyoxHK5145zpRjhEdPzt1q3YhUnbGkoDLGkhhjexhjOxljPhVOmMgnjLGjjLHdjLH+gT/VyoWPjxf+2qtb0c+/B1WQrZwuj6AqMmG3ZP/nfqphKjEqbvKrIserPH0TAd8emzFT4mSLmRKx8fUqS16C+ENpPjlqCSeykJxVpBsSxIsGaBPV9e6LVlDo2aqe3/Pxh3Iy0bueygqCgG8/MqNLwgsIfb1aFBqMiv0YFa8qSyXWAzr3LtAwpg4lTkw3n8w/XXlUpcBoOZdfgu/WJmL2xiS43B5kFpSi16tLxErDigp+ACyF9m5OPIe+ry81NAYVlLrQ4YWFcjEyrY1jS1JmlQpjWopK3Spjk8styEaB5OwiZOSX+Hi4jEJ8txzPhNsjYFqcr3fGLC8sr8SFJftSUeryyILiwZRc/LghCRe8sBB/KQRGO7mkRoqIPzbrCC1a4g+LxoRzmrGXraeg8hcW77uytzCv6m61mml2YSlGzFjpk2uk9drz5vF5xS55jlGG9F37xQZVfrTeSmRkwFDmdespegdT8jBdMR8rWyppWbovBVd+ts7n/K2mkijH6jdrEpGRX4rVh9N19+3z+lL5dbHTbel+eQQBMxYdxDuLD+GWbzdh9Lur/EZ1mBkUj6XnY9qC/fK8oZdKw7ESvvvorztUf+88lY1PNUZI7brLLzX3dHJDxb4zga0wrRw/U/+zVjCqIthxMlteDyf9sAXPGfROPXA2V1VZ3mhtDg1x+KzjtcPF561DkzpQ2sa5oejF+d7KuC6PIOdB8udeTxR0uj2ygmfUV9wOn9g05PlDG86uhzLNKf6Q+rlMzS3GQYXMoR2n2ksSfygdr+gYgrRG7qJSN1xuj8qQVZ1Qe1ANHFrBXcA74PhvluhljCAIRiNzAoBO0r8hAL6U/q+2cEVvS1Im5m45hXtGtle9P/Xfffjh7sGGn084kSUXwBGLJHkfpopsbWSl+mZyVhG+XZOI+0a197uvkjcXHsBjF12g+97qw2no0jxate1/f+xGiUv03ERHGoc1p+eV4K4ftmJUp8bo1qIuGtQOx0OxHREmWST1vCsFpW5dgcHMU8iJKENhAS3KHFQ9BfUjjbVu0swtePOaXrh1SFvDz3A2HM1Aq/q1cDq7CCczC9GoToTqfa1HXvueXbTeooqgaXQE3IoCIdq8JC2zN51Ael4JvrpjgO777yuMFm6PgDYNayOvxIWX/vYuZEYKV8KJLLjcHgzp0Eje9tmqo8gudBo29uZVZRfvS8HxjAJVyHwwsuOU+nc43R6EhzhQ6vbohh4Cxp6bG7/eiGfHd9atZmslLDiv2CkvsvO2JQMoe44koF9hNVAYtRVQGinfW3IIG45loF/bBgC8Hhc+97ZvHKV7jEd/3YE+reujTcPacgsRqwIo9xasOJCKaVf3lLdvOq42vnFFP6/YJUfTaAtB+YM/o3ohum5BgMNASrJSqTin0ImoiBA8MXcnipxuFDndiIqwI4aIuDwe7DyVjWX7U+T2adpwScBX+PUXueGQ03IElbFKEKyHievxyC/bVUL5uA98PdAcbYiv0+3RzWfzeAS5nZheLrbLI6iuiVZB5WuFUa6cEf488MpKueX1KpUHZf6j2W9MzSnGO4sP+T1eqIOp1tf7ftyK0Z2aYPG+FHRoEqUyuj4xdyeu6ttKVRjQ5fbI3mvuhdRLE8jIL5GNs3q9Nasaozx1JWYePm0Em/aZdCjDGCT+3nEa/drUV+2nXXu6vbIYsV2a+D23YOW9pYcxpH0jhIc6VOPM7RHw2cojuG9Uh4oraBGk2F8Z9LkKwE+CuBpsYozVZ4y1EASh7IltQURmQSmKSt2oJVnLAGDVoXRMmrkFhw1Ckm5TVEN0KarpAqiQCmJ24Pld47o3s/W5b9YkGhZ34B4BQFQod57Kliee7EKnj4K6/WQW3B4Bg2IayormkdR82Tr3UGxHeTI3ynN90SRPTYk2pykstPwWgpcVPcPumeXbNkVPAX1h/h4MimmAb9YkqoQVLbcqxg63pLo9Ah78OQG3Dm6Lf3aeVhXNAoArPl2HPadz8OFNfWz/lqRytBSxSv1a4TiRWSAr9lbyNXKLnT4FHvRIzy/BBU1F44i2OrGWCR+vlfdJmjFR3s4VBuViyZh3jVQKuuWpcFtpaIaf0y0gItRh6p0Z94Gx9+pYeoFuaPyivf7zm/KKXWUuwKTki9v6Y9qC/eWu3KvH/IeHq1IitDz12y5c0681TmcXyRUtebGNghJxTuTjQjmutGw/maVWUF1u7D+Ti5f+3oPZ9w7xUdZ2J2ejZ8t6slLh9Ag4k12EXekuxEJMt9Ajr9ipq7BxMgtK8fWaY7oGLa40v7XQtwiS2yNg+4myFUByuj3o8/pS3DK4jew5Kuu4OHA2T271wdGroqoNyy12un1COJVeLO95eVQFegD9lh1WMaploYfW8HrPrK26XqvXF+zHsI6N9At4QbxXYd5lGStOODHkXIE3bFTabhQ1klPoxI8bk/BwbEc5dWbFgVTc+6N5mzCzAlBl4Yvb+suRKxWB06JRt1GdcNXzojSyujwCQjTPm8cjqOoufLfuuJziwo1AesPiLoUB0V/F56riLUUFbLu1Cwo140MbrcIfY+VdKSx1+3jA9RwUWm9tdWLXqWz8tvUk7hgWoxpnv287JTlkBAxp37AKz7DysepKEgAsZYwlMMYm67zfCoDSZJIsbasRfLbqKLq94ltVcPXhdEvC0qnMQsTtLl+iekVgpceSFqOQNGVT8afn7VQp6HrWy2u/2IAbpCp5XPBVhs98uyYRy/b79g1TInpjfIn2Y5G3Utzk/RvsK3pKVhlMlC/+vRe/JyRbLthz49cb8e2aRHR8YSGW7U/F3bO2+iingLcAkF1rOBD4Vjd6ZOSXWMpv1vLpSv8e8RKnRzcM/4X5e3yEL6MK2BFhPOTSu+jVCfeOo+pmuCzRLN4ujwcRfqoNmzF/x2kfZSLhRKZhLpySybO36d4fO4zr1gyX9WqBQTHqBfq+ke1xw4DW5To2YL1dw41f+eax7j+bq6pou/pwuk+6AueJuTsBeGsFFJW68fbig9h+MhubNd7QXaeyceVn6/FF/FHZUOJye3DlZ+vwYYK5kbOw1I1whdFQy+NzduDr1Ym63hAuFOspGi6PgF+3lK0PJz/unC2nZCG1xO39DrMQWm27lXMFvr9faUA5kpqHmClxPr06S6S+iEr4epCcVSi/Z6d3thX8VfpWor0ORiGVszYk4YHZCapiXmbHWXLCheu+3CDPZfx+7NPpfwsAr/y7Fx8sO6xKkdHO4bXCfMeYXjh8eZjQs3lAj6dF23P5180ncZ+OEt6ndX3DCCWX2+PTbszlEXy28S4BRaUeLN+f6ld+tONB/fbOgZb3LS88BQkQ281YgSuy2ugBrRHaaxQ2P16gn9FgoFT6TUoHB5dJyruGVkeselBHCoJwmjHWFMAyxthBQRBs9x2RlNvJANCsWTPEx8fbPUSVUtbzfUnhbSsPvZuEYHe68YQVGQIU2zC4zVuhH+pnRlqqvqKdePQw4gvFSSshUR0CtHrTNpxrrC8s/fLfSuSUSvkWJV6hY/pCez3qlHg85g9yZpb/XLTUJP8hP3q0ihJwusBYAdZL3veHnWtx4FDl5V9c1j4MC497F5duDR2oFcqwPc13ECqtpAzWFL6srCyccvlX5BNPnALL8a0GnHSuEE//oN+LDPA+z/vPubHtqDj2du3xhggzwfs7ioqrNurBLtt2qK3N69ZvRIinfIKjsthTfHw87lpszfN+ODUfefnl89JnnstAfHw8sjLU9yHlTDJySsovqOzcnuB3n/j4eKQYNKb/UlH9e9LMLejRyIHnBtXS3ffXBStRUij+jri127D6sPh6y/Y9cKR4n/Xd6eI8FrftKFqUiPbf4lIneF2lVauMC2Tt2LUX/+02HrNmYXobt2xDRoMQrD7ke89Wr1mL0hzr4+jvJStRP8IBjyCgQOdja9dtQKNaovKWV6q+j8r1dsEatcJw5rSvke7A/r2IzBANBYukeemLherPrdu4GUk5aoXkdPIp/BaXgv9b6723CTt2mv8wiyxZvgoRoQxF+caGHK1ccep0YOaa1WvWoU64ei3KyC+FxyVem9UHjQPc4uPjsee4eM4bEnbBcyYUWcUefBiv/h16ClRSun1DpBmrVxuHQweCk2fU1+F0dpGu4S0x6STWQb8oUfKZFBRrhK9V8atx5ozaO8j1239Xb8G3e/y3o8sxGTdazh4NjJxpFyMPvpJXflqGn/aX4tOLavu8t2GzWg5dtDcF8fHxOHLCfJ45nXYO//fDMlwSE2qpK8Lg5iHYklIxHukXh0Ri+ubyR/YkHjuKeNcJFJUo5SXxx508dQo7i82f2WAgPz8/YOdiSUEVBOG09H8aY2w+gMEAlArqaQBtFH+3lrZpj/MNgG8AYODAgUJsbGzZzroyWOxb8GDkqNHA4kVVcDIiU28YomqOfXDapcgpcsptTepFRaDYRvhw/eZtgQNH8eiYC+SwNX/EtGkNnEry2d67Z3fE9m4JAGiyay0yiryL1HvbivHNHQPQpmFtrD2SjlnrvZ9/cb13AnaEhAEov/VVTxBSUq9eA+CceZhanz59gK364XNmtK8fhtMFVWfpmnfY+MfHdmlS7hAYB/MusgN7dMLC496iLcO6tcMrV3RXFQtpGh2BRU+MwoA3vFUTI8IclnLvDmR6kOuJAGB+PVeeciGsbjMAvh73Js1aACf182H4/HOX4ny3ZdcCIC4O0bUjkVsqjs/w8HCgpOyCY6iD+a12fM+I9nIVznHdmmH5AfMIAjM+36k+168PhqBpg7pILQxMQZTY2FjdOdKIsIhaQEHZc/iaNmmC2NgBWJa1Bzjt9eB16dgep7IKgdPly2sdNnQwsN5cEL7wwgvhXuxbOVuP5MIQLM9uhLuGtwcWq4/7wroiDIppgOO5WfhGoUS27tAJsUPbyX8X700BEhIQVjsag4f0B1avgsAcAMRnJy6jIQD9a5qQWxtA2cbr9M3FqudcybDhI7Cz9Chw3FrV78YdemNkp8aImRKHS3s09znf/oOGyDm7pzILgZVepTu/YWcAYjGgbzTK9spTvnNCl249ENurBc5kF+GuxaJhqn6jpkCyV6no2rMvIjIKgH1er2PrNm0Q1aa+/F0A0KNnL2CbfQOulikbnNjxynjMTtqKA5n6efd8Htp47BxyikrRsEkKcMZ/dVZ/zD1ZGx/f3BdYrO5hnVks3tg8E70iNjYW3x/bjMScDOwpqIObevbCXRZTG2wUpvZLWAizNdf0b1vfdp/LrRaVlhWnXHj22mFAvFf0DQ91oNTlQeMmTZHuykVKgTcPddjIkdhYeBg4meRzrL0F0QD8h8q7WQiM1r9aYSEqA8FV40Zj9PBSvBG332+Nh8rmtKc+gDSgWRconzMA6N6rD7BZLWvFxsbixIYk4IBxka2j2R4czS5Fu/btcf2A1sBSc0/uI5cNwJaZW0z3KSvDhwwENltrt2dG186dMHxQWxQo9Iyw0BA4S91o07oN+nRtqiuXDu3QELGxw8r9/YEgPj4egdLt/MadMMaiGGPR/DWA8QC0ppp/AdwpVfMdCiCnpuSfKrngxYpRTutoQlKv6NNSd78eLevKr9+4uiciw0LQTGrkDAAdm9Sx9b1H0sQ8yNYN9C39eswy6Pv26K875H5b0ZG+do/JsxMw4eO1eHPhQZwxCGux006nLLxwWVcAxmXkOS3rRZa5T2k5oigrnJb1a2Fs1/9v77zDo6i6MP7eLem9AklIodcECD1A6FUBEURFUVBEsSuK2EBQsffy2btYUFFAqvTee++9EwgkpOz9/tiZ2ZnZmd3ZZEM24fyeh4dkdjM7u3vn3nvae+JKdQ75plVd45ar0dsvxN/iJPLk54FIlZEUUgCYtVXbmPM0DWijTH1ZnhJbWoVeeQq8Hv2b2KsiGlQLw5iedRSP9WhQBe1qxZT49fecyjWcVl4WHHIjrOIOMX3TT/U5+ltNpepHKuKqN7SIJ5kwOXmF+GHFId26xY1HnL8LeXq5zcal1jabjuRIyrvyFEO5CIyaYxdK583X+zhGfr8Wny82ZpwCwNELV6TWMTM1+jEu2e1wmKkdOGqlWncUFtuQX1iMO750bODUEb5jOXlOs/+XS/Y71eF7q/bv/JVCjJmyyWVrs+f/2oJ520/i1s9XYOQP60rcj1jNkj1nDIn/6CGm9C/dc7bc6u5diStqYTRVvyQUFnOnOn3xuyqy2Zy+46JirlljCjh3QtBDnX4s57GutdAqzVHy4G81IUVHoK28iRZqcbUEL7Wi8IXFNpctnOS8PnMner3vvqWVpQTqpOmJxjo++Lsop/AEGwdmb1POk2L9Ood+2nNZjvvyxMi7igewhDG2EcAqANM55zMZYyMZYyOF58wAsA/AHgCfA3igTK62krLq2c7Sz9MeysIHtzbRfJ5cBEJuVLarFYO02GDc3jJZ6890EWs8S6KiqMV936/FqUv5mnUp5c2XQzMlw8jdXrRzvXiFIJYnGLBDyg1/i0kSnvIGsaEB+GG4Q6xbFItxh1gb16F22SvuTVmnv4kvLLbhjVnOQjAi8kWntErH/gbuCdFxwpjzgvPhbU3QsU7pnAvexJUKaVkgbvTUzg1/i1l6LCHC2dFWv2qY0zEtjLT2+HGl57WXauej9Hou1GS/WbofaWNnaBr1Rh0ul8uoXmnVAc9KFJ6estll65jnp25FwxdnAQCK3fQWd0dBkQ1PT9mEvacdxqba0Hzsl404o9GmSG3s3+9FUZ7Jqw+7NEi+X3FQITykFpEpDb+sKXm/xHyDLZBKw/N96rt83IgzMz0pAnWFDgJqB1ZZI+4lCou5hoFqK7XzzN28dGO6Q+pFdIIWlGFt5qiONUr0d6LIlpaKtlY2Va6LNkxauGppJWJEqEw93p7uUVf6eemYTrp/528xoWp4gO7jRnnx761OgRr5uFK3ORIpbetIX8Xt3cw538c5Txf+NeCcvywc/5Rz/qnwM+ecj+Kc1+CcN+Kcu5Z5I9BetjkPtJoRGWT3FIoGxLSHsqTHn+pRB68PaKxoTyMfjt8Pb4n/nshGiCpyGRuqjFypESdXvU1USWjx8jzdfnTlRYi/BZ3rxSNIeJ/uis39LCY0rR6B129u7PFrqUURfAl/i1laKOTcmF5N6uemh5bIR5XwAIWjpKtBVeiWgtc3Jdq5HuVa8s/GYy57DHtzs2PEeyuuMQzM6XtyFYEpD0rSPsJIFFkPcXOh7iHt7pyusjJqxDqiDdWjymYsuruv5EyYtg1bjuZI/WE3qoSBtAgP1I4waUUqfBVR0dtdCrw7Cos5lqpqa7WMvXdULcAAe716WeKq76kaX1k/r8UYcheh0mt9BQA3NbUbZ4VFNozubs84Ka9IUrFNw0BVdW8oC+Trsjg3FmoYgWmxpY+shgdaERnk5/6JGliFz+aixnw86idnZ1BZbKOMOOdXjO2s+D1V9rklRATilxGtMPPRdk5/F2A1Y/kznRX79pJyXJX9Iu4dzl8p0M2uKKVvz2fx4XhP5UauNMsYk4xFMUoqT5N9ILsmBjVPUmzO1P3dACDE37EZSk8Mx4Insw1di7ciqGVJNQ+9U6LBDzg2saKHS75pjQlxNuL7N0kAYwyDMpOcHnOHr0dQtaboe9uloV8T16LbPRtWRXadWNwj9AOODLIiPTFc2oCbGNyeAwC2ju8upaoH+JmRIfQ200oLF+lYRr3N3NXBXvWixL8R7614R9sjqMrnM8bKZNG+lniarienldCzVr3hC/a3SJ+L+vOpFh5gKDJa2mtzxWw3SuRq1h86LzkMjfS0zlD1BhSpaAqXR85fcRlVNkJhsc3JYNdSIi5tuv71AOe8VOruaQZTTTNTolw60l2N43pVwnBT0wS8eEN96XklSeP0Bv/tOOWkhlxUzF0a2N6gcz1np/CDnWrC32Ky12UCeK53Pfz3RLauM0vOjRrlZV3q2TN3LCZWYkep6HA1Wsblrp+7J6rYIkauXd63FnDeH7ZMi0bdKs5ZOeL1eNJOSg+1HozY6/iPdUd1W1TqRVYrOj68na74vK+TqgsAwf5Kz7q48RI3pu5upqRIZ49/iL9jAgoNsBqOAMmv5cPb9K+5PElXbcSe6VlX+4kCU0dl4YFsezqK+DmI9botU6OlCPajXWph98s9pc977uPt0TDBWN0BADzYsab080/3tPRJA1WcdEVBBzlvD0pHo8RwvOAm1SrAasY3d7dAVSGNsm+G3YgXU6H11hP14WB/C/KFTWOAxSxtKN4elKG7gEYE+XkUidJCK1XM3ebBVa9aV/TLcF7k3a2N97VPQ5hgpNeJD3Wb2qaVzurriHNbWIAF217q7vK5HevESulVrdKicFvL6gCcU2OD/c0YnpWGhIhAQYTHTnadWCx7prPLWkL1ml4zzrMa/rLg+albpbYeR867r7/2ZvaLmjY1otGncdUyO7+crNfmY+K0kiu3A/YWWxGqCI+v9pH0dQ6cvYLTGqnQeoj6DiKhBowhEVeG08v9G7r827cHZaBlWrTUUqc8a/HURlWhzeaV/s+uCA+0KjJBAKBtzRjsnNhTmhsc2Sfuz6dl4CcKe02ThwaqPEgg7m+/WGKsft2dY1ErsKDGYmIK50dJnBdG/yZAKOGpFe/ZGhLnJssRUOojjP1Tu6WUEQ2FiogPbqcrD21qROs+po5aipsl0dPkbiKoFR+qcU7HJj4pKsjwzRUk6/fYp7G2QFN5Ex2i3HhoeQ7lVI8Okja1VYTIae34UHx+ZyYm9muo2OBbzSbsntgT85/MRs04588VACbd1Ejz+BPdaiNGuLYq4QGw+GCUq5FgcPtbTIoakLvapKC3sAENcFMjqa4PExc7cezIx9qP97TEK/2Vn9ea57pINRyiKEKgn1laiAKtZknNU01Bka3UdVkxIc6pSSVp+WOEJ7rVcTpmcnMvcgBpsSH46d6WmNCvoWYqtpySeJBFvr6reYn/tjSIKVYX84vcbiRvaZ4kbbwaVnM4jHJVaYf+FjNqxoVg6ZhOio2umImiVfMkoo7G/nafb6ggeoLa0elppokrgvwshtP2S4O4SfO0vlXNO3N34eBZZdTZkz6ShANR2MooI9oraxPDNDJi7slKxfCsVNzdNkVxXL1P+fOBNtLP6v3Ix7c3lcak/P4VnY3qzBMAqBLmvXvCE+ZsO3lNMhmmPpiFVarUVMDRs14U+9NbgeTZS1qRuB5CH1pPI6jyPcXXss4NInU09rAiu066LiEx4ojgUGYqliS6yRhDu1oxmNjPtaNEvB6r2YSHOtV0+Vw5RrROjERH1xw8j10e3rMVATJQdXjYxSDTqnvS8r67qkdUe75F75uYq1+SVIpQWQT1+T71nOq19IgqYV3BteLZXvVQR5ZWcWfrZJfRDnHBS4wMwsR+DfG/O5pJj3WtHy9MnA5BGsBuQOgZSIBjkpbTpV48GGPSxGc2Md1VoCwjHe4QF3J/q1kRgRp3YwPD6nOiJ1idWm42MTzetTb+GtVWOta2ZoyTcyYmxF9yCoiptQEWk+SlT4wMdOnhTYoqXcQwVmOTMm2TUmi8UykVjgG7AneSrJ7xkc61ALhfHMXPtU2NGARYzZobre6yCKG7e/uG9GqY/Vh7p+P+FhM6euF9lgR5NMGd88xsMqFr/Xi80r8RHu9WWzp+KV+ZIiafi+WiLn6Cp8hV2qh67EcG+1W4yLQ8awaArkI6AHx1V6ZH5zaqoF1ajKZhG0EtlnK9RVD1OgAAQKhsqLhL9xzxvfu+wK7SeMX1rllypHTsuT718Xyf+njxhgaIDLJKc7p6r9Okuv1vtFJ/ezWqKr2ufCUSOxi0remsdP7OLRmY/nDpawM9ZdK/O5xqosuCEH8L4jTWt4tCv58woXxBa81IiAjEawMcWhvqQNw3PYKlOdFsYh5pbLjbww5uoV9CNdRNOxij87Rcl6WkApHfD2+JIbL2X+5Qr/Vbx3dX3G/ye0IeHJKTLNPncJfuLFJe6e1lCRmoOog1T1p00fAqa9Vxml3cEOrni14SMXIiV+w1iuhNv7ttiu7AV9OuVoxXlV2N8umQZu6fJJCZEqkoDne1uP4yohU2j3OkDw5plYy4UH0PqjuVPdHQknsDRcGBkR3SADgmYhNj0Ntr+cLcURoVX1HARFzs5GIJD3eu5VFatHj/tK4RI3nDq2hEfiYIXksOjic1opKeIE830qNFapTb57hDnRIpppK7+/7VTlKrcP8zBvRuZD9ntYhAQxstf4sJj3SupWkUazljtUQfygIxmhUf5u/WwGawb6hua1ldMZeJ9373BvZxIxc3yitw3Hxa86d6Qx0WqDFnX4MbVR1dKk00PDPFvtn5+PamAIDWLtYto2uCiFbbKE9pmOBeRbm02RGfCO+9LM59rZij4UwqCa6Gb0yQSVq7xPunNLhyLIjlNFpaGQCw7vmuWDS6IwDHxvq+DmlSptKyMZ0w9/EOmn8rzh3yCGrjxAisHNsZAzV0I/wsDCnR5dN+5cRFh8PIlRBb7zJIpRfrPcOEOVMcGvKIqZ/FpCgn0RJ1Etd+swcR1ACryW2UszRzravyORHOuaKjhNyAk7dsLImA1OQRrXTvWfW6K9dJAJT71wi9sibZcaPlpddawfpaUPnekZfQS8nr3yQBwRph+SCNFElXHg3xxmlb076h4B7UoOot+hazCdtf6oHne7uuJ5Rj487qc9cCPUlurci12cQUqVquvOIhARZDaRNGb/pvh7XA8mc6KQzUACHyIqbvyCckvf2QuxTPskSKoFpMbms3/C0m/HhPS4xon6Y4Lv7dgGaJmNC3AUZ2MCY3r7VB6VA7Fvtf7YU6VULxQp/6WP98V80UY3GS5ty1iJIRjAiBGTFiAbvC9p6Xe2o+pvZ2aoknDGlV3almS/0pmUwMW8d3x56Xe+Ej2QZcXPRdjab/nsxGzbgQzflHawNiRDzDG4iCNaJ4h4j8d9FJoJea+Xyf+nj95sb4dEgzbB3fXRE5kP+N6Ii5s7Xd871lfHfMeKSdom9gmIYwktZn9tqARk4p66VBPd+WphVFSnQwDkzqjV6NqmLDC13x9d366duebmCMto3S45u7mxt6b6UVR3KVAidP8RbX2tJQVq2xqnkpcu8qU8MEIFrQI9AyHiIMzn8i6jr5uY93kOY7saTCxu0iPZ8OUToR7KJv9msV03jvbpOKwS3sZTnVIgJ156V72qWiY51Y3CY8VyReJ5XXbDKVSkHcW0we0Qpf3OmcxbBjQg+8P9j72h+RwnctptDfKnxe0x7KkjoU3N+hhsJprVXLKH6nDaqFGd4rBlrNbp9bUkGhWnEhCjEjV0rQ8vZuZpMJr/RvhJubJWL6ww6nbK+GnjsHWqVFo1Z8KP4a1RZvqLo9DMtKUXTpAJTr9WsDGmNo62Tc1CQBz/TS1lIJC3Su33WHt3qx+hLlf9f6KK5uHnGzK1/wxUEkn7Rd3aDipGCSvIH241Ypgqr9t2uf64Lf7muj+Rhgz2nXMob0JuhiGy9RakDPhlXctrFxhbqmFAA+vzMT8RqGq4kxFBY5blJXdWVGJ1CppYebp1vNJlQNV24exBqaGnHBite0cY4CnXSM8mw/I75XMbKmx4YXumLNc13QtmYMxvaqJy1sbw9Kx1M97BFMs4nhjtYppfbWiZsTi9kkLaRqxM+Vc/c1su4INWCgGnmNEe3T0DAh3GmciR5wdasMKbou/N+kegQm9mvkFNXXWoOC/S0axoz8eu3fgbpdT4BFv45dfJnJI1opXudaIN636kjemwPTpZ9Fp4ReK6jQACsGZdoVzdXXLVddblfLnur3Ut+G2P9qL4T4WxBgNWPyCEed6R2tndO25J/ZQMFwZmDo4EUlaSdnRCmmBj9Z0XtEkB8CrGa8qlMvr+et1yO/sNiwI0/NgiezkV0nTurtW5YYFaKJDi75eiUijitv4y0DytUyYzY5xre4mZXvV6bc38apPlSP+7NrOLVhqxkXgskjWqNRQrgkasg5xz3t0tDDhRFwT7tUbBnfXTOLRouYEH98fXcLJ0EsPaqFB8BiNuHpHnVxX4c0p8dvMqA+7w2qRQRKLdYA4PUBjbH2uS4IMGDMlYSJ/Rriw9uaoJ7QC/qJbrWxa2JPJEcHY1BmEg5M6o1BzZMUzgotY6hqeCAmj2iFNwemG77OID8LGrvJqlKfa8eEHobO/cVQpZGv55jgUO3HhYwc+XoD2PUOSkpGUoRT1D40wIrvhrVQHJNnDMWG+mN834Z4+5YM3VRluXPGaIovRVCvI1zdh2J9hXzwi8ba+L4NpGOu0nT9VGJI4sQgGot6E0F0iL+hCKGaeU9op8tcvlrs9FozH22HG9OraaqRilQND8TqZ7sYSrWQc2uLJKx7vqtmJM/EgMHNq+OtgelSjzP7cYaCYsfms2+G/oJyLQzBvhkJODCpt2RkiJ9fsY1DL7hrtB64LHAYqGakuKgbigjyU7Tb+PeRdpjxcDvc1DTRYwOxakQAqoUH4IUbjEfz1YifGAcvtYFqxAjT80DKoybiYiH/Pn8Y3lKqHXcSk4LoiAL2vtILU0ZqO5eMeknlrWhmPtIen9zeFK1V9b7iZ6XVV1KMaLdKi0ZnoRZVSzF4cCkWbZHfRypFh0SxErnqpFooQ0wdL0lq5lM96qJ3o6pYNLoj+jdxRGXV996uiT2xc2IPZNdxrsUdJrRRCg+0SvdKbJi/W1VlT1BHKUrTmkDrb7U2+l8OzURarGcKkz/c09Ktgbn62S5Ox2rGhUif3bVQVS0y6GR11//aCEY3i57w3uAMt6JoIq4i5IDrscRkj4ubWfkWJSU6GJ3rGkv9fbpHXc2U1YykCPzzUJaUnWDk42KMudVokNftecJ97dOkLIv7s2vgniylgdq7cVW8fUuGx+eVlws817uey+d2qRcvlWbI91rB/hZEG1CjLSnhgVaFyBRjTNOIka+tet9Xq7RoBPlZDM9VjRLC3Tr11HOD0TVe7eDUK1ticAhEAfold/Je7t5EHsDRm5709iXBsvdYaLBG3xeyBLxN5XtHXsJVSqY4qOSLVfOUKKx/viv6yow6V2um6CERDapPbm+KZsmR0gTmbY9aoqotjZgice5ygdMGrm6VMLx/axN0a+AsDCQiblxuTK+mKeiix4CmiYgK9tPcuJiYvcZhQLNELNzpaFZuNjEpDeyZnnVdLlaeGoIl+ZTVm6HHutpFXKqEB0gL/ruqRc/V/sNVDZU3kKL7wgTWMCFMUYSvR3SIP+pXc19DpoW/xYxlz3RGJ4MbHi3Er5Lz0k++RgxUvVrAR7s4os7ye378jQ3w7yPtkFUrRpov1NEc8bMXx3ZpU73FeSEswG5A9WxUFepRLC70WgubfAPy4W1NMeex9giwmp1ExyYNaIwhraqjNNSpEipFIQHgp3tb4ud7W0nRlFXPdsafo5QGey8hEq1uK2WEKuEB+Oj2pqjuZmz7WUy6zohbW1TH5nHdsHJsZ4zsUAPf3N0cHevEedVAVfsiSuO70lIJza4di7cHKaMEatXzhaOzXZ63Xa0YNK3u3ijQWqfkgmnXxEAtthmqrVenlpcEI4qaT/eoi0w3BpXc6SU6stWRHS1i3ESBXU0v8giquBYwMHQRxobZxNzWQ9/VJgX7XukFwHVKoehoalDC9UPNb/e1xl7hdY0yon0aHu1SW3FMrXpd0vt63I2OQMSNLhz5gD3brIGgRG5kX2e0HtVbrS/lLdz0aoZF3KXjx4b648d7WuLtW9Jd1twC9j3wrS08X2PU+y+9PZ+/xazYN6if1bR6hObfr9RQRC4Jcx5rLzkm9Pps6+1r5PehltPgzwfaKII4QMnHsi9T+d6RlzCS4iunsNiGyGA/qT4RUA780d3rSBELQLZxFW62Hg2rYsr9baS/8WYkMFojhVKs3+hYV9/LpRWBEZHPY54IOplcGODyzfvZyw41RrPJMTG6S2O4FvW0aiPjxvRqODCpN4L8LBhQyw+jOtZwWmRcjSdPBIZKgvhdiZ/NtIfaYaEgUOFLOH9CQoovHEZXakwwfhnRyuN6Mq16JrXSsJ4HVz6m5L1Th7ZJkdKnxJpqPXVu9SJY0tTHtJhgjOlZFx/e5nBqqIeWeL0JEYEwmxheG9AIz2v0uQ30M0vtqjpqeLu1HLdGUqXl1/H6zY3xfJ/6WPtcF6TFhiiivXGhAZI3vKegkt2hdix2TOhhyDgqK0IDrFLanRhldTXvpMUEG3L4iKij5aXJrqga4RwtZYzhpqaujbGIID98OqSpW2Vf8VL1plX1fNurURXFPeBtZckZstox8XUKbdzQGqSXZupJBEVv/y5XgL98tUj6jvVq9eVfufx+dfv6buYNV+tf66qOkgHxaSYGfHR7E6x5rotwfiVqYbGne9SV1j9/F8Zs9eggTLm/jcKQKw2e9uAEgLG96jllmwX5WbDq2c5S1NOdc/2WzCRka8yNcpFAP7MJ42SZQup69QCFUI/MYNJ56Y9uUzqs05Mi8PmdmRjdvXRCgXrIo3XuIt5ypXQtTMyupBzkZ1F8RmpiQvzRKi2qRHXhepHQulWU2Tj+VqUjUv3Wvh3WQlPpXi9l2FMigvwkx8S3d7fQfI6uce0mmlyvahjeHpSBP2QtmcpT56SsIANVB73vmnMuqTDWq+q4IURjTm+QjOpYE+8OzpB+z0iyb8D05KvF89QqZfP47S/1kPpPygkJsGD1s13w4g36C8jZXGONul0tHOqNm6tbSO80jDFJMdCdR96o0E1Z1UYFWxlGd6/rdJ1qA3X9812ln5OignQ3SZNHtMLrAxqjflVtT7R6UtZCfK++Pn2pvxH5RyaKJMWF+qNlWjRe7ueZaE3L1CgnI9ViNuEDWYq6XPFv63iHErT8u9NzHD3SuTZev7mx1I7o0yFN8WS32jLngOvrc+e5FmGMYWSHGoo0zhHt0jTbLgX7W7D3lV64pXl13OpC0t/++s7HtHrHqiOecjKTI/H9cMdCbBKEUIZnpbpNZXtvcBPpnihtOndZIN/IqtMsvxiaKUXEXKVGZ4h1earj6nmvWXKkbkmGGi2hJ5GdE3ugWniA5gbbbGLo0bCqboaDejxobVy1hLg+vl2pzu6tKI9I/WpheLxrbUy6qZEUQSgutklZLCXB1WeoRnScqO+nu9umSEbP5YIi6fOKCrZqRqvln4v4ERoxlEv6ee55uSfaJVqd5i8TY/C3mKWSm6uFSq+UPML1+s2NFQafu4hNs+RIn7yX40IDFH0r9RjdvQ5eu7kxvtEwLuSCUn4WE1rK1LP7qiKqcvG2ktgQ1aOC0LV+PO5pl+r5HxtA/p26S2HPL3QdQZWLoskN1Ps6pCn2soueykZogFUy2N2JIL4gc7DqOb3uz66hUNb1t5gU7enUpRWhAVbUFhy0PwxvKSmhlwXVo4OwdXx3rHrWOTo7skMNp3XDnTNG/AzK05F7LSADVQdXES9xMi/mwAPZdg+pkdoUufesSngADkzq7VIV8LeRrfFLKZvHB/qZpUVC9ND6WUzo3agqYkP9XU7QZ7xgoBpNxwCUk5s87dXMmCSw4iqSsfa5LoaFE4yKJJWGfx9xePvVn5FaGEgv1aVVWjQGNU/S7QP6io4gihwpClJBPWyc2zcVH9/eVFpEPPWmB/mZsfHFbopjfmYmLVCA0jCSZ0nIX+txnXY3fhaTJN4D2KM1D3aqJdWhuEt1Ls0+PiUmWLclg0hJ2lY92KkmXhugHF8140Lxcn9H0/K/H3SoGIYHWtGulmM+86S20s+iL5ZV1siVffWQ1wh2rBOnaM1j4475v0G1MKf6ejFdS2ypZCSCajXwfbnrDSym2WttsN1l6IgZIOKldqobh+Ypjs3Qjgk98O8j7dzeh0Zrq+WMc1O3/nDnWhjcojoe7FQTXerF46ZmiRielYoNL3R1+XeAtnr8hH4NcE9WqmamkZrWNaKxeVw3vHpTYyx52pGFwgBkptjHUfOUKOl+tpi0x/XxHOces0k6KZGunJAT+jZQON7UH/fipzriq7sypfGrXgPUw6B5quM7vjG9Gu5onYxhbVOx8YVuGKQSg6mo6wngCCiI+58aGq1GtLo1iKgNdfnaEaT6O/kWS36vu/r0/n6wrSRMKD7PyJxQEuTX6+5+vSqLoAaqnA/9myQoBIxEozO7Tiye6VkPk2Rrifi3ouPP3b1XQ2bcqteVG4S5qnFiBGrFh+JL4Rr8LWaMaJeGkR1qYEDTRJcZClm1YtCrkSPD4uZmiU4ptKUl2N+i2fJwTM+6Uks9EXfzc3l03igPro18YyVDXBCuFhbj3nZp2H/mMoa01I6EyvF0fmmeUvq+jHLmP5kNG9cXnFF7sYa0SsbyvWdhMZuwav85xWPyiI/cCJ32UBb6fLBE+l1cAEzMffqIPKopT3s1MYbGCeH4Y91RRaTopqYJSIgIxAf/7QGAEgkOlKbFgzvE9M+2NaNx9LzrpvfuNvNGN/ut0qKwYp/9u5r/ZDbOXb6Kl6dvF85h6BTlhnh5nw5pivSkCKmeU/RIyxcQV+nnWmgZaMnRwYoaEL36K3ExiAyyetySpUp4AFY/20V3AU6MDMSR83leudcXjs7WHWfuUi21Pk1/ixm3NK+Op6dsVhyXb5gtJpPkFBKHaJsa0Vi292yFWEQ3jeumKMswSt0qjowGzrmiZKNIJZQ1sFkSejeuinpVwvDGrJ1ORoT6Y2Jw3VR+RPs0ROYdw4Cu+tFsd7hai17oU1/y6IuXGhFoxVd3Nceuk5ewct9ZaQ3h3HVExRP7tE58KHaevOR0bz/Xux4mCnOYnLjQAMWGWL2u+VtM2PBCN9R7YaZ0bPkznZEyZrriec2So9AsOQq/rDls6DrFerLEyCCYTczunGAMGUkR2PhCN4QHWfHpwr0A7N+jVlp8j4ZVsevkbkOvl10nDkPbpKBBtTCnNfSO1imYufUElu45C8DZwEiKClIYvk4RVNXgk6dEigKIpRG681UKpYws+/uf9Wh71Hz2X8Vz9ISrYkL8FJ+junaXMYZf72sNP4sJ6w6ex43p2oaO2tk+9/EOUgu9xokR2Hs6Vzif/fGycgjIDU358NGav+UR1LcGpeOBH9ehafUI/PFAW6fnmkwMi0Z3lJy0VWTdEERDXXxPoibK53dm4t7v1jidy6az3wTs99L+V3tJ5xT1VvwsJljMJozpqd3KxRVG6sG9ifq+TI4Owl1tUlAtIgCvzNjh9Hy5o6N+1TBsO36xzK+xPKAIqg6uPEliel3HunGIDPbDJ0OaIVwntXRw8ySpF195thoB7DesnnH616i2TlGYquGB+OOBtvj1vtbY/6q+QIF8IlNv8tXtdFx9AvLFV36djNnr/eY90UGR0vD2oAw8oRPRckfZNz+ws+GFrvj6rhZuDUx3Q0NPNIZz4NWbGiE+zL4IMDB8fXdzPN2jLlJjgtEsOQr9hXo0PQ+9rxET4o+q4YFIigrCgUm9cUO6swhFSnQQHu5cy2m86dUCqjfkn9zeFE/1qKN4vp7ohzR2S3j/xob6O20uxOklMzkS73UM0nyPnpIcHYw2NbXbYIivr9VnWH49xnC8F60ars/vzMTMR91H13yBsABrieX5+2VUQ0SQFcnRwVIE1cwYilXCRQ0TwtAqLRpWoSWM82fN0KtRFTSW9fNzZaByzlEv2qzoAesp8rVIHlWsWyUUw7JSpbHeq1EVdG8Qj9FCNKd2fCjuaJ0iPd9qZrg/W78nstFSihqxwVLbH/X7ampQwVUtOFItIlBT8V5PLEmrfVmz5Ej0bqQvWqNuUSHuA0QV6kCrGYwxHJjUW/G8x7rUklrWyOeVYW2VaZwf3NoEj3etjVtbVEfjxAjNUoBQf3nPRN1LBaDVg/f65MpVu6KzmCmjNkarhAVIdfFq0mJCFPM5Y0xKdxbLIlqkRiEjKQLDslJ158GOKhXxmnEhCse8o/67bL8l+XsptnHJmapVVjRM1oZIfJ6r7Jzq0UHSPRin0ZbwZE4+ACA1xh546Fo/XpF5JiIf9+LnKa9fld9DYqAlS2ct9EVMJobM5Ei8fnNjjO5eB/2bJGDcjQ2Qnhjh9m//eKANNr7Qze3zKiIUQdXB1UQfE+KPlWM7a7ZKUTNpgKNXmC9v2DLcqGaKXsE5207g88X7FdsO0aMV7Gd22uSLk9dbg9Kx/tAFw4JAgX5Krx5jDDU8bJPgCumrKOOvRIwuufN+uhsaI9qlYdK/zp40gOPWFtWRFBmEIV+uBGP2hU+++A1pWR23Nk8y3MqgvDGyHjPG8HjX2pi28Rj2nbksHdfriaheRHvKNp1+ZhMKim26ghllcd92qB2LuFB/3NehBk7uXOf182uh3iSXFC2BFznB/hZFhLGycGuLJARaHUvmu4Md9cviveVnMTlFAMXUSHEMmkwAZFojJmav3Vy1/xwG/W85ANfpfC1So4FTp0r1XuTf2+/3t8HPKw/hw/l7nDbDQX4W/O8OfSElxhie7lEXnyzYq/m4K8fHtpe6I2P8HBQU2/DF0OZIjQnGkFbJWLjrtOJ5aqEeV9ei+F3neW8OTMf4GxugwYuzFMfVCqWM2XuDAsB0VdRVRCoVUR0/cv4KACiUTL8b1gJ3frVKulatGs4XbqiPF26oL0V51Y6rGhq15g90rIGZW08AcJ8p4Zzi6/x8eRZORWTK/W1w+lK+y+dczLcbqHJ11Se61sa3yw9g1qPtXWZjFdlsTvNeVLCfkEpqPC3U3Z7ApjG2Xr+5MWZuOYH/dpTu/lez/aUeGPLlSjzXpx4SIgLx1/qjuDEjAZtWL1M8LyLID21qROPI+TzJKWc0M1CrnKxbgyqYvvk4nujmqCGvp2EYN5YZauKY/ebuFppK9dUiAjH38Q5O/cF9nd/vd86IsQpOt6SoQBw+p50dFWA1+2SttzcgA1UHd7n4JVH6Ks9emN6gRWoUtmukEoiqalMfzHLyYosLZtXwQPS9UTl5Tx7RCpfyi6SUDrmXLEB2nrIQNBrTsx7MJoYbvRC5MoK76PnAZkmYvfUk1hw8DwCYOqqtlPYCKBezNc91wfBv12Dj4QvSMUkISeNlGGOG2jBUSFRvS51eKeLKyJR6EKt6E1cJC0DbmjFlkvkQHeKPVUIPyZM7vX56j/GkVlD+aVjNJsMCTxWdV29qrPvY093rItjPjBvSq+HpKZsA2GuyEiMDpXnfamZ4qFNN9GhYBSv2ncOxC3n4csl+zQiJnlLltIey0DAhHAtOOae8eoJ8LUqICET3BlXsBqqXfVjqcdUsORJ3tk5GSnSwXcFZuAytVhfNUyLxdI+6hnUF1Li6bV21nbohvRr+2XgMXeu5rhsH7LW5P6865OTgFVMh5S2P2uvoTXgyu4QFWHFgUm9FmnLjxAjsmtgTk/7dgYc718TAzCQM+GSZ5t83TgjHPxuPIUlIg9SaFr8b1tKtWqtI57pxaCK06/AVjPRMvSQZqI5x8FDnWniocy29P5Eo5hpp+YyVKJXUFVzD+zEoMwl7TuV63UAN9DNLzhgAuEsVyZfz072tAACLd9sdSaVx4EYF++H74S2djneuG4d5svcYE+KPwc2TMHm1Iw3fajbpaqhoiQZWREQnVlmWovkyZKDqoN503dc+Df9btM+QqfSii5qNhzrVRMe6cbqP+zqNhDS01jLVOnEDb2LOaZJVIwKBg+c1o1OthHN0qB2LhbtOK1vXyCaestj/RgX7udxweht3Nk5ksB9+v7+NtPFonBiu69CICfGH+uN0rGXX10Sm3tzriZWJjpI3bm6MudtPKh4TN9FWM8Pbg9KldOoVQj80MRpSmSkw0AxcrtArUmkdHx4SHmTFs73t8/74GxvilRnb8dbAdKdUQLEkoUG1cBw5fwVfLtmvOTeIEVQ/iwmTR7RC3SqhUrpoWSDeAyWdP34Y3lKz5Y14N749KB2P/7oRQ1pVR98Mh6OSS/ee83wf7G+RhIc8ZWjrZCkV+fM7M5GTV2j4b98amI6ne9RRZEjNerS95ljvWj8eOyf20C0PiNcQRRHx5rLmZzFJtaLNkvUN+uFZqWhdI1pSodUaT34Wk+G09y/vau7+ST6ION491RQAgE514so87Raw95EGgLY1lKmqgzKT8N3yAwpNhvJAiqB68Fn8dG9LQ3OMltH76k2N8HJ/z9T7Kzql7f9e0SEDVQf1PrduVfftPETuduF9KmnNpK/QtHokNrzQVeHVFhezYhtXpOY+07MubmtZHW1rRLtMIdab32rFhWD3qVyvXLc3GN29DlbsO1uiv3XVE0wLrY3Dmue6OC0G4mZOHK4VPEgPwDOHxKdDmuLLJQfw86pDAPTFk0RDYWBmEgaq1CjFP7GYTJr9I0uigFvRcNeAHYCk0Csfm75ctlBe3NayOm5r6b4BvV6NGWOO2t6bmyVek1YC4l1T0q8zq5Z2vZd4b6XGBCuETETETa7c+JMEp+SKp8yzeWF8X4cqpqiebBQ/i0kSWhGp40JJV8s4TU8Mx8YjOS7TOEXjvCzm7JgQP03NAZOJoWFCuKQifL3evs/2roe4MH9Fb3ojrBJKu4pL4TV/95YMQxG+xokRWP1sF0lkSKRmXAh2TOhZ4tf3FtK968EgalPDWF2ofF0Rz88Yc3LMV3au9/WVDFQd5D2TJvRrKNWSNDJYQ1mZUadc/e+OTHy//CBqxNrFA74b1gL+st5gg3VaqKhRp/J+MTQTv645rCt8c60Z1bEmRnXUFplxx/u3NsGf649oKrLJeaFPfXy2aJ/mY3KP/rO962H075tQv5q9XsOx2bm+JrSacaF49aZGkoEaFmDFhSvO0RJXi2hmciTW6ET5AUeNTWX+ZLVqeUT+fKCNbkmD1WRC85QoBPmZXYrlEM74CwJf4mY12N9u6CRGBsFiNmHzuG72NNhrQMNqYbipaQIeyC7Z/KaHfF7SmpvEZVZej9kyLRrpieFSmw0AWDm2My7mFXn12tS8NTAdU9Yd8cq5fhvZRrfcQE1ZTNlrnnPdcudaCfD4KjEh/nimZz2P/y421N8+jo19tZr0a2K8TlVtnPoSkjBcGRhRomNnaOtk3Nfh+l1XxDmTMeDX+1pLGgXXC25XP8ZYEoDvAMTD7mj9jHP+nuo52QCmAtgvHPqDc/6SV6/0GtMwIRyxgQyfDG0lpRn9+0g7lz3JrldSY4IVUvR6tTZ6iIuk2imZHB2M0d29W9dRXsSG+mNE+xpuDdRhWakYlqUfgRdplhyF/57Iln6XIqiluMaKzPSHs1BYzBEV5If/dpzEuH+2KR53tYh+fXdzHDx7Rde4vx42ca4M1CaqCJ5cfMJsZggLsGLbSz3K7NoqK3GhAfh2WAuphq9BtXB8fHtTqTe2XMClrLGYTXh7UIbXz+tIHXaNPMU3xN+CqQ9mKR6PCw1AnJeX3rmPt4dZlh0xoFkiBugo/HqKn8UEPzdNEkqT4lsjNhgHzpa89MDo90LYGdo6Gd8uP6gwGK53RMdat/raaseloVn1SEzfdBz9miSgmov+pZUdcZhZTAwtUr3bdrIiYMQ9WwTgCc75OsZYKIC1jLE5nPNtquct5pz38f4llg/B/ha80SFIUQOjpS5GlB7xJrxOtFYkJo9ohSqlaBWhoBJ9diVZ/BtUc2Q23NU21clAdRVBDQ2wulSXvh7GZUGR8Tcpz6Aoq+bx1wsdVM688q4r8zaPdK6Ne79bg7RYbSXeV/o3wttzdnotCvP+rU3gZzAPsKa3LV4DbBrXzVGWUQrdgNmPdXD/JBdIr02WliHG3dgAL9zQQPqdMYaIICuCKql6qhHSYkOwZXx3hLgQHCspd7dNQfvasZVG7KikJEcH4d52qbjVYBZiZcPtyOKcHwdwXPj5EmNsO4AEAGoDlSBKxXVgByhoJROaKi2Oui2vnbLcKAuD0Bsb4Mq8lxNFkj66raluPaEWJJJEuKJr/XiX7Y2M1usa5VqpspeUMFlUXOwLGaTRq9UdpZ3PqkUEom9GNdyTlVaq81wvaNU/rnimc6VeE4xQFsYpYP+8r3fjFLB/DqL43vWIR6OLMZYCoAmAlRoPt2aMbQRwDMCTnPOtpb884npAnOSvl3YVZUlF9oh789rVoiqlObe4gezWwPupTL5CoSCSFBFk9UjZ0hOBDKL8ebhzLUzbdKy8L4OAPSrXPCWqXFL3zCaG92R9fAnPqay9JwnfpVlyJPad9h3h0LKGGTUKGGMhABYCeJlz/ofqsTAANs55LmOsF4D3OOdODaUYYyMAjACA+Pj4ZpMnTy7t9Zcpubm5CAkhL05ZcybPht93FWBYQ3/D6Vly7pp5GQDwTQ9jDd3LEndjZtvZYuQXcTSN967ncf2pIry37irSY814rJmX0oavMRNX5GHPBRuebRmAWpGlW/xn7CvAr7sK8UyLAKw7WYRb65VObCLnKkeItWwEIXxhntmfU4yvtxRgbMsABFjcv0dfuueuR3xhzBBlx10zLyPYCnzU2Xv3F40ZwlNozBCeojdmOnbsuJZznunJuQwZqIwxK4BpAGZxzt828PwDADI552f0npOZmcnXrFnjwaVeexYsWIDs7OzyvgzCDUt2n0FksFVRh1helNeYmb31BEZ8vxZd6sXhi6EVszfdTR8vxbpDF/D7yNYl7n9YEamI80zv9xdj67GLLtM3ibKjIo4ZwjhHL+QhxM+C8CDvCWXRmCE8hcYM4Sl6Y4Yx5rGBakTFlwH4EsB2PeOUMVYFwEnOOWeMtQBgAlCyhpEE4SGe1MxVVlrXiEbt+BA83rXi9tmtyOnJ1xs/j2iFkzn55X0ZBFEpSbiOlUsJgiAAYzWobQHcAWAzY2yDcGwsgOoAwDn/FMDNAO5njBUByAMwmFNBIUFcM0IDrKVWdixvHuxUE3d/vRq14qmVk68TFmBVCL4QBEEQBEF4CyMqvkvgpl0W5/xDAB9666IIgrj+6FgnjlJGCYIgCIIgrnOoiR1BEARBEARBEAThE5CBShAEQRAEQRAEQfgEZKASBEEQBEEQBEEQPgEZqARBEARBEARBEIRPQAYqQRAEQRAEQRAE4ROQgUoQBEEQBEEQBEH4BGSgEgRBEARBEARBED4BGagEQRAEQRAEQRCET0AGKkEQBEEQBEEQBOETkIFKEARBEARBEARB+ARkoBIEQRAEQRAEQRA+ARmoBEEQBEEQBEEQhE9ABipBEARBEARBEAThE5CBShAEQRAEQRAEQfgEZKASBEEQBEEQBEEQPgEZqARBEARBEARBEIRPQAYqQRAEQRAEQRAE4ROQgUoQBEEQBEEQBEH4BGSgEgRBEARBEARBED6BIQOVMdaDMbaTMbaHMTZG43F/xtgvwuMrGWMpXr9SgiAIgiAIgiAIolLj1kBljJkBfASgJ4D6AG5ljNVXPW04gPOc85oA3gHwmrcvlCAIgiAIgiAIgqjcGImgtgCwh3O+j3NeAGAygL6q5/QF8K3w8+8AOjPGmPcukyAIgiAIgiAIgqjsGDFQEwAclv1+RDim+RzOeRGAHADR3rhAgiAIgiAIgiAI4vrAci1fjDE2AsAI4ddcxtjOa/n6JSAGwJnyvgiiQkFjhvAUGjOEp9CYITyFxgzhKTRmCE/RGzPJnp7IiIF6FECS7PdE4ZjWc44wxiwAwgGcVZ+Ic/4ZgM88vcjygjG2hnOeWd7XQVQcaMwQnkJjhvAUGjOEp9CYITyFxgzhKd4cM0ZSfFcDqMUYS2WM+QEYDOBv1XP+BjBU+PlmAP9xzrk3LpAgCIIgCIIgCIK4PnAbQeWcFzHGHgQwC4AZwFec862MsZcArOGc/w3gSwDfM8b2ADgHuxFLEARBEARBEARBEIYxVIPKOZ8BYIbq2Auyn/MBDPTupfkEFSYdmfAZaMwQnkJjhvAUGjOEp9CYITyFxgzhKV4bM4wycQmCIAiCIAiCIAhfwEgNKkEQBEEQBEEQBEGUOWSgasAY68EY28kY28MYG1Pe10P4DoyxA4yxzYyxDYyxNcKxKMbYHMbYbuH/SOE4Y4y9L4yjTYyxpuV79cS1gDH2FWPsFGNsi+yYx2OEMTZUeP5uxthQrdciKgc6Y2YcY+yoMNdsYIz1kj32jDBmdjLGusuO09p1ncAYS2KMzWeMbWOMbWWMPSIcp7mG0MTFmKG5htCEMRbAGFvFGNsojJnxwvFUxthK4fv/RRDRBWPMX/h9j/B4iuxcmmNJF845/ZP9g10Iai+ANAB+ADYCqF/e10X/fOMfgAMAYlTHXgcwRvh5DIDXhJ97AfgXAAPQCsDK8r5++ndNxkh7AE0BbCnpGAEQBWCf8H+k8HNkeb83+ndNx8w4AE9qPLe+sC75A0gV1iszrV3X1z8AVQE0FX4OBbBLGBs019A/T8cMzTX0T2/MMAAhws9WACuF+eNXAIOF458CuF/4+QEAnwo/Dwbwi6ux5Oq1KYLqTAsAezjn+zjnBQAmA+hbztdE+DZ9AXwr/PwtgH6y499xOysARDDGqpbD9RHXEM75ItjVzOV4Oka6A5jDOT/HOT8PYA6AHmV+8US5oDNm9OgLYDLn/CrnfD+APbCvW7R2XUdwzo9zztcJP18CsB1AAmiuIXRwMWb0oLnmOkeYL3KFX63CPw6gE4DfhePqeUacf34H0JkxxqA/lnQhA9WZBACHZb8fgesbmLi+4ABmM8bWMsZGCMfiOefHhZ9PAIgXfqaxRIh4OkZo7BAA8KCQjvmVmKoJGjOECiGNrgns0Q2aawi3qMYMQHMNoQNjzMwY2wDgFOwOrL0ALnDOi4SnyL9/aWwIj+cAiEYJxgwZqAThGVmc86YAegIYxRhrL3+Q23MZSBqb0IXGCGGQTwDUAJAB4DiAt8r1agifhDEWAmAKgEc55xflj9FcQ2ihMWZoriF04ZwXc84zACTCHvWsey1elwxUZ44CSJL9nigcIwhwzo8K/58C8CfsN+tJMXVX+P+U8HQaS4SIp2OExs51Duf8pLAxsAH4HI50KBozBACAMWaF3dD4kXP+h3CY5hpCF60xQ3MNYQTO+QUA8wG0hr1EwCI8JP/+pbEhPB4O4CxKMGbIQHVmNYBagkKVH+xFvn+X8zURPgBjLJgxFir+DKAbgC2wjw9R+XAogKnCz38DuFNQT2wFIEeWekVcX3g6RmYB6MYYixTSrboJx4jrBFW9en/Y5xrAPmYGC2qJqQBqAVgFWruuK4S6ri8BbOecvy17iOYaQhO9MUNzDaEHYyyWMRYh/BwIoCvstcvzAdwsPE09z4jzz80A/hMyOfTGki4WVw9ej3DOixhjD8I+QZsBfMU531rOl0X4BvEA/rTP8bAA+IlzPpMxthrAr4yx4QAOAhgkPH8G7MqJewBcAXD3tb9k4lrDGPsZQDaAGMbYEQAvApgED8YI5/wcY2wC7BsBAHiJc25URIeoYOiMmWzGWAbsKZoHANwHAJzzrYyxXwFsA1AEYBTnvFg4D61d1w9tAdwBYLNQHwYAY0FzDaGP3pi5leYaQoeqAL5ljJlhD2r+yjmfxhjbBmAyY2wigPWwOz4g/P89Y2wP7MJ/gwHXY0kPJsj/EgRBEARBEARBEES5Qim+BEEQBEEQBEEQhE9ABipBEARBEARBEAThE5CBShAEQRAEQRAEQfgE5SaSFBMTw1NSUsrr5Q1x+fJlBAcHl/dlEBUIGjOEp9CYITyFxgzhKTRmCE+hMUN4it6YWbt27RnOeawn5yo3AzUlJQVr1qwpr5c3xIIFC5CdnV3el0FUIGjMEJ5CY4bwFBozhKfQmCE8hcYM4Sl6Y4YxdtDTc1GKL0EQBEEQBEEQBOETkIFKEARBEARBEARB+ARkoBIEQRAEQRAEQRA+ARmoBEEQBEEQBEEQhE9ABipBEARBEARBEAThE5CBShAEQVQ6Ll8tKu9LIAiCIAiiBJCBShAEQVQq1h48hwYvzsL8HafK+1IIgiAIgvAQjw1UxthXjLFTjLEtsmNRjLE5jLHdwv+R3r1MwpvM33EK0zcdL+/LIK4jjpy/Ut6XUGHILyxGsY2X92VUaFYfOA8AWL7vbDlfCUEQBHE9wDlHLmXueI2SRFC/AdBDdWwMgHmc81oA5gm/Ez7K3d+sxqif1pX3ZRDXCXO3nUTWa/Mxd9vJ8r6UCkHd52fi6SmbyvsyKjSigW9iDMO/WY2Oby4o3wsiCIIgKjXfLT+Ihi/OIoe8l/DYQOWcLwJwTnW4L4BvhZ+/BdCvdJdF6LFk9xl8v/xAeV9GheDy1SKkjJmOr5bsL+9LqTQ89PN6PPPHZt3HOec4femq4tiWYzkAgE1HLpTlpVUKOLcbVr+vPVLOV1KxsQkGqtkEzNtxCvvPXC7nKyIIgrh21Bw7A2/P2YXNR3I0H99w+AK2H794ja+qbDl5MR9ncq+6f6IBOOc44OG68e8We2bioXNkoHoDb9WgxnPOxZzREwDivXReQsWQL1fi+alby/syKgQX8wsBAO/M3VXOV1J5+GfjMfy86pDu47+uOYzmL8/FlqOORdHEGABg/1nHpE0prNoUaXwu+YXFksF1PbD6wDks2KmsHS22ccWYckcxd0RQCYIgrjeKbBzvz9uNGz5cgtlbTzg93u+jpej53mLp95lbjmPtQXXsqWLR8pV5yJw4t5TnmIsxUzbhzdk7kf3mAhw8S87N8sLi7RNyzjljTHM3xRgbAWAEAMTHx2PBggXefnmvkpub6zPXePBiMcL8HJutklxXbgHHxtOO/HhfeW/e5moRx5JjRWgYbQYAXMovKtV7fXVlHmpEmDGojp/b5/rSmClL9N7jnxvzAQB/L1yNM9Xs08uBAwUA7MZtdsR5HL5kw7vrrmJC20AkhVZunbbVJ4qQFGpClWD995mbm4uvp86Dn5khJkB5jxcUc4yYcwU3pFkxoLZj/K04VoRz+Tb0SnM/Jn2R33cVgAGK9yRy10z7huCbHsHSsX/2FmDK7kK80DoAaeFmt+ffv98+5g4dPCgdK+l9mVfEYTUBFpPvGLvXyzxDeI9rOWY45yi0AX5m79wzF69yBFg8P9/jC64gOcyER5oGeOU6fIFLBRxn82xIcTEP2rhyCz5zxSb4nd6h+VxxTIzUmHcr6jxTmms+efEqJq8+jEDBOlq4dAWqh7lfcwDg/Pk8AMDGDRtRcNjY31Q2vDlmvGWgnmSMVeWcH2eMVQWgKZ3IOf8MwGcAkJmZybOzs7308mXDggUL4CvXmDJmuuJ39XX9se4IZmw+gTY1ojEsK1XzHHd9vQoLdp6Wfu/QoQNYJYwwvDh1C77fdhBP9agDYCcA589LiwNnLiMhMhBWs9KYuGvmdOw8b8PH93VTHLfZOM5fKUB0iL90zJfGjDe4mF+IsAArAGDbsYvATLvHVe89/nx4DXD8JOrVq4vsJokAgK18D7Db/j3UTW+G1csPAjgMc1xNZLesXubvoTTkXClEsL8ZFrOzgbn9+EXkXi1C85Qo6VjmxLno07gqxt3YAABw15jp8LOYsGtiTwDAjM3H0aR6BKqGB0p/s2DBAjwobA42vtgNmDsbANCkRVucv1IAzFmAtWfN+ED2md8lzAeT7uoKkw8ZTka5a6b9+j8Y0c35QeGx7OxsnLyYj1MXr+Lqsb0AjiM6uS6yMxLcnn/N1Z3A3j2IT0gC9u4DAOTH1EVeYRH6C+MSAHaeuISTF/PRvnas7rlSxkxHZnIkfr+/jQfvsGypbPMMUfZcyzHz7bIDePHvrVg5tjPiw7SNQ845vl56AH0aV8WpS1dROz4UfhYTim0cXy7Zh1uaV0d4oBUXrhQg46U5aFMjGj/d2wpFxTZM3XAM/ZskKOa+85cLcCm/CNWjg6Rj52ZOx7n84kpzr+w7nYtOby0EAByY1Fv3efmFxcCsmdLvSdVTkJ1dW/kkYZ7t0KGD8PsMAMq1vcLNM7K1AwCOXchDoNWMyGAPHLnCOZjJDKAYGU2boXFihOIpj0xej0YJ4binXZri+Mc7lwPnzyEjIwOta0RLxzccvoC02GBpL1WZ8eaY8Vb44m8AQ4WfhwKY6qXzXheczb3qcY3UnG0npbQ/zjke/3Uj5m4/iZembQMA7D2di34fLcXxHLtH51J+IY4I3h2RgmIbAGDL0RzkFRSX9m2UCJuN42qR8dc+eTEfu05eQu7VIhQK16/mQp49tffMpQKnxz5ftE9Ka7HZOC4JacCnLuUj+80FuPHDpWjz6jyph+Kkf7W9jgDw0fw9aDZxLr5ZWjlrXGduOY7G42Zjw+ELAIAJwtgC7MaZWNs77u+tGCOI+szaahdCEh24NhuH3Adilm0oOHw7bbWw2Ib0l2bj+albNB/v+d5iDPx0ueLYmdyr+GbZAQDCJgFAQZFNOt8DP67D4M9W6L7mSpnq7Lh/tuLkRXtEOjxIe4E9Ljy+7dhFPPvnZp9LBT6TexUpY6a7TAt3Rcc3F+CGD5cg0Gr3Rs/YfFy63+o89y8Gf7Zc8+/EFN/PFu2Tjo38YS0e+2Uj5m47iVlCylv3dxfhzq9WAQDmbT+pm+K25uD5El2/Hl8u2Y9DZ6lO6VrCOccvqw/hSgGpbHqD71ccxMcL9mg+9sf6owDsBoIeJy9exUvTtqH9G/PR54Ml6PPBYtR9/l/8svowXpmxAx/+txsAkPHSHADAsr32ufGbZQfwxG8b8fu6I5i99QROCXNghzfmo/0b8z0qBahIfL/ioGScAg69gvzCYuQIex6RAtXeSG+vBACpz8xA6jMzXL62J3s0PTYduYCjLsZDWdBm0n9o+9p/TsenrD2CrcdcjxOxDKmwWLmm2mwcUzccw8Tp25GTV4jDGvWm8j1PUbEN/T5aim5vL8Lhc1dIQMkDStJm5mcAywHUYYwdYYwNBzAJQFfG2G4AXYTfCR2GfrUKb83eKf2e/cYCj1Um7/1uDYZ/uxoAcLVIOflwztH5rYXYcPgC3pi1E2dzr6LRuNnYcypX8by9py4jJ68QfT5Ygsd/3VCi91JaXpu5A3Wemylt4l1xMb8QLV+Zh27vLELDF2dh5PdrNZ9nFmaHvELnjcjLM7ZLwgAP/bweLV62G6Oi8b79+EUcy8nHjhOXAACfLtyrez2zBVXacf9s031OWZFfWIyle86U6WssEc4vihudv+Iw+Hu+txgvTduGwmIbvll2AJNXH1b87dqD5/HPxmPo8OZ8vD7TMdaLZQbrK9O3l+n1lxZxTP61/pjHf5tfWCzVQAPAwl2npc/o0LkrePbPzdhw+AKuFBThi80OUYcRsjG99uB5HBbGZbCfdrqQuAG8/YsV+HHlIZy74uyUMcI9365Gk5dml+hv1VwtKsZL/2zDxfxCqX7n1zWHXf7NpiMXkDJmOtbKDMGTF/NxRXCcBQrvf9bWk9L9drXIhhX7HAalzcbtUX7ApaF+z3drcJ/G3DH82zUY8InD4D11KR+PTl7v9Lxxf2/F7V/oOxnccf5yASZM24Y7vlpZ4nNcKx6dvB4P/7wee0/nCt9Pxa1RW7rnLJ6eshkvl8G8M3fbSew44buCMycv5mPPBe86oZ//a4tibpeTJzgBLCb9LeYxwXmeX2ifZ3edzEV+oQ2/r7XPFXO2ncQFjfnseI7dID11MR8jvl+LFq/Mw97TubiYb39NrXvbV3l5+jZ8skB/jyHn+b+UjtJle8/i66X7ccv/liN9/GykjJmOX1YfwnfLD6DxOOVc/vGCvSVuf/Lr6sOo89zMUhtWN364FG0nORuLZc2VgmIcPncF5y87xtITv21E7/eXuPw70clepDLue73vqNtNHz8b7V6fj85v2WtVjwrrtXz9EXUlTlzMR7vX5yPrtfmlej/XEyVR8b2Vc16Vc27lnCdyzr/knJ/lnHfmnNfinHfhnFfcVayMOXzuChbuOo0P/rN7HnPyCnFJNXGcFaIOo35a59IDOX/naaSMmY7dJ5WG5xVZNDSvoBindVTNer2/GMsFr+TqA/av7NiFPLw6Y/s1E7ERIytGvNqZE5TF7/N2nMLWYznIuaL0Hoppy+qosDw69eqM7Zi++TjyCovxy+rDuOnjZU6vN+5vbTGqPacugXNlZHClm36L0zcdlzbr+YXFOFtKpbnx/2zF7V+sxK6Tl0p1Hlcw2N8g53Zj7bzGZkGumMdldS8/rjyEh35ej8PnVFH7IhsgnPdyQTFG/bgOgz5dji+9rLQ8e+sJJ6EdTykSPKd5hcXS/eEK+T3T/vX5uJjnGNNDv1olbTA4t38+Az9dht/WHMGSo9pj/9C5K3jyt43S7zl5hbDZOH5a6YhGHruQhz2nLuG8cA8U2+wqysv3nvVoQzJ3+ynpHKXl97VH8NXS/Xhnzi6Ia7tZdrNw7jy3LBRKD/7b4WhFJH/vAValgS5GpwF7dOBM7lWkjZ2BXu8vxtqD57wyf701axf+2uDsnPhm2QEs3eO+v2p+YbFmxKDQZv9QLleAfnl/bTiGvzcew+Jd9u+nJM4aX0HMlvGWyqece75bgx7vLnb/xHKix7uLMHFF/jV5Lc45dqn2JACw7tB5/LjyIH5aeQifL9qnueban3cBAHDg7BUpeiqyct9ZyWB4c7ZD/PDVGY5MJ/HeL69skj2ncvGdwU4Lny/ej9dm7sDjv2zA3tPOn5krbv9iJcb/sw0bZSq9T0/ZrLtvUavru4NzjjN5NvwpRMO/WLxfES28UlCEB35cqxlB9DXavT4fXd9ZBEBpcN773RoA9j3dnlO5GPbNaukxMcMr92oRZm09gS1Hc3Axv1AKXsjZe/oyOryxQJrvb/vC7nzMKyjGrZ977szMLyxGypjpXt8XVTQqt0KJj/Hv5uNo97rDe1JYbEP6eIenq9jGMWbKJmlTNH3TcbSZ9J9T/amaGz5UeoLOyTxF/245gWUuNlPbhDQHzu2Tf9e3F+J/i/YpIhlliVjvKXpRXaFOWwGA3u8vwdCvV0m/5xcW47Dg6buiMlDHyNqj/E+W+vfSNOcI6IBPlkmpmiI2G8d/O06iy9uLMH3zccgr/275bIWT2lteQTGe/XMzzuZexaif1qHDGwvwyOT1uOPLlWhWSqU50SlxwUtGhUhRsQ0vT9+GI+evSAb4rK0nUPu5f3HyovMCd8eXjs9e/XlrsedUriLdc/rm41h14BwmTNsGzjk2HbmA3zSibduPX3Tqo3ryYj4GfrpMc8M54vu1uOvr1U7HPeFqseP9vD3bvRJ0nsxoOnXpqiKCqkVhMddU7dVizcHzSB8/GyN/WIuxfzrG8aX8InR5e5H0+/N/bUHzl+fi1s9X4JGfnaN/RcU2pIyZju+WH0BhsQ1vz94pbdxLy29rDuPX1Yclw76omEtiHfJaMa1oqvgpMNldtXi3foaAfOG+59s1WL3f4UA4ePYKvjCwsMuNWK0Sh19U17nbQ2fQI5PXo+2k/5w88IJ96jMKw3tOXULKmOkuUyPF708tvnKtKbZxjPt7a4mUNcUrv1af+/0/rMX4f3xDcd9bzicjyNeJAtkcetPHy/Dsn1sw9s/NeHlGyaLYt3y2QnOvIN8biOn9787brXuei/mFeHPWTjR6cZbkMCu2cU3nmaeM/WMzXpi6FXtOXcLuk5cw+reNirmGc47/LdyryGj7Y/1RPPW7vUwmv7AYD/+8Hkcv5IFzjrdm7/So3YnekuLJvbto12l8uWQ/nlyYh+X7HKnVd8n2WrO3nsSMzSfw+iztKPq15MeVB532yeo5/UzuVSzadVrhuBVL5bq8vQi3f7EC/+1wOLXF7+zFv7fivu/Xos8HS/D+XP0xpYZzjhX7z2K94HCR4y4TRUzZ/myRseh6ZcXrKr6VFdEb54kgyZajOfho/h74WUx44+Z0rFJFYeQbWgA4cv6KU6pkSVDXhWgZYCLvC5Hcs5cLcIusNu5qUbEQJXR+v8v2nMGQL1fi3cFNkJkciWoRDsGXwmKbk8iQK8SaxNu+WIHpD7VDoJ8ZXyzeh5MX8/Fs7/ooKrZh/s7T6OBCxESskQTsUc9VwmZVbjAdOONIvygpZy8XYPome+3agz+tR2pMsOJxdbTwhxUH8ePKQ1LqEQBM1YjIlARxk1WaDeO3yw7AxIA7WqdIx+bvPI3PF+/HoXNXJCEfsfZHC/kie8DApnG0sAhr8eWS/ZgopN91qB0rpXWeu1wg1Q3LhSG+WXYAqw+cxy+rD2NUx5puX9sVpy9dRWyoPzjn+HXNYfRoUFVRe3LyUj7+23ES7WvFOgkmLdl9Bm1rRjstiE/8uhHuWL7XszTt2SojfYLq3pY/vvbQeRw8exnJ0Y5xelLwor8/bw9C/C14/789ivFZGsTvdtwN9QHY63CkeZMBUzccRdXwQEyYptycvj17pzQP6dkO+aq58g3ZpmjhrtNYuMsh/rZyn7EEHvlmS+7lLiq2adbMdn1nEfa+0svQuQFHPfa7c3fjye51pONiPZjZxVryyozt+GPdUax5rovi+OFzV9w6Pjxl7nb7puyfjcfQMCFc8zmO+aZkr3H5ahFsnCNUEAm5cKUADAzhQZ6Jhmw/flGIYJ9BaIAFL/VtKF1zXkExcq8WITbUX/NvxanSnX3698ZjqBYegEyZ+FlJ+HeLfa148YYGpTqPKy7lF8LGgfBA/c9xvmzTzTmX5jU/S9nEJ+T3jlh+pL5/S4PacQQABbIayZwrhWg0bhYuacxrOVcK8emivfhl9WHJkX8xrwh5hcVo9eo8AEBSVCAWP9XJ0LX8vvYIkqODFEJ54r7uyPk8TJy+HXtO5eLe9mmoHR8KwG7Av/rvDryq0rcQ54MFO0/h743HUFBkw4s31scH/+3B9M3HUVr2nb6MWVtPoH+TBMzY7Nx2RiS/sFiqy1ezVzhH9wZVpHkoNKB8zYhiG8ezfzrrRLz4t/OxO79ahX4Z1RTH8oWxo3bAi3OdXLvFiONTRF16J2fAJ8vxZLfa2H78Eib0a4jX/t2BelVDkZ4UgS3HLqJT3TgArlPki4ptmDh9O/ytJjzTs57h66pIUATVIO1en4+0sTPw1O+OTac7j9ur/27Hv1tOYOqGY1hz4JyT5y9ftaH9qYRCImp+XlV6I/eX1YeR+swMzbSQD+fvgY0DD/+8Hj3edURv9p+5jFrP/ou/Nxo3wkRjdt/py1Jz44nTt+PzxfaJ4PPF+3Hvd2vw5/ojLs7B8NWS/Zi99YTCwJenpGa/uUAzAusJ932/Biv3O4w1tbDVsZw8FMiMmstC2rJeOq8oPHCloAhT1h7xyHsrbrI8MVBzrhRiytojUr3xi39vlXrqns29ikNnr2D/GbvBOWvrSY+j6O5qOtwhj1i3eGUeOr65AP0/XoYObyxQPO/P9Udw/nKB9N5dbTgzXrLX5riqcV578ByavzwX0zYdk+rU3pi9A4Wyv9l3+jKGfbNGEXkXGfLlSizcddrJQDUifCYaByVFvQiG+js2CxeuFKLDGwuk1LE9p3KlKGB0sJ8U6ZR7lFPGTNdt7O4pDI76mxX7zuGRyRsw6H/LnVKPReMUAP5Yd1TzXHInlDu0NrBayCO08vMv3XtWt9e0mO5mBNH+/HC+/f1xztHylbn4YaW99c3xnHzdjftni/ZpZga0e30+er+/BH/uLiixsF1+YTH2ydIJRcEotfNDjuMeK5mF2vrVeWgkq4vLeGkO0ktQ8yxex+5TuVh36AL6fbRUemzMH5vQ/OW5uqntRkXZHv55PW7+VFt8C7DXnX00X1scyJtsO3YR4//ZqlgX8gqKMW+743vKeGmOIgtLzpajOTh/uQDvySKJBcU2NJs4B80mztH8m9Jw6lI+3pu7W/l6wvwkiuiVFWdyHWt9QbHNyTgtLLYhJ68Qr/67HZ8s2KvIMjt1KR/7zjjuB7WjecvRHN21+cnfNjoJ5YkOqKJix/5QvkQV65zLKrTQEZ1Bu05dkj6/XC84EV+caq8ZHvLFSifHppwP/3M9tsUaX3GudqVMq5VmbbTmVo+L+YV4ceoW/LL6EP7eeEzxXcrZdly7JlxdtuGNz1YLd/vNN2fvwvTNx/HI5PX4Zc1hjPtnG/p/vAzP/7VF+t5d2Ke457s1+GbZAfxvofOepLJABqobRKVXMbf81zVHpOO931+MIV/ac803H8lxWhgLixw3p7/V7FSP1OKVeYrffWmgTdtk99it0KitlKclyqMvYorYrC363jk1Fllfs+7vLlIsBOcvF+C1mXYv40EXipeFxRwvTdumEJgBgK3HvCtase7QBbiyB5/6fRNGzLkiTcriBlIvjfPyVfvjE6ZtxxO/bZQ2iBeuFCBlzHT0/WiprkqitGF0s+fKuVIo1bqlvzQbT/y2EX+sO4pX/3VEsXq+txhtJv2H9m/MV0QNN3tBDXFYW+2WR1qoVabP5BY4CXvtO52Lx37ZiMd+3SC9d1cpe2IKtLqWQ6wjBuxiYQAwf8dpSeiEgWkuMOsOnke3dxY61d2M/WNziUUovIm6nh2wX7M9jWmhlPYc5G/WTdssrbd+nixi40o9Ugs9lcdNXjKajTBUJ3oAKGvlxfFz4MxlvD1nl9MmVn3bXy2y4eTFq4p5/n0XaYiumLq3UPN7stk4Nh/JQae3Fkip21uO5uCBH9diwCfLUFBkw9NTNqHTWwuRe7UINhuXUtD2n7mMtQfPSxs+uaNRiqAa+DovXClw2pi6itLLHXjbjl1Eypjp2H/mMo7n5OHe79Yo7l0G5b1eZOP4V/gcxOwULXXky1eLpDT90rRW45wjJ68Qb8zaiZ0nLmHj4QuK7z1lzHR8r6o/HP7Nany6cK/T+Ji99QQe+HEtUsZMxxqNGvc7v1qJr5cewFnZBvypKZsw/Ns1kvPLVa11nw+WYMCnyxQR5Xu/W4tL+UWa0UU1+07n4mzuVRy9kIcnft3oVsn1mSmb8c5cZSmEuNFefaBsS4bU64Sadq/NR/r42U5Za4A9e0ZvXZ+z7ST6fLAEU3QcZ1qI60aR7GZhDPjfwr3o88FiXXFA8R77R9h77Tt9WcoGOeVh/agWxwRxqb2nXTtOPzTofBEdcKEBFhTbON6Zs0uRirxi31mkjZ3h5Fz8Wtb1YP2h83hPJ2123aHzmo7J9+fuxrfLD+LpKZvx8M/rNR3px3PysOWosf1faUuB9CgossHITKPlyBb3bPII6vpD5yVlawCKlpGVFTJQ3fD2nF0Kz6/IzpOXsOPEJSzdcxZL95zBDR8uwfN/bZFqvFLGTFek9A74ZBkW7SrZgLqpqbLvX5oqtbQsiBF6e47/ZxvO5F5VCHqoF8V1h84rjrtKXVOjfq7cG7ZRUI8FjNU3apGeFOE2pcsTjMikn7lsX0zExVDP+yp67k4Iaob3fb8WW47mSCqTGw9f0FVJFBcz9ZnVG8P0l2aj+7uLnAwF+SZ5+/GLUiTuqhdTsQY3T8KDnUqXeqtGTMM5k3vVEUEVHpu55TiW6NQtymX4D5+7gi5vL8Kzf21BXkExnhK8+xfzCyWngtVsUggmiMzbcQq7TuY61Scfy8lXqPv5EqN/34TPFyudXxfzCqUNhnp4ljYdT4xMnrp0FSN/KH9FzayaMV47l1ygShyLw79djffn7ZbURX9bc1gzwqbl8Dh/pQCr9p/DkfN2lcmUMdMxfZPD8HSVVfHkbxulKGtegV1UI23sDNz/41rsO31ZMjz7fLAEMzafwNqD5zFl3RFJGO9SfqE0V4kM+GQZbvnfcizefRoPa9Qwi/fcsr1nNFtw5VwpRMZLc/DGbGN1aSv3nUWziXPx7J+bcaWgSMqU+WfjMbR+9T/M2XZSEe3RiijsOHEJ83e6dop8OH8P9gkbQb3loKDIphC32XPqEs5dLlCkj8u/w+7vLkLfj5Y6rYfPT92qcGTM23EKk/7dgXmybImFu05jxPdrpVTLcRq1quJXL38/q4QMnqJim6JNxiOT12tGq/advowIWfqvkT2IOOY6vbUQXd9ZhLaT/sOUdUd051YRubNZpKDYhp0nLuHExWsj0KSH+PpFxc6f0YW8Ql0Ddclu++d1XiNKJ/+O5SJ64msUFitj9q/+uwNbjl7UdQAu3n0GOXmF+EfmGBKVjn0RcbjlFxbjvx2n8N683ZL4JwCpnvOmj5cq5rFAmSJ9/4+X4Z25u1Bs4/hj3RGkj5+NKwVFOJN7FTd9vEyRIbHnVC6Kim1SZprIdo1IqVbdpx56kdbS8vvaI4ac1lp7yj4f2LPR5Pvj/h8vw5uzd2ne56UVhPRVyEB1g1Yt0ulLVxWGlLjwbD2Wg2MXvD8RN1bVBf33ZHaJzjMoM9H9kwTOXXYYApkT5+Kmj5ehsNiGedtPOqlPimp8YqTw743H8P3yA9JG91dZvYfI7pP2xd+q2nHIxYPkt2FJFS/b1IhWpD12FnL7PcHTDW6Ll+fhts9X4Lvl9lQ+Pe/x2ctXnQRq+nywBL+t1U9nfvK3jWj96jxFiu/SPWew7dhFLNp1GmljZ6D1q/OQk1coff5HzucZNjred5Peo8f4G7XrrMK8XJ8iRjj9zCZpgRRrZEf+sE7KaFAj3yqIm/p/Nh7DMlkN6MW8QulZW47mOEV05XiqiFhaWpSyHk5d77T3tEwSX7U7M9oncueJS5JzSot/t5xw6iFXHtzdNkXxe4SLuke9dj4icgXHVq/Ow5LdZ6SIhI1znL9cgNG/b1LUyALAqv3n0O/DpVDDGMOg/y1H1mvzsV+o4ZY7E+TZF1qe9oNnL4Nzrsi0EMetlsHw4X97pLKKvIJizfS23adyFeJngCMSJl7ObZ+v1IwKnhXWjU8W7MXzf21x23pF7C/748pDePbPLZLjTTT21dz+ufP9/d683bhbFgXRcgRcka0f8rVk3+lcnLpkf63PF+/DC7LU7i5vL0LTCXMw9KtVkuMqv8D53FoO7PovzHI6xgG89M82jPt7q1TOIiKP9nBuTw0VMxxEp8jBs5clp8jVIpuipGLqhmPIfnMBALtQmrz0Rl0z74oTOflIfWYG/hJS2eXrtrtqEnV0GwA+nr8X3d9dVGpV7XpVw0r19yJaxmFOXqFuqcw5IQMnJMDidP/JNQY2CAbR+kPnpe+2JO/5RyH9X+RdD0R5tJg6qq3m8RD/0q3LhcU2yam9/8xlSQ03J68Aj0xej0NnrzjUlLmyl2ig1XmOzc0vwuO/bkROXiGenrIZmbJ9oM3GcepiPrq8vRD3fb/WqaxF67ubu12/XKEsUOuRAMCkf3fgm6UH3P6tq/tKKzMgV2N9dtfGraJCIkkuWHykUJFeI9L85bl4a2C69Pv0zXaPV36hzWnh8ZThWalO6Yid68UjNTZEkXr25sB0LNx1WuFtU1MnPhRvDUqXvDEDmiZKKcruUM+tO09ewvBv17j0wMo9O89P3YpPF+7DgKYJdqNnCjDppkZomBCOGz9cIp2/QTX9hUcezXNltLmiZWqUIqXk1hbV8eVdzfHd8gOKzYjIN3c3l1I+nuxWG2/O3oX7OqTh9KWr2OmBiqcrYSGRMVM2e3ROwO6VAxwbuE1Hcpw2w8dz8p3qkuQ1OmVBrfgQ6efwQCty8grBmHJzNKJ9Gj7TqOH0hPFCD0x/i1lamBbuOq1IudXcGMgOidH4S/lFitSpS/lFUlqzWtBMjdE661ZpUYpenUF+5hJlA3iSlWCU9UL6lFq4yxEBcAieHT5nV3VOjAxCsY3j0Lkr6C5sgr8f3gIp0SXL6pi2qezblqSoNg/BfhZd9esG1cLdfvdy5A6RM7kFsIRpGwOD/qdd0/i7bF6zCN+xPK1tzYHzaF0jGgA0e2VvOJyj6N0qR0tg4+iFPKTF2j+P3KtFhhVtNwrXtPvUJYXHf/7OU+hUN176Xa6z8P2Kg/h+xUHc1z5N97xywad9Zy4jPiwAgD1FTwut9ViNvN68sNiG39ceUTg758tS47q9swgWM8OOCT1dOqTyCosR6GeWBFXUjxnBxICvhLVoQl9nh97OE5dwuaAIaw6cwyszdkhGxAf/7YGf2YS35jjSZ7Ve89C5K8gvLMb3K5RGjpaTXYsDZy5LRq46QwQAPlm4F21qRsPfYlZ8P3kFxfC3mDRrAUsbnfpheEsM+XKlQgTJ2+TkFSI62E/zMVGB+xmhA0BaTDAaJoTj/VubSM4VAJix5biTMnFhsU2KvBq1VV21FSwJ6UkRmsef7FYb9auF685L7nhj1k7J6T1NlvEhairsPZ2LzGSHU1We7hxgNePBn9ahZpxjzyCfB9R72i+X7EeX+vY5Zt6OU+jdqKri8d809rR6WgYh/hbDpTjP9a4niTa6onuDeEkQT4032gBeKShCkJ/DVLuUX+Rk5F810AWjIkIRVBd8uUV/MVy6xxF5Eb2a5y8XaPaK9ISq4QGK3wc0TURSVJCTiu3NzRLx2oBGLs8167H2aJgQjk+HNMXzfepretQ9wZVx+u/m4061lkcv5CkiclPWHcGwb1YrJmtX3l1XKmjuEKMk0cH+0qYpMsiKzvXsEdR+TRLwaJda0vPjw/xxYFJvZNdxRFhHdayJZWM6oV2tWMx6rH2Jr0UPT4zTw+euaLYbMiLEA2hvbo0QpbNwA0B72ZiMC7WPWz+LCU/3qAvA2TM4pGWy7kbACFbZ+F2+76xiMyxfdOTpvCJyL6s8giIf0xfzCzHHhVBMSZAblhte6IpgA57r7g0cG/43B6Zjx4QeTvfuyA41Sn1tckl9OcWc49DZK6j17L+YusG+0IsNxpu8NBsvTN2iGE93fLlK0T7LEx78yTmNtDSoPdkzHm6HGrEhimPyjZGaJskRJX7tfh8tVWzEjCA3prTu5Vs/X4GTF/N1a3ldiZ3o2Z6iIXzjh0t1HUb+KoXXP4SI2qYjOWg76T/p+LBv1ija72gpDMuFxf7bcVIRdZVHcM0M+HShXUBFS3HdaD2z6CR+Z84u1Hr2Xzzzx2Ypm0VOfmEximwc+YU2dH5rgUtD7rV/d6DYxkuV/v6HTGBLy17p/u4i3PTxMrwi9PSUz2ly4xTQbosEAHWfn2n4ek5dysdH8/dg2qZjKLZxhbjYSY2U3LUHz6PP+0tw+xcrkPWa436v98JMpI2d4ZFjR+SuNimK3xMiAnFby+rS70lRdiV5V5kYfVWqrJ5y8OxlJ4P/8Lkr2H/msqTELLLvzGXJORkV5FjLtFJKi2xcau9jpOYXAH5YUXqhzCbVIzSP/3hPS4zqaF83kmOCEeQmW8QVny3a53LvcbXQplhz5d/fhsMXMG3TcUV02FW7vL2ncxVrulo8zpP0cfmezx1NkyOln4P9zIr59JmedaV1Ws84BVzX3hslJ69Q4XR/+vdN+EoVxJqns5ZXdMhA1YBzjpluhH7+0FBzzC0oMpyK+t7gDOnn3o0dHiHRgywysoO+91n0oiRFBaK2EMH66q5MLHgyG2tl7Ql6NKyK4VmpMLuSBCsli/ecUfRn1MJqNjlJkltdRIZEESE53w1rgd9HtpZqZPUQo0DydL5X+jeSBDLCAqx4tEtt6TF5etLAZvZUaMaYooVOeXH+coGuAfB7CSPLRlk5trPuYy/0cUibyz9nvY1xYmQgVj+rbJthtJ7abGLoUFuZni3fUMo3+lpKq+JaOXvrCUU0WV4XplVnVFrk9kpYgBVGAqGPd3W0JCm22RBgNUtGhcj92Q4DNSU6CA8Jtb7eqLeeuuGYtNmcoUqJO3+lED+uLP0myh3fD28BQL8VxqqxnfHTvS2djrcRoo0i9YUMjbmPd0CCcC+3rhGNGrHO4+6V/o1QPSqoVNftKgrnjkcmb9A83vKVebj/h3UluJYrmhk2u0460sb0MgECrGaXzik5Xd9ZhE2CXoC7jfiwb9YonEDy58tF7dR1WTl5hYadv8/8sRmcc4WarBrOuSJN351wzC9rDmPniUuG+nXrIa8tLq1o0G43okBGaPHyPLwxayce/Gk9Jk7fpmhHo1fCsO/MZUVGiJqeDat4dA2ju9fBgUm9Mf3hLCx4MhtLx3TCK/0djvdoYZ0f0DTRaQ4UuVtDiG94Vip+vMd5ftDi51WHne69dq/Pxz3fuhbPaZwY7vLxZ2R911+Y6tzyxBuIZVv1q4ahbpVQ/DayNT65vZnmc9vWjMEjnWvjf3c0Q3bt2FIZqO7YfSpXkQly+xcr9J8M17W2BcU2RS3qyv36489V+caBSb1xTzv9/bTIzEfb4cCk3qhbJVQ61q1BFUW2SWiAtcTlfK6uUYvzlwvxrkx8bMmeM04lO5UVMlA1YIyVSNyDcxhKCQCAWJmB1adRVWTXsUej6qtSXtNi9b39jDH8dG9LTBnZRopKJkYGISUmWJrY5agnePkNWFp+MrBpDbSa4WdRToquorpam6tiG0dmSpTbxUE8r7zPXtf68XpPV/D6zY01+x3OfzIbv4xopZjY72ydrHjOAxmuDeeSsP5w2SogusJqNmHK/W3w28jWTo8lRAThzwfaYGyvugiQpZyI36haLdNkYjCZGH4Y7tg4iBHrWi6iWoC9lrVaRIDu4zd/ukz6WSuqZON2T/mI79cqHCnyerXLJRTiEnmia22nYxkyb7bJxBSL3Cod418evQoPtBsJ7VUZFEF+ZphNDI0Tw7FgdEd0rmcf2yF+SgfQt8NaePYmBJ78zV5fNWvrSYXi87WgcWK41FdQTyQoLiwAbWrEYNtL3fHLiFaoEhaAYBfp0zXjQtC9gX3zbDEx9GnsHHXp3bgq+mYkOB33hMGfud6IlZSS1FQ99stGPKQhdGSES/mFmnVVemw9dhGbjlzAo5Pdv5484iGPEsozZtTf491fr3IZZVHzspt1OPWZGR5H/Xu9v9itWqxRSiqYKOIqcl4Svl56QFFfrac8745jGrXDfrIsqYHNEtGxjmMuEx1QDaqFK1LxGwm6GyH+Fuyc2AMPd66JaQ9nYWjrZNySmaQ4f0ZSBHZM6IExsqhWoNVcamedu/GmFutxhbuOAu/ckq77mJZh3iI1ClXCAvD6zek4MKk3ZjzSDjMfbY/mKVFOBlDrtGgpa8TPYkL3BlXAGFOkjZYFcuV1d4q6v7moodRL19XicY012BN+urcl6lax78Hln89rAxorsqFCAizSOv3LiFZY8GQ24sOUe78eDbSdNXe2StY8rseuk5cU4lPXE2SgehlX+e3yqKk8MlBQbMObA9Px7bAWqBEbgrmPt8fQ1sl4rnc9t7VnbWrEIC4sQKr/NFpT1KBaGH4w6GH0FgF+ZlzMK5QWH8B1+5jlGi1uxE3MK/0bYWSHGljwZLYUSZZPzD/d0wqjOtZQCCS5Sid+55YM6WfGmObnnhoTjJZp0Vj6tKOJd9+MaoqocP0o73slh32zxuvnFHl9QGPp57G96mo+p1lyJJqnROHl/g0VxwP9zGhSPRIj2teQvoPHutRGvyYJuCUzCU92014ssmrFYEgrexqXmMLlLnI1rG2qy6i5OzGeH1YcdOqn6glzH3dO8ZZv4BMjA/Fgp5p4pLMyheiJrrXxcv+GeLCjEOEUjv/zYBaCVOm+nevG4df7WiMlJhibxnXDR7c1lTZcd7VJwbIxjnFnNZuwa2JP/PlAW8V541SLZEp06SKCwLVvf8UYg7/FhIHNEvHjPa2cNpriZwnYNxEt06Kx+OmOWP9CN0UNlzp9UGy3ERHkh1Eda+J/dygjDWEBFoT4W/De4Azck2W8PVJlxMbhUV3xW7N34cYPlxpy8si1CvTSzNWsO3RBM3Vfjy9UKXDeYtRPnkeytcjJK8S4G+p79DfiXOnLvNzPsUZ8dFtTzHq0PW5tYTcoO9aJxRsD05EQaX8ffRpXlWrc1fw2sjXWPd8VgF1vgDGGulXCML5vQ7x2c2MpVVUkwGrGyA410KCafW/BmPG9kB6u6p3/2XjMI4eJFs1kKaTdG1RRlHfJnZfyVFORX+9rjeXPdHI6Djin5/88ohXmPt7B6XlB/o69ypT72+Cbu5tj44vd0KWes5CkVsaJNyltP3ARI8JU65/vimkPZQGwG/ryvXiCKmNuydMdsfyZTvCzmBR7yWA/M94dnIFne9VDi9QopMQEY8UznfGXTJTqkyFNNV//vg418M3dzQ2/p0d/2WDoea4U3ysqZKB6iTsMeEXk3nmL2YTPhA1Sg2rhiAnxl+pMa8aFYnzfhk7pCGue64I1zylTJEXEzbKrtA35zTuwWaJiwz88KxUNE7yjlKcH5xwX8wsVfdn01Br1ECXKq4QHYEzPukiJCUYnQZlXXpdTv1oYRneva7jnXWtVaqArImWpb9WjgrFybGf88UAbrBzbGSF+2q+nNel7iif1E0YxyQxxdZRObZT1amhPRe+XUQ1bxndXPGY2MRyY1Bv3Z9dAgNWM125uLEXxx9/YwCla/+INDbBqbGcMaZWMRzrXwugedaDH6O51cH92Dd10TyO4a5rtjppxjuu/tYXduG6V5hgzcx/vAMYYHutaG4uf6igdt5hNuL1lMp7sbn9/YhS/elQQQvwt+G5YCynqXlBsQ4tUe+QwLMCK3o2rSuNXK93cbHI4UsSMga71q6BtTcd16Rn13my94m0aJ4SDMYY3BqajRWoUzKp7eJTMQBWxmk3ws5ik+WTOY+0xTqUsPTwrFR/c2gQ3pFeVIgmfDmmKuY+3x4FJvaXPum9GAh4R7rV7slKx6lnHZvHj25s6OWoqKzXinDelaoESEXVdmCtKqi2gV3dZEakeFYS7DPSIljtz5aIzvkpD2fW2SI1CnSqhCBEcuOJ68FSPuhjdvQ7eG9xE9zzuUsyf7FYHi5/qKBmxIuJyZuPcUA/KkvLQz+sNCSG6QnTq1q0SiiA/C36/v430WLRqb6aF3t7G6J4nSJb11Cw5Etl14hAeaEVsqHOm0i/3OWdQ+QJysaBu9eMVe1yrmWk6GiOD/dAwIRxv3NwYn9zeFDte6oG3BqZjyv1tkKxyyiVGBqFquH3dDZEFIsICrUiMDMK97dMUa3RGUgQaJoShj7B2z328PeqrFKj9LCZk14nDgUm9pWMl2Xt/dkczxV66NJotvgoZqF4gPNDq5N3c/2ovrHjGOYVP9ERZzQzdGlTBvld6uRTtkBMT4q+74XxncAa+HJrpsmZSnrYjBpw+HdIMz/epj+f71Mdnd2QiJsRP2iR7mxmbT+BSfhGSIkvmCc5MjkT7Ws4b69Hd66BJ9QipDs8TPr8zE7NLIIBkT2s1ISbED0F+FjStHinVD2vJqJekOXyAVXl7yiej0vCArH5R7nWLUy1McqMMsE/s/z3RAa/fnO6RTP3QNimY+ajyM7aaTYgLC4DVbMJjXWsjMkh/M5JdJxYWs0nafHhD0VYtRuYJYjryjemONFF5inNSVBB2TuzhZMQDwPN96mPFM52l1PP2tWMR5W9/P0aFNLRoUC0cv49sjdHd6+DHe1ph/I0N4GcxKRxW8hT3mJCSi1V5SjXVZ/3XqLZ4fUBjRZTgRVk06TlZbTOgdKIA+nWpANBDqIFL0ojI+1lMuCG9GvxlZQY9GlZ1GueAvcbowKTeeK5PfcV90alunMJocIfWXKCmUwlaX+khF9gqLclRzgaqmKWipUIrR70pk1PS1hkPG0gfdoUn9cX3dUhzqpf3JlXCjM0/6UmOsSZGxvRqMb1FupvyGaOIonaiMJy4ZoQFWDGqY81SzeOMMSRFBTkZseI6a+PKNVcvO0iOXqs0T1GX/eixRBDazBCUdhMiArHhha5YNqaT4rMpjWPWFXoZZU91r+P0HmJC/J0is67wRvmYkT1Gtwbxkh7DfR1qKIQZo4L9XKonD8xMQnSIP0wmhgHNEhURbS3Edf+9wRnIdPHcaQ+1w4e32aOnNeNCFfcwoH3/qufatwfpp3yLxIT6K95vSboD+DpkoHqAWklXxM9iwp2tUxRy+owxp5x08TgAKbVFvfkqKWEBVqkOTQ+5qlo/QfmuR8MqkoeuWkQg1jzX1W0vQFcYSY3rpLpOMS0yPNB18fikAY01Db2UmGD8+UBbjOpYEw93qqlIpQbsabh6Yjxd68ejdrznk+mI9jWwY0JPzesR2zj0b+KImL/Qx7EB3zGhB+Y/mY1Ph2iLGYi8cbNyklIbkJ4wPCsV6UkRiAyyYnT3OoJglH1z/PqAxkiICFQ0dNcjLTakTBZMV4ufaFCIQlaDVDVIIm/c3FjzuBaeRHzUDG2TgoWjs9HShSPH32LWXGAtZhOqqAy26ED7+zKyMXTlac1MiZI2NkPbpGDXROX4lEceXS3cv49srZnSrIXVzLBrYk/FMXXrqA5CzVn/Jgk4MKk3MpIiMKh5EuJkm/Sbmzl6NPur6tQ7CXXK/zyYhWd61nW5sX26R11sHtdN4TDwBjMfbYfHutRGgNWs2BT4mU34YXhLRZ2dHC3n48xH2yl+12rP4Yp72+nPsc/3cZ026s6wlDsnq2rUfIv3vjtv/buyOfjO1smK92ykLcuKZzrj53tbKY7JUyrVGSmuFO271ItHTIgfxvR0b6SIDGiaiNhQf6x6tjP2vNwTe17uqfm8m5omKAxf9TqjJzKnpXYsp2p4ADKSItBRGPt/P9hWmiP7NNaOYrticHPtOVOLYi+lCor3qZjSHViGojwi8v7gdYR1/Ys7MyXncVOVwu13w1pg3A31sWNCDwxtk2LIMHDFC33qY2yvem6fJ08Flbc6iwjyk4IMY3vVxbgb6sPfgz62nvJ419r4VRUdjQz2w0t9nbNExHveVb2syC8jHOdcODpb93mu5isjKasFRTY80bU2frynJZolRyoy4drVisXQNp7Ve7ri7Vsy8ObAdPTNSPAo4HBvuzTFvKD1tzVU68RNTROdniNndPc6aKJqIWS0f3lFggxUN/hbTJKAUX5hMW7JTJI8XiJ+ZhMCrGaM7q5MU3Q1iMvWB6pN7fhQmE0M3w5roSmiJJJVS9sQl6On1veYgSL15ilK75MYzXFnGLuLNDPG8Hi3Ok5CJ+8NboL/nsx2e13e4pu7W+CzO5rh1ZscmyZ5RMffYkJqTDDqVXUYxkM1vK7qiGmcRgTVqLH4WNfamDqqLdY+1xWMMdzWsjr2v9ob0SH+GNQ8CUvHdFI4S/QEfMoKtVGifMz+HsXbScuYbZEahYE6hqvIWwPTpXvXiPdevbkUI4FmE0NydLDXnEuRASbMfbw9nu3tvibtzwfaYseEHh6dX7xMuedWL0uiZlwIMlOiNKOKWhQWc6cx+L1MBCtcSIUCgHWHnMW+xJYSwYIgRbJGzey7gzPw3xMd0CgxHPe5aa9jNjGEBnimkmiEulXCpLRfeVR62sNZyKoVo5tCbtUQgVPXOblLXZ3Qz3hKcYSLTITfRrbGHa1TcLusjYeImLorT6euEhbgFJEV71NXBupTPeqgdnyotAnvm5EgCY8YpUp4AFrXiEarNO1xqk7zblAtXJEyB9jX5Z0Te+CzO5phzXNd0UsnPVlOtfAAfHVXpuS0jAsNgMVsgsVswopnOmPK/W1wU1PH+jI8K1XR/mbyCKVRHR8WoJlJMUJwZv/9YFvMkmWXiPfDA9k18NeotuhcLx77XumFxokR0n6iSngg9r7SC98Pb4GdE3tIKf23t6yu+3lNGtAY2YnODrM6Gs7ZQypdCE9VR0VEJ7yofBzgYo73FmLdKed2gcQDk3qjS/146bjcyTt1VFu0rx2Lu9qmSg4tUbRPK8NmRPs07JrYU9qvfHVXptNzhmWlajrH5Bl20x/OUuwhC3TupRHta+CutqnS/BoX6u+RcJkRHu5cy3DG3Ks3NUJcqD+61nev1BweZMVrAxrhq7syndJm5aj30iJpscGKlFqRrJoxiuyMIhuHxWxCW6FkpWGCfR6Ycn8bvNy/ocvX9pSwAKvCkWqUtNgQ3f2n6HB+uFNNvHtLBr65u7nkzJNnBwRYTQph0JubJQrzgcOIr0wlECJkoLph58SekjJYTl4hXru5sVOkRkq9ceHpKktJb6OEB1qx95VeupFgkeFZqfj1vtZ4XfU+61YJxepnu+Dru5sjSyPVFrCn83w51HniFqkWHoAAi9kpfRUoWRqsLxIb6o9uDaroGkHqKDoAdBTS/ORRd3U6d4yGgaqOXsmRe0bFVEOjRlWcwRQ0b6FlaKsjkOrxIf8bLeNdTZ0qoZLTQK7Qt1KnZYk6KjbrsfZlZrjXjAs15GywCs4wT1j7XFesHNtZGm/xYf64vWV1Ra2syB8POOqgvr5LKeSwY0IPhdNFzoyH2+GJrrUxunsdRAX7YemYTlj+TCcsG9MJ/YRMgnO5zpHCCX0bYuv47jCZGP5+sK0k+iQnwGp2qWZ+rakVH4pPhzTFlvHd3WZfaEWq1Qb03W1TnJ4jth6LDfV30jfgHHi4ib+TUAygnRZ3Xwe7B1+MbL/cvxEmj2glzcENqoXh/Vub4O62KXhNJpoW7GeRIngi4t9c1YmCtq0ZjQey7cZjRlIEDkzq7TZ17tMhzbD75Z6axry67ZoIB/Bcb0ekSkwj7dXIvnkOD7TinVsy4G8xe+RIOpaTj051tTORqoQHoFlyJCIEZe3R3eugQbVwfHhbU3SqG4dN47ohLiwA/z6ijJDLvxNRtKxxYoT0fx1ZOqSYOigf7+L1iwr/NzdLgNnE0K5WLPwtZsQLRldWzRiFQrqaqiGO+eXvB+33mVbfXrF3o1ZGijpDqnVaND65XVsMRnSIcWETHex/LQxU+/821Y0nXou8Pj9dwziKCvbDv4+0U6ifZ9eJxdDWyRjbqx78LCZpHg3zwBEmzw4ThZxEsTd30XTRMX9Hq2TMfqw9dk70zEHpLW5tUR2rnu2iGM9iJoNWyustzatL91KoTrpurE6g5JcRrZ0yKKY9lIUf7mmJGY+0k75Ptc6ASLPkSMmZNrh5kq6ibnnz4/BWmPZQFixmE/o1SUB2nTjJmSdvFfnx7U3x94NZ0u/i5yYGmSf0a4iqPtAS0duUrc50BWbVs52xcLG9dYUYbRRTjNR2lHxjWS08wElsBoCk/Cp6qH1db6tFahRqx4fgKdg36q/e1AhtakYjNtQfHevEwWbjCLSa8fivG6W/+fxOu2Gq3tTICQ2wwmRi2DGhJ+ZsO4l7v1uDrFqxaF87Fg91qomBny4HYE+VeUmQ0p/Qr6GiKXZFQS3u8teotlgja2YuN1BFY8jEGGJC/HEm96oiUti/SYJu3dJ/T3SAxWTC54v3Ye72k5JQTIvUKEy5vw3mbDtpuN7n7rYpOOCiAXdZIb++aQ9l4fLVImw9dhEvTduGaMFjLT6Dc45PhzRFvaphkjLvK4LhNOX+NhjwyTJoERPij6tF9o11UbENG17oii1HLyI+LADxYQFSBCZlzHQAzi2QQgOsTsbFw51qKtoj+CKiqFd8WAB+GN4SLdOipBouNfJNV8e6cbg/uwY+WbAXgLLOtmVqFFbuPycpdNavFqZokSWPEorjPCLYeUNnNjHJuBA37RWBHg21o3Hzn8zG/B2npLlr3I0NFD381LVZnw5pih4Nq2KMrGci4Pj8CnUis03jLajbJAUfzd+re41TR7XFDysO4omudfBMT2XaYau0aOyY0BPHc/IQFmCF2cTw4g3KzV6wv3OrjqGtU7DlaA6GtknBwMwkdHprgaSg/dM9LdEsxbUxKqd1WjSW7zuLYH8zrGYTUqKDsftUrmL91EtF5xy4p12a1NZNdAC/PSgDY3tdlaL2am5rWd2pJdq3w1pg6FerDF+3OFWJhnez5Eh8JXPm1Ksahg9va4ITGgKAXerF44sl+zXLfwB7al9GUoSmQ2ZQZpJmecPzfeojIsgPnevFa87zoiMjOcx+H47tVVcyMoptHP0yquGvDcdgNTMMzEySPp9agvNFfsYbM6rhiyX7kZkciTUHz6NX46ro2agqMpIiJMe3n9mEgmKbdC0j2tdATl6hFB0uS8QyEPWw6dagCn4b2RqZyZF4fupWl+eoVzVMkV76zd3KVl3ifi9YZnSterYzzl92GJo/3tMSP686hGlC71v1XgAAHuxUE4v3nMHzvV2nBEcE+WHHhB7wt5gMO/HvapNSKp0FOTc1SdB97H93ZMJsYigstuH0patoM+k/zectfrojMl6a43Q8JtSxr3v1pkZS79joYD/Ehvpj6qi26CvMn3IBro0vdoONc0PZMpMGGC/9udaEB1kRHqRd2qP1XT+QXQO7Tl6SnFbiKO1aL94jXZCKQuV7R14iLjQAsUH2iSha2OCJKULJ0cFoVysGw9qm4u5vVuNemdruMpUw0sv9G6JRQri0SfxkSFN8u+wAavpQREAPqWaEAQNUqQ0mE8NNTRMVBqoowuLKYz1KJmTUtX489r/aC4wxfCd4LKc9lIVAPzNqxIbgh5UHse/0ZXSqG+eUFlcRUH8OGUkRipQWeYTOKjNG3xucgQnTtkktQ6KD/RRtcOJC/RV1K+JmZkK/hpjQryG+WLxPMhaaJUe6jWDIUW9SrzVNqkdIC1HLtGgMk3nsxY+Tw9lAEA2rZsmRaJwYjk1HctCpbpzUxmL1s10QG+ovNaAvtnFEBPnpZgIAdsPqztbJyHdRM/d4N331YV9E7/2O6VlX6j0qZ3Q3pWCGKLRWIy4E3w9vaUiwxc9iwie3N0UjL4mv+DIp0UFIlInAqVPY1OmSeoau+LxCIf1v/pPZeHXGdsze5uiHKo84vj0oHUWCofjuLRmoHR+K+tXCNKNEckSFSi0sZpO04QeAWzKTEBnshy+G2o2xaAC7X+6FzIlzcSb3KuLC/F2m6n9zd3N8NH8PVh+wp3qLG31xTDVPjcLuU7l4RaaSrNfeQlyTfx/ZGp8v3if9HmA16xqngN0xBdhrR8X+iq3TorFjQg8s3HVaShV0xSNdaqFlWrRCxVuNus/uR7c1Re7VQgxomogHOtbU3FiL64Gn2QKRwX54QaNlTVJUIA6fy5Pq2epGmfHHA22QnhiBs0INfs24ELw5MB0T+zeCnyBEJxqock0CxuxOATGV+sWpW7Dm4Hnp85TXVP7zUBYW7z4tbbDDA62Y2E+/RtibyGtQ5ZhNTHN+0z+P/URa/bnF70luP8SFBijSh9vWjFH0ujWbGN6/tYmiXjnAasbUUc4ZI1p4mjWjF1ksCW/L9h5qRCeE1WxymQquVXow7ob6ikymW1tUlwxUce8UrGN06R33ZV7q2wBLdp/x6G9qxAZj7+nL0rz6VA/tOnpvCEf6IhXvWy4HAqxmbBrXTaqTsppNUp2Vuu5Fze0tlelZabEhGK9RgO6L+JlNeLBjTUkZsyS80r8RDp67jOFtU1FQbHPaPKi9RHIv2Td3tcCvaw47qYBWFsQ+ZC/eUB9JwudyPCcfbWvGSKq3S57uqPCMTX84C/FhAejx7iKc0UiZBODUnqiisHRMJ0S6WOTEFBZ3apziBuKerFQcOHMZ+85clup5xUiLkUb0ZhPTFIuojIzUqe00mZjCiCkWNqQWE/NILKungfq/ikyd+FDsPHkJjDGn+szbWlbHobNXsGTPGakWbtHojk7RScCeRv3V0v0Y1jYVr8/cKTn0UmOCcUN6NczedtJuABcqS0rkohr9XEQ8jPDOLemYvVUwhJl4/gS8piNC5qgNd72Jzq4Th+w6cUgZMx3xYf4Y2iYZC3edRgOhpmzcDQ1wW4vqijXiwY410SI1Crd9vlI6Nvux9lLWQmZKFDI9MDzE9LmBzZLwQHYNLNh5WhrH3Q2mAYYGWBWK2EboLRM20mqfsurZzrpCWyXlnqw0vPj3VoVCetPqdmdlnJBNkZ4UDovZhBCN1xb/rk6VUDzXu74iE6e6UNun1VWgTpVQRdrytUQcC+1d6GhMHtHK0IZ+1djOTr2qAXu65f8W7UPN2BAnZ7Ec+d7GbGIK1feKztRRbbHpyAXFMU9rjI20WapMUcE7W6fgztYpHv3NH/e3xY+rDqK1jjNMjPRXUvuUDFSjeFJvUFlgjEn9G/X4a1Rb3PTxUvw2UrtPVlJUYIlTe6pHB7l9/YqM1WySHBycc8SH+WNEe6WhoDboxfqVhaM76qb/VVTcRcm71Y/Ht8NaoJ0syrFwdLYkwiHiL9TJFXOOX0e2xt5TudJjgVYzrGaG59yonQJl387BF/jnwSwcy8kz/HzRsK+sHtuS8vv9raXaPTHiLqbGvdK/ERbtOo0le85Ixlx1DTEowO4MFWs41c7PPo2rIsTfgg61Y7Fo0UGvGzQi/Zskon8Tu8ErRiaruYi0ilgNXs+CJ7MRHmhFZLCf4j36WUwKByVgN8Lb1IjBxhe7Ia+g2EkB21PuapOCFqlR0usYFQMra0qj0K7mrjYpyKoZgy7143F7y+q62hh62RT+FhOuFtkQHmTFD8NbolFiOMIDrYrv5u42KUiOCkJnL/T39iYZSRHYMaGHy4ijq8i3HD0dhlrxoXhzoF3Jduaj7aVotJoQWc1tRZwvk6ODcFAlmCWSnhThlJ1htNb7q7sy0SJV+ztIjAzEkfOO9Sgq2A8JEYG6opyVnfAgq7QeaCG62SuLfosaMlCJUpGRFIF9r+pHkbMMpEwR9glm5VjjffcqYopLaWGMOQl8aan0iRv3q4U2p97BJhPD7pd7GX69yk6jxHCPUm/FFgi+JFrkC8jrk8UIqr9skyxtJEqh384Yk8TUAG2FYG/TqW4cPrytCbq5UO709CpKUrMdHmh124bMCCYTczKCKxvy9E5Xwo16zH28Aw6ctesQ6BmxJhNDFw+jyNcKb7eYckVUsJ9mRBywZzLlF9pwLCdPEtqsSEx/uB3mLljk8d/pCSKJqEXIwgOtyMmz1+9OeyhLkRnmZzFh6ZhOHl/D9cL4GxvghalbEaqheFwZqJzvivAZrodNvitGtE9T9OYiyp7hWWmYv/O0Qpad8A49G1bBT/e0pDHtgq714/HW7J0Kdd6MxAiE+FvwUCd9b7iniFGZAW565pUGxphTPaWap3rUxZO/bSxxOxLCt0iKCtIUUCM8I8BqrtAZYCH+FkT4e+bgmDyildsSHDVLx3SSau0jgvxctsoilPTNSHBqq1iZIAOVKBNGdayBjCTj4jyVFSNNuwnvklUrxm1tuCue6lEHPyw/6MUrqjwwxtCGsiJcEh8WgPUvdFMcCw+yavbDFGmVFmUojVYOYwxbxneXWkiVFzc3SyxRf0CCICoXRtOn5YT4WwD3XeKI6xAyUIkyYXR3bbUxgvB1Hsiu6bLugyC8zeQR2jX87qhMIiIEQVReHutSG7O2nijvyyAqELS6EQRBEARBEARRJjzSpRYe6VKrvC+DqECUjQwgQRAEQRAEQRAEQXgIGagEQRAEQRAEQRCET0AGKkEQBEEQBEEQBOETkIFKEARBEARBEARB+ARkoBIEQRAEQRAEQRA+ARmoBEEQBEEQBEEQhE9ABipBEARBEARBEAThE3i1Dypj7ACASwCKARRxzjO9eX6CIAiCIAiCIAii8uJVA1WgI+f8TBmclyAIgiAIgiAIgqjEUIovQRAEQRAEQRAE4RN420DlAGYzxtYyxkZ4+dwEQRAEQRAEQRBEJYZxzr13MsYSOOdHGWNxAOYAeIhzvkj2+AgAIwAgPj6+2eTJk7322mVBbm4uQkJCyvsyiAoEjRnCU2jMEJ5CY4bwFBozhKfQmCE8RW/MdOzYca2nukReNVAVJ2ZsHIBczvmbWo9nZmbyNWvWlMlre4sFCxYgOzu7vC+DqEDQmCE8hcYM4Sk0ZghPoTFDeAqNGcJT9MYMY8xjA9VrKb6MsWDGWKj4M4BuALZ46/wEQRAEQRAEQRBE5cabKr7xAP5kjInn/YlzPtOL5ycIgiAIgiAIgiAqMV4zUDnn+wCke+t8BEEQBEEQBEEQxPUFtZkhCIIgCIIgCIIgfAIyUAmCIAiCIAiCIAifgAxUgiAIgiAIgiAIwicgA5UgCIIgCIIgCILwCchAJQiCIAiCIAiCIHwCMlAJgiAIgiAIgiAIn4AMVIIgCIIgCIIgCMInIAOVIAiCIAiCIAiC8AnIQCUIgiAIgiAIgiB8AjJQCYIgCIIgCIIgCJ+ADFSCIAiCIAiCIAjCJyADlSAIgiAIgiAIgvAJyEAlCIIgCIIgCIIgfAIyUAmCIAiCIAiCIAifgAxUgiAIgiAIgiAIwicgA5UgCIIgCIIgCILwCchAJQiCIAiCIAiCIHwCMlAJgiAIgiAIgiAIn4AMVIIgCIIgCIIgCMInIAOVIAiCIAiCIAiC8AnIQCUIgiAIgiAIgiB8AjJQCYIgCIIgCIIgCJ+ADFSCIAiCIAiCIAjCJyADlSAIgiAIgiAIgvAJyEAlCIIgCIIgCIIgfAIyUAmCIAiCIAiCIAifgAxUgiAIgiAIgiAIwicgA5UgCIIgCIIgCILwCchAJQiCIAiCIAiCIHwCMlAJgiAIgiAIgiAIn4AMVIIgCIIgCIIgCMIn8KqByhjrwRjbyRjbwxgb481zEwRBEARBEARBEJUbrxmojDEzgI8A9ARQH8CtjLH63jo/QRAEQRAEQRAEUbnxZgS1BYA9nPN9nPMCAJMB9PXi+QmCIAiCIAiCIIhKjDcN1AQAh2W/HxGOEQRBEARBEARBEIRbLNfyxRhjIwCMEH7NZYztvJavXwJiAJwp74sgKhQ0ZghPoTFDeAqNGcJTaMwQnkJjhvAUvTGT7OmJvGmgHgWQJPs9UTgmwTn/DMBnXnzNMoUxtoZznlne10FUHGjMEJ5CY4bwFBozhKfQmCE8hcYM4SneHDPeTPFdDaAWYyyVMeYHYDCAv714foIgCIIgCIIgCKIS47UIKue8iDH2IIBZAMwAvuKcb/XW+QmCIAiCIAiCIIjKjVdrUDnnMwDM8OY5y5kKk45M+Aw0ZghPoTFDeAqNGcJTaMwQnkJjhvAUr40Zxjn31rkIgiAIgiAIgiAIosR4swaVIAiCIAiCIAiCIEoMGagaMMZ6MMZ2Msb2MMbGlPf1EL4DY+wAY2wzY2wDY2yNcCyKMTaHMbZb+D9SOM4YY+8L42gTY6xp+V49cS1gjH3FGDvFGNsiO+bxGGGMDRWev5sxNrQ83gtxbdAZM+MYY0eFuWYDY6yX7LFnhDGzkzHWXXac1q7rBMZYEmNsPmNsG2NsK2PsEeE4zTWEJi7GDM01hCaMsQDG2CrG2EZhzIwXjqcyxlYK3/8vgjguGGP+wu97hMdTZOfSHEu6cM7pn+wf7AJPewGkAfADsBFA/fK+LvrnG/8AHAAQozr2OoAxws9jALwm/NwLwL8AGIBWAFaW9/XTv2syRtoDaApgS0nHCIAoAPuE/yOFnyPL+73Rv2s6ZsYBeFLjufWFdckfQKqwXplp7bq+/gGoCqCp8HMogF3C2KC5hv55OmZorqF/emOGAQgRfrYCWCnMH78CGCwc/xTA/cLPDwD4VPh5MIBfXI0lV69NEVRnWgDYwznfxzkvADAZQN9yvibCt+kL4Fvh528B9JMd/47bWQEggjFWtRyuj7iGcM4XATinOuzpGOkOYA7n/Bzn/DyAOQB6lPnFE+WCzpjRoy+AyZzzq5zz/QD2wL5u0dp1HcE5P845Xyf8fAnAdgAJoLmG0MHFmNGD5prrHGG+yBV+tQr/OIBOAH4XjqvnGXH++R1AZ8YYg/5Y0oUMVGcSAByW/X4Erm9g4vqCA5jNGFvLGBshHIvnnB8Xfj4BIF74mcYSIeLpGKGxQwDAg0I65ldiqiZozBAqhDS6JrBHN2iuIdyiGjMAzTWEDowxM2NsA4BTsDuw9gK4wDkvEp4i//6lsSE8ngMgGiUYM2SgEoRnZHHOmwLoCWAUY6y9/EFuz2UgaWxCFxojhEE+AVADQAaA4wDeKterIXwSxlgIgCkAHuWcX5Q/RnMNoYXGmKG5htCFc17MOc8AkAh71LPutXhdMlCdOQogSfZ7onCMIMA5Pyr8fwrAn7DfrCfF1F3h/1PC02ksESKejhEaO9c5nPOTwsbABuBzONKhaMwQAADGmBV2Q+NHzvkfwmGaawhdtMYMzTWEETjnFwDMB9Aa9hIBi/CQ/PuXxobweDiAsyjBmCED1ZnVAGoJClV+sBf5/l3O10T4AIyxYMZYqPgzgG4AtsA+PkTlw6EApgo//w3gTkE9sRWAHFnqFXF94ekYmQWgG2MsUki36iYcI64TVPXq/WGfawD7mBksqCWmAqgFYBVo7bquEOq6vgSwnXP+tuwhmmsITfTGDM01hB6MsVjGWITwcyCArrDXLs8HcLPwNPU8I84/NwP4T8jk0BtLulhcPXg9wjkvYow9CPsEbQbwFed8azlfFuEbxAP40z7HwwLgJ875TMbYagC/MsaGAzgIYJDw/BmwKyfuAXAFwN3X/pKJaw1j7GcA2QBiGGNHALwIYBI8GCOc83OMsQmwbwQA4CXOuVERHaKCoTNmshljGbCnaB4AcB8AcM63MsZ+BbANQBGAUZzzYuE8tHZdP7QFcAeAzUJ9GACMBc01hD56Y+ZWmmsIHaoC+JYxZoY9qPkr53waY2wbgMmMsYkA1sPu+IDw//eMsT2wC/8NBlyPJT2YIP9LEARBEARBEARBEOUKpfgSBEEQBEEQBEEQPgEZqARBEARBEARBEIRPQAYqQRAEQRAEQRAE4ROQgUoQBEEQBEEQBEH4BGSgEgRBEARBEARBED4BGagEQRAEQRAEQRCET0AGKkEQBEEQBEEQBOETkIFKEARBEARBEARB+AT/B9eCBh3p9lioAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def weekly_seasonal_unscaled():\n", - " daily_smooth_seasonality = rcp.SmoothSeasonality(period=288, phase=-72)\n", - " weekday_scale = rcp.RandomUniform(0.1, 10, shape=(1,))\n", - " weekly_pattern = rcp.NormalizeMax(rcp.Concatenate([weekday_scale * np.ones(5), np.ones(2)]))\n", - " day_of_week = rcp.Dilated(rcp.Repeated(weekly_pattern), 288)\n", - " level = rcp.RandomUniform(low=0, high=10, shape=1)\n", - " noise_level = rcp.RandomUniform(low=0.01, high=1, shape=1)\n", - " noise = noise_level * rcp.RandomGaussian()\n", - " signal = daily_smooth_seasonality * day_of_week\n", - " unscaled = level + signal + noise\n", - "\n", - " return dict(\n", - " daily_smooth_seasonality=daily_smooth_seasonality,\n", - " weekday_scale=weekday_scale,\n", - " weekly_pattern=weekly_pattern,\n", - " day_of_week=day_of_week,\n", - " level=level,\n", - " noise_level=noise_level,\n", - " noise=noise,\n", - " signal=signal,\n", - " unscaled=unscaled\n", - " )\n", - "\n", - "recipe = weekly_seasonal_unscaled()\n", - "plot_recipe(recipe, 10 * 288)\n", - " \n", - "plot_examples(recipe['unscaled'], 10 * 288, 5)" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:51:59.816284Z", - "iopub.status.busy": "2022-06-13T08:51:59.815643Z", - "iopub.status.idle": "2022-06-13T08:52:00.217186Z", - "shell.execute_reply": "2022-06-13T08:52:00.217602Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAI/CAYAAACs8C4CAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd1gURx/Hv3McvRcFFRCx947YsbckaoqJaZpmemKaMUUTYywxb3qMiYk9MWosMUbFjgVsoGIFpQsqghSlc3f7/rHldvd2r1AE4nyeh4e73b29ud3Zmfl1wjAMKBQKhUKhUCgUCoVCacho6roBFAqFQqFQKBQKhUKhVBcq3FIoFAqFQqFQKBQKpcFDhVsKhUKhUCgUCoVCoTR4qHBLoVAoFAqFQqFQKJQGDxVuKRQKhUKhUCgUCoXS4KHCLYVCoVAoFAqFQqFQGjzaum5AVfHz82NCQkLquhmqFBcXw9XVta6bQWlA0D5DsRXaZyi2QvsMxVZon6HYCu0zFFtR6zNxcXG5DMM0suVcDVa4DQkJQWxsbF03Q5WoqChERETUdTMoDQjaZyi2QvsMxVZon6HYCu0zFFuhfYZiK2p9hhCSbuu5qFsyhUKhUCgUCoVCoVAaPFS4pVAoFAqFQqFQKBRKg4cKtxQKhUKhUCgUCoVCafBQ4ZZCoVAoFAqFQqFQKA0eKtxSKBQKhUKhUCgUCqXBQ4VbCoVCoVAoFAqFQqE0eKhwS6FQGjx/n85CSYWurptBoVAoFMp/iqJyHUJmbsf6kxmqxyyJSsbzq+pveU7KvQUVbikUSr2isLTSJkH1VEY+pq8/g0+2XqjFVtUMDMMgZOZ2/BSVJGwr1+mxYMcl3CmrrMOWUQDgoy3nEDJze103g0KhUOoNNwpLAQBLD6WoHvNFZAL2Xsq+W02qN+j0Bgz7Kgq7Ltyo66ZQRFDhtp5xNa+krptAodQKFToDEm7ctnhc1zm7MfCLA1aft7icFYRv3C6rctvuFjoDAwD4cleisO2v2Ez8cigFP+xPUvuYKteKDNh6JqvG2nev88dxdcsEhUKpf5zPKkRROfXauRswdd2AesjtMh2Sc4oxc9NZk31/xV7FU8uO10GrKFS4rUfEJOVi4KIDd22xuvxIKqISb96V76JQ5v57EaO/PYwTqXn4Yd8VMIz6VHmruOIutuzuUak3AACIaFtZpR4AoNPbvnT48Egp3lx3pgZaVrP8fToLO89dr+tmVBlzfZNCodQPdHoD7vvhCF6g7rBVIjO/BDdtUApn5pcKyuT/CgzDQG+o+nhv4OYKQojJvvc2nsXhK7lVPjel6lDhth5x8Tpr1Yq/Wmjx2PUnM5Bzp1yyraxSj6krTuDIlVyU6/QWz/HZvxcxdcXJqjUWwOqjafek1UinN2D72etYd4JaeWzheOotAMCkX47iqz2XTSytOr0Bvx1Wd3u6mlfS4IWOSp3pRMhPrHb/odF4+vozePmPU3XdjCpTWQVFA4VCubvwz+nJtLw6bknDZMAXBxA2fx8A4PCVHGRbEHQrdAY8/uuxu9G0u8bvx9LR8sMdJutpazFw87fGVLal1CEWl1OEkOWEkJuEkPOibT6EkD2EkCvcf29uOyGEfE8ISSKEnCWE9BB9Zgp3/BVCyBTR9p6EkHPcZ74nSuqPewRrF7lX80rw/qZzeHWtdPEYnZSLqMQcPLnsOD7bdtGm7z6ecgtx6fk2fWb21gv10mpkCwzDYMvpTIkyoN+CfWaFrA82s9d+5uZzJvtiknNx6HKO2e/Tcda7ew25dlSrYTv6wcs5mLriBP44noHPt18S9selGxcspzPyMXDRAaxVUCgQzg7aEOTeCu7eiydCPcM/9+YffL3Btr6TfbsM4fP3ISWnyPaG1gMuXruN0A+2IzPf+lANaxQg0Um5WHzAvAu4zmD5OusNDLafvS4sbih1w6f/XMA7G+LruhkScovKcYRabGqdSu45NTSEwb+e89SyE5i4OFpxn/jyxmdaNr40JNbHXgUAXOfiim2l0qBsuT0nuk4NXSnfELHGVrASwGjZtpkA9jEM0xrAPu49AIwB0Jr7mwZgCcAKwwA+AdAHQBiAT3iBmDvmBdHn5N91z8AvcjUWVEAlFawglse5bp7PKsRzK08KLo8AEJ9ZoPiwVuoNig/ao0uP4aElMTiQeBO3/8OJbfQGBtcKjNdl76WbeGt9POZsuwi9gYHBwOBaYZlEyJLzV1ym6r7Hfz2Op5efUN3/weZzaPXRTgDG+ycmv7gC2+Kv4X+imMy6hmEYbD2TJbjPVv08svdcBM8Lq2IRlZiDT/6RJoSKSjQqCZJzigEAcWmWFTAVOgPmbb+IwpL614+Nbskiyy1nfdCqPPeFpZX4clcCHlt6VOg7gLT/rIpJw3MrT+KxpUeFbTvOXceN22UY9vVBq9pWWFKJ34+l15uJeN3JDBgYYM/FbHy39wqSLQjp5zILMXDRAaw5lo59l7JVhfonfjsuiXnmEbvb8RZ2ntTcYpPrsuZoGl5dewobT6mPBxSWT7aer7VEXStj0rCpnt2DR385iieXHQfDMCgq16H/wv33nHWxrFJf4y6s609mYLcocU+ljhdua/RraoVynR7v/hVfZSFKDZ3egC93JaCgxDgf/BSVZJPCh1fQXSssw6y/z6O0QjrX6yxcYPHYyJ+rqIKxaAmuD/BjvYO2aq5TfB/kZ2+DgUFmfgk+3GI0flTH7ZlSNSzeTYZhDgGQj8rjAaziXq8CMEG0fTXDcgyAFyGkCYBRAPYwDJPHMEw+gD0ARnP7PBiGOcawT8dq0bnuOfhBwc6C8ZrPJKvVEBy6nIOXfo/DvoSbggAAAOezbqPvgv2ISWK1x7eKynE1rwStP9qJj/8+r3heAHhmxUm8W8+04DXJF5EJ6LdwP27eYQfdvGLWFWXt8Qws2pWAOyqT8fGUW4pWM72BwYIdlyQCsznWnWS1hOtOZKDH3D04c7VA2FdpYNB97h68/udp/GjBsnQ3OXQlF2+uO6MoEPAcSLyJ+384gkq9AeU6vaJgKdeu88YxOxWhzlphWv64bD2ThV8Pp+KrPfVHQcAjCLcKlluNhiDy/HWEzNwuuX4Ld17C4gPJOCkS7HOLytFj7h7h/Sf/XMC+hJs4lmIcqrWcC4i1suoHW87i47/PS/pkXcJb9nPulOObvZfx5G/mE3Ok3mLHv+MpeXhuVSyGfsUK9TfvlGHDyav4jFNg8YgXZMO+ikLHT3YJ769y1uL84gpsjMvEkP9F4ffjGVgSlYy31p8BAFznFm65RewYcqOwTHJOfsytLyzYeclsKY8PNp+TXGODgcHiA0koLK2+kmjV0fRqn6OuSbpZhJCZ2616Pvi52MCwSpesglKz4+cHm89h338s0+zIbw5JnilLzN9xSaIAqdQbJMIxwzB4f9M5TFsTh8z8EhSWVOLfs8a4/qJyHX4+mIzfj1nX13R6g9l7uSI6FT/su2L2HH/FXkXGLeue8f2XbmJjXCY+/ce2rP5F5TqsPpqmqnQ8eDkHiw8kS5TDiyITselUJs5mFuDRX47iSvYdYd+La2JNFE2VIk+VNcfS8SfnIaXTG1BWqbconJWIhGH+XK/tL0EfzuW5PlFYWilZW/DeVPx8s+9SNgYtOoAKnbr3TnG5TvDQ4718NNykvvhAEgZ8cQAZorHfknJAzSU6M78EITO3C1bgM1cLkHSzYXpi3W2qGuXlzzAMP6rcAODPvW4G4KrouExum7ntmQrb70n4/q+xINzeLmMH/OzbZXh6+Qlk5rOCldLk+Ti3WOn5+V4MXMRmoP3jeIZZ68zui9kWrTfWxPTWRw4ksAm0CjjhQTzm7Dh3XbEcS2xaHh5degyLDySb7DuVkY9fDqXgfYVMeQCQcatEYlF3smcfuc2n2Fjli9eM2YN/OlO1mI+aQu2e8otbcYxsyMztEtf3l9bE4VxWIW4VVWDa6jh0/Ww3GIaRWBf1sj7FTx5qFsuicj02n8oEwzCCVlSpV/Kn5S3B/ERbX1zVdpy7jtRcdrHL94VynQEbOQ8AXqm1/mQGXvqdDTVIyinChpNXUVSuQ3G56X0xt4DLuVOOvgv2IT23WPUYnhuFZUKb8ovZ+1xSUT+ebXs79q7z/aSkQo9lR1LRc+4exfGJVwrKF2IP/BCNGZvOYnl0KmZsND6n5aLFi1gxCAD3/XAEADDy20N49y9W2bcoMgFfRCZgy2kuzwD3NQQESTfvIHzBPqyMSRPO0XfhfmHMrQ/8cjAF728yDaXg+fNEBo4kGV1p9yfcxJe7EjH3X/Y5T8kpMrvg+6/Dzx3/nLlm9WfWn7wqjEvyJHIb4zIx6eej+O1wCv48kYHnbEyKpDZHl1Xq64X3RYaNih15mZmpK05IhON/4o3X/eElR/H2hjMSge7l3+OwcGeCRHkfl56HMd8dFoQZg4HBzweTcfNOGRYfSMaExdH4anciQmZuR77Mk2rOtov4as9l1bADg4HBexvP4sElMVb9Pn5ZZ+utWbDjEmZvvYAolXAn3uLIK9nEPPBjNI6n5uEDUQjVrgusEkX8u3aek5axKdPpcSDxJlp9tBPtZkVK1jByvt17GX/FGpf3lfr6HXrVdc5uQYm3KiZNmJvLKvUordBj9tYLyMgrwY1C43qnqFwnuQbT15/B08tP4MU1sTieyiqU+ft7gEvSKlYKmhNuD1/JQe95exWVW/yYs45TSk5YHI3hVnpi3etoq3sChmEYQshdGUkJIdPAujvD398fUVFRd+Nrq0RRUZHN7UtOYQfXlUeSoLt1FeFNlW/P8euscFteYZ1GXakdA+btNLt/34EoVaEDANZeMg6kdX0forMqUVjBYGwLB2Hb2Rwdvo4rx5eDnNHIxajDKSpmJ9zYkydxzU2DSxnGa1hZXoYDR4zJEvYfOICbJQzSCtlBLfJUEoqy0yTffTyWFUYOX8nFuC+l1/R2BYM39pdgSJAWQ4PtEeSugZOGQRmAzFzWCpeQmIioUnZSP31TKlTsP3DAoqKjpkgu0GPusTLM6O2EDr52kn0Xr7H9LefmTcm9Xh6dikHu7ODLCwqHomNw8DKrbJn+2x5sTa7E3P7OCHLXoKRE6qJ033dR6NPETtVa/ueJDPx5IgOJCQmCoHoj+4akDeU6BvNPsOfNz8/H9j0HEM/d05vXryEq6lZVLkeN8kokO3m+2s0R/i7G+/nuX/Hwu5OElDT2uc++bXym/tx7EhuvVGLL0QuQrxPWbd+PlGvq7n6L/z6E64UV+O1IqrBN6RktqWTwyr4SDA3W4ukOjrjDTeanTp9BZablqeFOBYNl58rxfGdHuDko99PqjA3XMtnrkpzOLpwqKysFQWv/gSgTi//FG+w1OZtuXCRERUVJlDJi99Vd+w/B01H9+YqKipJo1O+U6ST70jPY9qWmJGP3rTQAwProBLSoZBUPvCBY1+OjHEtzE7/vtT1sv83Iuo7te/Lw6r4SDGymxXOdHQEAN4oN+DupAvE5enw3xAUOdpbHKv7c14oMuFVqQOdGbD9jGAaVBlh1Dkvnri2SUtlxJSvrKqKi1KsMFJQZH9gPt5zDjN5OAIDCwgKhjWsulmNfBtufTojclfn9BobB9pRKDA22h6u98jX5JKYUuaUG/DDUBSWVgJsDQamOwct7SzCxlT3Gt3JQ/FxVqMp6hseaz+WLrtn2PQfgak8QncT2P34ennnY6B2VfbsMWoNUmDueYlTMREVFoULPYNoedr5fuz0KjV00OJKlw7rECizcmYAQD3ZdwJdgWxd5GO197ZBTYoA4n9yu/VFw1rL3oNLA4OvYMjza1gGB7kah0prfeCGbm0dzc226likZ7PgVExsPct3eZH9SPrtuuJaTr3reWwWFJvt27Te+n855o/AsipQaSmLjpPld5v6+B6297eCiJfj2gFSJEXXwMArLjRfQlt+6N70Sv1+qwE/DXGBggKJKBgGuNZdpkVf6xKbnY9feA/hkr7HtvEKTn6Ojjx5Dihv73VMji9HJ1w7Pd3GAl6MGJ5LZz+26kC0oC64XluHAgQPIK2Dvl4YYjSdbdx9CM3fl3xHJjSvros7ALttR2F5pYPBnHHuua9ekaxlbn0WGYRB9TYfeAVo4VmOMrW2qM87Iqapwm00IacIwzHXOtZgf6bMABImOC+S2ZQGIkG2P4rYHKhyvCMMwSwEsBYBevXoxERERaofWOVFRUbC1fXEViUByEooqgZ/PlmPm48MVj8uNywTi4+Hi5ICSIsslU0p92wKQDk5ZRcbBJyIiAoiUuqmE9RsADyd2IC0q18HAMPBwssetonL8fDAZJfZ3AOQaP1+HTOVcbPZnaRD7MXvN/lp7CsB1ODRti4huRmcA59gooLgYffqEoWUjN2QcTQMustpfL3c3tO3UCYhm4xaf3cUOYMPb+wPIxqU8Ay7lSa93q3adgNg4AMCFW8YJOiIigq3puv8wDlzV4cBVHfa/MxhOMceB8jLYOzoDRSVo3aYNIsKbsx+S3YMBAwcrxoGczyrEjcIyDO/gb7KvqsTuSgSQhHKPIEREtBG2MwyD1z7dDYBVKEVEdGcniMgdAIAOPcJZwTaStVB17dEbOHQIAJBW4QqgAAbfULTp4I87e6Mgtr3ermCwJ91yTJZvYAs22dK5i0gp0qLAszVa+7uhY1NPfL3nMtJvs65jXl7eeHWfcQJo2aI5IiLaWX0NDl3OQWgjVwR6u1j9GUuIr9XiM+XY+mp/IMaYtCMiIgJHSy8BKVKrxcYr7IRHnL3g52IP3DBq1sWLPCVatW4DXJCGHig9o8k5RcC+g9ifoYN/QBM08isDbuWgQ6fOiGhvuW/9b1cizuQkIdUuEK9HtJbu5PpydcaGM7rLQMoVePn5A1ezYGenBXRsf+k7YCBcHKTTV/mFG8CZOFyzMLbxvHmgBAlzR8PJ3k7xmH4DBgGROxU+yZ43puQSkJaCnekM7pSzi5CsEg1adQ1j+xB3zujixnhrRBuT9mYVlCI6KReTegWZnL+qHL6Sg8Qbd/D8wFAArKfAlewidGjqIbTHzc1Ncl+yCkrRzMvZ5J6Vce8D/P3Rq097YN8+nMsnwv6WH+4QrOSuzTujV4g3HLVSxZgAd64OPcLR2MNJcItMW8iO16uPpmH21gs4/uEw+Hs42faja6CvWUMCSQYSE9A8OBgREe3x9oYzaNnIDa8OaSU5Tu7y2aVLV+DkcXh7eSMiIhwAsDzlBABTS1xwx14IbeSG/QnZ2LQrFoxbY3z9aDfF9qRzv5ufp85+OpJVxuw9iDMFDvjGxuuRmV8CX1dHODuY3sOqrGf4+zJo0GB8tScRU/qFoLG7E2b9fR46A4MFD3YWDj2VkQ9EsRbQxRe1+HVKLyByPwDgiiYYCw4nSE7NAMgsktpUCNEAYOfgoI69MGfbRQDstWnbqSsX72qcvys1jgCMY2nzNh3QIcQbYfOkrrThffvD25VVFJzOyMel3THYkumEdS+EA7sjAVjX9you3ABOx8HX1xcREb0tHg+w1sRtN88D1zPRvGUbDAwLxrb4a7i/a1NBueeengccPwri4Gxsh2w8c3ZxQ3DH7nB3sgci9wIAeob1BfZa5zac59wMgNFzbdl59jq+PaINgMuSY8P69uUsjqy1+OCdRhjbuQl6h/hY/J55Xx8EUAH7Zh3wwmrWkyFt4Tir2mgNpRV6YBd7z/T+7SBfFwOAh5srskuK0KVHT2g1GnywmfX2OX9Lj+kHSvFyREtUMmkATD2ceoQPgFP8UeD2HdhpCAycluSj6FLhd5y5WgANAboEegEAbrpdxbrEs/DwDUBERFcA7Jp7UWQCLt5iFaVNmzZFRERn1bFu7fEMONlr8PaGeGx9tT+6BnlJ9h++koPfdp1AhVsTfDa+k62X7a5RpXFGhaqqRP4BwGc8ngJgq2j701zW5HAAhZz78i4AIwkh3lwiqZEAdnH7bhNCwrksyU+LzvWf4k5ZpUVXIWuDzsWujdZQlZIc5ZXGc/edvw9dOAHn020X8evhVIn7Gs8jP8fgoy3n0HveXoTM3G4Sb8YwDE5l5CNk5nabM7jGpedbTHQldsvhrc56A4OsglKhllsp557E3wrxNdcQouiWvNdMLJS54vGxsuRHt8t0gusKb9U5l1mg6vZ0NEXZ6njfD0fw/GqjC9u7f8WbzdBsDXxdWV83qba/XGcw+Y0pInfXsPn7JK6X4uuXxcUt3rhdhn4L91fZpXH+jgTBYpd9uxzT15/BuO9ZLWtphTgmS/o5Bxtr6zy9/ITVLj+3yyoRMnM7/j1r3kVR/ozK3btSc4vNZtu9XVYJKxL3SrDUJh6xJfLPE1eFGF1zLlR/n87CJa5kGW841TMMPtl6HrGcBUqc5bo62HPt4ePuxK2SJ3xKyy3Gi2vibP6OdrMiVbMxt/lYWbAFgCvZd4TxXOx5cKdMhwFfSF2Rfz2cip+jjAvDq3klWHooGVOXn8CMjWcVx5yq8tSyE5JkeF/sTMDY7w+jy6fKsY8n0/LQf+F+bDaTkEmrIUKCmZIKPVbFsCXgxGPnE78dx/sil++fopKwKiYNuy7ckPy+B35UzsbKu+gr5S4ordCbdYvk2WQm0V9NwHuPLD2Ugr0Xs7H5VJbZOFqen6JYy6DYCUc8bonhXXn5sZIfe+PS89Fz7h6z8XZdPt2NRZGsEOhYheQ4A744gKeWmY9rrwon0/Kw+ECyEBLAx3SWVeqFZ088dl+8fhv9F+4X3h+0cm4Tn2PYVwclc+ITvx3H9UKp51CWrK+98scpE8EWALqLchvwY6NWQ8xmVC+tMHUN57Pp2uKW3GXObsHbJKugFIMWHcD09Wfwx3FjWApfHz0lpxj9F+5XXEfmFJVj6FcHEfGlcWz6+aB6RQg5S6JMQ7IA4Os9l022fRmZKIQ/uDlqsSI6DY/8fNTkOCV4Zf6MjbWT96Wg1KjcULsP/LyzKS4Lb/x5GqcyCiT7l0Qlq4budJ2zWxir1MrJTVgcjQd+jMbVvBL0mb8XK6LTAECyvu06ZzdW25Cn4MMt5/A2lytn/OJoqQv1utP4hbvXN2/Xbejb3cSaUkB/AjgKoC0hJJMQ8hyAhQBGEEKuABjOvQeAHQBSACQB+BXAKwDAMEwegLkATnJ/n3HbwB3zG/eZZADqK4oGSn5xBTp/uhvf7zOfJMha4Zaf+MSL0+pwOsM0A21ZpR77LmXjemGpZPFmLsnPybR8/HHcWH/3VEY+nvjtGN748zQANpnSgz+x2tk9F61PnlGu0+OhJTF4YVUsfjmYjJCZ21VjOiLP38Csv88LWk29gUH/hfsRNn8fGIYRJjh+YhJfc72BURSgzS0UYlUyYDIMY5K4y8leI7gZ8+3YEJuJVUfTEJNsqiyYsvyExURVegODjXGZZjM02wLDsPc46WYReszdo5gQZ4LKAhUAHhZNYrmcV4HaxFhdKnQGiSAmVwbwE+WuCzcUr68SZZXWSZJpnID/i4UFQrnsfBWyfjvkf1H49XAq1DifdVtIfmYt4qRS5hBn1wSMCqFKvUH1+Zq+/gzGfHeYfcP15YOXc7DqaLpw7x9aYt1CBmAVM3yyFPlikI+5NSqkjPsruKzvfOKt71USv6w9brkWdVWy2I745pBNi9Tv9xvH/ikrTmD+jgRc4QQVpZjqmuI0lzDntmyuKCrXoahch3UnWJdvJWUlj52GYNIv7D2t0BnwyT/KJeDEyX0WRSbik38u4MU1cXjvL6PQK69tzcM/J/YKCqn2syPxxK+Wha51ZpJlWaK0Qo/Ptl00m91XfL/FykUxSnFzMcm3hP8hM7ejpEIn9Gk5ckUiIWzs3kNLYnCruMJisiTeRdLR3g6lFXos2HnJrAKWR+yuWRW2n72Om7fZhGpyJea5LDYZjvzavr3hDAZ8ccBifCZ//SwhH1trA16QjEvPl4SRiMkvrkD72ZH4STbv8cpAW2L4xNdySVSyIJDnisIlxGuYrIJSxeRE/LZikVC2PFp93qkO4moS4r730JIYbBDF5irBr7XEISczN53FtnjrFLZyDl/JwXbRuCSOg1XLyWHPtWF5dCoSRYm4rEVNqM24VYJVopwMa46lI/t2uaAsLi7XoUJnQEpOkYksUM5VgODhn1eGYZB4w7SNB7lKE0XlOvx95prZ8f3bvZcRlageZtFQseiWzDDMZJVdwxSOZQC8qnKe5QCWK2yPBVB/7eQ1QB63iPzlUDJeHBzKusGB7czPrjyJeRM7oVVjd6sS4KTkFFm9ULeWiT+ZJkQo1+nx3KpYeDobYzwYhrFJKLW30yA6iZ2Yvp/cXfKA2RJKyk8o8ZkFwmBzLCUPTy47jk0v95Mc+9LvUuuNeJCYIKrhNvrbw9j22gCJZa1Sb1BUGJTrDJym1vT+8NmP5bT4YIfJtqt5yoLqnG0XMbx9Y8V95iwWT/52HDPHGN1uDQYGhJjWW5NzLrMQXi72CPIxut/ygsS+hJv45J8LaOPvhrziCuw8b3SHLavU40r2HdUY2btN9u0yswohg4HB36ezhHgisXtThc6AG4VlCPY1dUGeueksUnKKseGlvpLt289eR59QH/i5OQqxNISw1uoV0Wl4aXBLLIpMwITuzdCpmScANjGHmOVHbF9QyDXHVeHPExnIL6nA8wNCsTw6Fc19XITEFzz8guK1tafh5WKPI+8PhZNWg4OXczC0XWNEivoCYFysna5i+yr1bFKtjXGZ2H0hG3Hp+bg011gJjs9eyS+Kxbd67r8X4eVij9VH03Hiw2GqmnRxOQY1qloyylrPGTlF3BjjqNWgXGfAnbJKBHja6IrLkVtUjnKdQWLpEqM2EnSSZbEtEo17Sw8lY9qglsJ7rR3BTZVsntZwVWYZl2eoNYiUikXlOuj0BsGLgOeEFQoIpdJq1rIyJg3Lo1Ph5WKPN4ZJXex/2HcFX+25jOnDWyt+NreoHH5ujsgvrrAqKdStogrV/ip4KXB9fdeFbAR6GxU3apnl5cRfLcA3ey9j6aEU2BGCGaPNh2dUp1RJSYUOr649hXYB7ujX0g/Lo1Nx9IOhwn7ek0A+f+69ZMzX0FASlYn78soY5bE8m1NG/nPmmonLOsBe69IKPZwd7JB9uwzLjqTi/dHtJPc28vwNs1mVj6fmIWTmdvRr6YsHujaV7Pv1sPUW2btJXHo+4tLzYTAwmLn5HBI/H20SxsC/F4+t605exbqTV3G/7Hdaw1PLWKX/uC7jcORKriTMS63HVyfuH1BPpDZIZDUHTBOoxSTfwsxNZ7GZT1goYqPMK+X01QIsPZiCyAs3TI4FjEL8TZkyUbw0vHCtEAEeTlgSlYyp/UMQ0VZ5DdpQqblIbYqE+BwdHvwpGnoDI0xUJRV6PLvypHBMTPItHE/Nw/CvD2HvxWyTxDEzNsYj8cYdyWLgxTVxgna2NuEnX7Gma44oO64cJddK3pWUR1ziSFznU6c3mCww84orcDItDzl3ygXhlmFYNxcAghvdjnPXYQ7xhCovPr7t7DWJK3NKbjH2XVLWYIkFQTG21EZ7YXWsiSsUD6/wkKOmBQRYawufBAEAQj/cgfk72IVEQUkFvtqdqLhouf/HIyZZXPm7wbtyXc5mrUouovirPRezMeKbQ6rtudvEJOdirxlly+2ySlVN8UdbzmHQlwfw0po4XLp+W2IVXHfyKk6k5eHDLedwlLMa5BdX4NW1p9Dr870wGBhjgqvCMnT+dDe+3nMZbT7eid+OpOK+H45gDWdhkXs67FXpX7XNB5vPcda081i4MwEv/3EKG2KlE6bY8lZQUomJi6OxJCoZz62KxTd7LpuENyglO0tTydC889x1HJdZ1q8XGCfeI0m5Jtasz7jxg7emi/f/E39NcNs6lVGgOskr8fer/SXvPzUzrpkj2ow2XAl+jOMvG//Mi62qDMNg3YkMFJZWolynx+t/npZkOhVz+EoOen2+V7EmNj8eW6tEFCv15u9IwPOrjPPU4SvW/U4NIbhVVI5bsqytcoFMrGQEWAUE78ny2NJjgnudnN8Op6CgpAK3isoVx1G5dbq0Qo9P/7lgleWSf06VxsslB5OF8ynR63M2hlHNGiuHEKBM5VxFClb8ZSKFWHJOEcp1eknmYDXWc4pX8bWKScpVDGERzzNK3ksJeXqEzNyu6EVyu5S9vgk37gjWwL4LTJUt8jUCL9B+vecyJv96zOT4+kT27TLM/feiJNt6aYVxwSaeP/j1itaOIDopV+hb/DU+eDkH7WdHolynxzsb4rH0UApafmhUhh+5kouXfo9T9XIAIGTojUm+hZmy8aGmawtXlY6+ymsjXvi+km3qYu/IVZOw5pkVc7us0qyXW1w6awyZt8MYsqHmMdDUy9mm765JlARbJR78KcbsnMc/w+a8GcZ9fwRjvz8MvYExmzy2oUKF21ri5/hynMooQFGZjk3cwiF2sXEWCTTPr441sdxuiM3EqG8PYcLiaEEDc+Uu1bhKU6jdJi5zISZk5nZ8us1UyyiOcanUGyQTMiHA2cwCxKXn49NtF9D1s92SUjQ95u7BIz8fRe95e3HhulEo5YVb3hpuSeN8PqtQdd/SQylCvAOPWnyPmjt2TWmcxYKFGFtLLvEurnO2XcQP+5OwP8EoTMUk5+I3Fa1uhYoQXZXYrbvF+5vO4Vqh+gLg18OpkudNvADZzQnFkRduYMx3h4UFrJi1xzOERZfYAluuMwjnUrNozfr7PFufzkz/qwtsKc9x5WaRUDtW7FYLsMonpfkw4n9Riud6+Y9TeHSpcQGbW1SOYwox5SEzt2OWzJ3/4vXbJseJkXtrmGPdtHB4u5hmHK0KKWZKLSmNS10/243conJBKcALS3+fzhL607az1zFz8zl8tOUcnl52Atvir+HPExl4f+NZFJZWYt+lbEzhQhD4vq3Ux/hFTWqudfdbvpgUK2H4UnOWsNMQ9Px8L3pywh7P2Uzzz4Dc+0U8TywW1fv+fPsldPtsD/ou2C9YqiPPG8dNuePT2hMZWBmThsUHkhCXno9Dl3Nwq6hcUTDk514lyyh/Xktur9bW5QbUQ4qKy3UoqdDhOxU3+6jEHHy4+bwQ6mMOvk/xHhAAWxpQKYRF/NuGfBllsn8/l4E+JukWzmYWSOr9WmsplJeC41lWBW+Wu83sredN2inOvL5oV6KgROAV6hl5JXjit+NCeJI8Rres0iDkugAguKdGXjCvsLeErYJhbTCsXWOEeikr7H1d2YzA/O/VGxhsi78GvYER1htqTow6vQHrTmTgfFYhXvkjDgO+2I9ynR73fX8E/VS8VwBjrOnFa8axSE2JttWGUl/1lZIKtpST3GhECDtO8Unvsm+XQ2dg2ISd/zGqXQqIYp7Y9DzVRCdyTa85QW3u9ktVjjtQYnj7xvBycTBxd+CxZvIUYyn4XamYtzy5SHG5HtcLyhDi5yrZLnbl1HIuI3yMliXhVs1tuCrMn9gZH245h1aN3e5aIe0L127jQMJNbDqVhbGdA/DeKMvZf9Nyi4VanPz1KSipwOMqcWsMwygKGoD11oiGQLnOIFjL5EqJLafUNab5xRWCNh5gF4LWuqRaE/N5N7ElTrRPCx/V43vM3YP3RrW1+ftDZm7H6mfD8Nb6M5KFnZg1x9LxypCWivuqS3ior2JMWk0jFsrEXMkuErwkeIFizbF0ODvYIaJNI2HczSuuEKwzALA+9irstQS/H2P7U1mlXhDIlLTuZZV6ONnbKda+VKImklpVZaxQS7I499+LCA/1VUzYJBbExNcot6gc09edxteTukGjIYLypaRch4e4WqS9mnsjNj0ffUN90cjdEYcu50CrIcI4ufRQCtYcS8fIDv6YN9GYzRcw/yxvisuEh7N1SpP7fziiGtpRXKHDr4dSkaAQRyd8l5nkX2L431RaqcP7G8/iwR7GqgF9F+zD3PGdMLyDP77be0WSSJB/LhmGwfZz1zGig79Q6iu/pAJRiazCZM/FG+gW5GW1cHo3nrvaotRCLoYlUclYEpWMtIXjUM49B/wahQ+98PdwlHxGpzdIrKxjvjuMuI+HV7v8n5qi/G7i7GAHrYqMzYcYvLfxLLxdHJCSW4T5OxKw/ex1i273W05nmViqrxeUWVTa8stEc55w/yXOXC1QHDsJiOJz+F+03FLhtpbg5+xkM1mBi8qlCwpz8ZVVEWx9XB1U45Ae7xOMlByp5eHrSV2x49z1WnGdlLdDKcnQ3ovZmLHpLMJkKeN5CzADCJlj+YnbXGbXmqRSz2BAKz8AwDsj2lQpA3VVELtBLT6QjEd7BVv8zMzNxs/wY5ZSFsi49Dz0bO6DqMs5QiFzOWqxYQ2Rkgq9INzKLeJqghbAasLFVpkPN5/Ddgvu8Dx3qUyx1VibnAVgFUmWYpqtQX6cNcnPlNwaawre+6M2+fOEsiBUVqlX9DZYeihFEoOltMjjBVsAuF1aKSQzU8rVIPYukBOXbbrqVEuOU9uodaFlR1KtEprkgsDfZ67hhUGh6NjUUzF+j/cC4K8Z3xfHdg4AYEy09cfxDHw+oRMIIYLQbk6h9c5f1md3zTcT4x2blo82/u5Wn8sc/LXZcY51XywSZWi+XliG7/ZdQadmnvhmr2nGWwCIupyD19aexisRLeHBCbd7LmZjUJtGANg5McYG1/zs2+VC5uia5Pfn+uBJC1me3R21ZnNFONvbmVXO2BKGyZ/HQauRKGLkz1iFTLgFgN7z9qKXFSVzbOGFgS3MJi2sDVwc7GCwwuFDnJjNmtASpXFRPP7pDYxwjNhr71Zx7Y1v4nq29YWzmQWq+5TWLtp6XPu2qvz3bNH1BL6vKwlx5To9ZmyMN9HOVtXFdWq/EABARNtGaC5KkNNElqRkxTPG2mreLg6SZFEA8GCPQMx/UKqtri2UhAnevU6ePEQ8cPAveZeof2vQmm0OvcGAYF8XpC0ch9GdAu7KdyohT0qghLuT8b6Wci4oSi51k35h3UR3m4nh/i8Jt/xC4uDlHJPJSBxbLic5p0iSWdJawRaAkFBNzucT6ncOPSd7DSp0BlVXQoAtMm8N9SUBGY+zg50gzNQW8rIjPGssZLvlsRTnKo7HU1qUl1XqVYWxX8+aLvTqykNDTalmDTcKy3BD4TrzZcJ4F0exgpkfz+SKZF4AFPP7sXSz40JtEJeer6oYsRV5Mjs3WZ1lT2d7pOSqK9+zuWv7U1QyLt1izxWTfAsXr7EKggqdAY//ZlvpoEWRlksn2cqA1n7457X+JtvPzB4hvP74vvZmz+GiUNtXzIFE60vt8eEGlvJxVOgMJvOygQFOpOapfKJqyJOzqfHmMOWEaQDwVHhzm77TxUFrdfIzW88rRxy2wrtkF5frJPlIZm9VT871X0RNWbk/4SYW7kww2f5ftNxS4baWUdLS/nEsAxtiM03KiFgbTC5nbOcmSFs4DiufCcPetwcLmW97BHsLx+x/ZzCGtG2MQG82WN7LxQF+7kY3GS8uDs3LWVrn1BLdg72q1GYlLC38KnQGIU6DnxTu1sJZbCEmhEgmTltRy4w8rkXNxAIGeBiVGuZqBDIMg+ScIrOLqRKVeoxVYc9bgxCikJ1YzOLHe9TY98nhF/Bbz5g+Z+YslFNXnMSfJ2rOvR0AHukViPjZI6t1Dnmhdh7eslIdGrk7okJnkJRRkGNN7VGgZlxea5qJ3QPr5HurW4+aRxzSoZSFvVxnUE2AVFZFOda9Fize1taVVmLUt4fMKpp44eKkrN44YF2m618Pp6LrnN1Vbl9NMr6b7Zli5S6Y62XJ9Sp0ytUBeMQKj8R84/XiY5armi3cFsRjXN9QX9XjlEpIibc92jvYbBhF5PRBqvOyLeQVVwhrEkvyQoXOYFtdoCpibShKl0BPRE4faCLkHp4xBHMndEKnZh6S7UE+6omXPJxqxztGSUn/2lpjCF1abjHKKvWYtfW8yXE1zeiOrIJUXJ1iRAd/AMCLg0KFbd882lV4PXd8R/RqblyX323UlJj/xZjb/94vqieYG0++329MFuFqQWNoDWINmb2dRpjUxINRaCM3AMCa5/pgar8QBPu4oF2A0f1pz1uDAahrG18f2sokZgQA1k+TlkvxdbVNOLaGSxYSytjC2uf7KG7vHWIccJSSKMmFHy8Xy7/zxcGheGmwaexgS+5eAMBWUebWmlo7ipUEm83EkhoYtti9OapiuZWXJuAJ8nFRdN/hPQ8AwM/N/HXtpiLQWUNJhR7tZu00e03uFg52Gni62GPv24Pxh0qf5Jk2KBTD2pkuvN4frbxY87Iy9s8cfm6OJtnF5Vjj4lyhM2DAF5a9DWqS83NGYd20cLPHqCkzxAuPlc/0RtS7ERje3r/G2na3wijKKw2KWW8tceDdCJPyagCw4cW+Es8fNWrDWqOGOavqbgsujosiE/Ctijsujy3J12zFnKCmxIuDWkqubUTbRnCyr97yrVxvUPXaCf1gu9nqCIDt2cKrQqCXM9a+0AeH3hsibJs+vDVCZXk5lIRbuaulkrJnxxsDceKjYWjk7ojfplju35boMXcPznHjpqXwh3Kd4W7ItmBk36ImXGntNGgX4IG3RrQRtjnYaYRKEX5u0vXfkid6qn6nh7O9Wa+fqvK7hdwu4xdH4/FfjyFdISFqTSPuX+unhWPDi33xw+TueG5AC7w21FgCSqxIfaJPc6x6NkwQjK0hWKVSR01CLbcU65E9121FcTQFImuuWokZW1DrmI09nEy2tfBzxacPdISdhkgsfI1EVtykeWNMNG+OWo2i4CvfZqnG6t2krULskprwPkQkPLRqzAqf4sWErgqJCFwdtIqJcdxF11asmXash3EPJQqlKSwxV+ZyG+jtjB8f7w4nezuJUDGwtR9mjG6Ld0YaJ1MltyMxW14xXXhby4TF0UJZGTE1lT3XFvjnpFVjN/Rv5YcewV6IaGu0uIqfzYi2jbBsam883NO8tdHLxR7tAtwx674OZo9Tq9cpxtsK5U28rF6pEm0+3mnxGB6l57UquDlqJePZJ/ebXg8+Tmt0xwBse22AsH39i32Fdvh7OCHEzxW/Teml+l1K/bEu+pOc+388gsEKWW/NQQg7P/Rs7o0XB4dK9vm4OsDbCsVlcwueGXeLaWvizMbs7rqQjW/3Kmckrm26B3tZdJOV4+6khYNIgFv5TBia+7ia+YRl4q8WqCanskYHU5vCv5h+Lf0Q7Osi5C/oHeKDER2lCicHJcutzBpVzHkhiZWpHZp6oLF71WpMq8Erl5UqToi5VlB6dzIbi+7lmdkj8MXDXRQPsxetd058OAwAMDksSNj2oqj2dddAT3Rq5onomUMVPYU8ne3Rs7EWTT2d0MbfzWR/VUjLLbaq3vWpDLYKR1UYYybk7KEegZKx3Uc0HvYJ9UVYCx842dth1n0dJKFhYjQaAldHLX5+ylQxENZCOdbakst8TUBjbilWsS3+Gipka2g3FTcN8SLMGt4Y2gqP9Q7CqmfDhG1q2nJLFhxCCEJ8XdChidTdRGunER7Oxlz7NBpSJQGvLvF2Nf39vHBlb0cwsDWbIMrdUSupu8tbVsWC2JePKE8IAPDb071wX5cmJttdHOzg4WSPf18fINke7Ku8KHGq/THMakZy7jXmkjwMbtMIi2QTpbeLPTyd7fG/R7rikZ6BeDI8GEfeH4r7urDWXHFiMQ0heCWilWQikLs+fThWmh26KsoTS+6U1izazVETbkabX+mPlc+YPtOrnw1Dv5ZsPzWZ5GSP45pn+yBy+iA0cndET65NfLmxlo2MfW7aoFAMVbAEi1FTmCktIqvKnAc6YkpfNparW5AXfrdgwbYFvv3NvJzxTP8WJvv5Z9tOQ9A50BPLp/bCqI7+sNMQTOjOZpX1FykY+HZaw+LHe4CQ+iPoWYL3tBAbWvSysd7bxd5E4WGvsCBqbON8ZgvuNro6nrFC+VIVxnU2HettwUlrZ7OF29nBTqgByiO3yClRE55hdYml3/j+aHZ+sNdKr6ePqwM0smvcuZknAFY4rgqdmnlY9CyyhWkqVTSsIXn+WKuPFV9BLxcHuKookMWxuY09nHB+zijMvr+jsK1vS19cmDMKoX6u+GgcqzBs5uWM5QrKPw9nezRx0yDmg2H4cKy6Iodfg1mDPIa8tkhbOA573hpk4rHTyN0RUe+yHgR9Q33xNDcnWPMkL32qp0SpooSa0llskPn20W5WfJvtUMstxSqUMpWpaV88ne3RurGyZmulghvY2yPbYuFDXTBYpC1T07q4OGjh5+aAlyPUy2rsfycC298YYLKdX0jwrjV2hDS4NOr8ZCaGd5XpHuyN1c+G4YWBLbDuxXBJfIxcUA0L8cH4bs2gRrdgL3QJNP0u3gopvz+N3R2x8pneeGt4G8l2R26C9nDSYlCbRmaT3vSshbgNcdKI7yd3N3vshhf7YtWzYRghmwCiOPexh3sG4stHuuLzCdIEZV4izaeSnCoXXsVx40qIrXJ9Q33RNcgLaQvHSY7p0NRD/jEJjdyqtyB/sId18ZsPckKTWNBUg78MYgFpxuh2mPNAR/RR0fCK+9lsznob4ueKKX2b49enjQsQFwctfpjcHRO7K/fptIXjVJeUro6m49jkMMsZvJXoGuQlWNIf7R1kMQGLLfh7OMHT2R6zVCxkvOWWv85D2/njl6fYa/TS4FAkzB0t0czPGd9JWEiLn3UfVwdM4+KreK2+u5M9Ls4Zjd1vDbK6vQffi0DqAusXrLZiLp6wV4jpMyZ3n/Z0tjdJQDhvYmeTuaU2XeheGBiquP1BlX5cWygpMtXgc1yIIYSdT80xX1SG6JWIlvB1dZD0RwCCUrp9E/XxzZrwmbvBk+Hmx4jx3Zri+QGsEqqpKBGmtZ6tvFuyi4MdLn8+Bsc+GGZyzMTuzXB4xhD0b6XuEr7xpb54uGcgnuhj2t4/ng9H7MfquTZqcvwyR2gjV9hpiIlgaK3ni1p4pXyd4uZomhTK1VGL/e9GSKyMSgmr1OY4sULs9aGtFA0mT/dtrpiPwlx8uK38/KSySzWfYby1v7ug4OdhGAaeLvZIWzgOf04LF7KxW8PIjgH49IGOZo/hvbUctBrBI6hdgLvE5d5cPo2lImuwfA1kCRpzS7GKtgGmk41a/EVM8i3BDVbsTvjr070kAmyXQE+Ji4gYtYnSxcEOsR+PEBZlSmg0RNEaxi9k+KHHTkNMipDzTOjWFG8NbyN5oJRcAe82SjVheUGmR7A3CCH4aFwHdGzqKSxyXxjYwsSlxNJz7+vqICwGp/YLEQZFPtkWken2HLQaRLRtjDdlmjovR8J9H8HqZ8NMYlzEKCk+zGGNRWXmGOP1MqfJC/ZxESY3+YJX/l7O+ml9hYWONbpCpRhFcb1GvYFBhyYeWPRwF/w5LVwSw8zz1aSuisoHHkvCryWcHTR4bUgri8c9xWl6leLDeLa9NgBrngsTJlnxz3dz1GJKvxBhn/zKaGWx9wA7Ic8Z30mIuedxddTimypogZVqMCpZ8KzByV4jaOOd7e0UY9159r0z2MZz2yH+k5EY3UlZEOkS6AVAOT6cECKUjBLD/06x5ae5r6tQ6ujliJaInD4QnQM9WUubaPHTr6X5GMvmvq61FtKx+ZV+Zt0feWu82Colt25p7TQmC11HrQZT+oZItgV5Kwu31bV2AspeTmM6BeDT8R2tLrk1bZCygGwL1mafbe7rgiPvDzXZriFEYlU8+oHpMU08nfDxuPZYMbU3ZoxuB0IIunF9lo+/X/BgF/z1Ul/sfHOgqiLUlmezXYC76qIfsE4px9PMyyjUb39jAF4fqmyVGtelCXqHeON/j3QVhMPH+wQLiQWtFW75sc9OQ+AgCqHyc3MUDAuEEAT5uAj9WOn39Arxwf8e6Yp5EztjvShuv5mXs8nc9rhMAL5b4Qj8GLzkyZ74bLxRYNrwYl9JosvVz4ZhYGs/TJFZDH1cHNCnhQ8mhwVhgihRmdyNuzqI84qIxzVe8ZC2cBzeGdkWY0T9ln82/T2c4KlwLZfVYDkjB63yc+Fl5h7K8zRYcuX99/UBqjlelOA9hTo29UD3YG8c+2AYNr7cT/IMm3NRHmlDHK8carmlWIWS64orJ9y+MLAFYj8eLmwnABY+2AXrp4XjuQEtBIHIQasBIQS7pg/CuU9H4p/XBmDBg8qusWouTtXx1W/KTU78uf09nPA2l2hAPpF++1h3QVDjx7GRHQMEzeKAVn7Y+JI08ZQSR94fgh/MWAx7h3jj0mejrf4NDloNXoloKdFotvZ3x/Y3BuDdkVKrKS+AGhjT62kpgzQhBPd3aYrnBrTAK0NaYunTvXDu05GCRl3uWiVXRvADS1NX9nHkY7Lld/Wt4W3Qr6Uvtr8xwGYtsbMVfYH/3V4u9mbd5sQxiuJFmjWTe7CvCyLasIsz8aT37aPdsPPNgZJjZ45pJ6kvy/P1pG54lYtlLqnQY8ebAzGpl7LiJ9jHBYHeLvhxcg88Fd4cJz8abnJMuwB3s5OaJRzs7PCuLBOnUiIxvheYE+I6B3piYOtGwvVXqmH62fiOGNymEXo298aAZlo83DMQT/dtLllQ8JO3OLuku5MW4aFSoSX24+GI+3g49r49GGM6BQjPitrtVxIiWvhVLfbPSWsnKJsauTsqCv2/P9cHkdMHSlzLd7wxEG8MtaxMMEcLP1ekLRxn04KAvyd6A4OIto0EFzHeG0RDCNopKDYBNkZSbglQ4sRHw2yqjWwuYylPj2BvFCvEzvPjs72dBvGzRwpeFwArdJz4yNT6lbpgrLAg1ukZuMgs+c0ULJUAa4l8SOThoOSiF6CQI0KMkifOq0NawcPJHvvfiZD0XzVGWHEPQi0IcbbGp8ktroRIF5NKv9veToPnB4ZKckHMm9gZP0zujmVTWcWms4OdoIR4PEzZbV7ummuOSb2CEOCpfg/48Ahz8AtxsXdJx6aecJJZuVr4ueK7x7rhx8nd8ddL/STPPiFEuAd9VZRCIzuwzy3fh3lllNwb5cj7QyTrLYD1rFj0cBesfcF80rk+ob5CXxff84i2jdDCz9VEILAmT4G1zBjdFrumK3t+8F/r5qgVrgMAEI3UUj+oTSOsea6PiWJba6fB+hf7YsGDXSSGmOrEXY7r0kTwQGzm5SyZ28X1tgkhkj4m9hZ7YWAoJocFCe6+Ue9GSL7Dmjq41qJVEeT9zYxBcj07fw618bpTM0/0a2W927WTvR02vdwXK7jnO8DTCW6OWnTnvNdC/Vwlz4k8JEyOOeOIHKV1RkOHCre1gKuClZaPffFwspd0uiZerJaqD5c9kX9O+EmibYC7anA6j9qDqhbnaw38QuTLh7vg5yd74r4uTfB03xCkLRxn1r2Cb78dIUI92M/Gd7RYmLx7sBcCvV3MJtha+FAXs0Ja10BPk7iFGaPbYZfMPbBjU08T7Ts/QBkYRnjdI9gL749uhwUqtX8/G99RWOAG+bhg1n0dhOQU4nsmHzfkg2EPzsXYxZ5NIc9nz5VbcoJ8nLH2hXB0bOop0bI+0z9EsX1iS7qzgiVKjlbDljg68v5QEEJUs/jKtaqTegWirb87Nr9iajU1h/jXTejeTFAGfDS2PQI8nPDS4JaCBeC5AS1weIZx8c27iY/saH6xyisWgn1dMHdCJ0XFk1ajwXSu/IGay685lKwjrRu7IW3hOMk9qORKZ5iz3PLw91TJWtXa3x2rng2Dk70dnu/siP890hWfje8kWcg24vrh+K7Gxd7ZT0biT9mCzs/NEb5ujmjV2A1LnuwpPCt8G5XcKuVM6RuCcTa4avJuh3YagndHtcX3k7ujX0tfiULljaGtcH/XpujfyhftAjwkY1mHph4mD1GPGixJpsaojgFwdbDD5LBgrHwmTIjN5Z9vJas2j1ZDTKznAEySrTR2d0JzG1x7LbmE8wtweYIogJ2LAMBey2bulnsXKSXaIYTAhTuutFIPF9m4oiQc2dsReLrY46tJxpIYSvHIIzv6m81y3bGpB5Y80QM73jAqwfjf0MLPFUue7InI6QNxv0q2doC1KNnbEYmgbQkHrUbiLWKthWsm5zH19giZIpUQoa+4OWoVLfZKY4qzg53qbxvQ2k/RFdHaPBnJ88fimf4hEsWb3JW4fys/xZIwYvg4RflvkscLA+wYLhGCRPvaN/HA0Q+GCoIOYPS28HNjcwqkLRyHTpzCw8neDqdnjcAn90vXJk72dopJCif1CjIryPDw5xdn310xtTf2vT0YLw5uKcm30MSMYsBWXolopRgCArBeHjzifuKhsk7kx4BRCnOlWPA1N35ZYvHjPbD7rUF4tn8Lq7Kq84jvv5+bAxY82EVYO3lY8AIb3r4xvhaNKWI6iryxXldQhMqFOX8PR0zp21wS+jC6cwD6hvoKc7H8M1X1WFJDQ4CezX1MQgneGdEGf7/aH/vfjZDMkeLYaaX5V67UMYdSos2GDhVuawElQYJfnFXK1D/LZOnn+QHGUkwOwApXPYK90FhWouehHoHoEexlU0yAnAGt/XBl3hh0D/bG6E4BkkHI0c668z4eFowzs0coLup4QcZBq8GKqb0FbVWHJh4mCa54fBQ0o3veGiQMpl2DvPC8SlzWzDHtzGbaFVw9GaPQRQjByxEtVRMOPd03RFjgmkM+KMrdlH+b0gubX+kHrYbgg7Ht0Z/T9smtbOKuIxZkZovc2dUs20pulnLsNAReLg7CIre/gtZRyeKy6OGu2PXWIKsteJaWWy8MCsUxLltja393HP1gKD4e116i+Gjj7460heNULWXCd5koFqTX/pGegRjXpQke79Mcbw1vg5XPhCkmD9r3zmD8zbk8y8t4KGUWVdKC81YtawRBXpGktmCxhKezPS59NhpvDDNO7IQohyAowbuqvqhggW7fxAMDW/sJ7pEaDcHix3tg+VRjXK85F0b+Pjraa+Bkb4cHujaVtMvX1QFvj2yLHyZ3F7bLx9RuQZ6S7xncpvo1Ki3R1MsZFz4bjbYBUusg33Rzlg+NhijmVoh8c5BJrK342W4qWzDPHNMOYSJF4cuDW0rcJ+UeHbz3Dp/QTcybw1ujfRMPSfiLNfACbVmlXqIkDPR2FkJsAFa5FvfxcMU4RSVrpaXFNSEEYzo3kYQRyF1FCSGKi3geH1cHXJk31mRsBVgh9KcneuAXmWvu0ZlD8fWkbgDY66skqMk5PGMIxnCu2E+GS8cTDTF6Aaj95OrEb4qtlzqVWtTyzOt2XHiSeJ4oFy14n+7ggNGdAvBUeHP8+/pARas+YFTs812YV046ajVwF2UxV8pzwGeq5ZPdNfGUWgDfHdkG/74+wOT54/F2dajxUlS8x4ODzLKs0RA083LGRlHZrEUPKwtaSogz46sht/jziJVE/PNnzq2UEIITHw3DD5NNa8iLlTYV1axbTAjB7Ps7oI3Me4Jf6/34uLJXHq8skc9NSr+/d4i3IFS+M7ItItpaHvffGdnWJKwlv6RC8n5MpyaYM76TxHji4WSPP6eFCzH28jHD2vAENY5/OEzqxakyGGjtNCYlEF8b0kpQJL42pJXgxm8NSfPGmIRvKXnINXRqp9LyPY6S5XbaoJa4UViO57ikCTxy7SHfv63Rtz7dNwRPy2KeAOngVx3ULEzyzIRqEEIUE1rse2cwPJ3t0evzvQAjLcPjoNVg9XNh7D4ZvCbv2AfD8Oa60ziemofW/u5o7e+OddPC0SPYWzW7opKbqLSt7H+mFtwz5BYRf0/pxO7hZI8ewd6ISpF+bnSnJvj39QG474cjANRdR/hBcUArP6vcj3nCQ31wLMWYWl9pcB3e3h97L7G1EJPmjan2gA4YF7YdFdwMlWjiadl6KGf+xM74cMs5szFbDnYafPmI8VnhXevnjO+EVbJ6erzL75nZI7D1zDUcTTHWeL2jUE9UKatwoLcLzn460mL25prClr4gh3/2TZVsRHAfr9QbJHWQh7bzx6aX++GhJTHoGuiF5JxiYd+vT/fCC6tjAbCxYsdSbilaBlc9G6YoBMr75tB2/oiZORQrolORnJMqCJZqNWn7tfRFam6x4r7qMn1YG1ToDIqu8U/0CcYfxzMAsEqNoym3sDGOLb/i6Wyv6DYa6ueGFO7ayRUnzw1ogRcHhbJWU05z3yfUF/GzR+LvM1kY3sEfiw8kYS33nWKr1byJnfBv/HWh77bxdzcJBVBC3gX4fiWvgX3k/aEmsb2+Kq5xvRU8JNQW8+ZQ8k6yxn1WKQlT7xAfEzfYra/2F37D6VkjoNEQXC8stXh+c6EHBEbhVk2gV/PGskTawnGo1Buw5TRby3v2/R3x0u+mWXm1GgIXBzuUVOgl7p/i2rnlImHHz1naTrXyOfxcRwh77XiFHiEE5+aMAgBEnr8ueCuJ6RJomgxQ0mY7jWBJvVuUczkBlKx/PG6OWhSV61QrXzzcM1B45nl6h/ggKjFH8XheCe/ioMX5OaNw+HIOWjZ2w9+ns9A1yEui8OQFPUuKIbX7RQjB2M4B2HHuRq2Vg/H3cDJ7X9e+EI7rBWWK+9ydtCaJpIJ8XJCSUwwtF1+thHzcbCkzsPQMZsefkR38sftitlnlQM/mPjg9a4SJkaO6car82r+JpxOuFyr/fiXE13LdtHCTag3mSi/99VJfaO006BrkhZT5Y/FFZAJ+OZRy1zJR302o5bYWkMe67po+CJ7OrFuWpYQ7RGRBrK+YKwfCa1+VXGp+f64Pvp/cHS0buQllipQ0mGqxwvyCIMDTCeumhUvS4YeH+rKJJKoofD3cMxCjOwbgNVHii5oSdJv7umLNc2G4MGcU4mePtKmuXqdmnljIuUXLC9cDRstV2sJxQimVqHcjcEAWr8K7AX44th383Bzx4+PdTVxUlfj5SaNGsCYEW4CNK9322gC8OcxyvdWqwmukranpqgQfa/XW8DaSOHAvFwdUctaQJ8OD8cGYdoqZtNVq1nk42derWtBq8AosncGA+Nkj8SUX3yNuur2dxmQ869ncGynzx5ok8BILLj6uDhirkmBocJtGQry/nDkPdJTE7ouP02oIot6NULUOrH0hHEcVMqjWBJ4u9pg3sbOid8TnEzohhRunnOzthOsIAPGfmGYEBYD/icqOyZV19nZsLga5q6Wniz2m9AtBMy9niSeHOGHLE32a489p4fi4jxMOieJrzbHzzYEmmWcn9QqCn5sjJij0e2sXfH5ujpLfP/u+DnhxcKjJ52NmDkWfFj54RGZpXPhgZ3Rs6qFoqfNxdZAkx+MRuzx3auaJ3rIs0U4KFllxLL63qwM8ne1VvSnmPNBRmH/MWV6nDWopCCN889dPC8fix3sIiq/qDBFihdToTgH48uEuJjkm9AYGh2YMwf53BiNENK+IY2PLRQvezn7WKcp4xQcBQdcgL8W4v9GdmtR4bdnagrdmmrPW73l7EDZzAunhGUMQM3OoEDO84MHOQqKk14a0EvpTuMz7R0x3UYUAN0ctxnRugjb+7pgxuh1GyXIE8EqQfmYyQFvii4e64JtHu5rNul2beDjZq1rj5UswbxcHoX8bGKMSaYhsHWlp7Rbs64K0heNwH+fm38JCnL2S9x6vAH7VimSS5tj6an+sfaFqZfDCQ30l67Ij7w+RhIeJ5933RrWVJArUaIhw/cr/g27J1HJbC8iTJyg9uBFtG0niAnj4acmaGnZ1hTnXn1n3dcBrQ1srxgkPEKWu19ppcOi9ISYu1YDp9QOMRcV5CCFQUjRWVXBwd7IXCmtn5NW8hWdga9tc/8Q82jsI4aG+kkUIwCpNlNz75McBrCVzbOcmGNUxANNExdhXPxuGp5efUP1urR2blKu0ht1WOpvJXlwTONnbWUyHb05T/fWkbvjfI10VBfpRHQOwYGcCngoPUXy2E+aOtsoNvD7ToQl7f5p5OcPTxd5sCQI5Gg0xWQwEWRG7awl51k85Sv2+rmFdwaXvLSH2dlFyebeE2OPm43GmWetbedsh2MoavEoL3iAfF4k73fpp4fDjrFbWxJPz8IoRrYbgWc6jqUewN94Y2gpjOjfB+axCNPVyxvoXTZMRPhYWjMfMxBu/NLglsm+XYUV0mrBNLlDwHlZzJ3SCi72dRKiQt1GMWr1dV0etMIGrCbc73xyI9k08kFtUDsDYH/icGz/sv4KEG3eqJdzKvQEe6RWEC9cK8b/dl4VteoaBn5ujifApHrfCQ32x60K2pJ1iPrm/AxZFJkrmBn6x3AD0d1bBJ+QzF+LVxNNZ8C7iQy7+erEvrtwsEvpc5PSBaN3YHWM6ByDpZpEk+eLA1n44fCW3Su1z0Gqw+61BktwIGqJuqVXC3ckeE7tbH4N+NxF7qw1u0whzxnfEMytOCvvs7TQ4NWsE9AYGvecZvf30Bgarng2zaEy6v0sT+Lg4mC0PpYadhthcckeJxh5OaGxF/Lc1BMqy1R95fwh0BgbXC8oU1yoP9QzEsiOpVoXXNTSocFsLuDtp0bepHY5eUxcIVj4Tprh9zviOmPPPRYv1PesScws0rZ1G1T1HjtoCSzw5ezhp8fG4DjX28NtCfVEvEEIUF+5q2k4xMTOH4nZZJVwdtSZaX8B83TSeGWZKSTVEVj8bht+PpWO6rM6wGI2GQKNSrCjIx0XiNSCnoQu2ADA5LAjtm7gLC35+jWHtmvX+Lk1RVqnH6YwCrDt5FX5ujnhhYAvk3CmvnQY3IN4b1dbi4v/oB0Oh0zN4+Y84m6+ZWPlY0zGISvQRCY2Wvm/x4z1wJMnojvnH830ktXE1GoK3R7KZx6trSZp9XwfMvq8D2s6KVPQGmjmmHW6XVuKBLk0VS48AUFTSuiokKAIAg4HB60Na4as9l1U9iIQM+kISMuW2y/MyVBf5+dQMW2J36qn9QvC/XYlcjoB8k2Of6d8Cz/RvgVtF5cgvqcQ/8dcEYbkheKdYA2+5tTUG2pdL1MfD54bo2NQTHZt64moem6DK38MR/Vuxwu0rES2rNNfKY1wT5o6x+Rz1lX4t/YSwqCfDm6OJpzNeGBiKd/6KFzx3fFwdBC+Dqf1CsDImDQaGsSqXACFEYnT5r8F7+HgEKI9vzX1dccGGCiQNCSrc1gIaDcGLXZxw9JrtFsB2AR7400zGyPpEbdbGSls4Dv+evYYhbRsrxjDXJvyA0LQKsZ71jaZezmiKhv87apJBbRrZZIm0li8f7oIjSVXTwNc3CCESSxavAX9KlhxHDY2G4NHewXi4ZxA+ub8jNBq2pnRt0ZDW0ta4sfGWoOVTeuPwlVy881d8bTfrrjCuSxNJQjWlpHU1BS9gxX48XHGuahfgoZrhvYWfK1JzixWFdY2G4N2RbdC/lR82ncpEdNItpOYWQ88weH1Ya7yuEG7x8bj2ktwBfKykPNli10AvJNy4oypsVxXerbaxuyNu3ik3qdnJo9EQfHJ/Bwxo5QdCiLDwjYqKUj03L8i9PaIN/oq9CsBYHaKhIwi3NRSSwyMkFAPBU+HNkZFXgpcjzOcFsZbqJCOrb/wwuTt+2H8FP0Ulox2nzH+oZyAekoUpOGpZT63conKsjEkz6yk3b2KnWm0zpX5AhVtKlVj5TG+E+qkHrtcEShk+7wbtm3jgu8e6CVkbKRRreKRXEB5Rqbfb0HF2sDPJ6msNdhpSrcRWlqjPuQlqgsYeTnioZ+B/RritC6qScXzLK/0E12El+NwM3YO98cO+K/hqz2WzdU7lWfy9XBywYmpvEw+tzyZ0xJPhzYUswzVFy0Zu2PbaACTnFGH6+jNm61o+07+F6j5LTOjeDFkFpZKSKg2ZPqE+2Hw6q8bjUXllnIezFq6OWsyfqFxu8F7H2cEOM0a3w1sj2lgV8uDn5ojDM4aYrdf8RB/rFLSUhg0VbmuRGaPb4kRqnuUDGyDWpGCvK+I/GVltn2KlJEEUSlV4bUgrJN0squtmVJv/iqvhvcCLg0JVk5pRLOPl4qCY6V+JlyNaomVjN7MliJQYoqA8ddTa1Vo+gs6BnigsZTO7K+VqqAns7TRmwz0aGpN6BWFoO3+rQ62sJcDDCe+PbieUmaGYx5ZY/iCVOuFrX+iD81mFNdUkSj2HCre1yCsRrfBKRF234t7DUhIBCuVu8u6otnXdBEoDx8leY9MC74Ox7WuxNebREODR3urJnv5raO00qtm/64oZo9uip0Lejv6tfPHD5O4YaaMgfq9CCKlxwZY/b025IVOso19LP6vKhFH+G1DhlkK5x9k1fRCuWVG7kUKpr9R0Ap76hlrZoPpIyoLqZxClVI9XIpTjugkhuL9r3YT7UCgUyt2CCrcUyj1O2wB3qzIvUyj1DT62ytfNOhfShoq5UiQUCoVCoVCMUOGWQqFQKA2SZ/q3QICnE8bVM7dQCoVCoVAodQMVbikUCoXSILHTkDrLqk6hUCgUCqX+8d8piEWhUCgUCoVCoVAolHsWKtxSKBQKhUKhUCgUCqXBQ4VbCoVCoVAoFAqFQqE0eKhwS6FQKBQKhUKhUCiUBk+1hFtCSBoh5Bwh5AwhJJbb5kMI2UMIucL99+a2E0LI94SQJELIWUJID9F5pnDHXyGETKneT6JQKBQKhUKhUCgUyr1GTVhuhzAM041hmF7c+5kA9jEM0xrAPu49AIwB0Jr7mwZgCcAKwwA+AdAHQBiAT3iBmEKhUCgUCoVCoVAoFGuoDbfk8QBWca9XAZgg2r6aYTkGwIsQ0gTAKAB7GIbJYxgmH8AeAKNroV0UCoVCoVAoFAqFQvmPUl3hlgGwmxASRwiZxm3zZxjmOvf6BgB/7nUzAFdFn83ktqltp1AoFAqFQqFQKBQKxSq01fz8AIZhsgghjQHsIYQkiHcyDMMQQphqfocAJ0BPAwB/f39ERUXV1KlrnKKionrdPkr9g/YZiq3QPkOxFdpnKLZC+wzFVmifodhKTfaZagm3DMNkcf9vEkK2gI2ZzSaENGEY5jrndnyTOzwLQJDo44HctiwAEbLtUSrftxTAUgDo1asXExERoXRYvSAqKgr1uX2U+gftMxRboX2GYiu0z1BshfYZiq3QPkOxlZrsM1V2SyaEuBJC3PnXAEYCOA/gHwB8xuMpALZyr/8B8DSXNTkcQCHnvrwLwEhCiDeXSGokt41CoVAoFAqFQqFQKBSrqI7l1h/AFkIIf561DMNEEkJOAthACHkOQDqASdzxOwCMBZAEoATAMwDAMEweIWQugJPccZ8xDJNXjXZRKBQKhUKhUCgUCuUeo8rCLcMwKQC6Kmy/BWCYwnYGwKsq51oOYHlV20KhUCgUCoVCoVAolHub2igFRKFQKBQKhUKhUCgUyl2FCrcUCoVCoVAoFAqFQmnwUOGWQqFQKBQKhUKhUCgNHircUigUCoVCoVAoFAqlwUOFWwqFQqFQKBQKhUKhNHiocEuhUCgUCoVCoVAolAYPFW4pFAqFQqFQKBQKhdLgocIthUKhUCgUCoVCoVAaPFS4pVAoFAqFQqFQKBRKg4cKtxQKhUKhUCgUCoVCafBQ4ZZCoVAoFAqFQqFQKA0eKtxSKBQKhUKhUCgUCqXBQ4VbCoVCoVAoFAqFQqE0eKhwS6FQKBQKhUKhUCiUBg8VbikUCoVCoVAoFAqF0uChwi2FQqFQKBQKhUKhUBo8VLilUCgUCoVCoVAoFEqDhwq3FAqFQqFQKBQKhUJp8FDhlkKhUCgUCoVCoVAoDR4q3FIoFAqFQqFQKBQKpcFDhVsKhUKhUCgUCoVCoTR4qHBLoVAoFAqFQqFQKJQGDxVuKRQKhUKhUCgUCoXS4KHCLYVCoVAoFAqFQqFQGjxUuKVQKBQKhUKhUCgUSoOHCrcUCoVCoVAoFAqFQmnwUOGWQqFQKBQKhUKhUCgNHircUigUCoVCoVAoFAqlwUOFWwqFQqFQKBQKhUKhNHjqjXBLCBlNCEkkhCQRQmbWdXsoFAqFQqFQKBQKhdJwqBfCLSHEDsBiAGMAdAAwmRDSoW5bRaFQKBQKhUKhUCiUhkK9EG4BhAFIYhgmhWGYCgDrAIyv4zZRKBQKhUKhUCgUCqWBUF+E22YAroreZ3LbKBQKhUKhUCgUCoVCsYi2rhtgC4SQaQCmcW+LCCGJddkeC/gByK3rRlAaFLTPUGyF9hmKrdA+Q7EV2mcotkL7DMVW1PpMc1tPVF+E2ywAQaL3gdw2CQzDLAWw9G41qjoQQmIZhulV1+2gNBxon6HYCu0zFFuhfYZiK7TPUGyF9hmKrdRkn6kvbsknAbQmhLQghDgAeAzAP3XcJgqFQqFQKBQKhUKhNBDqheWWYRgdIeQ1ALsA2AFYzjDMhTpuFoVCoVAoFAqFQqFQGgj1QrgFAIZhdgDYUdftqEEahPs0pV5B+wzFVmifodgK7TMUW6F9hmIrtM9QbKXG+gxhGKamzkWhUCgUCoVCoVAoFEqdUF9ibikUCoVCoVAoFAqFQqkyVLitBQghowkhiYSQJELIzLpuD6V+QAhJI4ScI4ScIYTEctt8CCF7CCFXuP/e3HZCCPme60NnCSE96rb1lLsFIWQ5IeQmIeS8aJvN/YQQMoU7/gohZEpd/BbK3UGlz3xKCMnixpszhJCxon0fcH0mkRAySrSdzl33AISQIELIAULIRULIBULIm9x2Os5QFDHTZ+g4Q1GEEOJECDlBCInn+swcbnsLQshx7v6v5xIJgxDiyL1P4vaHiM6l2JdUYRiG/tXgH9iEWMkAQgE4AIgH0KGu20X/6v4PQBoAP9m2RQBmcq9nAviCez0WwE4ABEA4gON13X76d9f6ySAAPQCcr2o/AeADIIX778299q7r30b/7mqf+RTAuwrHduDmJUcALbj5yo7OXffOH4AmAHpwr90BXOb6BR1n6J+tfYaOM/RPrc8QAG7ca3sAx7nxYwOAx7jtPwN4mXv9CoCfudePAVhvri+Z+25qua15wgAkMQyTwjBMBYB1AMbXcZso9ZfxAFZxr1cBmCDavpphOQbAixDSpA7aR7nLMAxzCECebLOt/WQUgD0Mw+QxDJMPYA+A0bXeeEqdoNJn1BgPYB3DMOUMw6QCSAI7b9G56x6BYZjrDMOc4l7fAXAJQDPQcYaigpk+owYdZ+5xuPGiiHtrz/0xAIYC2Mhtl48z/PizEcAwQgiBel9ShQq3NU8zAFdF7zNhfgCg3DswAHYTQuIIIdO4bf4Mw1znXt8A4M+9pv2IIsbWfkL7DwUAXuPcSJfzLqagfYYignP96w7WqkLHGYpFZH0GoOMMRQVCiB0h5AyAm2CVX8kAChiG0XGHiO+/0De4/YUAfFGFPkOFWwrl7jGAYZgeAMYAeJUQMki8k2H9L2j6copZaD+hWMkSAC0BdANwHcBXddoaSr2DEOIGYBOA6QzD3Bbvo+MMRQmFPkPHGYoqDMPoGYbpBiAQrLW13d34Xirc1jxZAIJE7wO5bZR7HIZhsrj/NwFsAfugZ/Puxtz/m9zhtB9RxNjaT2j/ucdhGCabW1gYAPwKoxsX7TMUEELswQopfzAMs5nbTMcZiipKfYaOMxRrYBimAMABAH3BhjVouV3i+y/0DW6/J4BbqEKfocJtzXMSQGsuG5gD2KDof+q4TZQ6hhDiSghx518DGAngPNi+wWeYnAJgK/f6HwBPc1kqwwEUitzFKPcetvaTXQBGEkK8OTexkdw2yj2CLEZ/ItjxBmD7zGNcZsoWAFoDOAE6d90zcHFsywBcYhjma9EuOs5QFFHrM3ScoahBCGlECPHiXjsDGAE2VvsAgIe5w+TjDD/+PAxgP+dBotaXVNGa20mxHYZhdISQ18AO8HYAljMMc6GOm0Wpe/wBbGHnB2gBrGUYJpIQchLABkLIcwDSAUzijt8BNkNlEoASAM/c/SZT6gJCyJ8AIgD4EUIyAXwCYCFs6CcMw+QRQuaCXUgAwGcMw1ibcIjSwFDpMxGEkG5gXUvTALwIAAzDXCCEbABwEYAOwKsMw+i589C5696gP4CnAJzj4uEA4EPQcYaijlqfmUzHGYoKTQCsIoTYgTWmbmAY5l9CyEUA6wghnwM4DVZpAu7/GkJIEtgEiY8B5vuSGoRLs0yhUCgUCoVCoVAoFEqDhbolUygUCoVCoVAoFAqlwUOFWwqFQqFQKBQKhUKhNHiocEuhUCgUCoVCoVAolAZPg00o5efnx4SEhNR1M1QpLi6Gq6trXTeD0oCgfYZiK7TPUGyF9hmKrdA+Q7EV2mcotqLWZ+Li4nIZhmlky7karHAbEhKC2NjYum6GKlFRUYiIiKjrZlAaELTPUGyF9hmKrdA+Q7EV2mcotkL7DMVW1PoMISTd1nNRt2QKhUKhUCgUCoVCoTR4qHBLoVAoFAqFQqFQKJQGDxVuKRQKhUKhUCgUCoXS4KHCLYVCoVAoFAqFQqFQGjxUuKVQKBQKhUKhUCgUSoOHCrcUCoVCoVAoFApFlXOZhTh0Oaeum0GhWIQKt/cgBgOD6KRcMAxT102hUCgUCoVCodRz7v/xCJ5efqKum0GhWIQKt/cgq46m4YnfjmPPxey6bgqFQqFQKBQKhdKgySooRfbtsrpuBgVUuL0nSbxxBwBwq7hCcb/BwOAmfUApFAqFQqHUQ9afzEBKTpHq/rJKPRbuTEBmfsldbFX9JTW3GAaDbd56h6/kYPmR1Fpq0X+P/gv3o8/8fXXdDAqocHvPEH+1APsTWEttWaUeAOBkr3z7Fx9IQtj8fcgqKL1r7aNQxDAMg5+ikpCnooChUCgUyr0JwzB4f9M53P/DEWw+lYn1JzNMjlkZk4afDyZjwBcHcKPQqKw/kZoHvY1CXkMn4cZtDPlfFH45lGLT555adgKf/Xuxllp17xIycztmbIyv62b8p6HC7T3C+MXReHZlLACglBdutXaKx+5PvAkAkgmBQqkuMcm5iEvPN3vMgcSbCJm5HXsv3cSiyETM3HRWst9gYPDH8XSU6/SS7eezCqHTG2q8zfUFhmFQoVP+fWczC5B+qxgfbTknKK4o5sm5U46bd6o2vun0BhSV62q4RRQKxVp0nHBaXKHH2xvi8f6mc5L95To98kuMitEbt8vAMAzWHs/ApF+OYikn5JXr9PgiMgG3yyrxV+zV/6zQm3GLtV7HpecBYAV8c3Nx/NUCsxZvPl/LtYJSrIymll051wtLcauoHAA7X8zZdsHEG3JDbCaik3Kx+VRmXTTxP0+VhVtCiBMh5AQhJJ4QcoEQMofb3oIQcpwQkkQIWU8IceC2O3Lvk7j9IaJzfcBtTySEjKr2r6KYpaySXSQ7aDV4/NdjmPTLUZs+f6esEucyCyXbKnQGJN1UdxG6lwmZuR0fbD5n+cD/OI//ehwPLYkxe8zSg+yi41QGO/HeKTMKEacz8vHLoRR8tOU8fjqQLGxPvHEH9/1wBN/uvVILra5dcovKMX3dafRdsA9JN++oHvfV7sto8/FORJ6/gdtllcJ2hmHwwI/RGPxlFP44noF/z17H0eRbJp/ffCoTSw8l4/dj6Ug248r3X2TL6UwUllTiQOJNPLvyJMoq9eg9by/C5u0DwzCIPH9dUIxcun5bWAiq8c5f8ej0yS6T7SUVOvx2OAUGA7uIprFXFErNcauoXFDe6fSmQmhcep4wbzzwQzR+OWi0UhoYBptOZeHDLew8fJUT3NYez8CSqGQM/OIA3tt4Fn8cT6/tn1En8DI7IQQAMOmXo6pz8YbYqxi/OBoDvjggbJMnHy3nFK3Pr4rFp9su3nOGkN0XbuCaGc/Gvgv2o+fnewEAR5JysSI6DR9uOY/SCj0qRUr4J347jrc3GC24V/NKUFapR0EJ9VirLtpqfLYcwFCGYYoIIfYAjhBCdgJ4G8A3DMOsI4T8DOA5AEu4//kMw7QihDwG4AsAjxJCOgB4DEBHAE0B7CWEtGEYhpogZMRfLUByThEe7BFosi86KRcVegPScovxTP8WZs/DW710BgYx3EL4n/hrOJWejzeHtRYdqazFfG5VLE6k5iFp3hho7Vj9yNx/L2LNsXSc+HAYGns4VeHX1R1llXo42bNW7Mz8Ejy29Bj+fCEcXi72eHXtacwa1x6t/d3NnqO0Qo+L129j1t/n8cfzfeDt6gDAOCn8eSID8yZ0QmZ+KYJ9XWr3B9UDGIYRJlIAklgfvYGBnYbgQOJNdA30gg93rQDA1ZEdkko4y5iBYbD4QBL0BgZf77ksHJfLaUUBCEJEfGZBrfyW2mRRZAL+PnMNAPDLwRR8+UhXxePWHGMXXS/9Hof+rXwR7OOKP09k4OHW9pLjNpy8ihNpeVj5TG9EtG0sbBdPoL6uDoibNaKmf0q9ImTmdtzftSleHtwSb62Px4gO/kICvQd+PCIc99qfp7H97HV0bOqBf18fgDHfHQYApC0cB4DttzoDAwetBjq9AYQQbOXul05vEMY/AFgUmYiVMWkghGDuvxfR85Q3Nr3c7279ZMp/hB/3X0GQjwvGd2tW102pV/T8fC/CQnyw4aW+qFDw0nloCaukT1s4DonZUkXh6pg0YU4GAHdHLaISb2JJFKskLSxlFYa3iv6rQgU7/xILRwHA17svm2wrqzRAZzCI3utRXK4TrLv6e6jyBsMwmLYmDn5uDnhtSCuEt/SFn5sj/NwclY/n/lfoDWg/OxJhLXwUj/v9WDo+/vu88H7rq/3RNcirhlt/71Bl4ZZhV+28CcCe+2MADAXwOLd9FYBPwQq347nXALARwI+EXf2OB7COYZhyAKmEkCQAYQBsMyfeA4xfHA0AJsLtwp0J+Pmg0ZI1rnMTzN9xCX+fuSYs0ngq9QYcS2FdU8Rujm/8eRqAcZAHjNo5OSdS2c+XVurhzi3ujqawQnJBaWWDEm4Tb9zBqG8P4acnemBs5ybYEJuJzPxSbIi9igBPJxy6nINf3B0xqmMAmnk5o0NTD5NzZBWUov/C/cL7sd8fxpH3h8JOQyST8JxtF7DqaDriPh4OX5WB8L/A3ovZeH51LPa/MxihjdwAANHJucL+m3fK4OqoxTMrTqJnc2/MGNUWHZp6wN3JHm6OrJJh1VFWmDuemofjXH8T81/xHiOi5YbYIivHXiREHU/JQ3QS+7xtvCL9TEEpuzhbfTQdg1o3gkZjupy5VVyB0d8ewupnwxrUs2qOFdGp2HMxG2tfCBe2bYu/hm3xrCCamW/Usl/ONlqut5+9DgC4cO02tnGvAXYBk3SzCN/vT8K2eHYc7fn5Xsn4mJh9Bx2bemLBzksI8nYR3CB5d7T/gva9QmdAhd4AN8fq6MEptvA/TrioinD75rrTiDx/A4mfj6npZtULTqSxc0GlmRCUw1dM67DyCkQeD2d7TF1x0uS47/ZdwbGUW2jh54p5EzvDTmH81OkN2Hw6Cw/1CFTcXx8xWm5N91XoDDAwjKDg1ylMritiUnEh67bwfux3h5FfUimEuJVz//UGBitj0vBEn+Aa/gV1R3JOEew1GsEowa+Lc4sq8Ok2Nh7ZyV6DhLmmz9yFa4XQcBedN3ScUFjPAJAItgCrrKfCbdWpVswtIcSOEHIGwE0AewAkAyhgGIb3JcwEwI/QzQBcBQBufyEAX/F2hc9QFNh6JkvyXizYAsCjS4+ZDOY874gsOK9zAq0YsWtxeaXpBFJaYTSol4ri+/gx3lCPNXiHr+TgrMy6dz6Lda/mrTq8wP/D/iR8tIUdbAK9nfHC6liM/f4wbt4pQ0mFTvJ5sWALANcLy3A2swApOUW4VmB01+EFtpyictwuq/xP1BkuKKnAhpPs41uhM2BTXCZ2nGeFhNg01kWMYRg8tcxYGy/3TgWuc9clLj0fjy49JlgW7TTWDUm8JfjQ5RxEJ+VaOLr+4ioSGvg4zjtllfj0nwsoqdAh8vwNbIzLhL2dcVWitPjg4QW3/Qk3Mfuf89hw8ipe/eOUyXEJN+7gn/hriE7KNStU10cMBgaf/nMBabnFwrY52y4KXihKWPOsiZPSbD6VhRHfHBKE45IKnUSwBYBx37MW4F8OpuDjv88Lbmp82AfDmI7VDY0nfjum6IJNqVtmbz2PkJnbTbZvPXNNVSndULj/hyP4aIs0jEf8/J7KyEf81QLVz4vnGjXOmPn88dQ8rDt5FRl5yuEJq4+mY8bGs1inkMTqbpBxqwRbz2QhZOZ2yRgo5mxmARiGwfqTGUi6eUdYl+26kI3FB5Ikx477/jDazYpESYUO+y5lKyoOFkUmYvs5o/LvWmGZZP0Xm56Ph5bEYEV0Kub+exHf77McIpRfXIHjKepjdm2TcOO2VQkrh311EIO+NLpo89Z+MWWVBsUcDuO+P4IpXF1gtZwZABujK6dSwfWeYj2kJhbYhBAvAFsAzAKwkmGYVtz2IAA7GYbpRAg5D2A0wzCZ3L5kAH3AWnOPMQzzO7d9GfeZjQrfMw3ANADw9/fvuW7dumq3vbYoKiqCm5tbjZ5zaiQ7kLk7ALPDneHtRLA3XYd1ieoP6MNt7DEo0B5v7GcHal8ngltl1t3zV7o5op23HTwcCfLLDHgrSvoAzgp3QksvVtv38ZESZBYxmNPPCc09lBNV1TX89Vs52lXYFnNNh6VnWUvL1I4OuF5kwK50abKYB1ra459k6cJ2TAt7FJQbcDpbjzIzDvQuWqBElntmRHMt9qTr0MvfDs90csS1IgOis3R4qHkl3N1rts/UJMWVDDLvGNDWx3h/v44tw9lcPRYOdMaXJ8tM+taKUS44fVOP708b3YgntrJHcw8Nvj1l3ObvQvDFIBcsPVuOmGuWk/X0DrDDq92chHsKAB19NXivt3N1fuJdZ11CBSLT2L7V3keD98OcsSGxAjtSK/FEewf8cYl9tl3tgeIalkGHBGlx4Cp7rcXPBMAqqS7k6tHJz07iXn63ibmmQ1tvDXydjUqP9Nt6fBJThhYeGnzSj73ffD9YMMAZAa4Ez+ySLkybuhFcK7J+rvN0JCgst3z8ytGuwnfbEUBpPVLfxkRb5ialMVON/RmVuJyvx0tdjd4AKYV6fHa0DF0a2WFkcy06+d0bFuDrRQY0ciHQ2mDZ0xkYaDXE7DXXGxjsy9BhbUKF4jG23C+lc2sIFJ/32ljP8Jy8oYOLlqBcz8DNgWD+cVZIEP8GnYHB87trr6QPgWkQ1uf9nRHobqps5cfnR9rYY1yog8n+2kY8501qa4+xLdg23Co14J2DpZjYyh5bkioxPFiLvRk62BHghc6O+Plsucm5JrWxx4bL7MTyZHsH/H6pet4m9hqg0gD0bWqHcc10sHdyQX45g0bORDKGA8AnMaVIv23A8lEugnXzbjI1shi+TgRfRSiHiTEMg4OZOqy8wF6TV7s5oneAVnL9xTR1JbhWrD5nBLoRZNowB8n7V1KBHncqGHRv/N8dQ9XGmSFDhsQxDNPLlnPVyFViGKaAEHIAQF8AXoQQLWedDQTAq66zAAQByCSEaAF4Argl2s4j/oz8e5YCWAoAvXr1YiIiImqi+bVCVFQUrGkfwzC4eacc/mbcAxmGQeiHO4T3dyqA9w6V4ok+wViXaF57uPFyJTZeNq6KrRVsAeCnM+xguPPNgfj3SCpYo7qRucfKkLZwHG4VlSMzkg2e79ytB3oEe0uO0xsYJN64g7YB7rheWIpA77sbcxp/tQBtA9yByEgAkNyXgtNZwNkzACAMYnLkgi0A7Ey1TtKQC7YAsIcTnmOz9YjNNk7Yj7ZzRY/w/vBwsjf9UD1g0s9HcSItDwlzR8PJ3g4n0/JwPfoUAD1+uaRR7Fundc2w7IK0/MCZAgd0bBsM4JKwzdfTHaGdeyIm8gCs4eQNPQYMHARE7hS2+fj4ICKiDwBg3vaLOHwlF5HTB9n+Q6tJWm4xrheWoW9LX7PHJd28g8jIQ8J7D08vRET0xY7ceCA1E5WujcE/czUt2AJAsdYDAOsiFd5/IA5ezkFbf3eE+LliZXQqvoq7iCVP9MCYzk1q7DuTbt7BY0uP4d/XByLA07xLdIXOgKkf70SQjzMOz4gQtp/NLABiouHu4Q73Fh0liVE+OFKKIB9TBYctgi0AlOqUlrumdOgZDkSydQ3VFO29evVCx6aeNn1/TbM/IRvv/XUWR94fiuMxh62amwAAkax1cFmyM4a0bYxnBxjzOZzOyIens70QejCVsySue9N47thdiQCScDZHj7M5eqQtHA6ATchy6fodvDlcnOOBvecOWnXvjbJKPb7ZcxlvDGst8XqoT+QWlWPq53sxOSwICx7sYvbY9Scz0KGJJ3KKyvA8V82Ap0PPcDRyc5QIm38cT8faBKP74uDBg6XCKHe/VqW64EBiDh7qEYivJinH8csJmbldtc3WrmesxWBgkHDjDjo09RD6jRz++/KLKxB1+SaA2iudYm+nMYnjbde5G3qFmMZHHim6CKSmgnH3xwt7srD/nQgE+dzFNU2k8Xq1aNESEREtAQDrTmQAOIctSexksTeDXWfoGaDENQCAabKsDaK1YXUFWwDwcHbAreIKnLtFcPQaAWA0iPDrBp507nf07T8Izg51oPyL3I5bZYykXzMMg7/PZKFPC19cuHYbK3cZn8nFZ8pxYU4EEKnsyWJOsAWASo0D2FRF1pGn8cYbUXlYPrU3eoX4CM/J5c+HCmOkwcDgjXWn8XTfECGWt6RCBw0hkmvdUKjJcaY62ZIbcRZbEEKcAYwAu1o9AOBh7rApALZyr//h3oPbv5+L2/0HwGNcNuUWAFoDsOxX8h/hr9hM9Jm/z8RdVsyuCzegZGDfdJdSiI/57rDqdw3/+qCQFQ4wujJn3CpBSYUOo789hJHfHMTY7w/jsaVHMeCLA2azzNUkGbdKsPvCDYxfHI35O4yCFO92Y+6a1wUv7y1Bl09314i78vmsQvRdsA/5VtaJLS7X4XK2erZeADjJlRFoNysShy7n4JGfjyLnDjtYp6q4R32/7wqKK6Sm7dTcYny+/ZJkm4FhJK4/1tDqo52S94ev5GJVTBoA4NfDqUi4Yf731BYR/4vC5F+PmWyXl5lYfEDq3lSuM0jKzGyIrd3nO0WUNbmkQo8X18Rh1LessJ3C3c8bNZzxd83RdOQWVUhc3MS88edpjObawCe+u5onHS/463g2s1Ax46f8+KqglLBGibB5+ywec+RKLvZyYQ91xdx/L+FWcYXVtcvziysk48HhK7n47N+LWBWTJriMTvwpBkO/Ogi9gcHb688Ix+6+cEMYYysN0uu468INAMC0NXH4Zu9lGAwMYpJyETJzO977Kx5tPt5p1lVxzdF0/HIoRSjlUp+4VlCKM1cLhDCJP09cxYVrharHGwxcrdYfjyD+qulxYfP24YvIRMl8cPHabckxaiEKBxLZuNNNpzIxfd1p1fGZh3+m/jxx1exx1lJYWilJIihneXQqxn5/WNG1mmf9yQyUVerxxG/H8db62q0JqvS8X80vweErOTh4OUcSkvDbEbb0zaZTmajUM4g8f6NW22aOCp0BW89kgWEYwfqp5C2w+ujdyQKt5cJnlEql/Xv2OhJv3MGb606jtEIvxP+W6/SITspF+Px9kpCvpYeScfCyafx0TaDWN48m38Jb6+Px88FkxbJ6HasRosGvlaxlX8JN3C7T4bW10vBB8Vr2dlkl/j17Hc+vMsaPd5i9yyRU7l6kOqrPJgBWEULswArJGxiG+ZcQchHAOkLI5wBOA1jGHb8MwBouYVQe2AzJYBjmAiFkA4CLAHQAXr2XMiXHcIl2rmQXIcjbBVduFiGshQ9OpOYhv6QCnZt54qXfTWPmAGNs191ATd6Sl/8p0+lRUqHDoC8PIDzURyJgnORiMPOKK9DUyxmFpZWIv1qAQW0a2dSWZ1acwOEruUiaP9bscWJhSTy4f7krEfd1aYIHfoxGqJ/t7lu1zYAvDiCshQ++ebRblc/xw/4ruF5YhqMptzDWCsvb63+exv6Em7gybwz2XbqJjk09TLTR4j7w9PKa1T/VlCD6yT8XMLRdY4vHnc0sQAs/V9jbaUAI4KhS89kSsWl5KCytxLD2/maP+3rPZXy/74qQYfxaQSmOyGKFz1wtMBHYzdG5mSfOZakvni2RK8oMyscLlesM+OVgsrBozrlTjlMZ+SbeGFWFT4ylVpP4Hy7GdfOpTITIns2YpFysiElDeKh5i3h9Y8HOBAAwSe63KiYNn/xzQZJ13hzf7r2MHsHeNo+XAISFmqOKVfTXQyn4es9l/PNaf4Q2csNDP8cgJcdUIPrknwsAgD+OGz2GvtlzGZtPG52tpq2Jw0dj2+OFQaEmJVteXBOH4x8OE96/+1e88Nm/4lhlzpGkXPTh7nFZpR4MA8GyU8IpyvgYwsLSSjjYaWrE8rPmaBquFZbh/dHtrDp+z8Vs+Lo5oEewN5JuFmH41wdNjpnzz0W8M7KN8HtOZeTj56hklFbqcfiK8flXy1Xx88FklOv0+HhcB+SXVEiuO8DWov9mz2XMndBJ1ZL995lruHT9Dm4Vl+PnJ3sqWiPFQkV1KSypRNfPdqN/K19cKyjDv68PMGlbskLfkvP+pnOY+++lOqspLReoUxeMlVjJnbR2KK3Um82BYA3yygJX80qQmlssec6jk3Lx54kM/DC5u+Sz3+xlk4/N2XYRzw9kvSqq257qYC7b9Lt/Ga+nm6NWWE+UVRqwYOcl3LhdhnOZhQhr4QNCCObvUB43q8v5rEITN+gNsVfRyN0RmVyc9a2iCkkSx5qgqrdFa0ckZQJXxqRhZUwazs8ZJcgA/PzBr8dvWWHUOHO1AE29nNDY/b+RVFJOle8ewzBnGYbpzjBMF4ZhOjEM8xm3PYVhmDCGYVoxDPMIlwUZDMOUce9bcftTROeaxzBMS4Zh2jIMY/3qrgGQV1yBGDMJb8SD2rt/xWPSL0dRWFKJSb8cxYtr4tDPBg1M68ZSX/XPxne0vcHV5INN59BhNqvd4rMyq/Hy73F4evkJm7OKHkjMMTuAJ90skiS+krPnYjayb7NatBQLGu2q0qt51YWBrIJSbDmdhb9PZ2HvxWxk3y7Dqpg0bIyz3ZJXVqlH2Ly9OJB40+xxsVwWyltFFXjp9zhJuZTa4iGFklY1wQ4VqyBPpd6AB36MxnOrYtHpk11o+3EkfrAiAYYSD/98FM+tilXcxzAM8oorMGX5CSHBBi+8RnwZZbMmV054qHJJgaow+tvDwusFOxOEa/hTVDIe/CkGpzPya6TYPD8J6wwMrheWqvbptzfES6yyhy7n4PHfjmPPxWzM/feiTd/ZzKt+xGEP/vKAJFnLokh28TZ/R4JgOeMTxciTVwHAt3uvSJRKDMNgw8mrignBdHoD4tKN4y+fZOhsZiFe3FOM2VulmTnn7biE0ko9RnxzCHO2XVAUbNVQ6hd8m5ZxVi4x4n4vFop5Ll67jY1xmVh+JBX9Fu5H1zm7hX16zhLMZ6ntOmc3xnxndO3PzC/Bq3+cUrS6WGLW1gtCspjconIcSLyJkJnbcUzFkvzC6lg8+FMM4q8WYPXRNMVjTqTl4dGlx1BWqcfl7Dt48KcY7L6YLRFsAfXKBACwIjoNj/wco1g3+fPtF7H5dBZmbT2P3w6rW7MTs+8gt6gC34nGuZIKnaBkKi6vOXsC33ejk24hNbdYUQHn42pd6E1dCbZKtPhgBzbEGi3bgmsoJ6V9t/cK9idk405ZpWJyISWeWnYcLT7YIdn20JIYPL38BMp1etwpq4TewOCpZcfx79nrqv0kr7gC34hK5dUWQ9qaV6xZK1iLlTTlOr1QNeDRpcfwiwWvjIvXbuOXg8koLLEtVsdgYHA2swD3/XAEY78/LNk+Y+NZPLPipJBV/0RaHl76Pc7qc4/tHGBTW2whM78Uw78+ZLL9y8gEYZzNK67A9/uuKCrYjqXcQsjM7Sb17ScsjsYY0bz/X6NmVRMUgSNZlbheWIoZG8/i8d+Omwx2pzLyETJzu+D6teV0luCCwRcitxV+kH2ga1Mc+2AYelZDwKoq1rgx8gu8i9dvc++tGxCLy3VmM87FJOdixNcHMfzrg5jAlU1SIjW3uNbdBJc+3Qsrn+mNddPC8c9r/dHEQnyhEtPXn8Hzq2Mx/sdofPLPBYnm0xL8ZPH2hnjcvFOOZ1acVHVNK6vU43YZu4hIu8Uek19SiZCZ28261VUFfhKYHBaMLx7qXONaWQA4nVEgvE7OKcKao2lCeRaGYYRF4onUPGEy/srMwuCpZccRMnM79idkg2EYfLPnMjJuSZObVOgMJu7k4xdHo8fcPSauVfnFFVa7vQJA/1a+2PfOYOH9ppf74sj7Q/D6sNZmPlU9CmQLh4k/xeDtDfFC5kcxegODvRezUVhaibJKPcoq9QiZuR1rjqbhzNUCiTu2A+e2lnGrBE8tO4F3/4pXXcCKL2d1Qhl6hZgfBx21GswY3VZ4//aINlX+LnOk3ypBn/mmbszLo1Pxx/F0rDmWjp84V3Vrfu+5rELM2HQWH2w+Z7Kv1Uc78dCSo4IbKy/svbr2FMr1rCfLZ9suKmYLXXfSNtfUa4WmY76Pq4OiMAbA4ji2L+Em3v0rHp/9y7ZP/KxUcn1p8ymjUJwmehY//ecitp+7jiiRMu9Eah7mbLtgUlXAHGO+O4xnuFIxfKjD1bwSlFXqTTL1jl8cbdHts92sSHy5K1F1vyU361MZBUJ2bjF8WZHNp7JMQj3E8J6qh6/kCkLB/T8cwUguBKBYZrmNS89DyMztSL9lvZLjx/1X0OvzPSbhLQcSb5r0BS/nmk/E9FjvIJNtVfFyMMevovvEj/e8d8I3ey/j2ZWx6PzpboTN24cKnQEhM7dj7HdSAaJcpxdCLuRKDgC4ySl/Ll67jc6f7sa87ZcEQfp/ZvpQTWXX/eWpnsLrcV2aYFIvoxK6ZSPTZD8DW/tV6/tyiyoka5Nv9lxWVJiVVeqhNzAY+/1hLNiZgIWRlyRzywurY/GWKDyC52peCQ4k3sSqo2l44EfTdeGPouzRfNiErYrnxY/3UN0nL6Pm51YzfX/V0XQcEfWfr1XWMMs5BeOjvxxDbFqeROlpjYW3oUKF21rgTlklfjvHWmxyuEX1eZn2ki89c4FbfBxJyhUW2ovMDGDmaOHnij+e74OvJnVFgKcTXB2MD9UPk7vjj+f7mHzm8wmdJO8f7MFWYRqn4Mr685PqD7At8K4U/KRw6HIObt4uw+f/XhSE17fXnxGuEU/HT3bhqWXHFc+Zc6cc3+y5jCucW4a8iLuc9bHmF3ATuzfDB2PMu6eN79bUZNuml/ti1/RB8HF1QETbxggP9UWXQC+sfCZMclwjd+vr3IoVBuL4nqSbRXht7SlhorTExjjjbx797SGEzNyOkJnbEZduVKZMXSEVXj7kFs62WkImh0nr3Lk5avHD5O74cXIP/PVSX3w4tp1gxVNKAKREwtzRZvf3b8W6/kVeMF6jYV8dxKytFzB9/Rn8fToLLT7YgQFfmI/tLdfp8cyKEzh4OQdlIvfBZ1fGIjmnGN/tu4LX/5SGCjy9/Dg6fbJLci/OZiorBrrP3WP2++X88Xw4WjZyw4IHO+OP5/ugZ3MfBHq7WEw8tvftwRLlwT+v9bfpe5U4eDkH+xOy8draUyitYIXYlh/uwPOrY9F1zm60mxUpCBaztl7AhMXRaPnhDmGxwN/z9bFXBReqO5z2WU0YAoCZCgKcJTo388RvT/fCooelCXL2vj0IsR8Px/Y3BgAAugV5oV2Au7B/2qBQi+eWj5vWkldcga/3XEbIzO2SWPTZWy9g1t/nhXFrQ+xV/GJBGOMXs+m3ipFXXIEZG+NNtPO8V4zS87s8OhU95u7Ba2ulfdmcAlGO2nWYs+2ioiIEqFoIwoKdl9B1zm6hbRl5JRJl0oVrhdAbGMGyqxWVFJv0y1GsiE7DQs49PCWnCB//fQ7F5TrV2Dvx4nbn+RtIvHEHAxcdQLtZkRi/OFriJmgt8vmsJsi30nolTtL1/OqTKCipQHJOsWChLxFZbiv1Bmw4yQoXg7+MQlmlHusTKxS9CcT8b/dl5BZV4PnVUk+WXw6moM/8fcJzDkCx/rYtvDvSqIDqGuSF357uhQUPdjY5bvWzYTg1awQmdjdWl7y/Kztvj+kUgNiPh6OjQu16Na6IwrD4rlOpN0iEDJ5LnPKeV+LzDP/6IAYtspxfYuJPrOfKhtircODGzd8UPCFsIXL6QOx/ZzBcRG78T/dtjr9e6iu879PCB+5OWozpFIDvH+uORQ93Fa63uB9N6duc/T3t/XFl3hh0q2JN1qnLT0gUnOU6g1AaUEy7WZGSsSozvxQtP9yBrWeykJpbjD0Xs7HlNOv58uraU9DpDdAbGAz/+iCeWXFSovQWIxYK027ZnpF7/sTOggdmv5a+eHFwKMZ0MlpyxWX8Xo5oaRLit1+kuLaVJWbmiHnbL+KzbRexmxt3covK8fDPR/HQkqN4YbWyt9l/ifqZbrCBwz+o1wrKhEVTUbkeDMPgp6hkPNIrED4u6tobWybO14e2wg/7Wc2Tr6sj+rcyatFcHI0DmI+rg2Qfz5PhzVFYWilolXkXPj83Bxx6bwjKdHqczsjH+5vOoU+Lmol1m731vGSSeOevePRv5YvopFv47UgqUuaPxebTWay71X0d0Lqxm6AdPC4rgP3d3ivIKiixOvlOr+beiBUJc5/c3wFzthndHNsFuGPexE7o2Zx1+eTj5ZTwdXXEA12bIib5FnKLyjE5LFj4nBxnWea6d0a0UVyw9wj2wimVQRgAXvo9Di8MbIFfDxsnOQbA9rPXET97JDxdWIFHLODxLIlKxuqYdPi5O0o0pU/8ZlQYyOO44zMLMX/HJYllYUjbRkLCEjWaeUkt1QaGERYVvWUxX9teG4BunxkFvlXPhsHNUYs/jqVL3BbF2f/E/R4Ajn84DKm5xYhOUnYhPHwlV1FLrkT6rRIcSMzBgcQcxM8eKdm37xI7Uci15LwL/m+Hq7b4+Oulvpi/45LJBDyqozGWV64wAID3ezvBvnELPDegBSLP38DLopq2jT2kCpQugV54Z0Qbs1Zqa3iWy+r671ll92+lHAG95+1F2sJxinFMt0t1cNJWKFo1q0O/Vr4Y3oG9fn+/2h8Mw6B9Ew+hH/m5OWLJEz0Q1sIHvm7Ga+Vkb4d5EzshyNsFq4+mIzzUx8Qq9mR4c3z8t9G1t08LH5OxSQ1rakCuiE4DAIzo4I8mns6KtZz5RdP5rNvYfeEGNsRmoqzSIInVP321AF/sSjQb76V2Hy3x4qBQdG6mngW6JhO6/XKQHX/Ebs49REqicd8fwXuj2goKYjs7gtTcYkUl4vOrY5GSU4zfj2VgWLvG+GBse4lnjVKSIz7RGg8f1lJbNHJ3rHbYghg7UfjTybR8yXgLSBVLnT/dJZkHVsakYWdqJYIOJOHDse0ln7t47TbGfn8Y7k6Wl5LPr4rF6YwCtGviblVeBAAI9nFRrDf7eJ/mGNUxAF/tvoz3x7RDC1l8/gdj2gkeGz6uDvjm0W7Yws0lXZp5Ylv8NQR4OsHPzREzx7TDlOUnbI6J5Nd5Px5Iklj/eI6K3NlXRKeiTwtfFFfohIR3YuVMpd4AezuNorKlplyzx3VugnYBrCB/8bPRGP3tISTcuIOHegSig0jA93JxwLlPR0k+yysjxK3jx3I7DYG9nQb/e6SLovusJe5Y+H3/25WIeC75506Rcp+Pv//7dBbeXHdG8pntZ69j+9nr8HF1EFy5+XwOVcHLxR6LH++B7/ZdEbwlAMDdSYvH+7Dz8rlPR8JRawcHrQY6vUEIQeKv04F3I9Dcx4XLam0kxNcV7Zt4CMoQWzA3RvxqZi0iVrTp9Aarcj40NKhwWwvc4Vw8iyt0yOUst6UVOvx9Jgtf7ko0654EmGZVNQc/ZbVq7IZZ93eQ7HMRWW55l+Vzn47E5lNZ+OSfC4JF49UhrfC/3YlgGGMMsJ1Gg2BfNqFQG393PNIzqNraVp4rsiRUgDQxldjqysfXvaPgKvjv2WtCQgVr8XVzwKKHumDGprMgBHimfwu09XfHB1vOIf1WCfq19JMIqMum9BJiKv/3SFc42WswtF1jzPnnIt4Y1gpenJKisKQSro7qSU3kCU8mdG+mKNz+/FRPixlY5YPWdm5xuuvCDWTklShOtACrab5TrrM4mciRu8wtm9JbUpoKAH56oge8XRzg5qjF2hPpkskSME5ESniJFD3HPhgmlIj5UzYJAEDvEG+cTMuXCEmTegXC38PJxJXWVvgFhthyNXWl1PrEx6I62WskGQp5LD3bavQO8UH7Jh4mwu0vT5kv7dbe1w4RA1lLo7xkD588aMXU3nDjFp+vD2uNr/ZcxsDWfohOyoWBYReCHs72gnuru6PW5j5iDX0X7EO+Qny9XHCoKcQKRDWrglqZoyf6sFYJ3q3RnMvnuU9Hwt3J3kQoWj8tHI8uNc2abQtDvzKNoSqp0MHFQSuJb+PHkpIKvcTCVtX+aA3ODnYmz7ktfD2pq6KFxlrkVsu/T2fBw5lV7t0oLBPciuXkiATTfQk3sS/hpolwZIm3N5yxrbFWwo9vU/uFqN67t4a3sXnek2esF5Nw47bE2ipXcPIW76VclmpxSRfeksaveczBK3/OZhai2ML4MrZzAHacuwF/D0e8O6otWjVyQ4emHmjz0U5U6A3wcNLCx9UBP4tcaAF2vm7u64pWjU3dZz8b3xFB3i6C2zQfujOwdSMkzRuL+344IlhZP5/QCX+fzpIowm1loUgxLlag8yznFFgAK2yM6RSAa4W2h1+8NqSV4pz/WO8gIcQgeuZQ+LpKDSptA9yRcOMOGLAC2PhuTSUWRzG8l53Y6vjG8NbQGRg83JN1W27h54ZJvQLxdN8QvLnutCRp2M9P9sTuCzcUY+wtobae4dfJ5pbLSmEXljg8YwgGyizr+9+JgI+rA1r7u2FTXBa+4PIliL2n3EWveWFxfLemgmecHSHQaIjQ3kPvDYG/p2ONraurym9HUvHS4JZ12obagAq3tQDvfsMwRjeH4nI93t9knWud/GF9sHszYVAY2q4xBrTyQ4/m3vB0tsff3PaxnZuY+PaLrYX8QODuZI8p/UIwpV+I5FgNIdAzDBpx8QD+MqtPbT+AYoF+jCxGBWAT28iRp0g3xysRLfFTVDKKy/UYwmmN+ZT5/Vr54dn+LYRMoGKGtmuMHsFemNQrSBjEAeALmasjbzFVQ+wGxC8OpvYLwUounuv5AS1wOe1qtTLXzdh0tsqftZa1L/SR9IUXBrbA0Hb+kpquCwK7cBkg1bNsKzG4TSNJ7VPe2jB/Ymc8ysVTLZvaG2m5xRJhmZ/AvK1MUqLGmqPp+PNEBiaIXNjkwmY852pszrpeVT4a2x5+rg74fr/yZG4N8yd2xt5L2XgloqWQAXqIzEqSMHc0tBqC9LwSZOWXCgIcL9w+O6CFJPFMTXFdITazNnlOVJPVGr56pKuilYgnom0jRCXmmJTakI+7PJ04q+bCBztXya1ajbXHMzCyQwAe/Mm0DJLOYJBYNGsTA8MuirsHe6m6/IlZ+3wfPM55iax9oY8gXNQUYqWpWhbxzPwSlCi4aFsqlSNHbrkd2NrPxDNk91uDkHjjDl7/U32eGtSmEQ5xMfm9Q7zRqrEbTqblw05D8MfzfSReNTz9WvnirzhnIflNdRltY1KZdrMi0amZBza/3F9I7GUrlrIlT+oVhB3nbqCxuxMe6GoM/9n8Sj8cScpVtTSZy1r/dN8QAGyyIADwdDbOF/L1zaiOAXgyvLnZUkXVRZwY75U/TmHRQ11QbkMuBh6lDOhnPx0pxO8Dykn15k/sjH4tfdE1kB2nvnusu8kxPLzyp29LXyF23cPJHp8+YExaaqchWPQwW1NZPD8/278FRncKQGFpRZWEWzXOcLHvx1PVS4dVhSAfF7w9oo3EXdmHUww0dnfCyxEtcauoHL8dSTW75rj42Sg4au1wIjUPi3YlCGsb3jrv5KAR5ujPJ3TCtNWxcHaww4RuzfBQz0CczyoEA7Y8HgCseKY3Lt+4g//tTqyx+GqAVcI08XTC+G7NLB/cgPjv2aLrAbcVtJif2ZjhEwBCfF3ww+TueEgkVDnYafDsgBboFuSFFn6uGNeFtTwoxciKJ54eFpJL8XFmk8OC8eXDXSwuDKsSc9bG31SbyqN0zcSUViH7pRj+Onm52AsazBmjjDG1k3oFYXJYEF4f2kryOUIINr/SH48puITagljRwGu9PxFZ2t8a0QbPdrI+DrcuGNelCfq1ZN3DV0ztjc8ndMJH4zpIBFseQggOvTcE93HXXa4skXNhzij8NkVqpTS6QjFCX/ZwskeXQC+Eh/pi08v9AACt/VnXf28zrv7W8Nm/F3HlZlGNWru+ebSr4nZCgNn3ST0tXB21eHtkW0ROH1jl73u8T7BQ9F0NJ3s7aO00aNnITZJwJerdCKx8pjferEKiKnlc693i43FSN8l97wzGmufCED97pM2uVg/1DMRbKsmkLn8+Bsum9MaqZ8Ow/50IAMCR94dg2ZRegrfLmE4Bkva4OmqRtnAcHgsLxhuycaU6fL79EoZ9HaW4L7EGXIFdrCyr48F5A6gJ93L6tfLDmdkjkLZwHPq19FN1Za2JhF5rj5t6fQBsmTVbPKOsZVRHU4tXqJ+rEIoxgAsJknsgvRJhtJisejZM8EjRagj6t/LDiqm9hf18iJOGsPMVwCoXlegSqO4uXhOcz7qNM1cLatyd8dP7O2D1s2EY0MoPLw1uaVLxoVMzz2pbmfg4dD936Xwh7hW8F9aml/vhw7Ht0KGJh8SqaUvODGuZseksZolCHazF0V6DjaKYWYCdJ/n1ljjmU4yroxaP9g6WVOxQY1znJoiZORSDrUzQdVvkPfKOLF7Xiq+zidooiSk3/qjtn2BGIHRx0MJOQ9C3pS+2vNLfJLu2uPxgz+beiJs1AkfeH4p3R7VFC27suL+LcV3fpZknXhzcEvGfSEOlePj1UFU4VQ0PhfoKFW5rAVvKKJhj79uDcX/Xpujfyk/IxiYfGNr4uyNt4Ti0FSVEEeOg1WBqvxCLyWfeH90OaQvHQWunwSO9gixOWk+GN7f+h4B16d391mDV7Li2JDExh5eKBbVjU0989UhXzJvQGRoNQdrCcXhBlDjG2cEOCx7sAm/X6glIavCC2tN9jdeNECIsJMV1AMXJL6ytuXi3GdKuscU+EOTjgh8f74G1z/fBllfMJzNyddSaxGPyuhm1pC89m3tj+xsD8NZwdvJUq0sn1tDXNh6yBXv3IGWlUqemnnhWRYHEx0XdbUL8XBHRtrFNXhovR7REyvyxmNQrqFZK7sibMucB6WL3+YGheKhHIH5/rg/SFo5Dy0ZuGNi6kUVPCltx0GpgpyEY3KaREK4R6O0isRQtebInnh+onIzKvwrZ0s2hprm3xjr+XCfzYxz/PInhcx483DMQ298YgDkPdBQWePwirZ3KHAQArtw4Jw5BCPRW7i8vDg7FoofqRllSVZ7oY1R+ujrYIaJtI2EOTZk/FmueC0PqgrGYNpjtH92DvZC2cBy6B3sJn3NxMB0DxV4X/BxeqWeE+dLN0bSfb3q5Lza+VPWFrrVEnr9hEicY4GFbP183LVywigHAgNaNMKgNe+1mjmkniYWvKV4f2hrjujQxEUy+FCnonLg+3bO5N6YNaokdbw6UxBv//pxpck4AQvzl3YSASK4hz8TuzfDXS31x+fMx1f4OjYagqQ3jO+8Gf2rWCGFtw9eWtatp6bYW8HDSYvpwdSVvkI8LTs0aYbN3EAA092Wt4Go1x8WIFQ/8s+AgGyMe7N4Mj/QMRM/m3pgcZpox3BrMhS00VKhwWwskVCEwXAmxgMlre2wdFy5/PkbiOnK3EC9O9r0zGA/1ME4kPz/ZU+kjVtHbTFmPv17qi/3vRKhOMA/1DKzxRa8tpC0ch8/GSy3eu98aZKJx+98jRmsfX7v4bgpogNGNydwAby39WvnZNDHy8NpxNzPJSjo29ZRkcFRCKau1GLU4o6rg6qjFiqm90b4JK6D6yNL+vxzREmuf74NVz7LZs18Y2AJLnqiZLOQ1yR/P9zERMMTWiu1vDMDONwfivZFtBWH4wR4179Yk1mt8OFZZ0fPVpK4YUM1yFDXJ2yPaYOUzvSXbJvcOxvKpvYQEYe5WWjtrmqaeTvBxMn1eHukZKFhg23BCqthqtuTJnph9Xwd8+XAXdGzqiSn9QgRBzMme/f8Up7jzdLZH+yYeGNSmERq7O+KXp3oicvogk+8UC7pibwF7jQaTegchbeE4pC0chwUPdpa4ptZHxIvQzyd2kmTH12gICGH/HLV2WDctHCunsvvF1hvAqKATlz/a/Eo/fD2pK5pzShUnezs80z8Ew9o1lihLeTo38xLGRGv1VF0CPTFvom3eWMujTRPWaBWshGreKwAQHuqLR0SeaZY8fGqCpl7OWPx4D4lCGWCtwrxyUknBF+TjgpT5Y5E8fyzaBrjjwe6m4114qHVJN6taDoZf2wxs7Yc3uGfmWmGpJNniam5uIYSgd4iPVZbZmmbuhE7wciTwFq23eM8q8VrmvVFtTT679dX+QiZmHnm8sBLLpqjnp5ArnS1BCMF0BSWfGB9Xhypd21XPhmHpUz0l98wcXz7cBf++PkB4Lzc8ff1oN3zJrRnl44m1lFTUfI6NuobG3NYCix7ugtTM64jN1qtm++PxcNLidpkOj/cJlrhSJc8fKzmO13J3DfSqlTZXheHtG2PvJWM9wZ+f7AFCCLoHeaGxh5MQAyqvjWZOww+w8R1KMVDuTlr89VI/TFsdK6Q3H9eliZBQydneDj6uDpg/sTO6B7ETfKifm1W1d+uKQG8XBHq7SLaJ3cn5CXhclya4dP22VbFtVSXq3QhE/C8KAOs1UFBagSaezght5CbEfdxNXolohcbuThjf1XqhaeebA4WY7Q0v9kWAhxMCPJ3Q3NcVT4U3h4NWYxJH9USf5ohNz0fOnXI83DMQG+NMM2/3aeGD0xkFFuvTujjYYUi7xujXyhc5d8rhIprALn8+xkQQ/2hcB/kpALDJJqwt8VQb9G/lJykR9dqQVni4Z6DQPzo2NXV7fHtEGzzaOwgvrI4TLDpt/d0tluUyh6uDHYor9HgqvDmmDWqJYyk1G19VG7yh4Nat0RAMbecvjPGvD2uF+TuMCWeGtWuMfQk3TT5XVcTx/GKaeTvDw9F0PPxoXHvcuF2Gw1dyEezjgjOzR8DT2R5nMgrQvbk33By1qp4GfMiFlosT7dTM02Zl3Fsj2ghx3nLBYnJYMCaHBVcr22l1GdymkUm9aoC1cgf7ShV3lgQcc/vdOHfYQlGyrB7B3ugR7I3RnQIwoLWfkBxtGeeyHD97JJ5YdgxfPdJN4sF1/MNhsLfTSGKwv3y4C97baJqbYcOLfU1K1lhLaCNXwVtNyctmYvdAvLVePXEYf7/fGdFGkpSnLtjx5kCz8dfivvn1o93g7qTFKq7G8YzRbXFf5yZWzZUtG7khtygPQ9s1xvKpva2O7Z03oRMi2jTC8Pb+OMxlUHfU2kkEpZqu7Svn39cHWAxFeCq8OYLKUiXC38DWfvjusW7oHeKDSb8cxW9TeqFdgIcQBsTHrXcN8oLOwAjXFQA+HNse71ioj92pmSd+fbqXYpkbdyd7xdC3UD9XvD+mHXLulKNTM0+UyBKd7Zo+CNerkOTLHI3cHTFSIYxBjUd6qVtj5eX95C7oaQvHIedOOXrP22vy2RBfFyEnkFIllYYOtdzWAoQQ+Luwl7ZDEw+zSRcOvjcEW17ph7njO+HCnFE4NWsEzsweYfKZ7sHeiJw+EC+ouL3dLcTtWvxED3Rqxlqolk3phdGdmmBUxwA0tuCaFOLnimMfDMPfr0ofzJaNXJG2cBwOvBthkt304Z6BWM5N5s1E7mxizSBvQQDYAWF8t2boHOiJER3Uk0zUV0IbuYIQIDzUB4se7oKPx7UXlAJzHuiId0e2Ea69Gv4ejpKC7Dy8C534egHsfdnySj/smj4Izg52aOLJXucwLn7zyT62uaJXFwetBo/3CbbJTZaP4/Nzc0RYCx8E+7rAQavBcwNaCIKlvOi8gWGEDLNTVWJtZo5pJ3xeXrB9+VSjxpjPUO6otUOgt4vkebFkYRYT7OsixBLXFd2CvPDi4FCc/Gg43h3V1mK5D0IIAr1dJBbfxxTcpAI8nARNtDxmdt20cMn7iLaN8f7odnhvNKvhDw/1xdEPhlbp99QHnB2M/fOnJ3rg5yd7InL6QPykUEM8hLPUWXL1bKLg8qx03QH2HrnL5IcWfq7wcnHAj5N7YOGDnYX3hBB8/Wg3PGUh/GBq/xA42WswqE0j9G/lZ5NgO6ZTgGCV2f3WIMyfaFqrlMeaOpo/TO6OtIXjsP2NAXgyXOrBE+rninkTOyHUzxXP9ld3JxzQyg+HZwwRhPZ/Xx+AxioxlhO6N8XE7qzl0c1Ri0d7BQnjprUcfC8CMTPZPs0rgpWyvLo4aBWTvni62OPf1weahCb5eziZuKuKhUexpdbJ3g7dg7wwOSwIs+7rILnnPz7eHW291ceuga38hDFVZ0M8M2+14xO01UIotM0EertgYGvrhcOPxnXA0qd64vLnY/BKRCuTuWrTy31NPvP60FZozcXD9mnBzq1i76J+LX3xxrDWilZ3QghGdgyARkMwqLUffny8O94c1loYmy2tCWqCTs08EWJjdnGAbfv4bs3Q1MsZR94fKoTfzJ3QCYsf74HfpvTCqVkjALDu4HveYr09Ajyc8GCPZlg2pZeJV94n93dARFv2frk5aiVrvdiPhwuv+e3D27Nu/ose6oIOTTyw9+3BQvKwbkFe6CcT8toGuCOirXVlq+qCLjJjl1JolljgHde5ieDWLF6PjOmkXDWgIUMtt7UEP78TwlrEsm+X4XhqnqClOvheBLLyS+Ht6iDEebo6auFqxiunrmLxxMTMHCpMvI5aOyEOSMkdQnysnABP1qL2RJ9g/HE8A98+2g1DRIMII0uzK3bVfX90O5y5WoDTGQWSRE12mv+OrmYX58ZHCBGSh7w7si1cHLSYHBYMB60GL0e0AsMweOWPU4Ilm2dEB3/MeaAjmno54/ycUdAQtl6eo50dDAyDP45nwMBA8Bj4mVtcdw82dfsO8HRSjZWub/AaZXNuSC0buUkym5ZV6jF3fEd8uStRcCfuGugpZEY+PGMIgnxchNAAefmToe38sfaFPnj81+MmyXjqwiWsprDTEHwwxih8WmtV6RzoCQc7DSr0BkXBzMvFHp2aeQp9Slxmh1+kOWo1KNcZoDcweDlCmkDGVuGhPtE9yAvb4q+hkbujySL6r5f6Ivt2GV5bexquDnaIem8Ikm7ewc3b5UKWYTHNfV2QfqsES5/qhft/PCLZF+qnnLxPQwA3B2mf5BMsebrYVylxXsemnkiYW7W4viWiEJU2/u5oY0ahs+HFvtAZDOgwe5fqMf245HYdm3rCTxavOf/BzggP9cUTfZqblBnjPawSPx8tzGXfPtYNn227iLYB7vjkgY7oEuSFXs29Bc+QsBY+QvwcAJyfI60Nai3ic4zo4I+XI1qqKtmqwrEPhiF8AVtejheY7DQEj4cF46MtxgRGhBAseJBVTBWWVGLNsXTY2xHc16Upiq8m4P3DrAWLL9PD4+Fsj3dGthXG1HFdmiA6KRcvDW4phBHNHd8Rs7ZKqxG8OqSV0BYA0BtqPjFQbeOg1Zi1wvVs7oONL/XFwz8fBQDEfTwcvm6OmL6Ote7yyocJ3Zph6xnWM2Fwm0Z4cXBLHLmSI8nKLy9vRAh7b3gOvTcEDXEJJFakiNeRrf3dcX7OKBCwv3VYe38TL7xn+rfAo72DcDm7yMTNnFeytfF3w8fj2mPaoFD4uDogq6AULRu5YVLvqsWn1meUSi6KBd7FT/RAYWklus7ZjYd6BGIBV67K2UoX6YYEFW5rCRctP2AzCPJxQZCPC3qF+AjCbXNfV8mk1lDw93CCv2jByi/45VZAgI1tsRRr+fmETnhrRBuThYg5La6TvR1GdQzA6YwCEEIwf2JnfLjlnKp2vSGipIHzdXPELFGGXXZRQLD06V6Ys+0CVojq5v36tNGayAt8vFWxlBsAGYbB/ImdzVpLGhpeLg74eFx7jOygvuCYMbot/D2ccCX7DjafzoKBYfBo72A82ptd2O+aPghNvJzQ5dPdANhYK8AoBPiK4qUOvhcBAHDnErsoZSl9bkALQbvckLHF8syPC0qJ7sxl4+3Y1BM/TO4OA8PgzXVnUKniBr7hxb5WZ+mtTzzTPwRdAj0Vs1n3DvFBwg3WNTSYmxtaNXY3Kaf110t98c6GeGx+uR9ScovROdATSfPGoExnwBO/HkN8ZqHJvfL3cET27XI83qc5tPmXkbZwnOAKWRvZg2sDB60GDiJns82v9DMphyROQKSRKZY6NzM+m6Gc5cnH1QEvDQ7F2M5NcD7rtmRxPapjgJAF2d5Og6fCm0OnN2Bou8bIuVMuGWNrCq2dpsaTCIrLq/G3ekjbxmYVb3zsLF+uyd9Vg4/Htcfn2y/B01lqDXayt0NoI1f0DvHGzDHtJHXieZ7qG4JynQGfb7+ERQ93kcSc83NdA+mGFpG7sIufdV6YHdreH3+fuSYokx1F6yf+Ojhz4+TA1n5Y8n/27jssiuONA/h36CAqKIpd7L33jr0lMb0nmmaK6e1njFGjMZqYmGYSo9FYYjRGk2jsqGAXK9gRpAioIFKkSLm7+f2x5Xbvdo87inD6fp7Hx2NvOZZjbnbKO+883U1OyqZHSnR3J7Gs45/s2Qj1/LxVe1j7eLipojqkbR/dXV3w92t9EVSzCtxcXeS2qOUyuTuJ1FZRsmxLVvd2x4VZo+Dp5iJ3bu1JbuVsnK914CS8xc6tZYKFTW/0xzFxn7U7wbyHO2HJ/jjNGT97MMasOraAsP2LLVJHNrCaF57s1ahCshRWJh+NboMeQTXwy55L6NlEfxsYQKjIPN1crEJC7xR6GWslPh5ueDW4GbLyilDXzwvDLPZGlDpkz/ZprIo8+O25Hlh5KAFVPd1Qr7oXHu/ZSB6g6tCgOv54sRd6aLz3n9yjva7WGd3XqR4Gty6+oy59emtV9cS9nerhSNwNeW/QQS1th3nd26mevM7pwa4NNM8proxXVowxm9s0Na/li6d6NVJtdyKtp/Nyd8H2tweicc0q2PvhYADmzpybqwt8XV3w58t9kC9um7ZmYm9Ep+bgk3/PoFZVT4RPEcL0wsKE/RvnP9oJ766NtNr+rLL79L526NbYH+3rV8d7w1via8V+lErSndfL3QVrX+6jmtnp1bQmtr89EC0DfeVOnmXuAy1uri7y8hhn8sdLvZBbYJRnR4tb6SENjgxto4ymEv63HMge2a4Oqnm5469iMjS/OKApnuvXxGrJ1fi+Qbh8I0+1e4EzG9AiwGp99oZJ/XAqKVMua/d1qocRbQPlz3aL2uZBQKktI82mPdO7sVMO5JUHxhgGt6qNn5/qqrsd04ejWuNDcYCoawnbpc5qQt8gDGwRgAKDCRnilldSWPLHimzfUrlb/Gx3/HMyyaGlX86CPjHlzDJUtn396mhf33p2x1k1rOFTLtmYLWcrLD3Qpb48g0uExsiYDnUxRmO/Y0suLgxRZbA9gLOr7uOOD0bqz5JYZrbu2yxA3uf34EdDrc63XK9zJ/r+iS52nVfVyw2ZeUXwdHPFD090wfQNZ7D8UALG92ls1Zka3jYQIedS5MzggBB67Cyh8GXJzdUFsy0iKaSlH/2bBxQb7ePlbk4u07tpTfkxg3Xj5cGuDXQHDyoz5R6UEwc1RTVvd3Rr7K+KqACEdXsA8NNTXa3WpgHaUQV3Kqne2npaSL4ozWp/8VAHeR24krurC/Z9OFjVgZAGlIa0ri1HCQ1tXdsqXNYWrfwjvp5u+KKC9skuDy/0b6JaagEAnRr6oZPFmnFlEqhaVT2t6rvy2Ev3TjHajnbOnSzs/WCrMGxA+HxZ5upgjOneS4e3DXTKnDT2oM5tOZHC8nT2zybFeGVQM7xhI+sgY8yujhwh5PZb90pfhEWlyjNAUmhUPT9vq1HiH57oghMJGWivEdJNhEGY9a/2QasS5FxoIobfvjzozpgVs+Tp5qrq7Cr1bR4gr3EkgmriOkQpKaO0FEOLZYhjp4Z+iJk9Gm6uLvju8c7CsoE7JZa4DJVVnoWPx7a12kubEAAlSuh1t6HObTnpGuiGIUV+eG+E9T5epHj3dqqHezvVsztFPiGk8mhe21c1ozO6Q138uj9Ocz9aL3fXu2LWuzS01jHao7q3+105Ay6hjq1a32Y18f0TXeT9lh0l7bE5pkNdHLp0A68FO1dI++2yYVI/ec1sSfl6uslJtwghjqHObTnxdmNOuTaHEELKWrfG/nd1J4uQyoAxhvs61Sv+xGK4u7pg7kN3TihxWbMMQSaE3F4lTpHFGGvIGAtljJ1jjJ1ljL0lHq/BGAthjEWL//uLxxlj7HvGWAxj7BRjrKvitcaL50czxsaX/tcihBBCCCGEEHI3Kc3MrQHAe5zzE4yxqgCOM8ZCAEwAsItzPpcxNhnAZAD/AzAaQAvxXy8APwPoxRirAWA6gO4QkmweZ4xt5JxnlOLayB0iYtpwhzaGJ4QQQgghhNydSjxzyzm/yjk/IT7OBnAeQH0A4wAsF09bDuB+8fE4ACu44DAAP8ZYXQAjAYRwztPFDm0IgFElvS5yZ/Hz8dDcKogQQgghhBBClMpk517GWBCALgDCAQRyzq+KT10DIGUuqA8gUfFtSeIxveOEEEIIIYQQQohdSp1QijHmC2A9gLc55zeVadA555wxVmYxpYyxiQAmAkBgYCDCwsLK6qXLXE5OTqW+PlL5UJkhjqIyQxxFZYY4isoMcRSVGeKosiwzpercMsbcIXRsV3HO/xYPpzDG6nLOr4phx6ni8WQADRXf3kA8lgwg2OJ4mNbP45wvArAIALp3786Dg4O1TqsUwsLCUJmvj1Q+VGaIo6jMEEdRmSGOojJDHEVlhjiqLMtMabIlMwBLAJznnM9XPLURgJTxeDyADYrjz4pZk3sDyBLDl7cDGMEY8xczK48QjxFCCCGEEEIIIXYpzcxtPwDPADjNGIsQj00BMBfAWsbYCwASADwqPrcFwBgAMQDyADwHAJzzdMbYLABHxfNmcs7TS3FdhBBCCCGEEELuMiXu3HLO9wNgOk8P1TifA5ik81pLASwt6bUQQgghhBBCCLm7lUm2ZEIIIYQQQgghpCJR55YQQgghhBBCiNOjzi0hhBBCCCGEEKdHnVtCCCGEEEIIIU6POreEEEIIIYQQQpwedW4JIYQQQgghhDg96twSQgghhBBCCHF61LklhBBCCCGEEOL0qHNLCCGEEEIIIcTpUeeWEEIIIYQQQojTo84tIYQQQgghhBCnR51bQgghhBBCCCFOjzq3hBBCCCGEEEKcHnVuCSGEEEIIIYQ4PercEkIIIYQQQghxetS5JYQQQgghhBDi9ErVuWWMLWWMpTLGziiO1WCMhTDGosX//cXjjDH2PWMshjF2ijHWVfE948Xzoxlj40tzTYQQQgghhBBC7j6lnbldBmCUxbHJAHZxzlsA2CV+DQCjAbQQ/00E8DMgdIYBTAfQC0BPANOlDjEhhBBCCCGEEGKPUnVuOed7AaRbHB4HYLn4eDmA+xXHV3DBYQB+jLG6AEYCCOGcp3POMwCEwLrDTAghhBBCCCGE6CqPNbeBnPOr4uNrAALFx/UBJCrOSxKP6R0nhBBCCCGEEELs4laeL84554wxXlavxxibCCGkGYGBgQgLCyurly5zOTk5lfr6SOVDZYY4isoMcRSVGeIoKjPEUVRmiKPKssyUR+c2hTFWl3N+VQw7ThWPJwNoqDivgXgsGUCwxfEwrRfmnC8CsAgAunfvzoODg7VOqxTCwsJQma+PVD5UZoijqMwQR1GZIY6iMkMcRWWGOKosy0x5hCVvBCBlPB4PYIPi+LNi1uTeALLE8OXtAEYwxvzFRFIjxGOEEEIIIYQQQohdSjVzyxhbDWHWNYAxlgQh6/FcAGsZYy8ASADwqHj6FgBjAMQAyAPwHABwztMZY7MAHBXPm8k5t0xSRQghhBBCCCGE6CpV55Zz/oTOU0M1zuUAJum8zlIAS0tzLYQQQgghhBBC7l7lEZZMCCGEEEIIIYTcVtS5JYQQQgghhBDi9KhzSwghhBBCCCHE6VHnlhBCCCGEEEKI06POLSGEEEIIIYQQp0edW0IIIYQQQgghTo86t4QQQgghhBBCnB51bgkhhBBCCCGEOD3q3BJCCCGEEEIIcXrUuSWEEEIIIYQQ4vSoc0sIIYQQQgghxOlR55YQQgghhBBCiNOjzi0hhBBCCCGEEKdHnVtCCCGEEEIIIU6POreEEEIIIYQQQpwedW4JIYQQQgghhDi9StO5ZYyNYoxFMcZiGGOTK/p6CCGEEEIIIYQ4j0rRuWWMuQL4EcBoAG0BPMEYa1uxV0UIIYQQQgghxFlUis4tgJ4AYjjnsZzzQgBrAIyr4GsihBBCCCGEEOIkKkvntj6ARMXXSeIxQgghhBBCCCGkWG4VfQGOYIxNBDBR/DKHMRZVkddTjAAAaRV9EcSpUJkhjqIyQxxFZYY4isoMcRSVGeIovTLT2NEXqiyd22QADRVfNxCPqXDOFwFYdLsuqjQYY8c4590r+jqI86AyQxxFZYY4isoMcRSVGeIoKjPEUWVZZipLWPJRAC0YY00YYx4AHgewsYKviRBCCCGEEEKIk6gUM7eccwNj7HUA2wG4AljKOT9bwZdFCCGEEEIIIcRJVIrOLQBwzrcA2FLR11GGnCJ8mlQqVGaIo6jMEEdRmSGOojJDHEVlhjiqzMoM45yX1WsRQgghhBBCCCEVorKsuSWEEEIIIYQQQkqMOrflgDE2ijEWxRiLYYxNrujrIZUDYyyeMXaaMRbBGDsmHqvBGAthjEWL//uLxxlj7HuxDJ1ijHWt2KsntwtjbCljLJUxdkZxzOFywhgbL54fzRgbXxG/C7k9dMrMDMZYsljfRDDGxiie+0gsM1GMsZGK43TvugswxhoyxkIZY+cYY2cZY2+Jx6meIZpslBmqZ4gmxpgXY+wIYyxSLDOfisebMMbCxb//n2IiYTDGPMWvY8TngxSvpVmWdHHO6V8Z/oOQEOsSgKYAPABEAmhb0ddF/yr+H4B4AAEWx74EMFl8PBnAF+LjMQC2AmAAegMIr+jrp3+3rZwMBNAVwJmSlhMANQDEiv/7i4/9K/p3o3+3tczMAPC+xrltxfuSJ4Am4v3Kle5dd88/AHUBdBUfVwVwUSwXVM/QP0fLDNUz9E+vzDAAvuJjdwDhYv2xFsDj4vGFAF4VH78GYKH4+HEAf9oqS7Z+Ns3clr2eAGI457Gc80IAawCMq+BrIpXXOADLxcfLAdyvOL6CCw4D8GOM1a2A6yO3Ged8L4B0i8OOlpORAEI45+mc8wwAIQBGlfvFkwqhU2b0jAOwhnNewDmPAxAD4b5F9667BOf8Kuf8hPg4G8B5APVB9QzRYaPM6KF65i4n1hc54pfu4j8OYAiAdeJxy3pGqn/WARjKGGPQL0u6qHNb9uoDSFR8nQTbFQC5e3AAOxhjxxljE8VjgZzzq+LjawACxcdUjoiSo+WEyg8BgNfFMNKlUogpqMwQBTH0rwuEWRWqZ0ixLMoMQPUM0cEYc2WMRQBIhTD4dQlAJufcIJ6i/PvLZUN8PgtATZSgzFDnlpDbpz/nvCuA0QAmMcYGKp/kQvwFpS8nNlE5IXb6GUAzAJ0BXAXwdYVeDal0GGO+ANYDeJtzflP5HNUzRItGmaF6hujinBs5550BNIAw29r6dvxc6tyWvWQADRVfNxCPkbsc5zxZ/D8VwD8QPugpUrix+H+qeDqVI6LkaDmh8nOX45yniA0LE4DFMIdxUZkhYIy5Q+ikrOKc/y0epnqG6NIqM1TPEHtwzjMBhALoA2FZg5v4lPLvL5cN8fnqAG6gBGWGOrdl7yiAFmI2MA8Ii6I3VvA1kQrGGKvCGKsqPQYwAsAZCGVDyjA5HsAG8fFGAM+KWSp7A8hShIuRu4+j5WQ7gBGMMX8xTGyEeIzcJSzW6D8Aob4BhDLzuJiZsgmAFgCOgO5ddw1xHdsSAOc55/MVT1E9QzTplRmqZ4gexlgtxpif+NgbwHAIa7VDATwsnmZZz0j1z8MAdosRJHplSZebrSeJ4zjnBsbY6xAqeFcASznnZyv4skjFCwTwj3B/gBuAPzjn2xhjRwGsZYy9ACABwKPi+VsgZKiMAZAH4Lnbf8mkIjDGVgMIBhDAGEsCMB3AXDhQTjjn6YyxWRAaEgAwk3Nub8Ih4mR0ykwwY6wzhNDSeAAvAwDn/CxjbC2AcwAMACZxzo3i69C96+7QD8AzAE6L6+EAYAqoniH69MrME1TPEB11ASxnjLlCmExdyznfxBg7B2ANY+wzACchDJpA/H8lYywGQoLExwHbZUkPE9MsE0IIIYQQQgghTovCkgkhhBBCCCGEOD3q3BJCCCGEEEIIcXrUuSWEEEIIIYQQ4vScNqFUQEAADwoKqujL0JWbm4sqVapU9GUQJ0JlhjiKygxxFJUZ4igqM8RRVGaIo/TKzPHjx9M457UceS2n7dwGBQXh2LFjFX0ZusLCwhAcHFzRl0GcCJUZ4igqM8RRVGaIo6jMEEdRmSGO0iszjLEER1+LwpIJIYQQQgghhDg96twSQgghhBBCCHF61LklhBBCCCGEEOL0qHNLCCGEEEIIIcTplapzyxjzY4ytY4xdYIydZ4z1YYzVYIyFMMaixf/9xXMZY+x7xlgMY+wUY6yr4nXGi+dHM8bGl/aXIoQQQgghhBBydyntzO13ALZxzlsD6ATgPIDJAHZxzlsA2CV+DQCjAbQQ/00E8DMAMMZqAJgOoBeAngCmSx1iQgghhBBCCCHEHiXu3DLGqgMYCGAJAHDOCznnmQDGAVgunrYcwP3i43EAVnDBYQB+jLG6AEYCCOGcp3POMwCEABhV0usiJffPySQETd6MK5m3KvpSnF5kYiZOJ2VV9GUQovL2mpPYF329oi+DEEIIuav8EX4Zk/44UdGXcVcozcxtEwDXAfzGGDvJGPuVMVYFQCDn/Kp4zjUAgeLj+gASFd+fJB7TO04csOfidZxJLl1nau3RJABAXFpuWVzSXW3cjwdw74L9FX0ZhMhMJo5/I67gmSVHKvpSnEKR0YSkjLyKvgxCCCFO7q9jiZjyz2lsPnW1+JNJqbmV8nu7AniDcx7OGPsO5hBkAADnnDPGeGkuUIkxNhFCSDMCAwMRFhZWVi9d5nJycm7r9U3YJnRIl42qUuLXuJEhzNieORWJoiTXMrmuu50jZeB2lxlnlJxtQi0fBg9XVtGXUik4UmYMJnNVfCeXs9PXDWjq54oq7qUrI8vPFiA00YAFQ3zg63HnlDeqZ4ijqMwQR91tZcZo4vjuRAHubeaOFv7W7ecZu8yTRqGhoWDszrmnlJWyLDOl6dwmAUjinIeLX6+D0LlNYYzV5ZxfFcOOU8XnkwE0VHx/A/FYMoBgi+NhWj+Qc74IwCIA6N69Ow8ODtY6rVIICwvD7bq+T/87C0D44Nj6mTM2nsWyg/GInztW8/lvzx4AMjLRvVtXdGt8dy17XnEoHp/+dw7Rn42Gi0sZVDrbNgOw/fewdDvLjDPKyivChJk7MK5zPXz3eJeKvpxKwZEyk19kBHZsA2AulwUGI27kFKKen3c5XWH5iEnNQeOaPnB3VQcfpecWYsKsEPRvHoDfX+xVqp/x8eHdAAzo3KMXGvj7lOq1KhOqZ4ijqMwQW+LScrHj7DW8PKiZfOxOLDOrj1xG10b+aFWnqtVzl2/k4dSOUNwweODA5GCr5/nubQCMAIA+/QfCy50mkCyVZZkpcVgy5/wagETGWCvx0FAA5wBsBCBlPB4PYIP4eCOAZ8Wsyb0BZInhy9sBjGCM+YuJpEaIx4gdOOf47UC8/HVeoQGpN/M1z112UDgvPPYGCgxGq+cNJhMAwN6+XU6BAR+ui0RWXpFD11zRQi+kCg19hc82nYfRxHGryPp9IaVzOikLN3IKSv060t/m4KUbpX6tu5Fy5lby3tpI9J27G0VGUwVcUclcy8rHsPl7MHvzeavnbt4S6qLL6drhxIUGEz76+zSuZWnXkVp4mcUeEUJI5cE5B9ep4PSOa3li0WHM2XoB2fnO1RYszo2cAsRez5G//ujv0xj57V7NczmE90tvQrbQYL7H5hQYyu4iiabSZkt+A8AqxtgpAJ0BfA5gLoDhjLFoAMPErwFgC4BYADEAFgN4DQA45+kAZgE4Kv6bKR676+UWGJCo00iTfLLhjOrrRxYeQs/Pd9n8nscWHcaPu2OsjhuMwodTqxGs5Y/wBKw9loRf9l6y6/zK4ExyFp5bdhQzN51THXcXw1ylSie/yGhXgz/rVhGCJm9GaFSqfCyv0LrieuCnA3hrzcnSXHqlFZGYiaDJmxGdkq35/L0L9uO+BQdsvsbxhHR0nrkDGbmFuudIgy4mO8unM9t+9hrWHU+SvzaZOJYfjFcNyhhNHKvOFyAuLRe3CosflDEard+3kHMpAMyffWeQJXZgD2kMcuSLg3Ze7tq3tr0Xr2P1kcuYZlFvElLZ/HsyGccTMir6MiqlxPQ87DqfUtGXUWltiEhGTKr2/VhyM78ITT7agiX74+RjF1OysSEiGe+tjUSTj7ZYfY9W2wYAMm8J9+077dYcPC8MQ77eU+x5Lyw7imeXCrkslJ3bvEIDvtoehQKDUdWuzsmnzm15K1XnlnMewTnvzjnvyDm/n3OewTm/wTkfyjlvwTkfJnVUxSzJkzjnzTjnHTjnxxSvs5Rz3lz891tpf6k7xZOLD2PAl6E2z/n98GXV12ev3LTrtcMuXse3Oy+qRuekzpxlp27L6av461gi9OQXOc+sjzSzoxyNAwB3N+Gj8PmW80jKyEPrT7bh/h+FDtnmU1cx5OswjFKM2MWl5eLN1SfljMjP/XYUR+LSse3MNczdesHq5568nIkNEVcQNHkztp+9Vi6/W0X5L/IKACAsSj8Lb7JGBu4CgxEf/3MaaTkFWLgnFpl5Rdgfk4b/rTtl9fcBzDdOYzEjyscTMirlCPJba07iwZ9sd/IlL688jvf/ipS/Djmfgukbz6L3nF1yQorjCRkISTBg8FdhaDNtG4Imb5YbKi8uP4qgyZtVrylFZmix9VxlI0UiW5aDnAIDHvzpIADAWyfky2TxPVoDJb8fTkDQ5M1yJ9rewT5nVGgwYa6DMy5FRpPTRevcLmU5I/P2nxF46OeDZfZ6zqrQYLLqVA39eg9eWH7M6twP/opE98924nRSFtLsiBZKuZmPnef0O8kP/XwQP4ZaTwRUZpxzvLUmAsPma88wAsLOGL/ujQUArAo3tyFHfLMXb62JwPoTwsCqUVH3HYlLR9tp2zUHFaXbh8GJIoDska34PBtt3Ad2XUhFwg1hIorB3LtdGHYJC0JjsDpc3U7P1RkkmL8jCjM2ni3NJRNRaWduSTmKLMVWMgajCQcvpek+fyopC9/ujEZShrnTITXiLGdxXlt1Ah+sOyV/feJyBvIKDXBzcRG/z4kqNLHesewfSWv3NkRcwbQNQuVy9spNGIwmTPrjBGKv5+LCtWwsF0O7/7fuFDZGXsGxBHOQwaO/HMIrvx/XDYmULFOEkd8JpA5D5q1CvPNnBN79MwIpOqHxtwqN+DE0BoUGE7acvopV4ZfRc/ZOVPd2ByDcQP88log3VlvPckuDLrZmbnMKDHjo54OY9EflmyXfEHEFJy5nluh7pd89M69I3kpAa2nBnC1CqO7O86lWz9m6OTvTzK2LODRu+fuEnLuGvEJp5lavcyv8z5gQLdB0yhacSsrE9rPX8MyScBQZTZj6rzCrK3VUlA02zjl+DI1Bwo3cUmenrwz+PpGEhXsu4ZuQaLu/583VJ9Fp5o5yvCrn9M/JJLSfvh0Xrtk3wEy0mUwcQZM345uQiwCEQf6209Qr1QrFz+SZ5Cz58zl36wX8dTwJaTkFuHfBfjy/7Kj8elL9yTlXhYc+9PNBvLjimG4I7vGEDMzbHlW2v2A5+0xjucaPoTE4p5j4eOfPSHyvEb1nSVpOlF9kxKO/HAIAHI617txKA41FOveRGRvP4g+LDp6zsZz0KTKasCEi2eq4cuY2V7wfWb4vyjIICO/vc78dwfe7Y+Tlg7bkFBgwe/M5zTYAEVDn9g71/e4YPLk4HOGxN5CVV2TXyLxUv+t1VouMJqTnFuLBnw7inT8j5I6x3sxGfFoujsSZO3+/7LmE6RUcDig1jDkXZl+lm5qHIjGNMqRxlUWFPH3jWUQkZuJIvPB7uWksUL6erR4xzsxTh9q6aWT6DY+9gX1JRbiSeQsz/ztnsyNS2Ujl5sfQS/jnZDL+PpmMmZvO4WZ+EX7dFyuf98bqk3h6STjmbY/Cbwfi8Ol/Qmi4iQNVvYTcdtK62rxCIz7594xqxld6T27mG9BZo3FtMnG5U11WHY/QC6mqRkFZupaVj2Zi50rPikPxKDAYNWcitcLmDSaOIV+Fab5WkUaZKhBvsrFpubia5Rz7W5t06inl2+Htod25lT7vDAxH44WQzz+PJuLllcexLzpNc5ZGapgYTRwjvtmLedujMGheGO75YX+xoX+VnVR35zvQSNp65s6KPCkroReEyJXzV6lzWxrSrNbPYcJyp2OK0OykjDxsPW3eSuWeH/aj+cdbETR5MxbuUS+POpWUhe1nr+GNNSfR4uOtAIAfdseg5dSt8kyw1IYJu2gddWTvmtOkjDyre3xFUoYZA0K9NW97FB4Qo4YOxKgnPaTfU2sGOznzFjp9ukOV18VoEtbpLj8Yj6xbRSgymuR78/yQKKw8FG/1OssOxmPKP6dL82tVOMv77eJ9sXhrTYRctiTK1p008L/jnLrOvJyepypfl67nINRG5Bugjn77YVc0Fu+Lw9qj+hGVdzvq3DoBzjnyi4x4/69IuxugZ8XG/Y3cQnSauQNdZobAVaMjVmg0gXOOhXsuIVHc01FqzH2x7YJqLemVzFty52H72RQsPSBUonr5p4K/CpNH+wBgztYLWH4owa7rLw9rjyUiW1zrcP7qTQz+Kgz/W38KQZM3a3aiAGjOQO5RVEI3NdZOKEPDT1zOQOeZIarntTrEjy06jCVnCvHu2ggsPRCHk5czkJFbiFwnSDyg1QhIyy7AjA1nVaPI/0VekdeQzdl6AZmK0EYpBPSK+HeIS8vFysMJ+HBdJE4nZaHl1K3yc4Awg2m5Hu3zLecxVFwf41JGafafW3YUY77fVyavJdkXfR27zqfgy20XYDRxrD5iHkDJLzIi9IL5Mzdtw1nM2xZlNRP5xuqTVqO/kliLfaqFmewTVmtu+8zZpTqnz5zdVq916NIN3Z+j5Xash5Y+n1cy81VLK4yKzq6vpzBYMj/kImZvPofr2QUImrwZr64SZr1DzqdgsRiWV2Q0yeu5v91pPYO57GAclu6Pw77o64hOVYfLx6TmyjNNH/9zGrcKjcjILcRX26OsBqi+3hGFd/+MwNL9cbqDV3mFBuzVaGiXF+lzUpK/m6MDcFl5Rdh2Rn+Px6SMPKuBQWci3V9vRwKymNRsNJuyBQk3nHdP+uiUbKvEjrM2ncNusf6zbK8UGU144KeD8mfYHi+vPK7aV3StuLwqIjFTdd5zvx21+t4CO+u9/l+E2gwBLi/RKdnFDuLmFxnl2T3p93nq13Cr80wmjhdXWId5P/DTQWTdKsIX28xLrZIy8vDBulOYvvEsPvpb+F+y9lgSPtlwFpGJmZiwLddq8C889gZMJnUSq9NJWQiavFle4mVLwo1c3WSAm05dwfD5e8rsHqSs3zjnVtFNqTdt11VXMm/h0nXh8ykNpEreWhOBJh9twUxxgP/mLdvtvH3R19Fv7m65LEt/S72ZckKd29sur9Cguf7QFhMHwuPSse54Ev633r7RL6kTJ90gDCau2RgpKBJmY+duvWCeuTVyLNkfh5/DLqkq/UHzwjD6O+uGvnLN7c5zKaqR1YoWHnsD/5xMQkxqNj5cdwrv/BkBwLyWYu2xJKvv2X7WPIL5U5h1sqxvdl6UHy/aG2v1vNKmSOv3wtVF/bFTzm5LiYEYA7rMCsFgnVk4SUnKk6W/TyTJN8lf98Wi5+yd8nNBkzfLiRKUDsak4W9xXY5W9VrF0w07HUj48feJZOF1LdbzFBSZsPRAHAoNJuyxaPQ/9PNBBE3ejJtiVMIKxcCJ5QAC51w+73YymTj+PpGkCm19ZskRvLD8GP4+KfzOPh5u+P1wAk5ezsDk9afw3DJ1Q+vS9RyrtaL/RV5BXJrt8HdAaBAeT8jA5lNX5VA+QBi0uarRSFBmtd578TqeWHwYSw8InTFlOQWECIVj8eZjx+KFMN9Ii4ajozjnuq9RYDAiOVP4vY0mjm93RuPCtWzEp+VilyIUu6qXEOb+vTjCbdmpMpo4bojJy85dvWkzEcraY0mYuemcZj6DV34/LkdxrAq/jLE/7EOXWSFYEBpj1Un9YXeMHNWwMVL420udYcnUf8/g2aVHNNec6/nnZBKCJm8u0cy7nKStBD0yR5ejvLnmJF75/YRufdX/i1D0UNQ9ZSkjtxAtp27VXC9YEloNbGk8Tes+m1NgcCj7rJZnloTL6+j/OpYEo4ljy+nSzaJfTMnG5RvF1yNl7UrmLQz/Zq+cn+JATBrWHkvEkv1xeGtNBABY7VyQdauo1IMf0qDXk4vDEXVN3fGS/j4pN/Pxy55Lxd7blexZ31tS289eww+7rAfdhn+zF/f8sF/OMaEVojr6u30oKLK9C4aRc+TorAHVkphxS052GJ+WpxluLM2i74tOU913H1t0GE2nbFFFyGwV6+Y9F62X0lgaNC8MvedoJ0x9588IRKfmqO5zJbXp1BU0m2JOqGVQhLZLPNy0u0/xN/IQGpWKvnN3FztQufRAHDjneGLxYdXxj/4+hff/ioTRxJGVVyRHj0Uk2k4wdzElGwdj9Jcj3k2oc3ubPbvkCPrNVc+QJNzIRcKNXPwRfhndZoVY3QQn/HZEnrVKFsNyTiVl2gyFkRpcL688bvN63lxz0irj8tchUZhlkU3YFmWyhxdXHNMcWbUcob1dHlt0GO/8GSl33G93CnZpdltJ6nh9se0CPv3vrGp2W2pwSxt8p4o387i0XM0G7/il1uWpODGp2arR7HfXRuKeH/YDENbrpGYXYMbGs3I53HvxOoLnhcqV+28H4vDkr+F4d62Q8EirYbz7QqrmrLajDCYuv75eA1za+kp5U7t2Mx8jv9krz4Iu3BOLjjN2IDXb/i1gysJfxxPx7tpIm+toluyPw9R/z+CBnw7i34grVs+HRl3HM0usBxiUo+l6xigGo4bNN2d97KWTUf2oorMqdWZzCwz4dudFPPrLIZy4LNxcbxUa8fDCg3h4obnsSrMhyploW7LyijTzAuw4l4JxPx7An0cvI2jyZnyrGEx6989IPL9MPcPAGDD46zDsUITVWTbkEjP0O35nku0LI9Vbe/f4InPDJPa6eSZNDvktMloNDEhrg8d+L3SGJdJIf/yNXLSbtk3199AzX1yb2GfOboz9fp9myL4eaU/vkrQHHV2nHS/OMuYXGXHhmhA5YysvhKMycgt1Z5OPJ2Sg0GDC4n22Oyyccxy8lGazIxoalYrec3ZZhXEql7woXc26hfbTt8v5Giyva9Mp68+8ln3R5vdKKltaUUAbI69ghx1JC/OLjEICoT9t5ye4mV+E2MyyvX9L5VoqE0/9Go4PFXk9JMrB3cxSJjEzmjiqiJ1bAFZbuoz+bh+2n72GXp/vwpytF+TPFSDMVp5JzkJmXiEycgsRJ0bH/FpMebIlMjFTc8lLkdGkaqe8vPI4vlZci6WHfj6IDjN24LFfDls9F5eWK98X9aKZ8gqMcqJNeygjps7phOBLf99P/zuHjjOs66MFoTGISc3Bbwfi5MkRR/Z9TUzP052hVS6Te37Z0WInCABg25lrqig5ywieQoNJtawnJjUb649bT4xItCIB9GgNMq8+koh1x5Pw3LKj6DRzhzz4Wtyk9Ihv9uLJX8N1s1rfTahze5sd00jtP2heGAbNC8OUf07jRm6hVTjMvug0fPS3MGN76XouXl11AvctOGC1HrQkYlJzrEZ/lQ00e+QVGmE0cczfYW78KUe5iowmtJ9uTggRnZJtMwRFGq2S1iJevpGHfdHWI2Bnr2Qh3cbWMUqVaQmrlHzh57BLqrUsgHkNkKvFjWjwV9op6aVwlx9DY+yeGRj57T5M+uOE1R53ytmIZQfj8Yti5Dr+hhAyGJ2SLa+VlZRnGF5EYqbcYNX7OYnpt1Qhy5KolGy891ckOOf4V5wlvZGjLi+5BQYs2B1d/AjrfutBCkuL98Zi6Ndh2H0hBaeSMnH2SpYcupRRQWuyLMNoi/PK7+aBKWnE3cPVRW6s5BYYcDwhA22mbZOzQ0qfdU+xccLsDAn/ZudFPLk4XI4aWLA7GqvCE+SG1jZxbedPoeboiRCNdWGujFmVjbCo66o66MK127821oUJs9sjv92rGsASnmM4Epcuh5AP+HI33lsbiTRxMOtwbDpyC41YaBE5orXlk7LRevbKTc1OQHjsDaTlFGBDRDLSbpnfF1e5Q1aSmVuO7p+F4DuNUO4zyVmqzoFSfpER+y6mIS4tFyHnUrDrfIq8LEEp61YR5mw5jyKjSe64ztp0TnMWq8hoQpdZIfhYZ12ftKZYL4u2ZP2JZDy5OBwbNAaZ5N9NvHedtJhF0ZsFTxbr9E2nrKN4Hvr5IF4vQfI7qU48mZghD3pm5RXBaOJ4c/VJTNQZ1E7KyMNPYTEImrwZX4mDNSeLSXL32u8nMPNwPvKLjFh+MN5mjgDJO39GyCGXltYfT5JnZ6VEgnriFEsslINzJfHWmpO6iQ4BoY7Qmwzo/0Uo7vlhPzrPDJEjqg5duqGZvAkAdl9IkesvPeN+PIAx3+/D8YQM1eD/C8uPqdpL9opIzESMRn0vzdwaTFxzkqG6tzsiE+3LUXFPx7p2nZeWY/t+l19kwrD5e/Dpf+fkTuVnm8/rToKYTFy1Nd6AL0Mx6ru9WH3kMv4nDoqYIw/N9dvuC6mqMiRJTM+TI8Fir+fgld+Py4Mru86nWL2PhQYTilSJyA7JExGl1dfG5ITULpGWBulV0z1m78TszebPm3KJ0YnLGQiavNmhaKA7AXVuy0m+geOVlcd196m1lTK9wM6tdSpLFr+0nAI0m7JFlX1vyt/mRkZeoXqPr+Hf7MW9C/brvt57ayPQaeYO3LfgABLT8zBwXqjmzNXY7/fj4YX2bZXgyLrBstAqsKruc1oNdEuONjXnbY/S7chcTMnGCkWSB6lhlFNgkGeQAGDy3+qRc8tkBUkZQiiZksnEy31dsNQo1Et689yyo7o3iPTcQrSfvh1R4h68ynVcGyKS0W76dny146Jm6LWywW+5L7KW2VvO49L1XDy/7BjuW3AAY7/fL5d7rcZ7ZZdbILzfX4dcxOFYoXMbHpuuCkUGhM/3vyeTsUKcmfLUCdeyJDU0L4k33a92XMTH/5xBvvhZlaqMQqMJ0zcIycW09q/VGrhKzryl2nIrqoIy2D6x+LA8CKDkypiqw5uYfgvrTyTJIbsFYiMvMSMPQZM3I+RcCs4kZ6HNtG3YGKnueGmN/Ft6bNFhDPgiFG+ticCPJ4UOdHZ+EaQVEpYdskKDqdhtPU4kZCAtpxDf7LyIpAz17/jgzwfx/a5oVb0r/YjcAqMcQXEmOQsvLD+GtzX2AJ+79QJ+2RuLNUcT0WVWCJpNEfbk1JrFyhPL6hqNBCtXMm/Jda6nzv7HF1OyETR5szyIqkwKZbnHtDTbvcsiI7lUt1iWR+m4ZUI3ZZ2gDA3Ozi+yGek0Y+NZ+Tq3nL6GIV/vQV6hAZ1m7pCzpeuZH3IRX24T2g2/2jFgB0DuzK48lIDpG8/Ke5bP3nwOKw+bl4KcvZKFfnN3IyO3EP+cTMbSA3GakQfvKbY42xBxBUO+DrPrOkpr06mrqt0h7NWnaU3N45ahpIUGkzz49PyyY3jl9+MIvZCKiMRM9Jy9Ex1mbNfcx/2hnw/KGdoB6A603rdgf7GDUNM3WifsjFOsy279yTar52PTcuUM/MUJ8PW06zxHpCsGfqXIIEvrTySptsYDgIspOfjo79P4U1xHLb0zRUZhCZJWwkVAWMYx4MtQjF96BCcuZ+A7cbDsVHImUrPzNbeYupFbiAOKKJPbfT+XQs7PXVUPQjAmlLvr2QVYvM/8eVZe3z/ikq990Wm6/ZE7EXVuy0lslgnbzl7Dmxo3bQA21wWM+3E/HrMY6S9OgK+HQ+eXJa21aJsV6261ZhsA/dkCZWim3jpJqdEUez0XF1Oyi11PebtTpndsUN3m88WFxypHDpUjbr/ui8UzS8LlmUgl6T0xmTh+P5wgvyejvt2LaRvOWr3faTmF8tpsQCP7rsUEnOXsEwCM+m6vZihtecguYZhzrqL8FRpMSMoQMhVqbZejVFxCkRWH4tF3zi6rhr2SNJBguR91ZSbdALU+UwtCYzDHYh/nW4VGvC2udwL0OxCWpDVLeRb1gzRzq1xjvfxQAvrN3S3PDivpNWI+/sfc0EspJvlHeXhh+THNmRQA+ln4RFK438UU4fu3nL4qDyocunQDx+LTMT/kIrJuFRU7cCd1UqU1jAYudOY6zNghz1BKEcZZt4rAOUfLqVvR/OOtctItLcq14f2/CIXRxLFfDJ2V/iYP/XzQak/c3AKDPOshRZ5oZQqVOgLX7FhLbCvb8z0/7Jd/T2ltv1J8Wq68DEfKJKv8u20+fRXTN55F60+2Ycn+ODkU+MK1bHlgZtuZa1h9RGhkGzlHanY+ft0Xi0mrTsh1gHId+bWsfHT61ByuOVjRweswYwce+Mk8aGs5eLjsYLwcvi6RBji2KQZ08ouMeP2PE6rwaXcX7c/mtax8eb39gt3ROHvF3IiWtsmbbdFxXrwvDp+InTKTmJE3OfMWDim2innut6PFdsgcjRRzxIVZozBzXLtSvYa9a8sfX3QIbaapO48nLmdg7lZhqU92vgEbIoTyZzlwpJUYyjLs9lRSVrF7bmsNdI3XGLgtKb2By4Y1vEv8msoOv14kXnEzwTvPpcifsyKjCR1n7FDNwkvv5amkTLzzp7mT/OBPB+W6ISffgJ6ztZfrDJu/R3U/ud2k3C+HY9MRk5ojt2c5h2bUmuR0UhbC44TP45bTVzHgy1B89PdpfLU9CjvPpSBo8ma7ox+djVvxp5CSkHZ7SbiRh8OxN3Al8xY6NfSTny8oMsFHpz8afyMP8Q4meWga4Iu0nOLXZ90uyrVP/0Vqd36iUrLRJKAKPvjrFBgDvnu8i9U5yg2xd19IwfPLjuHA5CGqrXtGfLMX3Rv748GuDTDln9N4Z1hLnE7OQtt61eRznlxsnSHQESue76ma3Xuwa33NhpJk6ti2+MvGmoziQtGUo5TKEWIpDGpfdBquWDT6pNmX0KhUTP33DKb+ewZh7wfLMwmZeUXIKzLC080FBeI+syPaBsrfzyxa3PY0OqTGd1kI8PWweROzFSpor/NXb+KDdafQM6gGalVTj0IHTd6MDZP6yZ9Ty9ncs1eysOnUVXSsXx3eHq7yfsgxqTlo4O+j+fOKa4xURgO+DMUzvRvbPSM/1iKbNAPDR3+fgsHIMe+RTrrfJzWav9h2QV52AdgeFdfa0kxvcKEyz5ZbrsG1ZJld082FyWXpWtYtea2zXrZUzoVkWw93a4AaVdQ3msbVXOR6JEzsVP4XeQXuLgx/n0zG070byefO3nIeLw1sCkDowNkaJJy16RyWHYzHulf6wIUxGDnH6eQsTNt4RlW3ZxcY7FrjJ20J82PopWLOVOd02HTqCtxdXTCyXR0A+g1mQKgPlEkSq3m7Iy2nELsupCLlZj4Cq3mpytFvB+JUr5d6swBrjyaqlnBsPX1V7vQBQPcgf9XPTM68ZZUnQdpeRfobK2eO31oTgV/Hd7f5+1/NzJevR/LhulPYdOqqHPkS8s5A3YEnKUnP/Ec74asdF7EgNAYXZo0GoL11naWvQ6LksqRci5hTYEBEYia6NPLX+9Zy8WCX+vh0XDt4ubvK9YyW2lU95bwWegrtXFuutYd5WNR1nFZ8RjmESBWr5QZi+X1tlblDtj8mzeoeVGAwITw2Hc1r+2peQ3kMFLw0oIk8K9gkoIrmOZbLqByhXLJjuWxIUlzCO+X2R1IugN2KXQeaTtmCqWPbYOEe/cG6jFKu6b5dpm88gwMxQoc1MSNPFQmhdDXrlipC8rI4aC3lxGhTV2gfh8fewOgO9oWbOxPq3JaDW4VGzDki3GzScwvlhCMrX+gpnyN1Lj7QKZiOyisqu9DQjg2q41RSFtrXr2aVbGX3e4Mwef1pOWGVHmVdZDniKxn1rbpR/Gj3hlYzHco6U1qfGnXtJhrVUFeyxxIycF0ceZayGSuz9ZY2g97AlrVUXzepqV3JS6r72F5LVFzjVklv1kkKL5NIsyXKdd3KRtKY7/fhalY+fD3dUGAwYd72KNWsuq0ZyNuhVZ2qSIspm2ymeqQKXq/8jvvxAM7NHIlLqblWf6PHfzksZ9lWOpWUpbuWz56EQJKBLWsVu/Z30uBmdjX2AWBku0BV5m9HrDycAL9iyrDEcu2R0WSSZ7G+eKgjGNNeh+suNpot14ja6vj4+3hYzU5I64T/eKkXzl/N1k2G5+/jjpPTRsgZZyvSOhsDX1rcXJkcSXBdkZl1v05mzMFfhSH+Rh42RCTjz5f7qJ7bn2wAYF3OpOzdllEG+UVGzXBGS1LStDdXn1QNbiam5+Gfk0nyZ2/nuZRioyb+i7yiP+sNITN310b+WBAag/4tAuCj2NdYGjiMnzsW/5y0fp8fWXgQf7zUG+6uLhoDM2bRKTkIrOZlsSWIOtLAMjQVsM74rsxRUGQ04YRG3g1AyNL/yu/Waz4jEjOKnf18eokweKu8zylnUAFhPXFxSwakJIH5RSbM3nxONROsZDmootx1YNcF9d82r9AIk4lj6YE4BLdS30dLomOD6vD38bDKnq/02QPt4eMhNG9tdW61tke05Gj2d+V+rqct3qdFe2OtclYAwiTIrUKjKv/JqnDrbRNfWn7M6u9a3vzFwbG2dashsJqX5jml2XpPGYUwfeNZPNunMRhjYk4QYRlAceVf+Z4oExAqfbb5POpW177+svDd453lteSSP17shSfFrZdcmPWShQe71MffJ5NxT8e6mmvytRxQtJEsc7YoWSZos0y2J7UNX111AvFzx9r1s50JhSWXg8M6lY9y3WhyZh5eW3VCFTLpCHfFaOreDwYjSOxsTbunrc3vG9q6tnyDe7F/E7w0oInVObPGtUe3xv54d3hLq+eCalbBome7FXt9JelMPvVruGrPNEA9YidtA+Dj4YboFOsEMVpr2xyhl9pdS+1qntj29gDVMamB9fKgpqW6jpKSGl0/K0aF0xQdD6lToByJX6BIye9otICe9vWraR7f+Ho/rH+1L/6d1E8+9ubQFvJjrZl7ydwHO8iPg2pqz5LaQ2vbAksTVxzXXBOu1bEFhHVsjy2ybuQCsNqLV0+zWlWw4vmexZ8oGtWuDv55rS9e7aSefZ79QHv5cfPavnikWwN5hNZRJc1Oqmz8N52yBU/9Go5lB+LkRuKu8ykY8c0e1RZiSlrrJiV660urebmhayN/vNDfuj6TSCPzQ1rXLu5XAAA01ihnttrCVb3Kb6z4SqawPQlgXl8K6OcSkD7L8TfySh2WKO0Naq8rFn+joIAqqlBAyzXDlpbsj8Mbq0/aXEv88MJDSEjPw/yQi3hp+TG8qkiEJgm9kKr6uZKj8Rn47UAcdl9IsWpsKgf70nIKcCQuvUzzNbSbth1vrNaO2tHq2ArXUYj/7Gz4Kllum7NwzyXVurziLN4Xh8T0W5qDq1J2fUAIK7W1Rc+X2y6g6ZQt+GzzeYwT1+vq6RlUo9jrqlHFA/d2qmfzHKljC6jbSpbKaj90JVv3GFtl2nI7Ia2BSXs6tl7uLqoowdJwdWHy9klFRpOqjfThqFZ4fXBzAEB9/5KHJVu6mJKDe3/YjyYfbUHTKVswY+NZfLVDP1u0pb81lmxJymtf2G8f64xxnetbHVdm536md2MAQMtA86z7g10b4I0hzTF5dGt8OKpVmV6TMrs6gGIjFO401LktB/ZkRv05rOQp5JdO6I7d7wXLXzeq6YN3h7fEvIc7omcT2zeHbx/vLM8AvDigKfq3EEZSOysqw04N/bD+1b6oWcU6eYCLC1N9YMvbNyHmzJjS+/rK78cd2sjdXqHvB1sdm9A3CF9phFa6u7qgdR2h09AzqAbi5ozBmRkjETN7NCaPam11/rN9Gqs6cuXhr2NJViOcNzT23yvNlgq+nm54pFsD29fxcl9U02jod6hfHd0a+6vK2mvBzeTHAb6eiP18DN7SeJ+6Kxo9pQn1tSfD4YEy3J7EXiHvDLLrPKkxFlDVA10a+aNXXTccnzpMTvTRorY5kdkbQ1pg3iOd8OYQoQEyXBGCXp7CLNZPHrx0AzP+O4dxPx7Af5FX8PafEbiYkoN/bDRCHPVQtwZWW0kM1pklmvtgB/RqUgOf3d9e1Vhrqgi5Oz51GELfC8aCJ80DLkNb18bJaSN0r2HGvaVb22fLnovX5a21YjWyf9pS2kzRtjLb20MvdFqPvdvQSdtd3FBszaJkuV+00udbLlhtKQWoO+Zv/xmBR385pIo8Ku2e4iWNIJq83nqbnMpCuZWVlkhF+ZEG81vohNW6uTLs/WCwKjQeAB7r3hDP9QsCIAxSKTustat64vXBzfHNY9pLIGzNVlfUFoVaLLefKamgmlWKW9IPQBiEHyWG7kves5jQcHNh8kCBZee2vp83WtUR7jfVvKyjfJpW137fixvAWHP0smrG29Y2eo4qr/2IpUSH61/tiwl9g+Tj3oqIkvs6CwMyyoEXDzcXvDeiFRr4++C14OaImzNGfu523a/vVNS5LQf27KWqDJktzoAWATj68TD560Eta6NhDR8c+mgIdr47EADQtJYvHuneUB5l01NVUQn5+bjjlthAqFXVuiOrF5ZoK8xHqbiOtj2U75M06lba/e4km97or/q6lthBaFTDR96iYMZ97fCw2Jnrpfh9pPfgwOQhWP58TzDG4OLC4ObqIodgbnzdPEM5c1x7vDu8JZYo1k6VNtGFpY2RV6xGe8vqhilhAFoXMxPo7eEqlydptBLQDk217JC4uDA56+HDik60MmGF3oxfWVGODzzYxXo0tjxIGVif79cEA1oE4GudtapSJ7ZudfP7UdPXUw7fV87KS+/t6A51seXNAVj8rO11e1ozHMXVJ1psdQDeWH2yxInBbHm0e0OrYx0b+AGw3r6idjUv/PlyHzzdu7EqLfmH4qBUvepeqOnrCRcXhtHt68qNlere7ja3LvGvYn7u7WHlO5B1O9nKHVCc5rV9y3RdvtLdNBNhmXTN2T3bpzEWPWMdAWbiHI1q+mBAC/XAVMs6VfG/Ua3RI8gf0+9tK0d09WteE7veG4T3R7bCA10aoIG/N94QB/MkyvbKwqe74cynIzFLvPfmVqL9QNefKNnn7DGLuu/jsW2gNyGtbOeNbFcHTWuZB/Sa1aqCN4a2QAPFLOyIdnXg6yncR4qMXPVe3tepnrwcx9vD1SrSpXUN7aU693a2PeuuF2qrnPGsbKQJn26N/THjPnO7Trlc6Vah0G5RLqGwTIaobCO9M8w6cpLYjzq35aCsG2+t61RVVUrSOpG61b3RXDFTA6jDIKSRTj1e7q4Y1LI27u1UD5/eZ93RalyzCp7q1UjjO82N7H7NtdPkA8BXD+snkymJ4ramsOWlAU1U7+HmN/ujfX11RmMPNxdc/Gw0dr03CFveGoDfnuuhel6Z1KO2+Fr1/bxVo3NKft4e8jmSDoqf2beZ/ntXUsr1eFrbppQasw6/3PNBsPxY6iD9Or4Hpt3TFvX8HA9XkmafG/r7YELfIDzYtT483czvsd6MXHmwdyBHyzKL8rN0gu3OJQBMu7ctVr7QCw91a6D52Xuga318/UgnTByoDn2XwgLr6KyJkpKrTRljHVUgaejvg18sGpz2Zgotaw90qY9xxTSCJK0Cq2qGXkv1pLLsWFLWXx5uDGc+HYndiggOVxdmVU9Ivnu8M+7rVA9DxTDn7HwDOjf0Q7t61fA2NUwAqCOClCw7ICXx0XrtPW3vFq3r6G83V9Eipg23+bybqwsGadTjUlCOMgLp/s71ML5PY3i5u+KvV/qiayN/uaPQ0N9HNWC//39D8N4IdXinsoPRs0kN+Hq6yYOJyoHSRjV8EFRTuOdYLjkqjfuKCaEurf4tAlRfN6vlK8/cWg6y7Xx3EEa3r4OFT3dD10b+qvBly3vd6pd646tHOsozjYVGk5zI09fTDYwxDGldG++PaIlP7mmLLW8OwLGp5kmYh1qoBwJXPN8TXz/SqdjILz3D2gTa3GKxvOx8dyAufT7G6vjLinuwcjZWSdmRlSJNlOfaWvPtyDI5Yo3evXJgz8ytpUe763/gHSnkVcRRtvp+3piuEya3+c3+mCOuYfT2cMUPT3TR7YTMHNcevzzTDTGzRyPqs1Hy8WNThyF+7ljN0aVR7ergwqxR0Nl1oMRulmLQoE+zmtj9njn0s1097Qarh5sL3F1dUN/PG4NbqdfmKWcZe+nsfadUu5onPFxdMHm0uUOhbGg3q2UeiZxxr+210gDkLShsUWbpLMmsG6CecR/Sujaqe7urKvKHujZQzTorb4oHJg8BIGRVfL5/EzzR03pGrThSu8aFCTPn8x/tDACInj0aSyd0x5cPd0TkdP3w0MpgVLs6CLYoP5azEcWZ/UAHxM8dq5rhcGUMD3VrYNUQmTq2Der7eRc7mPDSgKaI/XyMPHCjHPXngJxhVlLWfdthbexb7+opfg5t+ex+YX2xZf0YMW04IqeNkBsOHm76n5sfn+qKLx7qgJpVPNCtkdDwtYwmGN42EJ0a+uENi3D5ezrWw/dPdJEziHIO/DupHza/qW4Y99KJYCnrzollVuSK9sVDHaz2xXyyVyMMaBGAF/uXPi/BtZvF7+9bEfT+3pbOzxxV/Ek2TBzY1GrLOaksFjewreX5fk3QuaGfqkFeUsV9dns3rQlPN1dVCCdg7tQ2ViRsnPtQR7hZvJ7UUdAbWFbqFuSP9vWrYfLo1vJnRPobKe/N741oibAPBmPGfe3kJUdl4fsnrHNJ6A1ClkTLwKqInzsWI9sJYaw1qnjIM4D9mps7vrGfj0F1b3f8/HQ3jGov1PMj29XBulf6wM/HXX4vpHZGA39veLq5yhMmQliy8JzUtnBxYXh9SAtU93ZHFU83BPh6Ys8HwdgwqR9cXRhOfGIe5KhdzVNePtK9sXb2bFttFj8fd6ye2Fs1WVBaH4zUXuc6aXAzfDymDc7NHInmtauqOqH/vNYX617pg4/GtJGP6X1mlOWznThI+lTvRtj0Rn+8N7ylzbqiuORvVcrgc3ono85tOchxoBO26Y3++P2FXph6T1t8NLo11r/a12q0zcPV/kLs4+GGzx/ogDUTe+ue065edTzRU3tG1pKrC8PIdnXg5uqiOQPiq7G28rsnOsPL3RX1qutXQvXKMWudlv7Na9m84Z75dGSxr+HoLJ6Xuysuzh6tSn6h3IpBGYIyRkzFbjnbqgzFGdbG/jUYrw9uLncKtehl9326dyNV0pylE3ogcvoIPNpD6AQxCGXi2T5B8jnK96V2VfXf1U9vvytA9yb14oAmuLdTPTxr0fBxd3XBkNaBYIzZDA8tS5bhXcotqGw1ILUGdtxdXdBMEQZmrxHt6uDA5CH4/IEOuuvdXxzQVB5YsEUKnw9uWQsLn+6KWfebE1BJDcvVL5nrDoPJVGzyFslPT3W1+XzDGt7orTEotODJLvjxya5oElBFXgPGefE3d2lvb8uy7Ofjgeo+7vL6ZA8bn1sfDzc81qMRjn8yXDfDeXVvd2yY1E/uOEgNGanB896IVvhgZCur8GfJx2PboHNDP4zpoB440NpW4+FuDeDv4667JtHSs30ao6pYJop7v2yZOraN1bGHupZshkUSWM3LarlL5wZ+WPlCr2KzydsyoEVAmcz8locvH+oor0PUoszW6u3half2YL3oKC93V6u/eYG4hlRvxtyWXk1r4N9J/Uq1rYvE1oB8/NyxctlXdi4Bc0bXNnWr4eDkIYibM8ZqsAkwJ/7Su48pebq5YtMbA/DKIHN+h+a1hQ7hK4OaIfbzMYifO1YzIVB5eKRbA/xnsSSqNKQO+3ePd0Ho+8HwcndVDYRL2wa56AyOdw+qgYhpI+TB2F/Hd8fz/ZrI4clSlFpmXhGk4Dmtdp+kcc0q8oxwjSoecgJIZT3cWGe3if3/G6ybANHbww01qngg5N2B+HiMdX1lSbkkytKwNoF4pFsDTBrcHJvftP5bfDCyNV4a2FRzRraBv48qBwgAVNGZufVStJnr+3kjfu5YDG5VG+3rV8cbQ1toLtUChM+81K5S1qFrFZnvtfZ8d4Syw56aXTkHCkuDOrflwHLbGFta1amK/i0CUM3LHS8PaoZujf2tQtpqi/txrnuljyobqp4nezVCwxrq9Q9nPx2JSBvJUADhw+do0iPlSNuqF3vhraEt5E6wiwvDJxbZmwPF36VZbV9V8oLHe9g/wyc1apva2VG4+NloeUZWT0lnOR0lNUaUjZqgmj6oXc0LU3t5IfyjYejW2B/P9hEqZulmP7ZDXbw0UDsTbPv61aw6Nr5ebqpyaBn+olyb2Ukx+t/A30cODVMm9ZBuTFqVsa3OAyBk8LXMyn3042HY/o6wXnzNxN5Y/6q50vbz8cAPT3QptgO76Y3+OPnJcNX3AlDt3StRbsPlCMvOeY8m5hHn5/o20W1cWb5PUuKsaorf6UmdkH8t9f287T5/85v9sfUt22F1jDGMal9X1QiVBliUeyh6u7vim0c7Yee7+gmvOjf0Q/zcsfL369n34RCrz9mglrVwT8d6GNuxLkLfD8Y9nYTXSMspwPsj9LNHRn02CsPb1sGEvkGYr5NIpp0Yit1VZ5agpDa90R9fPGTO3u3t4YpJg5tbzS7Jz7u74t9J/fDTU91UEQeWWXiXTuiOz+5vj5PTRiBE5/1ua9HwmzmuPY5OHYZzM0eipY2QPcuO6htDmqsiNKRoid5NzceaBJjvIfMe7oiZ49qpMp1rUdbjAb6ecl0t6RZUsr/FwqfN0QsrX+glr6cuKeXAgrLxWLOKB44rQisdcfbTkXi0R0N57baStATFMg+F9L4vndBdDm9Xip49Gm7iSJnl7gVe7i5WA575YpkqyeCfNEhiq+Nii3IWVtm5emlAE91QVMuOqzKZbT0/b93Gv/RZK4toBb1O36h2dVRJ5rR8+1hnxM0ZU2wne+rYNvhgZCvEzx2LeY90Qq2qng79jR7v0VBzwCL0/WC5/Hq5u8rl+utHO+HZPo3RpaEf1r/SFyHivdYezWtXxbR728rvvXL7H+n9dqS9ppWRWlozPf3etvj0vnaY93BH7Hx3IPx8PLD1rQFyO1FJeo99PNzkwXYAVtEhgNAmalRDf1eFX8d3l/dgt4zisxVFCWgv97KMIPjmsU7oEeQPFxeGt4a2sIpQsCX28zFY+Xwvzcz8UhloXttX9bxefpxuNu59f7zYS3782Sbt7TqdGXVuy8HwtoFYOtLHrhkPe2YDpdDB7kE18FQv/dEoW6p4uhU7Wn5g8hDN7X9sqeppfs1+zQPwTjHf30ecuTGaOFoqRriVNxitLTWUMwvHpg5H/NyxqozRkvWv9pUf+/m4Y97DHeUGvD172pU3xhj2fThYbqwd+miIPIrb3N8V1X3csf7VvvL71KyWL756pBPmPdIR3RrXkBNhKLWrWx0+FjdXy4r9q0c6qn5/ZeND2YErKDLBJPZu7+tkHsm2VU7dbYR9AsBTvRrj47HqQY5aVT3ljk7vpjXRrbHjycfa168u78EHmH8nrW0QHA0JlljexJXrL91cmVXjSupEWN7QpQbvD090wdDWtRHg62FzZLk02tWr7tD2P2HvB2PphO5yZ7JWVU/Ezx2LyaNb4+/X+sHN1QXNa/tirM7MpCMDB5mKPWw93Vys1vj2aiKU+8d7NlL9bZV8Pd3g6eYKVxeGGfe1QwN/7UbMwJa1sOeDYHlGxt6Q6OI0reWLx3rYPzCh7CwoG7QJ6eqttwa1rK1q7FsO2gBCkjrLDqaXuyt8PNw0wx8l9f3UERX3dKynmgWQGpsd6lfHgclD8P6IlvI6bUDYX/jZPkHyZ8wy+djsB9ojbs4Y1T2vff3qqvDLtS/3US3FUIqePVq13ZclKYxSYu8ezFrhgmM71lUNLLi5MLw9rAU+HtMGez8cjJoajWWlhU+bIxSU9agUVaE1UCptP+VvMVgmDVjpfWbdXV2QKy5zsmzwe7m5YuLAplj/al+ETxmKTW/0l8N1S9K5lcqpIxEAyvuMMpGOslP68di2doU6e7i64G07B9ef6xeED0a2UkUQlbWFz3TDCkXdprWO+P4u9YVoGMXHQasN9eKAppg0WB1toJWp+cuHOqq+frJXIzzavQE+f6AD/p3UD7veG4R5D3eU8zFoRX8AwiD1zHHt4ebqguo+7mhRirWqHm5CxNHHY9qgVlVPnJs50uaWa5beEiMR6yiiFqT6xt/HA+P7BuGR7g1V+WOkAXZlfg3lAEI1Lzd0buiHx7o3xOqXelkl1TKZtNt7ayb2VkUmWYqcPgJfFpMrRhnBuOiZbujVpAb8LeqjB7o0wF+vCG3Rd4a3VH02iuPiIkRXVfdxB2PA/xSDZe6uDOtf7YO1L/eR2xhzH+yA3k20ozu0OtU73hmIP17shV5Na2L//wbjwS71Hbo+Z3H79nS5y7gwpkrH7uXuIicvWDOxNx7X2RdTcvTjYVi45xJeH9xcd2SxMpDW+Op5pHsD7Iu+jun3toMLA+LScvFvxBXkFBgwQlzLFpmYiX7NAjB1bBu0nbZdlZCrqpcbtr09ELWreuKzzdajSwuf7orq3h54YvFh+XxAWC+y/3/WYZpvDm1RqoREf7zUCw38Sr7PKgDVrHpdndBtKXy5wGBSZQ0e16U+wqKuI7hVLXyyQdgT+FOtDm89dUNpTIe6eKBLAwRN3gwAqlmmqWPbYM9FYfuWQqMRRvHGo+zPSo1ZrYF0t7JeXO0gKYt218ZCJs02darh5OVM7Dyfguf6Bel29FrXqYrAal7o2aQG5m2P0jzHcmZB2Th1d3XBx2Pb4PU/TuC353rChQmNjfUnknRHthv4+2DJBHOiqdUvle0aopIICqiCII1GkjKMD4Aqs7BSVY1tIPQoZ646N/Szen+ljrWeQx8N0dx2Qo8U/nZs6rBy3YfWllo6naWXBzbFB+tO4dBHQxB7PdeqMaY14OPm6qIbclrd2x1Tx7bRrCctw9kt622pMenCGOr7eeP1IS2w/ew1+XkpsZj0+Q+qWQX9mgdgeNtA+Pt4yB1h6e8pJc7r0sg8c2Brv1F3Vxc81qMh5m2PwtvDW6pyB0g/c9WLvXBZHBBQNnTfHNIc3+8279e954NgDJoXBgD4bUIPqz2oH+7WAEfi0uWvZ45r79C2G8qZnm8f74zX/7Detza4VS3U8vXE60Oaw8vdFWuOCHsF17booI5sV0cu710b+6mek3JESB+7AF9PNPD3RlKGkI3c090VjDF5diawmhf6NgvA7gupqO/vjajPRuFUUhY++CvSag/zJ3o2wuoj6v1YmY0NZDoGuOJUmnVn7O1hLfDu2kjdnRGkNcFSZ3e6jdwSF2eP1n3Okpe7q1VnsTxIA+M1qnhYRfEo81BIHY0Dk4fIEXDSvVbPU70aY+mBOLw9rAW+3RmNDvWr49EeDbHycAJ6N62Bd4a3tAqLbVbLF83EnTFmP6A/GFTWdikmEvSSJ+kZ17m+Vci3VN/oRcAHVvPE9ewCfPVIJ2w9cw1T/z2DVnXMA2OMMdUg34ejWuFPxX7cJs7xVO9GuFVklO/trQKrai6LUbK1jrV2VU+kZheo6rER7epghEWeirLi6eaKuDlC3VBkNGHx3ljx8y581qQy179FAGpV9cQ2RX0tsZyUWPtyH7QMrCpH+TTw98H8xzqXy/VXtFLf7RljrgCOAUjmnN/DGGsCYA2AmgCOA3iGc17IGPMEsAJANwA3ADzGOY8XX+MjAC8AMAJ4k3O+vbTXVRkYFRn/Vr/UGw/8dBCAMFM1eXRrbIjQ38y+VlVPq5DeykgvFE9Szcsdy54zj35KI8qPdm8IxhjWv9IHR+LS0VdMfPBwtwYY1a4OXlwh7EFYt7qXzcb/qPbq2SSpEVdg0M6E4+jMtKW+zQKKP6kM1PIVRjkbWGyOXs3LXe4cubq4oEsjoYOgzC7ZMtDXak2LZehwn6Y1sTHyCiaPbo0WgVXx0ejWmLP1gjBzK994rO88WvciW43W20GqwOtU85IbnrMfaI9aVT3w0eg2uuu/tr0thGopG7rWr63+3ZQJmzxcXTCmQ13EzlF3xpSds1+e6aa7HgcQEp05C63OYXEd8wEtAlSbyXdt5I9fn+2OF1ccs2s2p3NDP0QkZspfB/h6liiDtVbo2u1iWUdGTBsOzgH/Kh54RJxx0BvkctTz/ZpgYMtauJ5dAMaAJxeHAxDK2bA2tZGeW4gTlzPlAQkvdxf4eXuAi10o5WdeuR+lVJ82q+WL1nWqYvq97TTLbrt61fBcvyC8PFAYGPFwc0GH+tVxOjlLN8RUwhjDcTEBzeBWtZCWU4j7fzwgrwHt1zwAUnNW2Vl/d0QrvDuiFRbsjsZXOy4isJoX9n04GJl5RfBRdOJPfjIcl67noHtQDdXMraP7SSqXFkizOJb7eivveQDwXP8gpOcWYELfINSu6iVHxygNaR2I8ClDcSopC7vOp6CpOMvdpaEfjidkoLq3O/55rR96zN4JQHtm6vMHOiA1O1/OfdAjqAa2vT0QrT/ZpjpvzoMd5M7tgclDsHhvLNrUFRq80pX993p/3Ltgv/h7mr/3hye64I3VQof+wa4N8KDO2ux9Hw62ir7gGgNki5/tXumT41i+1fs+HKxe+iU+bznrrQzztzR1bBv8b3Qr7DyXCgCoKYbwl+V63MpKmrnVClkGgKXje2DPxeuo6euJp3o1wuj2dWxGVPj7eODBLvXRPagGpvxzWszZIAyASJ3bFyyWRikFt6qFsKjrNtuz/0zqhzN21GPl4Ymejazy5LSpWxXXbubD080VQ9sEIm7OGBy6dANVPN2w/kQSXuzfFFEp5j3OXV1YmWzP6SzKYij7LQDnAUjTI18A+IZzvoYxthBCp/Vn8f8Mznlzxtjj4nmPMcbaAngcQDsA9QDsZIy15Jw7/cZuyhuYZZjQK4OaWc+MlIMvHuqA81eziz/xNvHz8UDM7NFyJeLm6iJ3bAHgK4v9PS0rP1s3wU4NzOG5luvZ9Jz8xDrUqDLo0KA6lozvrsp2aEm5BlNZ4Xao72d1rmWF/MVDHfHyoKZyZ/DBrg2wIeIKxvcNQl0/b0QmZqo61jWqeODp3o3wuCIc08/HHZl5RWCM4cjHQ+X1wbdb10Z+mHV/e9XWMYHVvDDnwY6a578/oiX+VQws2Qrhc1c0Vga3qqVKCOVmR6feMvuwM3t7WEvEpuVi/qOdMGnVCUQmZWHBk/qhsJHTR8Db3RUtp25VHe/YUChzLw0oPmPu8ud74kRCBpIybyG4pe2kcJXN1rcG4EZOodVxW0nWLP38VFcYTBwLdseoktHpcXFhqpH5hU93xSu/n0DjmlXw6/geKDSY8Pf2MLnMS2uACw0mXLyWjVcGmf8m/lU8sP7VPnjo50Nyo8jL3VUeFNLi5e5qlaVf6jjrBSDNf9Q6DLCBv4/8PmlFLmkNjLw+pAVeCxYinRrW8EHDGkB6rvD+D21dG/5VPNC9ivB7LHqmm9WMrtKcBzuggb83DCaOBn7eGP7NXvk5X083/PBEF6TlFMiDfZYJZixV83LHp+OEfBkP29gKJbCaF4a39VJ1uD8c1Ro9m9RAt8b+YIzJ0U5co6dYp7qXKvwTUM/eVPFwldflSur7eWuGJSoHBqSqvU41LznEujiWeT/0ODq4cDvV8vXEs30aq+57gPXvJpUDZZj6kY+H2owycXFh8HRxRa+mNdC1kZ/u7hZ3IqltrLdUrHY1L3ngjzFW7FIBFxeG+Y91RtQ1oa1r0vhs2EqQ98sz3YrdwrO+n3eFR1kpff9EF5y8nCmvuWaMyW1paWnWRbFz2795gGory7tBqTq3jLEGAMYCmA3gXSa0oIcAeFI8ZTmAGRA6t+PExwCwDsAC8fxxANZwzgsAxDHGYgD0BHCoNNdWGXw0ug22nhFCBexJWV8eHFkbdrsUN9sLAD8+2RWT/jih6kBsfrO/bohf9OzRcih498b+docs6a3rqwyGOpAdWclox/4t3h6uqvC6WlU9sUVMQvR8vyA81auRKmSUMYbP7leHQf33en+cvXITgHWW5NuJMWbX+lXGhJmD14e0wOtDzGu7qnmbq8Gd7w7CsPl7AACzxrVTNVa+eKgjbinWSTlTR6ss1KnuJa/TlDoctsYz9AYNalf1shl6bPkag+1sTFc2jqx71jNaTNJlmb9h85v9bUYESEa1r6t6rz3cXFCnirncSjOPnm6u+PZx64GKbo1r2P230tOnaU2cSb6p20DVm/mTZmy16ny9+6llR7hGFQ+EvDPQKuy+V9OaaBnoi4spOZqvo7ebwP7/DYarC5P/HqEXhFk3vRmosuDh5qIKfQwQ71n21j9SB2Jsx7r4+pFOqtlTW+vQlb+RlCV31v3tNbMXSza/2d9mbosKmPQqFcYYZo4rPonnd493wbe7olVLNOy9Jwb4euLv12wnarvTSAPhZf25kYqesnP7zWOdUKeat81y6enmCk/fyh09YKmql3uxyWult9fdldn83N6JSjtz+y2ADwFIK8FrAsjknEtDIEkApGD7+gASAYBzbmCMZYnn1wegHEJVfo9Ta1TTPLqntY3OneLrRzohoGrZhv3VExOgKNdz6u1NC6hv9OsUSaXuRoZSzqAyZl9FKMyOlG798e20891BOCd2xpVq+XpiWJtATBzYFM1r+yJGHChxcWHyTXjGvW1Ru5rljIiTtdTK0FtDW+CF5cfQIlA7QdCvz95do8S3m626sLL536jWeLJXY4dnPbw9XPH5Ax0woIV19IplAj1b9JLpbJjUHwUGxwLELJOX9W8RgPF9GuO127D+UzLvkU7YEJFslVfBlohpw1HF0011n7z42WjNBv+PT3bFwj2X5GRRzWv7YkD9IkRcN6JdvWry90wcaB15UVy51ApLdiZjO9bF6aQsq+ODW9d22kG4iiAt77E3MZy9fMT4+SYB5vvSA11Kt6WZM5MGDyooqK5CMa3QFru+kbF7AIzhnL/GGAsG8D6ACQAOc86bi+c0BLCVc96eMXYGwCjOeZL43CUAvSDM5h7mnP8uHl8ifs86jZ85EcBEAAgMDOy2Zs2aEl377ZCTkwNfX19M2JYLAPhpqA9e2yUkdVg2yvG9Lu820RlGzA7PR3M/F0ztXXlCQcqTVGZKKiShCKvOF6J7oCte7yJ0xKIzjEjP5+hVV6j0pfJIZbDkLt804tR1I+5pVvGz/qUtM2Xt6DUD8g0cAxqYGy0nUw3IKuAIbnh79iYmtlWWMrMvqQguDOhXv2TlYsK2XAxu6Ibx7cp/PfXxFAPqVHFBfd+7K1rjZiGHpwtQlJ9bqjKz6nwBQhIMeLK1B0YEUT1wN7BVzxQaOSJSjehZt+yT/EVeN6Clvyu8i9nF4W5w6roB848XoH2AK97vXnHRdfbSKzODBw8+zjl3aMS8NCWrH4D7GGNjAHhBWHP7HQA/xpibOHvbAECyeH4ygIYAkhhjbgCqQ0gsJR2XKL9HhXO+CMAiAOjevTsPDg4uxeWXr7CwMAQHB4Nt3wzOgcGDBgK7tuGx7g0RHKy9FpCYBaXlYnZ4GEZ0boLgYOt9A+9EUpkpqbY387Hq/C68e293ee2F5asd616AIqOpzBLYkIpV2jJT1oLtPEYqTmUpM6W9gpgBJri6sNuS4CW43H9C5VbaMtOqyy3cXBOBDx7pVqmXApGyU1yZGaH7TOno/8S7UFQqcPwo/P39ERzcq/jzK1hZ3ptK3LnlnH8E4CMAkGZuOedPMcb+AvAwhIzJ4wFsEL9lo/j1IfH53ZxzzhjbCOAPxth8CAmlWgA4UtLrqqzcXBni5oyp6MtwGkEBVbDz3UG6+7gRa7WrFb+WsSKzxhJCSFmxJ3cDqRzqVvfGny9b79tMCCk/0rrvVqXY59hZlcfGf/8DsIYx9hmAkwCWiMeXAFgpJoxKh5AhGZzzs4yxtQDOATAAmHQnZEqW/PxUVyzaGwu32zTCfCdpXrviQ+cIIYQQQghxJm3rVcP6V/ugYwO/ir6U265MOrec8zAAYeLjWAjZji3PyQfwiM73z4aQcfmOM6p9Xau9WAkhhBBCCCGkvHRrfPfsbatEcT2EEEIIIYQQQpwedW4JIYQQQgghhDg96twSQgghhBBCCHF61LklhBBCCCGEEOL0qHNLCCGEEEIIIcTpUeeWEEIIIYQQQojTo84tIYQQQgghhBCnR51bQgghhBBCCCFOjzq3hBBCCCGEEEKcHnVuCSGEEEIIIYQ4PercEkIIIYQQQghxetS5JYQQQgghhBDi9KhzSwghhBBCCCHE6VHnlhBCCCGEEEKI06POLSGEEEIIIYQQp0edW0IIIYQQQgghTo86t4QQQgghhBBCnB51bgkhhBBCCCGEOD3q3BJCCCGEEEIIcXol7twyxhoyxkIZY+cYY2cZY2+Jx2swxkIYY9Hi//7iccYY+54xFsMYO8UY66p4rfHi+dGMsfGl/7UIIYQQQgghhNxNSjNzawDwHue8LYDeACYxxtoCmAxgF+e8BYBd4tcAMBpAC/HfRAA/A0JnGMB0AL0A9AQwXeoQE0IIIYQQQggh9ihx55ZzfpVzfkJ8nA3gPID6AMYBWC6ethzA/eLjcQBWcMFhAH6MsboARgII4Zync84zAIQAGFXS6yKEEEIIIYQQcvcpkzW3jLEgAF0AhAMI5JxfFZ+6BiBQfFwfQKLi25LEY3rHCSGEEEIIIYQQu7iV9gUYY74A1gN4m3N+kzEmP8c554wxXtqfofhZEyGENCMwMBBhYWFl9dJlLicnp1JfH6l8qMwQR1GZIY6iMkMcRWWGOIrKDHFUWZaZUnVuGWPuEDq2qzjnf4uHUxhjdTnnV8Ww41TxeDKAhopvbyAeSwYQbHE8TOvncc4XAVgEAN27d+fBwcFap1UKYWFhqMzXRyofKjPEUVRmiKOozBBHUZkhjqIyQxxVlmWmNNmSGYAlAM5zzucrntoIQMp4PB7ABsXxZ8Wsyb0BZInhy9sBjGCM+YuJpEaIxwghhBBCCCGEELuUZua2H4BnAJxmjEWIx6YAmAtgLWPsBQAJAB4Vn9sCYAyAGAB5AJ4DAM55OmNsFoCj4nkzOefppbguQgghhBBCCCF3mRJ3bjnn+wEwnaeHapzPAUzSea2lAJaW9FoIIYQQQgghhNzdyiRbMiGEEEIIIYQQUpGoc0sIIYQQQgghxOlR55YQQgghhBBCiNOjzi0hhBBCCCGEEKdHnVtCCCGEEEIIIU6POreEEEIIIYQQQpwedW4JIYQQQgghhDg96twSQgghhBBCCHF61LklhBBCCCGEEOL0qHNLCCGEEEIIIcTpUeeWEEIIIYQQQojTo84t8TH4zgAAqqNJREFUIYQQQgghhBCnR51bQgghhBBCCCFOjzq3hBBCCCGEEEKcHnVuCSGEEEIIIYQ4PercEkIIIYQQQghxetS5JYQQQgghhBDi9KhzSwghhBBCCCHE6VHnlhBCCCGEEEKI06s0nVvG2CjGWBRjLIYxNrmir4cQQgghhBBCiPOoFJ1bxpgrgB8BjAbQFsATjLG2FXtVhBBCCCGEEEKcRaXo3ALoCSCGcx7LOS8EsAbAuAq+JkIIIYQQQgghTqKydG7rA0hUfJ0kHiOEEEIIIYQQQorlVtEX4AjG2EQAE8UvcxhjURV5PcUIAJBW0RdBnAqVGeIoKjPEUVRmiKOozBBHUZkhjtIrM40dfaHK0rlNBtBQ8XUD8ZgK53wRgEW366JKgzF2jHPevaKvgzgPKjPEUVRmiKOozBBHUZkhjqIyQxxVlmWmsoQlHwXQgjHWhDHmAeBxABsr+JoIIYQQQgghhDiJSjFzyzk3MMZeB7AdgCuApZzzsxV8WYQQQgghhBBCnESl6NwCAOd8C4AtFX0dZcgpwqdJpUJlhjiKygxxFJUZ4igqM8RRVGaIo8qszDDOeVm9FiGEEEIIIYQQUiEqy5pbQgghhBBCCCGkxKhzWw4YY6MYY1GMsRjG2OSKvh5SOTDG4hljpxljEYyxY+KxGoyxEMZYtPi/v3icMca+F8vQKcZY14q9enK7MMaWMsZSGWNnFMccLieMsfHi+dGMsfEV8buQ20OnzMxgjCWL9U0EY2yM4rmPxDITxRgbqThO9667AGOsIWMslDF2jjF2ljH2lnic6hmiyUaZoXqGaGKMeTHGjjDGIsUy86l4vAljLFz8+/8pJhIGY8xT/DpGfD5I8VqaZUkX55z+leE/CAmxLgFoCsADQCSAthV9XfSv4v8BiAcQYHHsSwCTxceTAXwhPh4DYCsABqA3gPCKvn76d9vKyUAAXQGcKWk5AVADQKz4v7/42L+ifzf6d1vLzAwA72uc21a8L3kCaCLer1zp3nX3/ANQF0BX8XFVABfFckH1DP1ztMxQPUP/9MoMA+ArPnYHEC7WH2sBPC4eXwjgVfHxawAWio8fB/CnrbJk62fTzG3Z6wkghnMeyzkvBLAGwLgKviZSeY0DsFx8vBzA/YrjK7jgMAA/xljdCrg+cptxzvcCSLc47Gg5GQkghHOezjnPABACYFS5XzypEDplRs84AGs45wWc8zgAMRDuW3Tvuktwzq9yzk+Ij7MBnAdQH1TPEB02yoweqmfucmJ9kSN+6S7+4wCGAFgnHresZ6T6Zx2AoYwxBv2ypIs6t2WvPoBExddJsF0BkLsHB7CDMXacMTZRPBbIOb8qPr4GIFB8TOWIKDlaTqj8EAB4XQwjXSqFmILKDFEQQ/+6QJhVoXqGFMuizABUzxAdjDFXxlgEgFQIg1+XAGRyzg3iKcq/v1w2xOezANRECcoMdW4JuX36c867AhgNYBJjbKDySS7EX1D6cmITlRNip58BNAPQGcBVAF9X6NWQSocx5gtgPYC3Oec3lc9RPUO0aJQZqmeILs65kXPeGUADCLOtrW/Hz6XObdlLBtBQ8XUD8Ri5y3HOk8X/UwH8A+GDniKFG4v/p4qnUzkiSo6WEyo/dznOeYrYsDABWAxzGBeVGQLGmDuETsoqzvnf4mGqZ4gurTJD9QyxB+c8E0AogD4QljW4iU8p//5y2RCfrw7gBkpQZqhzW/aOAmghZgPzgLAoemMFXxOpYIyxKoyxqtJjACMAnIFQNqQMk+MBbBAfbwTwrJilsjeALEW4GLn7OFpOtgMYwRjzF8PERojHyF3CYo3+AxDqG0AoM4+LmSmbAGgB4Ajo3nXXENexLQFwnnM+X/EU1TNEk16ZoXqG6GGM1WKM+YmPvQEMh7BWOxTAw+JplvWMVP88DGC3GEGiV5Z0udl6kjiOc25gjL0OoYJ3BbCUc362gi+LVLxAAP8I9we4AfiDc76NMXYUwFrG2AsAEgA8Kp6/BUKGyhgAeQCeu/2XTCoCY2w1gGAAAYyxJADTAcyFA+WEc57OGJsFoSEBADM55/YmHCJORqfMBDPGOkMILY0H8DIAcM7PMsbWAjgHwABgEufcKL4O3bvuDv0APAPgtLgeDgCmgOoZok+vzDxB9QzRURfAcsaYK4TJ1LWc802MsXMA1jDGPgNwEsKgCcT/VzLGYiAkSHwcsF2W9DAxzTIhhBBCCCGEEOK0KCyZEEIIIYQQQojTo84tIYQQQgghhBCnR51bQgghhBBCCCFOz2kTSgUEBPCgoKCKvgxdubm5qFKlSkVfBnEiVGaIo6jMEEdRmSGOojJDHEVlhjhKr8wcP348jXNey5HXctrObVBQEI4dO1bRl6ErLCwMwcHBFX0ZxIlQmSGOojJDHEVlhjiKygxxFJUZ4ii9MsMYS3D0tSgsmRBCCCGEEEKI06POLSGEEEIIIYQQp0edW0IIIYQQQgghTo86t4QQQgghhBBCnB51bgkhhBBCCCGEOD3q3BIAQGp2PkLOpZToey+mZGPtscQyviLntnR/HBLT8yr6Mu5IR+PTwTmv6MsghBBCCCGVDHVu73AmE8ecrecRl5Zr87xHFx7CSyuOwWA02Tzvj/DL+OCvSNWxEd/sxYfrTpX6Wu8EGbmFWHssETM3ncOzS49U9OVUOkYTR8i5lBJ3TsOiUvHIwkNYeiC+bC/sDvfrvlicSc6q6MsghBCncvlGHn4/7PBOJISUSIHBiLVHE2kAv5Soc3uHG/x1GH7ZE4vX/zhh87z4G8Iso7GYD9SUf07jr+NJms/RhxF4+ffjckc/61YRrmcXICO3sIKvqvJYFZ6Al1Ycw4aIKyX6/hs5wntJHTX7cc7x2ebzuOeH/RV9KYQQ4lQeW3QIU/89g/wiY0VfisN+CovB6aTbc6+MS8ulNmAZ+GFXDD5cfwpbz1yr6EtxatS5vcMliJ1WVxemOn4l8xZ+3RdrVRkZTSWvnIqMd0fFdi0rH11nhSA6JdvquYQb5hlyBqDH7J3oMivkNl5d5ZYmdk5ji4kk0FPF0w0AkFNgKLNrup22nr6K4wkZ5f5ztp25iu93RQMAXltle2CLEEKc1RfbLuCXPZfK7fUz8oR7VkGR7ai2ysZk4vhyWxTuXVD+g5rHE9Ix+KswrD5y9yxP2372WrkMeFzPLgAAZOcXlflr302oc3sHU3ZcvdxdVc99sC4Sn20+j1/2xqLPnF3y8dJ0bgstQppnbDyLIV+Hlfj1KquQc9eQnluI3w7GWz3nwpj1N9zhjCaObWeuWg2UxKXlYsJvR+TKOj4tV+5w5Ymd0/3RacWGwit5ugtVVq6Tdm5fXXUCD/180O7zY1KzcavQ8RvoK7+fwPyQi+Cc0whwCew6n4Ip/5wGANwqNKLIaMKLy4/iWHx6BV/ZnS8pIw83cgoq+jKIE+j+2U78HHYJc7ZeQOrN/HL5Ga7iPT3foF0PX76Rh9TsfBQaKlfnN8/OjtfN/CIETd6MTadKFk0FAFHXcgAAp5IyS/wazmLl4QR8tzMaL688jpmbzlX05RAd1Lm9gxUoKlsfD1fxmBGvrDwuV0Zzt17A1SzzTaHDjB1IzS7ZTaLAojJddjAesddLNkNXWXHOsXBPLAAgX6PTcfd1bYW/8yu/n7AKNZ616RzCoq6jx+yd4JxjkiI0/tf9cdgYeQVPLwnHT2H2j7obxOiAW04YIuYog9GEYfP3YuLKY1bPcc5x6NINJNw0ImjyZkSnZGuOIs/YePZ2XGqlwDnHTTtHu28VGm0OGryw/Bj+CL+MuLRctJm2DW//GYGd51MxfukRBE3ejNVHLiPrVhF6zt6JP49eLqtfgQDo/0Uoen2+q/gTyV3tVFIm0hSDIJm39D/7EYmZyMorvm7YfvYaTlw2R9ZcuHYTuWI9ka6zvGjgvFD0nL0L3T4TIrTyi4wlTs5ZWpxzJGUI0Xo5+cIAsIer7Wb+ZTG678dQ83240GDCPyeTYDRxnL1SfFiz0SS0Nd1c7+wWUMrNfHzy7xl8s/MiAMhJQznnmhNDSRl5CItKVR27mnULKTfzEZGYadfAdXLmLfxv3alKN3hS2VHn9g6m/OB4izO38Wl52Hb2muqmYOn1VSdx9koWimzMqJk0PsgFd8GH73p2AZIzbwFQj+T+HHYJZ69kgRUzc1toMNl1k83OL0KP2TsRHnujdBdcTl79/bg8439FfD+UZSo1Ox8mxUxugcEEy+U4b64+CQCISRUGWn47EFds1m1pllcrwCC/yFhh66JKu9bo0vUcHLWYFZRG3vdFp1mdv+nUVTyx+DDmHRUGooZ/sxetP9lmdd7yQ+pEKG+vOYmDMdavdyf4+N8z6DhjBwp0ZliUes7eiZ6zd+o+7yVGCAz+KgwAsPnUVQCQG7qL98YiIjETqdkFDg3OEPsYShFBRJzTznMpeP2PE3Y14jnnuG/BAdUxy9wWBqMJOQUGcM5x/48H8OSvh+XnTCaOFYfire4XL688jgd/MkfWjPp2n/z40YWHbF5TttiZnLnpHF5acQwRiZnF/h5lbfG+WPT/IhTRKdny0h2pLtMSl5aLf04mA4CqvffVjii882cknlh8GGO/32/1u2TlFanOl5akubnc2V0KvfXLzy87imZTtuDQpRu4mnULszadg9HEMerbfZjw21HVuX3m7Eavz3fh/h8PYPLf5kSsuy+kIL/IiLNX1T/j/bWR+PNYIo4lUNSQI+7skngXyM4vkjsHgLpDK3XCAKB2VU8A9q1VPBKfjrHf78fszed1z7EMQQbgtCNL2flFVg3iZQfisPW0EGr79pqTGPp1GDrO2K46J19cg1NkNOGLbRdw7w/7oezbavVzJ648hk4zd2DB7mhsOX1V95rOXbmJ69kF+GpHVMl/sXK09cw1XM3Kx61Co6rTajJx/LLnEnrO3oWwqOvy8ff+isRFjTXKAGDiHFm3ivDpf+fw4bpTyMgtRF6hAS+vPIa9F68jXrE+Vyp3WoMrfebs0uzg3Q4jvtmLHjY6S8UZ+vUePLLwEB775RDaiL9DXoF1Jy23wID3/4rEor1C9ECOxThJcZ37fyOuYPxv5izenHOERaWWeDlCys18BE3ejL9PaCeZu53+CBdmUPMLTZi79QJ2nNUOx84tMCBb/Ce5VWjEowsPyd/jK67t1mPkXA6t15vRIfa594f9mPAbZZbXk18kRGesPBRf0ZdSruaHXMSmU1dx4nKGZv2upNX+uKH4HOYVGvDJhjNoP307fhfrhbNXbqLIaMK1rHzsOJeCaRvOYt72KHDx/lOc7AIDjCaO6RvOqHJrWJJmQm/a8ZqOkjrseqSB0OTMW/KaTW8P9ZI0g9GE+xbsx56L1zFuwX4s2R8HQGjH/HMyCZNWncCFa8K9WurUXlG0JQGg08wdeOfPCPNrSjO3LvqD+zfzi3DvD/s1c5VUJsp74Yhv9mDu1gvy11d1Qt9DxbbOE4sP4/2/IrFkfxyOJ2RY/a1+3Rer+npDxBVcvpGH73ZG4/llxzBj41mcSb6pOkcqm8p70s5zKU6Z4Ox2os5tJSQ1OO2ZDXpmyREMm78HgJDMqM20bfLslzI7qpSIx5FF6lLiG5OJ49d9saobgNYsbXnO3JpMHMsOxCGvsORrLQ1GE1YfuSxXXjkFBlzNuoUOM3bgqcXhqnNn/HcOr646gQKDCf9GXMGl67m4mW9QhT1KAwnSiLGJA0kZ6puApMBgFP+uQiX41Y6LeG3VCfwUFqP5d5bCe47Gl3/yodJoM20bDitml/dGX8ccxc1AsvnUVd3ZmE2nrqLTpzvkr7vMCkHbadux/WwKnl16BMFfhcnvkRSWfDo5C33m7FJ1LDI0ZsSLjKbbsg4oOjVHXlucmVdY7B7HOQUGzRnG8Lh0OeRaWdal7NDtZ2zHuuNJOK2TLTrFjnVnypvkH0cuY8JvR7Fkv/mm++7aCDy+SD1LkVtgwLIDcTCaOIImb0bQ5M0AgOgUYWBtnU4G9fJSYDDqRp8UmUxYuOcSJq48DkBomA2fvwfbzgiDSe2mmweppPDBv44n4kh8OiauPI5On+6QE5/pSbiRh1fFRF2WjYz90WkImrzZrr8FET7LyoGwshZyLqVE9w2D0VSiJTpZeUVl2vCUyvnPYZdw/48H8PSv4cV8h7YL125iQ0RymV1XWcjILcSPoTEwmcwdzMcXHcZji6xnSY0mjpWHE3AqKRPf7Yy2el7q3J68nIG207bLyY0++feMfM6sTefQe84ueWA54UYuluyPQ6dPd6g6cF9ss76HAcKg8/JDCXLUkRZH0m4kpuc5lPn/w/Wn0H76dt22odS2yS8y4QFxBtrDTd3MT80uwKmkLIxfegQ3882fixs5hXjnz0hsPn0Vey8Kn0dpOdt/kVfw1fYoxKTmyPfcTaeu4u8TSTh4KQ2HLgltgCKjCR1nbEfQ5M24WaC+xn0X03A6OQvzQy7a/fuWpX3R1/FjaIzmcyYTx+4LKdhy+iqaTdki378vpuRgoSJZmeXSO86FKB6lAzHCe/HoL+Yy/Naak9h06go+05gwGjgvVA5zDo8zz87+b/1pJGXkIbtA+FxI+VzOJGfhxRXH8Ol/jq33NRhNViHSd7JSdW4ZY0sZY6mMsTOKYzUYYyGMsWjxf3/xOGOMfc8Yi2GMnWKMdVV8z3jx/GjG2PjSXNOd4N+IZEz47ShWH0nEtA1nbIamSiNrj/1ySG7was1YGDmHwWjCD7u1P9xaTidnYez3+xCRlInPNp/Hh+vM+9tqzdIWGIzFjrgqSbM++zXCLi3tPJ+CGf+dw5fb7JvJ1JqNXXEoAR/9fRqrwoVQzYd/Pog+c3YDAI6JHflCgwk/7DLfODtYzNYqQ0SlsORR3+1DcVpN3YYmH22xOv7ltijNTpmrRnjP+uNJZR7qlJSRJ6/RKalzV80jjcmZ2p370joSl47geaG4cM38s65m5eOxX7RDxaS//Vc7onDfggOIunb7RouHzd+LAV+G2jyn/fTtaDV1G7aevqr7N81TRGHc88N+hMfesArttrT8YIKqMadFCiHLLzLi43+Ec69kmhvxf59IxuHYdFXnbPaW85jx3zksVyRRM5k4OITXKmkeNa36YtuZa3hXMSugZdKqE+j+mfZMuUGRtT0jtxAL91xCdGoOZm2ybli8tOIY9kenYdoG89pke2ZxlIqMXG7cAZD3xDyRkIGb+UVy8rOzV7IQdS0bGbmFurPKFSm/yIjw2BswmjiSM28haPJm3cags4hJzcZLK47ho79PO/y9szadQ8/ZuxzOzN5p5g48s6RkHVAt0meeMYaIxEzsL+GyglHf7sNbayLK7LrKwlO/hmPe9igciU9XzcZaDurmFxnx4E8H8Mm/Z3DfggOaSwGkJGQnLmfq/rw9YqdtY6SQHyI9txD/iUsODije15/DLmmum5XquUI7dobQOmPPxeuq9sWAL0Md2qLt7xPC4IRezgmpc3sj1zzw52pROUs7aFjSKudSXbr1zDUsCI3BsPl78MBP5nDwd9dG4snF4fLM5d8nk+UOc3JO5Yrke2bJEczbHoXjYnjvj6ExmCQOUK46chnPLzsm7yxgOTgdci4FRhO3msBJyynA7C36EY6SDRFX8Pof+gMikjiLXSRWH7ksr52WBtoyxfbi5XTh3K2nr9qMApT8GHoJE347Kg9c3OlKO3O7DMAoi2OTAezinLcAsEv8GgBGA2gh/psI4GdA6AwDmA6gF4CeAKZLHeI70aXrOfLoqcnENUeUU24WyOeuOJSAxxYdtjoHUHcww+PSESk2krXWfa48lIDvd0U7vA3J2Ss35Q+X8nulG5FytPOVlcfRdMoWvGFjVFNJGrH8dX9sMWdCrjC1Qn1yCwwY8c0eORHEysMJ6DBjB56weN+kRuu+6DQkZ96SQ28kB2LSsPJwAr5WjCxabm+kHC07eTkTQZM364Yl2rsMMyffugwob0hBkzcjr9CA9/6KxP0/HrA6tzT6fxGK/l9Yd8QMRhPWHU+SOx9CxW57NoIxJle8Ze2xRYcRfyNPDj2VRCtC8iVR17LRauo2BE3ejNALwkildGNITM+zSuKQU2BA0OTNViOwli6mZCMmtfhOsq317JZeXXUCjyy0zp48+KswfLdLPTuhVw8oLT0Qh5WHE2yek1NgwJnkLNyn2CLCw80F7advV81YKJP6pIp1khR+BggzpHLDuwSp1OLSctF0yhZ5RlXyyu/H8fdJ2zNMO88Lf1etMrlYEfrVZVYIVojrjpMzb2mGEy6xo/4pzhOLDyPhRi5MJg5XMeriZGImOs7YgT5zdsFo4hj7/X48vugQXvn9OCauPG5XRuCSzACaTBwrD8XjYko2/ipmDbvS9A1n8diiw5i06gT6zRUG/eZtFwYTTyVlynXB4r2xaDV1q8PXZY+y3idTGiAqSYKfLWKW8ZLM+toTcZORW2g1uFNkNOH9vyLl0FY9tt6nw7E38OG6SPkczrnuAHJieh7Wl3PUxYyNZ1WDPxLOuTwwajByq1mxtJwCTNtwBkGTN6P1J9sQWcx+rd/ujMYbq09ilo0Mtp4Ws5gnLmfK7aYP1p1SPffSCnUiv55BNeTHJhNHfFquzbwkWsYvPaJqX0iCJm9GgcGIJfvjbL6mtH5Wa0AcMHduleuP42/k4YO/IuW68onFxd9HJFrh33qdY8C87hgATqbqf24457h8Iw/3/rDf7oGgv44lImjy5hInPJU89PMh5BQYMG97FDaLncLLFveFJ38NV33uX1pxDK+tOi7XhxLLNmRZOxafIf+tn192DLvOp8i5TKSZ3FdXnbBru79L14W2knLgAxDa9XdilFGpOrec870ALFc5jwOwXHy8HMD9iuMruOAwAD/GWF0AIwGEcM7TOecZAEJg3WG+Ywyfv0cePf1uVzTaTttuNWImZbdTdprCY2/gg78i5UJ4/upNtLRoYEidN8uROkC4yX/vwKytkvRhUIbqfbbpHEKjUtFXbAQBwBUx6/J/kfop5XMLDJi79QJuFRpR1csdgH1rU6RsfJb79XLOsSo8ARdTcjB783nkFBjkmSvLEVx3sdEZci5FbrwpfbntQpnuLXbDzrV4A+eFIr/IiKPXzOVA2YkAYLUOo6zFpeXiaHw6eszeiZv5RVh2MB7v/xWJ6RvPImjyZoz9fh9aTd0mz0ppSbmZX+6VfS1x7bgtyuyOF8WwWaOJY9f5FAz4MhQTVx5DXqEB45ceQUxqDjLFfQyXHoiz+bojvtmLYfP3OnS9uQUGvL3mJBLT8+RQXkta+0PHpeWWa8bNe37YL783gNCAzykw4GeLGZHZm8/henaBXB6lmQNAfd1SlXMwJs2uhGmAeXR8mcaWWoCQaKz/F7vlcO//Iq/g/FX150BrYEhaQ6Zlr0Yj39GZWj2D5oXh34hkOfmUtC76Zr5B/h0y8ork0XkpfD/1Zr5mRzc0KhWtP9mG00lZSLmZj9Sb+YhJzUHQ5M2qCAZLm05fxScbzmLEN3vxwbpTqo5QXFourujMqEiRP9ssZpUPx97AfQsOyJ+P2VvOo8Bgsur05RUaSt3wVM7Izdt+oVTbkwDmBmBeoRGrj1y2O5s2ANXAXlnLLzKiy6wQfLJBHWVxND4d644n4QNFlJQ0W6QM5nngp4PywMcVcZZdqi8eX3QYa48lyZ/PP48m4mmdDsRDPx/Ee39FqrZjyy+yjsAqNHKHtmyTGE0cyw7Ga3aoUrPNZd6FWXekun+2Ux6YspettgcAVZ3nqPS8QnmWNSolG8FfhdncX9fRgZrfDsRj1qZzWHU4AVezbuGtNSetBuOkJSXKzuvzy47iKTFZVpH4d/tqh7oD/dfxJHnA1xGOdt6VdiQYdMPgfzsQj4HzQnE6OQv7otNUbeCcAgPm74hS/ex90dflej0+zdy5Npm0sxQXx7LuUu4YIrGcad1+9vZnwFaGKQMQ1qNzKVrKsQFlo6JTHBqViueXHQXnHE/9erjYgX1nVB5rbgM559JQ/DUAgeLj+gCUw8hJ4jG943eUbrNCcP+PB1RZXqV1atcVlfyJyxlyY+sfxezFY4sO46/jSfh6RxTeXnMSn222Hp1ce0x4vW1nr5XpDJ80a6O09cw17Dqv/2FXNnCVN8q1xxKxcM8l/BwWAylDva0U/jdyChA0ebPcKHWzSGu/MfIKPt8iNBILDSabSa0sv9dSjSoe5dKQsccLy4/ix4gCeR9Ny/WpyvUbB0oQlpZ1S9jLznKWTDL4qzA8svAQrmcX4ExylrxxvTQLKHVap/57RlVelRbtjS22cVFaeiPWTykyYWrV+ZwL27sAwsx9ZGIW9ly8jmHz98izjyW9keuF4i/aewmv/3EC/0ZcKTZMuaL9flh7O5vF++Lwyb9n5M+FcvAi5WY+nl1qTgSUW2DAk7+G4yWNrYu0+HoJDTUpJPrS9RzVtjpzt55HUsYtudH+xuqTGG2xBCBbo3Nri1ZSHlthjI6K15nVuJJljnCRrlmq/3t+vkvOygwIHYKsvCLMFeu1PRdT0evzXej5+S78c1L4HmUWV0uWs73KULrBX4Vhyn7tpQN6dd9BcdZt/YlkVePYMmLl/h8PoOds82w/51xzsDDkXIpuPaSsP34MvSQ3MHMLDFYDG0qcc8zbfsFq+YFy3/GP/j6NLzTyAeiRGpEFYuLA2Os58oBM0OTNmKmx5k25/3ZEYiZGfrNXs76WZpRXhV+WwyQBc7ZZZaZ5KadGYrr57xaRmCm/V1Figp4Vh+JVS0zyxTwPlsmAlPWV1MHMF8vIwUtpaP3JNsz4T72F2MSQPKuZTECIksnOL1ItrcjOL5IHOXIVnYgP10XK6/UjEzNV18VRPjk7nurVqMxeK0YjSmhVuHW9qex0pOcW6uZ8sEywKH1W0nML8eLyY9gQcQWD5oWpzpFyp1zNysf+6DQs2nsJuy+kyus8I8t42VJpAyneWhOB81dvYlV4AvbHXJdf0zKCcIpi2cA3IRfx/e4YTNtwBkkZebh0PQfPLDki33uUgwYP/HwQzaZYL/dSSr2Zj+csEtYp66nolGxsOmVdH+2+4Pj61C8f7ujw9yjV9/O2+byHq6ti5lb9nDRIn1NgwIfrIpGYnocP10XKAwfS597VheGFZUex+0IqUrMLkF9kQr1ifq4zsp0SspQ455wxVma9BcbYRAghzQgMDERYWFhZvXSZy8nJUV3fjdxC1Uze7tBQFBUKN4Cd+w4jq4CjbhUXfHzA9prF9NRr2Hm5+AZdWa7N1EoQBADxifodmf5zzAmCdoeFyVn0rl4Rrn3fmTj45AgNtdjrufhvRyi83YDdlw0IbugGD3GWNUIMbZFmQ1KuXcGnv19D46ouCKruipCLioRCWTcRtk+9fiUsLAwmzhGWaMCKc7ZnUkOjrstrRxxVxR3ILcUEkHRz2n7gOKb8aUBqnv7H5qlfw/FyR0/0qaf++B69ZkCRCehbz/pjHZ8lNKZmb4iAV1oUcgo5fD20R/427D2JP6P036uh827vHpTN/VwQkyk0fLRm2brN2IIb+eb369QZ6zUwkafUIWfnz0TIj3/aKAwE5eUX2lWnhIWFIT7LiMbVXMAYU62/Un6/NOji7BKvpeLsDeuG59Cv98iPM9IzsCtM6HCdS0ov9n0Mv2rApljhb3kz9xbm/LETv5xSD5pIocdnz0ch7JZ5ZPnB+eaM2E/+vAcPtfRAdqF9t5n4NKGB2qmWKyKvl322ybPR2rPG+8OPy48LFaHU23cKgx438w3yezZhm3q2JjLK/LufjjbPZOm9x5euqO8Pu8L2ooo7U3Vetb73Zo52x/x7MTzesnMZsvcQmlR3xYHkIvwdXSR/BsPCwlBg5Fh3sRAhCQZ8NcgbAd4uMHGOvCLg9d3Cz/lluA/WXDDXM2FhYbiZbX0NYWFh+PpYPk6nGbF4hA8YgIWRBRjX3AMNqwqdwbRbJvy45xaW7b+E+YN84Okm1G1n09R/47jEKwgLE+ra6Awjangx1PRWD3pGXjcgp5DjlpjIZf+hcMRXdZH/LstGVQEgRHoMrKpuAM87ar5/SwPMk1YewbeDfWAwcaw6X4j7mrmrvufbjUfxQgdPHLxiQNot4XOWnpGF9Vt3o4aX/uzMB+tOISk2Cj7i77ovOk21xGR32D5sTzBga5y6zlyyYTda+LsiKdv8mZ72+270CHTDR+LAx8pDCRhSXd0pD426rio3nHM8t93893q/uyfaB7jh8/BbuJhhwmOtPNCzjjlTrzT4DgCP/3IAkzqbo3A27jtZ6o6Ulnbu11HflyE5p3wGrS1n/MLCwpCRLhzbHR6JCb8J5VsqM5LdoaF4O1Rd1hMvCx3l6LgEXE03f4Z37Q5FbJYJLfxdgSLhtbUGGv7YZB2NVhlYDkjGXklFTYtyfS7hmly2YhOE+8DqI4lyUjClkxERuHXZFYnZJkQmCuVVry48dd2APUkGHE/Rr+snLrV/zbMt9zR1R0B26XIUSH0CPYmX41CYJoamp6vvsxMX7cbDLT2w7mIhjlwzyp83080U3NPUAympwmufOWMelFuySfjd05MuISzMsSiJ8mDZbyqN8ujcpjDG6nLOr4phx1LtnwygoeK8BuKxZADBFsfDtF6Yc74IwCIA6N69Ow8ODtY6rcJl5hXif8tD8cNLA3Hu6k1xhFXd6GnYtjtStwshjg2at8VsO2LmAaBN8yDsvFw2ST5Wv9QbL604hqAAnxKFve5P1u9kZyvup337D4CPh1DUbkZeAU6dRBb3QvsO7YEjQrjUG7vz0KxWFVy6XoiObVvh8Z7CiKvpQgpwwlyRN2rQAL+JYYzxc8fi8K0LQKwQGuTm6Y0u3XsCig9Hn/4DsPJQAlacK37Rf2n4+3ojV8yU3L2xP6JTc1Qdsef7NSk27BUAFp+2L5Q5GTUwcGAXXLuZj3p+3riWlY8J4r6zU54cBkDcw+5EEl4e1AwTxAyx3M1TbqQNaBEAwHoNoq2OLQDctLMjobTt7QE2Z5tsuZRle0Rf2bEFgCbNWwBn1TMPbdu1B06YOxgdO3UBDgmz4VUC6gOIA1xcYVmnHIxJQ+1qnmheuyqwTZi1uubTFDO2ncbPT3XF6A51hVDHEGEwp0P3PsC2km8JZEuvJjWswpSK4+7KNMOeHaHVsbV05oYRb4cJjbWcIsBQuw1OXM7AByNbaYZPTVDMAGYWcKuOrdKqC4Xo2qENACFU80SquaFyJZfjh5MFGNkuEEDxYWOFRqCalxtmP97boUQueloFVpVnzgDgmsEHgHVd2rJNO+C4UMcr/xwde/QGdgqNUrnsbVOHDlYPqAMkCA0VX/8AIOmafP6ivZfQwN8HYzrUlc+/dfoqcMp8P+nRuw9qV/XCi8uPAhD+Rp179kXKzQK8ufok1r7cB9V93OFxNBTItT+5XKJLXfxx4jqiU9X1xaBBg/DcsqMISxBeq1qjtghuVwdfbLugCnt/OUT9s4KDg+F5LAzIzbU6/nqoUH/NOMLx89NdcWzHAdxydcfmNwfgYEwa3hczCOcWAd+ddcOWtwYAUJczAGjaqB6CgzvIz7m7MlyYNRqzN5/Hs30aIyigitX3dOrSDR0aVJf/Li069wK2CX+zoPY9EBRQBRm5hbh3wX4kZVh/VjILOIKDg3EgJg2hO8Jh9PbHZ+PaA2FCR7RW7UB07d0OE2aYB4QvZZnw3p5b+P6JLgD0c1gk8gD8fUQ79LNrj954O8w6YmR2eD7CpwzFBMWa+r+jhQEKCYe5PArJaoTyVK9NN9Su6okzyTfRPcgf2G4eaKpStxmC+zXBBPF9+jOqEM+PHgjssV7KccsAfHXM/Jkv7p5THL26cejAvlibcBzJOZmlen3Lz7meWLfGqFHjOpB2XTWY3qhddzy/zLzfaZ9+A3FT8d4BQNMmQcClaATWrQ+fzBSk5wvtiQhDPfwQHoONr/dDYNR5JNzUvgfoRWTYMrJdYKnDbfs3D0ADf280rVXFrgHdixqfkerVqyM4uC8AYGfmaSBRO5IIADp37ozeTWuKuSqE31kqq0IC1nRsf2cgOOeYoJHE01JcMe2L4vQI8sfR+Ax0adsCQ/o3AbY7Fvqt5OPtDeTp18GtWzRHTV8PICISkdeNeGuPuYylGbwwZX+eVdRfkyZNEdCiFi7vPwLAiJgiP5i48DdfJN53B/Tsgl5Na5b4ustKWFiYVRuspMojLHkjACnj8XgAGxTHnxWzJvcGkCWGL28HMIIx5i8mkhohHnNa87ZHYXuCAf9FXsGTiw9rrgEb/o25wr/mwGJuL3fX4k+yw4v9m6BPs5o48+lI1KuuHZKgTL7wQv8mJf5Z0zacBecc+UVG5IvhWGnZBSiyWFd66brQqKnubR7ZtkxUY7k+Txm+FX8jDysswg6n/nOmVLPYjWr42HXe8/3M78+4LvURMW246vnOjfww/d628tcfjGxV4msChBnM/05dQd+5u7HrfIocugYIoWLhsTcw+KswfL87RpUhU7lV0T47slSXBQ9XF7SuU03zuQBfD6vwGkuOjuhrbUtjuZ5LufZKyvCcV2hUrdcFhMQSlutsJ4shVNI+qUWKcLqSZGW1x+73BsnbMuiZoShfT/VqhLg5YxD6fnC5XI8W5T31xRXH8FPYJVXG59J4769Im8870kC7mW9Anepeus+/MqgZTn4y3Or4rHHtrI4teLKL6uuzV7QHCfW2CHtf8Xu9sOwopluswQTU5XnLafN62Bkbz+LzLRdUyURGf7fPKqFYhBh2Lc2EA8L68e93RSMqJRt7o4VoFVuJYrQsPRCnmdCtwGBSbe0zceVx7I9Ow8YI20sWfjsQZ5UtVLoXSPei5Mxbcqix0cRx4nIGnrTYGufc1Zv4bme0Zpj174cvY0NEsnxPKDJy/LL3EpYeiMOH609ZnS/8PkbVaynzNQR/FQajiSM8Ll33bwwAGyKS5QzZcWk52HbWHAYZnZqjux3Mx//Yrk9sJV4b9s0e3eeOODBI9rYic/mIb/ai88wQPL0kXLX+HhCSLVquHU/OLF0mfnvNfqCD5nFfT7di6017SImcijNz0zk5I7PSkK/3qJYspOdZd+alcl1oNKnC6aU65b4FBxz6u9mjTjV1PSjltOjYoLp87K2hLdC0lnrmGQDu61QPAFC3uhfmPtQRHer7lfg6jidkyHkEXIpZS/r4osO4mJKtmbRtxaEEeRAiv+j2ZGuWMlf7+wh11UyN+4S9ilsVF5uWK2+/B6gj2WLTcjW3W3RhDPf8sF/OmbNTYzmhNPl0JyntVkCrARwC0IoxlsQYewHAXADDGWPRAIaJXwPAFgCxAGIALAbwGgBwztMBzAJwVPw3UzzmtKQbYURipl2NO0f2q7LM9FpSU+8xN4SVlYmUdAkAHu1unmj/YGQrPNq9QYl+1rrjSWjy0Ra0/mSb3IC4mW/APJ1tfZQ3B8t1KUqcc6v1jr8diFd9/dfxJM31FPZa9lwPfPtYZ1yYNQpb3xog3wyUlb/09dO9zet7LGercgsMeE7RAZbeW3s7z5bScgrlSm7O1guqhAwjv92ryqyrVZndTns+DNZ9btvbA4tNjLD5zf4O/bxTGlk1LZNDTFE0GreeMXcYxn6/Hyax0azcBkUrgY+U+E3Zcd5RDkmgpo5tgyYBVdC5oTqJ/GvBzVRfP927sfy4VlVPMMbQwN9H/kx7FLPmHCj5lj56Mm8VYeGeSziekIF/TibhZn5RhaxrvzDLnKPwteBmqFnFQ/fcZ/s0hp+Pu7yUQqI1sOjno/86Slr7GwLm5QgAsOtCKpY7kEDHcqDv0vUcnL96U14jK5m48rjVe56aXSAP5BQZTfJa/7Kg9fk7LG4xZIvWfVAqj5Z7dQJCIqUHf7LONA4A3+y8qLsX6VtrIlQ5KaTt5Xw8XDUTTqVmF9hMehh1LRtrjurPNEk/U/rbJqbfUs1wnU7OwpMW+6xLHF1TrmQr/4Q9Oxqk3MxHeOwN3deZotHxthwwfX6ZfevvLQ1uVQsT+gZh9Uu9sWFSP93z1r/aB6tf6o3mtX3Rs0kNq+d9PFxL3Ln936jW8mN3O+pOR1zV2DJPStj1R/hlXFZsRWMqg3jt75/ogv9et76PvhrcHM0UHVc/cTCpcU3zsXs71cP2twdiUMta+O7xzvJxaf2vp9jxr+Zdug7StjPXkJx5y65tbR766SDa1DUPmI9bYB2Fk1uCLOclIXWi/cV7Qd9mAbrnDmsTqPscALwvTnocmTJU8/k/wi9rboNli96ezUreZTAAVNmUNlvyE5zzupxzd855A875Es75Dc75UM55C875MKmjKmZJnsQ5b8Y578A5P6Z4naWc8+biv99K+0tVNCmjb3FbcpTEAo19B98c2kJ3tOi3CT2Kfc0hrWvLj7s19sfLg5oCAAJ8zWtivNxdVaFvllrU9i3251g6p5MgZM3RREQmZiL1Zr7uel8AaPLRFvxqIzOqI2pU8UBVTzfUU8zoHJw8BE1r+eL+LvXh5e6KNnWroU3dqgCAN4a0QMg7A9FWrGA93Vx1Zxj/N6o17u+szpEW4OuB90e0xJLx3Ut0vZeu58hlQSvRxe0yoW+Q5vFODf3kx3UtIgPi546VHwf4eqKujVm0da/0QavAqqhTzQtzHuyAgS1ryc+VdLClOLsupOLBnw6q0v5rhVRn5hXCaOIoMpSu8VHfzxvvDW8pf/3Z/e3x67PmcvHigKZgjOH1Ic3l2dnFz3bHqPZ1VK+jTJjmreiInfhkOHa+OxAXZ48u9lra1dOeYS+pGzkFmLv1Ah76+SDe+TMSHWfssMoQW1amjGmt+vqhrubyoeyYPtW7MRhjeEwcYGoVWFV+7sjHQ1HPzxuMMcR8PkbVqdLq3CobzlUqsIHw5OLDNmdGt2okcJJmkt5dG4mTZZhU61GNvadNnGvOKhTnVqER87ZfUCVqkra0uFlMx2+zHY1kpRpVPPDYL9ZZfV9bdcJmsqMNEcmqmeo7xYAvQvH+OtsRE5b09l+116oXe+HCrFH47bmemHFfO/RpVhO1q+lnyG9Xrzr6NBPCKRc82QXfPNYJJxRRF4wxeNuYlfrknra69+D+zc2dFDfXsh3109qrWG8ixNGypXU/re/nhcDq1u9jnepecsfm8R4NMVps4ykH/+pW94K7qwuWP98T4xTtGD8fKapC+H7vEkQVKhMofbszGv3m7lbtyqEn2yLBnNY2UbkO7k9dUgG+wnsldfLdbZQV5f31se4NrXZ/uK9TPcTPHYva1fTbROWBOrfELpYj/uVFqkyCW9XCs32C8OOTXTGhbxB6BJlneALt+JA80r0B5j/aSX7ND0e2Ruj7wWgudlhHtBVGm9rVqw4vdxc82NU6mbUylLgsjPvxAHoq1gSVl6Gta+PrRzrh0EdDcPrTkfhHMUqslUGutdiZDfD1QIvAqhjRTnhvlJWU9Nf/8qGOeK5fEF4NbiZXHm8ObYGvHukkdlZaoIWiYS2x3ItPi61ReXv00hjlLolBrWppHvfRuNH9NkGYBQeERowUmr1mYm989UgnzH+0E3a8MxB7PgiWv6d7UA24ubrg8JSheKJnI6x4vie6NvIDoB58KUtayTq0zPjvHF75/bjmXoCOaFqrCmLFcMz3hrfE070bY1jbQLwzrKXq5u/qwjChXxOcmjECw9sGanYWnhSzgypvVlW93IU1wxosQ21HtK1TpvWX1sCL5V7FZcWyPMzTyVwpRV988XBHXJg1ChvfMH/ma1m8xu73Bsmf7Qb+1vWBssM7rK3tUfnydPDSDd2srIB15IIlW5mIy8JPYZesGpuuLgwfjrK9PKPAYMKPoZdUHVnlMouy5O/jofs+2Nrj+5c7cBsNQIhIuWFHR0Npuc62XvbycnexGkQK8PVUDZYCQFBNH/F887m1q3rhgS4NUMMiKkN5L/rqkU5Y9Ew3eSnMg13qY6jObJpyJrJXk7Jdj/jtzmirY2U1UK+VIdrNxUXV+fz7tb44NlXIzSFF7j3Rs5Fc99fzM7cbLWe+17/aFyHvDESgWC9KnfKaOvdjvYmXB7vWx/7/Dbbrd7KHcoeOtJwCq0zTJVGzigfmPqgd8g4ADWt449vHuuCJno3QtZHQ7rY1iPfm0Ba4VwznBm5fB7w4JRmYqOyoc1sOXF2s31Z7Oix6qni4Im7OGNWxzx/ogJB3B+KZ3o3Rsb4QIju2Y13MuK8d/nqlr3xeVS9zBX16xgjN12eMyTcJL3dXuLowNAmoIo9ASWExtap64sKs0Zh+r7qycncVZpUqm4ufac9UKSvrzx5oj4e6NZBHHy1vjJbeG94Sq1/qjS5iRfbmkBY4MmUo6lT3QltxVC5IDOl5tEdDq/fq3eEt8XA32zOOZRGGVJy3hraQZ6Vs9WWmjm1j83X01sdIo+2vDDKHzg5uXRv3dxEGRvo1D8CkwUKZaeDvg4e7NcCDXRugZWBVNK5ZBW8ObYH1r/a1fmHFz+yh6KAP1ulkl7eQcykY8531rK4tbw1tITcsAOC14OZ4vl8TNKzhrQotfmtYCxyYPMTq+6uJ+0MrB66k0DKpcaI32LTulT5Y9pwQzTF1bBs80ydINXNpMJrQqo52R7gk5jqw9UppWW715aJRsKt4uKr2yvZyd4Wnmys2TOqHN4c0twqRb+Dvg39e64tZ49qhs6KB/Ui3BhjUspbqtdrXE+rhAF9P9Gtes9iOW1mztaVacWyt3QTU0RYlZTmrZzRxu0Llbxdb+yNHO7A/au2qnoicpn2vdYS0hq8iObpmvrT7nDfUWKbj7uqiCk0+9NEQ/PVKX/z9mvb9ARDqNimyx6+K8D5+ck9bPNytAUa0qyN/bi1nZJXlXNlxfmtoC9V5lktCKpO+za3DYt1dXVBFMYPdMrCqPBgovQMmzvHSgKZ4Z1hLTOhrXkJlWSd2a+yPFoFV5XWaUrRbdW93nPhkOC59PgZfPyJMljSrVQXP9gnSvE4G5vBerbZ0mmlOyNb9s7JJ6ujiwuTkplq2vjUQdaoLUWVSeZHuy8oQbgBY+HQ3uLowfPFQB9zfuR7eH9lKc3KjIpTFuvTK5s5bRVwJaIWwTOgXhF/2OD7CO7ZjXSx4ootVJfBEz4ZgjGHW/e1tfr+06bflY0vS3ojKCl26AViORCkbzgG+nqqGemWiDCns3bQGDscK68q2vz1Q3nfUMmS2uFkrN1cXOQwKECo/KYTkyZ6N0KWhv9zJdZS0nZBWdtv+zQM0Q5lKysPNRZ79bV2nmm6I+DN9GlutF3y6dyN5X1QGYNb97bEnKlWVsOatoS1Qy9cTrw4qWSPgXUWYriWpc+vt7or3hrfEon2x+HV8DxhMJoScSyl2lqqsOTpz2yLQFwG+nqhX3QtXsvLRwN8bDWv4YN+H1h1ZW+r7eePrQd6o0bQ9uorrcd8b0QrVvd0xVmcJQfcgYUBA2Yhb9nwP9JkjJMkpMnGr8Ppn+zRG89q+mLZBnYHaHqk6eyKXh2FtamNo69rYpdif8Jdnusnr245PHQZPnRHqTg39rGaHJA38ffCMRQNtnth4U5KSzgxsGYD5j3YGICRDU4a3lye9fAzKumNsx7rytmp69DJsP9cvyCqnwWvBzRxeAyYJ8PXEgBa1AFivR540uBmiruVUeL4Aida+8no+va+dalC5JHa+OxBBNasgI68IT/8ablemXmc0oEUAvnmsM9xdXODt4aq5ttqSdM+2DOlUenFAU/nxm0NaAFw9oykkquSaa2mnjGmNz7dckAcRAeE+P3NcO7kOHNomEB+Oao3QC6l4Y/VJNKzh43D0g5e7S5klPVLez7s28se5mSPx/l+RcgI6DzcGFxeGi5+NRmp2vqotKLUtOYSIn7eGtbB6fS33da6HAqNJXt4BmCcHHurWANlJURg3TBiAuK9TPWyMtJ1QrjKSQrwjp42AiXMsPxSPB7s0wJWsW+itk13Y19NNvr9KUSbK+62Phxu+fVxIRLhsQg9sPXNNc/260n+v98e9GuuKy0ppJt8qqzvvN6oEXC06SK0CqyKgSslCKH98sqvm6Ja9I17Son8PV2FPTk83F5uZepUdV2nmw9ZSqZ+e6io/1gpXljzZq1GJ1uVKSvvh++UZ87oardFhSWlGEhljJe7YAsD3g/Wvq5lGtkJH3dPR3OFR3tRn3Kef3c/dxQWPdW8orxUJ8PXAh4pEG4wBz/RujF/H90D83LEI+3979x0eVdG2Afye3U3vJCEEAoSEUELvHUILTUTFAopdsWCvYEEpCvqqr/Wzo76iIhYU6aB06b1DgNB7SCCkJ/P9cUrO1mRDQrJw/66Li+TsZnOymZwzz8wzzzyXhH+e7YG4yEC8cl0iQipg9kFLjCiSEo/3TsC21/vBbBLwsZhxXfPilJ9lz/fEoObO14lXFq3TdFs7pbPlqpNWknA/E3o2rK6/zyF+Xng2uaHdLKYrxo7OgKY17DIHHk2q73T0/UrNmNuOLPtYTPr1xNtiQqi/F/y9Lfj6nnbY8loytqpZKv2a1MA9aiG38EAflwN8l0tbl2n8HqN61sdww8i/sQiKxtEM3dtDHadUu+Jo1uzpPg0w9YEO+uf5pVjO4CxFbayhCOEbNzZFrVA/pwMCGleDVEueT0LDGkF2MxwA8Hy/RspWM5fJthqsrWHtart8XJPqRiXphjWC7LIGJgxp4rK2gC0plYHUyCAf1DKkw3dLiLBaU+pMaWbEkyrwb7dlCe1C8/39HRAR6KNsRVXCPb6sS58CfCwYM7Cx1cD9f25pjtrV/PT3qXej6ri3SywAYGT3eBycNFBf2qEty7qrUyyGt1faS7A6eNGzUXVsH9cPc9Wtp9xR2veoJCM61rGriu/vbcEHw4oruVvUm6a3xYSYMOt+RrD6vpZUpdiWr5cZd3as6/T3FhtiRpga7H4wrCXu6lQXvz/aGY+pGVvatzPWfHEmSs0E87GY7PrXFeXj21vptS9C/L0QFuCNp/o0QJ1wf6eBrbvCArz1pUTObBmbrGxF5oBt3ZGy7sJRnjPoVQWD2wpg2zmc+kAH3NW5Lu7qVNfuuc8l29/8L6eza8vbYsKW15KxUd2aZs/EAXo6qNHgFjXxRK/6Vn8cZrXB21YkBoDv7muPN25salWh8L1bW+Ipm1G/lwcqaa0CQCt1raS7Qvy8sGfiADQypEvaLtpvEOU6cA72teCnBztapck6420x4YnepRu9LE9mk8CzfRvgl4c74fl+Da3WTj/fvxFGdo+z+5ofHyzuuNq+97aMjxuD2+gQX4fpr4AywPHWzc0xRS1MJqUSnHWpr1zcbbdqio0IQFxk2QcxSkP7niVlb4cFeOGT21u7TKl8XE2nT06Mwmcj2pTbObrir6+/ro+UNwaU2/ZeZRXk64VZj3fF3okD0Dwm1G5bjQAf+/PbOb4fDk4aaDVo5I52bgQuZpPAYMOgBaBcx354oANGD2iEXeP7Y/3LxdkjIX5eVrMu5WnRMz0w/aFOVsce6h6Ht29ujnOXlPWJ9SKsB6KMa84CfbTlHyZUV6/z17ew/tkAx+v9NY85uH4742OzhUmbuiW/775eZrx5YzP0aGAd/AghkPLGAOydOAB3dKiLlaN76T+DxjjAGR3iiyd6J+DLu6zbSFLDSBx4c6A+COCsirI7FWrnPOE4uJj/dHd97bWjgY171IDGmdLMJNoKNMzadqhXDctf6Ik7O8W6DB6CbM7NuFWVcXDkqT4JDpfOjOhYBz892FH/PDzQ/jnP9m2A/k2Ki9Bp98IIw3NdFZTbO3GAPlhwe4c6Tgv6RQX7WGWO2G6jM+76Ji6rlTuz7IWeWOOkiqy7hrSsheUv9NIHIb6+p53VEiKts69c44rvC68NboIfH+xQLumkAW5uv+JjMWHPxP52f8MTb2iGmiG+uK9LPfxhSN/2Mpv0oNBVQPjuLS3wXHIDtHASQJUHIQTGD2mK1nXC9NoEndUMuK/ucn4PmfFoZ3w4vBVOXVAygJKb1MCNrZxPorhim2H488iOTp6puK55zStW2GnRMz0w8zHrquAzH+uC1WN66wPX857qZvUzNI8Jwds3t9AHR29tG6MPxJQkxM/LajnS1YjBbQWwLfYTGeQDH4sZ4xzMkAU4uOH+7mStoWbZ8+4twg/x8ypxxsLLbMIzyQ2tzkebhXRUEbdHg0jc0cE+WL+3cz18NLwVHu4Rj0eT4g3rOpWL27SRHdG2FB0so3w17fMHwwyEbQfy10c6W81M2hJCoFN8OEYPUGYdlz6fhEXP9HD43L0TB7iccahIj/dOQLvYahjVsz6+v7/45w30seC5ZGXgwdhZ7hwfgRmPdsb397d3WWApdfIgfV0xoKQpaSKDfKwKFzkKBk2G1CXA/b1ny5PWLkOdzAprAy6OOsc3tqqFp/sU/2612Yth7Ws73ErCXd/e2w5vOtlzUaOvdRLCrRnWitS0Voj+t9qmbhgeUgdSnuidgCAHgaK/twVCiDJ1/jvGVcOEG5pafe1zyQ2c1gS4q1Ndfd0coOzRDQDVg33xcI94mE1X7n10tOXImIGNcWvb2nigaz3c3amuVTACFLdDb7MJSQ2VWYop97TT09kf6hGPVw2zooD92n/j7O5jveo7HRyoaTM7aJvx8kC3ONza0Pr3aVsDwM/bjNs71MF397W3e32L2WT1e2tVJwwfDm+FsdclYvyQJnr9B6D4mtE3Mcruemqc2bStRKx13r1dVB390XAviIsMQGLNYCx6prvd80L8vHBL29rY8loylr3Q066AWkmFVFxNEjmacQaAIB/l/d36ejKmPtBBzxRydB/9Y1QXfHpHa/xjmHlb/kJPq7+5voYOa5u6StuznTEf2DTaarlMYnSwXnRpVM94eJkFHu+dgM8MgZo2QOxlNmHW48o2MQ2jgvSgw5a3xaQHqj4Wk8O//ds71MGal/pYDfCvGWMdVPh5mfHPs0luFxMK8fMqVYHM8iSE9bpQXy+zy61eAGDKPaUb8CvNtfPru9vqQU9EoNKPbOpgAEIIgbGDE+1mg5MaKNcbVwNFkUE+eKxXwhWbvWtZOxRrX+6Nm9Rq9o5qI2jqVPO3GvwL8rXgzRub2QWCmm4JEQ7fV28H7TXAx4IFTxdfMx5Nisdvj3TGuOublFhrpLzVrx6I5jGhVseax4RaDXI1qhGMiEAfrH2pN/ZM7I+Z6tZO/Zsq/d5x1ze1+xmnGvqQRuGB3ujduOQZc0/GNbcVwBjcGtdwCiHw6nWJmDCreP2OgFKRE1AWojsKdjV+Xmb0axKFOuEl740654luOJx2qQxnXywi0MftQiIh/l4Y3KKmXhHum5VKkQ4hlBtDx7hwvbDI6AGNcDw9Gz+vO+JyqwUtuDV2+Gzfp2BfL3x8e2vM2jrb6vhfj3XFiQz7PeWM+7hVVVrKlNZB9baY9N9HUoPq8FIDVK241YmMI65fz3Dh8zYXd+qMM4fayN8Xd7axWu+mzTZ2S1Bu7FrfpTKyWUYPaIR+TWqgSU3HI81f390We09dtPq5HuhaD4fSsvDf21qiqEgiISoQAkpn8eCkgfqNfevryWj++gIIobzvxjVRyYlRLvexNb6O7RqavolReP+2lth4+DxiI6p+29M6p4EOZm0dpdaWVsOoIHx7b3v4epn1wGHVmF6oEewLIQTCA7xxMbcAfRtHoV5EAOpXD8T1LWrqFWkf7FYPLw9KdPEdKk94oA/GDXFcA2H5Cz3h62VGeIA32tQNQ8e4cEQG+iA9Kx/Bfl64v2s9/b7w8sDG+pZjmp6NquP3jUrRJ18vM57p2xDDv7Tftsa2aJNxQAtQZnAG1vPG8N7tcKO6R+w7t7RAt4QInMjIweS5u92unGnsfH6/KtXhc5wNRAFAruGcFz+XpM8Gax3y5jEhdnvntqoTBrNJ4M6OdfVlFfWrB+Gbe9ph/aE0fLLYeh2wltJ6Z6dY7DxxET+tVWoGGKuKfzi8Ff7edQp/GrZUevW6ROTmF2G8+rt5vl9DbD6SjoU7TzmdDdMCQNvsgQe7x+HB7nGIHa3co0YPaISWtUPtApLSZHL88EAHHDiTiegQP1zIyUe8TbbMB8NbITuvEPtOX0Tn+Ag836+R3WtohS8FlMGtz0a0RrOYUIT6eaHJa/MBWNdXAIrTs/edynTYOdYG9rT3pnqQj8OlKSH+XhWyZKUq6NWodLNntu2nbrg/Tl3IQU5+EXy9TGhWKwS9G0chS92v9WF1i8aXByXi5ja1kZlboD/mzIQbmuLOTnWtgqSqoHqQ9fmE+Hkhw0FBPO1v4dm+DfDuwr2wmJQB1eYxoUidPAifLE6xqmnw/f0dkDh2HmxrfK8Z0xvBvl54vl9D/fkWs7BaKqcttypNdktp/fhAh1LvhV5atrPJE4Y0wdN9E+DnbbbrF9sGu8Pa1caBM5cwaWgz1AsPQHxkIFrUrrgZ+8rE4LYCDGlZCz+o213Me8o6XcrYiQGAlnXCSp3GuWtC/1KfQ2LN4Mta/1letNQb441em0XumxiF+MhATF+vBGXrXu6Ddm/YV7nTipsIIfDKoMaYOHsXOsWF46WBjRER6OOyM9YsJsTpeoWqxFFHyWQSeHlgY4fb7Tga4LCdpbEtDGN83Msi8NsjnazW6e2e0F/vUCY3qYFkQwpbgI8FS55LQrS6RYBU53ArY6WGl9nkcpY1yNdLn+HQvGKYGTOZhNWezcYR62BfL7zQvyG6xEdg85F0vDZzh35DdLQXnJ+XWQ8ojK8jRPEAwM7x/eBtNsFiNqkFdKo+7SZpvFl2S4jApsPpmK3O8rgy4Yam+H5VKvYaqsy2qhOKGY8Wj7hr6eX+Xhb9vdvgZD2h1uGoCte0sjCu89fWa313X3usTDmrXw+1IO6BbvXsZlE61gtHt4QINFBTyTrFh2PRMz1w4EwmRn6/QX/e3Z1jrbYZsU0J1bSqE4aGUUF6oaIhLWvhWHo2Js/drc8ua0qzJk5jnIUx/o0aq+7aBmLa4BxgnZGjXRPrRQTowW3PhpFYvOcMfL1M2P+m9Q4CgDII0L1BpF1wa1RgKABnvHdc36Im9hkKN/32SGe0qRuGwiKpB7et64Rhr/qcfCeF5EqaAfv72R6QEvpWe7ZKU7k00Meiz/Q4WsYU6GNBoI/F5RIn2+KJ2gyQ0cQbmlkFt0Z3d4rFuL8cF9q6o0NdHD2fjWfVZVeDW9TEX2pBobhyqB/hKVInD8K4v3bohdi0IA2wX+O69PmeOHAmEz+sOYyXBzbW/5b8vS1WkwzeFlOp+zTeFhOa1ipb/2fayI5XLENr2Qs9MWPjUbz+V/EAX5/EKP3+o917bd+zh7rHoUFUkNPt+x7oWg+H07L0tb+jetZHp/hw/LXlOOIjAyt8ttpR5eryZjGb9MGCiEAfLH0+CT3fWYIiab9879Gk+lZ9x6El7NzhyRjcVgDjTd3Z/pIAsH1cP6fpwh8Ob4XTF3LK/dyutJta18L5rDzcbUjJ+nB4K8zZdgJxakdG6+Targ/7Y1QX/LbhKK5vWTwzcEeHukg9dwkPdovTL1iebvu4fhAA1q2yr4b3oIN1ts40sFlDMffJbhj80Uo9+DKO4nmZTWhTt5pVEFjSjIFxxlG/6V19dQjwaJKyprFF7VDc3TkW6Vl5+GPTMYzqWd9qVgdQsgmOpdtnBpiEQKH6Jvm7ubaqKni4Rzz8vMxWlTC/d5LipHm2bwPsPZ2Jj4YrhUymr3OdSaD1KxzsnGanfb1qWDm6l13arSerGeqHW2ze32Pns+06XGtf7o3IQB+74/WrB+rBi5dZqYQqhMD5S3n4btUhAMV/83Oe6GY3y/PnY12Qa8hMqBXqh6XPJ1kVnEmdPAjSjR5u81qhAJQUP2PdAm0/xzZ1w/Bif+tZRGdFqbSZnDDDzMenI9rgbGauy05pSQVnOtcPxy8bjgKwT0tOTqyBj/5JQXJiFFqp52U2CTzUPQ67Tl5Ex7hq+HOzMoOenVeElrVDsflIOgDl/TtZinu2bXBv63LW4L8+OLHUmRWOdnXQfH13W6w9mOb08SIpYTIJxIT54eh5++ufn7fZqlDhB7e1xNtDm+PkhRy7JUVXu9cGN8HI7nE4kpaN9vWq6cGto3YaFxlot0ShspRX0aTSCPHzwl2dYvH6XzvRp3GUXb9Hy27QMsc0FrPJKm0fsB50esXBe9m6Tpi+Jy0AvH1z83Ir7lUV1A0PwPpX+iK3oBCn1bXK3hYTbm9fx+Fe7Vcrz+t1XUVcrYN1VGTEE1nMJjxkU8QpKtgX93apZ/dcs02HpXF0kN1WR37eZky8wfmaxk2v9sWx9OxKL9LjjvKq4No4Ohirx/RG9SAf5BcVwcdixqaxffWLvbGCpqv1uaVRHNtehdGtjVB/byxU12fPfqIrTl3IwX3fKiPFzjrSJgG4t0Nk1eLrZbb7uy3JiI51rQacbDMJbGOkBlFB2HwkvdTVL2u5KLJ0NQjx83JYEdY2hc9IK0R0XfOaesD32uAmOHD2EpbvO6unJTua8fb1MttdJx0t13BndqNZTAi2jE22SzntlhCJj/5JwdjrEh2uiTNu2aQ5maEEisYqw75eZrtqr+66sVUMnv55CwD7vZGbxYQ4XIozZmDxGjxtFikrrwB/jOoCKSVSTmdedpGhuuH+OHQuy+HfQ5i/l17V1pV7HNxXbdWvHoikBpH6zK2j32/vxlHo3dg+vXbL2GSM+2sHnlbXUI8Z0BjP/bLFLh3elskk4OdtvqoD2+pBPvrWZz892NFqBj46xE/fwkjLPihr9eerlckksHJ0L4fFxtrGVnN4XdHMf6o7jqQpKfOOtjFz5da2pauY7km0JXzawFPTmsEud8W4GjG4rSCTuvqhfQf7ghwAMPGGpg7XF1yrxl3fBBNm7bTraJVmOwNbYQHeV82Mblloa2t8TFpV1uIOrNaRK4/CSTe2qoW1B9Ou6s6KI01qhlit9dU6iB1s3tNfH+6Mb1Ye1DuB1wLboKVjXDjWHzqvfx5n01a+uacdth3L8MiZ7Sth4g1NUbeE+gomk8DGV/ta7atqMgmM7B6H5fvOlrlC/eVw1AFtX896bbutfoYlEJr7u9XDvtOZuK1dbUyau9utc5h4Q1OHGRXOuJN6rc325hiWI5RH9dzfHumMQ062HCrN9j+lpRVSPHi2dDU5Zj3eFZs2KqnvIf5eeO+2lvpjg5pHY1DzaBw4k+lyy8BrwcJneuBijtKv6+SkKBcAfHV3O3y1/ADu7KSsF9fWYJPrAUxXa7Qb1ghCQ3U3jeuaR2PW1hNOi05dS7St38pS+NHTsVdRQaIDTU7Tj0Z0tK8yfC27tV1t3KruN7j25d646+u12H3y4lW591ZlW/xckr49wOUY1q42bm1b+4rtOVfVrHu5D7LyCvS1PuNtCgm1qB2qb9R+rbC9gT7dtwEGNY+GEMCMTcfwpM32WmEB3ujewDPWIFeG0t4nHG0N0y0h0u1igBXN3et5dIifXrF5QNMabhW6cuceu31cP7f2Ub+lbW18teIgBjUv3+yqiEAfpxk1FXEvtF1z60zTWiE4u8/1+1PR2795AmeZF7bMJmGXFVOWrZHIsXdvbYHXBjcp1y01PVWb2DAMbFZD32njWsLglqqU6kG++OXhTjh1Faw3rorKa6ZVCAEXS7auesqN0wfP9G2Ah6duRK1raC2LM7adZbNJ6Ov/xgzwzEJQVDV8Ws57UNeLCNDXfLu7LKReRAD2ThxQrudD167t4/rZLcmisvOxmBEZ5DnL0iqSj8WM/7ujfK+dnoLBLVU5Qb5eDvfWJKpq+jeNrnIzZJWFmRbkKRYb9pUlqkzlVXODiIpde4nYRERUbq72Qk9ERETkOThkREREZfbX4125jIDIw1QP9kFUsA9eG1w1tp4hIiovDG6JiKjMqgV4OyxqRERVl4/FjDUv9ans0yAiKndMSyYiIiIiIiKPx+CWiIiIiIiIPB6DWyIiIiIiIvJ4DG6JiIiIiIjI4zG4JSIiIiIiIo/H4JaIiIiIiIg8HoNbIiIiIiIi8ngMbomIiIiIiMjjMbglIiIiIiIij8fgloiIiIiIiDweg1siIiIiIiLyeBUW3AohUoUQ24QQm4UQ69Vj1YQQC4UQ+9T/w9TjQgjxoRAiRQixVQjRuqLOi4iIiIiIiK4+FT1z21NK2VJK2Vb9fDSAv6WUCQD+Vj8HgAEAEtR/IwF8WsHnRURERERERFeRK52WPATAd+rH3wG4wXD8f1KxGkCoECL6Cp8bEREREREReaiKDG4lgAVCiA1CiJHqsSgp5Qn145MAotSPawE4Yvjao+oxIiIiIiIiohJZKvC1u0opjwkhqgNYKITYbXxQSimFENKdF1SD5JEAEBUVhSVLlpTbyZa3zMzMKn1+VPWwzZC72GbIXWwz5C62GXIX2wy5qzzbTIUFt1LKY+r/p4UQMwC0B3BKCBEtpTyhph2fVp9+DEBtw5fHqMdsX/MLAF8AQNu2bWVSUlJFnf5lW7JkCary+VHVwzZD7mKbIXexzZC72GbIXWwz5K7ybDMVkpYshAgQQgRpHwNIBrAdwEwAd6tPuxvAn+rHMwHcpVZN7gggw5C+TERERERERORSRc3cRgGYIYTQvsePUsp5Qoh1AKYLIe4HcAjArerz5wAYCCAFQBaAeyvovIiIiIiIiOgqVCHBrZTyAIAWDo6fA9DbwXEJYFRFnAsRERERERFd/a70VkBERERERERE5Y7BLREREREREXk8BrdERERERETk8RjcEhERERERkcdjcEtEREREREQej8EtEREREREReTwGt0REREREROTxGNwSERERERGRx2NwS0RERERERB6PwS0RERERERF5PAa3RERERERE5PEY3BIREREREZHHY3BLREREREREHo/BLREREREREXk8BrdERERERETk8RjcEhERERERkcdjcEtEREREREQej8EtEREREREReTwGt0REREREROTxGNwSERERERGRx2NwS0RERERERB6PwS0RERERERF5PAa3RERERERE5PEY3BIREREREZHHY3BLREREREREHo/BLREREREREXk8BrdERERERETk8apMcCuE6C+E2COESBFCjK7s8yEiIiIiIiLPUSWCWyGEGcAnAAYASAQwXAiRWLlnRURERERERJ6iSgS3ANoDSJFSHpBS5gGYBmBIJZ8TEREREREReYiqEtzWAnDE8PlR9RgRERERERFRiSyVfQLuEEKMBDBS/TRTCLGnMs+nBBEAzlb2SZBHYZshd7HNkLvYZshdbDPkLrYZcpezNlPX3ReqKsHtMQC1DZ/HqMesSCm/APDFlTqpyyGEWC+lbFvZ50Geg22G3MU2Q+5imyF3sc2Qu9hmyF3l2WaqSlryOgAJQoh6QghvAMMAzKzkcyIiIiIiIiIPUSVmbqWUBUKIxwDMB2AGMEVKuaOST4uIiIiIiIg8RJUIbgFASjkHwJzKPo9y5BHp01SlsM2Qu9hmyF1sM+QuthlyF9sMuavc2oyQUpbXaxERERERERFViqqy5paIiIiIiIiozBjcVgAhRH8hxB4hRIoQYnRlnw9VDUKIVCHENiHEZiHEevVYNSHEQiHEPvX/MPW4EEJ8qLahrUKI1pV79nSlCCGmCCFOCyG2G4653U6EEHerz98nhLi7Mn4WujKctJnXhRDH1OvNZiHEQMNjY9Q2s0cI0c9wnPeua4AQorYQYrEQYqcQYocQ4kn1OK8z5JCLNsPrDDkkhPAVQqwVQmxR28w49Xg9IcQa9ff/s1pIGEIIH/XzFPXxWMNrOWxLTkkp+a8c/0EpiLUfQBwAbwBbACRW9nnxX+X/A5AKIMLm2NsARqsfjwbwlvrxQABzAQgAHQGsqezz578r1k66A2gNYHtZ2wmAagAOqP+HqR+HVfbPxn9XtM28DuA5B89NVO9LPgDqqfcrM+9d184/ANEAWqsfBwHYq7YLXmf4z902w+sM/zlrMwJAoPqxF4A16vVjOoBh6vHPADyifvwogM/Uj4cB+NlVW3L1vTlzW/7aA0iRUh6QUuYBmAZgSCWfE1VdQwB8p378HYAbDMf/JxWrAYQKIaIr4fzoCpNSLgOQZnPY3XbSD8BCKWWalPI8gIUA+lf4yVOlcNJmnBkCYJqUMldKeRBACpT7Fu9d1wgp5Qkp5Ub144sAdgGoBV5nyAkXbcYZXmeucer1IlP91Ev9JwH0AvCretz2OqNdf34F0FsIIeC8LTnF4Lb81QJwxPD5Ubi+ANC1QwJYIITYIIQYqR6LklKeUD8+CSBK/ZjtiIzcbSdsPwQAj6lppFO0FFOwzZCBmvrXCsqsCq8zVCKbNgPwOkNOCCHMQojNAE5DGfzaDyBdSlmgPsX4+9fbhvp4BoBwlKHNMLglunK6SilbAxgAYJQQorvxQankX7B8ObnEdkKl9CmAeAAtAZwA8G6lng1VOUKIQAC/AXhKSnnB+BivM+SIgzbD6ww5JaUslFK2BBADZba10ZX4vgxuy98xALUNn8eox+gaJ6U8pv5/GsAMKH/op7R0Y/X/0+rT2Y7IyN12wvZzjZNSnlI7FkUAvkRxGhfbDEEI4QUlSPlBSvm7epjXGXLKUZvhdYZKQ0qZDmAxgE5QljVY1IeMv3+9baiPhwA4hzK0GQa35W8dgAS1Gpg3lEXRMyv5nKiSCSEChBBB2scAkgFsh9I2tAqTdwP4U/14JoC71CqVHQFkGNLF6NrjbjuZDyBZCBGmpoklq8foGmGzRv9GKNcbQGkzw9TKlPUAJABYC967rhnqOravAeySUr5neIjXGXLIWZvhdYacEUJECiFC1Y/9APSFslZ7MYCb1afZXme068/NAP5RM0ictSWnLK4eJPdJKQuEEI9BucCbAUyRUu6o5NOiyhcFYIZyf4AFwI9SynlCiHUApgsh7gdwCMCt6vPnQKlQmQIgC8C9V/6UqTIIIX4CkAQgQghxFMBrACbDjXYipUwTQkyA0pEAgPFSytIWHCIP46TNJAkhWkJJLU0F8BAASCl3CCGmA9gJoADAKCllofo6vHddG7oAuBPANnU9HAC8BF5nyDlnbWY4rzPkRDSA74QQZiiTqdOllLOEEDsBTBNCTASwCcqgCdT/vxdCpEApkDgMcN2WnBFqmWUiIiIiIiIij8W0ZCIiIiIiIvJ4DG6JiIiIiIjI4zG4JSIiIiIiIo/nsQWlIiIiZGxsbGWfhlOXLl1CQEBAZZ8GeRC2GXIX2wy5i22G3MU2Q+5imyF3OWszGzZsOCuljHTntTw2uI2NjcX69esr+zScWrJkCZKSkir7NMiDsM2Qu9hmyF1sM+QuthlyF9sMuctZmxFCHHL3tZiWTERERERERB6PwS0RERERERF5PAa3RERERERE5PEY3BIREREREZHHY3BLREREREREHo/BLRERERHRNSYnvxCFRbKyT4OoXDG4vcq8M38POr75d2WfBhERERFVYY1enYfHftxY2adBVK4Y3F5lPl6cgpMXciAlR+IqwtxtJxA7ejaOns+q7FO5qh09n4X3FuxhOy6jvacu8r0jIqISzd1+srJP4Zry2dL9+Hf/2co+jasag9urVE5+kf7xpdwCZOcVAgBiR8/GG7N36o+xA+ye3zYeAwB0fWsx37sK9NS0zfjwnxTsOXWxsk/F46xPTUPyf5fhf6uUfc+Pp2fj9i9XY/uxjEo+s6ph+7EMHEvPtjo2dfUhnL6YU0lnRERUuaSUyCsoKvmJdNkmz92N279cY3Vs29EM/G9VauWc0FWIwe1VKj07T/+4yWvz0eHNRShS11V8ufwgAOBIWhbqvzwXf24+VinnWBXc/uVqDP9idZm+NksdMKCSHT6XhbnbTjh9/Od1h7HtqBJ8FRZJpGUp7dc4SEOKgsIi/W/ZES1wW5uaBgC44ZOV+Hf/OVz30Yorcn5VTUZWPnYev6B/ft1HK9Bl8j94ZvpmnMzIwZG0LLzyx3Y8OpWpeUSe5uDZS8jJ5724LIxrbb9afhANXpmL85fycC4zl4P3pVBYJJGRlW93/INF+zB19SGHX1NQ6LhPM/jjFRj7545yPb9rGYPbq9TpC7m4kFP8R3chpwC5hlG59Kw8bDh0HoVFEi/9vg2xo2fjSFrJqbYnM3KQmVtgdSwnvxD5Tv5gq7p/95/DqgPnyvS157PycMnmvcjIznd4sbuW/XfhXnT/z2I88oPz4OHF37Zh8MdK8PXcL1tw4MwlAMr7act21u1asmTPadR/eS6emLbJ6XP8vS0AgNlblcGE0xdz9cdSz16q2BOsgkZ8vQYDP1xu11n7feMxfL3iAArUDp7xfcrIzsfrM3cgK8/677skKacv4sO/97FjSFTBCgqLMOrHjej5zhJ8sewA8gqKHP7dzd12AqMMa0qPpWfjyWmbMO6vHbj1s1VWz912NAPfX+WzZ2czczFh1k7kFlj3235aexgAsPrAObSZuAjT1h3RH0u7lIdPFqe4HFS9Fk2euwstxi+w6xP/d9FevPLHdgBK/zgrrwCv/LENU1cfsnuurQNnMtmHLAcMbj2IlBIpp0uXpjnkk5Vo/voCq2PG0c0jadl64HBJnYHcoc5u5OQX4qIaGOcVFGH6+iP6Ra3jpL9xwycrrV630avzMPCD5WX4iTzH2D+32930Rv+2DU1em2+VytNi3AK0GL8A5y/lgZSOxAd/79M/LyqSOHAmE2/O2YX0rDz0f38Z9hlSj9Mu5WHGpuJMgmPnrQPZf/efRZfJ/+CB79ZjyZ7TFf8DXAFfLNuPL5cdsDueV1CEizn5+Gr5AXSe9DeOp2fjnm/WAQBmbT2BvIIiZBdIzNxyXB+Bz8jOx8mM4vds69F0q9dMemfJNRN4SSmx+sA5bFPTsefvOGWXdpeZW4Dbv1QyNw6nZeG7f1PR//1l+GLZfnz7byp+XHMYrcYv0Dt+uQWFLtdK3fLZKry3cG+JHRgiujxztp/UB/BmbT2OBq/MxSeLU/THs/IK8PrMHXjkh42YvfUELuTkI6+gCKN+2Ig/Nx/HNytT9eyWVfvPYfxfOzH44xV49SqfPXt3wV58veIgpqxI1Qf2ACBPDXSX7j0DAFix7ywOn8tCRlY+xv21A/+ZvwfvLdyLUxeKl2+sT027pteOzth0HIAyWXQyw/Gylo6T/kbi2PmYuvowXvljOybM2qU/ljh2nl2fvte7S9Fi/AI0enUu08Qvg6WyT4BK7+sVBzFx9i78OaoLWtQO1Y+fy8xFoK8FPhazy6/PKSgObmdtO44LNrNi5y4pMxe93lmCIF8vzH+6O95buBefLd2PUD8vJDepAQBIOZ1p99r7HBy7WmTmFujrF41WpCgX9W3H0tGmbjWrtNtWExZiy2vJyMorwJYj6ejfNBq93l2CA2cu4bv72qNHg0in32/cXztQK9QPD3SLK/8fpgKM+GoNqgf5oENcNfRqFIVQfy/8sPoQhBB4baZ1R+HzZQfw1rzdAID/rUpFTn4R3lu4V3/8qZ83Wz3/3/1ncXuHOvrn2jqVRbtOYdGuU0idPKiCfqqKsf9MJoJ8LKge7IvM3ALsPXURb85R3o8Huxf/vouKJD5ZnGI1MLD2YJrVazV4Za760SbsOXkBQ1vHoNe7S62e42iLh6lrDuPOjnUBAPN3nITFJNC7cVR5/HgVJjuvED4WE0wmUeqvmbPtpNWMzcNTN2DayI5Wz/lp7RGrz7X22jg6GACQeu4SzmflY8zv2zC8fR18/E8KPvonBb8+3AltY6sBAPILizB3+0kMbh6N8+qIe3Z+IYJ8vdz/QemqVVBYBLNJQIjSt+FrxX3frsPuExfw75jedo85+9s3ZprtPaX0P95ZsBeh/t5oF1sNy/aewbf/purPaf76AjSPCcHWo9a1B/aduojhX5ZtaVJVk19YhI2HzqNDXLjdcS+zNpel3BPemrcbQ9vUsnoOAH3G1sdiQvf/LLZ6nY8Xp2DGpmNYOboXDpzJxM3qzPeiZ7oDAGqG+iEztwDBNtc+bUDV09p+elYeLuYUoHY1f6vjGw6l4cO/U/Q+84u/bcXKlHNY81JvRAb6WH19us0s7G8bj+ofZ+UVos97y/DuLS3svndOfhEu5OQjwvB6VHoMbqu4tEt5CPK1wMtswqr9SvqsceRMSok2ExdhYLMa+L872th9/fO/bNE/1lI9AeDzpfYzRS/P2I5q/t44npEDZORgxb6zWKeObBYUyTLP+OQWFGLIxysxdnAiOsdHlOk1KsIJwwzX1NWHkHI6E1uPpuP3R7sAUAKRAR8sL3H07NQF5QJnm978+swd2HDoPA6nZWHHuH76+3/vN2vxzb3WAe7FnHwsP5qPbkUS36xMBQC3g9uiIokvlh/A8PZ1EOJ3ZTrW87af1IP83zcdA7DN5fO1wBYoXk9rrNR41pAaCigpVMXP9/x1Vb3V4DN18iA89uNGLNlzRn9s9tYT+GntYXw6ojWa2WRdAHBZEOqTxfvxyeL9dse3OfiaV//Yrge3D32/QT+fgsIipJzJRKMawUjPysPpi7loEBXk3g9YAXLyC9F47Dw81CMOYwY0dvnczUfSMfyL1Vj6QhL2Ochyeel31+1To2UPGDMHukz+B7nqAOGuExfQNrYaNh4+jyW7T+PDf1KsrhM5edf2iHvq2UtYdeAchrevY3V85/EL2HvqIm5oVcvJV16dpJSo//Jc3NM5Fq9f36SyT+eKKCgswsGzl5BQimvIP7uts3AycwvwyNQNeKFfIwz+eAXu61IPr17XGBeyC/DTusO4t0us09fS0kFfGWR/rbANbAHg3m/X2R2TUjoMxJbtPYPZW0/grs510aRmSEk/1hX3/qK9+GTxfsx4tDNa1QkDoMzAjvh6jT4pEuBd3O1/WL3+A8X9GI23xXFip7YsaOaW4/qxPu8ts3pOvyZRSI4owpQVB3F7hzpo9Oo89GgQie/ua395P+BlysjOx47jGSX2Qw+fy8Kx9Gw8/tNGnM3MwwfDWmLT4XTUqeaP+7rWw8NTN+KMoa+yMkXp+3V482+0rRumH+/21mK713bkWUM/3aigUOJIWhaCfb0Q4s/BUncwLbkKk1Ki9YSFeOInZX3dJXX9l5fZpKdknlE7/3O2OS7l/suG4lGiO75a4/A5Rj+q6XeAslZtw6HzAJSLQn5hcXD7z+5TOHTOev3eliPpDl/z6Pls7D55sdQdy8uxYt9ZvZN5KbcAT/+8GWcu5iIjOx+xo2djxqajkFJiw6E0dJr0j/51r/yxHd/+m4qNh9Ox5Ug6hny8Ar3fXVqqtJBvVh5E97cXWwVigNJBPqyOLv+yvniGqEgCd09Zi4Pq+scJs3aizYRF+Hp7Hn5Y47gIQWms3H8Wk+fuxuszr0xaVWGRxMNTN5T8RDcYB24AYPWBNPy8TmmTN/3fv3bPH/LxCsSOno0Nh9JwMiMHU1cf8pi0W9u/l1E/bsSKlLP4Vh3csPXVioNufw93ClS8u3Av+r+/HPvPZOKmT/9F8n+XlfxFV4CW4vvzuiM4fC4LvxquaScysq3S4r5ecRDZ+YVYsucM3l+0z+61DhjWHA9uUbPE773zRHEhqmPp2TibqSw32HPqIvIKinDT//2LD/9RUiGNwXRWfgHeW7gX/6YUn1teQRGe+2VLqWobVEWnL+Zg8e7SLQW4/uMVGPP7NrviKQM/XG6XnXEt0O6dxplEoz83H3OYEWW0cOcpxI6eXaaq3hnZ+Zh3hbd7eWfBXvT97zL9PueMMS0zdvRsfLnsADYfTsfyfWdx/SdKHYYpKw9iwc5TaDF+ASbP3Y1vV6Zi0+F0l687cfYul49rjp63r+Hw64aj+HLZAbtU07umrMXP649g0IcrIKWschXo96kz2MbzHv37VgDKWloAVrVYNrp4D50Ft0Dxkg9nFu06jWeXZmP8rJ24Xq2lsXTvmUq/Nz/240bc/uUah7U8jLr/ZzGGf7lav94/OW0zvv03FeNn7cS/+89aBba21qt9ZgC4eJnLUz5buh/d3l6MFuMX4J35e7DLcD9y5ODZS3qf/VrH4PYK233yQonFl05kZKPnO0vQ732lc6nNbGnpDU9O24R7vlmHdalpmLGxeH1i7OjZl31+y/c5Xj/x+swd+nZCAHDft+vR4z9LrAoMaLNyGw6l6UHaliPpGKUWEspWZ97yC4uw/0z5pzGvOXAOI75egx7/WYxf1h/BH5uPYcamY3h/0V59lvb/Fu/H1NWHMPTTVU5fZ8gnK7HFwQivM+tSldlZV52T1//aaXes5ztL8Mbsnfh6xUF9vYuzdRulof0q3O38rNp/rkwd7nOZzi/wZXXOwVrlF3/bhlbjF1gFGhrt9zT001XoOOlvvPLHdoedFU12CRWuC4skfttw1GE6b2lJKfG/Vak4np6Nkxk56PPeUofvr9nk+PJ7JVL8U05nWrW1wiKJT5coM7+nLuToWQaVOVuek1+Ic5m5eiG89Kx8dP/PYjz3yxZ9BrX/+8tx+5drsGTPaSXtU51s2VaKv9+bWpc8e2g7m6GZuvqwIS1cYSwut+VIOj78ex9uNwworj5wDr9uOKrPLGmklFi489Rltbkr4a6v1+Leb9eVqnjghRzlvcgpxeDg37tOWXW4y1tld6iB4vWMzjw5bTP6v+98MGne9pN48H/rASi1MXILCp1ef79deVC/3+UXFiG3oBAvzdiGh6ducHjfPZKWhZdnbCv3opDr1awvR4HAnpMX9cHgIR9b1/B4Y84uPfgw/uqMFc9nbDqGRbtOlev5Gj3/61a8MWcXOk76Wx8U2HDIelnI9PVHcN1HK0o94FOejqdnY9ne4qwf7dqxYKfynuQVFuHwuSxsP5ah3w9/3XAURUUSe05edBm4ahwtxdLUGzMHqw+kOX3c+DenpYxrX3elB1mM9qr1PS6nJoLtFj4VyTgY9vHiFAz4YLk+qXQiIxuxo2fjwf+tR+zo2cjJL0TPd5Zg6Kf2kwBbj6ZX6DW2KmJwewWkXcrDR3/vQ+rZS+j//nK8NXe33XN2nbigXxB+XX8UB89esrooZOYWYPdJ5Q9T6zjc8tkqTHLwWhUht6AI24/bdxiNVVuL1PMf+ukqvDxjO75afgBDPlmpn7e2dc5rM3eg97tL7WY6y+LFX7fi43/2YdvRDD0wP5GRg+d/3YrD55SAoqBQwqymGO07nVlhBSOMv6/S0rZl0pS2g1tQWGR3sfJW19S42j7nWHo2PjJUcz19MQfDv1yNbm87Tp/ZfiwDv288ipXqDFRhkcQz0zdj+7EMpx1/R/qUYU3nb490RrNaSurXeTeqB976+SqrGTPNin1n0XjsPHR9S5mx/2f3KXywaB+OpWfrwdC0dYfx7C9bLmu/uYNnL2Hsnzvw7PQt6Djpb6SczkS3txdjjDqCDiip6c7avzFdvjRqV/Nz+xz7vLcUHSf9rX++dG9xB824hUGjV+dd9k0xO6/Qrl1vPZqO4+nZWHPgnNMZgJHfb0CbiYscDkg0fGUeJszaqXeC7/lmHeq/PBfzdyiduz9Ksb3ZxZwCq/Xctno3ql7iaxgVGDJbXvytOEtly5F07DBcO1NOZ1oNGszcchwP/m+90yqtuQWFmLnleKmDtEPnLuFIWhZe/HWr1Z7mjs+5CGmlLH6XqnaqsnILkZGVj0U7T2HjYetZgszcAquO47nMXJcDSsfTs3H/d+vx9LTNDh9ffeCcw8qhhUUSs7eeKLF666XcArQYtwDfOZkx1Rw9n1Xqa++FnHzc+81a7Dl5Ec9O34K7p6wt8WvyDUH+HV+tRqNX5+LpnzejqEjqAzUFRRI/rzuM2NGzkZGVjz83H9NnYYwZMoWFEqN+2IQ2ExfZfZ8zF3Px+l879XMa+MFyNHxlnr7c47iaUpqVV4Cnpm3C6Ys5ePG3rfhhzWFsNMz4FBZJxI6ejW9WFt+f8guL8MniFLsBr5UpZzFt7WGkZzluR47abb/3l6HXO0sAFBe0NLLN4AFgVX9A61NcCQ9P3YAW4xbYDYjvOqGcQ2kH6k9fzHGZCXYkLQtnLuZifWoaYkfPdjjjve1oBgZ/tAKdJ/+Du6ashZRKgcb4l+Zg9G/F95d/dp9G9/8sxteGbJ99pzPRZuJCbDmagXs6x5bqnMvK1Z+SMTtNy6ibop7nop2n0OHNRW4Pql7KLXA5mwpoa7eVujRzthbXRzl8Lgs7jmfgts9XYdbW486+vMrQJrm0bM2F6oDGCcNg9fH0bLwzfw+KiiQKCotw/ccr8cB36+1ea9eJC4gdPVsP+q8mZV5zK4RoCOBnw6E4AGMBhAJ4EIA2rPSSlHKO+jVjANwPoBDAE1LK+erx/gA+AGAG8JWUcnJZz6sqeun3bZi34yTeVQvn/KuunX3lj22Yt/0U3r+tJUZ8vQad48OR1DASKQ4ulk1fm39Fz9mR/xoK/2hmGS4Sqw+kWXVkbNOCLuYUYN72E/hxjZJmWtIsmit7Tl7EwbOX8LOa7vvOAvtz+1ytQPvz+iMYoa4xrOq0gQugeCb+uubRmLX1BF7o3xCPJtXHnpMXMWnuLizZcwYHJw3U1wZpswOubgyP/rARW46kY2DzaMRHBqL/+/ZVrjOy89Fi3AL0blQdfxtGpZ/qk4BTF3Lx+8Zj+H3jMfRyo/Mf6uZ6kUY1gtCmbhh+fLCD3frT7+9vjzu/dt6hPJGRg9u/WoPrW9REYs1gzN9xEpNuaoYRXysjrkfPZ+ORqRv0jIi5209g98mL2Dy2r37jOOmgc1Vae9SOl+0MrLF40WLDWltb61JLn1b0akdf3Ni3K1pPWOjmWVq779viG5/tEoeDZy7h3YV78frgRMRFBmLn8QtYuvcMHkmKt3reG7N3Ys62k1g5uhfOX8pD64kL0aRmMLYfu4AbWtbE+8Na6c+93ma2Zso9bVE/MghHz2fhfFY+GkQF6jMTfd6zLpKl+dpBmraWHXIxx/XIfLUAb3SMq4brW9TUr0ea4e1r4+Ee8fhz83Gr9l8S49YZRkNsqssfS8/GEz9twud3toEQQu/EailwgBIkXsotwOkLuZi17Tg+X3oAwb4WJDV0/Dd3IScf3mYTvl5xEP+Zv8fqsZcHJQJQtpiIDQ/AhVyJSXN34dm+DfHSjG34dcNRpLwxABZz8Vj38fRsPP3zZniZTThwJhM1Q/3gbTYhJ78IS/aexpOGYHTGo53x+8ZjMJsEflx7GMa6Pz3+swTRIb5YNaa3Vfq4tqZR22rJUUc+O68Qw75YjQ71quHnhzrhP/N3Y8uRDEx9oAOmrDiIN+bswgfDWmJIS+cz8GmX8nAhpwCvzdyBu2069LkFhSgolMjKK0TXtxbjoe5xGDPQ8ZrurUfTcfR8NgY2i8a0tYexeM8Zq7/hS7kFmL7+CG5pWxuLdp7CUz9vxrynuqFRDaUw2bJ9xc/V1ufN2KRkFhmLyXykprgfSrukv8e2RfMKpdRnLTcePo/WdYrX+GnvsZZ5oV2DtBRebUBy1pYT+GPzcVjMJv1+YTIJ5OQX4tt/U/WCQG/N2417u9QDoLTv/8zfg7yCIjzdt4Hy/VLO6sud3p6/BwOb1UCAtwVjBjaGSb0vSQALdpxEoxrBsJgFaoYqg3EXcgrwxybHg1CnypB6rbm9Qx2rv+m3hzbHC4bArywcpbFqM6JfLT+IxJrBVus4d524gAEfLMeEG5oiJ68Q93SJRfs3/sbQ1jF491b74kEA9AHm9vWUQnWrD5yDl1mg61uL9TW02nZ5mqy8Qn29svH68+dmJUibYfP+aoPELWuH4p7OsVi690yJaeOurH+lD9o6GGRxZcuRdHywaB82Hj6PB9W6IuNn7cT4WTsRE+aHUxdycfpCLuqEWxdxKigswtiZO/BA13qIiwwEoBRZbF0nFEM//Re7T17U/1b+2HQMxzOy8WhSfQBKDYAkdTAFULIDmseEoENcuFXRrDUH07D3Cg6clMWLv21FkK8FdaoFWB3vafj5Rny1BgfOXkL/pjX0YlgbHaQr/6y2mWV7z1SJ+hrlqczBrZRyD4CWACCEMAM4BmAGgHsB/FdK+Y7x+UKIRADDADQBUBPAIiFEA/XhTwD0BXAUwDohxEwppesh5yruyMUi/Gf+bjyX3NDuwqilV05drVyAtU73v/vP6YFvease5INJNzVDdn4hPlu6HyO7xyPIx4JqAd5Wna/fHumEmqF+VutRNetLkcvfeOw8l48/PLW4emlBkcSfm4+hX5Ma8PVyXenZVj8XKVyOzNtxouQnGQxoWgOThzbHhkNpesd/0TM98P6ivWhWK8TpjHlcRAAm3tDUKh0RAJ7v1xCHzl3C9PVHHX6d5qe1h+2OaQMIny89gIU7T1mtNfrvon34bMl+fDi8pf7e7jh+AZPm7kJMmD82HTqPe7rEYuKsXXj1ukRsU7eGkVIZvTfO2uTkF2LtwTSEB3oDgF3H3nYNo20REOPPqnWw7+xYF9+vPoRaoY5nF+MjA7D/jP3NVesA2Vacnf9UdzSsUbqL8Mwtx/WiF3NtAjZjEavz6ozD/1Ydgp/aDvMLioeeM7LyMWbGVtzXpR6W7TuL9alp+PHBjigskli29wwu5hbAz8uMPo2rQwihZzhcTmZC7Wp+OJJWPIMb5GNxuH4nPtSMagHe+GxEGzw8dQPeuaUFnnNSnAIATML1qLojXyw/gGV7z6DXu0vRv0kNzNuhvHcPdKuHrUfTkZGdj16NoqyyEL5YfgBSAtuPKde6PzYftwpubRmDa42fl1kPVstTkK8FG1/t6/TxOzrURd3wAEQFu65SeTnnt2jXKdQbMwdt6obpBUj8vJW2J6W0Gsy8Xl0brA28LN93Bg99vwFP92kAX28zzl7MtZrVcmTfqYvo+99leKpPAj5fnoXsggM4cOaSPurf4JW5KJKAl1lgxqNdsC41DWsM1bmPZ+SoVTsLrAJbALjRwVp4oxMZOXZLZs5m5uGr5QfQIU7pyGuVcKWUeHfBXiTWDNZ3BFhzMA1PTduEP9QOu5QSm44o96IiKXEsPRuFhdKuMwzAam/3s5m58PMyI8BH6fbc+vlqbDmSjnlPdQMAzNtx0mFwu/1Yhj4Yk5wYpddRMPronxR8tnQ/zlzMxf+p6f0jvlqD9a8o7cz2PTMyFtnTAiZXA7/PTt8Ci0mgoEjipv/7F1vGJiPE3wvf/ZuqV/suKJJW6/O0gc/nftmC71el6oMkRUVSX9qRm1+E7/5NxWTDvU3LeMoukEhX7xXGvZ+N97m0S3l6n8bLbNK32fll/VGrCrG+XsWDKM7WX3/hYGs0zfD2te2qnBuFByj3r6hgHzzWsz6GtolxGtw+3CMeny21L8RXGtoAw8kLObj9yzVInTwIC3acREZ2Pj5VX/NVdQnCuwuV++H8HSfxLhwHtxqtKv7fu07r2W7T1x/RC0TZPre0a4s1owc0Qr8mNTCwWTTeW7gXH5Zw7QCUYHizg5oqZankeyGnAP9dpExG2GaNaDPbQii7KTSICkKHetVwPisfQz/9FwfPXkLKqUxMf7gTNh9Jx62fr8IjSfH6TL42aKa1Ky24PXDWfsLoti9WY9bjXe2OazUUSiMi0NtqUNIRR/fcJ3rVd/p9XujfEG/P2+PwMaA4a8HVILhWW2LNwTRUU/8etMGm71elYuvRDDzZJ0Hvb16NFZnLq1pybwD7pZSHXJT6HgJgmpQyF8BBIUQKAK10WoqU8gAACCGmqc/16OD21ZXZAPYjJszfroouAIx3sAazrOpFBODg2Ut4vFd91IsIwDPT7Tu3/ZvW0Lf7uK65dSGVd29poVdra1O3mt3XRgb5lJjyURbaSFOfxlH4aHgrvXO35Ug6bvy/lXj1ukQUFkkkRAW53DqnNBxVkgWA6BBfq3SOOzrUwQ9rDiMhKgghfl7o1SgKD3WPw+fLDiA6xBcf394aAJwGtwlRgehcPwLTRnbEsC+U7QWWPJeE2AhllK2k4NaVrLwCuyIa2o3JOGgAWFfD/l0dvTWO+mbmFiBxrHU2wAPfrceKlLN4vl/DMp1f27phWH/oPGLC/PBQjzjkF0g83qs++iYq2wN98Pc+PN+vITrGhevrQoLVqs41gn312dLxQ5pYtVEtcAOAQF/lkvVQjzjHFb8HNsb24xn6yLXGVedfr3a9/xySmyh/I5uPFN84Hpq6HqsPpFnNaP65+Zhdh/X/7miNgc2irYLSsnrjhmZoWSdU36u6Zqgf9rhIHerftAa2vZ6MIF8vdI4Px+ytJ/DGHKXTM7hFTUwY0gR5hUUI9fO2WytaktmG7AwtsAWU2QwtVW/OE930489O32LVmdVMmrsLpzJyMHlo81J9Xz/vywtuZzzaGWsOpll11gFgk01gq2VGaJqqqfCuBtxWjemFUD9vl4N53haT0zRErbOjVVMHoA+s2BYB0wZonvp5MwY1j8Y7C/YiK69Q//2WREqpD6gaB6i0wNZ4PvmFEq/N3IHaYfaDUeWxjEQz7q8dmLX1hF5pXQuith7NwMfqXqUtDdvd/WH4e352+hb9b9FsMqHLZGUg9ta2MWgQFYTbO9SBv7cFT07bZNV5bjtxEbrUD8cPDyjbQWkF3bTslbyCImTlFeCzJfvxaM/6OHj2Ei7mFODWz4vTURcY3jMjLUDSAltACeAX7DiJ2dtcD6yednBvPWQIoCfZ/J5t1wt2e/sf/PZIZ7tt1wY42Xt+y9EMPaCdt+Okno6dmZuPQpsUYpMQOH0xB48sygKwVz8GwGUK58eG/WZtrwWuls1oXGXgT7qpucPgdur9HRAW4IW/dymDrje3icGdnWIBANMf6oSCwiKrYDzIx4JWdUIdfo/qQT749t72GPih4/fQkXfm77H6uY20nznAp/iaUtL2OIt2ncLR80o7WLz7jMPg0lGl55Jc36ImzOpgko+Ttbf/va0Fnv65uB/5xV1tcOMn/+JYerY+sKJpVCPIZZr4Q93jEBnk4zAIt63mr/0t5BYU6dfBN29shpdmFC/z8FEHR06r/YV9hvvipbxCBHgXv8dtJy7C0ueTYHFS3+K6j1Y4PF4aXeqH4/6u9RwOzBrVDPXD0fPZmPlYF32QbJST4HbW413RtFaIHtx2jg/H4bQsl3VEXJkwaye61lcyCrS3QFuWZyw2W1JNAE9UXmtuhwH4yfD5Y0KIrUKIKUIIbbipFgDjFemoeszZ8avCGCcVgqcY1rKU1nXNox0et6gXqoHNonFT6xg0qRls95xzLkaXhraJQbUAb9SLKE5zuE9NReoUF47lL/S0+xp/b/dmWl1ZtOsU7pqyRh+tHvLJShRJYNxfOzFx9i7cPWUtjqVnIyM7H1uOpON8KdeIOdLIZtavwGZI7YFucbi3Sywe6FZPP/Zi/0bYPLavPuIPQE/J/f3RzmhTNwyRQcrIl7burmNcuL4dTx3DHmlbX09Gp7hwNCxDCoixWvXlusEmVRIo3rfXNq2xNP56rCv6JCqBYZi/N8YMaIyxgxMRFuCN7g0i0axWCJY93xOPJsVbrcEKVN/TyUObITrEFy1iQnBXp1h9tBFQAjf9+eo2BmMGNEbq5EG4v2vx7wkABjWPxgfDWulrdd1xPitPH+jYeDgdT03bhJUpZ/W1VUaOZmK0wiLurlEd1TPe7li1AG8E+3rpAY/WllxtgaHNctcM9cN9hvflo+GtEOrvjepBvvC2mLD8hZ748q622PZ6MprWsr9WlJYxHW3PqeJZIkeBLaAMuPyx+Tgaveo6u0NT2rWggNJJ0zo1HepVw7Lne6JVnTD92mhkTL8FgEk3NcPal+z319SC3O7qwFrNEF/9segQP30wzpmS1oNqtIHDZfvOYPxfO/G9Yc2zrYSX5zqtSu/Ms9O3uJw5tLXh0HmrYLIiaIMJ2mz0qYs5eO3P7VhuSN911JkHigfrAOvAb/r6o5g4exfG/rkDpy7k4M/Nx+0KJK5MOYcxv29DQwcDPCcycpA4dj4+/CcFP609jAEfLLcKbMti/aHzdgNtpfHCr8UzjZ+7mMUElJmwvmWsbJ5lmCG+mFOgX2/0Y7kFaP/G31bHZmw6hk8Wp+CxHzehsqwa0wtf390W/7uvPba9noyfR3ZE14QINKkZAotaVc54v2xfrxo614/A1teT8dFwJYPEZBJq1phyPfhsRBv89zZlVjU2PACJNYOROnkQ1ji4NjjiLLA1CvP31jP53l+0D/XGzMEKJ0U8geJZupMXchzes0vr14c7WZ2DRssKeapPAla8WNzPu8Em1T88wAe/PtIJX97VFjvH98cnt7fG2+og5YxHu2Dty70xfkjxFlfbx/XDU619IIQSyGn7hpfWx/8UD8It2GmddaXt12sckNOcy8zFV4YMorOZuWjy2ny9XkBZfDCsJYa3r41HkuLRLSFCH8h9sX8jJDWojuf7NURcRIDTAoXa1kvaedevHqiv/QWA929ridcHJ+KezrH6+/Tv6F54sncCPr+zDXo6WYpSWlqWY05+kdNr6uUsEayqxOVWEhRCeAM4DqCJlPKUECIKwFkoSy0mAIiWUt4nhPgYwGop5VT1674GoN1h+kspH1CP3wmgg5TyMQffaySAkQAQFRXVZtq0aZd17hXlXHYRnl1atpEWLxNgO7CZXNeC9FyJOxN98Pg/9ilR/WMtmJdagPeS/FDN14TzOUXYcqYQAV4CS48WYPvZQjSLMOPZtr52X6vRikGZnIwi3jNPuTiMae+Ln3bn4cnWPnh6ifIz+luArMureK77sJc/nnDwM96U4IXUjCJsPH15f4Q3J3jh133FwUegF5BpiEU+6+MPX4v7G42fyCzCmBXZGNHYG33qKkHGmawiXMyTiAu17wSn5RThGfX9G9ncB19szUXtQIm0XIFLHljU7uNe/vD3AvakFaFxuOtOf2aexGP/ZCHQC0iO9cLv+/LxWidf1Atx/nWfbcnBnrQivJvkZ9VGp+3Ow7zU4jfsi77+8DYLu+Ol4W0GbK/xTcJN2HGu9KOaIxp7Y+ou9wZf7mnijW93WH/Nx738EegtsO98IY5cLML5HIm/DuTjhXa+aBhmwlfbctE9xgu1fbIRGBjo+HXVv9lv+wc4fBwAnlmShbQc+3tAzUCB45nlN5gS5S9wKqvsrzeqpQ8+2Ww/wxXkDVzMAzrVNKNztAXvbsjFwHpeuLWh0oHbda4Qb63LwR2NvBEVIBDsLRDrpJ39czgf8aEm1A0ufjynQGJ/ehH+sz4HN9b3wowUpU1p76n2Hr/YzhdvrbNeJ+jo90qu+VmA7HK6l1yOIfFe+HO/B16IL0O/uhbMP1QF3nyVo2vQp3384VfC/XntiQL835Zcq3ux0YVciScWZyHYG/iwVwA2ny7A+xtz8XEvf+w4V4hPt+SiRaQZT7dR+ktFUuK++eWzfZdZAIUSeLyVDz7aVHw9+7SPvzo7Xn7uaOyNH3blwSyAr/sFlOp+MGV7LmoHmdC3rhc2nCrQz9HV1xhp3+Obfv64dOmSfm9Kzy3CU4svP6MJUPrD18V7Y09aocN7QnkZ0dgbXWpZSmxvQPEsfFqO1Pv+g+O9cDyzCMczi3DiksSbXf3g7wX4mgV8LaJUvw8AyCuUWHeyAF9uU+4l5X1vBoBbG3hhYJx3yU+sYJmZmQ77Mz179twgpWzrzmuVR1ryAAAbpZSnAED7HwCEEF8CmKV+egxAbcPXxajH4OK4FSnlFwC+AIC2bdvKpKSkcjj98vf4T5sAlDG4tZiRn1eIp/s00Ncl3NqjpT4r1r93Ed6etxtztp3EsfRsTLmnLbonROLo+Ww99RUAblT/T0pNwy2frYJ3QDCSkjqX+Wf6qrpSGfOh/o3wkHrs6SXKOqq/n++F/acv6WuHNTVDfHHcza1twuo1BWBfLOj3feXT0Rjepx0ueO3HI0nxiA0PwK8bjuKNObvw2Yg2mLbuMPr1buc0TagkvbvnIDLIp1RffyEnH1iyAP7eZrRo2gTYuhHhfhY0j6uup4He1ra2XjCrqrBNV2oYFYT5T3fXP+9Vyte5Lln5v6hI4r4TF/RZMme6d5eQgJ5OpdmUvxfzUotHeZN7K6PPc89uBVKP4PXBiUiICsLJjBynG6VrHA1euhPYAigxsI2LCEBaVh5G92+E0WpWR6fWzfDtjg14oGs9LN5zGu/c0kJfX5Wkft2FnHzcfDgd3RMiIIRAb/WNXrJkCZxdB7+NPg1fLzM6xoU7PZ82h9dbpadq5jzTBy3HFxep+uLONnjxt61uVa02upzANibMD88P64VPNttvdZZVIABINImrg8cGNUadhOPo37SGPjKeBKBnlwuoFxFgNVruSJKLx5o2P4Mu8eHotf0kDp27hKSkBOWBeco53T+kJz7fsQhZeYWoW80f+05nYnD3NnhqaCAmzt5ltTevUd/EKIfv/7VKC2xt15xfaWmmEChj9KX3SFI8/vdvqsPqv+UlMTrY4ZZoJUlOjHKaUq3Zk+kNoPKC2y/ubIOuCRF47hcl7fy5gc3tllgN6GOfRWarh5Ro1/oMeiRE6mu5jaSU2JK/Cze3iUHj6GAkAXjqVuWxS+sOA1u2Ib52DSQltdS/5s6M7XYZFS/0b4g1B9LwRO8EDP30X4y7voldargtbZJx4QlvAMWB2btb3U+itO0faP2tIS1r4s/NxzH2jl6IWZGKLvXD0TwmFN/UOI2Nh88jKcn5siPjrSQJwIND8nEptwDRIaWsyK9eD3v27Gl1b5JS4lxAKrrWj0CtMD/8uv6Iw+0RS+NUYQCe+CdDzcKruOD29RG97bJ8SiKlxLNL5wAAPnpQ6eR8sGgf/rtoLwb26opQw6y59l6VJo7pXSTx5Tbldf99ZWC5bPtpVKN2LJKSGpT8xArmqj/jrvJISx4OQ0qyEMKYO3sjAG1Tv5kAhgkhfIQQ9QAkQIli1gFIEELUU2eBh6nP9VgTb2iK0mbtausbb2pVC4/1rI9b2ypxfp/E6jg4aSBmPV6c7gkoqQ0vD0rEytG9cHDSQPRqFAWL2WQV2BppaZ+ZJVQPLUmfxCi80L+R1bHHeymL9aND/NA1IcJqrQMA5JciLe/GVtapHGsNRUzKk7+3GQHeZjSsEYQv7mqLVnXCEBbgjQe7xyF18iD0b1oD397bvsyBLQBUD/Yt9dcHeluQ1DASn41ogzZ1w+BtMeH6eC8MNaS2PNg9zq3v/9LARg6PfzaijVWar5GrNFdbL/RviBtbxeCLO9voxy7j7QKgpIaVFNhqz7MNbAFl7e1DPeKw4Onu+ObednaPVw/2RZf6ERjaJgapkwfh4KSBDl+/vAsqDGoWjUXPFAf99asro5EvDmiEzWOTMax9Hfw8siN+HtkRyYlR+PruthgzsDH+fjbJYeGQYF8v9GgQ6Vb7TGpY3WVgCwD/va0lZj3eFXd2rItHDdWPbdebJjepgUu5l99pD/YteTy1W0Jx1dHIIB/Mf6q70+dqxWOa1gqBEAJDWtayC2Ib1QguMbAtSY8GkbCYTRjcoiYe65Vg97i3xYS1L/XB2pd6Y8INTRER6I36kUEI9ffGO4ZquLbKcwvWcCd/464MauZ4qQsAPJfcwO6aXhp/P9sDU+/vYHf8ITeuZ+/c7LroTkVztt+7K+EB3ni4h/0Sg5JMuqlZqb/u3VtblFgTwXjd0TzQLa7EJQip5y5v5vDeLrEIMizd6dM4CjcZ7u+2xXsm3NBU/7hN3TAkN6kBf2+LvqUdoPSlAKWa+k8PdizVeQgh0LNhdYeBrfb4q9clOkyVPZmhBEs1gq2z3Cbc0FRfirVqTC9Mf6gTHk2qj+/ua482dcOQOnkQ7u4ca1fZ2hnbNaopNpX1173cB3+O6uLyNSYPbYb/u6O1/vlPIzti/JAmePeWFtg8ti98LGY8khSP5jGhAICejarj2WT36mkE+3qVPrAFMGFIE7w1tJndcSEE7u9aDw1rBCHQx4K7OsXixwftrxGloa0XL8t2UN/cY99HsLVnYn8ceHOg24EtoPycjaOD8drgRP3Y473qY/u4ftaBLZSlR7bL5JzR+j7GJW4A0KJ2KMYMaIQ2alHCoFLcXx3Jzqs6GRvl5bKCWyFEAJQqx78bDr8thNgmhNgKoCeApwFASrkDwHQohaLmARglpSyUUhYAeAzAfAC7AExXn+uxQvy88Gwb64tj4+hg/PhAB7sOeIC3GVteS8Z/bmmB5/o1xJiBjfDDAx3QpKbSWXPV8S9NRzc+MhDdEiIwycEF53I9m9zQ6mI+76nu+s0IcLy/HaAUcdL897aW+N997fXPPzIssnd08TN+LQC0iy0OBMZd3wRxhiC/fvVAvDW0Gb65tx3WvtwHO8b314P9ymYyCXx7b3t0bxCJGiG+2DtxAOJCzejVqHggQ1tn2SKmuA38MaoLZj7m+KaXnFjD4f51/ZvWsKoOq1Uh7d4g0mH59wZR9mkh797SAvd2VtZxJjep4fQcrjR/bwvGDGiMBlFBVmtTXujfEA/3iEdfw8AQoPzN/DzSvpMUEWh94xkzoJHTNe4lCfKx4P1hLVG/evF7u+iZHljwdHf0a1K8frhDXDg6xIUrM7GNoxwG7xUt0MeCprVCMOGGplaDVz4Wk1WwCxQvXSgtk1C2irilTYx+bNbj3Vx8hWLKPe1wXfNoPJIUj18e6mS11h2A1Tram9vE4McHOmBIy5q2L3PFeVtMCPX3Rse4cKx/pS9CStj+av0rfaCs3im2eWxfTLmnLZ5QBw7doa01dIdtu9d4m03o3TgKnxg6z47c1amu1VqzuuH+iI8MROd460GVgc1qWFUiHtC0BpIaWhcJNLb/1nXDcF+XenqV9Rta1sTNhnYEKLO7rgY+bJXHn1eik7WD0SG+uLlNDG5uG4P2sdUw5Z7iDLpXr0u06ux+fLt11fABTWuge4MI/fXfGtrM6ppvFOrvhVE9nbeNh3rEIT6y+PrdKS4c/ZpEoVWdUOSq651sK9cH+1owrF1tXK4WMaHYNq6f/vlt7WrjvdtaYveE/pj+UCc0rRWCVWN6Yex1yntxffOaSJ08COte7oMpdxf3i7S1iXkFRRjRsS5SJw9Cr0ZR6BTveqCuPAxqHg1fL5M+yWA049EuePW6RESH+Onb9ZSkpC5aawcFraoH+SAyyMeur6OJCfPTK/Mnq/e3Ye1qo254AO7qFAuL2WQXSF0pd3aKxW3tnO8drjGZhNXWSRXFOOBnMQn0bFQd/zzbw+o53xn6nwDgYzE7HRgpjblPdtO3zwKUn9VRv3PDK30w98mS74eavx7rihmPWmdf/jmqCx7qEY8fH+yAj29vha2vJcPLLBAZ5IPfHy1dpub4IU3wUBkG5aq6y+rpSykvAQi3OXani+e/AeANB8fnAJhzOedS1fh7KX8cneLC0bBGEJ7qk+DwghMV7KsHMYDyh9Wlfvn90XtbTPjewSh6RahdzR8jOtaFj8WE71alYvJNza2q0f32SGfUDvPDuUt5GPDBcoxUR/K7N4jE8hd66vu8aYxFgbRy6p3iwvWCIg91j8MTvRPgYzHhcFoW4iIDcXfnWDw5bRP+3HwcD/eIt+sQeRJfLxN+f7Qz4iMC0WK8UjU3KtjH6SxUqL8Xnu7bAN/+m4pWdULtKivf16Uepqw8iBtb1kRyYhT6Jkbpe5/d0iYGreqE4eDZTIezFkNt3sfKCMTcER7og9EDHM9kt4u17pgE+liQGB2sjwS/PbQ5bm1XG3dPsU+PHz2gkV313Ts71sXhtCwsVfdlXfJ8kt5BM/KEfeRuaRODXzYchRACL/RvZFX99fv7O+DndYfRsEawvn3JR8Nbqcsw7HmZTYgI9NG3dXqgaz3UCfdHt4QIvY0ZK236e5vx0sDG8DKb9KrkRjFhStXJvRMHoP2bi3A2Mw9mk0DncrxeuqtONX+HW8PY2jOxPxq+Mg9t64Zhz6mLuJhTgIhAHzzTtyGOpGWjf9MaOJ+Vh1B/b/RqFIWeDasjIzsf361yXlzKlquxh0HNonHyQg42qH/vk25qhjG/b0NOfhH+747WWLTzFH7fdAy/PdIZ0SHKPSnAx4LG0UpRnfSsPKs0dc2QljURF6EUSLmnc6w+42UyCb3KPAA80VuZ7W5SMxg7jl9AVLAvEqODscSwV+zQ1rXw+8ZjKCiS8DKbMHZwIuIiA/DKH9sxXh00NaZ3B3hb7GbYXLmvSz18ZbM38nPJDfDOgr0Y1DwavRpWL3Hpwid3tLbaT1Lz/f3tEervjVAA09XiPbazeHd1ikVhkYS3xYTrmtdE/EtzUFgk4WMxW2VK3NauDno3jnK4f6i/l3WXbfu4fujz7lK90vyL/RpBCIFn+jZAu9hqVgHhbe1qY+LsXagV6odj6dkYd30T3Ni6lr6nrbN9mgHrNchNawXrW3wZ2Q5+eauVeH29zHowGB2iFLu7t0usPjivFWPUaP2hy80KKov61QOxe8IAh481rBFU6m3oAGDNS72xaNcpvDxju9PntKkbho2G+/Tz/RrqA9RhAd7wsZistrMCgBUvFi/+sZhN2DI22aoKsyf5+PZWTguTjeoZ73SXC0dWvNgTXd+y7kPGRQbgoR5xCA/wQT+1MKW3TYVok1DOY/r6o/jIxXZ15c3dLMFmhgGvqfd3sMrG87GY9R0mtryWDJMQ8LGY8M+zPbDn5EWsSDmLH2z2cweUgH9Eh7qXFcxXVVVjGusqFBMo8NmINujRINJpVc3P72yjj7xdTW5pWxu32Ix8Lnqmh56aWT3YF78+3MlqqwfbtNm5T3bTq8z5WEz47ZHOuO6jFejRMBJ9EqNw8OwlqxHsOMNodVLDSPy5+bjTMv+ewttiQms1RbVP4+pYtOs0qgf5wmwSWDm6l74FBgC0j62mD558NqI12tSthuy8Qhgr4D/VNwG5BYW4pW1tfTZMq55nEgK3d1BGXAcZtj/oHB+uV5c00lKVbiuHEf8rzWQSmDCkCV79cwdu71AHb9zQFFNXH9IHTepFKrP/A5rW0ANWAGgeE4I+jaOsgtuv7mqrLxs4fSEHJy/kINyD94x7a2hzvHFjcZbH+CFNEBuuvB+d4sPRKT4cRUVSD26b1AzG/Ke64+bP/sWrgxLxzb+pqBfhjznbTuoB/rlLaqqfOhPx8fDW2Hj4PHLyC9GuXjXc8MlKHD2fjUk3NcMQmyqdRvOe6q62aYGHe8Rj4uxdlZ6J8c+zPUq1b7CPxYwFT3dHzVA/mERxIJpYM9hqzbpGCIHHeiU4DG5jw/3x0sDGGPn9Bn0f6fjIAFwwLD0Z2KyG1dZV2gzsop2nsGnrNn17iKFtYtC+XjUMaFoDr13fxGqg1cjRwKy32YSEqCAE+3ph0k32mUFjBjbG7pMXsXTvGcRFKNfnz0a0wZPTNuHhHvFYvEepLt6vSRSKJPBcckO8PCgR+YZtKUZ0rIs7OtRx2BF8bXATBPtZ0LtRdZy6mINOceFWey3baqKm5TaPCcFWNbVR2/ruumbRGNAs2iq47d4gEqOS4nGbuqUboGy7N/uJrli1/5zV1iZhpZgpM9ssrXjnluZ4b+Fe+FhMejaC9mNGBPog5Y0BaP/m33h5YGN8unQ/Uk5n2vUlAn0sGNqmlh4EaJ1UbTDB6IFucRjWvg7G/rEda1OBAB+LHtg60ikuHAE+FvRsFImaWQf04PalAY31LXXevLEZVh84h5lbjut/B9rglatipa469k/2SYDFbMINrZxfC6qyz0a0wZ6TFxEV7It8J1uBabomROptdlTPeKs+jZfZhD0TB5S4vrKkDJGq7LrmNa2C2+YxIUi7lIej57PRPUHJLPtj0zE807chmsWEYPGe07j3m3X69pdGMWH+mPV4V31p2/hZO1FQJDGyu/WspKNtga5rXtNui8yqrGuC8wFdf+/ie2JcZCDiIgPRIS7cYXD7dN8GV2VgCzC4rTBCCKstTIw2vNIH+YVS7+xdC7TAVtPWZvYswMeCP0d1QYCP2Sqdc9rIjqhfPRARgT7Y8EofVAvwLnHE68ZWMRjUrKbdCJ2nMa49+vj21pCyeMa0VqgfEqoHYt/pTKx7uQ+C/Yr/lPs3dZxOG+zrZRW4AMpWAJsOn8dzhrU4L/RvhCd+2oRfH+6E2tX8He73WS3AG/vfHFguqX6VQQu88guKIITAre1q6/u/aR3N29rVxo2tayHtUh46TfoHLw1sbDdC3twwmlo92BfVbWaS1r7c2+kee1WRySTgbfil3qXuE2n7nIhAHzSPCdEHlba9rqQj3tquNk5kZKvBrfI6t7SpjR3HL2Boa2X2P8TfCz0bFaeQt6oThqPns3Eh23WxqkAfix7M3tUpFgVF0ir9qzK4sy7L3Zn7yCAfBPlYkFtQhHWv9MEv649g4uxd6NekBpKb1MD2cf0Q6GPBgKY10Cg6GMnqdjCLn0vCucxcPbh9++bifYX7JEbBcnoXalfzt5pZFEI4DWxtvT20OfomRiGsFGt8P769FU5dyNGvxbWr+eP3R5UlDdre5aN61tfXBTri6Hr/6R2t9VnJrw3r6F4elIiiIoltxzIwduYO3NGhDl74dau6B7zSVo3b4nWKD8eal3ojyubv9t1bWujZKrZZRU1qhqBJzRB0S4jE5iPn0TUhskwDWje2isGNrZTvocWBxh/VYjbpy0m6JkRg46HzDu9pz/ZtiFvb1i7VntCBPhY8168hcgoKMcBJ/+T7+9sjK6/QagnFkiXFgwad60fgyd4J+ODvfeibGKVnA2hbX2nBbUyY9frA0gry9XKadeMJ+jetoff9tP1D7+9aD//uP4ddhmJg17eoie4JETCbBAqLpNX7bTSwWQ10io/Aq384nwG+GsRHBuC1wYloU7caTl/I0e+lxgHP1rWVwf4eDSLx+Z1t8Mv6I1YDWk1rhaBprRDsOK4MXoWW4ppmm6Z/NaoW4G03IQLAaiDxasPgthJ48sxORWphmMnVGAviuPO+eXJgq93sjJ06RwHm7Ce6oUhKh4+Vlq+XGZNuam51rEeDSGx5LblU5+mp9OBWvbj7WMzYMjYZMzYd1TMKhBDwsZgRHeJnFQj87772WLr3DPo0jrILZm1VD7o6B7CU9aKOmdV2G6ytGa8dihmPOl+j/VD3OPy15Tha17UvpOWMt8VUpuI9nmbdK30gJeDnbcYD3eIwpGUtPctFC/SL07KV4MLPy6wPJk4Y0sTh+sGy+PrutvC2mNAtIbLkJ6uCfL30/Zdt1Qz1K3UBHo2WNj/ARSEsk0mgRe1QvSCP9vPnFijB3w2talqlO9oGtn5eZqtlGLXVIi62KdDupqm6ohWCcTYAEhXs6/RnNpkE6oaXbqsWQHnf/++ONnbHm8eEYOfxC05/vz8+0AE+6r3myd4JuLuzsh95p/hw/LbxKBLUWg0PdovDwGbRZQ5urybaHqzeFhO+urst5m47gf9bsh9pl/IwomNdCCFQPzIQe05ddPq7135XLWJCcDaz4qoDV5b5T3XH2oPncKdhINXZfTXE3wvrX+mDYF8veFuU4qqOsjUSo4Px+uBEDG5hPxtbPcgHt3eog9vb10FYgPc1EdwCsNvDGmBwS0RX0PynumHjofQSn+fJAXxlqxWm3NCMVcZD/L1wTylmArs3iET3BqXv4F9rIoN88ETvBLtK6M40rRXidpBzrbAduLJdn2ikpYVazAKh/t44OGngZVV/t9W7ceUvoZk8tDnGDWlSpq/1sZixe0J/eJtN+GPTcThKqFg9pjd8HFxXFz3THeEBFTcoHRcZiKn3d9CrnlaGGY92cZlKbFzbbjIJfZDl5jYx6JYQoQ8SCCEY2Kry1LRkL7MJtUL98EC3OHy8WCmaGaqmE393X3vsPnmhxEFqV9kNnszdQSLbnQ1WjellV29ACOH0Xm4yCbx5Y/kXWK3qtGrft3eog6IiiWnrjqCgsBRrajwUg1uqUJvH9i3XDta1oH71IKvUbCp/HePC8eMDHUpd9ZJKTytoQ1fW8/0aYszv2/R1lFfjdddsElZrytylBRArXnS8X6qzpUJX4nrsah2drXoRAaXeRqS0lEycsrUZ29lvUmizgrHhxcG+lr6tLQOoEeJ7TS1RK2/ubFV0LfP1MmPTq30R5GvBNytTARRnFlyNGNxShaqskvREJanMKrtE5W14+zoY3r7kbTjI8wP/xc8lVfYpUCnc0jYGNUP90KV+8fKqwS1q4oc1h0u9xp2ovGh1Etqpg/pdEyp+e63KwuCWiIiIiKgcCSHsZuTHXd8ET/dtcFm1MoguR8vaodg1vr/TnVyuBly0R0RERERUwSzq/t9ElelqDmwBBrdERERERER0FWBwS0RERERERB6PwS0RERERERF5PAa3RERERERE5PEY3BIREREREZHHY3BLREREREREHo/BLREREREREXm8ywpuhRCpQohtQojNQoj16rFqQoiFQoh96v9h6nEhhPhQCJEihNgqhGhteJ271efvE0LcfXk/EhEREREREV1rymPmtqeUsqWUsq36+WgAf0spEwD8rX4OAAMAJKj/RgL4FFCCYQCvAegAoD2A17SAmIiIiIiIiKg0KiIteQiA79SPvwNwg+H4/6RiNYBQIUQ0gH4AFkop06SU5wEsBNC/As6LiIiIiIiIrlKXG9xKAAuEEBuEECPVY1FSyhPqxycBRKkf1wJwxPC1R9Vjzo4TERERERERlYrlMr++q5TymBCiOoCFQojdxgellFIIIS/ze+jUAHokAERFRWHJkiXl9dLlLjMzs0qfH1U9bDPkLrYZchfbDLmLbYbcxTZD7irPNnNZwa2U8pj6/2khxAwoa2ZPCSGipZQn1LTj0+rTjwGobfjyGPXYMQBJNseXOPl+XwD4AgDatm0rk5KSHD2tSliyZAmq8vlR1cM2Q+5imyF3sc2Qu9hmyF1sM+Su8mwzZU5LFkIECCGCtI8BJAPYDmAmAK3i8d0A/lQ/ngngLrVqckcAGWr68nwAyUKIMLWQVLJ6jIiIiIiIiKhULmfmNgrADCGE9jo/SinnCSHWAZguhLgfwCEAt6rPnwNgIIAUAFkA7gUAKWWaEGICgHXq88ZLKdMu47yIiIiIiIjoGlPm4FZKeQBACwfHzwHo7eC4BDDKyWtNATClrOdCRERERERE17aK2AqIiIiIiIiI6IpicEtEREREREQej8EtEREREREReTwGt0REREREROTxGNwSERERERGRx2NwS0RERERERB6PwS0RERERERF5PAa3RERERERE5PEY3BIREREREZHHY3BLREREREREHo/BLREREREREXk8BrdERERERETk8RjcEhERERERkcdjcEtEREREREQer8zBrRCithBisRBipxBihxDiSfX460KIY0KIzeq/gYavGSOESBFC7BFC9DMc768eSxFCjL68H4mIiIiIiIiuNZbL+NoCAM9KKTcKIYIAbBBCLFQf+6+U8h3jk4UQiQCGAWgCoCaARUKIBurDnwDoC+AogHVCiJlSyp2XcW5ERERERER0DSlzcCulPAHghPrxRSHELgC1XHzJEADTpJS5AA4KIVIAtFcfS5FSHgAAIcQ09bkMbomIiIiIiKhUymXNrRAiFkArAGvUQ48JIbYKIaYIIcLUY7UAHDF82VH1mLPjRERERERERKUipJSX9wJCBAJYCuANKeXvQogoAGcBSAATAERLKe8TQnwMYLWUcqr6dV8DmKu+TH8p5QPq8TsBdJBSPubge40EMBIAoqKi2kybNu2yzr0iZWZmIjAwsLJPgzwI2wy5i22G3MU2Q+5imyF3sc2Qu5y1mZ49e26QUrZ157UuZ80thBBeAH4D8IOU8ncAkFKeMjz+JYBZ6qfHANQ2fHmMegwujluRUn4B4AsAaNu2rUxKSrqc069QS5YsQVU+P6p62GbIXWwz5C62GXIX2wy5i22G3FWebeZyqiULAF8D2CWlfM9wPNrwtBsBbFc/nglgmBDCRwhRD0ACgLUA1gFIEELUE0J4Qyk6NbOs50VERERERETXnsuZue0C4E4A24QQm9VjLwEYLoRoCSUtORXAQwAgpdwhhJgOpVBUAYBRUspCABBCPAZgPgAzgClSyh2XcV5ERERERER0jbmcaskrAAgHD81x8TVvAHjDwfE5rr6OiIiIiIiIyJVyqZZMREREREREVJkY3BIREREREZHHY3BLREREREREHo/BLREREREREXk8BrdERERERETk8RjcEhERERERkcdjcEtEREREREQej8EtEREREREReTwGt0REREREROTxGNwSERERERGRx2NwS0RERERERB6PwS0RERERERF5PAa3RERERERE5PEY3BIREREREZHHY3BLREREREREHq/KBLdCiP5CiD1CiBQhxOjKPh8iIiIiIiLyHFUiuBVCmAF8AmAAgEQAw4UQiZV7VkREREREROQpqkRwC6A9gBQp5QEpZR6AaQCGVPI5ERERERERkYeoKsFtLQBHDJ8fVY8RERERERERlchS2SfgDiHESAAj1U8zhRB7KvN8ShAB4GxlnwR5FLYZchfbDLmLbYbcxTZD7mKbIXc5azN13X2hqhLcHgNQ2/B5jHrMipTyCwBfXKmTuhxCiPVSyraVfR7kOdhmyF1sM+QuthlyF9sMuYtthtxVnm2mqqQlrwOQIISoJ4TwBjAMwMxKPiciIiIiIiLyEFVi5lZKWSCEeAzAfABmAFOklDsq+bSIiIiIiIjIQ1SJ4BYApJRzAMyp7PMoRx6RPk1VCtsMuYtthtzFNkPuYpshd7HNkLvKrc0IKWV5vRYRERERERFRpagqa26JiIiIiIiIyozBbQUQQvQXQuwRQqQIIUZX9vlQ1SCESBVCbBNCbBZCrFePVRNCLBRC7FP/D1OPCyHEh2ob2iqEaF25Z09XihBiihDitBBiu+GY2+1ECHG3+vx9Qoi7K+NnoSvDSZt5XQhxTL3ebBZCDDQ8NkZtM3uEEP0Mx3nvugYIIWoLIRYLIXYKIXYIIZ5Uj/M6Qw65aDO8zpBDQghfIcRaIcQWtc2MU4/XE0KsUX//P6uFhCGE8FE/T1EfjzW8lsO25JSUkv/K8R+Uglj7AcQB8AawBUBiZZ8X/1X+PwCpACJsjr0NYLT68WgAb6kfDwQwF4AA0BHAmso+f/67Yu2kO4DWALaXtZ0AqAbggPp/mPpxWGX/bPx3RdvM6wCec/DcRPW+5AOgnnq/MvPede38AxANoLX6cRCAvWq74HWG/9xtM7zO8J+zNiMABKofewFYo14/pgMYph7/DMAj6sePAvhM/XgYgJ9dtSVX35szt+WvPYAUKeUBKWUegGkAhlTyOVHVNQTAd+rH3wG4wXD8f1KxGkCoECK6Es6PrjAp5TIAaTaH3W0n/QAslFKmSSnPA1gIoH+FnzxVCidtxpkhAKZJKXOllAcBpEC5b/HedY2QUp6QUm5UP74IYBeAWuB1hpxw0Wac4XXmGqdeLzLVT73UfxJALwC/qsdtrzPa9edXAL2FEALO25JTDG7LXy0ARwyfH4XrCwBdOySABUKIDUKIkeqxKCnlCfXjkwCi1I/ZjsjI3XbC9kMA8JiaRjpFSzEF2wwZqKl/raDMqvA6QyWyaTMArzPkhBDCLITYDOA0lMGv/QDSpZQF6lOMv3+9baiPZwAIRxnaDINboiunq5SyNYABAEYJIbobH5RK/gXLl5NLbCdUSp8CiAfQEsAJAO9W6tlQlSOECATwG4CnpJQXjI/xOkOOOGgzvM6QU1LKQillSwAxUGZbG12J78vgtvwdA1Db8HmMeoyucVLKY+r/pwHMgPKHfkpLN1b/P60+ne2IjNxtJ2w/1zgp5Sm1Y1EE4EsUp3GxzRCEEF5QgpQfpJS/q4d5nSGnHLUZXmeoNKSU6QAWA+gEZVmDRX3I+PvX24b6eAiAcyhDm2FwW/7WAUhQq4F5Q1kUPbOSz4kqmRAiQAgRpH0MIBnAdihtQ6sweTeAP9WPZwK4S61S2RFAhiFdjK497raT+QCShRBhappYsnqMrhE2a/RvhHK9AZQ2M0ytTFkPQAKAteC965qhrmP7GsAuKeV7hod4nSGHnLUZXmfIGSFEpBAiVP3YD0BfKGu1FwO4WX2a7XVGu/7cDOAfNYPEWVtyyuLqQXKflLJACPEYlAu8GcAUKeWOSj4tqnxRAGYo9wdYAPwopZwnhFgHYLoQ4n4AhwDcqj5/DpQKlSkAsgDce+VPmSqDEOInAEkAIoQQRwG8BmAy3GgnUso0IcQEKB0JABgvpSxtwSHyME7aTJIQoiWU1NJUAA8BgJRyhxBiOoCdAAoAjJJSFqqvw3vXtaELgDsBbFPXwwHAS+B1hpxz1maG8zpDTkQD+E4IYYYymTpdSjlLCLETwDQhxEQAm6AMmkD9/3shRAqUAonDANdtyRmhllkmIiIiIiIi8lhMSyYiIiIiIiKPx+CWiIiIiIiIPB6DWyIiIiIiIvJ4DG6JiIiIiIjI4zG4JSIiIiIiIo/H4JaIiIiIiIg8HoNbIiIiIiIi8ngMbomIiIiIiMjj/T94+P28iX7/tQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def weekly_seasonal():\n", - " c = weekly_seasonal_unscaled()\n", - " unscaled = c['unscaled']\n", - "\n", - " scale = rcp.RandomUniform(low=0, high=1000, shape=1)\n", - " z = scale * unscaled\n", - " return z\n", - " \n", - "plot_examples(weekly_seasonal(), 10 * 288, 5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here is a more complex example" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:00.230208Z", - "iopub.status.busy": "2022-06-13T08:52:00.226687Z", - "iopub.status.idle": "2022-06-13T08:52:00.721129Z", - "shell.execute_reply": "2022-06-13T08:52:00.721821Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAI/CAYAAACh7l5FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hb1fnA8e+R5L1H4gzHcfaETLIgkEBIQhihhVKgBUoZZZXV0gJllVHGj00LlFn2JqwEsk32cPZOnMSO99629vn9oRHJlh0ryzF5P8/jx9LV1dW1fHTuec95z5HSWiOEEEIIIYQQQnQEhvY+ASGEEEIIIYQQoq0kiBVCCCGEEEII0WFIECuEEEIIIYQQosOQIFYIIYQQQgghRIchQawQQgghhBBCiA5DglghhBBCCCGEEB2Gqb1PoDXJyck6PT29vU+jVfX19URFRbX3aYgORMqMCJaUGREsKTMiWFJmRLCkzIhgtVRm1q1bV6a17hTMsU7oIDY9PZ3MzMz2Po1WZWRkMGnSpPY+DdGBSJkRwZIyI4IlZUYES8qMCJaUGRGslsqMUion2GNJOrEQQgghhBBCiA5DglghhBBCCCGEEB2GBLFCCCGEEEIIIToMCWKFEEIIIYQQQnQYEsQKIYQQQgghhOgwJIgVQgghxGHTWrf3KQghhDjJnNBfsSOEODSHU7O9oIa0pEjiIkKO++s7nZoas43oMBMmY+B+Ma01FruTMJMBrWFtdgWzNuQTHmKkV3IUvx/XE6NBHZPzK621sKOwhj6do6k12xiQEoNSx+a1hDhS+0rrWLSzhMdn7wBgWGoc04Z2YXDXWGIjQiiuNmNzajpFhzGmV+IRf27qLXYq6q3UmG1Y7E5qzXZKaswkRIYyeWDnZse32p08+eMOOseEszmvih+3Fnkfi4sI4fIxPfjz2f1wODRRYcYW64TD8dW6PP7yxSZiwkykJUVy/qlduWVSX799tNby+RbiF0RrTY3ZTmy46YT8bGutKa2zkBQVRk55PXtK6iivs5KaEIHN4WRYj3iSo8OOyWuv2V+B1pqucREcqGhgZM94IkNPntDu5PlLhfiFmr2lkNs/2eC3zWRQdI0PJyEylITIUA5UNBBqNNApJoz3/jgGo0HhdGoMQTaA6y12rntvLWV1VhIjQymrs7CvrN77+F1T+nPHlH7NnvfXLzbz1fo8YsNN1FrsNB242ZhbxbDUODrFhDO2d+JRq/D3ltZx0SvLqLc6vNs+uG4ME/u5vk+7utFGVkktjVYnBgUT+iYfldcV4nDd+/UW1uyv8N7flFfNprzqgPsO7BLDuN5JRIYaufy0NNKSIoN6rbeW7vMGy4F8dP1YTm/ymdhTUsu7y7Ob7dspJozSWgv//Xkf//15n3f7sr9PJjUhuPNqyX8WZwFQa7GzraCG/KpGbxD7+dpc/vbVZu++D184mGtP73VUXlcI0X7+/MkGfthcCECIUaGUIsxkID0pii351aQmRJAUFcre0npe+/1IRvdMJCLUeFivtWR3Ke8s30+t2c66nEq/x4b1iOfLm8YT0qRjbu62Im76cH2rx/3t6B6M7Z1I/5QYhnaPO6xza0przWX/Xem37fLTevDUJacCMH97MQYFoSYDGbtKuXlSn2MWTLcXCWKPUINNU1DVSHJ0mPfDdbyYbQ6qG20kR4e12BtfUmOmU0wYTg0Wu4PXM/Zy8YjuRIeZiI0IITzk8D7oh2J3OMkqraNvp2g251dzave4o9ojLw6qqLMAYDQoeidHYbY7yK1opKjaTIPFwWafBvCu4lr63D/He/+vU/sz45SudIkLx2QwEGpq/X+0LKuMVfsq/LYN7BLDzqJaAOZsKQwYxC7LKgXgtPREIsNMrM+p5KZJfbDZnTz6w3Zmbchn1oZ8AC4dlcqzvxkW1HvgdB6Min0D88zsCuqtDi4/rQefZeaiNeSUNzCxH3y5Lo97vtzkF1Cv/ccUOsV0rEre5nA2u6iK4OVVNtA9PqLde/rzKxuZMqgzf5s+kJIaC6V1ZuIiQtiaX4PRoFAK1udUkplTyc6iWu9n79WMvZzVvxN9O0cTHxHCIHXoFN/v3Q3DEWnxlNRYOL1vEkO6xZESG8ZNH66nqsHW7Dlmm6tD6LnfDGPywM7UW+z0SHQFqXuKa3ngm62s9gnCD5Q3BB3E1pptFFabya9qpEtsOE6tWbqnjLyqRn49sjvPXzac5+fv5uWFe7A7nGjwC2ABXsvYK0HsUWB3ON3l7uDnwmJ3EGo0HNPPitaabQU1DOkW2+rrWO1OLHYHUaEm7E5NTnk9RoOic2w40WHHrom7vaCG1MQIwkwGKuqtdI2LOGavdTIz2xz8sLmQHokRDEiJIT4ylKoGKzVmOyFGV7nIq2yksNqMw6m56u01AMSGm7h4RHceuXAISrky1g7VBnU6NTd+kInZ5vRuMyjwNC825VZ529y+8qvMAHSLC6eg2sxlo1O58czelNRYuPKt1QB8lpnLZ5m5hBoN7Hp8+lH57FT61M+XjEzlq/V5ZJe7BhV2FNZww/uZfvt3iQ3nhjN7H/HrnkgkiD0CN7yfyfztDbBwEQCdY8JIiAxlV7GrUdEzKZLUhAjSEiO5dFQq4SFGOseEYzQoEqNCg3qtpXtKufPTjVQ32hjfJ4noMJM3jat3pyi+vGlCs2OW1VkY86+FzY718iJXb3ZydCiTBnRmQEoMBoPi6vE9j1pj+JHvt/HhqgPe+9eM78k/Zw4FoKCqke82FRAbHkJiVAjDesTLBeAImO2uCnfLI1NbTSMpq7Mw7YUldIkLZ09xHVaHk2fn7ebZebsBmNgvmQ+uG9vseSU1ZuZtL6aqwcpLC/cAsOb+czhQ0YDBoBiZlgDA1e+soaaxeaMXICEylGGp8bxx9ehmjw3oEsOuolqGdo/jsv+upKCqMeAxFu8q4cX5u5k2tAudY8I5vW8SXeMicDo157201Pu5A4gMNdLgM/r6+MVDefziofR74EdKa11B/4qsMrSGf140hAU7ilm6p4zTnliA0aBwuK9aBgWJUWGEGhVXjEkjPMRIt/gIpg/tgtGgqGqwEh8Z3GcZ4INVORRXm4kMMxJmMjJrQx6dosOIDg9hYJcYbp3ct9lzyuosvLFkH28s2cfgrrFUNlgprDZ7Hx/SLZanLzmVkloznWPCj1pvr8Xu4Mo3V7Mup5L+KdEkRYVx17n9GdMrEXClazucmuIaMyv2lrNibxldYsPJq2xk9f5ynBquGJNGl9hwqhttVDfaiAg1cOeU/kSHmQ67I21TbhXrD1QSEWIku7yBFXvL6B4fQVSYieE94vn9uJ7NnlNnsXPf11v4flMBAL2To2i0Obzv48AuMVw6KpVas50/TEgnIch6ujWfZ+Yyd2sRByoa6BIXzi2T+jK+TxIAue7P0rb8avKrGrng1K70T4mhf0qM9/lnD0zxO15JrZn1OZWYbU7mbClk3vZift5dys+7XR1GNw0LY0qA8/hwVQ6LdpZwoKKBrJI6rhiTxpO/PsVvnwPlDQA02hzNnu/5XPVIjCQxKtTvutMvJYbP/jSekhozRTVmLvr3cmrM9mbHKKuzcNoTC9AaRqbFM6hrLHef25+k6DB+2lrY6qjG0G6ucp0c7XrdlfvK2VtSB8BjM4dw5dieXPnmKmSW7pHJrWjg4v8sp7zeCrhGwOxOzZBusWzNryE5OpSkqDB2FdcyIi2e534zDKfWRIeF0CUuPKjXKqxu5JaP1pNVXMfArjHsLKyl1nKw3Lxx1SimDunS7Hl3f76Rr9fnt3jc0/smkRofSUJUKDdM7EXSURqF2pRbxcz/LPfb9uVN4xmdnkhFvZUfNhdQ02hjR1Etw1Pjf3GBw/FU7W5T3HRWH343tnmd7nRqlHLV7c/8tIule0rJLm+gxmzn/ZU5vL8yx7vvugemNCsDWmsW7SyhzmKnuMaM2ebk5kl9uGFib7TWRIaaiAg18kVmLvd8uZlGa/M6sdHqKqsZ90z2Gwjo2zmG7247na/X5xMVZmT+9mJ2F9fRaHM0a6tZ7A5mrc9nZ1GteypHJ05NjQfgi8xcvttUQHZ5PbkVjcRFhBAVaqTAfd169XcjmXFKV+osNva7M+O2F9QArrjk2tN7ERFi4Krx6cG89R2CBLFH4OyBnXHWlWMPTyA1IYJZG/IpcTeQwTXik1PewHLK+WRNrt9zJw/oRIPVQWJUKH+ZOoC+naObHb/WbMOgFEaD4ob3D/YO+fZyA+wrrWfJ7lIuHtHdb3tJjcXvfnpSJJUNNi44tStmm5NvN+bz5bo87+P9U6K9aZa+iqrNFNeYSU1wNRA9jU6L3cErC7PYmFvFqJ4JbMqrYnTPBA5UNPB5puu4Z/XvxJr9FXy85gAPXjAYk9HA799a7ZeCOrpnAl/ePKHlN/oEdCLNu6o12zAaFBGHCAaSo8NY9+C5gOv8N+RWMXtzIQt3FJNd3sCm3KqAz3vk+23M2VLkty0pOozOsf4NlcgQI0XVgQPQequdyBbSe07vm+xNWTyjbzIN1uaNXoBr310L4E2tDDUamH37GVjsTr8ANiEyxNtDGWJU3Dmlv7cHNibMxEsL93iD8fG9k7hmQjoXnNqVic8spsHq8Aaw4OqBLXOPdD83f7d3u8ngatCBqwd0WI84VzB9SldSYltvwOVWNPDgN1tbfPzHLSpgEOsJYAG2F9YQajJwRt9kdhXXUlprYVtBDRe8ssz7Hmx4aGrA45ttDmrMNjpFh/mVYYdTs6+0jsJqM1FhJpxa02B10GA5mFa1u7gOqKP/5gLG9Eokp7ye815a6tdhABAdZqLBavf2YH+y5gBN+XZypcSGMbBLLCaDoktcOI/OHNpidklWSR1xESHNGpGAN+vgy3V5XHBq12YdDPO3F3kDWIB9ZfX4fox3FtV602u/31TAgrvPajHl3mxzUFprITXh4OitzeEkv7KRrzfkM65XIlaHE7PNQUmthYe+3QZAmMnAnpI6rHYn4/uMp7zOwtQXlvgFjKekHroDonNMONOHdgXg4hHdqTXbWJtdQVG1hftnbaGs8eBoQkmtmZiwEPKrGnjAp+ylJ0Vy3tDmwUF4qOvz0loQ29LnGaBzbDgWd+dardm/Y0trzXJ3BxLA+gNVrD9QxUerD3DBqV29aYN3nNOPWrOd6kYbXePCqTHbGNo9jl+7r3PpSVEA3pEXk0ExrncSRoMiNiKE3IqGFs9PHNrCHcXeABZgcLc49pfWkVfpquPL6qzeOnDDgSrOfu7nZscYkRbPjRN7c94pXZs95nBqKhus7CysZXdxLRsOVAGwNruy2b4frj4QMIj1BLBRoUamDemCU2sKqszUmG3sLKpleVY5UA6AU2vunzGo2TGqG2ws2lXM+N7JhJkMfh1XP20tpLjGQkmtmf1l9SgU0WEmPst0tecmD+jE4l2uTqOdRbWMTk/kidk7+Gr9wXbV7M2F/Hpk96MWQAdLa41Tc1hz5x1OfczWqmgrTzZIfETgDkVP/RwTHsJjFw/1bm+w2nljyT52FdV6B3xyKhq8/wdPG27xrhKue+/giKXJoJgxtGuzQSFP0NlSnWgyqICZbKemxnuD0e7xkdw/aws1jfZmQex7K7L515yd3vsvLNjN85cNY9qQLry1dD/FtWYGdomh0eqgrM5KdJiJmHAT6UlRjO7pGkjoGhfB3G3FpN872/u3LP7rJKKOYUZCe/vl/mXHwRVj0ujasI9Jk8YA8Oez+2E0KJKiQjEYFA1Wuzd98dl5u9iUW0XvTlGsza70VnwAg7vG8udzXCmYWmtKai1Y7U4mPrPY7/WmDUnh31eOxORO7alqsFJnsXPG04u9vVW+atyNh4+vHxtwrt/DFw3G4dBk7C7hrs82UewT9DZaHYSHGMgub2D6i0u8DRKA341NY/rQLny6NpfZ7gbHsqwyADJ8/q4/ndmb+2YM4vPMXP725Wb6/uNH72MXDuvGdWf04uL/LCczp5Le982mU0wYMeEh9E6OoqzOQlxECIlRYfRMisTucJIYFUpKbDhKKbrHRzC0uyvNyGxztGk0Z0dhDR+syiEmzMTsLYXkVTZ653Gd1b8Tt5/Tj1HuysDXE7O3s3RPGTuLahncNZZQk4GNPgHfOQM7c9aATiRFhXH2wM6HnIvR1pU8txfU8NC3WymsNlNWZ+Gy0T146MLBhBgN1Fns/LS1iOgwEz9tLSImyAUPlHKNoI5MS+DBCwbz9E87eS1jLwVVjTicmjs+3cD6A1UkRYVSXm9leI94bjqrDzVmGxX11oAXtqajn74arQ4i2rDYQFxkCMuyynhr6T7qLQ6WZZXicGp2FB7Mbnj996O45p01lNRaOPeFJd7nenrCW/PozKHc+dlGQo0GLhjWld+M6gG4gvKND011zRXWrlHF+MhQQoyKTbnV/HtxFiPT4ukSG87CnSVUNbjeg1X7KvhqfZ630fLI99vZ+68ZGA3KtdhDrYXOseFsL6jh0tdX+L0/153RiwuHdUNrjUEp7E4nryzK4ufdpQHnK5fWWkiJDePneyZjczgxKOW9OB0ob2D2lkKqGqy8vzIn4OgXuOYU/t/cXYDrAtcvJYY/n92Xeoudlxbu8TZQA/n6lgmM6BHP4Ifm8t7KHN7z6eG+eVIfeidHkZ4cxci0BLTWVDbYyC6vJyUmnIhQI7mVDVTWWzklNY4X5u9mS341dodmV3EtxTUWimsO1h2/HtmdUT0P/i+11pTXW7nuvUy/zpaeSZE8f9kwtAazzUnX+HB+3lXKoz9sp7TW0iyILa9zNcq/v+0MusWHU15vpX9KDBa7q/PipYV7CDcZmbe9mB2FNZTUWpqNKmWV1HHzh+vY4x79G9glhvevG0ODxcEj32/z1oEvB3gPX7p8ODOHd/eOIP3urVXsK62n0eZgQp8k9pbW8ZepA7jg1G4t/h9aEhMe4h2tffSHbWwodvD9pgK+3VjAgh3Ffvt+edN4RqQltNhA9XSImQN8nj3pxIeq52LDXYvMPfzdNjKzKymts7Apt8ovMNr52HTCQ4yc+shcasx2bwD7qxHduevc/q0ef2K/ZN7/4xjeX5lD17hwrjujF+nJUd7X3llUy4qsMjbmVZFdVs/V49Ox2B0s2V1GXmUjY3olEBlqIsRoYHiPeLrEhR9W52SD1c6uolqqG22kJ0VRa7YTE26iqMZM9/gIusdHBOwIue/rzWSV1HHV+HQ25VZhNCg25la56t9z+tG3c7R3NLl7/NHLVHI6NVvyq9mSX02t2c643omMcGfTVJqdrMgqIy4yhKzSOkKMil2Pndfs/H3rp+pGG69l7GVbQTVL95T57bfhQBV/+2qzN4i1O5zUmO0kRoVy84frmLf9YLk0GRRL/z6ZhMhQwkwG72jVlW+uosESuD5LiQ1jUv/OPH3pqc0eyyqpo95ip9Hm4I5PN5Dt03G+t7SOynorvZKjuOy/K9lbevCxy0ancvGI7pTXWflzk7UmfMWEmXj32jE4nJr+D/zIA99s5av1ed5gfMHdZ7G9sIbbP9nAqMcXkBgVSpfYcCx2B4O6xmK1O8mrbGR7oWvE7NrT0xndM5HqRhupCRH07hRFbEQIESFGahpthwyCtdbcP2urt8NwWGocYSFG7/z6lq6PC3cU887y/RRWmUlLiqSszsLW/Bpiwk04nJrhPeJdHXUoLhrerdkceY+2rrHhSU8vr7dy12cb2VNcR49EV0fgv351Cn07R2OxO3hh/h5+3FrIkG6xAMRHBrdoZWSoiTunuOqQrfnVXPDKMtbnVGK1O/ki03XNTk+KJNuddfLYzCHUWuxceGo37/QI/+O56rtAbZwGq6NNc3A9C29+tykfm0Ozal859RY7RoNibXYlMWEmfrj9DJbsKePBb7Zy9+ebgE0A/GFCOo9cNASr3dni1MUb3SP+5fVW6sw2bp3c9xcdwIIEsUdV08aOp6dlcLdY3vnDad7tFfVWnFrTaHUw46WlPDd/N28u3cfQ7nGs2Fve7LjXn9GLhKhQfntaD7903/jIUG8BDRjEurfFtrBiraeRMW1IF2ATf/3C9ZOaENGsMTtpQCdv4+yj1Qf4aLWrokxNiOAvU/sTExaC0agIMRjIq2zA6nByychUACYP6MyYXoms2V+B0aAYlZbA36YNoEdiJB9fP5Yr31qNU0NxjSstccGOOpxtzAULDzFgtjl5/OKh/G5sGkq5GgKhRgNd48JZsqeUOz7dCEBiVCgVPg0owJta+vPuUrrFRzQLYp1OzZtL93vvby+sITbc/2OzcGcJC3eWAPD36QO5YaJrHtaa7AqiQk3ERYTwf/N2MXtzoTfQu8Wyk1+P7M6qfRU8+v12osNNDOkWy4GKBm9KS1MfrMrhi3W5XDEmjc/W5vpVphec2rynOxjd3I2kCU8t8tvuaXDecU4/Jg/s3OoxwkONAVNtwFXJR7Whkvc01pouNuPp4bzvvEEM6hrLj3dM5NEfttM1LoL8qkaqGqze3s7WXDyiOxcO6xaw8e55DSPKbw7fmF6JvN9rjPf+5WPSvLcbrQ5W7S/HqBTXv5+J1e7kpg/X0SMhkt3Ftd7OHY+YMBMWh5PT+yTx9+kDm/XcntE3mYxdpdRa7M1Wmq5ssJISG054iLFZp01aUiQ3T+oDuD7v/zd3F/+YtcX7OQW8adKeUWS7U7OjsIZbPjqYuulZfKLeYmdPSR3vr8zhrP6dmDakizdt/JJR3f1GUS84tSt/nz6wybup6BQT5je/2Pf2k78+2Og02xy8s3w/I3okMGtDHp9n5vHs3N1M7J/Mptwq5m7zD8A8pgzqzDOXDmvWY+5JR68MMJ+z0t354OkA8zQMw0yu9/O+81wjNSPS4vnDu2u59eP19E6O4ot1eQxIifEb8R/eI57B3WL5ePUBxjxxcNpG705RXDM+nTqLnT6dotlZVMOX6/K4YkyaNzidNKAzX6/PZ2t+DdWNNlJiw3jz6tFHrcHRp1M02wpq/BrhPRJdAVVaYiSnpsa3OsLiKV+tjcQeKvMjOtxEdJiJOovdO3KVlhhJiNFAjdnGvecN9L7O7Nsn8t2mAsb1TiQ+MpTe7mC0NUopzuzfiTP7N88e6t3J9XzPfDTAmx3k4Tta1lR8ZAhd4yL47+9HeRfL0tr1mamst7rq/B3FlNZaWlx0yyPQAlMWu8ObnRVo5PHqd9b43X/s4qFcNjqVUPf1XynF5rwq5mwpYltBNRa7k5TYcMb3TmJMr0QSIkO4f9YW8iobiQgxEhZiICrUxLqcSr9OBI9fj+hOl7hwXs1ohIyD71lLAbjvtriIEO49z//zP2tDHoO6uj4b76/MYdRj86lssAa8ro/vnURKbBiXjEr1m1bkaT/Fhoewr6yu+ROBmkY7sRGBPzO+2W29kqOYt72YEY/OC1gvgCs9vazOyueZed6yopRrKkpprYWh3eIor7eQHB3mDULBVa/+61dDvdfktMRIbyeEZ84muNp9nvbH3tJ6b9vF493l2QEXTPPY9PBU4iJCcDpdK+FW1Fv5dmMB63IqMBkMHKhoIN9nKk7Tcvn3rzaz8C+Tmh131oZ894i1qz3kSeO22J1Y7U6/NumsDfnsfuI8HE6NAkrrLBTVO5n2whJ2FdeSHB1KqNFAenIUV43riVKuDKL8qkac+mB7q6miGlda7JTnf/b+HzxyyhtIigplUNfYFt+bQ+kc66rnm7YrPAHs7Wf3PWSqraeuCpQp1mh1tJqZ4uEJxH1HXD0iQ41cOS6NnklR/D4xkqp6K99szMdsc9IrOYrfjXW1O1pbt6RbfASPXDTkkOfxS6JO5O93Gz16tM7MzDz0ju0oIyODSZMmHfbzH/thO28vOxgkpcSGERseQnpyFD0SIvnb9AGHHGUc/NBP9EuJ4Y5z+lJaa+GlBXvoGh/hTQFccs/kQ65aedXbq5v1okaFGnFozfmndOO5y1wL7WzJq2ZXcS3hIQZKaixMGZQS9IqYTdVb7OSUNzC428FKyjPPwamhqsFKeb2V7QU1FFQ3sq2ghq6x4RyocC0Y8s7y/a0c3f/vue3sfpzRN5lQk4HC6kaGdo/D5nByyasrKKg28/ENY2m0OljnXjQlJtzEtxsLePjCwUwf2sW9gJerErHYHewtqWdbQTXd4yP8GkzB6hwTRky4CavDSVmtFavDyZn9kpk5vDuTB3bG5nAy/smF2ByaEKPC5tDcNcU1LzHGHQAfSXpzRb2V6S8u8abDXzSsG/dMG0C3+AjMNkebGteP/7Cdt5bt577zBlJcY+HHrYU02hz0SIhkS341N0zsxT/OH9zqMWrNNu8CT0lRYXRPiKBXchQhRoVBqWO2ENnRkFVSy/QXl3pT7HzFhJm4e2r/Qy4048la+MeMQVQ32tiSX01SVCi5hUWsLXJwZv9OvP/HMa0eY3lWGdf+b623keURHmKgS2w4T/zqFE7vm4zDqfnfimw25lYRFWokPTmKK8aktelrmuwOJ4XVrkXjQoyGo5ZyVmexM/ThuQEfiwo1cte5/bl+Yuvzyzy97uEhBsb0SuLsAZ2os9jJzKkkY1dpq6nWHtUNNn792nKKayzUuRt1oSYDVruTmHATD5w/iN+elobTqfnXnB3YnZr4yBAq6q3cfW7/Ns2T9mSQeLJejub0hNyKBh78ZCkZuXYSIkO4Z9pArhybdugn+ki/dzYpsWH8ZlQPMnMqmi3otvGhcw/5d5ptDpbtKWNXcS2/GtGdrnHhx2Uahtaa3IpG92ijjU15VfRPiWF3cS1Op6tRO7FfJ8rqLNz68Xq0xluvgv9idZ5snUP5w4R0QoyKhTtKOC09kVCTgQ9W5ZAUFcpHN4wlu6yB3cW1bMytYpG703Niv2QuHt6dhKgQYsNDSIkNZ39ZPbmVDbyyMAunOzMLXAFVYmQo9VY7IUYDtS1kW7TF0O6xxISFMHN4N+79eovfY4O7xjJzeDcq6q2MSIv3pqwfjm825HPnZxubbfd8lj6+YSwT+rS+Ivzfv9zMZ5m5/GPGIBKiQnngmy2YbU5vh/Bfzu3vzWRryXPzdvGKey2Qpkb1TODda08jNjyEkhozd32+0dthd3rfZMb1TmrbH9uCenf94QlyHE6N1eEkMtRErdnGvtJ6enWKYvW+Cg5UNLjn+NdjczjJzK5kS37rnSRNzbl9IuEhBrYV1HBmv07ERph48sedvLFkH89ccippSZHUW+ysza4kzF1GB3WN4dXfjSIuIsSdNeXOxLA5WLm3nLjIEJ6du8sb0MaEuzqn2ho+hJkMdI4NI7fCf3DknmkDuHRUasDMw/SkSB44fzBhIQYGd4094nTsz9fm8sbSfWSV1DF9SBduP6cfPZMi29xx6JkHPXN4N7rGRfD6z3sZ0yuRUKPB21md/dT5rR7DanfyxpK9VNS7Oi4vHZXabmnm7amluEkptU5r3XzhlFZIEHuEjjSIBVfAVl5vJSkqFKUI+iI//cUl3gtuU0O7x/LVzRO8Iw2t0VpTVGPGZtekJgTugT0RrdxbziuL9mB3atbsr2BYj3g25VYxfUgXzuiXzKWjUgkztd5IDBTE+3r/j2MC9vj7+veiPTw3fzendI+jZ1IUUaFGusSFk1vRyNQhKZzRN5moMBM/zFvMeksK+VUNTBvShZ5JUQHTmJuqqLcSHmIgzGRkf1kdfTpFnzDzcgHeWbafR3/Y3mx7UlQoMeEmHrt4aMA5178kuRUNxEWGsCm3isU7XUvaB7Pa8c+7S7mmySiMR5jJwN+nD+SPZxx6xVVP+q3Z5sBqd9K7U/M59yeq3cW1WO1Oyuut9EyMpEdiZFBBcmmta9GglkwZlMJb17T9Omm1OzlQ0UDfztEdaiXoI702jX58vt+IiEdEiJHfjU3jH+cPOqHqn6PBYnegcM1t+2h1Dv/8bjtWx8HOoCvHpmFUisLqRu6c0p8eiZFsL6hhRFp8wA62S19bQWZO85FWj8//NN67QFpL/vvzXp78cSc9EiMw25wkRYXSp3M067IrmdAniZsm9aHeYufzzDw2HKikptHG9KFdGdQ1htHprnnrp/dNJsRooKjaTL3VTq+kKO/13e5wUlbnmpr005LV3PLrs4/qtT+3ooGqBlejvVNMWNBl5uWFe3jeZz2Cpt699jQmD2g9SwgOTuMpq7OSGBXa7nM926rWbOOR77azKa8Kg3LNhR+RFo/dqTlQ3sAdU/rRt1M0VoezxU7ef83Z4V1PIZCbJ/UJkE3jr7jGzIWvLKOk1sK0ISl0jYvgi8xc0A4iw8P4+PqxpCdHEWI0sHpfORtzqxjcLZbIUBMj0+JRyjXFxubQAUcT520rwmx3MrZXIgmRrv/PifQ/yq9q5PQmmWohRkV6UhR7Suo4d3AKbwZYuFI0J0HsCeRoBLFHqrTWwhtL9hJiNNDNnS7WKzmK4hrzIecICpfSWgtvLt1HUlQom/OqGdwtlp5JkTi1a5R0bK/Eo9ZgOxHKzLFgczh5eeEeOseGMyAlhm7x4Uft+yFPFlpr5m8vZltBDRX1Vob1iOf8U7qyIGMJM6ZMOqEu6ieynPJ6NudV49Qaq93JqJ4JhJoMxEWEEBMe3NyqjupI65nNeVX8vKuURpuDBquD28/pR4I7He6XFrweyuF8pzbArqJaHvx2K6nxERTXur4qaUx6Ij2ToggPMTKu99G7rhwNJ+K1qcFqZ9HOEvIrG6kx2xjcNY4JfZJwaE1cREiH6VRqT7uKarn14/VcNKwbydFh9O0cTVWDlZ1FtQzvEc/4PkmH/T6eiGXmWFm00/UtBsnRrlHUQy3iKAI7mkGszIn9BegUExYwTTPQ5HQRWKeYsIArF4q2CzEa+MvUAe19Gh2aUoqpQ7o0W4kzJvTE6pU+0fVMiqJn0qHnVYqW+a6qebI73JHJAV1i+PxP44/y2ZxcIkNNh7XQmThoQJcYFtx9VrPtgVZ8Fi07e2BKs686E+1LurCEEEIIIYQQQnQYEsQKIYQQQgghhOgwJIgVQgghhBBCCNFhSBArhBBCCCGEEKLDkCBWCCGEEEIIIUSHIUGsEEIIIYQQQogOo81BrFLKqJTaoJT6wX2/l1JqtVIqSyn1mVIq1L09zH0/y/14us8x7nNv36WUmnbU/xohhBBCCCGEEL9owYzE3gHs8Ln/NPCC1rovUAlc595+HVDp3v6Cez+UUoOBy4EhwHTgVaWU8chOXwghhBBCCCHEyaRNQaxSKhU4H3jLfV8BZwNfund5D7jYfXum+z7ux89x7z8T+FRrbdFa7weygDFH4W8QQgghhBBCCHGSaOtI7IvA3wCn+34SUKW1trvv5wHd3be7A7kA7ser3ft7twd4jhBCCCGEEEIIcUimQ+2glLoAKNFar1NKTTrWJ6SUuhG4ESAlJYWMjIxj/ZJHpK6u7oQ/R3FikTIjgiVlRgRLyowIlpQZESwpMyJYR7PMHDKIBU4HLlJKzQDCgVjgJSBeKWVyj7amAvnu/fOBHkCeUsoExAHlPts9fJ/jpbV+A3gDYPTo0XrSpEmH8WcdPxkZGZzo5yhOLFJmRLCkzIhgSZkRwZIyI4IlZUYE62iWmUOmE2ut79Nap2qt03EtzLRIa/07YDFwqXu3a4Bv3be/c9/H/fgirbV2b7/cvXpxL6AfsOao/BVCCCGEEEIIIU4KbRmJbcnfgU+VUo8DG4C33dvfBj5QSmUBFbgCX7TW25RSnwPbATtwq9bacQSvL4QQQgghhBDiJBNUEKu1zgAy3Lf3EWB1Ya21GfhNC89/Angi2JMUQgghhBBCCCEguO+JFUIIIYQQQggh2pUEsUIIIYQQQgghOgwJYoUQQgghhBBCdBgSxAohhBBCCCGE6DAkiBVCCCGEEEII0WFIECuEEEIIIYQQosOQIFYIIYQQQgghRIchQawQQgghhBBCiA5DglghhBBCCCGEEB2GBLFCCCGEEEIIIToMCWKFEEIIIYQQQnQYEsQKIYQQQgghhOgwJIgVQgghhBBCCNFhSBArhBBCCCGEEKLDkCBWCCGEEEIIIUSHIUGsEEIIIYQQQogOQ4JYIYQQQgghhBAdhgSxQgghhBBCCCE6DAlihRBCCCGEEEJ0GBLECiGEEEIIIYToMCSIFUIIIYQQQgjRYUgQK4QQQgghhBCiw5AgVgghhBBCCCFEhyFBrBBCCCGEEEKIDuOQQaxSqodSarFSartSaptS6g739kSl1Hyl1B737wT3dqWUelkplaWU2qyUGulzrGvc++9RSl1z7P4sIYQQQgghhBC/RG0ZibUDf9FaDwbGAbcqpQYD9wILtdb9gIXu+wDnAf3cPzcCr4Er6AUeBsYCY4CHPYGvEEIIIYQQQgjRFocMYrXWhVrr9e7btcAOoDswE3jPvdt7wMXu2zOB97XLKiBeKdUVmAbM11pXaK0rgfnA9KP5xwghhBBCCCGE+GULak6sUiodGAGsBlK01oXuh4qAFPft7kCuz9Py3Nta2i6EEEIIIYQQQrSJqa07KqWiga+AO7XWNUop72Naa62U0kfjhJRSN+JKQyYlJYWMjIyjcdhjpq6u7oQ/R3FikTIjgiVlRgRLyowIlpQZESwpMyJYR7PMtCmIVUqF4ApgP9Jaf+3eXKyU6qq1LnSnC5e4t+cDPXyenurelg9MarI9o+lraa3fAN4AGD16tJ40aVLTXU4oGRkZnOjnKE4sUmZEsKTMiGBJmRHBkjIjgiVlRgTraJaZtqxOrIC3gR1a6+d9HvoO8KwwfA3wrc/2q92rFI8Dqt1px3OBqUqpBPeCTlPd24QQQgghhBBCiDZpy0js6cBVwBal1Eb3tvuBp4DPlVLXATnAZe7H5gAzgCygAbgWQGtdoZR6DFjr3u9RrXXF0fgjhBBCCCGEEEKcHA4ZxGqtlwGqhYfPCbC/Bm5t4VjvAO8Ec4JCCCGEEEIIIYRHUKsTCyGEEEIIIYQQ7UmCWCGEEEIIIYQQHYYEsUIIIYQQQgghOgwJYoUQQgghhBBCdBgSxAohhBBCCCGE6DAkiBVCCCGEEEII0WFIECuEEEIIIYQQosOQIFYIIYQQQgghRIchQawQQgghhBBCiA5DglghhBBCCCGEEB2GBLFCCCGEEEIIIToMCWKFEEIIIYQQQnQYEsQKIYQQQgghhOgwJIgVQgghhBBCCNFhSBArhBBCCCGEEKLDkCBWCCGEEEIIIUSHIUGsEEIIIYQQQogOQ4JYIYQQQgghhBAdhgSxQgghhBBCCCE6DAlihRBCCCGEEEJ0GBLECiGEEEIIIYToMCSIFUIIIYQQQgjRYUgQK4QQQgghhBCiwzjuQaxSarpSapdSKkspde/xfn0hhBBCCCGEEB3XcQ1ilVJG4D/AecBg4Aql1ODjeQ5CCCGEEEIIITqu4z0SOwbI0lrv01pbgU+Bmcf5HIQQQgghhBBCdFDHO4jtDuT63M9zbxNCCCGEEEIIIQ7J1N4n0JRS6kbgRvfdOqXUrvY8nzZIBsra+yREhyJlRgRLyowIlpQZESwpMyJYUmZEsFoqMz2DPdDxDmLzgR4+91Pd27y01m8AbxzPkzoSSqlMrfXo9j4P0XFImRHBkjIjgiVlRgRLyowIlpQZEayjWWaOdzrxWqCfUqqXUioUuBz47jifgxBCCCGEEEKIDuq4jsRqre1KqduAuYAReEdrve14noMQQgghhBBCiI7ruM+J1VrPAeYc79c9hjpM6rM4YUiZEcGSMiOCJWVGBEvKjAiWlBkRrKNWZpTW+mgdSwghhBBCCCGEOKaO95xYIYQQQgghhBDisEkQewSUUtOVUruUUllKqXvb+3zEiUEpla2U2qKU2qiUynRvS1RKzVdK7XH/TnBvV0qpl91laLNSamT7nr04XpRS7yilSpRSW322BV1OlFLXuPffo5S6pj3+FnHstVBeHlFK5bvrmo1KqRk+j93nLi+7lFLTfLbLdeskoZTqoZRarJTarpTappS6w71d6hkRUCtlRuoaEZBSKlwptUYptcldZv7p3t5LKbXa/f//zL2gL0qpMPf9LPfj6T7HCliWWqS1lp/D+MG1MNVeoDcQCmwCBrf3eclP+/8A2UByk23PAPe6b98LPO2+PQP4EVDAOGB1e5+//By3cnImMBLYerjlBEgE9rl/J7hvJ7T33yY/x628PAL8NcC+g93XpDCgl/taZZTr1sn1A3QFRrpvxwC73WVD6hn5CbbMSF0jPy2VGQVEu2+HAKvd9cfnwOXu7a8DN7tv3wK87r59OfBZa2WptdeWkdjDNwbI0lrv01pbgU+Bme18TuLENRN4z337PeBin+3va5dVQLxSqms7nJ84zrTWS4CKJpuDLSfTgPla6wqtdSUwH5h+zE9eHHctlJeWzAQ+1VpbtNb7gSxc1yy5bp1EtNaFWuv17tu1wA6gO1LPiBa0UmZaInXNSc5dX9S574a4fzRwNvCle3vTesZT/3wJnKOUUrRcllokQezh6w7k+tzPo/UPujh5aGCeUmqdUupG97YUrXWh+3YRkOK+LeVI+Aq2nEj5Ebe5Uz/f8aSFIuVFNOFO2RuBa5RE6hlxSE3KDEhdI1qglDIqpTYCJbg6ufYCVVpru3sX3/+/t2y4H68GkjiMMiNBrBBH3xla65HAecCtSqkzfR/UrrwJWRZctErKiWiD14A+wHCgEHiuXc9GnJCUUtHAV8CdWusa38eknhGBBCgzUteIFmmtHVrr4UAqrtHTgcfjdSWIPXz5QA+f+6nubeIkp7XOd/8uAWbh+kAXe9KE3b9L3LtLORK+gi0nUn5OYlrrYnfjwQm8ycHUKykvAgClVAiuYOQjrfXX7s1Sz4gWBSozUteIttBaVwGLgfG4piOY3A/5/v+9ZcP9eBxQzmGUGQliD99aoJ979a1QXJOTv2vncxLtTCkVpZSK8dwGpgJbcZUNz4qO1wDfum9/B1ztXhVyHFDtk+YlTj7BlpO5wFSlVII7vWuqe5s4CTSZP/8rXHUNuMrL5e5VIHsB/YA1yHXrpOKeZ/Y2sENr/bzPQ1LPiIBaKjNS14iWKKU6KaXi3bcjgHNxzaVeDFzq3q1pPeOpfy4FFrkzQloqSy0ytfagaJnW2q6Uug1XRW4E3tFab2vn0xLtLwWY5boOYAI+1lr/pJRaC3yulLoOyAEuc+8/B9eKkFlAA3Dt8T9l0R6UUp8Ak4BkpVQe8DDwFEGUE611hVLqMVwNBoBHtdZtXfxHdCAtlJdJSqnhuNJBs4E/AWittymlPge2A3bgVq21w30cuW6dPE4HrgK2uOerAdyP1DOiZS2VmSukrhEt6Aq8p5Qy4hoc/Vxr/YNSajvwqVLqcWADrs4R3L8/UEpl4Vqs8HJovSy1RLmXNRZCCCGEEEIIIU54kk4shBBCCCGEEKLDkCBWCCGEEEIIIUSHIUGsEEIIIYQQQogO44Re2Ck5OVmnp6e392m0qr6+nqioqPY+DdGBSJkRwZIyI4IlZUYES8qMCJaUGRGslsrMunXryrTWnYI51gkdxKanp5OZmdnep9GqjIwMJk2a1N6nIToQKTMiWFJmRLCkzIhgSZkRwZIyI4LVUplRSuUEeyxJJxZCCCGEEEII0WFIECuEEEIIIYQQosOQIFYIIYQQQgghRIchQawQQgghhBBCiA7jkEGsUuodpVSJUmqrz7ZHlFL5SqmN7p8ZPo/dp5TKUkrtUkpN89k+3b0tSyl179H/U4QQQgghhBBC/NK1ZST2f8D0ANtf0FoPd//MAVBKDQYuB4a4n/OqUsqolDIC/wHOAwYDV7j3Pak0WO1Y7c72Po12V2+xt/cpCCGEEEIcsYp6K/9bvh+tdXufihAnlUMGsVrrJUBFG483E/hUa23RWu8HsoAx7p8srfU+rbUV+NS9b4dnsWs+XJVDSa0Zs80RcB+HU/N5Zi6DH5rLtBeX8MrCPcf5LNuXzeHkh80FaK15LWMvQx6ey7qcyvY+LSGEEEK0oi2BWUmtmS8yc/nrF5s457kMSmrNx+HMThx3fLqBR77fzsRnFjPl+Z8prbW09ykJcVI4ku+JvU0pdTWQCfxFa10JdAdW+eyT594GkNtk+9gjeO0TwvebCvjzggZgKw98s5W0xEiW/G1ys/0+Xp3Dg99uA2B/WT3Pzd/NtWf0IjrshP6a3qPm34uyeGnhHm5jg3dbdlk9o3omtONZCSGEECKQVfvKufwNV3NuYr9k3r7mNEJNzcc9thVUc/7Ly/y2zd9ezO/G9jwu59netNYs3VMGQF5lIwDvLN/P36cPbM/TEuKkcLhR1GvAY4B2/34O+OPROCGl1I3AjQApKSlkZGQcjcMeE++u9+9tPFDRwIffL2JZvp3f9A/BaFAAzN/q6pXrFKEobXT1ai5YvIT48MNbV0trTV6dpkeM//PtTo1DQ5hRHdZxj5TWmtn7bcSEKPomGNlc6sDh1Hy5x9Zs35WbtpNUm9UOZ9n+6urqTuhyLU48UmZ+eRxOjdkBkSawOSE0yHq7qN5JWaNmaLKRwjonnSIVJsPBY5xMZWZtkZ0VBXZuHxGGUu1z/fsl8C0ziw4cvG4v3VNG/wd+5L9TIik3a7pFH2x7rClsPj1o+47dZDTub/W1yhudxISqVsv9k6sbGZxkZGbfUMDVxmiv/+/bWywszbfTPVrRJ97IoEQjp3Yy8mymfzuwW7Ri+dZsMsKL2uU8j7eTqZ4RR8fRLDOHFcRqrYs9t5VSbwI/uO/mAz18dk11b6OV7U2P/QbwBsDo0aP1pEmTDucUj4sRY2ws+HkpjQl9eOAb17pXDyx39cRdPWUkE/omA/BZ3jr6WeuYf/dZfJGZyz1fbmb46LGkJ0e1+bV8K+8ftxTy4Nz19EqOYn9ZPQAzh3ejsMrMmuwKfvjzGQztHud9rtOdzjx9aBdW769g7rYiRqQl8NvRPQL2rB4Om8PJtBeWsK+secDqERNmYtnfz2bYo/P4creNM0YMIT4yhEkDOh+Vc+goMjIyOJHLtTjxdJQy8+OWQgqqzRRWNTJtaBeG94gnxNi8jtFas2RPGfd/vYX8qkYeOH8Q10/s3Q5nfHzYHU6MBuWtw51OzW/fWMm6nEoGd4tla34Nmx6eSlxECBX1Voqqzfx3yV6+3VjAxofOJT4ytNkxz3tpKTsKa7z3b5jYi3+cf3CpiY5SZg5XeZ2FUY8v4NTUODbnua6DQ0dPoFNMWDufWcflW2b2LtsP27fzwPmDeHz2DgD+tKABgHMGdualK0YQHWaiYUshbFrP/116KtOHduGUR+bRPb0Xkyb1bfF1bA4n/f7xIzNO6cKrvxvV7PFXM7J4d3k2pbVOdlU6WVFioLjGNRhw2+S+/HXaAACKa8xsyq1i6pAuaK2xOTRfrc+jW3wEZ/XvdDTfGv7w02wA8us0+XV2luQdDN57JUfx8Q1jMSrFH95dy+bCGkaMPZ3ciga0hlNS41o6bIf3S69nxNF3NMvMYQWxSqmuWutC991fAZ6Vi78DPlZKPQ90A/oBawAF9FNK9cIVvF4OXHkkJ34iiIsMISnCwKRxPYkJN3HHpxu9j72wYLc3iK1utBEbEQJATLjrd721ee9ldaONX/1nOcN6xNO3czR9OkWTmhDB795aTXWjjT9MSKe60casDa743xPAAny7scB7+96vN/PDnyficGru/nwju4pq2VlUy71fb/Hu8/X6fDYcqOT5y4a3+e9ds7+CqgYrU4d0afZYeZ2VfT7nE8icOyYSFxnivX/nZxtd22+fyOBusW0+DyFE+9tfVo/Wmt6dogFXYHrzR+u9j7+1bD+TBnTi7WtO82aleDz1407+u2Sf9/7js3ccURBbVmdhV1EtXeLC2ZxXRZ3ZTqeYcEpqzVw8ojux4SEtPtdid2BUClOAYPtIbSuopqrBxu/eWs0fJqTz4aochnSLZVTPRNZmu9YF2JrvCkRLaszERYQw8rH5fscY/uh89v1rBkqBxe4kPMQIQGSo0W+/r9bn+wWxbWV3ODEohcHQfISrzmInxKgIMxkDPPPYszucPPDNVrrEhTMmPZH+XWIw2xzM21ZMVYMVgM151d799xTX0ikmjH8v2kPPpCguHNatXc77l8Bid63x8ftxPbl4RHdGP77A+9jCnSU8/eNOHrt4KHXuhRrH9U7yTpEyWwOvD/JFZi4vLthDfpWrs3/OliLOfjaDy8f0YEKfZHokRhJqNPDMT7v8nucJYAH+vTiLmyf1ISrMxLnP/0yNOfBCkdeens7DFw5p89/rcGoUoBQBR3tjw00tvtbCu8/yfn62uzuWXpi/m/+tyAYg64nzjkn9IsTJ7pBBrFLqE2ASkKyUygMeBiYppYbjSifOBv4EoLXeppT6HNgO2IFbtdYO93FuA+YCRuAdrfW2o/3HtKdpQ7owbUgKc7e5BqnXZleSfu9shnSLZVtBDWcPdI02RoW5GgMNASr5lXvL2FdW32Iw6KkQAfqnRPPns/txZr9OLNlTyp8/2cDEfsks3VOGQlFvsVNY3egX3Da1aGfJIf+u7LJ6Jj2b4b/tqfOb7Vdrdo3AvnzFCEb3TMDh1KQmRLB0TxmLd5XwwPmDmzVkPW77eD1f3DSepOi29aBvK6hmS141l49Ja9P+QrTFgfIGHFrTq0mGxP6yejrHhBHlM4d9eVYZKbHhdI+PICL06DTw2zNV7lCqG2zERYagtWZfWT0frTrAO8td6YIbHjyXhKjQgA28jF2l9Ll/DhcO60bPxEj+MrU/Sik+WJXjt19ydPORRnC9JznlDRRWm+mRGMGekjp+3FJIeIiRa0/v5f1f3fXZRu+8tKYe+nYb+5+c4X1vcysaeH9lNpvyqvnViO7c5+7cOy09gff/OLZN/0+tNQ6nbrVhWlJj5uL/LMfmcE0h8dTfm/Kq2eQOvJKiQimvdwVjc7cVBRy1Brjk9RWYDIq12ZXeEVuTQTEyLZ7hPRJ4f2U2FfVWbA5nwGP8tLUQm0OzeFcJl4xMZWt+NfGRISil+NuXm4kJM/HCb4fzzvL97Cutx2J3UNngn1Xz+Z/GM6ZXIgCfrjlAUnQYlQ1WNudVEWYyUlRjZvbmQl793UhmnNL1kO+h531srcwXVpv5dG1ui4/7CjEqHv5uG5/cOI5n5+0GkCD2CFhsrm9SCDUaSIoKJTUhwjvnE+CDVTnMHN6NOvfnPjrMhFKKiBAjjQEWuaw127jny83Ntu8rq+dfc3Y22377Of2ICDFSZ7Hx4aoDdI4J4+xBnfnvz/sor7MSFdZyUAnw7vJsbpnUt8WReavdidXh5IvMXP75/Xbv9tPSE/jipgnN9k+JDef0vtG89vtROJ2aVzOy2JhbRWJUqF8H0MfXj+XKt1b7tdeKay10j49gxd4yRvRIOGQdY7Y5vJ1VQgRLa43WBOyY/KU5ZBCrtb4iwOa3W9n/CeCJANvnAHOCOrsOJDzEyL+vHMkTs3eQVVLHsixXg2pbgatXrsE98hoZ6nrLPUGfr9yKxmbbjAbF2F6JpCZE8Hlmnnf7R9eP81bOFw7rxpRBKUSEGrnrs43M2pDPkIfn8sVN4/2ONWVQZ56+5FRsDs1js7czf1uxtxHxwaocxqQnkp4cSW5FI307u0ZXMgOsIpxb0UCPxEi/bTXuvyc23ES3+Ajv9jP7d+LMJmk92/45jS/X5VFrtvHsvN3sK6tn1OMLWHXfOXSJC/fuV91oIybM5P0gaq3ZXVznXUTigmHd2rQ4VnWjjY25Vc3Si0prLRRVm8nYVcLp/ZIJMRjYkl/NlWObB8cWu8M7GuF0at5ato9LRqYGDLztDiezNuTzqxHdD6v3tazOQk55A+lJkSRFhzFnSyFjeyVyz5ebWbSzhPNP6UpaUiS3Tu5LdJgJp1NjMCiqG20M++c8/jq1P7ed3a/F41vtrtTGuduKOL1Pst/oeEtaqhRXZJXRJS7cOxrn4XBqimrMdPcpC02Pd6gg4EjN317M0O6xdI3zP4eqBitxESF8kZnHlMEpJEaFUlRt5sz/W+y3362T+xAdFsLTP+2kd6coFv1lElprnv5pF6//vNe7393n9uf2c5q/33aHk/4P/Mh5Q7tyxZg0wkMMjE5PpLTWwtaCak5LTyQq1Mi2ghreWb6fr9e7MizOHtiZ6DATMeEmpgxOYbI73b7OYmdzbhWPz97B9sIanrn0VPp0imJtdiUXDevm97lri8p6K9nl9YxIC7zA2qp95QDexV1aMuKx+Vw5No19pXUA9O0czU93TGTpnjKu/d9awLUIHrg6+7rGh2M0KK4Z35N7zxvEvV9v5setRd4y4Tsq+NC325oFvB7vrwy8PZDZWwo5pXsckaEmJj5z8P+8Zv/BhffXZlfy0eocvxHh6gYbRqNi44Eq4iJCOCU1DrPNwU0friNjVynvXnsaZ/XrFLCxkJlT6Q1gAUwGhd2pUQq0houGdeOZS08lY1cJN324nmfn7fYGX+BKD7banby3MocNB6q824f9cx6zbplArdlOt/hwHrpwMOnJkTz07TZ2F9dSWW9jfJ8k7/5ZJXXc9OHBEXJPOfNVa7Fz/fuZrb6H32zMZ0yvRCrqrX5ZPU3d8tH6gB2dvhxOzT1fbmL+tmIevGAw5fVW/nRm72bvY1VDy9NTPB44fxBXjk3j9k82sGBHid+IoTh8FruTUKPB+z/5+Z7JNNoc7Cmu5VevrgDg0tdXevf3dPI12hy8uXQ/BVVm7pk2wDttqsRnxd7fju7BZ5mtd06c2j2OKYNTALhnmmuRpAXbi/kv+6hssJKWFIlBgdP9EbtsdCrPXDqMWrON0Y8vwGJ3fSvCr0ek8mpGFtdN7EVeZSNRoSZW7C3zC1x9rc2upNHqINRk8Ot4b7Q5vMGnwaBavMZO6JvMn87szX+X7CMuIoTqRhuFVY0YFFz55mrOP7Urj1w4BKvD6Xd9fC1jL28t3cffzxvI377czMc3jGVCn+RW3yMPz/VZKXhz6T5GpiWQEhtOt/gIHvhmC1eMSaPWbKfWbKfeYuei4d1anOZxuB2py/aUMTo9Iejg22p3otEYlaKgysxX6/PonhDBtMFdvG0Ts83B8/N388fTe2E0qBY7JmwOJw1WByuyypg8sPNJ0RGwvaCGqgarN/Pz+Xm7eHmRa72ZQ9XDvwTqRP5eq9GjR+vMzNYvrO2tpdzurJJapjy/xHv/q5snMKpnArkVDX6NKIDJAzpx7em9uPqdNQDeUYPyOgvR4SbCTEa01jw7bxf7y+q5f8YgUhP8g0iPZ37ayasZrgZ2iFFhc2i+u+10+qfE+H2g31yyjyfm7GDKoBRMBsVP25ovQhBqNBAfGeK9+FwxpgefrMnlyrFp3DKpD5e/sYr4yBAm9utEz8RI7v16i/fvbKv7Z23h49UHAEhNiKBTTJhfg+3WyX24cmxPVu8r5+7PN/k9t2klv3RPKR+tOkCXuHCySuowGBRDusXymvv9mDygE6N6Jvg1FAOJiwghOTqUf140lNP7JvHj1iJu+Wg9N53Vh2lDUrjq7TXeFKo7zunHXef2J6+yge7xESil+Gh1Dv+YtZUx6Yn0So7i6UtPpcZso8HiYHthNdu3buW2S88BXBX4B6ty2FtaR63ZTmW91dsBcihTBnUmLTGKd5bv5/Xfj/RrqP7fpaeyPKuMmcO7k5YUydxtRZyWnsgmdxDkcc7Azozvk8TyrDL+MnUAQ7vHMWtDHikx4QxPiyfMZKSk1syri/fywaoc7jinH6V1FlJiwrl1ch/6/uNHADY9NJWs0joydpVQVmdl3rYiyuutfHz9WCb0Taay3srD321jWI94HvvhYONh9+PnYTIobE4nYSYjuRUNmIyKZXvK+M3oHtRZ7Ly0YDej0xOpabRhUIoGm4Oz+nUiLSnSr3OhpMbMnz/ZQHyka1G1OVv8y/QfT+/Fuyv207TK+9+1p7H+QBUvH+Krr84e2Dlg9sLZAztz6ahUTukeR/f4CHaX1NK3UzTvLN/fbIThVyO6e6cDtNW3t57Olo3reT/LyO7iujY9Z/fj51HVYOXrDflMHZzC+gNVpMSGcdXbrjqmR2KEt9Ns8yNTvem2q/aVU1FvpXNMmF8DNRgfXDeGif06eY8HgQPhv5zbnz+f04/XMvby9E/+79P/XXoqvxndg4EP/ojZdnjfrf3sb4YxsEsMF7yyjDHpiazJbv5NcaelJ5AYFUqD1cG6nEoarA5CjQZ3SiHNXnvWLRO8DXhfl45KZc3+ClITIrjhzN6kJ0XxysI9fL0hnxX3nk3XuHByyhvIrWxgYr9OlNdZiAozER7iqtt73effv3v9Gb144ILBWO1Oluwu5Z8/bAvYyfmrEd154bfD+XZjvt90FoCHxoVz1YWTueWj9czf7soQGpASQ3WjjaKa1r8C5ZELB7OtoIYv1uX5zYm8cmwa9RZ7qxk+Hq/+biTJ0WEcqGhgWGocy7LKmLutiO0FNQFH0K4a15NLRqXSKSaM7vERNFodDHroJwA+vG4sS7NKqTPbiQ43cdeU/mwrqCYixOSdihIoa2jLI1O9U3h2FdXSLT6ce7/ews1n9aG0zkJ8RAgj0hLYklfNx2sOUGex87dpA+gUE9asAVxnsfPmkn04nNo7J/OVhXsoqDbzt2kDCA8x8v3mAuZuLeLOKf05JTUOp1NTY7YRFxHiFxyU1JrJzK5kdM8EimssXPjvZbz6u5FszqtmeI84pg91jWR72meldRYKqsz06RTl/XvA1Rn+7Nxd/PGMXqQlRno7BlfvK2f9gSpuntQHcHU8P/3TTv4+fSA9EiPR2jUqnxQVRmpCBJUNNvp2jvZrzzzy3Ta+WpfHln9Oa/a/arDa+e1/V7El35VREB5iYOdj5wGQfu9sv31f/O1wAB77YTvl9VaevuQUfntaGhm7SthXWk+v5CgKqhv5ePUBfj+uJ+tyKhnUNZbrzujV7HXX5VRyyWuuz9/ye8/m9KcW8YcJ6dx73kC//5dnvnRbje6ZwJBusbzXpGNs0oBO/OnMPry0cDer9lXwu7FpPPGrU9p0TK01uRWNzTpHfc26ZQJbC2pIjgr1m4rh8YcJ6ZzRN5nR6QlY7E6SokJ55PttNFgdnDsohZE9E5i/vdi7JktT14zv2exv8sj46yQSokLRWrO9oIZ/fLOV/WX13H1uf5btKfOrLx+7eCjTBqeQmVPJuYNTqKy38tay/fxlan9WLltKWUxf/vrFJmYO70an6DCGdo+ja5yrDfHx6gMM6xFPSmw4GbtKeG7ebiw2B/VNshGH9YhnU26V37amo/8e8ZEhXDSsm7cj850/jKZHQiTnvrDEb78Xfzuc5+fv5v4Zgzh3cAqePom/frGZ4T3iOK1XIlq71he4dXIfnBoSIkM4vW8yWSV1dIoOY972YjrHhjFjaFd2FdcSHWYiLTGSjblVLNldyrmDU5g6pAtb86sxGRV3fbaJM/snY7NreneKYlDXWEamxft9/s02B9WNNlJiw1mXU8E7y7J58fLhNFgdNFjtdIkNx2J3Yndqbv1oPfdMG0Dn2DAysysZ3iOelxfuoVt8BKv3l7M8y3WNXfSXs0iOCePUR+Z5X2div2TyKxv54xm9+O1pPVrM9DneWoqblFLrtNajgzmWBLFHqLUJyjaHk8p6K8nRYX49zDe8n+ltVARyJL0nmdkVzRqfy/4+uVnQ++OWwoCVZkv2/msGdqeTAQ/81Op+i/86qVk6ZmuW7C7lH99sCdhAa4vhPeJJiAxhWVaZ36jH0RITZqLW0nLKkq+U2DDG9U5if1m93zytQKLDTN5A+ETi6Tk+mv5z5Uhu/bjtZc1jZFo86306NFoS5u4xD5SiH6z/u/RUUmLD+W5TAVvzqxnUNTZg0Dn3zjP5yxcbsdk1u4prj/h1eyRG8N/fj2bGy0uP+Fjg+j/WWew4nG3/TLSlTP7fpadyz5eb6dc5mo9vGMe2gmr+8O5a7+MXD+/Gs78Z1myEfeGOYq57z78uf/fa05g8oHPAAKyp0/smcVb/Tlw0rDtd4sLJKa/nni82M7a3K711R2ENL14+AoDdxbWM6HGw0TDqsfnelF2P5feeTVJUqF/D94FvtvDhqgOtnsfh2PuvGS1OpfBYvKuE//68l9sm92Nc78QWMxS25ldjczj5cNUBGqx2fjM6lbMHpjB3WxF/+mBdq68x65YJ3lH3rJJaFuwoYVdRLbM25PPH03sxdUgKBqXIq2zg1yNT/Z57/XuZLNjhf8165YoRnH9KV7JK6+iVHEVxjZnvNxU265BoTf+U6IAdM8nRoZTVHfyffXPr6QzvEX/I45ltDr7IzOWh77Y166xqSUy4idomQXX/lGiiw0xY7E62FdQwZVBnFuxoefrNqalxRIWaWOnutAG4/ey+3hGRYE0e0InUhMiAWQiDu8Zyz7QBPDd/l3c+dWu6xYVTUH2w0yLQ3+urT6co9pa6pjTFhpvY/EjzINajwWrnP4uzuHRUD+91/5LXVrT6PfBNF54MRlmdpdlI+/QhXXj9Kv/FoQJ1DLXk3vMG8qcze6M1XPjvZd7suUDOP7Ur/7lyZFDnfOvH65m9ufDQO3ZQveMM7Ks+vI7Gk0lKbBhJUWF8dP1YLn19BXtL67liTBqfrHFdczrHhPllKxwLS/82uVkWZXuQIPYEcrirbDmdmgabg+83FXjnZJ03tAtn9u/EFUc41/OztQf4cNUBCqvN/G5sGndO6dcsRcTucHLrx+spq7NSb7FzVv9ORIeZGN8nCbPNSUWDldcy9nJm/2QuPLWb96Lz2doD/P2rllPJ9v1rxmHl4dsdTv70wTo0cMWYNOosNu76bFOz/Vbddw6JUaFMf3HJIReSaovEqFAW/3USP20t9P5d8ZEhraaxdY+P8C5McbQlR4fyxK9OISLEiM3h9Gv4Xz2+J3dN6c/m/Go+WJnTrFEJ8OuR3ZulCzZtKL577Wn0To7irP/LOGrn7ZvWdaJJS4xk8oBOvLcyh96donjptyN4b2U22wpq/FZ3BfzmTnocKG/grGcXexvF3992hne1yZs/XMePW1v+KoW/nNsfk9FARb2FyQM7c+9XWxjbK5HhafEcqGggITKUzzNz+ceMQZwzKIVvN+aTmhBBYbVrpGbutiIKfRqgX908gZzyetZmV/D4xadgd7pS/poulNTSvDSPhMiQZnMem+qfEs0XN01gX2mdX8px05Qzh1Njc/inHjbVdJSsa1w4K+9zZSMUVjcy/slFLZ7HYxcP5apxh/+dkzd9sM4v0+SKMWk8+evmoyl7S+u49t21HKhwrcD6wXVjuH9W4A62BXefRd/O0TRaHZz/ylLqLXa/xWc8eidHseivkw773NuqpMbMZf9dSbf4CJxas2pf81HnI+kc/Xl3Kde/t9avo3DN/efQOTbcbz+bw8lTP+7k7WWtf72Kx/4nZ+Bwaqa9uMQbOAUS7OJ/5zyX0erxmjqWdXpHdzjl5tM1B7j36y08dMFgHvXJvBmRFs+H1431W18gWPUWO0Menuu9/9bVo71px752FdXyzrL9RIYZuWfaAF5d7MrI6pEYwWWjewRMm83MruCj1Qc4/5SuxEaEcOvH6yn1CSyuGNODJ399alDnq7WmtNZCflUjjVYHV761usV9X7p8OKFGA7mVDd4snuToMMrq/OuWS0am8tX6g9PLDApCTQYGdY1ld1EtyTFh1FscRIYaKa4xkxwd5i3fw1LjvHPyWxNmMmCxH/3gdFzvRM4/tRuXjkxl1oZ8fthcQM+kSDYcqOL1348iNSGCj9cc4KFvmy+b01I2VNOOmUkDOpGxq/Son/uJxjdLpinPNd63/NwzbQC3Tm551fDjRYLYE8jRWCq61mzDane2eWGj9lZUbcZsc3jnuuwprqXR5sCpaVNveVut3leO3b1A1B2fbuTq8T29IwQ1ZhsvLdhDiNFA387R9O0cTYPFztcb8hnXO4mIECPdEyKYvbmAqUO6YLU7eeyH7cwc3p1u8eHsKqrl1Yy9rLzvbO+cyeIaM51jXN8zeKC8wS8N6Kaz+nDveQe/vLzeYqe60cbby/bTYHVw/4yBvDB/D+8s309SVCj/vWoUXeMjWLijmJ+2FnF632RmnNKVxMhQvl2whIdWHAxMPCkzj80cwlXj0/3eA601Byoa6JkUeHR7XU4FdRYHW/KquHRUD7rEhfNFZi6npMbROzkah1N75/FkldQyZ0sRt03ui8E9J/a7TQWMSkvg2Xm7vCOZ/TpHU1xjJtRkYEyvRLYX1JBd3sDb14zmneX7GZWWwPmndqOqwUp0uIlBXWIx2x0UVJnZWVTD4K6xdIkLx+bQzHhpKQ1WO1/fcjqltRbvwjCev6283srnmbmsy66k1mLnglO7snp/BbM3FzIiLZ7nLxvOnZ9t5E9n9mZiv2ROeWQeMWEmPrh+LHmVDdz56UbsTk1ydBhf3DSeeoudWz9ez6ieCdx4Zm8Gdon1e72mDZeyOgtzthQyMs2VrtVaKrzDqSmoavTrySyrs/DNhnxW7C1n0c4S7jtvIOnJUQx3p08dqepGG3mVDaxek8mV509qdY6Pp8yGGg1seOhcPliVw6QBnegaF0FsuIm8ykbsTk1iVKhrxL3Bxr/m7CA5JpR+nWN4f2U26w9Ucf0ZvfjfimwW/WUSaUlHr9fW4dQYDYodhTV0iQ0nIergYk6eBYk8c47NNgf/W5FNSmwYq++fckSva7Y5KKmxkFfZgFPDGf1an2dWXGMmOsxEVJgJu8PJNxsLaLDauWpcT5RSLc4b88z7PbNfJwqqG/l+UwF/nTqgXRbX8E3pHJASw+tXjQoqQ6Y1OwprmLUhn/vOG9ji/DlPu+Ln3aXsKqrl8tPSqGywkpoQgdnuxGxzEO1Op/awO5yYjAb63D8Hh1Oz49HpLM8q44YPMtn08NRWV5huqqCqke82FVBZbyU9OYqc8gb2ldZxWnoiOwpr+HpDPk9fcgrzthVzz/QBDOwSyx2fbuDbjQX0So7irP6dGN8niYe+3ertnLjxzN68sWQfV4xJ4+yBnTEoePLHnWSV+I8k/2PGIJ6Y42pYPvebYaQnRxEbbvKmOo5Mi2dXUS13Tx3gnVpx2ehUUhMiuWhYNy58ZZlf9o9nwcj4yBDG905i4c4SrD7BxTOXnMoX63IZ0yuR/yzeSyBXj+/JnVP649SaJbtLefCbrYxOT+Tn3aUoBesfOJdV+8r5OGMzS/PtXH9GL95yd0Qc6by61zL2snRPKe/9ccxRS2f0zAGFY7t4TUmtmds+3sANE3vTOSaM9OQo4iLaXg7borLeyus/72VfWT0vXT6cyFATNoeTG97P5Kz+rqlmq/e5ri9xkSGYrQ7unNKf5+fvprTWwr3nDfSrS33ZHE5sDicmg4HV+8u90zwANuVW8e3GApxaMzo9gckDOrMlv5oeiZHUmm0M7BLLnuJaNhyoIjXB1cnz9rL97CxqnnkUFWpk3YPnEh5iZEteNRf+2zWF44Prx7AupxKL3cmdn26kutHGinvPbvP6DSv2llHVYGNYj3hsdifpyVE4nRq7U/t9PaTWmtOeWMjvxqZx17n9AVi0s5hXFmVhtjn5w4SeGA0GNudVkV/ZyMKdJZzRN5m3rhnN7M2FnH9qV8JDjHyy5gALdxQzdXAXbE4nI3okEB5iYOa/l/PXaQO4alxPDAaFzeHEqBRWh5NbPlrPop0ldIsL55GLhrCtoIZhPeIY3zuZRpuD+IgQft5TyrU+GUuBBkq6xIZ7p3m884fR/PF/mQzsEkP/lBi+c19bsp86n9yKBiobrJzSPQ6lFJX1rkXOFu4oprDaTGSokX4p0YxMS/BbzDC7vJ7xvZNOiFWyJYg9gch3ZP1y1Vvs1FnshJuMRIYZD3kBdjg1dRb7IS9yGRkZmJMHMr53knfhghNlZdp6i52oMJN7gR28jfayOutx+/7FOouduz7byMMXDm6WBr94ZwmD3EEyHFzEYPuj07yLprUHq91JZnaFd3GFo62t9cz+snrCQwzNFrPqiGrNrjnQRzJqc7Iy2xwsW7qE08afQZjJ0KEWOLE7XJlAnWOOvBPoaKs125rNSa0x25m3rYjLT3Mt3hZMPV7daOPlhXv469QBfivWvrV0H8N6xHNauqvTb2NuFelJkcRHhmJzOCmoaiQ1IZKaRptfAPPD5gISo0KZ0CeZkloz4/61kI+uH+e30JeHw6mZv72IqYO7eANB33qmst5KvdXe4vob4uRjsTsw25yurxtqtIOC2QuXcuUFZx/yub/k8jRnSyFDusW2ONgArs9bSa2ZLrHhKKWwO1wdUav2VeDUutkCqL5qzDacTh3w+8I7IgliTyASxIpgSZk5epxOTaPN8YsPdKTMiGBJmRHBkjIjgiVlRgTraAax7T+uLIQQh8lgkJE6IYQQQoiTjQSxQgghhBBCCCE6DAlihRBCCCGEEEJ0GBLECiGEEEIIIYToMCSIFUIIIYQQQgjRYUgQK4QQQgghhBCiw5AgVgghhBBCCCFEhyFBrBBCCCGEEEKIDkOCWCGEEEIIIYQQHYYEsUIIIYQQQgghOgwJYoUQQgghhBBCdBgSxAohhBBCCCGE6DAkiBVCCCGEEEII0WEcMohVSr2jlCpRSm312ZaolJqvlNrj/p3g3q6UUi8rpbKUUpuVUiN9nnONe/89Sqlrjs2fI4QQQgghhBDil6wtI7H/A6Y32XYvsFBr3Q9Y6L4PcB7Qz/1zI/AauIJe4GFgLDAGeNgT+AohhBBCCCGEEG11yCBWa70EqGiyeSbwnvv2e8DFPtvf1y6rgHilVFdgGjBfa12hta4E5tM8MBZCCCGEEEIIIVp1uHNiU7TWhe7bRUCK+3Z3INdnvzz3tpa2CyGEEEIIIYQQbWY60gNorbVSSh+NkwFQSt2IKxWZlJQUMjIyjtahj4m6uroT/hzFiUXKjAiWlBkRLCkzIlhSZkSwpMyIYB3NMnO4QWyxUqqr1rrQnS5c4t6eD/Tw2S/VvS0fmNRke0agA2ut3wDeABg9erSeNGlSoN1OGBkZGZzo5yhOLFJmRLCkzIhgSZkRwZIyI4IlZUYE62iWmcNNJ/4O8KwwfA3wrc/2q92rFI8Dqt1px3OBqUqpBPeCTlPd24QQQgghhBBCiDY75EisUuoTXKOoyUqpPFyrDD8FfK6Uug7IAS5z7z4HmAFkAQ3AtQBa6wql1GPAWvd+j2qtmy4WJYQQQgghhBBCtOqQQazW+ooWHjonwL4auLWF47wDvBPU2QkhhBBCCCGEED4ON51YCCGEEEIIIYQ47iSIFUIIIYQQQgjRYUgQK4QQQgghhBCiw5AgVgghhBBCCCFEhyFBrBBCCCGEEEKIDkOCWCGEEEIIIYQQHYYEsUIIIYQQQgghOgwJYoUQQgghhBBCdBgSxAohhBBCCCGE6DAkiBVCCCGEEEII0WFIECuEEEIIIYQQosOQIFYIIYQQQgghRIchQawQQgghhBBCiA5DglghhBBCCCGEEB2GBLFCCCGEEEIIIToMCWKFEEIIIYQQQnQYEsQKIYQQQgghhOgwJIgVQgghhBBCCNFhHFEQq5TKVkptUUptVEplurclKqXmK6X2uH8nuLcrpdTLSqkspdRmpdTIo/EHCCGEEEIIIYQ4eRyNkdjJWuvhWuvR7vv3Agu11v2Ahe77AOcB/dw/NwKvHYXXFkIIIYQQQghxEjkW6cQzgffct98DLvbZ/r52WQXEK6W6HoPXF0IIIYQQQgjxC3WkQawG5iml1imlbnRvS9FaF7pvFwEp7tvdgVyf5+a5twkhhBBCCCGEEG1iOsLnn6G1zldKdQbmK6V2+j6otdZKKR3MAd3B8I0AKSkpZGRkHOEpHlt1dXUn/DmKE4uUGREsKTMiWFJmRLCkzIhgSZkRwTqaZeaIglitdb77d4lSahYwBihWSnXVWhe604VL3LvnAz18np7q3tb0mG8AbwCMHj1aT5o06UhO8ZjLyMjgRD9HcWKRMiOCJWVGBEvKjAiWlBkRLCkzIlhHs8wcdjqxUipKKRXjuQ1MBbYC3wHXuHe7BvjWffs74Gr3KsXjgGqftGMhhBBCCCGEEOKQjmQkNgWYpZTyHOdjrfVPSqm1wOdKqeuAHOAy9/5zgBlAFtAAXHsEry2EEEIIIYQQ4iR02EGs1nofMCzA9nLgnADbNXDr4b6eEEIIIYQQQghxLL5iRwghhBBCCCGEOCYkiBVCCCGEEEII0WFIECuEEEIIIYQQosOQIFYIIYQQQgghRIchQawQQgghhBBCiA5DglghhBBCCCGEEB2GBLFCCCGEEEIIIToMCWKFEEIIIYQQQnQYEsQKIYQQQgghhOgwJIgVQgghhBBCCNFhSBArhBBCCCGEEKLDkCBWCCGEEEIIIUSHIUGsEEIIIYQQQogOQ4JYIYQQQgghhBAdhgSxQgghhBBCCCE6DAlihRBCCCGEEEJ0GBLECiGEEEIIIYToMCSIFUIIIYQQQgjRYUgQK4QQQgghhBCiwzjuQaxSarpSapdSKkspde/xfn0hhBBCCCGEEB3XcQ1ilVJG4D/AecBg4Aql1ODjeQ5CCCGEEEIIITqu4z0SOwbI0lrv01pbgU+Bmcf5HIQQQgghhBBCdFDHO4jtDuT63M9zbxNCCCGEEEIIIQ7J1N4n0JRS6kbgRvfdOqXUrvY8nzZIBsra+yREhyJlRgRLyowIlpQZESwpMyJYUmZEsFoqMz2DPdDxDmLzgR4+91Pd27y01m8AbxzPkzoSSqlMrfXo9j4P0XFImRHBkjIjgiVlRgRLyowIlpQZEayjWWaOdzrxWqCfUqqXUioUuBz47jifgxBCCCGEEEKIDuq4jsRqre1KqduAuYAReEdrve14noMQQgghhBBCiI7ruM+J1VrPAeYc79c9hjpM6rM4YUiZEcGSMiOCJWVGBEvKjAiWlBkRrKNWZpTW+mgdSwghhBBCCCGEOKaO95xYIYQQQgghhBDisEkQewSUUtOVUruUUllKqXvb+3zEiUEpla2U2qKU2qiUynRvS1RKzVdK7XH/TnBvV0qpl91laLNSamT7nr04XpRS7yilSpRSW322BV1OlFLXuPffo5S6pj3+FnHstVBeHlFK5bvrmo1KqRk+j93nLi+7lFLTfLbLdeskoZTqoZRarJTarpTappS6w71d6hkRUCtlRuoaEZBSKlwptUYptcldZv7p3t5LKbXa/f//zL2gL0qpMPf9LPfj6T7HCliWWqS1lp/D+MG1MNVeoDcQCmwCBrf3eclP+/8A2UByk23PAPe6b98LPO2+PQP4EVDAOGB1e5+//By3cnImMBLYerjlBEgE9rl/J7hvJ7T33yY/x628PAL8NcC+g93XpDCgl/taZZTr1sn1A3QFRrpvxwC73WVD6hn5CbbMSF0jPy2VGQVEu2+HAKvd9cfnwOXu7a8DN7tv3wK87r59OfBZa2WptdeWkdjDNwbI0lrv01pbgU+Bme18TuLENRN4z337PeBin+3va5dVQLxSqms7nJ84zrTWS4CKJpuDLSfTgPla6wqtdSUwH5h+zE9eHHctlJeWzAQ+1VpbtNb7gSxc1yy5bp1EtNaFWuv17tu1wA6gO1LPiBa0UmZaInXNSc5dX9S574a4fzRwNvCle3vTesZT/3wJnKOUUrRcllokQezh6w7k+tzPo/UPujh5aGCeUmqdUupG97YUrXWh+3YRkOK+LeVI+Aq2nEj5Ebe5Uz/f8aSFIuVFNOFO2RuBa5RE6hlxSE3KDEhdI1qglDIqpTYCJbg6ufYCVVpru3sX3/+/t2y4H68GkjiMMiNBrBBH3xla65HAecCtSqkzfR/UrrwJWRZctErKiWiD14A+wHCgEHiuXc9GnJCUUtHAV8CdWusa38eknhGBBCgzUteIFmmtHVrr4UAqrtHTgcfjdSWIPXz5QA+f+6nubeIkp7XOd/8uAWbh+kAXe9KE3b9L3LtLORK+gi0nUn5OYlrrYnfjwQm8ycHUKykvAgClVAiuYOQjrfXX7s1Sz4gWBSozUteIttBaVwGLgfG4piOY3A/5/v+9ZcP9eBxQzmGUGQliD99aoJ979a1QXJOTv2vncxLtTCkVpZSK8dwGpgJbcZUNz4qO1wDfum9/B1ztXhVyHFDtk+YlTj7BlpO5wFSlVII7vWuqe5s4CTSZP/8rXHUNuMrL5e5VIHsB/YA1yHXrpOKeZ/Y2sENr/bzPQ1LPiIBaKjNS14iWKKU6KaXi3bcjgHNxzaVeDFzq3q1pPeOpfy4FFrkzQloqSy0ytfagaJnW2q6Uug1XRW4E3tFab2vn0xLtLwWY5boOYAI+1lr/pJRaC3yulLoOyAEuc+8/B9eKkFlAA3Dt8T9l0R6UUp8Ak4BkpVQe8DDwFEGUE611hVLqMVwNBoBHtdZtXfxHdCAtlJdJSqnhuNJBs4E/AWittymlPge2A3bgVq21w30cuW6dPE4HrgK2uOerAdyP1DOiZS2VmSukrhEt6Aq8p5Qy4hoc/Vxr/YNSajvwqVLqcWADrs4R3L8/UEpl4Vqs8HJovSy1RLmXNRZCCCGEEEIIIU54kk4shBBCCCGEEKLDkCBWCCGEEEIIIUSHIUGsEEIIIYQQQogO44Re2Ck5OVmnp6e392m0qr6+nqioqPY+DdGBSJkRwZIyI4IlZUYES8qMCJaUGRGslsrMunXryrTWnYI51gkdxKanp5OZmdnep9GqjIwMJk2a1N6nIToQKTMiWFJmRLCkzIhgSZkRwZIyI4LVUplRSuUEeyxJJxZCCCGEEEII0WFIECuEEEIIIYQQosOQIFYIIYQQQgghRIchQawQQgghhBBCiA5DglghhBBCCCGEEB2GBLFCCCGEEMeZzeHE6dTtfRpCCNEhSRArhBBCiF8sp1Nz39ebmbutiK351cf0tfaW1jF7cyFOp8Zid7S67xVvrOKS11cc0/MRQohfKglixQmnzmI/YXqntdYs3FGM4wQ5HyHEyWfhjmKe+WknP24pPKavU1Rt5uv1eYCr7vulKKwx88maXP70wToueGUZu4trj9lrzfz3cm79eD39H/iR0Y8v8HvM6dT8sLkAq93JrqJaMnMq2XCgipJaM1prSmrNPPLdNqx2Z1Cv2WhtPVgWJ4YdhTXsL6tv79NopqzO0t6nIMRhkSBWnFDW7K9g6MNzueH9zOPWiHrwm628s2x/wMd+2lrEde9l8u7ywI8LIcSxorXmg1U5XPdeJq9m7OXmj9Yfsw61/KpGxj25kLs/38S3G/MZ9NBP7Cyq8T6+Ja+a+2dtIaukltX7ysmvagRgV1HtIUcc21tOk8Dhfyuy2/Q8q91JbkUDP2wuoMD997ZGa02dxQ6A3ampNdt5fv5uAFbvK6f3/XO47eMN9H/gR6a9uMT7vDFPLOT1n/fxwKyt/G9FNiv3lbfxL4OPVucw6KGf2nR+on2d99JSJj+bwfebCvhkzYFj+lpaa/4xawvP/LST6gZbi/t9tvYAox9fwIPfbOWuzzYe03MS4miTIFacMMrqLFz235UALNxZQq/75jB/e/Ehn+fpwQ5WvcXOvG1FfLAqh0d/2N7sGDaHk33uxs/6A5VsK6hmRVYZAGuzK9hXWtfm1/p6fR4FVY04nZrl+bYTvtEnhGh/e0vrePCbrX7bDlQ0eAOlltRb7JQ1Bjeat3DHwbr2jk83YrY5ySlvAFydeRf+exkfrz7AlOeX8Ns3VnH6U4v415wdTHtxCQ9/uy2o1wL4z+IsNuVWBf28YOVVNnDlW6sB6BQTBsDHqw9QY7Yx/smFzN1WFPB5RdVm+j/wIxOfWcxtH29gwlOLDvlanvfL13L3NWPBjtavZU//tJN57uvdo99va1Mn7q0fr+cfs1zlI1+C2A7jz59s4L6vt/CnDzKP2Wss2VPGR6sP8GrGXoY9Oo+v1uX5PW62Obj8jZX8/astAHywKodZG/J5eeGeoF+rusFG+r2zj3mmiBBNSRArThiltc1TWt5auu+Qz/tmYz5jnljI6U8toqLe2ubXu+H9TG78YJ33/jvLsr23dxXV0u8fP/J/c3cBMGdLEee/vIwr31rNeS8t5Tevr+Ts534muw2pQVa7k7s/38SEpxYxZ2shb26x8lrG3jafpxDi5FRS07xOnPxsBkMfntvq865+Zw1//bkxqGwWFWCb5+mfZ+YGfM4bS1z186drc3l72X6Ka9rWmVhQ1cj/zd3FDe9n8u3GfG7+cB0lbXxusPIqDwZ3P/z5DO/tM55aRGG1mfu/3hLweeOeXBj0axVUu15rWI94fju6BwDjeycBkJ4c1ebj7C2tx+Zo/X9Xa7Yxe/PBoOHvX27+RaWAnwzmbnN1WjRYW++Ucjg1uRUNvLJwDzZH2zqnPJ0nHo/P3u69nVVSy8AHf2LVvopmz3t+/m4arQ5yKxqoNdvaVKb2ltW5X2NHm85NiKNFglhxwjDbDo5OJke7esxrzHbW5VSybE8Zc1ro5dua70p5y69qZPqLS6gxt5w6A2B3OHn9572s2FvebDtAdlm9X6pXUzsKD6bYTXo245AXIN+LjiddJ7dCes2FEK0rrG45sGutcbkupxKAa95dS0FVY5savuUBOgDtTtfzOrnr49Y89sN2LnxlWcDOyKY8nX8ltRbu+HQjP24t4tEfth/iWYen1uyqn0OMipTYcO/2Gvf2kT0Tjsrr3P7JBq580zXi+9xvhvH0pacSajRgd6d/+2aBD0uN897+9MZx3Dq5T7Pjed77ljSdN7uvrJ4le8ow2xyHvabEl7utpN87m/4P/OjNihJHT2JUaLNtz87dxeCH5nrnojdVXmehz/1zmPjMYp6bv5t+//iR+kNkYsDBDiaPSp+U4ts+3tDqc0c9Pp+JzyzmlEfm8dnawB1Yvn7eVQq42mB/+3KTX1tOiGNJglhxwjDbXBfle88bSOYDUzhnYGd2FNZwyWsr+P3bq7nlo/UBn5cUffDCUFJr4dYW9vP4dmMBT/2403v/hd8OIybc5G1sbPcJUn0ZAg1VABZb640Nu0+Puqd3/ZuN+ZQfpcUUHE59wiyEJYQ4emrdHXL3nTeQl68Y4fdYpjtQbc2S3aVMeGoRD7WS7rtoZzG7imp5cUHzNELP/FtDC5VfelKk3/2SWgs3vH/oFElbgPqq6ZZDdQ62ZMwTC0i/dzZ//N9a4OB7OP+uswB4bOYQv/1bmi/oG2h6tFTP2hxOvttU4L3fJc4VLJuMyts56vn94AWD+fa2M5hz+0QW/eUsxvVO4q9TBwQ4Zut1uj3AuczfXsTAB3/iijdXeV8vGD/sc70XVruTNfsruOrt1UEfQ/irrLd6gzqtNaEmA0O7x3of//fiLADu/nxTwOdvDJBy/8qirBZf73dvrWLGS0sJMQb+zGqt2dVkYbPbz+7LoK4Hz6nBZ6GweW2Y0vWSTwry55l5jH58QdCLkzX18LdbeejbrUFl14mTjwSxR5HDqSWd5wiY3fNET0tPBCA81Nim59WZ/Rs7q/c3T5HxsNgd/PP7gw26ly4fzq9GpGIyKG+DLdCoRfZT57PvyfPZ968ZDO8R79egPNQohzXA4w6n5k73qGx5neWwKvzqRhsfrMymz/1z+POnrfesCiE6nnp3Y/KaCelccEpXv8d+8/pKv3msvpKajPjM2hB4lGfDgUr++L9Mfu8TrCz7+2TvbU8HnM3hpFtcOF/cNN772Np/TCHjnsl8/qeD2wCySg69VkCgAGv25kKufXcNr2Zk8dnaAwx+aC65Fc3nmLam3mKnxD0SvGhnCQA1ja7ALDYiBICrxqfz/GXD+PXI7kwZlNJi5k54iJGxvRKZcUoXb0BrCzA6ujW/mn7/+NFvW3SYCQCTQXmDTc97ednoVAAGd4uld6doAJRSrLzvbFbce7b3GIcKQn2vO1/cNJ7xvZP4cJVrsaDV+yt47Ift/LilkPnbi7nni02HtQLt0j1lh95JtGrEY/MZ+OBPbM2vxmJ3cvW4nvzw54m8efXoZvsGaj8Gmv9uDNByt9gdnP7UIpZnlbO9sAabQ3PnlH70cqexh5pcT7I5NFrDKd3juGhYN5bcM5m7pw7gxzsmsvr+c0iJdWVdxLk/L03rkkD6dY5uds79H/jRr2PHbHNw2X9XBgzKA3lvZQ7vr8xh5GPzycxuuU0nTm4SxB4lZpuDUY/P5+9fbQ7qefUW+2GlXqw/UOldZCgYZpuD5+btCmpRomNJa803G/L5z+IszO4GW3iIq1h65hQdSnWjjchQI/PvOpM7zumH1R74C+RLay0MeOAnbxoZHExbNhkN3vQtTw/4678fyeu/H8l7fxzj3d9gUHxz6+lcNKwbT/76FNf+hxgF9Ry3f0o03eIOprMt3VNG+r2zGfX4Au74dAOvZmT5rQbammV7yhj2z3k86B5h8Z0bJYTo2L5en8fW/GoarHZMBkWYyYDBoHjht8P89vvXnMBz0Jxac3YPk/d+9/iIgPtll7vSen1TgFMTIr3prZ66y+5wEmIycFp6InueOI9dj0/3LpJ0WvrBdNxfjegeMGWyKU8d+9XN43nKXY8CLN5VyjM/7fIuNnMgiCC2utHWbFGa9Htn89z83YQaDcSGH3w/fj0ylecvG05MuMlv1MmXxe4kLMTIq78bxQx3B4I9wOho07RNX37XFffvkEARCNA1LoJu8REMdo+IBRpp9eU5l+cvG8Zp6Yk0NGlHvLcyh5s/Ws8N72fyxbo83mthReaXF+4J6vrxzYZ8fvXqctblnHiBxZr9FewqOnZfnxQs36D0gleW0WB1eIPJKYM6M7Ffst/+VQGyAmrNzYPYLj5p8R7bCmqaLe7VNS6cj28YS6eYMIzKNTLr6VS/aFg3Xr5iBGk+2RQpseF8fMM4PrlhHPPvOhOAfin+AWogKQHOB+CDldm8lrGXynor63MqWbO/gke+O/QicE1X2r709ZXsPUHarOLEIkHsUVJYbaaqwcbnmXmsP1BJTnk9pbUWrn8vs9Ue0CEPz+XMZxYH9bUJNWYbv351hXfFxabu+myj96KUX9XoTcdotDoY+OBPvLIoi6veXsO2grZ96fv2ghoq6q0s2V161Jfx/3ZjAXd+tpH/m7uLv7k7AMJDXCOwZ/bvxN+mD0C1kMbrUWO2kxIbTr+UGCLdo7fmAKv//m9F86/J8TS4QgzK27Dy9ICfmhrP9KFdOat/p4CvG+pujByyx9zuOu6NZ/ZhxX3nBNznx61FPPPTLqa/uLRNnRq3fLTukPsIITqe3cW13P35Ji54ZRkr95YTGWpEuStBz+iIh2qhcqy3Ogg3KW8j2dhCOnDTUdMRafEAXDM+HTgYSNkcGpP7GCFGA2Gmg1kySikeOH8QX940nhCjatP8W09gFxMewuVj0lrc73dvrebhb7e2+LivC15Zyn8DBJS1Zjt9O0djChA8RoQam6UtP/r9duZsKXQFse6Aw+St65tfpz1BCcDCv5zlt3iUyaC8z/H8NrU0L8XtDxPSgUNn+Hge95zb2F6Jre7fOSbwvObn5+/m1o9dU3DCja6R4kV/OatZgJWZXcHna3O587ONbDhQxc0frsfmCNxh7NFgtXPrR+tZl1PBtoJq/vi/tUF12lc32Py+NcDp1LyxZC9VDc1TTD0jfdNeXMLtn2xo8wJIvrYX1PDVurzD+raDQAKNonrKi1KKD64by54nzuOOc/oBUBzgdT1B7E93TuSZS08FAqf32wJkc3WOCadrXASXjU71vh+erC/fcuurT6doxvdJIj7S1TY6VFo7uALjzjFhvHT5cG/5BVibXcnTP+1kxGPzm60Q3pqF7iwKX0WtrA8gTl6mQ+8i2sJ3ZcVfv7oCgJnDu7FgRzFvLonivhmDWn5urWvifuYDU7wjg635aNXB7xfre/8cfj+uJw9fOBilFKW1FmZtyGfWhnzeW5HIGncaxg0Te/Hm0oNBXH5VI+e/vIzsp85v9bW01sx4eSkxYSZqLXYMCrKemNHiHKlgaK39Rq49lbUniAW4ZVJfbpnUl6vfWcOS3aU4ndr72u8s2+9dDMST7hXhDmIbrQ4iQ/2Lt/JZf/Oa8T0JNRm8aTAmo8EbjHpGVlvqMfcwueecHKqSP9gD79o/MVxRYW75OVkldQzt3nw+FrgWRMkur/eOJn90/VgW7yzh42P8nXNCiOPjJp8V09cfqPJ7bGRaAolRoYzumcC87cXNglpwdapZ7U7CjEZe+sNp3PzhevaUBB6d8g1ib5nUhzumuBrTnqDXd4pFa/Xh9RN7A/D1hvy2BbFNArrhPeJbTDN8b2UO980Y5Hdd8OVwanYU1rS6WF51Y+CU4cgQo3ck1u5wcvkbq8jMqeQd9/eCR7mvJ5662zedeH9ZPZOfzfCOco9Ii6dPJ/9RK790YvfvljoUvM9xv1aggNmX57oT4j7eX6cO8BsVPmdgZ/9gIECHh+8CQU6nxuJwjfL17hTN0O5xrPL5vtpLX/df6CktMdKbRv3S5cOZObx7s+Mv3FHC7C2FzPZZlDGnvIEBXWIC/D1OFK5r8bqcSi55bYX3sW9vPZ1hPeLZUVTDv+bs5I0l+yirs6IU3D2lP3O2FvktuPjdpgKuGJPG+D5JzV6nqeyyev7+1WZG9UzgVfe3BqTEhrH6/inUWeyU1lq8Kblt1WC1c+enG3EGSA+ubDLHM8Ro8HYeBVqwqc5iw2hQDEiJ8S6wFqhsVAYYxfUEjCHuBcacTu39er+wFoLYg+flad8c+vNsczgZ0CWGmcNdmRitfQ9zTFjLYUduRQPxkSHMci9ydVp6AmuzXXP/W8qYECc3CWKPArPN0WylW3CNMgL8d8k+7pk2IGBPsK9zn/+Zayakc+eU/i3u43Bqnpu3y3vf7tT8b0U2UwalcEa/ZK58c5X3sTU+8wh8A9hgeIKlWnfl6tRw39dbuO3svt55P3O3FdGnc7R3Lmtb/Ly7lA9W5mAJ0HsYFWAu7PjeSSzZXYrF7mT1/nI0+K1m6Znv5GnoNDbp7X1xwW5mbcgn1GRg56PTmwXhJqPyBq+eHs2WFkbw8I7EHmIVSc9FwNMIvHdMOOHdBzK2VyKRoUbu+HQjS/eUehsleZWNAYPYt5ft5zGfv/miYd04vW8yK/eWY7Y50Fq3ODIjhOgYmqaRpiUeTPeLjwxl/YPnAvCHd9dQXnewQbwlr5oL/73Mez/MqAgxGkiKCmVrk8XnHE5Ndnk95XVWxqQncs2EdKYNSfFeo0yGg/PnXL9bD2I9Qo2GNs3vb1onfnXzBL7IzOXeJl934wnE8qsaMdscnP/yMhb95SzvXFKr3cnwR+d5G7gPnD+I6yf2RmvN/bO28om7c6+lRaIiw1zpxE6nprjW0myxLM99z/vhCR7qLXbvAlb5VY3ER4bw0fVjmx3ft3PU7nBiMqhD1tGmNl5X7E3Sk0NNBj69cRyXv+FqA/xz5hCe/c0wPlyVw3Pzd3un6wAUVjfSYHX4pbv2vn8O4HMtNRmxOTTrciqYvdn/u3S7x0f4vVd3fLoxYBAbaNS5pfJxxtOLKK6xsPvx8/wCWIBn5+3ig+vGestjmbvcaw3Pzd8d8Hjzthe1KYj9w7tryC5v8FtLo7jGwhOztzNvezE55Q3sf3JGUNfWT9bktrgg0p4Ac8Y9He6eclxvsfPj1iLeXrafHYU1pMSGoZQixDuvtfl7WBlgdLqze36rZ9TV6u7g8t3WEqUURkPbMiusdiehka7jTezXiVm3TGBPcZ03uy4hMoSrx6fz0sI9LXYo/WPWFj5a7d8Z/8VNE8gqqWXK80uatemEgCCCWKWUEcgE8rXWFyilegGfAknAOuAqrbVVKRUGvA+MAsqB32qts93HuA+4DnAAt2utW/+yuw7irs9cXxHgy6D8l9T/34psb291SyobbLy4YE/AIDYzu4Kc8gbWH6gMOFfG8/18wcwhaovC6ua9259l5vKZ+3sDo8NM3pSZDQ+eS0IL86GqG21Eh5kwGhTPz9vFyz6r64UaDYztnUhKbDjnDe3iTWPxFeGeJ7sht5I/vLu22eOeXvwIdxC7ZHcZI9LivSvueVbe7BQTFnAU2WRQODxpX07/NK2WeB73pAuD6/vXyuusjO198OLpafh4GhudIw1MGtbN+/g7fzgNcM3fAsgpb/7dsyU1Zr8AFvD28oaZDDi1q8EZapIgVojWzN9ezKdrDvC2+3N3otE+6/S+8NthnNW/c8D9YsJDvPPEVmSVNZte4hm4DAsxeEdfvMedv9u7KuqEPkmcf6r/olGe0UCHZ06sUx+yU8/1mirg9SmvsoEVWeVcdloP7/Fc+7vqRKNBccmoVPIqG5k+tAvfbSrglkl92JBbxcKdJVQ32vjJfY39aVsRt0zqi9Xu5N+L9viN0Jzi7vxTSvHkr0/hsZlDuPLN1dwS4CtsAO/0k973z2HKoJQW/y5Tk1Gplxfu8RvFHtglplnmj+d5Np+RWFNb3kNDGzN8PKPZPscc1zuJTQ9N5ec9paQmuDo/bp7Uh+fm7+bjNQf4cHUOi/8yifFPLgLgvKFdmh3XM5rsWZvikteaf9VO07mX4OoY8R1l1lrzwDfNU8FbCkaK3d+J3P+BH5s91ts9EhpMKvK7y7O5c0r/gNkKvnw7gnz5dvxf8toKTktP5KrxPb3vayDPz9vFG0v3eb9pweM3o1J54ILBjHh0Htee3qvZ8zzlcOOBKoZ0i+Ph77bxvc+iSJ4MvZAmnUtldRZ2FtZyRr9kbxD70uXDuePTjQAkRbmDWGPwQSy4P89tSCdu2sk1Ii2BgV1i+dtXm7lhYi+un9iblNhw1h+oZOHOEpbuKeWMvsnuNovreU0DWI8I9+eq8TBXKz8e1mZX8OA3W5l1y+nebMCjxWxzYDSoNnUinoyCeVfuAHxXkXgaeEFr3ReoxBWc4v5d6d7+gns/lFKDgcuBIcB04FV3YNwhaa35ZM0B/m9tY7MA9ooxaYxuMir5/aYCMrMrOFDegNOpycyuYHlWGUaDYvKAwHMuff32jVX85YtNfh/0b289na9ungAcnAP6qxH+vaGf/2k8y/4+mf1PzuCfFw1h3l1nkhx96IU3PHwXGgj0PN85H555NR6ltRaufXcNJbVmhv1zHg99u5UPVmb7BbAA//vjaXxw3Vie/c0wzmmhIeGpGP72ZeCFs25wdxB4gtj7Z23hvJeWklfZwJnPLPY7p0BMhuYLOx2q0WZqkmLmdGqmPL+E376xyq+H2+qdu9T68TzX/+zyet5Ztp+XF+7hQLmrU2LBjuZzRKLclbtn9LlpQ9XD4dRHvNy9r6ZfDWRzOHlxwW5qzDZqzLY2fU/kiaK11cRX7yv3fmdiZb2VrJI6/v7l5sP66orDVd1gw2p3kpFr45p31vD+ymzvY8v2lLVpJViP/WX1vL3M1TCrrLcGvfKrr7zKBlbva5590pKMXSVc++6agHP/S2rNpN87m/NeWsrW/IPz9F9asIf0e2cf8v2+7+stTHhyIZnZFcz89zJGPjbfL7Ww1mzz9v5XN9q44f1MFu4s4ep31vDByuzDmjvnkVfZwF2fbWzWuD7U562wutHv82p3OL11aYPFwZVj01hw91n8akRqiwslDUiJJreikTeX7Au4PsLABFe9EGYyeDNeHE7NZa+v9AawQMAsIk8w4gk2rXbnITv1wBWUNn0/7Q4nZzy9mL99tdm7PoQ9QJ0YYjTw12kDGNo9jvtnDCI+MtQbgPy4pdC7YI/Z5qSgqpH+D/zY7FoypEkGi8lo4PObxjNpQOCOAN8AZ4F7pefJAzrxqPtreKYNSXGfm//7kdckiEsI0PEK/p2jNofTG4S0JtD8W4dT8/RPO/3WpLA3Gc32/k2RIVzk00lqMhowGhT7y+rJKW+gzz/meB/ztF185zGe4p6aEyh9u1/naL64aTx/OtN1vf33lQdX6ffMU62ot3LLR+vYml8T8LuHAwWx8wOMWv5mVKr3doW7HeIpx1MG+f8//3vVKADevda/Y2pBG74exjO6efHwbi3us/5AFf9dso8znl7sPWZVg5WMXSWMeWIB1Q02qhtsvLwoq1kAOyw1jid/fQpxESHse/J8zh3cvI3jCWKfm7+bkY/N5+dd/td7z//4YKq56zWuf8+1sviIR+cxe3Mh4SEGZg7vzu1n9yU1IcL7OfakDlvtTu976DuvvSVmm5M3lh5MUd9bWselr61oNppqc2jv++gREWpk52PTuX/GIO/CT94Vwt9ew38WZ9H/gR/JLqvHYnd43wMPzwJnnjZdYyvpxA6nPqbfTbt0T6lfBiS4Ps+euu6hb7exs6iWc57LYKZPNszRMPDBn/jVq8uP6jF/Sdo0EquUSgXOB54A7lauvIqzgSvdu7wHPAK8Bsx03wb4Evi3e/+ZwKdaawuwXymVBYwBOuw3aq/eV8628iZfOP4v13zR3cW1TH1hiXf7ruJa75ySmHCT34pzo9MT6Z8S02xRihVZZaBgQp9kusdH+I2y/mPGIIb1iPd+B57nA261O+mRGMEnN4xjW0ENY3wWe7jGfaGafftEnp+3my9b+HJtX545GvfPGMiNZ/Zhe0ENa7MrOFDRwFn9O3H1O2u8++5u8t1jby/bz+JdpfzH3dBoqafN2IY0nR7u3s+8yoMX8dPSE3j7D6cRE2bypvo0rQh//eoK71cutMa1IIn/V+wcqsER0iTFzLeyz6tspIc7DdA7EnuI461/8Fx+8/pKPllz8MvFn5+/m/G9k1jpDhje/+MYZm8uJD4yhFsm9QVcIy3guuDEhLtWru4eH0FydBj5lY2c+X+uIP6rmycwqmcCgdSabdgdmoSoUO77ejOfrMll40PnNhsVX7C9mOvfz+TTG8cxzj3anLGrlBcX7KGgqpGFO0oor7ey9Z/TGPvEAowGxfy7z+K7jQV0jQ9n+pAuLNlTSnZZAxP6JrFsTxkj0hL4cl0uj80c2mpDuajazN7SOj5ecwCtNZeflsaZLSy61RY/bS3k9k83Muf2iUSGGukWH0F2WT1d4sKxOzW/daflWe1O/vC/tTRY7OwpqePKsWkM6xHvPY7WmrnbipgyyJWO+fRPO0mJCWP60K7eNLCWNFjtfLkuj3U5ld7pB49dPJSrxvUEYNij83z2LuXn3aU89O02Pr5+rPdrUbKfOp86i52oUCMbcquICjUFnHN2+RsrKa6xYFDwz+9do/qbHprKlBd+Zuawbtw/YxAz/7OcWyf3YfrQgyNzLy3Yw7jeiX7ZBdNfXEqdxU72U+fz7vL9TB3She7xERRVm/l4dQ63n9OP7YU13P35JgqrGr1fFfN/c3dhNLi+RssTWGzLdwWcOwpruOjfy7hybBohRgPvLs8GILey0W9Omu3/2bvvMKmq84Hj3zMz2zvsssAuvYr0JgroYsWS2HsSYzT+NMYkJibRFLuJaUZjLDH23o0NRUFWlN57W2CBXVi29z5zfn/cslPubIFlYfX9PA8PM3fuzNyZPXPveU95j9dHfZOXhOgI6pu89pBR/zl7Zz/yFRvuPpOE6AiufnoZ6/Mq+NOFY/jdey3DVRduL2Lh9iIemLOF+iYft589khtPGcJry/camcSTY6ioa2Jk75b1E8GoQP5r/g7OGduH37y9nvV5FcwclspFE41K99JdJVzx1FLGZiZx25kjQspoYWW93RP21o0nMmVgD377zgbeWZ3HeWP7UFLTSEKUh6FBy1YE+9GMQTz6RQ4PBGUoHtk7gU9/cTLZ2dmAUVltaPaxr7SWt1flBUwzAefeOGsYqJ2UyKftymRrPG6XuYSHMbUhp7Casx5uuQ7mFFaTGh/lN5+z9XNislnp9e8Vq21o5qQHv7DvR0e4ePzqidQ1+uwpLu117tg+3P/RZrt8Ajx9zRTcLsWFEzLsQM4aTjzr79m8ccO0kGy+4ZIm+TeONnvb1xMb3Di6eGcx/124iwXbingieydf/WYW/XrE2gF1W4migIDGI6d2u7u+M4qLJmbw4Zcr7F4/p7/3RRMzmTKwB1MG9rDzfBRVNXDPh5vJKazmX/N3UNfkZc6GAuZsaGncf/J7E/nFG2upb/I5BiNOawv/7pzj+Nul47j0ycV2zhErULn1jOE8fc0UCqvqcStFz/gottw7m5hIN786Y7g9xDghuu3yUN/k5foZg/j9uccxvl8yGSmxra51fP2LK8l98FzG3/u5vW3an+c7BucJUR7e/+mMkO3BgnvxrWlcsZFumn3GUjnQ8re2evetVSbKapsoq22ij7n6wS/PHMEv/dYejnQIYtvTEwtGeVm1p5RJA3rwl0+2snJPGT9+YSVv+i231djsc2z0D24I8S+rf//M+Btl/T3b8X3fvsl4fatOV9cU2jBYVd/EnpJanluUyztmfdap3tJRFXVNPJ6dw8b8Cl65fhrff8ao5/7i9OF2w8DUB+aREB3Bwt/MshvD91fUs7+inpeX7uHqE/rz9Fe7yUiJ4ezRvQ9rqtdG8xpp/Y7bmldvaWz2ccVTS7jxlCGceXzoef6boL1n/IeB3wBWzagnUK61tiKxPMDqAswA9gForZuVUhXm/hlAy4TNwOd0O0op/n7pOEqKCvkqvyUgtYaqDk9PYOt9s3G7FE8t3MXf5ra04gSnTI+NdHPzrKE0NPt4Z3UeWmue+Xo3939sVE623jc7ZJjwBWaPq3WSqG308rv3NvDh+v0MTo0nMyU27LCX9MRoMlJi8Pq0MU/H7cLr0/z9s22cO6YPG/Mr+M64vsT5DRU+daRR4RzVN5FRfVsqda9cfwJXm70ADU0+Xlicy30fbQ4YUvbCkj0hx3DjKUMYl5nETa+sZkgblTWA4/sGtrBP6J/MU9+fTGJ04FChuKBKTHsCWGhZCuEfn22zFxJvK3lVhF+rqDUU2DLzrwuYNrgHEW6XXQFvq2c3OTaSMRlJIXNmlvj1eM0clhpSKY42W1QPVtaTGh9pJxYLdvETi+0KEBjDlqM8blLiIhhztxEsWQm8AJ7I3snw9AQuNlvEtdb8+ROjTF7x1FI+v/Vkahq99gX/zZUtjSLr88rtiuEJf5rf6ue2/ODEgfRNiiEpNoLHFuQwJiMp4LNO+3Pg68zZUMDme8/iD+9tJLekhpuyhlLb2Mzm/ZXcdtYIquqbOfdfX3H72SNJjY/ihEE9cLsUlXXNJMVG8OSXu2hs9nH6Q18C8NJ1U+2LVbB1fklnzn9sEZ/fejLD0hO476PNHKioY86GAn591oiA3/ndH27mzvNG8aMZgcPHRt81l+TYiIAGGX9//N9GvndCf8fKpsW/580qew9eNMaeU7jzT+eEXOis4XpWAAstQfLTX++mrLaJDfkV3Pjy6oA5YP+cZ1Q2rCRwXp+2zwtbDlRyz4ebuefDzbx+wzRufHkV5WaPhJMnv9xp3trJgtuyGJQaF1D582nstS4tOwurA4LYHzyznCW7SrhoYgbvrs4P+x0dqKgnITqC9XlG765/AOvP6jl58JOtjMtM5g7zO3Sba0dvvvcsiqsaKa9rZGxmMhvyK/jXFzkBn/GXb65jQM9Ylu0u5a+fGmVgfV4FP3h2uf1daq3ZU1LLNr/GvkufXMKSO061K2AfmcFRe4akxUZ6uHxKP170O7/2TYrmgQvHBOwX6THO7zP9RqT4+8dl40K2BffENnl9AUvUhGOVuJ+8sjpkhBLAa8v3Mi4z2S+zbuvnxL4OSwM9/XVLQHve2D48dNn4dlfIgyVGR7D6zjMY8YdPARicFmd/9gS/a4v/ubulDLcIvu74P6/Jb5pKu3qzzYD5llfXMG1wT7tsWP46dxu/OH1YSHbiQ/V/Jw9GKcXYzGRKM1o+s9MIAKdL4oh0o1poNfoF65sUzezRfZiTnsCp//gyoMds8/5Kvv9M4CiC88b24drpg+ypSb0Sou2RFdZzrV7EXgktS7tYv5lbThtGTKSb+z/eQn2zMcKhtLqR/j1j2bS/glF9Eu1zm9aauiYvMWYG8B+aQ32/M66vPVXKf1ivJfh6HxzAThvcg+tmDGZqO/OEhGsgeuFHUwNyjSil8LgU/5q/g+Hp8QHLBQJhgzfr91Hb2Mwv31wLtJ3Yyd/FTyzh/PF97Xm+y3NL+XTjAQalxvPmtkZqG9v3etFt9P7ee/7xzBrRi8ToCDuwj/K4cKnApFfbCqr41Vtr7eDOX15ZHcmxkewuruGtlfv4v1OGkBQTwY+eX8H2g1WM65eMSykevdIYRVBa00hpTSNDe8Xzwbr9zN9y0G5QBnh+Ucv5prCqnj5JxjnJajhYt6+cXcWBU8D+8L+NfL75IF9uLwLgt7NHclNWy5SGwsp69pTW2n9brzk688vtRfxn4S7OH9+X700bEFAH8Pk0Fz+xmLpGL3PN5Y+C5RbXsKOwmqKqBqYO6sFbK/exem85N5jJAlf8/vR2ZYfuTlRrw+kAlFLnAedorX+ilMoCbgN+CCw1hwyjlOoHfKK1Hq2U2gjM1lrnmY/tBE7A6J1dqrV+2dz+jPmct4Pe7wbgBoD09PRJr7/+eud80iOkurqa9ZXRPLXeqCA+Pzs0i132viae3+Q87wLgJ+OjmNrbw9vbG/l4VxOt/UXGpbm5bnQUiVEtV5Mffhr4Axqc5OLOE53XBbTM2d3Im9uauHFcFPXNmoO1mk92twwRuWR4BOcNjmTOrkbe3N7EQ1kx9IgOPUn5tObhVQ2sL+7YUI7fTonmuJ4dG01+1+I69lT6uH5MJDMynOe5lNT5+NWXgcHByZkedlf42FflY3K6m59OCF3T7M/L6iio1VQ0tHz7Tn9LfzllXu5f1v607384IZqhKW6qq6uJj3cO3N/b0cj7O50TH9w6KYpxaaGVpaX7m3lyfTuDdRf8bmo0g5Pddrk5Y4CHz/eEn2+SlenhQI2Pg7Wa8obWzxeW6X09LNrfsTks49PcrC3y8vsTonnA/F6fnx3HovwmBia6+f2i0KBvRIqLbWWhLbRXjowkNUbx6JrA7+X/xkbxn3Z+V625aVwUE9Pd/Piz1ofkDkh0kRSl2FvpIz4CfjYxmt8sbHuZqlsnRXGgWvP6tvDnjbbcMTWaAzU+8qp8nDM4gl9md2x5rLQYRVFdy997ZoaHr/KbOX9IRNgy2lHtea1Z/Tx8f1QkPg0/mV9Le5NUWueYW+bXUGW+xfAUF9sdyotlWh83Sw8EvoH/93D71GgeXN6xpR7unx5DXbO2y3R7/PD4SLL6tT6XD4zz73/XN7DEPOYnT48l2pwXb51nPstt4tWtzuUoxgNPnO58nrPOD7+dEs0rWxpIi3Xx84nO60Fa/r2mnpUH238t+O+ZsfYc0HDK6n3c6lB2I1zw+OltP789imp97K70kRHnIiMh9Dq3prCZR1aHP2/8MyuGFIfr4/1L63ArGJLsZs7uJnpEKx7KCj+nEmBrqbdDZeyuE6MZlNT6tfSZDQ0Bje0AkS742ymxxEe0NFr4X5vyqnz8YVEdMzI8nJLp4YFl9dw3PYZ+Qd/Pvioff3Q4N1tuHBvFtL4eSut9/DK7jul9PUxKd1PeoHlxc2C5fPrM2JCe5Ve2NPD5nmYenBnD9jIvz25s5O+nxJAaEz5ossrMuYMi+Hh3Ex4XWCP8R/Zw8Z3BxvWhpF7z1xX1XDwsgu8McQ4Am32aJh/cNK/90y8enhVDclT7g0StNW9ub6KhWfPFPuPvdOeJ0Qx2+LsG1/cAZg/08GluM2cN9HDlyNAgZW1hMw8Hld+2vsNw7xXOaf09fH9U6wHS/3Ia+V+OcTKOj4Bqv1P/taMjOTnD49hjaR3Haf09VDVqlheEP8dcOTKSUT3dvLejkdWFxn6T0t2sCjovXT8mkkGJbh5bW8/+mvYvcTm1t5vpGR7+uar99Yie0YprR0eSHOUiM8HFr7JrKanX9IpVpMe6GJbi4t0drV8H3QqsGQaDEl2cPsDDSX09+DRUNWqSohS3f1XHwdrwn+WWCVFMSj/6+XzD1YFnzZq1Sms9uSOv1Z4g9s/A94FmIBpIBN4DzgJ6m72tJwJ3a63PUkrNNW8vUUp5gAIgDbgdQGv9Z/N17f3CvffkyZP1ypXhh3UcC7Kzs5l60gx+8fpafnv2yJAU+wCfbizgxpcD1/VMjY/k5GFpvLsmnzdumMYJg3vy6PwdYTPtgdH7+N5PpodsD24VHNUnkTk/n9nqcT+/aDd3+/XIBBucFsf54zLsXpj1d58Z0uvp762V+/h1mPmqlgW3ZXHGQ1/S7NOs/uMZYed6hVNR28Te0lp7zo6Thmav3apueeiycZwwuCf7y+vCZlC++umlLMoJnBvW1vJD6/aVc/5jgXMV/nfzdBbvLLZ7Y/xZPU/Z2dlkZWU5vmZ9k5cP1u7n3LF9qKhrori6ge/+exF/vXisnRQlWHBW0va45dShdo/zseyjW2Zw3qMdn2PiUkbrc/D8pPZ6+8YTqW/y8eKS3LBZJjOSYxwTnLRmZO8EthY4L3dyyaRMThzck1+9ta7Dx3useuSK8azZW87ojCQKq+odfxfh/PqsETwyb4c9pzycr34zi483HGB3UQ1f7Sji5OFpvL7CGJL/89OG8cj8HUzsn8xDl41nYGpcwPIdD140hssm9+M5cwRJRzx02Tie+Xo3fZJiiIl0O/bYdMSOB87GpzVfbCnkrON7t3sZsyavj4ufWMz6vIqAHnTrPPPBuv387LU1Ac+Z98uTSUuIpqHJS69E58A0+Lpy5dT+/PmiMY77Wq5/YYXj/P1wrOk3bVmRW8qLS/bw4br9nD26N7NH93bMhnukZG8rDEkoeNGEDH4yawg946LCJjS87D9LWL47cPh2W9eVBdsKudYheSHA0F7xIfPgP7plRtgl2SylNY08t2g3N88aSlFVA4t3FnPZ5H4hAUPwtenzzQeZNrhHQK90sMKqeqY+EDhK5pwxve3hxMt+dxrpidHUNxnr1LfG6bv55+fbeWT+joBtbS1HWNPQzPF3tT9v6B/PG8V1QSNmggX/HsK5+oT+IaMhOiKnsIoFW4u4fuYgx4Au+DjOHdOHf1w2jheX5PL9aQMdR3EEL1kE7fvttfczA/xo+iDu/M6oVvepbWxm1J3G3+X5a6fg05q1+yq46ZQhrY4+6chxdKbHrprIza+u7tC1fuqgHiG/+SMlNT7KzjPQHg9cOJqrTxhwBI+ofcLVgZVSHQ5i2wzJtdZ3AHeYb5AF3Ka1vlop9RZwCUaG4muA982nfGDeX2I+/oXWWiulPgBeVUo9BPQFhgHOY/e6mdhID0/9IPz3fvLwVEakJ9jDyGaNSOOxqyfS1KwZm5lkz1stqAxtff3etP5kpsTiVoqrp4VfFN5fYkzbLS01bXRn7CqqsQNYaEkiFM5Zo3vz3pp8xyQhYAyDHZQax4rfn866vPIOB7BgJKwYE9v6xTrK4w5YWwyMYMP6F05wANseTqnix/dLZny/ZLK3FQWcyK6dPrBda81FR7jtYDUuymPM02yj0jOqbyLTBvdg6S7j/YakxfHidSewak+ZXXmNiXAztFc8G8zEOa0FsP5rG4bjHwQP6xXPd8f1dWyAmTqwByv2lDI2M5nnfjgFBSzaWcznmw+SEO3hZ6cNC6kA+TuUABaMYamHGsACdmK2GcNS+e3b63lj5T7uPG8U3z9xgL02YriL2oMXjeGCCRn88s21AfPCgIAA9q+XjOX049IDfgub94cOj7rmxAG8sGQPj101kZzCatwu6N8zjuHp8dz5v024XSpgyHl7WWtHP3H1RD5aH7iWY0d98atTOPUfxrDs708bwKWTMxnQM46kmAg72PD6NOMzkxnfP9muyFh6J0bb579bTx/Oz04bilKKp7/aRWNt+L/jBeP70q9HLDee0jJUq77JawexVuX3/PEZDDR/f5MGpJD74LkBS1JdN2NQh4LY4/smctHETHsebJPXR25xjZHMbvpAfjxzMGvzysMO7Q+WFBNhJ285e0yfNvYOFOF28f7N0/H6nJfYCp6vmZ4YxcCeccYw1DYyt/rLakcCwuCpMpavfzuLx7N38uqyvTxx9URuesVIAtjeQN2ah2kNAexq4/slMzg1jh/NGGRn3P3TRWPCrl1r6ciQTctxQXOwwVhmaW9pLf17xIYEsW30QwDG0OBfmXMk+/WI5fIe7atLOCUhCnlthyGsf7pwDCN7J/K9aQPs81u47+qzW09maFo83jAfxGmpoeDcF06Pj8tMYl1eRcD2H00fZK8B7M/KxNwR/msbZ9+WRUpsJA9+uoVfnzWi9Se2YWivBIb2Cs1pEOwfl45jT0kNN586lCiPmxtOds7ADYFDwxOiPbz5fye2+7fnb0xGEo9eOYG0hKiQRoKYyLa/w9hID+/cdCK/f28jkwf2ID7Kw6kj2y5j54/vGzDE9/azRxLtcTG8dwLr8yp48JOtjs+bNCCFVX5LQaUlRHHZ5EweWxA6JcDJOWN688WvTqF3UjQfrTvAw/O2s78itJ6elhBFQpSHEwb35P4LRjPEXK7q3DF9OnxdvWB8X6YM6sHv39vIWcenM3dTSyO6//QEIGwA63899Texv3NOlO7scPqVfwu8rpS6H1gDPGNufwZ4yUzcVIqRkRit9Sal1JvAZoxe3Zu11t+KhZ9iIz18+ouZvLs6n3PG9GlpcYrEnoMBcOnkfgHJjzwuxf0XtN2il5kSEzC/7p+Xj2/zOZX1oQHY2MwkDlTUc/bo3gHzrP55+bg2J5InRkfw6o+nsa+0lvLaJuKjPQzoEcvrK/bxu/c2cK5ZMUuJiwybKbKzvHXjSQEtfulhehr8nTw8jYXm/IWzR/dm9d6yNp5BwNxggCe/N8m+bSVPGJwWxz3fPZ6Zww49AVFb3C7F6zecyKPzdzBpYAonDUkFjLlIcZFurnthJRdNzAjIbJkQ5WFsvyRmDE3j1eV7+PVZI5k2qAdT/zSf88dnhMzDsiy541S8Pk1mSizbCqpo8vp47tqpaK25bEo/Xl66xw5urTUbg503ti/njTUyQWqtmTksla92FLf6GacO6sF3x/UlNtLNL99cx8Z7ziI+ysMlTyxm5Z4yuyX9o/X7+emra1p9rdnH9+bTTUZw2a9HDBEuF1MH9eD1Ffu47/zj7YRVlr9cMpa/XDLWvh8X6bYbgW49fTgHKuq4fuYgHvp8O3M2FHD2mD5ER7hbreC+f/P0gORQln49AhtarjqhP7eeMZxpcUWcPTY0uLGSazz91S57Dr1/L0g4vROj+f25o/j9uUbL+dlj+vCw18fK3DLGZiZRWd/Esl2lzNlwgM82HwyYK2254eTBPLVwFz84cQCD0+L54KfTWbC1iJ+bSUiCuV2Kk4YaZXP570/jJy+vZl9ZLRP7pxiVm9V5nDI8LeD5ybGRlNU6D7Ma1iueh68IDWqiI9wsvv3UgOQ/Tgl/ggO+OT+byTn/+ipg20+yhjBtcE+O75tIz/gou0dguvk5LBFuF2/fdCIRLpddORyXmRzynv4t+lMH9mB5biknDenJfReMdvyM7aWUCju/dNrgnrx83QkMT4+nodlHdIT7kOZRjncor8H+dNEYHluQw7ur8xmbmcS10wcyfWgqvRKiue/80dx53iiiI9wBjbrdQXJsJF/clgUY32ezz9dmAAtGOflqR3HA9aUtvZOiyX3wXGb+9Qv2lRpl5cUfTeXFJXsY0TueL7YW8qcLxzC+XzL7y+taHZnUFTxuF4PT4rhySn8umZRJXZOX5NhIfnZa6Hngo1tm8NyiXL7cXkRxdQMvXTeV4eacWhfO5Xd039DP57SckT+lFO//dAZr95Vzz4ebWLO3HICfzBpCSmxESINre5KWBXvj/6axdm85BZX1dgPZny8a28azOkek22XnqmgPqyErIcrDhrvPavfzfjxzEMmxkUwb3JORvRNwKRW2x7Q92Y4BJg3owae/cJ7TGc7Dl4+3g9ild5xG76SWOt0Jg3pSWNnA9oNVfJ0TWI946bqpAQ2m//3BZMb3SyY1PiogNwQY39GI3gn8+6qJ7Cqq5jhz7rS1JvVlU/px2ZR+vLA4l7s+2AQYuWL6OOQh2HLvbDSa2EgPZf9dGrZzJ5j/iLtJA1IYnBqPRvP0V7v59xc5PPn9STQ2+1pNPPbw5eO5YEKGfa2yEoNmJMfYS05+k7Q5nPho6i7DicMNDT0Un24soE9SNE1eH+mJ0XYSntZYGU7vfN/4YbVnYe6KuiZuenlVwI/Lf4jOv+bv4CHzRN/W0J22WJlTDyc726GobWxmRW4Zp7Qjg63WRrIa/8pue4+3vLaRDfkVAYHq1oJKHpm3g4evGB9ycu/sMtOWyvomYiPclNY08sG6/Uwb3NNMbhH6GSvMgCEwK67RU/TwFeOZ1UYDxMb8Cv7wv41MG9yTW88Y1q4Lm9aaQXfMCdi26Z6zuOfDTXayqHBluqK2iY37KwKCin2ltXYSm3PG9GZcZjL7ymp5eeleItyKHQ+cw/q8cv40ZwvP/XAqMZFuquqbWLuvvF2NDYWV9Xy2+SBXn9A/4Jjqm7yU1TbaiR+sxdt/cfowe53ixGgP910wutWhkGv3lZNXVktBRb3dCNDeMrOtoIqBqbE8tyiXSLeLq07oz6cbC3hu0W7W5VWw+o9n2L0Y7amEW1McfpI1hIq6JkprGpk1ohfHZyQysncizy3azZVT+4dNbNNeG/MruOiJxWTflhWQzOdnr63hg3X7eeemE/nb3G0MT0/gqhP6M/vhr0KSZfjz+TSDzdbwq0/ozx/OHdWuZEkrcku51Mxy/MWvTrErMBarYvDMNZPDLgfmz2pcsKaMAHywbj97imu4xaGS35kO9zyjtebD9Qd4f00+D18xvtUhpcGq6puIjfSEbfysbWzmYGVDu0andGeNzT72ltYytFc8Vz61lNmje9urBLQlr6yWm19ZzbD0BP5+qZF8S2vNopwSpgxKaXfQ0BFdfW1qr60Flcx+uKWBqa3RScFO/Uc23x3Xl1+cPhwwerASoj28vnwfd32wiS9/ncWAnq2XxdKaRrw+zfn//hqfhqW/O63jH6QT5BRWkxIbQc8O1smq6puIj3Kec3ooHp2/g6gIF56yXBaWJvDIFRPaXJP3cPzny50MTotvdXTAqDs/DVg3OvfBc9mYX0F9k5dtB6u4amrLNdt/iPKDF43hcjN4bM/3s2RnCZkpMe2qn7+6bC+/e28DZ4xKx60U/3fKYBJjIuiVEMWYuz9jcFocu4pq7ONtr7yyWmb8JTBZnzV03//z5T54LruKqklNiGp1SmBX6szhxBLEHqZj6aS/Mb+C/eV1HUqlXVhZz2vL93HLqUMPaXiJ6LhjqcyE89bKfewtrWXWyF5dMgTl2a938+X2IgalxrGtoIrXbpgGwEtL97C7qKbNuTbB9pbUsnBHEZdOziTK46bJ62PM3XO557vHc/mU9g2lO1wHK+v5/Xsb+Osl47jw8UXcevpwO6t4Rx1umWny+mj26g4vxG7N+/ZfUqkr1TQ0M3dTARdOyAioXFhZ1Y+EZq8Pr9aOQcJH6/fz9Y5iHry4a3pcDkd3OM+IY8uxXGYW5RSzcEcRA3rEcdUJnXMO9/k0lfVNHVqSpbmTskJ/UxxLZWZvSS05RVX8+MVVnDe2D484jNSxFFbVszG/gki3mxnDUsPud7i01pTVNjlOoSuvbSTK40YpY3WPpNiOBZnvr83nlOFpFFc3sj6v3J7eAoFB7LFGgthjyLH0Axbdg5QZ0VFHs8z4zx0V3YecZ0RHSZkRHXUslhmfT3/rO2UOVBhTEayRYceSLk3sJIQQ4ttLAlghhBDdxbc9gIVjM3g9EmQ8hBBCCCGEEEKIbkOCWCGEEEIIIYQQ3YYEsUIIIYQQQgghug0JYoUQQgghhBBCdBsSxAohhBBCCCGE6DYkiBVCCCGEEEII0W1IECuEEEIIIYQQotuQIFYIIYQQQgghRLchQawQQgghhBBCiG5DglghhBBCCCGEEN2GBLFCCCGEEEIIIboNCWKFEEIIIYQQQnQbEsQKIYQQQgghhOg2JIgVQgghhBBCCNFtSBArhBBCCCGEEKLbkCBWCCGEEEIIIUS3IUGsEEIIIYQQQohuQ4JYIYQQQgghhBDdhgSxQgghhBBCCCG6DQlihRBCCCGEEEJ0GxLECiGEEEIIIYToNiSIFUIIIYQQQgjRbUgQK4QQQgghhBCi22gziFVK9VNKLVBKbVZKbVJK/dzc3kMp9blSaof5f4q5XSml/qWUylFKrVdKTfR7rWvM/Xcopa45ch9LCCGEEEIIIcQ3UXt6YpuBX2mtRwHTgJuVUqOA24H5WuthwHzzPsDZwDDz3w3AE2AEvcBdwAnAVOAuK/AVQgghhBBCCCHao80gVmt9QGu92rxdBWwBMoDzgRfM3V4ALjBvnw+8qA1LgWSlVB/gLOBzrXWp1roM+ByY3ZkfRgghhBBCCCHEN1uH5sQqpQYCE4BlQLrW+oD5UAGQbt7OAPb5PS3P3BZuuxBCCCGEEEII0S6e9u6olIoH3gF+obWuVErZj2mttVJKd8YBKaVuwBiGTHp6OtnZ2Z3xskdMdXX1MX+M4tgiZUZ0lJQZ0VFSZkRHSZkRHSVlRnRUZ5aZdgWxSqkIjAD2Fa31u+bmg0qpPlrrA+Zw4UJzez7Qz+/pmea2fCAraHt28HtprZ8CngKYPHmyzsrKCt7lmJKdnc2xfozi2CJlRnSUlBnRUVJmREdJmREdJWVGdFRnlpn2ZCdWwDPAFq31Q34PfQBYGYavAd732/4DM0vxNKDCHHY8FzhTKZViJnQ609wmhBBCCCGEEEK0S3t6YqcD3wc2KKXWmtt+BzwIvKmUug7YA1xmPjYHOAfIAWqBawG01qVKqfuAFeZ+92qtSzvjQwghhBBCCCGE+HZoM4jVWn8NqDAPn+awvwZuDvNazwLPduQAhRBCCCGEEEIIS4eyEwshhBBCCCGEEEeTBLFCCCGEEEIIIboNCWKFEEIIIYQQQnQbEsQKIYQQQgghhOg2JIgVQgghhBBCCNFtSBArhBBCCCGEEKLbkCBWCCGEEEIIIUS3IUGsEEIIIYQQQohuQ4JYIYQQQgghhBDdhgSxQgghhBBCCCG6DQlihRBCCCGEEEJ0GxLECiGEEEIIIYToNiSIFUIIIYQQQgjRbUgQK4QQQgghhBCi25AgVgghhBBCCCFEtyFBrBBCCCGEEEKIbkOCWCGEEEIIIYQQ3YYEsUIIIYQQQgghug0JYoUQQgghhBBCdBsSxAohhBBCCCGE6DYkiBVCCCGEEEII0W1IECuEEEIIIYQQotuQIFYIIYQQQgghRLchQawQQgghhBBCiG5DglghhBBCCCGEEN2GBLFCCCGEEEIIIbqNLg9ilVKzlVLblFI5Sqnbu/r9hRBCCCGEEEJ0X10axCql3MBjwNnAKOBKpdSorjwGIYQQQgghhBDdV1f3xE4FcrTWu7TWjcDrwPldfAxCCCGEEEIIIbqprg5iM4B9fvfzzG1CCCGEEEIIIUSbPEf7AIIppW4AbjDvViulth3N42mHVKD4aB+E6FakzIiOkjIjOkrKjOgoKTOio6TMiI4KV2YGdPSFujqIzQf6+d3PNLfZtNZPAU915UEdDqXUSq315KN9HKL7kDIjOkrKjOgoKTOio6TMiI6SMiM6qjPLTFcPJ14BDFNKDVJKRQJXAB908TEIIYQQQgghhOimurQnVmvdrJT6KTAXcAPPaq03deUxCCGEEEIIIYTovrp8TqzWeg4wp6vf9wjqNkOfxTFDyozoKCkzoqOkzIiOkjIjOkrKjOioTiszSmvdWa8lhBBCCCGEEEIcUV09J1YIIYQQQgghhDhkEsQeBqXUbKXUNqVUjlLq9qN9POLYoJTKVUptUEqtVUqtNLf1UEp9rpTaYf6fYm5XSql/mWVovVJq4tE9etFVlFLPKqUKlVIb/bZ1uJwopa4x99+hlLrmaHwWceSFKS93K6XyzXPNWqXUOX6P3WGWl21KqbP8tst161tCKdVPKbVAKbVZKbVJKfVzc7ucZ4SjVsqMnGuEI6VUtFJquVJqnVlm7jG3D1JKLTP//m+YCX1RSkWZ93PMxwf6vZZjWQpLay3/DuEfRmKqncBgIBJYB4w62scl/47+PyAXSA3a9lfgdvP27cBfzNvnAJ8ACpgGLDvaxy//uqycnAxMBDYeajkBegC7zP9TzNspR/uzyb8uKy93A7c57DvKvCZFAYPMa5Vbrlvfrn9AH2CieTsB2G6WDTnPyL+Olhk518i/cGVGAfHm7QhgmXn+eBO4wtz+JHCTefsnwJPm7SuAN1orS629t/TEHrqpQI7WepfWuhF4HTj/KB+TOHadD7xg3n4BuMBv+4vasBRIVkr1OQrHJ7qY1nohUBq0uaPl5Czgc611qda6DPgcmH3ED150uTDlJZzzgde11g1a691ADsY1S65b3yJa6wNa69Xm7SpgC5CBnGdEGK2UmXDkXPMtZ54vqs27EeY/DZwKvG1uDz7PWOeft4HTlFKK8GUpLAliD10GsM/vfh6t/9DFt4cGPlNKrVJK3WBuS9daHzBvFwDp5m0pR8JfR8uJlB/xU3Po57PWsFCkvIgg5pC9CRi9JHKeEW0KKjMg5xoRhlLKrZRaCxRiNHLtBMq11s3mLv5/f7tsmI9XAD05hDIjQawQnW+G1noicDZws1LqZP8HtTFuQtKCi1ZJORHt8AQwBBgPHAD+cVSPRhyTlFLxwDvAL7TWlf6PyXlGOHEoM3KuEWFprb1a6/FAJkbv6ciueF8JYg9dPtDP736muU18y2mt883/C4H3MH7QB61hwub/hebuUo6Ev46WEyk/32Ja64Nm5cEH/JeWoVdSXgQASqkIjGDkFa31u+ZmOc+IsJzKjJxrRHtorcuBBcCJGNMRPOZD/n9/u2yYjycBJRxCmZEg9tCtAIaZ2bciMSYnf3CUj0kcZUqpOKVUgnUbOBPYiFE2rIyO1wDvm7c/AH5gZoWcBlT4DfMS3z4dLSdzgTOVUinm8K4zzW3iWyBo/vyFGOcaMMrLFWYWyEHAMGA5ct36VjHnmT0DbNFaP+T3kJxnhKNwZUbONSIcpVSaUirZvB0DnIExl3oBcIm5W/B5xjr/XAJ8YY4ICVeWwvK09qAIT2vdrJT6KcaJ3A08q7XedJQPSxx96cB7xnUAD/Cq1vpTpdQK4E2l1HXAHuAyc/85GBkhc4Ba4NquP2RxNCilXgOygFSlVB5wF/AgHSgnWutSpdR9GBUGgHu11u1N/iO6kTDlJUspNR5jOGgu8H8AWutNSqk3gc1AM3Cz1tprvo5ct749pgPfBzaY89UAfoecZ0R44crMlXKuEWH0AV5QSrkxOkff1Fp/pJTaDLyulLofWIPROIL5/0tKqRyMZIVXQOtlKRxlpjUWQgghhBBCCCGOeTKcWAghhBBCCCFEtyFBrBBCCCGEEEKIbkOCWCGEEEIIIYQQ3cYxndgpNTVVDxw48GgfRqtqamqIi4s72ochuhEpM6KjpMyIjpIyIzpKyozoKCkzoqPClZlVq1YVa63TOvJa7Q5izaxTK4F8rfV5Zvrj14GewCrg+1rrRqVUFPAiMAlj3Z/Ltda55mvcAVwHeIGfaa1bTdE+cOBAVq5c2ZHP0+Wys7PJyso62ochuhEpM6KjpMyIjpIyIzpKyozoKCkzoqPClRml1J6OvlZHhhP/HGPdH8tfgH9qrYcCZRjBKeb/Zeb2f5r7oZQahZFG+XhgNvC4GRgLIYQQQgghhBDt0q4gVimVCZwLPG3eV8CpwNvmLi8AF5i3zzfvYz5+mrn/+cDrWusGrfVujHXIpnbCZxBCCCGEEEII8S3R3p7Yh4HfAD7zfk+gXGvdbN7PAzLM2xnAPgDz8Qpzf3u7w3OEEEIIIYQQQog2tTknVil1HlCotV6llMo60geklLoBuAEgPT2d7OzsI/2Wh6W6uvqYP0ZxbJEyIzpKyozoKCkzoqOkzIiOkjIjOqozy0x7EjtNB76rlDoHiAYSgUeAZKWUx+xtzQTyzf3zgX5AnlLKAyRhJHiytlv8n2PTWj8FPAUwefJkfaxPGJdJ7aKjpMyIjpIyIzpKyozoKCkzoqOkzIiO6swy0+ZwYq31HVrrTK31QIzETF9ora8GFgCXmLtdA7xv3v7AvI/5+Bdaa21uv0IpFWVmNh4GLO+UTyGEEEeI1pq3Vu7j3dV5LNhWyP7yOvaW1FJR28SyXSUcqKhr8zWavT4KKup5bflenv5qF8Yp8dji9WnqGr1H+zCEEEIIIdp0OOvE/hZ4XSl1P7AGeMbc/gzwklIqByjFCHzRWm9SSr0JbAaagZu11lJjEkIc0z7bfJBfv70+7OMXT8zkH5eNa/U1Xlm2l7s+2GTfv//jLWy//2wiPR1JEH9k/fTV1XyysQCAtIQobp89kosnZR7loxJCCCGECNWhIFZrnQ1km7d34ZBdWGtdD1wa5vkPAA909CC7I59P0+j1UVLTyJ8+3sLOomoGpcZxwYQMhqcnMCi17cWhK2qb+Oe87ewuruGEwT24dFI/0hKiuuDo26eqvokNeRVERbjJKazikkn9cLvU0T4sITrV/nKjp3VEegJjMpMorm4ge1uR/XhtY3O4p9r2ldaGbFuzt4yJA1KIcB+9QLa4uoHaBi8lNQ12AAtQVNXAM1/vtoNYq+fY69N4juLxCnG4vtxexO6iajbkV3LhhAxW7ilFoRiYGktDk49LJ2diLKgQ3rur8/jlm+sY2TuBkb0T+NlpwxicFt9Fn6BtWms25lcSF+XmT3O2cu7Y3lwwPqPNz9VeFXVNrNpTSmJ0BJEeFxvzK6mqbyLC7aJnfCTfHde3zfcqqmrguUW7Kaio58QhPRmensC4fsmdcnydpaHZS2lNI16f5rNNB/netAHHVMOjEN92h9MTK1rxnX9/zab9lQHbthZU8cnGAmIi3Ky768w2T4Y/fW01X+0oBowL78LtRbx+w4lH7Jg76rrnV7I8t9S+/58vd/HBLTOIj5JiJb45ahqMIPXDW2bYv1krqDv7ka/w+lqGBn+2qYC0hCiO65OISyl7/wiPiwi3Ytt9ZzN/ayE/fnEllz+1FACXgnd/Mp3xYSpwzV4f5fU+mry+Dge8tY3NRLhdjs/bmF/BeY9+HbDtllOH8sszhnPdCys5WFkPQHVDM6Pvmhuw30OXjePcsX3QGqI8Lg5WNhAT6SYpJqJDxydEV7vm2ZZZTO+szgt5fExmEsf1SWz1Nf766TbAuKZvLaiirLaJF350bKwYeLCynqe/2sV/v9ptb5u35SBp8dHMGJbaKe9xzwebeHdNSEoTW1pCFCcNaf297vpgI3M2GA1n767JJzk2grV3ntkpx3e4CivrWbKrhJ+/vjZgu9uluOakgUflmIQQoSTaOAK8Pm0HsBP6JzMoNY6vdxRTWNVApNtFXZOXmoZmIj2RaK1ZvtsIBE8Y3NN+jfomL1/nFDN9aE/OHdOX3723gaW7SsneVsjLS/fSOymK+y8Y0+ZxdHbP6L0fbubZRbvpmxTN/or6gMd2FdeQW1zD6IwkcgqryN5WxLwtB0mMjuDGrCFM6JfMXrNHqndSNFEed7ves9nrQyl1yJ/lSHwP3YXPp1mfX0G/lBi2FlRxXJ9EPlibz6yRveiVEE1MZNt/g8Kqeipqm6ht9OJ2KUZnJHXBkR8arTVNXt2preXVDV4i3a6A17R6GaIi3NQ3GyuP7S+v44aXVgU896XrpjJzWBoNTT6iPG5cLsWkASkB+/g0fLRuv2MQe/0LK5m35SAAj23+iie+N4mhvVrv8SmvbeS5Rbm4lOKf87aHPP7OTScxaUAKBebvt2dcJCcNTSXCrbjxlCEopYiL8lBrzo8tCPqdA/zyzXX88s11Ids9LsUXv8qif8/YVo9RiKPtgQtHk72tiHPG9KaoqoGnFu6muLqBarPRSmtNfZOPfWW1+LRmZO+WwLah2UvvxGiumzGIhTuK+HJ7ERc8togoj4s7zjkubIOU1pqaRm+nNPTuKqqmvK6Jif2N88mfP9nCf77cFbLfuWP78PH6AxRWGb/jwqp6Fm4vpqHZS1lNI/16xJI1vBcJ0cYxlVQ34HG7aGjy0isx2vG995UZ1/G+SdGM6J3Agm1FnDu2D/vL61izt5ydRTUhQazWmmafthvUymubGNUnkR+fPIi/z91OfnkdN760itLaRk4elsr/nTLkiI1S0VpT1+QlNjLw77BgayHXPr8i7PMOmOfC/PI6pj/4BZkpMUwakMJZx/dm9vG9cbkUWmv7+tDY7JOe2yNMa80zX++mvLaJ88b1oV9KLM0+zcHKeoanJ7T5/IraJp5bvJsfnDgQj1uREOXptBEL4siTIPYIqKxrAuDO80bxoxmDAh57Y8VefvvOBmqbvKQAf/9sG48t2Gk//rPThvHLM4ZT3dCM1nDW8b256oT+/O69DQD88LmWE6xTEFtW08jlTy2httFLXpkxDHLzvWeFnKyD7Syqpqq+mbs+2MS6feXERLiJi/Iwonc8E/un8KszRwDw7CKjdbeougEwLpCPXTWRxTuLueq/y6isNz77Xz/dxmebD9qv73/bctbx6ewrreO8cX34SdbQkMf//cUO/v5ZSyU8LSGKitomGr0+BqfG8fr/TaNXgvNF1vLpxgPc8toamryajOQYrjlpADecPKTV53SlmoZm7v5gEwerGqiub2JMRhK/PXtkm3+v9nr0ixzHQObuDzcD8NEtM9oMSm97az0Lt7cMn71iSj8evHhspxxfZ/D6NL94Yy0frtsPGK3lT35vEmeMSg/Yz+o9DXeBKq9t5PfvbWRAz1huOXUY0RFG5aOmoZm4KOdgP9rjor7JCPZ2FdUAkJkSw4T+KXy4bj+7imqMILbZS5RZmekRF8kbN0yjrLaJmcNSOf6uuTR6fY6vv3BHEanxkRRXN7KjsJr7P97Mj2cOZly/ZCLcKqAhKKewirT4aB6Zv4PnFuWG/b7eXLGPSQNSqDOP+7UbpoVc7OOj3HZlvsI8n/3l4jHMPr4Pry7fy4tLcu0Knb9mn2b7wSoJYsUxSWtNpNvFj2YM4uoTBnD1CQPsxyb2T+GSJ5fYjTd/nbuNJ7Jbrs2p8ZGs/MMZANQ2erlscj9+fPJgoiNcfLWjmLX7ygG49MnFrLvrzJBz+Pq8cr7770X2/fPG9uGBC8aQFNv66IVFOcVc/fQyJpvB0tc5xazeU0aV+fu0ru/ztxQGPG9EegJzbz2Z4uoGPl5/wB5Rct9HW+xzpaNP59k3/3jeKK4LqsOAcY6dMjCFt248KWB7bWMzo+6ca79XQUU9l/5nMftKW5Lfrf7jGfSIi6S+yUvP+EgunJBJhNvFT19dw6ebjJ7Z5btLOb5vErNG9gp4/bKaRibc9zkAfZKiOXFwT+78ziiSYyNb/Q5rG5u58eXVLNxexPF9EwNGyV05tT+/nT2C5NhIe+SbxeNSLL7jVBKiIpj6p3lUmfWbz83jzCurI6+sjvfX7ic20k1to5fYSDezR/emvLaJL7YWct7YPvz7qokhx7Q+r5zfvL2etIQoiqoayEyJZcuBSmIi3TR5fTx8+Xgm9E8JeZ6//eV13PXBJuqbvBRVNRAX5eHN/zvxmGq0f+jz7azaU8qkAT2YNSKN4/okEh3Rvg6MthRU1DPtz/Pt+/9ekBPw+MOXj+eCCRmtvsbXOcU8PG8HD8/bYW/75Ocz2xyNcaQ1eX34tCbK4+alJbn88f2WnBpOv72DlfWkxkcdU3/7riBB7GEoqW5geUEz77+xlugINzeeMpgBPePsSl+iw9C6GPPCVmue5K3hNJZ/zd/BL88YTm2DcSG1LoSvXH8Cn28+SElNo30Bavb6Quanvbx0D9sPVgds+83b6/netAEs21XKjVmD7YpvYWU9EW4XtU1eTn/oS/wTptY1ealr8lKc08CinBJunjWU6Ag3ybERTB6Qwn9/MDkgGEiIMj5rdb3xuQqrjCB38oAUpgzqEVAZsMzdZAS2mw9UOgax/gEsGHNoLLuKa9hyoMoOYg9U1JESGxlycrz93Q00eY0Pll9ex5/mbOWU4b14d00eUwb04PSgQAeMis67q/MZ1y+JIWnxFFY1kB6mRboty3eX0ishithIt92qvbnEyw9v/xiASLcrIIBZvbeciQNSOH98Bk1eH3M2HGBvSS1NPk2vhCjOH9+XmgZjns6g1Dg8bsWCrYWcMiLNsWd7e2FVwP0pA1NYkVtm31+UU8zojCSKqhp4+utdTOyfQkKUhwXbCvn1WSOJ9LjIKwucz/n6in28vmIfp47sxcT+ydw8a6hjYPjZpgImD+zBr99ax5jMJH5x+vB2fWcFFfUsyinm4kmZ1Dd5WbO3nOgIF/O3FHLVCf3pmxxjV+z694iloKI+4Dv0+jRfbC3kjFHp1Dd5OfdfX+Fxudh20PguRqQncFPWEKYO6sGm/ZXUNDSzs6iaR79ouQA+7lBenURHuCmvbQSwG3CeuWYKA1Nj+XDdfjsQbGj22UEsBI66SE+MsgNhfw3NXhqbffzwpIGMduXzVn4iH284YM/HHdUnkY9umYHLpXhsQQ5/m7st4Pm/O2ckaQlRTOyfQmykh6SYCM56eCHV5hxeKxNxjEOFIjbSQ21DM3tKaiirMT7fsPQEkmIjuClrCDdlDQnocdBak72tiGufX0Gtw2cRoivVNjZz0eOLiXC7yBqRxqyRveyRQI1eH8kOgaM1KsX6XWw2A50rp/bjteX7KK5uxOfTaIzfs7X/96YN4NTj0nnos+3sK61leW4pRVUNDOgZHMRWBNz/aP0BPlp/gNnH92Zor3huO2uE/djqvWXsLall3paDfLT+AAAr95Sxck8ZwXYX13B83ySSYyIYnZHIgxeNJTU+yj4+q9fXCnp95vSHP543ivgoN/d9tIXeSdHkl9XZDVuW+z7azN/mbuWGk4fQNyma88b1JS7STVlNE/16xIR+hxFuXKqlHvDumryAABaMwKtHXCR1TT56xBnHePpx6fzfyYOZMSyV/63Zzzur8+zj9ZdbUmPfLqlp5N01+STGRPDb2SNZtruEYekJZCQbx/X1jmLmbDzAzKGpbNxfYTfEBk/zem35XiYNSOGSSZn4tDauNb/Kwq0UXq3tOkZafBSV5ueqazKuN09+bxIHK+v5eP0B8svraGyux6UU765uGWr90foDPHBBU0hjxRsr9tnD0QH7f8tLS/cEBLH7Smv5akcxM4am2o2Ery7by+dBHQT3f7yZ8f2SGdk7kRG9w/dEVtQ2ER/toaKuiR5xrTcChFPX6KW6MTDTvtaav87dxoa8CnrGR/L+WqO+uiinhH/N38FFEzJ46PLxNHl9/PF/G6lv8hIb5eH/Th5Mv5RYcsz8Me3phV+5p7TVx99ZnWcHsUt2lvB1ThE+DYNT47h4YiYul6LGIafF2Y98xQ9OHECk28WYzCTOHx8aCHt9mvlbDnLPh5s5Z0xvpg9NJWtEr5D9gvl8miafMTLL59MUVzeQX17Hun3lfG/aAGMURLOXEX/4NOxr+NfhFm4v4gd+UyRG9k5gcFoc8VEerpzan6G94vnb3G0MSo3jBycO/MYFuRLEHoZb31zHwu0NWMvdvrZ8L70SouwAzml+WJx5YbFaeyvrmrhgfF/+cslYvv/0cnYVGyfp2ibjhxVr7j99aCrThxrDc8ZlJnH/x1uobfKSGPRDL6xqIDk2gjV/PIPXV+zjjnc32BdLMHqJLpyQwWsr9vL79zaGHN/9F4xmyc4Srp85iGHpCby3Oo8/vr+JqvpmoiPc1Dd5GZwWHxK0WEOR8svrKK1pZH1eOReM78vDV0wAjLl2hZUNZKbE4HG7aGz24XYprnhqCUVVDSzfXcrYzCSiPC6UUlTUNREX6WZcv2Reuu4EDlQYy5oMTI3juUW7+e9Xu+2GgJW5pVzy5BL7WPxbPhUwc1gqybGRNDX7+HRTAWc9vBCA/7CLlX84ndT4wGRZ6/Mq+NVbgUMl/3n5uDYTY6zILeWBj7fYLfIB30+Uhy9/M4secZF8srvJ3m4FX49cMZ7Kuib++P4mO1j/5+fbQ4KpP/wv9G9mmdg/md/MHklGcgyNXh9D0uIpr21kYv9k3rnppIBj11oz/A+fUG42uDzz9e6QoWjnje3LuH7J9IiNJGVAJO/cdBLvr8235wl9sbWQL7YWMqF/il02LXtLagOG1s7fWkiPuEhOPy6dAxV1jMtMDmiAKatp5PUV+0hPjLKHqf5z3nZ7NIFlf0UdD102njdW7DPexxyePmVgCm/ccCIul2L2wwspNkcKLN5ZzM6iGvt3B7DtYBW/eGOt43c4+/jenDikJ3/5dKv9GwW4KExrbnSEi3qzQlNpN155iPK4iXS7qKr3C2LDtD4bv6vQntgasyErPsoDTXDdzEFEely8Z85F23ygksG/m0NMhDuk8nnRhAzHEQeJ0R67gmklpIp1GFIeF+WhptHLKX/LtrcFn8/8y5NSyq4w1TpUPoXoSj9+caUdFGzIrwhooALo3yN0pIDVYFzX1DICYeawVP580ViGpMVz/8dbqG5sRtn7G78bpRQZyTH847JxfLqxgOW5pfbv3p/VuL3pnrNwKcVxdxqV1E83FcAm6N8zlqkDe7A8t5TfOGRDH9gzltySWhbclkW/lBiW7y7lqqeX2e9V3dBMvx6xISNrrMaz5btLuWhCPQcr6xnVJ9HuYb1oYqYdMLz04RdMnzaV/j1iWZ5bylX/XUZ9k49/zTd6qW5/d4Pd8Hp839CeKmsqgtV4V1jZQEK0h1V/OIP31uTx23c22I199U1eO9COjnBzxznHATA4LZ53VudR5xBcWJ/1nZtOZNKAHgy8/WOeX5zL84tz7X2++s0scgqr7WHBry7bG/Aavz/nOC6b0s84bzZ6GXfvZ/bfpqq+mZ5xUXYg7C8hJoKtByr5YN1+/vLpVgBmj+4NYM+T1VqjNWwpqKRXQjTff2YZWwuqWLW3lIn9U5i3pZATBvWgX49Y+zt/7toppMVHcaCinlkj0qhv9nHin+fbjSn7SmuZ+dcFAcey7HenkZ4YbR939m1ZbC2o4saXVwWMwnnmmsmcdlxoQ/2v3lwXMB/82R9OZtaIXq3Wbwoq6rn1jbVEelx86TcyC+CORXN56PLxnDEqndV7y0I6LS6akIHHrXhzZZ7dELH1QBWvm9dxCP07gVGv9LgU54/P4Nyxfdh+sIrCygYum9LPbEwxGlgX3JZFnySjsSE6wk1Ds5cfPLOcwkqjHlDb2MyV/10a8No1Dc38cPog+3q15o9nkBwbwaA75gDw4pI99r5OQezFTyy263r//Wo3b63K44ObZ1BR10R6YpTdaaG1Zl9pHdERxpSk8fd+HvY73lpQxYMXj2V/eegop9vPHsk1Jw7kiS938ugXO/D6NC5FQABrvYZ17ntzZeCcf69Pc/3MwWHfvzuSIPYw/Gj6QEbHVjJt4jheX7GXORsK7AAWjGAzmHXSLq1ppK7RS4k5JyXK42Z8/2TW55cDLRVYpwqmfbFt9JIYHVixLKttJCU2EqUUF07I4N3VeSgUMZFuvtxexK/eWhcSoFmsgO5701qGWMWbwWl1QzPJsRHUN/kc5/NYQew9H27mHnOoau+klgtBbKSHgaktz7PmiYzNTOaZr3dz2X9agtDEaI/d4nny8DTcLkVmSiyZKUbF44fTB/Hfr3bbF8OXlhonm8GpcewqruGj9Qf4y8XNxEa6qapvZkxGEr+ZPZImr4+fvbaGHYXVNDb72Ftay77S2pAgdvvBwBZRgFvfWMetb6xjcFocPz9tGFEeI1lObaOX99fut+cthlPV0MzWA5WcNDSVZrMl/NdnjSCnsJobTxnCiN4JaK2596PNrN5bxh3vrue15cYJvl+PGDKTY1myq6TV91i9t5wrnloasn328b1DLk5KKZJiIu1eRKN/AX6SNYT/LNyF16cpMx+zKkdgBLZWRsr+PWKZ+dcF7CmpZXpQR/p+h7VT73x/E3eaQ2KG9YrnP9+fxJfbi/jf2v2U1TTaAan9GuV1KAU3Zw1lzsYD7Cqqscu79Tdb8fvT6REXiQJcZgtjanwUn28+yCVPLKbJbCTI/vUs8spqeW9NPotyijl7dB/yy+v4YN1+OzHTd8f15V9XGo0u3582gD2ltcREuFGKsD3xDc0+th2s4q+fbmXOBqOhKME8xvhoD9UNTcY8uIbmgJ5Yf9Eed0BPrNYarzksF4yAkiZjuOPE/in88/Lx7DhYxRn/NBpjrAB21og0HrpsPJEel/EcB/HRHnuon9Vj6jR0/cxR6XbFFTAqXimtDxGOs0aZhFlrtqremFftcSmW7y6lZ3wUUwf1aPU1g20rqGLlnlL2ldZx+9kjO/TczuDf+2zZXVxDZkoMEW4XK3JL+Wp7EQN6xjFzeCrxUZ5Omxog2q/avH7OHJbKtME9+XDd/oCerpOHp4U8xxqRsK2gGq01FXVN9nnPGlVVUdtk/45jHP6u1rWxxqEhp7LOeK712/zbJWN5f+1+lueW0tjsCwlcZx/fmw35FeSX15F9WxYDg1Y0sI7JajyrDTPX1iqv2duK7KGX/vPq/Xu8+iW47CzLJw1J5ctfZ9Hk1fx5zhbmbzWGK1sNr+GW30qI8vD84lzSEqKYt+WgneDu+L5GfcgKROubvEQ7nBOtBkerDuTPHuVmnmPvPG8U9360OWCf4IDPYuUn8OdxKZRqed3Wpo70iI1g3b5yfvbaGsfHwfiulcL+rPdfMJpLnlzCj55f6bj/4NQ4Zpm9d1bjQ7zbxcjeCZTXGse0yqH3feH2Ii6d3I+q+ib694hlYGocA1Pj+O8PJnPHuxv44UkD+Ptn21mRWxYSxNY3eUMSmvkf3xVT+nHdjEGkxkexaGcxj8zbwcg+ia0OQa9qaOZnr61hy32z7ev4vecfz4R+KaQlRNHbDDCrG5qZs6GAN1fssxtjs0akceLgnvz5k63267ldCq/PmAJWWdcU0lDxiN+1CSAjOSZg7nGUx82g1Di7zFrHFB3h4m+XjOOW19bY54Ma83oVG+VGKcW2+2dTVd/M1gNVfO+ZZaQnOq8IYgWw/75qAq8s3cuSXSWc/LeWsvfMNZNxuRR/n7stpPc/WL8eMewrrbNf06qX3XLqUE4ensa4zGT78yXFRKC10cu8ZKdRJ/zetP7ccfZxLM8t5Q/vbWTigBSiPC7izd9i36RoThqaynfH9231OLojuboehqwRveCAh5OHpzFjaCo7TqtmRO8EKuubwk4Otyo0/skDrKEcSTFGkOjf2+VUAbJOstaFcsfBKp5bnEtBRT1fbG2ZFxMd4Q4YN798d6kdLLpdit+fcxxnjEonJS6SoqqGkGAOIN4cJpxTWG1nK3WqIPeIi+SXZwxn/tZCGpuNTKo/nhk6lybYD04cwPLdpWzIbxlqZQWwpx+XzpVT+oc8xwqYH/h4ix1Enji4J6/dMI331uRx6xvr2F9eR3pSNM0+bQcVEW4XT3xvEgDr9pVz/mOLKK42Thb1TV4e+NgYVmUNy/ziV6eQnhjNvC0H+df8HewsqmFXUU1IxkJ/F07I4I5zRrJuXwXpiVH0TY5h6a4SfvrqGg5W1ZNXVktelY8zRqVz86zAyE8pRZNXBwwxH5wWxxe/ygp5n837K6lr8jKxfzJen+b1Fft4Z3Uea/aWB+w3dWAPfnyyc8tbSmwEry3fx+ebC+2ey9+Ya4Oe9o8v+fcXOQxJi2f7wSp7fojbpex5SlbgZQW7xdUNzN9ykKW7Su3Gl89vPZlh6Qnc8toaPly3n1F9EklPjGLBtiJO/ceX9rEMSYtj5rBUVu8p47GrJ5I1oldAQq7bzhrBlAfm2e9ZUddE36RoxyWnzhnTh69zigOG3qXGR5KWEBUyx+ifl493/G5cLtWuZbCGpMWTva0ooMfcqoQlxUTw8tK9vLkyj8ZmYx63k+gIl50cau2+ci54bFHA4wnRHgicIcCw9ARyHjib8rom/rcmn1F9E5k2qKcdyIcTE+FmUU4J/124iyfMufjW3F9/ozOSWP7700iIiqCqvilsgpeA1zY/9+sr9tI7KZoxGUnkldWRlhBFaU0j172wwrGHCuCu74zi2unG+WLZrhI+3VTAmr3l1Dd5efXH0+gRF2nPu7c8+WVga/+jV07gO+NCL9I+n+bFJbm8uHQPSTERnDmqNxV1TTQ2+zhvXB/694ilZ1wk5bVNLNtdytaCSr4zri/PfL2bCJeioLKedfsqKKisJ8JtlIvfnzuKU4anUVHbxKy/Z4f9Tob2iuedG08iMcbDvR9t5uP1B3C7FMmxkTQ0e0lPiOa4PonsKq4me1sRkW4XQ3rF85vZIxjdN4nK+iYq6poYn5lMk8/HpxsLKKluZOqgHry9Ko/nF+cS6XHx45mDOGV4L7tRoKq+iYIaH0VVDbhdih5xkZTVNJIcG8HOohrueNeYYlJZ30zW8DSiPC4q65sY2itw+GFFXROJ0ca1rKahGa/WKIxkZJV1TTQ0exniMDIHWnqlGr0+PC4jMV+j12eMUGhoJsLlCkgs5/Np3l+Xz9aCKk4akkppjXFN2lZQxY+mD8LlUuQW1zBn4wFSYiM5eXgae0pqKKpqIDEmAo9LMXNYGjsOVrFuXzkT+hujeABunjXUboBwaoiAlvL75Jc77bI108zmm2wGjP4BUqzDyAqr0dcaoqi15r9f7eJPc4wKuv8w5ksn9+PSyf0AIyh5bfle9pTUUljVwG9mj+Ay87Fwx2sFckt2ldA7KZq9pbWMznCex/f0Dybz1qp99hSeaYPb13g0oKdxznrmh1MAY4pDdX0ziTERYYd7WlN6rOtoXzOAsUZy5JXV8edPtnCgop4oh3OPPazbPNeX1zbyn4W72F5QZTeQWQH8j2YMsvOOOGVbn/uLk+0GYqfv0OVSKOD9tfl8d1xfVu0to19KaC8swK/PGklBZQOxkcaQ6YcuG++4n78xmUmcflx62EbuK6eG1m8AkmIiWZdXzqvL9vL2KqMxe9M9Z6EUjLpzLkXVDazeW8bXOSX08rsGnjEq3c4F8eKSPXZPpcXr0yw1G8P/dslYUhOi2FVUw31+DQHWdCF/Owqr6Z0YzcnDU7n3/NEoBREuFy6X4pG35vHPVQ2M75dMaU0jeebw8QsmZIR0skSbU55+805Lg82/rpxAYnQEN5w8mILKepJjIonyuNhdUsMQs0FlRW4pz3xlJF6Lj/awMrfM7u0/bWQvx+RZybFGvXby/fPsxuxXrp/GpAEpPPnlTvaW1rL9YBU5hdW4XYpIszxHedxExbuZMSyKc8f2YcsBIwBt8vp4bEEOZ4/uQ0FlPYnRHi6ckMF5Y/ty6shePL5gJ09/vcseVXXdC84NFxdNzOC+80fjcRvvaZXLO97dwOebD+Lzabu3+tSRvULqLPFm/d+/0ev88RnERXmYNaIXi24/NWD/P5x7HG6X+sYmq5IgtpO4XC3D6YJ/uP6G9orn5OFp9vyMn506lAvMoQrWEBb/IMmpJ9ZqMf7tO+upa/KyMT+wledsc4hLsKmDerD7z+c4rvUYLluiVcH98YstP8jjHOZZKKX42WnD+NlpwxxfJ5wBPeP44KfTWbKzhKTYCEb1MZIu9E6KdgyqAeIjPcRFuqmsb7Z7fVPijO+8j9n7a/VSAZTWNIS8Rqp54t9+sIrPNhWwq7gmpMXTapE+f3yGPZwkp7Ca295ax97SWhKiPVTWNfHWjSdRUFFPcmwEI3onEOF2ccaolkr/KWar/61vtPSAp4RJ5vH7c47jgTlbmDQghVV7yrjcrMgEG+U3lMvjVnxv2gC7B93rM3ryahqaSWllrsuJQ3qyo7DaDmBbjs14zso9ZXalzalnwb+ysuVAJQUV9SFztqze80evnMCjZi9ncbVxYQEjeI2JdPPMNVNIT4zG59N2IBY8d2NQz7iAC+zAMMmDrjqhPw3NXnYUVvPa8r08cMGYI3YC/+3skeZSM5qS6kbSE6Pt95o9ujdPZO+k0QxQ+zkMYQQjGdLC7UXM/OsXIfPHAI7rk8ju4tDnedwuUuOjOjQ8yDqGB+ZsAYwKZrjvxpoL1p4M1tAyumL7wWp+8srqsPudO7YPRZUNbNpfYbeC3/PhZv4+d5t939/FTyzG41LsKDQi+SiPi4bm0OHXt7y2hns/2sx1MwZRUGEMm9xXVhtyfvRv6LES1QXzT/Lhr8mr2X6wmmueXc6Zo9Idk1v5yymsZty9n4Vst563q6gmYIRFo9fHlgOVXOuXwK8tjc0+HluwkxcX7+GXZw5nzd5yPrB6Tb4yfmdnHZ/O3E0HmT60J4tyjPfzn1dlifK4uO+C0aCNhCwFlfX0MudVW0l3nFhJbfr3iKWh2UtlnTV3sPX50ZdMyuS8sX3466fb2Hyg5e8UPLXh/o+3tP1FBCmpDqzAW+U8XHlPjPZw1vHpLM4pITkugl4J0fYwUafkd06ZT60K5o+eX8mtpw/n0S922CNvAC6f4nw+P3l4mmPvcGvHm2xe855blGsPIfXPoOzv9FHpdv6HnMIqBvZsu4HOiVXBb839F462G5v6JEXz1A8mA8YImfgoT0DA5HS+s4KJl5bsYdWesoCGeTASPDrN4RydkcSOB86msq6JnvFRAYFra+f/jJQY9pTUcvpDRqPqmQ55MsC45n7y85lhX8dJlMfN09dMtu/7fJr5WwtZvLOYa08aFDYB3rTBPZi35aCd0HNQalxA54G1xBMQcv22RLhdvLc2n+P6JHDvR5vxK4YADEyNY8rAHswaYZTL1XvKyCmsZltBFQer6tlWUMW4zGRuPWN4q3Nrx6V5GJzqYcmuEibe1zJUNsGhTjlxQArvrsmnX48YiqoauOs7x9v1ZaWUXX8D7AAWYMrAHkwZGNrwklNYzYAw36E1ZcD6fjKSYxiWHm9/9o/XH+BMv3qiUxlJiomwg/xnvjauFf7XBqt+FRvp4bazRtjz2pfvLuXVZXv439r9jOydwIs/mkpSbIS9JJ3Te/VOjKa4uoHBv5sT8P7BZgxLY2iveHIKqzlleBoZKTFMaiUB2Dd9XXeltW57r6Nk8uTJeuVK59aMY0V2djZZWVkdfl51Q3NIdlGvT/PWyn1UNzTz9qo8Thmexm9mjwypzDu1OJ4zpjc/P204vRKiiI/2dFpq+rKaRi79zxJyCqtxKXjw4rF2C/HRtONgFR+s28+eklp2FVfz5PcmkZkSi8+nufjJxQEV1Q9/OoMxQUO7tdac92joWr63nTmcAxX1pCdGdzggb83j2UbiHa1hWh8391w+vdULAxi9KXGRnjZ71w5VfZOXt1fl0a9HLIWV9YzoncDYzGS01tz21nqW55awr7SOaYN78LtzjmNsZnLIa5z/769ZF5Sw5JJJmTQ0+7hwQl9OHelcITgUOYXV/PC55eSV1REX6eanpw7jpqxjJ9N0sNrGZl5ZuperTuhPgZk50OmiNNBM8uXv9Rum8dmmg3xnXB8m9E855PNMsCavj693FPPsot0MSYvn+pmD7IaGzvDYghw7UQpgJ/Ww7PzTOQHns/omL9nbivjpq6sDKvvXTh/IZZP7cf/Hm+2gC4yRBW/eaKyVveVAJT3jItmQXxG21dvSNymalLhIY15VQRU94qKoa2q2h+xbRvY2EsNsOVBJeZ0x/PnHMwfx3XEZVNQ1UdPYzP8FLaME8MYN02j0+jhY2cAl5jDL4uoGbnp5FVsOVFFtDif/26Xj8Pp8pCdEMzgtnlV7yrj3o01M7J/C7WePZF9pHQcr68NO+QBjdEZdo5frZw5m+e4SPC4XXp9uNcgMNjYzieP7JnKgot5OFNZeCVEeBqTGhjQOhBPlcZk9vc1cOimTTzcVhO2RB+ws8uvyKthbUhswSscS7zfvElqCdH8v/mhq2MDwUCzOKWbelkIOVNRxw8mDHTPHWtl5/R3XJ5ErpvQjMcbDhROch+Aeqme+3s2LS3IZmhbPZVP6ccZx6Yd1veis80w4K3JL+dvcbcRGGsM9zx+f4bgckdM58aNbZvDAx1u47awRIcuUHY69JbU8PG87hVUN9IiL5O+Xjjvqy+JorTn7ka+MOZIXjeGCCRl2o/HdH2wKGFr70GXjuGhiaLn68YsrQ5I+WS4Y35d/Xj6+Uxp3s7Oz2RM5kLs+aMmeG+Vxse3+sx33D9cr3tm8Ps3CHUWkxUexdFcJ104fZF97DlTUcckTS8gvNxpRfjxzEL8/d1TIa7y0dA9/DMpDMm1wD5buKmVor3gevGgMkx2C60NxsLKe619YaU9PmT40ld+dc9w3LhEThD/PKKVWaa0nhz4jPAliD9ORPuk70Vrz0OfbmbelkD0lNZwzpg+/nT3ScWjlt1Wz10dNo9cxaLBsP1jFB2v3ExPpZsuBSn5w4sAOz9HrCK01u4pr2LdpZZeXmUPV1gXH59N8ub2IjJQYPli7n0kDU+w5PkdKdUNzp6yzeKyYs+EAy3eXkpkSQ3mtMcfpsqAem6NxnulM1vz1cKNUtNYs2VlCfbM3pOFj/paDxES4GZ2ZRKTb5bg8w86iah5fsJPeSVGM7J1IeV0TJdUNXDm1P/O2HOSyyf0cG/aq6puoa/ISE+G2px20pbCyno/WH+DEIT3ZtL+SUX0SA0ZGONlfXodLKXtuWFvKahrJL6/DpzUDesTR7PPh9WmqGpoDeigszV4fH67fz4rcMmaN6MXw9Hh2rFvOKaecQn2Tl882HWR0RhKfbDxAn6RoLneYpgHw5fYiquubKa1t5JRhaeSW1PCDZ5czaUAKz107hWiP267gW+eGmoZm1uwt5701+YzJSOTKE/rjcbn4bFMBp4xIC5kS09BsrLtcXmvMdSuubmDSgBQunOCcOK+sppHEmAiKqxsoqKhnbGaSPSx4V3HLkMOymkZiIt1kbyvkzFG9j1jjX1tKqhv4eMMBCirqOX1UOmMyko7Yeqed7Vg5zyzcXkRBRT1Ld5WQmRLDFVONrPSi/Spqm5i35SBzNxUwMDWOE4f0PCLXZv8ys6+0Fq2NOZ7fhOGrPp/mq5xilu8uYWiveL4ztu83vmezK0gQeww5Vk76ovuQMiM6SsqM6CgpM6KjpMyIjpIyIzqqM4NYaVIQQgghhBBCCNFtSBArhBBCCCGEEKLbkCBWCCGEEEIIIUS3IUGsEEIIIYQQQohuQ4JYIYQQQgghhBDdhgSxQgghhBBCCCG6DQlihRBCCCGEEEJ0GxLECiGEEEIIIYToNiSIFUIIIYQQQgjRbUgQK4QQQgghhBCi25AgVgghhBBCCCFEtyFBrBBCCCGEEEKIbkOCWCGEEEIIIYQQ3YYEsUIIIYQQQgghug0JYoUQQgghhBBCdBsSxAohhBBCCCGE6DYkiBVCCCGEEEII0W1IECuEEEIIIYQQotuQIFYIIYQQQgghRLchQawQQgghhBBCiG5DglghhBBCCCGEEN2GBLFCCCGEEEIIIboNCWKFEEIIIYQQQnQbEsQKIYQQQgghhOg22gxilVL9lFILlFKblVKblFI/N7f3UEp9rpTaYf6fYm5XSql/KaVylFLrlVIT/V7rGnP/HUqpa47cxxJCCCGEEEII8U3Unp7YZuBXWutRwDTgZqXUKOB2YL7Wehgw37wPcDYwzPx3A/AEGEEvcBdwAjAVuMsKfIUQQgghhBBCiPZoM4jVWh/QWq82b1cBW4AM4HzgBXO3F4ALzNvnAy9qw1IgWSnVBzgL+FxrXaq1LgM+B2Z35ocRQgghhBBCCPHN1qE5sUqpgcAEYBmQrrU+YD5UAKSbtzOAfX5PyzO3hdsuhBBCCCGEEEK0i6e9Oyql4oF3gF9orSuVUvZjWmutlNKdcUBKqRswhiGTnp5OdnZ2Z7zsEVNdXX3MH6M4tkiZER0lZUZ0lJQZ0VFSZkRHSZkRHdWZZaZdQaxSKgIjgH1Fa/2uufmgUqqP1vqAOVy40NyeD/Tze3qmuS0fyAranh38Xlrrp4CnACZPnqyzsrKCdzmmZGdnc6wfozi2SJkRHSVlRnSUlBnRUVJmREdJmREd1Zllpj3ZiRXwDLBFa/2Q30MfAFaG4WuA9/22/8DMUjwNqDCHHc8FzlRKpZgJnc40twkhhBBCCCGEEO3Snp7Y6cD3gQ1KqbXmtt8BDwJvKqWuA/YAl5mPzQHOAXKAWuBaAK11qVLqPmCFud+9WuvSzvgQQgghhBBCCCG+HdoMYrXWXwMqzMOnOeyvgZvDvNazwLMdOUAhhBBCCCGEEMLSoezEQgghhBBCCCHE0SRBrBBCCCGEEEKIbkOCWCGEEEIIIYQQ3YYEsUIIIYQQQgghug0JYoUQQgghhBBCdBsSxAohhBBCCCGE6DYkiBVCCCGEEEII0W1IECuEEEIIIYQQotuQIFYIIYQQQgghRLchQawQQgghhBBCiG5DglghhBBCCCGEEN2GBLFCCCGEEEIIIboNCWKFEEIIIYQQQnQbEsQKIYQQQgghhOg2JIgVQgghhBBCCNFtSBArhBBCCCGEEKLbkCBWCCGEEEIIIUS3IUGsEEIIIYQQQohuQ4JYIYQQQgghhBDdhgSxQgghhBBCCCG6DQlihRBCCCGEEEJ0GxLECiGEEEIIIYToNiSIFUIIIYQQQgjRbUgQK4QQQgghhBCi25AgVgghhBBCCCFEtyFBrBBCCCGEEEKIbkOCWCGEEEIIIYQQ3YYEsUIIIYQQQgghug0JYoUQQgghhBBCdBsSxAohhBBCCCGE6DYkiBVCCCGEEEII0W1IECuEEEIIIYQQotuQIFYIIYQQQgghRLchQawQQgghhBBCiG5DglghhBBCCCGEEN1GlwexSqnZSqltSqkcpdTtXf3+QgghhBBCCCG6ry4NYpVSbuAx4GxgFHClUmpUVx6DEEIIIYQQQojuq6t7YqcCOVrrXVrrRuB14PwuPgYhhBBCCCGEEN1UVwexGcA+v/t55jYhhBBCCCGEEKJNnqN9AMGUUjcAN5h3q5VS247m8bRDKlB8tA9CdCtSZkRHSZkRHSVlRnSUlBnRUVJmREeFKzMDOvpCXR3E5gP9/O5nmttsWuungKe68qAOh1JqpdZ68tE+DtF9SJkRHSVlRnSUlBnRUVJmREdJmREd1ZllpquHE68AhimlBimlIoErgA+6+BiEEEIIIYQQQnRTXdoTq7VuVkr9FJgLuIFntdabuvIYhBBCCCGEEEJ0X10+J1ZrPQeY09XvewR1m6HP4pghZUZ0lJQZ0VFSZkRHSZkRHSVlRnRUp5UZpbXurNcSQgghhBBCCCGOqK6eEyuEEEIIIYQQQhwyCWIPg1JqtlJqm1IqRyl1+9E+HnFsUErlKqU2KKXWKqVWmtt6KKU+V0rtMP9PMbcrpdS/zDK0Xik18egevegqSqlnlVKFSqmNfts6XE6UUteY++9QSl1zND6LOPLClJe7lVL55rlmrVLqHL/H7jDLyzal1Fl+2+W69S2hlOqnlFqglNqslNqklPq5uV3OM8JRK2VGzjXCkVIqWim1XCm1ziwz95jbBymllpl//zfMhL4opaLM+znm4wP9XsuxLIWltZZ/h/APIzHVTmAwEAmsA0Yd7eOSf0f/H5ALpAZt+ytwu3n7duAv5u1zgE8ABUwDlh3t45d/XVZOTgYmAhsPtZwAPYBd5v8p5u2Uo/3Z5F+XlZe7gdsc9h1lXpOigEHmtcot161v1z+gDzDRvJ0AbDfLhpxn5F9Hy4yca+RfuDKjgHjzdgSwzDx/vAlcYW5/ErjJvP0T4Enz9hXAG62VpdbeW3piD91UIEdrvUtr3Qi8Dpx/lI9JHLvOB14wb78AXOC3/UVtWAokK6X6HIXjE11Ma70QKA3a3NFychbwuda6VGtdBnwOzD7iBy+6XJjyEs75wOta6wat9W4gB+OaJdetbxGt9QGt9WrzdhWwBchAzjMijFbKTDhyrvmWM88X1ebdCPOfBk4F3ja3B59nrPPP28BpSilF+LIUlgSxhy4D2Od3P4/Wf+ji20MDnymlVimlbjC3pWutD5i3C4B087aUI+Gvo+VEyo/4qTn081lrWChSXkQQc8jeBIxeEjnPiDYFlRmQc40IQynlVkqtBQoxGrl2AuVa62ZzF/+/v102zMcrgJ4cQpmRIFaIzjdDaz0ROBu4WSl1sv+D2hg3IWnBRauknIh2eAIYAowHDgD/OKpHI45JSql44B3gF1rrSv/H5DwjnDiUGTnXiLC01l6t9XggE6P3dGRXvK8EsYcuH+jndz/T3Ca+5bTW+eb/hcB7GD/og9YwYfP/QnN3KUfCX0fLiZSfbzGt9UGz8uAD/kvL0CspLwIApVQERjDyitb6XXOznGdEWE5lRs41oj201uXAAuBEjOkIHvMh/7+/XTbMx5OAEg6hzEgQe+hWAMPM7FuRGJOTPzjKxySOMqVUnFIqwboNnAlsxCgbVkbHa4D3zdsfAD8ws0JOAyr8hnmJb5+OlpO5wJlKqRRzeNeZ5jbxLRA0f/5CjHMNGOXlCjML5CBgGLAcuW59q5jzzJ4BtmitH/J7SM4zwlG4MiPnGhGOUipNKZVs3o4BzsCYS70AuMTcLfg8Y51/LgG+MEeEhCtLYXlae1CEp7VuVkr9FONE7gae1VpvOsqHJY6+dOA94zqAB3hVa/2pUmoF8KZS6jpgD3CZuf8cjIyQOUAtcG3XH7I4GpRSrwFZQKpSKg+4C3iQDpQTrXWpUuo+jAoDwL1a6/Ym/xHdSJjykqWUGo8xHDQX+D8ArfUmpdSbwGagGbhZa+01X0euW98e04HvAxvM+WoAv0POMyK8cGXmSjnXiDD6AC8opdwYnaNvaq0/UkptBl5XSt0PrMFoHMH8/yWlVA5GssIroPWyFI4y0xoLIYQQQgghhBDHPBlOLIQQQgghhBCi25AgVgghhBBCCCFEtyFBrBBCCCGEEEKIbuOYTuyUmpqqBw4ceLQPo1U1NTXExcUd7cMQ3YiUGdFRUmZER0mZER0lZUZ0lJQZ0VHhysyqVauKtdZpHXmtYzqIHThwICtXrjzah9Gq7OxssrKyjvZhiG5EyozoKCkzoqOkzIiOkjIjOkrKjOiocGVGKbWno68lw4mFEEIIIYQQQnQbEsQKIYQQQgghhOg2JIgVQgghhBBCCNFtSBArhBBCCCGEEKLbkCBWCCGEEEIIIUS3IUGsEEIco2oamo/2IQghhBBCHHMkiBVCiGPQ6r1lHH/XXOZvOXi0D+WYdP0LKxl4+8cUVTUc7UMRQgghRBeTIFYIIY6SyffP4/vPLAvZ/vryvVz0+GIAlu8u7erD6hbmmcH9lAfm4fNpx32avD4G3v4xb6zY2+brae38GkIIIYQ49kgQK4QQR0lxdQNf7SgO2X77uxvs29ERbsfnFlU1SOBlqqp3Hna9v7wOgH/Nz3F8/MN1+9lbUsuBijoG3TGHD9ftP2LHKIQQQojOI0GsEEIcw2IjQ4PY7QermPLAPAbdMYfnFu0+Ckd1bKlpDA1itda8uzofgL7J0Y7Pu+W1NZz58JfsLakF6PLvMqewGm+YXmQhhBBChCdBrBBCdLHFO4updQi8AAqr6gPuOwWxe8ygC+DJL3d27sF1Qz9/fQ0NzV77/tJdJTz4yVYemb8DgJ5xUWGfW9/k48aXVwFQUtN4ZA/UT25xDac/9CX/+Gxbl72nEEII8U0hQawQQnShwqp6rvrvMi59com9rbjaSE6UW1zD1AfmB+zvNJw4ytNy6m7yap5auJMmr+8IHfGxb0VuGYtzSuz7Vzy1lP8s3GXfT4zxtPr8stomALpydPbu4hoAVuaWdd2bBnn6q13c/9HmTnmt7QerGHj7x2w5UNkpryeEEEK0RoJYIYToQlagtGl/S2X/yWyjN3VrQWgAENVGEFta08if5mzlrZV5nXyk4S3bVULzMRY0txbEJ0RHhGxzmk8c6em6S+K1z68AYHluKQcr69vY+8i4/+MtPP31bpbvLuWrHUVh9/P6dNjkWV6f5vlFu/nfGmPo9icbDhyRYxVCCCH8SRArhBBdyOcQPFkBmFNPYHuDreBhyMHW55Wzr7S21X3aY+2+ci5/ain/nLf9sF/rcES6A7+DxxY4J28C8LhVyDanmCyqjSB29d4ynv368OfNBjcAzDnKgd9l/1nC959ZHrJ9a0ElA2//mCG/m8PFTy52fO47q/K4+8PNPG42xCgV+l0LIYQQnU2CWCGE6EJOiXxiIo3hrk59XU5Br5NwWYwB6pu8fPffi/jxiyvb9VqtKTbXZV2+u5TVe4/eUFhv0PfichnBU32TN2Rfp15E63s9dWQve1tbPbEXPb6Yez/azIa8ig4fr7+ahsBjdOopPhreX5sfcP+VpS1LE63ZW+74nA35gd+FS4JYIYQQXUCCWCGE6EI+v064bffPJtLjQpvhq3/AOrF/csj+9ms4xLWtZbmtrDPmfG4tqOr4AQd5fnEuYMxDvejxxeSby9h0Ja11yOeNjzIaAvyX20mNjyQ+yuP4fVnf9aQBKfa2cMFkUVWDPW8Z4Dv//vqQjx2gqqHpsJ5/pPz89bX27drGZhZsK2zzOS8t3RNw39VKDLt4ZzHVDc4JzYQQQoiOkCBWCCG6ULMZlf7unJFEedy4VMswYv/OxVF9E4HQHkdjP4eexVaC2KpODBy+zglc13ZtmB66Iyn4o07sn2x/d/49sVdN7Y9SzgG+tb9LKXIfPJfj+yYSESYCm/LAPCbfP69Tjh1Ce2JrjsHAbtSdc8kr63gDhSvMd1hYaSQ0++Ubaw/zyAwHK+v59VvrqG/yynrJQgjxLSRBrBBCdCGrB7B3UgwACmVXwq2q+J3njeL/Th5ibHOooFtBWUK0h3PH9gGguZUgttqvd7KzsxgXVdXz4pJcx2G8R0pwUKqUsnuzra/rLxeP4dYzhuN2Keeg39xmxVxul3JsMDgSqoN6Yu/+cBO1jc386s11HKjoup7t0RmJAfcnmL3/HeEJClqbvc7fYU2jUT46YzQAwF8/3cZbq/IY+cdPGXTHnICeciGEEN98EsQKIcRhWLKzhKr69g8PtWJItzl3MLAn1rhxyog0IszERc5DYY3/n/r+ZB67aiKuML2NxvtprnthhX1/3b7ydh9rezy1cBd3vr+JZzoh4VF7WQHolIEpPH/tlIDv0Hoswu1CKYVLOQenPr+eWDCD2FYaAjpTfnlgEi6t4Z3V+byzOo8T//wFOYXVXXIcEW5XwHBq/6HY7TW0V3zA/fI657V2dVCjweFKiA5cNmny/fN4aqGsmSyEEN8WEsQKIcQhKq9t5Mr/LuVnr61p93Os4cRuszavlLIDKivWUrRU9p0Cq470Im7aX0FxdUtgUXCYy7lMGZgScH9/RX3Y4zxSrPc6/bh0skb0QqHs78Q6CpfdSKBanRNr5SFyq64LYnPNNWIBrjqhPz3jItnvN7f4p6+u7pLj8Po08VEerpjSj8GpcQGNMbGRbq6fMYh3f3ISAOP6JYd9DX/hEkA1ea3vu3Oi2KSY0PnLf5qztVNeWwghxLFPglghRKfakFfBwNs/ZmP+4WVw7Q7Kao1K/4JtRQy8/WNK2jGk0UrU1BLE0jIUFis4VfbcwtaGwlqv0VovYm6JsazO9TMGAVDbcHjDfhUtQcjg1Dj79vrDzNjbEd6gz68cemKtWMmlwmQn9rV812DM5eyqILamsaXHMyU2gpKaRrYcaFkj2Glt4CPB69N4XIoHLx7LiUN6Bnx+rY3vZGL/FKYMTCE2zDH5JyM7d0yfsPN7a83PvLu4plPmsKbEHhsZnYUQQhwdEsQKITrVnI3GmpfZ7chs2t2V1QYOnWxPINcSgBn3FX4BmBngKtUSXLU2nNjq1fK4XM49tj5t9xJfawax/gHUofAPWpL9Aol5Ww7y3pq8Q37dqvomlu0qade+Xm/4IFbrwB4/t0s5LlNkfV12Q4By3u9IsN7ms1tPJiU2EoDsbUX242nxkV1yHF6fthtLlAosaz6t/RoCwn83Pm300n7w0+mtNqZc8uQS+/bf5m477GOPi/K0vZMQQohvLAlihRCdqrHZiMTaWnPzm8B/WCgA7Rgp6Q3qAVQqNLGTQrU+nNh+Dez/nfbzT/aUFh8FQG3j4fXE+rRmeHo87988nfK6wLnA//hs+yG9ZpPXx5i7P+Pyp5a2a1kXaz1T/3mtwYmdXH4BmFMuK8ch2W30xAYnMTpU1jDe4ekJDE6LC3k8LSGqU96nLT6t/eZmBybA0rql1721INbr0wzqGcvYzGQ8LhU2wZj/d/t49k4qOzCP3InkIxZCdLZmr48//G8DOYWdk4BOHFnf/FqmEKLTNTR7eWPF3oBhmrWNzewqqraD2ChP+CGRzV4fLy7Jtfftrlbklnb4OVZl3uMyTr8u1VIh135DYa0eMudexMCeSI/bZc+1ddoPjEaFCLc67OVcfNrIrDyuXzInDekZ8FheWR2lNc6JfcK+nk9z3B8/te9f+9yKVvY23P3hZgAqzCDavxcxOGGTy9X6kGzVjsROidEeRvVJ5M0bTwQgOuLwLp3+vZxD0uJDHk+O7XhPbF5ZLbe+sZbrX1hJYVX75j17fdouQ8FzhzW6XQG+f29uR5Jjjb37s3btF064IcnH4nJFQojuYUVuGS8v3cvdH2w+7NfaWVTNwNs/ZlHQsnSi8xx2EKuUciul1iilPjLvD1JKLVNK5Sil3lBKRZrbo8z7OebjAw/3vYUQXa+kuoERf/iU376zgQ/X77e33/bWOk79x5dUm5VIK7uukzdX5nV5RttD8fH6A3zn0a/DVpibgpYTqW9HL6fdE2sNJ/br5bITO/kNJ3Z66+DeXCN4CN3Peu5PZw0FIDbSc9iVfK1bgpu7v3M8C389K+DxL7e39KTmFtdQ18Z3kltSE9B715EefKsRxX+ZIjs4NfcJl51YBwW7rSXHSoiO4Lg+iUzsn8IZo9IZlBoaeHaEzy94TI4JDVgPZVTz3+du4701+czbcpB7PmxfBcynA9d19W/08OnA+cLhYlP/3lyPW3X6Ek7hhDue4++ayyvL9sjasUKIDsstMUZXpbYypWPe5oOt9tQ2NHtpaPayZKcxPeaj9Qc69yCFrTN6Yn8ObPG7/xfgn1rroUAZcJ25/TqgzNz+T3M/IUQ3s9ZviRb/rLeb9huJaTab/8/fcjDsa1hzSb/cXshjC3KOwFEeHq019U1ebn1jLRvyK6iscw78gntJb3ql7ayydi+q0xI7tPQO2sOJ27M8jFJ4W+mJTYwx5g9GuMMP92wv/+DG43bRv2dswOOJ0cY82Wavj6y/Z3NLG5mbg5d1GZeZ1O5jaTQDJhXQm425zX+uq9PnCB6S7dwQYLxmS8+pInwvYHv5f4fBS8UAjn/Ltvj33pa1szfc69O4/T6//xjdwDmxziMC7NdoR09s8Jq0h8s6nutnDOLUkb0CHvv9exvZmF/p9DQhhAhrm7mO9f/W7mfKA/NCHtdac/2LKznr4a/CvsbMvyzgxD9/YZ8LI9wq7L7i8BxWEKuUygTOBZ427yvgVOBtc5cXgAvM2+eb9zEfP011Vq59IUSX0Fpz3Qsr7fv+w4HHm0twbDtoXATmby1kX2lt2NcBWLqrlL/N3UZ9U/jeuqW7Srj7g02He+gd8re52xj5x0/tICncsjRO9fq2Ahzrwua2e8BCl9hxBSR2cupFDOzNDdcT2xKohb7XofL59cRarj6hPz871ejttXrirB75hduLaE11UM/witwyx2zCllq/xFQNZrnxX6YoODhV4bITh/TEOu8HRmznH+webiefV+uAXk7Lw5ePJyHKEzaYDmdrQSXPL8617ze0c5h+aGKnoDmxAY0k4RM7Wa/hcbnCNpL0SzEaOy6emMnNs4b4lf9DY73N/50yhAcuHB3y+J7SmpBtQgjRmoKKlmt9UVXgagPvr83nR88b011amzZRWNVAaU0j76w2Eh0e7rlOhHe4PbEPA78BrCtmT6Bca23VMvKADPN2BrAPwHy8wtxfCNFNBFeO//LpVjaYGXkzkmNC9g9XoQ3enFfmHOw2e31c8dRSnl+c2+aw1M70xop9AfffXLnPcT+nANPp4ub1ad5auY8lO0t4dpExhLplLiJYXWB21mFU68OJg4LT0ppGPt9c4HB8gff93+tQ+fyCG8sDF47hu+ONU32jOcTa6mFt9PpY3MqcoOCeWICtBeGHaq31W4fUKo8uvxTPIT2x4bITW0OR27HWrk9rO8lRcLB3KLTWBI+2j3ArLpiQgdvt3KvemuC1Wds7ZDwwsRN+jSnBDQGtDyduz9xZn9aM7J3APy4b1ymZoP2PsU9SDLeYjSiW4qq2l7sSQgh/wdn7f/LKKvv2z19fywK/LPJzNoQOE/ZvCLVWK+ishIAi1CHnqFdKnQcUaq1XKaWyOuuAlFI3ADcApKenk52d3VkvfURUV1cf88coji3ducxUNYZWPD9cuIKSvh5y94QOYVyxfBl7YkPbyjZsD6xgfv7VcvJ6hiaCuu3LluD2w3lf0svhtY6E6vrAz7J5116ys0Oz5hYUhPbQLvjySyKCLlqf72nilS2Br7l2zWoqdrlpbGwkf/8BsrNL2bbXSFS0ZMliEiON18jZuYsBvRsDyszGA8aFduWKFeyPd1HX5KWuCeZ/sSCg1bemyfh77dq5k2zvXpr83utQVVXVUuqrCSnDhbVG4LVh4yYSy7bz5raWz3vV08u4ZUIUk9JDLzkr80Oz1C5fsYLCpMDy4NOalzY3smBfSyVjT/5+srNLKS2tp7JBk52dza4Ko7Fj08YNRBRuobamloO6Luzxbt+2lezqnZQU1VNV7eP59+dTWKuZ2qflWOsbGikoML63oqJ6amp8h/UbzstvoKnRa7/GAzNiiPNAdnY23uYm9uXlk51tBP4ldT7e2t7IyZkRjHL4jQDkFwRWvPJKqqiu1mGPsbJB0+jT1NU3cPBgAdnZZeTlNeL1GsdkBZh7cnPJzt5PWWk9VWE+c0NjIwf27yc7u4T9+Y00NjU77ldYVE9NnXFMe/Y0ojUsWLAgpEGkvbbtMX8rixcTH6k4mBf4+1qzeQcDm/Yc0mt/W3Xna5M4Or5pZeZAUV3A/TkbCsJ+vnv/t4bYksDlwpocGvH25+U51h8A9lf78GnITOjcuk2ueR0cmOR8zTiaOrPMHM5Ca9OB7yqlzgGigUTgESBZKeUxe1szgXxz/3ygH5CnlPIASUDIooBa66eApwAmT56ss7KyDuMQj7zs7GyO9WMUx5buXGbyymrhiwUB20YfP4qscX1ZUrcFdu8KeGzSlKkh2VcLq+r5/NP5AdvGjB3HjGGpIe9X/OnH9u3fLKzjpeumMnNY2uF+DK5/YSWnHdeLK6f2d3z85L0r+Xxzy5xed2wKWVknhOz31v7VDPZW8sfzRrF5fyV/m7uN6TNmEhsZeGpdMmcLbAn8bqZMnszojCSiF8+nd+9UsrLGkbd0D2zeyPTpJxlL4nw2hwEDBxLv2R9QZsrX5MO6tUw7YSqD0+LB/J6mnDTDnpMK5tzI+Z8zfNhQsqYPImbJfNLTjfc6VLFrvqRXWjxZWZMCtu8vr4OFXzBk2Aiypvbnh35/O4BH1zSw9b5ZREcEXlT3LsmFDZt4+PLxrN5bxotL9jBuwkQm9E8J2G/ZrhIWzF0asO17WePIGtuHF3NX4KuqJytrJsn7ymHJIsaNHUvWyF4krvuKHskxZGVNDnju7uIaWJjN8aNGkTUhg/8VrOFAYzl3LzEaTn5z5en2vhFfzyMjI52srDG8tX81pb7Kw/oNf1i4jl01JY6vEbNoHul9epGVNRaAgbcb3+PSA14ev3oi54zpE/KciJxi/r12mX2/ugkiY+IcX7+2sZlRd84FoGdcJP0yepOVNcb4/e7LJSsri2avD+Z+wuBBg8jKGsab+auoPFhNVtYpIa/nWjCX/v0yyco6nuX1W9F7dxHZbzQPfLyF934y3U7U9fKeFTSUG3+jtc3bYecOTjklK2A4dUfs+no3bNnMzBkzSIqNYJdnN2xvSWiV3KsvWVmhw4yPlGavj3dW53HxxEw8rSS1c1JS3cDTX+/m1tOHH9WlybrztUkcHd+0MvPnNQuBlpFApx+XTlbWZGPq1KefBOyblpxIVtaMgG21jc3w2dyAbYMHDSAra0TIezU0exnxByMzf+6D5x72se8rrWVXcQ2nDE+zrxud8bqdrTPLzCGfLbXWd2itM7XWA4ErgC+01lcDC4BLzN2uAd43b39g3sd8/Ast6QOF6FachvTqoGGc/pq9oRutxE/+mhyGTzqdHv7z5a6QbR3x0fr9fLBuP/O2HOSOdzdw+zvrHfcLHv4TPDfG/xjdSjFrRC8izYqr03DKxJiIkG3+w4l10DBOhbJ7qFpLShQ816amoZnvPPo1t721LmC/lnmPzsNCw81dduKflMiflY3aaomOiwxtAXaa+2yVkawRaZx+XDrg/B3WO8zzPHesEdD5f4ctS+cY912uwOG/eWW1fLhuv8N+gUNhP93YMlRMa21nO+6EEdlGhucwV9/WhuT+pB2Jw/56iRH87ix3HpL81so8+7ZXBy6xg/0dGv/7l5twQ629/tmJzXVif//eRjbtryS/vKVXw5g7S8t7cXhfo/33M1+zZ1A20eA1jI+0t1bl8dt3NgTMTW6vn72+hieydwYkzRNCdL2axmamDEwJ2R6cuwGMbOzBglcsgJbl9IL9a/4O+/ahLNcXbPbDC7nm2eV2AAuBOSS+iY5Ek99vgV8qpXIw5rw+Y25/Buhpbv8lcPsReG8hxBFU6xDEtiwPE3rydlq7tMQvo/FvZ48EwOtw4ndKThNcUe2on766hp/5Zct93W/ua1lNo33CD75g1TaFyU7sC1yixdoWzOm78TgEltZeAVlh25GUyPKdR79mQ34Fb6/KC9jPCoiNOCXw9T5Yt5+Zf13Q7rXs/LPW+rOC+IKKOlbvLSMrKGMsQH1T+AzKSin7O3EK4oLnUJ4b0COpQuZzBmYnbnnuRY8v5pbX1oQuU6RUQNB148urWxpo/PZzKXW4MWxA4BfM7WrJIN3skOGpvDZ02L71+Sb0T+bEwUaqiaI65yDWv+HD6/NLMOU31zf4u3YrFTbpVWB2Yhdat/z9/Mu91oHv5fQ+HRG8RNK4zGTAOKcMSYtzbEA7kqwGvj0l7W8QshysNBrJGpt9fLz+QIfXWhZCdI6ahmYyU1oy7lvnsKr60EYxp+uZde6757vH8++rJpjbnM/FB/ySSF365JLDXv6uxqF+VtfodTz2b4pOCWK11tla6/PM27u01lO11kO11pdqrRvM7fXm/aHm44fXpSKE6HJOQaxVz/Zpo/ftkSvG8/Dl4wHnnlj/AOWU4cbQYKcEUE69vj3iDi+IdfLUwp1sLahkwn2fM+rOuazILaWqvjkgLb7TxQoCAzqrIu8UuDvV//2zwlqBZXDF3BUmAU5wUiKL/5JHxusFJuhxyqy7ymwB3n4wfDKlwNd07om1WqUfW7CTix5fbGcO9tfQHL4RxO1S9nfoFMT6B0SnjuzFY1dPtO8bPbHB36HxvwrKrFto9qpbFYaW5YJCP5NVLv3/zp2R2ClcbzaYiajM9/3H59tDHv9qR2hjg/X5/nDuKLtHPFwiJv/h3HWNXvs7V4SWNf8GmlYTO7kCv0Mr+K7zKwP+CcFaRhkc+vcYnIV6YGocS+44lRtOHtxqb/aRYi2VFFxhzCms4sLHF1HZSkUyOsL4m33vmWXc/OpqLn1y8ZE70CArckvZVVTdZe8nRFdat6+cjfkV7d6/ptFLr8Qo+751nrEa1c86Pp25vzgZwLHH1jr3uV2K88b2JdLjoiFMuvngc5TTuf1wfbKxgDF3f8ayXSGzN78Rjt7kCyHEMUFrzZq9Ze3at86vR/LO80YBG2Ub1wAAcJxJREFU/j2xRqX3/PEZpJjBplNwam177odTWiq9DoFfnUMQ5JQBuSMSokLTAPxpzlZm+635dumTS1i7r5xZI3qx5I5TOW9sH+qbvDy2IMcepmvxD0asirzTsEtr01i/NVAjzCFGymkorLmPyxXYwzjw9o/505wtIcOJL5yQgZPgHlun9T6t4b/tzaDotMQOtAwntlSYwzl7J0bb25x7Yo3/3Ur5NQQ4Be7G/+eO7cPjfgEsBH+Hxv/WZ95xsIqvdhSH9IZX20Gs8/GDf49iUE/sYcZHPr+lbYL598R+ujE043RKbGhDjnU8bpeyh+yGi+H8f1fNPh04rN06PodlilpdYieoIccqUze8uMpvPx3wev7HfSicRiP0SYoxvoNWhj8fKb9+25iasN+vd+W9NXmc/tBC1uwt56HPtvPOqjzH50Z7Aofe7yyqcRy94fXpTu+lvfTJJZz6jy879TWF6AoFFfUBuSucnP/YIs579Ot2vV6T10djs4/4SA/PXTuFtIQo+zxjnf8uGJ/BiN4JREe4QvI7QMu1y7qeRrpdNDU7n4veX7s/4L7VmNWZXlu+F2jJlPxNI0GsEN9S76/N59ONB3h1+V4ufHyxY7p4gI35FSzYZmTWs3pi/3Duccwe3Rto6QHzaW1HX9YJ3Gk4pDW0ZkxmUqs9b/6V7Qn9kwNe91B1pGIbH+WhT1IMmSmxNDT7+NvcbfYwXYv/3Ebr2JxGDllBwfs3T7e3JccZ82SNoCiwF9Gqlzc2+yisMirFa8z5ck8t3BWyxM6PZw4OeL9+PWIC3re1pVKsodztTUbj8xsW6i94QfcVuWX0SYq2e9uhpSd28/5K+7b1t1eKVsuD9VluOmVISOVBoeze7OCGAGuI1aA75jDqzk/t51g9sVavYKTD53caXquC7u8tqWX8vZ/x9Y5iPtsUGnQ6CdcQAIHDn3slRIU83ugN35vtUi3zr8KNpg0esrbS7IlXZnCutfYbht5yTOFSWHh9gXNioWWtYP/h2cENAda2QxU8p9mff292V/jlm2vt23l+88tvfaOl0ev5xbn8KqgRzNJaZdjfg59sYeJ9nx+RXhWtNW9vb2RHO0dkCHG0XfT4In784so212Zvr9oG49waG+Vh1oheZKbE2OcZe/qJeY6LcLns85w/az/rehrpcTmes53UNHT+MoKbzBwk+yvq2tize5IgVohvqZ+/vpYbX17N79/bCIRfm/O8R7/m2udW4PNpO4g96/jedkXUv67lCqrMOgUjVuIDj0vZvZFOw46t4cTjMpN47odTgMPOp9OhIYZRZqtodITLyExoyi2usW/7B3RWRd6pVzl4nia09AobQZG5n/mY/37vrs5nT6WXix5vGWJYXmv0clrvPaRXXMD7WWua+oLeV6nAYblV9U0UVTfYx9EePl/oOrHWewQHsgcq6hnaqyU79WebDpJfXsc5//qK+z4yMslax+N2qZYArJV5wE5Bi8vlnxyr5XiC+Q+Hf/CTrcZzzd1aq5DgF4BZwZ7llWV7KK9t4nvPLOOGl1bZDT6t8Z+LGsztUhRWNjBnwwGW7Q5N9tHoMFfcv1fSnpvtUNQbmr3257Zcc9JA83MZ961A1no963+nBiCrt10F/e6t8gmwzTyv+AfuwXNi31+bz6/edA7wwgk+Rn+trfnb2Tbtr+Dd1fn2facRJG1x6oFx+g18ZvY6Xf7UUtZ1QhIo/0Rrpz30JR/tauL6F1ce9usK0RWsUQ/tua5vCNMTuXZfOQNv/5jdxTVUmzkx4qOMRiX/UTf2aBe/6SdO9RbrOuLfE+t0znby4pLcdu0XjtXYP31oT2Yf3zvgsc44XxyLJIgV4htq7b7ydifrAef5iv52FdfYgWVspDukIuo/b9AaJuy0Zpp1wXG7FO5WhhNbF4NfnDG81Uy9HeHTmhMH9+S6GYO4bHJmq/tan3V/eWALZtbfs+1eHv95fq5WemI1hPS8+c8PtD6WDtO7dNfiwPVo/zbXWJvOes0oj5u/mVlprc9pvB7mfs5DYc9+5Cu+2GoEXS8v2xN64A50K72ITpkZr5sxiDvONhJ4/XtBDtMf/AKAjflGC7EVO7pUy1BYp14oK8R3Clr853MGzwMOJ9dMwGO9XqPDsVuHETwU1r8hoKAy8G9z7XMrWn9jWp8TC7ByT1lIJuLXb5gW9jiderOdvsKqeqOSlp4YxZI7TuWl66Zy/nhjKLp/xuDghGBG5ubQ17v1jbVAS2v/br8GHstOc76lcX5omX9rbQOjQe2d1Xkd6lEJl9zM2tZVc2LzywLPD055A9ri9BmcfgP+I1HOf2xRh98nmH9jw66imrDHIsSxZGN+BVsOtKxy4HTdqahr4sqnWpZk2xsmA/9ry4zhtrP+ns0bZqLHOLOB2X/6jT36yRp55XY51lv86zdg9MQ6HR8Yo72g5Xrv1GjZEQN6xNK/RyyvXD+Ny6f0C3hs84HKLs8T0BUkiBXiG+aVZXv45+fbueCxRVz99LK2n2BqCJO8yJqHuiG/3B5yHBvpCQks/YcLtvSohb5my5wRV8uw41aGj7qU8uslOryTsNenmTQghT+eN8pxCJ8/K0mS0xw0q9LuH9zYvc9OiZj8emz/fuk4rp8xyH7MPyiyexHb+Xn8K5yXTm65aLUE2YEBXfCc2Dy/CvjG/MqQgN1JawHYsF6BawI/fvVEXC7FSUNC1wCOM1u7HYfCdiAjM1jJsQL3s8qnf3DvxKpsjEiPD3kssLHCev/AEQHOAXfrfFoHZAn2F25ERJK5TNOv31oXsIQCBPdmt14OAW45dRh9kmIC1lxWfvu0LPWE+brOvz1rWKtVmTvfYW62lYzNf+6s/XsO2reyvv3ZOYPLtj8jEVXXVNiCl/JpaPbZPZxWz0jwCIVgTuXdKWN78LztEX/4xFgL+hA5Lb8hIaw41p336Nec/UhLHgunJfoenb+DJX7D7m9+dbVjQ32U3yiI577eDbQEscpvakdwNvsIl3IMTq3rgfWbj3CrsD2xUeaa0HeeN4qM5BjHRFEd4dX+jZiBx1bf5HNsZOzuJIgVogNW7Sll4O0fsz6v/GgfSli/f28jj/itP9ZeZQ5LdwBkphhB7K1vrLNbCqMjXHbl0X9ObEul15ob59RrZA63cbe1pIr5Wkp1yhw6a66f1WNqXUCcnDkqnV+eOdy8F1qts4YMBszzsz+L83BPq+J+yaRM/mAmxbJe3R6yFNTb+I9Lx7X6mYKTA2WNSLPfz/9/O7OuX4+lUwW2PUljvDr8GqcPXjzGvv3k9yZxjrkMzoDU2JB9YyM95jEaPfjKbyhsawGYU9DiP8S35Ts07ke10VhhfTc/OHEg7/3kJHIeOJt7vnt8wHFoWhohgrP4OgUbbTGGE3fsOVYQ67T0VHuHE/v8er2DufwqP8EZnl1KUVLTyK6ian733gbOeOhL8spq7fnG1jzbif1TGNgz8G9t/cYDl9gxtwV9lNeX7+Xj9Qfa1VgV3Fjhz92FPbFWEHn++L78aLrROGVlIvZpIwP75AE9Wn0N5wR4oX/n4CC2odlHcbXzGtbt4fQd7Squ4c73N1Jc3dDuYZDi2KC15hevr2Hh9qKjfShdymlYb6zDOuVOWYr9cyFUmeex9AQjGaHR6Gs8FpxM0e12PsdYx+J2WXNi3Y7nbDCuPVed0J9rpw+if49Ye4TKofL5XVdmjejFOWN6258DjN7YbxoJYoXAOLm1J1mGNfRywdYi7vlwU7uz+nYVp8qfU4ZTJ4WVzpWheIeMvsovsLR6qzQtFUqrsuV4kreG26iWOZBNXs2zX+8mp7ClF6ql5bNz1pX0D4rBWJLD8uuzRgBGhfOLX53CUz+YzMT+RqvoPecfH/JaXruHruWiYb2u07BLrZ0r22CtO9rS4wctgdXxGYkB+6bGByb6CU509fy1U7lyar+W4Cto3qB/Ft+dhaGtskXtqBD7ByPBrOObNSLNTvwFkBgdwa/PGsGfLmwJcq2WaqfEQOEaAozP4DSc2L8xJXA/a91Uy1Un9A/oMfZvhJjQPwWP2+W35q/fa1oBnSuwMSV7e9tzYEM/S/jsxOEEjxworKoPTKqG8TuxvkvHINauiIU+5j8n1n498xitIbKn/uNLXl22lx2F1cz4ywL7udV+CUkeunw8vz5rBP/5/qSA4wjuzfY/HsufP9nKza+uZnk7htW1Nqzd5Qoc1l9Rd+TWSayqb8al4OHLxzPM7M233tuqVN5rnkPiHCrWEKYn1mk4sUOP7uHE6uHmDb+4ZA+T75/HT19d7fi4ODY1NPv439r9/ODZ5Uf7UI6YbIecA04JJJ2yzcdHRYRsi3RozO6dZAWxLQntfL7Aa6mV2ElrzeyHF9qZx5v9Gumt13fKtwDGb9dtX38Cz4fXPrecP/5vo+PzwvFfs9vlUjx02XhG9k7gmR9OYfrQnsS20aDbHUkQK76VDlTU8Yf/bbBPfuc9+jWXP7WUoqrWK/GRbuMkUFnfxHOLcrnsP0uO+LEGyymsYvL98yioqA95zKmy9nGYrMP+eidGhwyLs4SbImWdzK1GUK1D10z9akdoi/DD84xeYpffnNiq+ibu/Wgzpz+00O4htC8aLuU3h67NjxJWy1wV4/6pI3vZj43snWAf9+C0wGGlGckxpMYbQyLHmUvk+AexVrDU1hqn4SrcSrVUeluGExs79w1aUsgKDAA+u/Vke9iTv4ALb1BA5/LLTuy0bmVlOyr7rQ0nHtAzjkeuGM+/rpwQ8tjNs4Zy1Qn9efm6EwAY2DMu5PXsJXbMQvV4dg6r9hgBTbj5wsbnCm0xt/ZLS4iif4+W3sGM5Bg+vGUGybEt2aGDhfQIB3zmlu+wuqE5ZNmgwWmBSbachMvwDMbftW9Sy7JEV07tz5Z7Z4dUtqY+MJ85Gwrs1wOzccllDL+3fpcHK+vtc0Vwoi9/Vpkzglhrm2FxG3Pr0/3WVZzYP4WbZw21100NbPCxGlOch7xZws0h89fad+if2GlbQRXj7vmMd1c7L28T+t4+rnxqKX+esyUgiZs/rbWdNbyh2UuUx2027BmPW+9tVSqHpSdww8mDw56/nHpdnXpnnSrmh9Ow11Zv9WdtLF8iji3+5++tBd+sXjetNY/M28EPHXIOOOXecCraTr+zqKDlrSI9LlL8rg32EjtBDcJWYqfCqga2FlTxm3fWm+9h7NeS2KllOHFRVQMVfvPQ/UfkBK8Jv2BbES8t3RP6IVoRfE6MjnDz6S9OZtaIXrxy/TROH5XeodfrDiSIFd9Kv35rPS8v3cuK3MCe1CkPzOOaZ5eHrbxEeIwThJXMpT2Vrc727KJciqsb+GxzSw9rXaOXO95dz7/m54Tsbw3ve2FxLvv8khtY63duu382kwem0BgmsVO4io4yzx7+8zmD57y9tnxfq5/FOtEfKG8JyM//t5GwxO45dfnNiT2M/MTBvUt9kloCxBFmEPudcX0cn2vNj+1lfmdevyAxeI1Mr0+zv7wuIPOnMdS67Z5Y63/r8yZGR5D74LkMSnKZ+8LvzzmOyQNSGJ6eEPb1WuYpBw6t9Z9/a/1dh/aK5/vTBgRsAyNTolOPWGvLwwCcPz6DhOjQFm/LiUOMnlGr8uDzG57sP5/nYGU9f/10G//30mrzs7R8vmDK7zvEYb+PfjaDr34ziz+cexw/mj6I6Ai3/fd3ioNaetX9GiuwXrflTZocholNC+r5zS+vC2lc8vla3iPY8PQEhvn9bRNjPMREuh3nVW4raJmb7X/cHlfL8OoT/jSfaX+eD7T+Hbr8fmPB2bTv+m7oaATLuH7JPHz5+JDt1rH4nx9aGlOs9zIED/0Ll4TFX2uNKf6JnazX+uWb66hpaA7bK6K15u4PNnH108tYsquE/yzcFXZ9yXdW5zP1gflszK+gsdlnNzDYwblDI1dryaa8Pk1aQhR/OPe4gG2hB9ly02pQO6zRKTJa+BvF/zwz++GvQhq6m7w+bnxpVbtGOhxrthyo4p/ztjs+5riUn8PvwmnYcXDjYGOzLyCbv5240nwL6xrlcRmJnayEaP3MaVfzthwM2C/S42LJrhLu+XATUx6Yx6x/ZNvv5T8iRykVdlm0Tzce4EA7lshprWHvm0qCWPGtVG3OfXBa2uDL7UX87PU1js+z5k98vL7t3k0wehjbs+RGR1jBUbRfC+J7a/J5bfk+nl20O2Bft0tRVttIRW0Td32wiZl/XRAQ2FwyKZMoj5sojzukR8kSrrG+Zdiif0Xf2Jbmt77l68v3cu+HgcupWKwg9o2VLcHujkIjm6nX7zid5sQerKynyqE3MRy7J9bvJP/BT6fz8nUnkJkSy84/ncOFE1rPWGx9Lmu4q//QWquTxKs1Jz34Bde/0LJUhX+A78Q/ORaEBlYDE40XT46N5McnD+btm04K+1ou5R98Wdv8e2IDh6D+5eKx9jqz/n/rO9/f5DjSwOfTjj157RXcW+VzGE68cHsxJ/zJCLwSo1vmzvo/35//MGmn/RKjI+jXI5brZw4mxgyYrB7Tg5WhIxqsioVfR2zAkOzgXt/zxrY0fgSvTzr9wS84++GFAdu8fqMWnFg9bkN7xXPLqcMA53VssYMm87j9AyaH363/EP1g/ktm6aBtZ/kt1/CdcX0Dnnf/+aNJjo0Mfb2g3mz/0QjBPbHWfN8RZvD+u/c2hB5gEF8r36F/YierRxjg+Lvm8vMw5/baRi/PLw5suKlucE40tXy3MfVkQ34Fjd6WINYddJ7y6cCy7dQTBEbvzcjeCVw/c7DdIODUE1vjN4893WxQO5xA1Doeay5vsOCh+OLYduf7mwLuW9Ofmr0+Bt7+Mef/exGfbipocwSZ1prFO4vbNTe9rllz6xtrKQ+TU+NQaK1DzqM7CgMT3v14ZkuZ/ftn2/H6dEAQ73TsTr8/p+HEFv8G4eCpGBFuRUOzzx7RlFtSy/A/fMJ/vtxlPm7smFtsNKI9tygXCMw7YUw3MOsPyvmYqxuaufHl1dzw4qqwx2nxH078bSFBrPjWyCms5v9eWsljC3JYa66ZFS5D7fowa4o5Vd7Dneh3FVUz5u7PuPa5FY5Dfw9FXlmtvSah/6GEO28NTYtnT0kt9X69rFYyFq9fBSsqwhU2+YBPa5JjIxhrtvy3vGfgEF//QC0xOoKZw4yMtLe/u4FnF+3m3dV53GuuDWpp7YTrPwfFnkPnd2E74U/zmf3wV05PdeS1L0It7zk2M5kZ5nG2dixf/WYWP8kawsUTjSDXavgNHAprnE4X7zSGXn7tNwSztV6jgKREVg9YUK/tVcdF8vaNJzIote2hqi5XaKDqn53Y+gb9E1VYPaE+v8DS8sPnlvPD55bz/+2dd3jURt7Hv7PF3WBjY4oN2GAIvfe6tEAghdRLcimkN5JLckmO9HoJqZc3uZRLT7hUUslB6Jjei+nGYAw2YJtmcLd3V+8f0kgjabS79rqG+TyPH+9qtdKsNJqZXz98qkRpY3BlOGgCJ6oI8LAJf5SGsi7w9Bn1mZ0YhBEctG2+eGpqN4zrmgDXBQmmz1RBmxP7zLpr0z41pGMcVj02FvFRoTrLGHWNP2Z4/iXJ92Lj+ct64KoBSZj3wEimDIN5/1NKDLPRhdphIzhT7sUnq7J0+7MZv43QTV5J8qkwGGzIoNnLMC5QjOMD+wyw8beUaX3b4stbB3OPxcNXP2QTOxktr9QF2wjPcmOMOaeEK33y8Z93oqzSoyaJszGKLECJeaOJYGzygpg3X3i8knouzaPDizcXZeiUYYlMeEHXNs2UcwTvnTK6Szyeu6S76XNfC3xB42OdIa8H7b7fbpTLyLCJfXwJqEv3FuD6jzcg5fH5fs+59EgVftl2FB+tzPK7b6Dc8OkGXPD0H+r7hbvz8Lfvtqvvh3WMw5NTu+ODv/YHAPyefgx3fLUZfZ5fpCY6Yz0ZXpzWEwDfcy7csAa8lilNY2M9lwzeKZ0SorAq86TOu41NhEaf46M+Mv6z44PRnZjye/oxAIHVn/ZI5mSPf3bECCU4b7jhkw1YuDtfrbFZE3gp2q3KQkxirC+BDED+OFtapUum8uiPO1BUXoXC0kq8u0xzI54xNhWdFCvT8NQ4rMrUrFoAaznVZ+q1qhMrSUCnllGYO2Okbju76KXHYxfaxkX6wz+kq9pI7Rg+hFhmwW1VJ9bXBGE6ntd6Ae+Pdi0i8NjkruqERwUw1hpEj/raAnP/8kqSZe0K1j1Vc/fU7+O0EQxM9p3hVDseMZXYYWvSqjE+1D2KsNmf5Q9Lmf6alnECaRkn4HojTT1msPOkLGRAOafWD3lCAy2BYBTUWNjFhq/9WNo0D8dn0wepJWB07TNZEbUDEpgt53ZC0K5FBEIdNvV3pWUUoPszC9Vj3vHVZvW+eLy+3b4SY8LxxtV9TPFaVDEEaJYA9jfbGEFo/XEPXpq3V/d9VRHAuc5E7QPmBGMsVKmQmhCF3w1jAotR8WRUBLDt9koSwkPsamyt8Z5Ueby6zKIlFW64Pb4SO2lCbKAZdmk7Was6tXYaCWPcn3/dfkwV9ky/yyvpFAuA2U34121HsSP3rOoJw5Yde3fZASzZm6+2jSajW//4eLV8T3AxsbRtNkznWGPLalDzVtAw8FxqaX/k1S5euJuvzKlwe3QJ/nIsXPsPnijWPVu1kQx8R24hRr+2HGsOnNIJnHfN1lshafiBg/FOoVZnmteEJpLb9fwk1cNj1h/7TOekzxste3eDEloDGDyXDJ5cPdvKyjvjGEtp2zycu70TkzOB9cghhHC9Kh7/WfZKaW0xFrHIXk1+d/tTYc4KIhD8SSnhlBShC4rm4c6AMljyXG55i6Qjp0p1g/AvW3Px0MQuNXbDLCgqx+B/LjVtLyytwn9WHtQJc6M6x+PWkSnIPVOKk8UVJsGRlgRh07GH+kgDbyW0GF18JUgG63D1fusdo1Lw8apDWjvVREyaJZbGPbILwY9XZuHSvm0tF5y849UUh5pRV37PWpeKOMqMKo9XdSuytsTqrVXytpq3kVp8AHMMJC8m1mZjknQpv6uE40YpSeYyRTWFzcTIJrfg3RvqNm+M02Rhr6GvuM+A28fENprjion5GlLhjKmnuu1Ioe6Yi/fk4/i5ciTGhNdYYz77tiEorXTDYbNh4r9WqAtXY+Ztqz5u/C0s6jMmmWNiAbncU2FZlZr47KoBSZZWWLYNPCWXdi75v8crf0YIwfBOcTrrqSRJeOLnnZizJRcbnhiP2IgQ9HhWVg5EcxKb0euwL68I9369BZN7muPcd+QWondSjG4bvZeDklsg3GnHnC256NsuxvRdwFxTm8bFGZVBbD1gmsTO7ZXA6iY+VqzlWSflMApjcjNAzsHQNiYcXq+EyBA7WjcPQ0Z+kXIObhMDgh0DAOD2XiHo3q0bMguKsWBXXq0oXwX1A3VTvbB7KzUhV6XyHMVy3P15ug+PV8IFTy3QbdueU4h2LfRls0oq3Bj/5gpc2qctaOBQsDXcH5mTjh+36JOvuT1eOOw2xEWG4BTjhhuhPPe8bN107pIkCaEOG6JCHeoztT2nUF73MAMgHZ9uHZmCm4cn634rK1ga1w+hnFA0ynvX91czHA9OaaELUShhMrlLjDecnJzQvL5Rf7NFZnMW4U4sEDQxCorK0emJ+dhy+Izffa0GbUCLxfJHBWdS5yUKmfnzDt37d5YdUDWFNcFX/U7j7wpx2NAiMkR2lU1tadq/inHjpANemNOGSreXOxGxyUmu6J+IxybL5WiMlhZJMro4BzaY7n5+Ej6/ZRCenCq7s43poq91yrPEZuRp8TH/nL8XQ15eiiOnfCeDUWNsgxjk6W9y62Ji5c9Oc2KC3l9+UGm3D6sRIxSpiZ1q3EJDMgqTO7HZdZlVEtD9eQI5IJdw8BWLGCisuye70HdwCtDSxYKVlRpQ3IlVa7Z+YV6j9jGWWKN7Mjf+lnEJo/0soZm+HBIArD94Chl5RUjPKcTOGtaajghxIMRhg8NGVEWZ8T5bLWR8u2Rr+/AUAVcOSMJtI1MwoEMsfp8xUo2jtkJTjGj3xSomVr+Y0/pGcYUbKY/PxxxlcXuquFKnYPEVEwvIrsO82pBP/mIuXcGGG7x+dR9c0CraMoY13eLeGZVBrKs8/X1frs1G1oliJM+ch8z8IlX5lq+UOKMLczYLKx3/da73jNIBAGavy8Zzc/Uxkf6g15k+dyMTnbiifxL+MbkrurWJFkJsA7E9pxCLLCylVtDYzIv7tFUz79OYbp6rPM9VnLeO4tWPp2ueuenHMP+QfN5gDbFGARYAjp8tR6Xbi9OllXhgfGfV+4CWqnJyBvkzSvZf1tuFTYpXaVivsQkkjcK6jeiVcIA25vCSRFGmMt4cX98+RBe/y45fbBtZqy/PKy48ECFWEomdBIIG5Ys1hzA/gJIwlM3ZZ+DxSvho5UG/+/IWJGopBGaQn8wkMTFSzpnUeZbYUM4EEcyCgJvUBXJikcMG4Y0ty8KbqFThgRlAqdsizxrLZuB965q+uNeVCoAXE6sfQAMZdAEgMtSBsUpcYu+k5iY3ZTpPsVZEXuIXKkRWuD24+bON2GmIa1azCwYxyBtdAtlsgKNS403708yovrIG8txTg5mH9MmbtG3yf0bby7hra4mM5G1WMdwlFe6gY2IBvbsnqyQJD7FjcIrebZo+S74EMLZ2a6AxsT7bxwhgJkssiBZXbEioZGfctWPCzdaPv89JV8MMzpQGV7vUadfqDxot+DSbthGfiZ2YPqC6ZFucu1dSc78af3NMLFNiR9lHtcSyrsaMJ8ExQ7jAlHdW4UNmrLdSSLGWjK85ZSp4bTdaWpwOYpl9/ugZfhiDURnk9bIx8/L/V/7Yh5fnyy6I1/xnnUm5SWPrTzIunVSIZV3vjdf36d9244u12dx2WaEJ7ubP2P4lqF+mvbcGdyoutP9avB/9Xljk9zu0VnNUqF0txUbXJjzLHm/dwnucjF4HxuOVKMOYMRFTbTDqteXYfewsJAlIig1HMyXrfYKSYJFniaUedV6JzdaudXDj7/EdpkJMCkv6HE/rlxjQb3DabWjNuBaX6aoW6ENA6CXkXfNALLHsmu58QQixTQxJktRkIX82th05g+d+34N7v/ZfYP1MSSVyTpeq8Q+8mA8jPFdgdiHdIjIEL07riS5KuRWeVZJ3DN5E3yzcXGLEV9kRf1jFPd379VZdAqGsl6f4dat1q9YbMEKsPBT0fHYhrv5wLe5jitwbhVMKNyaW+ZwtrG3MfmkUVCh2RrgxZhNmJxRapoWFZprOzC/Giv0ncM/XW3DjpxtwQMlq6GvBFijGWrBeryY4JMdH4rPpA3X7d24lu17S+BwecnkYGV8uswG3kZgzKtIbQxgBVxNoiGlBbGVpWravAJUeLzLzi2vcPkCfPdbjlXSKhQcndNbtS92xfce6Mi7UsBbUqtM+QL6/Rg08L/7WzihajPHIVgS71nDYiZrB1utDOJXbp7d8BmyJDeJZMSULk1hlChWYobafdTWm3zEmXQGgZv+0+h0AsICxYpVw5oYOcRG48F8rkDxznmr1MI43Dpu1EOeVJNUaBDB9w+RCLal9g433XrJXFlxZRUaPts1M+1GoNYx1vTeOv5SFu/PwE8eqxf0dPvIEOGw2n9YmQc2odHvxyJx0HDzhfwxdti8f/7c0MyCFV6li4YsIcWhx1aqSiyPEMn37bFkVPF6JmxGbZxXkWXbrqqdc/v5aAHKegO7KM1KhtL0jJ9Eh+5tpt2YtseWG3yP5GBONYS+ANj40D3di45PjA/oNfx3SHneN6YhbRiTrsvLL55X3YT2ojNZiwFzPlgfr1XS+IITYJsYnqw6h+zML1ULrRnYdPYvM/CLuZ42dgiJN8/zrtqOW+0mShH4vLsao15bjWcV9ylcCimOFZaYsnRTWKtkrsTluHNoBTiaxhpEKtwctIkPQMjoUNw3rAIA/4MRwhFjegixQAqlHO314ckCusm5GSKQLrD5K7JfbK2FT9hldCSF28ckix7AxLoHQ75eaEKUe+4kpXXXf/faOody2Gd1M6XkA/eI2ihMLR79Hrcm5Z8qwKvMkXvyfbPUIJrGT2j6uJVb7vLnB+kbbKbtaW1hiGaFIQvDCjY3oXTjlbZoFzCjgsu7EVslwxl4gu3g/+qPsJr/1iNntrDo4dJZYvfA1vFM85s4YgYMvT0FSbLjJ/dm6xqne+lwbZYC8ksTU7lWuIdHO4TG0iRXO/Qmxix8aXeP2AXohy2gloIQ77bi4dxt0UNzkeG7CFDWxEySfwm6g8EpwUUmZJ+CqsaMk8GtY0/Xab9uPYb+iiKExgKpVXTloiN2G4gq3ZTZhNqv1u9f1U9qjKT/ofmrf8KM9++GuYfJ+nB9F3ULZRaoxiRTlrtlb8Pc56XhtgTmJDe93WJ3TaSdN1hJ75FSpzxCchmTDoVP4cUsunv99j999b/2CLdPm+1mgfSQq1AFCCJyMkoveZzYxHF1TVLg96PP8Ijw3d7eqtLiweyt0iIuAjVh4Z3G6Ba95kiRh8Z58btKp6tIszIlbR6RgYIdYXD1AziCcwCjsH57YBQBQxQtTsfuyxMr/rcZEU2gO86zER5pDRniEOe14/KJuaB7ulBPnebUxlqekp/dtQrdW6jF497+kwq1b+4rsxIJGz8+KcGfl7nfxu6sx8V8ruZ8BcsbMAwWNU8h9dE66+vrB77db7sdzjbFy1S0oKsfwWct0GeTaNg/D4xfJQpXXa15E0QGPFxdYXuVFfFQINj05QXWB5bnltFKC+nc8d6FlVsrq4EsjnpoQhexZU/HcpT24n6/+x1jDsbSFLx3wkuMiTN+j+KzHaBzkmf1uHZmC/9w4AL/eO1w3iWTPmmqpLbTbzEIs3Zcw1jZ6Pb6/cyjeuqYPAG0SPWdI0GW8/kElduJkrWUnv5ZR+kmNjfmzOi1h2l5brrr0nJrQQv8TVWWuy07MsSBRXrmiF64f0kF3jmAyotJ26NzaDRend1IM7DaCiBC7qeYt7+qwgqVmzQ6ifcx9Nrp42wgn/pYTz+nveU+O818uyRdOO9F5Vcht1P/o2Ain/EyZFmLm47HW0drwDKRt0RQqZkss29/YeFljMhUAphJf7DkC4ds7huLmYR0sP6fXiD7j58qrsO1IIT5hks2p+3oltIwOxatX9sL04cm4uHdb5XfB8Lu0vsRLlsYSqSi8eCErPNd7Xu1slvfT/IfY8MqOUVhLf31QUFSOT1Zl4eEftnOvQXUY/fpyDJ9lToRI8XolnA3Snb+mfLpa7k8r959Qy5YFgq978eXabPyg1Fqnbqc8r6Y3ru6D55V1AlVQlCpuyL9uP6rmy7jb1QkrHh2LUIcd58qqcPuXm3XrRp4lljcnLN1bgDu+2owPV/jviyyf3jzQtC3MaUPL6FD8eM9wVUEOAP+7fyRm3zZYzSrs8Wgu1PQZYb0b0vYXYOZPO9QYYl/lxHjuxOz8bJy3HhjfGW9c3cfyd1GBlc21oIUHMFZfZVy/qGdrbHpygnJ+8/F6PLsQo19frr4/H7MTCyG2CfHRyoPYq9T5Yid3r1fClsOn/Wq7Xl2wD9M/34QJb1kLuQ2F2+M1lap5/OcdOH62DEv25Ou0ULzB3MoSy0t0cUmfthjQIRYAExPrZTOkyv/vmr1Z9z2PV8KC3XmqCzONN/3HT/okToAmHIc77Wrtw2AW/nRyeWBcKva9OFn3WRynRAhLUqxeQHUzCyI6IEeFWVs2rSyxAI2/VN4Y9rPbCCb1aF2thaZOiDXEsMryl3K/lGs5OKUFmitWb/o9Y5Zph50g53SpzwVboNgYgbis0oOM/CKdQNA+LgJzZ4zAxifGK7+BWXxaRBiyQpG8X3Cw8ZymmFibWVBlsxOzE7bdRpA9ayquG9weIw3xvjPGpgbVRqOywuqesImSfFli5TqxmrBktV/A7VMtapL5eKwl1hATqy9h5GPReetgnWKnJjhsNl2CMbkd8mcLHxyNyzo58c0dQ316N7Do3VOtr3Wg2G3mPmW8zey14i3m2DFz7oyR6Npan4CvOq0b1ikOz1/W0/JzWjaLtoPGpP7C8QqiY+JfBrXXKQ95yiD6m60Uz93bNMOamePU9zyFJd3Gut4bBebqsOvoWaw9cNKnYs+XO3VdcPuXm/HSvL34eetRLGfihOdszsE1H66r9vF4oT+UD1YcRJ8XFqHgXO3Ub/fHwt15+Nfi/bj036ux66hWq3XM62nc/aM587HVvTh8qgTPzt2tuqhT7x/5/unHxIgQOy7pIytcisvdSJ45D5e+t1rZn6jCExX6Qp02rD5wEkv25uOpX7VkaLz4V954d+ysHDtOk5b5Ip5RAI9nLJAUK3fanonNMapzSzU+1s2uW1TDhNa/n/ltN77blINPFeWUL88dnWAZQE6Nqb3a4KoBSZaf2+3s3KxXtrIKUDquO+wELaNDER8VolMcZOYXqQnrThRV6JQVwp1YUG+cLqnEe8sPBJya/OX5mnvQdxtz1Ne/pR/FlR+sM5VSMfJBAJrZukSSJGTkFeH42TJ8t/GI+rurPF48/Zs5W+S3G3Mw7JVluP2rzWqCHIAvxFrFxBoL2w9KjsXDF3ZRBzeeQEcnv03ZZ3T3hioQaHwKjdXbn1+MPs8vQvLMeWphanpcOyFqvClvkM8/V44zAbg90UXM4JQ4U5KnQBYxb17dR62DxlsQ8SYIGnvt04poWHD6Gj5nXdHL5wAPQGc18nAGefpTPV4v7DY5a7Fx4bg9p1B3zF1Hz2HUa8vxhfJ8BLMwZ626j/4oew4YLfa9k2LU60nXo7IVin9MOY5S2Q+1404MyJMzb6I01r2TY2Lpd7QJm52sw0Ps6m/v2y4Gt/vJTOu/jex9tr4ndhvReUvQ75qPp8Vk+dKsBwrrNs7L8KxZs6kQAPW/MV6Wh1EpUBMcdi3xEBvfDAAXtI7G5Z1DkBwfKSdKMgix1i7ZektscGWKoGsbzxLL1kfmuWTTheNrV/YGALw0TS+EBuoy2orJFE1d4yk0lt68SJX/7807Z7IMsqEYLEYLMzvGnijiL+T7to9BIpOMb1zXBPX3UtxqXWrGM0U9F/ewJooZS/DF767G9Z9sUOMdeQtz1tJfXTxeqdqJfnKZZFn3MHkxHv1xBzZmn1bnViskScIPm3MCsrD+sUsOlzluoVioTU4VV+Cu2Vvwf0szsSP3rC5hFyArFJJnzsNipSwOoNUEvX9cKjooXlI8jy9JkkyCcCRTfsbDVCIA5L5D40M/WyMLcTmny5TPNKUYTYQU6rDhoFI+an3WaSzPkAVl+kzfMLQ94sPlNQ6rbKQCFnXdDfNRjoZC55dnLparFLSM1ns1+TuGw7CmY9ctvHGMWmJ9lR3T5ZegY6yhGftenIxVj43F3yd2QZdWUfCFaonluRPb2PWNfpxmKxgAwBUfrMXF765W3z87V14/+0og+WdFCLENRMG5ctzx1Wa8vjAjoPIwxgnw+82aELs68xQAoKg8cPeYQIqY3/PfLZi9LjvgY/rjgxUHMentlRj2yjLM/HmnWudu46HT+JYRynm8sWi/+ppncQ402dXVA9sh1KEtyL0cIZbVeC7ek4+i8iokz5ynTnwUdqyg1r/3lh8AoFl2bTaic00EgC35sgY090wphry8FINfXuK33fQ3O+zE5MIyIoAF8ZUDkjBCiYdhF0S+4ieoi7avgVFfssX3ovfawe19utoARkus3kpgI9o2j5fdrl84Hi0s0y1aaQ3d2UqW0tqyxNI6oLz6wmrMHyOAWcfEsu6pwcVysm30SvzYRmM8pxwTq++jsqu5/rg0Wdk/L7e2ZgWK3SBY+UpIZHSFJZxZS3ZB1Qu7tZKdWGIz9SrCA9MW4/XVCefKMHLd4HY6C6Ivd/rq4LRri04at8Y7rp2w11DbZoQte+M7iVZg8FyGWWUK2x6PxC+xQ/83C5cX5gOT9QnhaC1GK6b0kjPNTx+eom77/JbBWPKwFo+sKpwMCgnNyg1c+cFa3XE9ktkFXm47dL+Ldf99aGIXbkK7iQark81GcM2gdqrSUW6LNiZq11A7Bwuvdu6czTno+exCPPXrTvzfkkx1+0Pfp6vnNMIKNdVl4lsrMPCf/uc1Fl5CK5b7v92Ge7/egtu+2MT9fHtOIR77cQf+zoQlWXlD0L62LcjYfpZbv9iE5JnzkDxzHkor3diXdw4ZeUUY8JLv60ATWX7JZJaOiXCiZ2IzPDyxi6ow5OXeoNZXFpp7w2Ezx8TaCFE9yIwC/MniClVgpYKuseTZLUrZJzqeDEpugTfGRCAmwqlacedsycXF767G7+nHVONDIEmJ3F4vrh/SHrcq/X7ujBH4fPog9fNQPzlFaFvZsYOOMwnRoRiRqk8GSdfAPpPdcWJijWNsmNOOdi0icP/4zn7nbjsjaJsFVe0c9L45bOYxMetEsUlx/t/1R+BVjikssYI6Z9m+fAx+eWlAwitlzhZrIY8OxEZ3XF9Me2+NqXwBZUduIR6Zk44/duXh6d9265L81ISTxRV4+PvteH1hhn57kaxF95XEifJ7+jFVuOQlObKKiTW52hosDKzLLH342cnixXl7MORlObbmveV6S3Yx53rTouJur6QOqqxrIgCsPip/jy4mAknaRJMV0MnlRcUi8fFNA3FfgK6dtKaam9GS88Y7mklYHeS91oIVK1j6ip0NFGPCH0BvedDcD73qdbUbF8ReCXE+Ei4E00Q6qazMPKkKx8YYXLbNbEys1bWRhSJo+wXRPkAvPBhdYWXXZRm9JZYo59c+M07q1MWNVz6quthtBL9uP4ZN2ad9lgVgJ29fbsKMcbRWYmLZ7MT0uDqPAGUbT4hl+ygAPDzxAix4cDRaNwszZekOBodNtpSdK6/CW4v369rIIpczUtrr47lXbaOS75q8gWL0kGCVXHrXZb0ig2eRsHOCeG0EmHVFb9N2QKs1/f5fByB71lTc4+qk+zw1IRqPTpLrXVMLl7ZItSnH13787mPnsCHrlPre65W4igDjWO9lFpWpCVFq8iYA+Ob2Idj+zESM7ZpgOg4APDm1mxo64mbqARuVd7S/UzfSKb3aqEkHKTQh23/XH8G/luyHEZ4A6VQs/YF6irFknSzB6ZJKbDtyxq9L8tz0YzhaWKZ6Nvli/s48LLWot75H8ZRaslezaPJqnALa8/1cAMmVAoUtlZR/rgKT316lltPyRdsYWRGz+sBJNWGn2yshNiIEhBCEKteFV3aFV2tadaFlskuzCmFebVUKXaPx1kIsxiSJDptmiaUW9fu/3aYqjgOZM6o8kppUEwDaNA/XPRuBWmLZsmNsmMfTioWXEhJI6TaiLwNmtV+gsMYT9bw2du7QKx3UZHc2bV6h/dzIFR+sRWZBMTcb+58ZIcTWIjmnS9WFrS/YjHOA9WJrZ+5Z1cL42oIM/k7QhFdfNeL25ek7fkZ+ES799xruvk//tltXePq+b7YGFBuzKvME1xr845Zc/LztqCkBxf8t3Y8qj1ctZG/E6DZLXYbpAz6Y0cpbCYKmbJ1M0gP2WKyGu8qtHSvndJnJVfmGoe0BQJdcgBIXFaIel84VxnPR8dzqd/Oglli6wLpxaAdkz5qKid1bBTT5A1pciNsjaVY4pvN9d+dQLHl4DAYlxwLQrrcvSxm7aJdQC1ZE1gpjEEZkQUWzcmlaSijbNC2m02HTWVtYurZpFlT7ADkpB6WQZ4k1WDYlWE9+rHuqfA1r3DwAeqHe7AqrLXrZiVK16jDX3rhIf+fafpjQLQEdgkxIBGiCw9UfrkNxhdtnoi+jJpy3pxwTK7+WDIuDmkC/ui7rJCRl6NNnJ+YrWvTeAvqFyPonxuOZS/QLqWBw2m2o9Hjxjx+1mHxeH7PbzO3lx39pigxfsbOBYlQu6QRV5b8sMEuG+qcwhRSwQ9zbf+mLK/snIeuVqRjZme+F8vFNA7HjuQt9tu++sam4f1wqyt0eSJJWXoSey2ghfY8Jx/FIfIuH0cWXVY4aGZ4aj5gI63wGhGihKKpFjVmYGzMhp8RHIsRhw/OX9VCVqYEKoFYldtjfkpFXhB25hdiUfRr3fr0lIHfhy99fi6d+MYcKUao8Xjzw7TaMmLUsoLWTL3jeZVbu5uw9qYmQboQtSQeAmxl6XNcETOxujvVcn3Vafb31cCEAeeyg8xudt0e9ttxkeKjycQ/srCWWme8DGRfpmiK1Jd891phfwmbTxrsWEebKDKEBuBO7PV6feQKM60EjNptcLUFXOYD5SgvDsxZI6Tar8JuawlpizSV2zPkU6L0nzLxidPHvoyS8o2FU1UkW9megxkIsIaQdIWQ5IWQPIWQ3IeRvyvYWhJDFhJBM5X+ssp0QQt4hhBwghOwghPSvrR/RWBj12nKMmLUMT/6yU91WXOHWub/y3Ft4CQjKqzy45N+r0f2ZhdxYCBaegDlncw6u/lBzgZr89irTPsbYDPV4nPP5i405VVyBGz/diPu+2Wb6rI2Fy9em7DPo/OQfpu3Nwhzok9TclAFvhSI40N971cAkXM3EWBaVV+HfyzKRw4mfvaJfIp6c0g1TerUBwAiWzAJZ0z761mTR9O7tWkSoSZsoNH7F7dEssUa3On/Z43gTb5Uh4UJN0GJGvJorC3O8oR3jkJoQpU4kvFg2I+yCvjasiHIcj3Y8gJ+C3uP1aoteg8XH4/XCYSNITYjGIqaMybS+bbH16YlI4dSWC7h9nOtfyInB0haYZkuTEeM1DDamhX6dTezEZjQ1CjQ2Ynbv5GUM7tMuBp/cPChgpYkv2AXrqsyT2JfHz5iuT0pE22thiZUkLN2bj8eURGvBXEX6299bLieAkc9Lz2W2FNIm6eI5qYBbRzFKDjvB2dIq/LFLi/vnCrHEnNiJa4llrKP09wV1DQ3KJTYsQe+6rG87m/Hc6HIHANP6JeJNJSO5FSEOG5oFUJc71GGDJMnj64qME7pzvWiIv02Jo2WKJMsx0RRbHqR3CiFE8U5RrEtec51YOoe5vRLGdGmJMCcTLhOgfGaVnRiQ51uvV8Kkt1fi0n+vwV8/2YD5O/MsrZxG5lrEsp4tq8JfP9lg+b3dx84GdHwKT4i1WuOwdVfv+e/WoBf+Rm819pmklFd58O51/fCvv/TBHaNS1CzCLJGh8rYqj6QqrFkvs1+3673WPF7J0kLJxsR6DfP9jUM7cL9Dof2hXYtw7ufG55IdY3iKmTDGFXjl/hP4Ys0hPDonHfcxsc9VXkmXgMlIIAo1p82my3PCjr2xBq+8QDx8bBwFYDDuunabJjgb3ZNZBaimULOp+xhdjQFgeKc4k6v2Xwa1q3H7miLBrEbcAP4uSVJ3AEMB3EcI6Q5gJoClkiR1BrBUeQ8AFwHorPzdCeCDIM7daMg47TElZ/p6wxEs2HUcHq+Ens8uxD9+0oRanqWSN/iytbkeUxLIGKEdnifEPvrjDmzKPlPt5AqAHI9hxJ8gTQeEPZyJpzqlZV6/qjd2PDcJv80YafreA99u0x3PaSd49creqoter+cW4Y1F+zHqteXqd6o8Xkwfnoy3/tIXd4zuqHPPYI/lYWNi3b7byw7I/dvHAABeuKwHwpw2rtuXdi7l+z4G6nk7jqP/i4txx1ebMelfK1UFiPaba/7IUuHU7ZGwXnGN42elNFipOfGRFBszuMrWlBo3Tz4eJx6OdUFkF4dsvAigWSTcHu3asxkP3762H1r4yeTsj0AnMLthEemV/NSJhZy99L/rjwStCNCywpqTEskaXdombWFjXBDLrlhBNqQWsNnYpFe+NObyNbzty83Mtpr/AF5cIc1LQI8qCzP6hQgh5pjuYJ8JKxw2G04ZFF68e8ZN7MSN55S3ybVR9dtqAu3vC3fnYW76Md0zwFp9tedc+56xj9ZVnBcdy8vdHtXNlp4rhHGB7N6mGbbnynObr4y+vDACoxIj7REXfp8xMuA22m0kIHdiqrwDtPtLY1r91Si3qhMLAFe8vxa9nluobqdrgXeWZpq+A5jXM1YJzr7ZcAQbD53mfgZobqk8pWP2yRIkz5yHVxfsw5oDJwEAaw6eNO337tID6lxHkSQJBwqK1fcLdufh122+k0YFA51zisrdCHPacXm/JDw5tTv2vDDZtG+Z6m3mVa//uTItbOm1BRm6Uk1UWf7zvcMByCVZKA4bUS21Rs+B6wa399lmKkyO6ypbjjsYSvCplQOYNY5RoWfFTZ9txHO/78GcLbmYt1MT/t0eL9fVefFDo/H2X/r6Pii09pwursTIV5chPadQN37RtdPtI1MQG+HkWFjNx+NZR4MZiujybduRMzh0skQ9B227UXmni4lV2kHXhK9d2Rvv/7W/SdN4zxh96MSfnRpPr5IkHZckaavyugjAXgCJAC4D8KWy25cApimvLwPwlSSzHkAMIaRNTc/fGCgqr8KbW8rx+sIMtXA65e7/bkWnJ+YDAH7aqrmNnuFYbXjxnKz19tft8gDbp12Mfh8L9wKW/244rGZhA2CKlTnHEap5GkIaG/G/HcdwzX/WweuV8Mr8vUg3ZILlFcbmCcBWwgQ7YVkNFnRitttssNkIrhyQaNqHdZnkWc/YLHGAPCjTAY+W32EXsm9e3UcV7tlkF9FhTmS9PAU3DUuG02ZTr5ObWVDQgYsKCBWG+8U275/z5BidxXvykZFfhL3Hi3Tn9KWp9Adtz/tpBzBdSdDAu8asywttt3VMrN7dM5hkOrSNHklC9skSNWszGzPCWsBshuvr5dxzGidmLM1RUwJ1rzRaoXzFxNLMg3fO3oyyKk/QMS2niuXr1veFxWoiDtYCRnufuhgnSpZnwjw3Fu6StcX1Q9qjY0vtWb/aIms1m9jJd0wsMbn9B9P8di3MdZNpAi++AKZZJIwxVHV1HcuqzDH5vP7JS+zEu4Z0Hrr43dXqeBOMAE5/96rMk3jg220or/Rogqqyjy75GPM8m2LD6siaTd112XhD9lyLHxqNVY+NxfBOcVp5Ox/31ehOzCaXoSTHR6IXp+atFU67Df9ZmYXN2ad1xzMqytgxkaeIvH1kiqp0NeLLnXjP8XMoqfSYLH5frjvMPdbRwlLdeysh1t9jQdcS3ds0Q2pCFDoyawPXG2kA5IoLf/1kA6o8Xp1bLmVd1ilc+9F6XY3TYk69Xitvsdqgn7Ju453XCB3D3F7r8TediYP1eL1w2An6t49F9qyp+OCGAepnDptNTbZkzDbfrkU44qNCLGP0qTA5uWdrrHt8HFY8OhYDO8Rq5ewMbv6sEMuuR0crsen+PPnScwrhlfjrm86tojGtn3mNx8NhJ1iXdQq5Z8qQfarUNOdmz5qKpy7uriQt8z8msnOiLwVgoFDL6t3/3YqrlLJRrKcZbYs6/qqfmZM+uS5oiZiIEF0m81bNQoMO6Wpq1IqOmBCSDKAfgA0AWkmSRNUreQBoEEAiADY7Ua6yrcly2xebQddN/gL4tx05g7tmb+ZmMn0/7SCKyquQdUIThHkxnk9P7YZbR6SoBdu9iiXAKvgekGtiPc5Ygo1xBb2fW2QqvcMTRKm194Xf92DjodO446vN+M/KLFz2nhxXSzV+dD+3x4sPVxzEqeIKXfu+vHUwPr9lEDYodTQpNgJsfHK8LvvkVKWA/IWGOBJ6bWgSgB5tzQsCuo/bI3HjLEwxsYy759UDk7Bm5jg8dlFXAMCSh0fjygFJ+H3GSEwfnoyurfUxlXRQczps+vI1jHUG0AZDtwTdhEwnBgA4ZsgYmHOmFHPTj+Fv321XfnPNH1kaw7sp+4y67WSx2SXMuACSJOtFpDEmNtj1uk2xOrjeSMM7y+RMzzp3G46gSq8v61bHWlM+nz4Is28bElzDGIZ30mc5pDHELIQQg5uwb6uWV9KEz2DZlnPGtI3GghsFVUCf5ZnVTtdlqv6XL++ly1Q9tGMcdz/WMu9bY27eZizRUB3COJYrusBk3W6NCyCbjYnnrIUYKl8EelxjTV75u+b9WCXARyuzAAQXE2s8R1GFW7Vu0mGMjb/VJ8fS3/O6UgTQjKe01IzcNu1cnVtFo12LCESGOlDplt1qqQ7TlzvxhqxTWLn/hOzREGTb6b276sN1umQ1JtdlZkw0eRp5JYQ4bKpgmhQbjgtayYo9p51w65I6DQIFL+zpdEkl3lmaqQsPyD6pF2I9Xgkv/W8P9hzT5+XgrTNYF25a1qjKIyuEX76il6Xy+/Ap7ZzPXNwdM8am6sYENv9HgeJRwea0YF00K9weTH57pRq+ZOR0SSW3QoIVvZKao1PLSG48/E/3DNO9V4VYj3YvbxmRrNvn+o83qNfGbaGkB/QxsUZvqugwJzY/NRHPXNIde16YhBWPupD2iEv7LnPv2zSXXYq7tI5W+4RJecckdmI96Gg9cbptPmN57Zkor6M2ZZ9W15HBhqo4bERXjtGq9CJbE9d/TKz8mq5j/cXm+muf+RxQz2+yxNqZMdHgoUaf8eT4SDwwvjOm9m6D+Q+MqnHbmirmkauaEEKiAPwE4EFJks6xk54kSRIhxLcKxny8OyG7G6NVq1ZIS0sLtol1Rqzkv4AzIGudb/9sHU6VS2hvMy8w9x4/h4vfWoLD57z4YrIs3Jwo1Q+S13Rxojh7B0ZHA38ckgXh5StWIiSA54l12cg6nINOzW04eFY7/qsL9sFzMhs94+UJveCkOcHC6rXrkBBhg80jL7TZDIFpaWkoUNpb6fYiLS0N0xfIrhLzN2eiewv5uO+Nj4B0bDcIgDXHoWvHRxMjsGfLerC5Ai9JkDBqdDiqvOewiDlX9ll5YNq7ZzfCT/ETXi1LW4EwB0GVx4ujuUeQlqaPUTlVJp93z759SCs+iLLyCuTn5yEtTbs/SZKE/xsbgdw9W5CrNMzVDFi1cgX3nF53FQ7nHkVa2knkHq2Au8qDtLQ05JfI59q1ew+aF2aiotKNqqoyvDM2Ar8drMSq3CrLfn4vEzMCAFs3rUdWWM0H0RA7wI7rK3dlY3hEvm6fjNPyDlu2bkPpYTtKSktxoqCc20Z3VSWOHj2GXxeeQFpGGTo2twX1zJ7Ir0BJmX7iWbNqFUIdBJWVVTh69BjS0k7h6LEKVFbI1zdL6Q/p6TtAjjtQeLYM3nKitoMA2G0OUaox17T3Yq2i93l/fASc9grub7YBOJR9GGlpx5FfUI7SUi93v8Iz5SipklBZqQ2Vxv2Ki4sDvq7eEnPtw6N7NuPYXoJTJ8tRVCK348BB+VlevWqlPLlKErKz5Wfl6LEKVFV66nT8zS3SxqDYc5lISztg2ufsmXIUVUryfT4kt3flyhUmASLniF4BMLi1HStW8J/TQHlnXAQeWKYtiLKP5snjT7Z8ruUrViDzjPwbdqRvR0WOHWfPlKPMLbf3YJbh+tYyBQXafR7axo5be4bq7hftMzk58qI7LS0N6QWyNWjbtq04m6UX1Hcf1K4hjenbv3snyHH/5TF4lFaZp/7QouNISzuBXSfkdrzw43oMayMvQw5lZSFNykHe8QqUlct9b9dJeb8d6dtRdqRm7fBF1jH5+CvXrFe3bdm6HeWGcx3Lka/N4mVpoL02+1AW0nR6eeCQMha9n3YQ7yvK4SOHs5GWVnN3VdZT68TJkyipkPvXsWJtXok6vR/FpWU4WVCJtLQ0HMqW1wgrVq5GpFMWdnJzjiDJCWwEMKMn0DzUA0+PCEQ4gfVr5JwZ7DhzMMd/yb7+Ly4GAKzddRB395Gtmb9k6J9FrwR8svoQPll9SF3fAEDGAbPS7nROJq7rGoJv91Vi1559SCg+iPwT5SirkFB+ZCfu6G7Dq5wKO9e8rxkROroPo2MoEGYHqCduaaUH8xcvR4STqPNbUkg56IizZ18G0spkxc2nOyuwL8+Nmz/biFdGhqNNlDbf5hZ58dSaMgxra8ddvc3W23CHds4QG1DpBQpyD+PpAU7g+B6kHfedDfnfi3ehbVkWSkrLcPJEpeX4++uiFWgdaUMOs84wUlZahoKqEqSlpeHw4QrAy59/eKxbsxqhBiVG/vEKlFW48dXcpcgsVPrezp1IDitDaYkdBW75XHuUfvMvVzjOZKUDAPYfOIA07xHcu0CLPY4j8tj6xHdaXPSJ3ENISws84aWRyip9nz1+lr9uqaqsQO6x40hLO41D2ZUgAHe+OHa0AhWVbnzzv2X4ers83q5bvbLGyr19x83W+H0ZGUgrzcKx3ApUVbmxdNlybMpT1jTbt6Ek246y0lIUnChDWloa9inP9vp1axHplNvR3wn0bwvs3LyuRu2qb6qznvFHUEIsIcQJWYD9WpKkn5XN+YSQNpIkHVfcham0cxQAG3GcpGzTIUnSRwA+AoCBAwdKLpcrmCbWKccjjmDh4Z1+93PYCZpHR+BUeQk+3ikP3E9N7YaX5u0FILsAHD4nC8SjR4+BzUZkf/mVaeoxrhk3ULVSZjkOARl7MHz4SFmzvWgB/jG5K+4YlYIX/7fH0s0HALaeItj+zEWY8c1W/I9JRvDG5nIseXgMUhOi8PbuNcCZQgCy1qnS40X/gYOQmhCN8M1pQKk+CYLL5ZKtyCtXwCvJ77FgHgDAGxKJ9iltgIwMjHeN1lk4UnqV4MX/7cHrV/UxBd0b2V6WjjUHTsLlcqHj4/Kx+/XpDRdNwa6cjzJs+EhEhzkgLZiPTinJcLm66D7PP1cOrFiKzp0vgGtIezhWL0Fi21ZwuXr5bIcvItcvQ3xCC7hcfTFdaY/L5ZITTa1aji4XdIVrYDu8tXkBWjSPwqWTRuLA4v1YeiRTve/0d3x4Q3/c/d+tpnNMnegKSltZabhOoRHRcLn08VnRh08DG9ehZ+/eGNW5JUI3LkOb1vLvMhK2dilIZDRe3yZ7EZypsiOYZ3bh6R3YkH8UWmETYMwYud+ErVmCNm0T4HL1xq9525BbUQiXy4W43LPAutXo0bMXXN1bITx9FRJiwuFyDaxxO/wxckQFThRVoJuPTMf2xX8gqV17uFxd8V3OFhShBC6XOWPyE+uWmizwxmuYlpYW8HXtP7QKvZ9bpNs2duxYAMAPR7egML8YLtcY7PBkApn74RozBg67DfYlfyCpXTu4XN3we0E6IkpOBXUv/ZF9sgRYk4ZhHeMwbuxQ7j5fZW+C51w5XK5R2Fa1HziQibEul2kR8VnWRgCa5aRzh8SgnmXKwpNbkZFXhAMFxYhoFgOXayh+y98O4CjWFCdgfO8EYNNGDOjfDwOTW+DzrI0oLK2EyzUS2937gcxMjHO5grbG8VhauAsb8+Sx/ru/mePraJ/ZVLEPOJwFl8uFqj35wNbNGDRgoMmldUP5PiBT75UzYshA9EwM3PWVpbjCDSxdqNt22djB6NamGcj+E8CWjdiS78GWfHnB1jm1E1yjOmJJ4U7sPJMHl8sFKaMA2LwJAwb0R//2Zo+HYCnflQfs2IInVmuK2249e8LVVe/9k+08hDn792DQsBGyBWTJIrW9LPFH5bGIpVNKClyuzjVvJDNmp5/woHNCFFyuMfKcu3oFunXrBlffRISsW4rEtvFwufogZ102sG83hg4fLmcqXjgfnVJScP+4VDxUWMZ1lwf040zhtqPA7u0BNbF1q1ZwufoBAN7ftw4AP9Y1L6Ij/jKoHQghWFG0GziUDQD4+vYhyDtbjiv6J+JcuRvfPr8I7VPk6/tZ1kagrAou1wh0Ol2KVzctNx33dLk2X9D2R65ejDLGu6WsRWdMGZAk96mNm9CrSzLScmUxNqVTKlxKfdLpzPU+ZGuD61zdAMgVHqYrCTLXHfPgs7tHITzELnu2LJBDx9rGRqq1Vm8anoJPVh/CwN7d4OrPD5cAgMk5W7BA0bLGREfD5RoFx9olSFLmOgCm9U37rr0xvFM8fi9IR2Qxf5x+Z88aRIY64HINQdq53XDm5/ofz5XzjB0zRhcTDgCri/dgfd4RPLNWm6v69+2DytxdiGnuREy4Ey7XYLnv7d6NUSNHyMnVFv+BDsnyM9B67VLknZO/P7J3Z6zI3asKxADw0FUunWdadSkxXCfAPJcCQOTG5WiZEAOXqx82V2TAduggd78VRbuxsSBXHR9CHTZ1Lq0JpTuPA+n6dR2JaQuXqwfWlOxB+eFD+OdWgqyTsjwweOAA9E6KQXT6KsQqa5qMFQeBffvgGj0KkZzcDU2B6qxn/BFMdmIC4FMAeyVJeov5aC6Am5XXNwP4jdl+k5KleCiAs4zbcZOETRrji3axEaYMYoOSW+CFy3pgUo9WyD+nWXSpW44xWRM7oGgxi15UKb5NTjuBw27zmaIcgBogz4tToeeucHvRo628OKcxtJV+kh2x7jhs290eSY2JNbphdIiLxCc3D/IrwAJyivYKtxf558pV9w5f8aFVumvDqzEof3dd1in8sDkHhaWVCDbpqtMuu8KybuGAOXuuW9JcnMNVdzb9/Z7ckx8uXhuZYVkemtjFtI3GbaiuSD7qxIY4bEjLOKH2HV7Md3Vw2m2mGGqdmyFN3uTVEqZQNyljduK6JD4q1KcAS9ulixe2aJJRgA0WY1bWPoywImfW5bslGcvZ1FVCIkqHuAi8NK0nPrjBOlG9rk6sso3XF48bSk/0SYqplTa+d31/fHKTrAyhwhyNbftu0xEmmQnr8i5/15gRtLb5hxLuYMxzYISbnZhzb0s5MXu8/AiBwgtBoMIT74qwbu0eoztxHblk8zK78nI4qAmgqjw+XZx5zfQ3J1eXTCUpER0Xy6s8KK1068Io1DnHK+nyKdhsxFKANZIYy89MK59b/56t43vsrHWpnJk/70S24vpbzliYWzcPw5UDkkAIUe8JnRPZ8ZyXdJJl3ePj1NfhTN912gkOKPNyhXLeISlxGKaEMVD34P+s0CtxPlqZpSZSyjmt/139XlyE8iqP+mylxEfiqamay/DfJnTGQxO64NI+bX22+e1r+2L+A6MwuUdrXVypLxf6Y4XynOHxei33c9i18KZAs95/ctNAjOocb3Ilp8czhrmpcexEX+IOkF1ntdAkef+xXeUY2W9uH4KubfR5Km4Y2j4oAbY6yLk35Nf+SgjSEpZA8OXvePeAVjegn2Wd1IxE2tzMhKPVcYhFUyOY0XUEgBsBjCOEbFf+pgCYBWAiISQTwATlPQDMB5AF4ACAjwHcG8S5GwXxUYFlOs06WaImhaCEOm24aVgyHp3UVbedZtZlBcFpfduiF6MNZ+NdaDkcKtz4S/wzTInn85rnaXURU+n2IDkuEtmzpmJ4apypPTzYwP07v9IyhO7LK0KlW56EglnMhTrsKK/ywPV6mrqNfYg/m663urk9ks8sklQp8Hv6MTz24w64ayEG0Gm3YW76MYx7U++WQhdg//hpp1xyyavFG4UrE/acLTmmJFvL/j4mqPbwWPb3Mfj2Ds3q5bogwbSPOvHoJkD+8QIpYl4deLGIWmyxPOGcKq7QxRwby9m4vZIupqehsBM2K2zwNXRrwpanJuAb5n6zybGoYK0vvwMUllaitNJdZ4IDhRCCG4Z28Fkrk03y46sfGst9XD3Q2vJRXZLjI7H4odF45MILAGiL7/Iqr3oteYoANoN2XRAV6kD2rKl44bKePvdjBRq6EOKNdc059yEYTT+v+9BEa27OBER39xX/VdsYlcsAUMnJR0EForIqj89FpK+5pra4f5wcZ2hj5pXuzyzUjYlaOTVtHqxuX+zWphnio0Lx0Y0DTJ/dYkgIVFrpxit/7EXyzHnIPVOGawe1w/OX9lCz5hr3BfQxtm2bawIzVXbT+bDKY07UZ0Ub5ji3DJfb+MbVfZAcF4lMJfkmdc9OjA1XS+TRe/rKH3J9VzYR4PGzZVi+rwD3fr1Fd67yKi8e+3GHKmxfM7CdqticdUUvRIc58bcJnf0qMcKcdnRv2wwRoXaUVLqxPKMAp0oqfd4vqrTzFRPrtMvhVOVVHny57jC3MoaRCd1bYfZtQ7hzldNOVMMARetvNlNVAbuy5iMEaqmfCrcXiTHhGJ4ar8stEua04aVpwXvOUPwp3+Q8AUr5oWrMzby48OrAu1e0JA5vfcxT7NVGpYo/EzWeoSRJWg3rMnLjjRskefa8r6bna4x0UhIDXNqnra4WWuY/L1Lrn04fnowv1mabvksnT6s6XFTj9fFNA00FslUhQ5IgKc8U7dBsjVQe9LxsDVbaRhoEX+H2qsIJPS4VYtlSQh3iIlCgWJHZYP7lGfqECGsOnAx6Ig9z2kxZW1mN+biurXB5v0T8su2o2l6aRIs3cERyBrlghVirhRZr9fj3sgPweLXrShdHz/y2G+sOyqUApvWVNbcdmULjP90zHF1a8QuPV4eOLaPQsWUUOsRF6JJh6NpLtAUQAF0yESOZBcXc7TUljOkn71zXD1GhdvW6Fle4MWdLLuZskWNm6EKDl6Wzri2xgcBOPIC1ALZ25jgMn7WsTtoQZ/AWsRGoC5ENWafBOmRQJUHfF+Q4t45B1NOtLYxJiaz6YVSoAyeLK/HH30YhOsxR6wqDzq20RS1b4uKWL/RZvtkSOx5v3Vlhq4OaiZ2TiIplxthUU9mUYCyx9BmMjwrFyeIK3RyQd9acT4LWx2aTqRiTPtU2IQ7zcXkZfOm8WV7lwZI9cg4BXuk4XjtDalGhFhXqwN8VZYrxVLLgo69Nvmh3HkYpGWKrqwiICnVg81MTTNt7JjbTJcICzHVRo8McuHl4Mrf6AVUCsaV4WKspfXb/syILj1/UTVcLlfdcx0WG4FRJJf4yUF8f89aRKRjVOR6dWkZh2b587D1ehMLSSjz0fToAeU1B+2jWCblkD6V9iwh0aRWNuenH4PZK6nNuZG76MXXt57QTtG4ehsx/XlQjASMixI7cM2VqRnma2JJlwYOjMPntVaq1m1VcGAl3OrDmQL5ai5fTXauFw2bTzReAIaGdV8Lv6cfUMDlWoULXEpXM2pJNvBescEj5z40DEB8VggEdWujupxG2bJUv5ahVZu2aQq9JYky46r1GkxryymGyJXa0zMXWyfnOR5qmQ3UjoVmYE2+7wjFhbC9cP6Q9EmPCTa46Y7smWAixNuW/HUmx4WpNNAp1b+G5O6nuxB4J1MmOWmBvG5mC+TvlCWX2bYNx46cbAQAf3jAA65g6avSBmdAtAXeN6Ygv1mYjv6gcby7KQMG5ClUDT7WiVGCkD1ByXAQu65uI/1uaKVuEeaZdhfTcswFbra3gacyN7pwvTuuJ42fLsD7rNKo8Xjzzm5xEwXhtAb6LV7ALJWMmvO5K+1iLliRJcEvadWUtj7RuWF9DKSUAaBsThuiw2nO1+eNvoyzr4ToMGQjrw7WUEqYsZpLjIkxuWEXlendHNmsxwGQn9uOKVV/o63Na96+2MeHInjXV56RbXcKddlzAKSu0OvMkTpVUYtHuPGzM1setsRYw2v6GhsbkA76v4ezbhmDrkTN+XbxrA17GS9oup11bsHm83jq3ZgcCvY8exirHu7UhDhs6J0TpFFMRITVfIjjsNsy5exjio0Ix9o00ndeGse4koFlAWev71xuOKMeqm+todI/8+KaBSIo1t43Ow+VVHtVax6s0wLuu47u1Mm+sIey45uv5pNfrud+1RELBKvaS4yIw74FRcNgJnvh5l7r9lhHJ+HxNtm5f2m/YMnWxEU6cKa1CWaX8PJdVedArsTl+NGTo1Z1z5jw0C3OgHxMPPfu2wWjTXJ4Po8MceG1BBr5Ym43bR6WYvk+VT6ktozB/Z56qoAPkMdJmk0uL7WDK1gDy83xZX9k4UWEQsAYnt0BMhBOL9ugTIoYYFP/VJZJ51pqFOTA4RavU8PuMkSir8qBr62boldhcdSd2e/nVFwBNMbDlsDmZaE1wchQ+rAdKlceL+7/dxv1sXdYpPPnLTlS6vTplFh3feUaFmjCpR2v/O0F+PgJRjta28owqdXomNtNl9Ab42brtqlJKXrOXV3lQVF4Fh42cd6V0rBBCbJDEhNkQFeowlYh4aVpP9G8fy63lB+hdjObdPwpztuSoGixAm1wdHOmBTlCz1x/GMiVLMBWKBnRogaEdW2B91mnYCcEV/RPRMT4Sk3u2xmSmEDZd8F8/RItDeG2Bluk3Skm571TaOWvBPtw4tAPKKj1IiY/E93cNxW9KgfCSSjdXK80yrFO8z8/9YXRbndi9FVo102cHjAp14MahyVifdRpur6RaGk8UB5ZFOpOpJVcTjPV+H5wgJ/NgFx7NI5zweCXNEssIsXSxHspxqU2Irt06dhEhDsBCr8DGXAP16wobpigregUQ08hzJz5ZLCdcagyWWNm1FDhTUonMgiI5wUoABFrY3Re7np/E3T6lVxvMXn8Yd87eYvqMLckA1F0cYnVoERmqlh7ySpKl70+7FhEBx/oFi1XZBkBWSpVXeVBQVI6PVx2ql/b4g44xxwrLsF2p6231PC94cDTKqjzo+exCTB+eHLQyaFByC1UB+uikC9TtI1K1+eDmYR3w5brDqnWPxkF7vBJWZZ5Ut9UFxtg/o9cTJVyNidUWmoFYYgd0iEXbGOvY0urCrht4t4Z6TNk56wZ7EO6H6c9eiBC7TRWMRneJx09bc9ExPtI0DwOaBZ8QglCHDc3Cnfh8+iBc/O5qdZ4sr/IgIsTOVVB3bR2NfXnyfHyu3K0bz0d1bqnb98mp3TClVxudt4QRXnIyqkB22G26cQ+QSxDRz1nladfW0fjh7mG47xtz0kXeWq06sAqjDw0u3GwStjbNw1SFty+vo0Dch6sDr7wfnSPsNhu2HD6l+4xeDzsh2HakENuOFGJkaryuDy97ZAxGvrrc572rC+xEnutu/3ITluwtsHRTr21lOC1pyLq9U4zeDYCmeKJhKsNnLcPpkkqucet8RQixdcQNQ+VkG5KFOwIrlDWPcOLWESn4fE023F4vMvKKVM0gz92JKCs5WssP0LsW0fGYEIK3runLPf+zl/SAw7YXwzvFc+te0Yc6SUnusCP3LB79cQcA4MoBSUiIDlOttb9tP4ZOLc2uh32SmiM99ywAcOvQVQejEGsVo0sXJb+nH1MnXF7CEh67DXXsqgvr3vzFLYPUeFNWY04VBf0cendiAKrGlx2g+rSLQXpOYb1aFunAeaKoAm8uysDZssp6c12hSpMIjiBvxGEQYj9elYUHv98OAOrityGpcntVRdPRwjJTYhArAi3s7gur/vL8pT0we/1h7menSypVyxcQfBKL2qBldChKKz04V16F/XlFjcKF6t/X99PVnQQ0F+NwRYjdkl071o/agAoZbKy+Vf+w24gaa1tbhDhsPo9HF7DUEmGzyXHbj8xJ99veYOnfPhYvTuuJp3/dpYuDNEIFGtbSVMZRZhgFW16SqGBgvXT4dWqVRS/ns2AUe8aEO5f1TcT4bq0QFerA6ZJKzFKs0xTWDX3TUxNQVO5Wr1dZlQcv/W8PNhw6jTFd9AIp5f+u7YdJb2tlc3zdf6fdprNa8pjAsYarIVO0GoSCw0bw8IVd1Lq2N3yqlYBRFRKcZR0vGVJ1iGO81Xxl4m7VLAzrs2SBkU3mZYS659cW4T6spbyfTpvFtm/z4dO6/C5JsRH48tbB6Nm29j1o7h7TCRLvRiltOniiWPXSs5rrJnZvpVtnj0wNzhgzoVsCXpm/F38d0t7koWm0+APaNScgKKlwq/e0ttyv/wwIIbaOIYTg8+mDTDEVRjctm41gbNeW+GNnnm7w5mn3eBobNkHPXwa2w8ZDp9EpwTqmLSU+Ep/crCVDumZgEn7YrNXnokInzwJI3V4iQ+UH7Olfd+HO0VqpgdFdWqJb62iMuaAlrv9YngDKfVgvAqHcsBiwWhxQC+e7yw6oxdyNmlsreO5h1YG9L+z94C0o6KDPWmKpe0lKvBb7+v2dQ/0m1apt6KTz2oIM1Tq8fB+/8Dvl0CtTkPL4/KDPfVZJ0BMT6d91mipRaHtZJcTxWs74WxOKFMHG6DZkxSc3DeS6FNUmNhvBrucnoeezC/3u68viWF/Qhd1zv+02xdo3FL2TYrDk4dGY8JY2TlPhJdxpR1mlx+T63pC0bm7Oot8YNPkTu7fCgYJiVZigizgbkb1SaH4DoO68AgghuHFoB0zu0dpn/BtdTLKCQTlnHjY+M0YLXzA8f2kPnYKLd0lYF06rz2oLquhuwakuEBXGusY60SzMqY6Dn60+pHoEhFsoK42hEMHEZgNm1+twp131RjDeo7+N74yIEAfXQkyVBDzhKNi8H9P6JeKpX2U3bV8JE1tEhuBcuRtVHq/PTPzFBuW9vyzJ/mDbRONcqXssz/JPry/r7lxe5TUlTrNSZATLzIu6Wn7msNl0YWZWz8ag5BZY/Y+xGPnqcrx6ZS/8ZVD7oNrUIS4SB16eAkDOc1LBeO9VctZ5LRTvLWPoj0Cj4Wey84CxXROQ8ZJWx+9ff+nDfWicdptp4OHFAhk1wF1aRek0pVcOSEL2rKnVckF99pIeuve+FmHUzZR1wWC1VZ/ePBCPT+mGYR3j8ICSSTHYBfHl/RJx20gt5uWB8fy6e+z1ysiX3ZFuGZHM3Xffi/I9mda3LS7vl4ivlEyFNcVKsObda+oGzsvG25Gxaoc57bUaCxsIVHHCDqpWgth9Yzuhc0JUrbkbU8Ev0Y8LXnxUqKo4aQwWw9pgQvdWmNqbX1qpNokKdagKHl8c8ZMkrj6g5YLS9jcOAZaSmqBdv2cu7q5mfQ8PsaOsyoPHftrRUE0z0Zvjmt+a4wJa33x800Asf8Slhk9QoTDrRIlp37qOyW8ZHcp1i6WEcQQaGtvJQi11lynJ+aJCayfWDwBuHp6sm+d5llhfQmxdhlj8et8I3XueuyRtOxVgASDrZGCJAQMtZxgoe1/U1mNGxWGEsq4J5Sh6fGVJDtadmD2mr/mUKvY6P/kH1hw4ZSmAvXNtP1w/pD2uG9wOl/dLxDvX9QuqfayQftcYee5t3Vx+ZngCGMVoET5xruEVzCWV+vVtoY/SgEmxEdj34mRcY0gcFiwDOsRiOGPZvdeVqrNSA40jL0VjR1hi6wlWq3d5P375hxC7zTSg8hYbZcZEA35caQJrn34AvmqAdYmKOEXzyiu/MGNsqmoNJYRgRGo83ll2QOcqUxNaNQvD0xd3R4e4CAxOaaFLz85COEFzVhNCmNOOvS9MRojDVita6teu6oNH5qTjmYu767azp3/+0h54du5u9GgrD1Y8F51AXGnrEt61eJhTTxYAHp3U1VQmKhjuHt0JFVVevxMGmzWzruLl/sz8NmMEuj69oKGb4Zdm4fIYU9uucbXJrYxyrcojBZ0FtLZx2m14amo3NedCZIi9USUFoV4/oTTD/hmz8iSYBFO1QViIWUDp1sasCGoZHYpDr0zBwRMl+G37McsY2+rw0z3DseaAOTzClxDLswrWZUhK33Yx+OXe4bj8/bUA+ErIqFAHBnSI1SUa2p9vLcT2SmyOnUflcKQWQa4fAOCinq1NWZR50LUQL8xqaEd5rfXk1O6q59rUXm0wb+dxtXRQXWPMrVBQxM/50TOxOV6+vPbK1rAKlAcndMGdozqheYQTOZA9+VYGqGisTe+EmlLd0DGesaG26d62GX6/fyQq3V6sPnACJyzuq0CPEGIbEbysdjxXnTJmsBzfNQFPG4SmmmDMcGellR6ZGo/rh8jxvjxtJJs8CpAF7Dev7mPaXlNuGpbs8/P21Uzu4ivOo7pcNSCJK/yH2G24fWQKLu3bFr2TYhBRmIVJ4+TEDTx3Kn915eoansbeyppd28RGhuC5S3v435GBtzj77s6hnD0FlDCnHZ9PH6QKiY2VZvXshVAdvuf0scOnzFbExsBNw5Lx3aYcHCgortVEQ7XBmM4t8eikC/DXIbKrHm/xFlmLFs2aYFzEDuwQi1sNtVIphBCkJkRh1WNj1ZwSwTCgQywGdDDHSPJkUirY1oWl0B/92sci46XJ2J9XbJlkrSWn5JcVv943Ap2ekENUAvEc8cc71/XD0JeX6kKfeND5xGiJHZEah5uHJwPQC3RtY+S1Ek3aEwxLHh6DAj+WyjjDmtDovVdXsG6/TrsNzSO063Nx77aY8c023tdM1IdA2JQJcdgwrqte+dWuRbgupwZVpgiEEFvv+EoeYRRirx3Ujqsxp/VpP7lpICbUgqbXH7eOSME3Gw+jvMqLhyZ2UbW8vGRNRrdhQgiu9GHVrW3ac0o3NDSEEDzFKBpaRtjUxblVTFBDYje4sKfER/otMg/I2nfqXlQXpMRH4tDJElM9QOMj8vTF3U3ZwhsDP90zvKGboGNs1wTd+yv6JyI+KhS3jUzBkJeXNlCr9DTmBc8QTh/r3Co6IGtPfRPisGHm5K64/avN3BJeDYnNRnDf2FT1/W0jU/DyfH2iIF58Yn1idCf+/JZBfl396itbdqtmofj9/pG446stuHm4rGBuxpmb60M3Guqw6zLpGrlhaAcs2K09HzzhnMIqJ2ujTJHTbsOWpyeatn9800As25ePbzfm6M7bpnk4JvVohYW75VI6D07ooluP/XTPMDhsNngkCR+vOoTBKda/JVBSE6KQmuC7HrzRKv3JTQMt9qxdCCE4+PIUNZyspvA8GBqa2bcFF0pW16Q9MhZvLsrAgA6xGJEa36jnxfpGCLH1SPozF3LjLCjGOlz3W8R9XtqnLbq1aYYu9ZSW/JlLuuOZS8zW3phws5V4oI9JSWCmNi3BtQXrpja1dxu8d33/gL63Zua4umoSAGD5Iy6UV3lMbl7GpC9s7HRD06Z5mJpkyteCrTFglcm8IalLpUhdcP+4VIQ77Xh1wT7/O9czYy5oiQcndG5UzwePO0d3wvBO8bj43dUN3RQVY+bZQJR6dU3zcCcenNAZ0/omIiE6DL8xcam8PAq8ONX6ZmTneGx8cjy+35iDcd0SuDV5Wb6+fQg6tfQt1AXLxO6tMLF7K5RXycnE2PnkwxsGYOHuPJwrd5vWNgM6aNawQ69MqTcXfaM7cZ96VErZbQR2G3/NMufuYfjX4v1Ye/CULhs0IQDNmdYhLgJvNoJ55sMbBuDu/8pl5gZ2iK2VkLy6xG4jeGxy7YVt/Zlo+JH4PKJ5hG/XOONivIVFXUlCSL0JsL4wWmLvGt2xUQSi3zEqpdHUaPSHryyEDUVkiB2tm4Uh71x5o6i3ysLTQDbWmFhaW7HbM40/9rSxEhXqQNbLU1Dp8TaJGF6n3YZ7XJ1ww9D2eHPRfnRuVbcL8OrgtNvw4AR+bHtj44LW0Zjauw3m7Tje0E0BIM+52bOmInnmPPV9Q0MIsbyfdG4Ocdjw5S2D8cGKg+hRB2VMakJCdJilgt7IiCBLmlQHGqvJWoAJIZjc03+yvfrsD/FRoRjVOb5RlJFjGZTcAv+9bQjeXrIfNylu1wCw+h/jkH+uHGkZJ3DX6I7cXCr1TapSuWPG2FQ8wtSvFjQ9Gr43CVToOHjzsA547tIejWKi9AUrsL5xdR9c0qfuM6sGwpNTuyMy1IG3l2Q2dFP8QgjBhG4JmNYvMeCYkrqGEIK/X9gFj/64o17r09YUth/WdhbLYDDWVmxKjOoc3yisTYB8f8Nsdix5eHSDJ/gJlOgwZ7VjuwUaTrsN713fH8lx+5CRV9TQzVG5bnA7v9bDxkBEiB3XD2mPK/snYUCHWDV7tsCayT1a4/f0Y+iZaO0O3Riw2whm3zYEL8/fi/7tYxq6OTpsNoKHL9QLhYkx4UiMCfdZ+7a+SU2Ixh9/G9UojEGC4GgaK4LzhJ5Kxtpm4c4GEWA/vmkgPF4JPRMD19iO75qAQSktfGYzbghuG5mCt5dk4tpBtZsWvS745OZBAAC3RzKlfm8oOiouXIOTG7ebDSALi9/fORTlbq/PmPOGIsRuq5UspfXJ7NuGNHQTTLBlbQTnB7WZ+bw2eOWK3g3dhIAghNRqZtrzgam92+DCHhdxE2w2Rp6Y0q2hm9Ck6damcXgmCIJDCLGNiOGp8fj05oH16kLDUpOF9qfTB9VBS4InOsyJ7FlTG7oZ1YItZN/QDOgQW2vZNesDXpKdxsL+f17U0E0QCAQCgR+aigArEAhkhBDbyKiNLHwCQW1QX9k1BQKBQCAQCASC6iDUTgKBQCAQCAQCgUAgaDIIIVYgEAgEAoFAIBAIBE0GIcQKBAKBQCAQCAQCgaDJIIRYgUAgEAgEAoFAIBA0GYQQKxAIBAKBQCAQCASCJoMQYgUCgUAgEAgEAoFA0GQQQqxAIBAIBAKBQCAQCJoMQogVCAQCgUAgEAgEAkGTQQixAoFAIBAIBAKBQCBoMtS7EEsImUwIySCEHCCEzKzv8wsEAoFAIBAIBAKBoOlSr0IsIcQO4D0AFwHoDuA6Qkj3+myDQCAQCAQCgUAgEAiaLvVtiR0M4IAkSVmSJFUC+A7AZfXcBoFAIBAIBAKBQCAQNFHqW4hNBJDDvM9VtgkEAoFAIBAIBAKBQOAXR0M3wAgh5E4AdypviwkhGQ3ZngCIB3CyoRshaFKIPiOoLqLPCKqL6DOC6iL6jKC6iD4jqC5WfaZDdQ9U30LsUQDtmPdJyjYVSZI+AvBRfTYqGAghmyVJGtjQ7RA0HUSfEVQX0WcE1UX0GUF1EX1GUF1EnxFUl9rsM/XtTrwJQGdCSAohJATAtQDm1nMbBAKBQCAQCAQCgUDQRKlXS6wkSW5CyAwACwHYAXwmSdLu+myDQCAQCAQCgUAgEAiaLvUeEytJ0nwA8+v7vHVIk3F9FjQaRJ8RVBfRZwTVRfQZQXURfUZQXUSfEVSXWuszRJKk2jqWQCAQCAQCgUAgEAgEdUp9x8QKBAKBQCAQCAQCgUBQY4QQGwSEkMmEkAxCyAFCyMyGbo+gcUAIySaE7CSEbCeEbFa2tSCELCaEZCr/Y5XthBDyjtKHdhBC+jds6wX1BSHkM0JIASFkF7Ot2v2EEHKzsn8mIeTmhvgtgrrHor88Rwg5qow12wkhU5jPHlf6SwYhZBKzXcxb5wmEkHaEkOWEkD2EkN2EkL8p28U4I+Dio8+IsUbAhRASRgjZSAhJV/rM88r2FELIBuX+f68k9AUhJFR5f0D5PJk5FrcvWSJJkvirwR/kxFQHAXQEEAIgHUD3hm6X+Gv4PwDZAOIN214DMFN5PRPAq8rrKQD+AEAADAWwoaHbL/7qrZ+MBtAfwK6a9hMALQBkKf9jldexDf3bxF+99ZfnADzC2be7MieFAkhR5iq7mLfOrz8AbQD0V15HA9iv9A0xzoi/6vYZMdaIP6s+QwBEKa+dADYo48cPAK5Vtn8I4B7l9b0APlReXwvge199yde5hSW25gwGcECSpCxJkioBfAfgsgZuk6DxchmAL5XXXwKYxmz/SpJZDyCGENKmAdonqGckSVoJ4LRhc3X7ySQAiyVJOi1J0hkAiwFMrvPGC+odi/5ixWUAvpMkqUKSpEMADkCes8S8dR4hSdJxSZK2Kq+LAOwFkAgxzggs8NFnrBBjzXmOMl4UK2+dyp8EYByAH5XtxnGGjj8/AhhPCCGw7kuWCCG25iQCyGHe58L3gy44f5AALCKEbCGE3KlsayVJ0nHldR6AVspr0Y8ELNXtJ6L/CGYorp+fUbdQiP4iMKC47PWDbCUR44zAL4Y+A4ixRmABIcROCNkOoACykusggEJJktzKLuz9V/uG8vlZAHGoQZ8RQqxAUPuMlCSpP4CLANxHCBnNfijJfhMiLbjAJ6KfCALgAwCdAPQFcBzAmw3aGkGjhBASBeAnAA9KknSO/UyMMwIenD4jxhqBJZIkeSRJ6gsgCbL1tGt9nFcIsTXnKIB2zPskZZvgPEeSpKPK/wIAv0B+oPOpm7Dyv0DZXfQjAUt1+4noP+cxkiTlK4sHL4CPobleif4iAAAQQpyQhZGvJUn6WdksxhmBJbw+I8YaQSBIklQIYDmAYZDDERzKR+z9V/uG8nlzAKdQgz4jhNiaswlAZyX7Vgjk4OS5DdwmQQNDCIkkhETT1wAuBLALct+gGR1vBvCb8nougJuUrJBDAZxl3LwE5x/V7ScLAVxICIlV3LsuVLYJzgMM8fOXQx5rALm/XKtkgUwB0BnARoh567xCiTP7FMBeSZLeYj4S44yAi1WfEWONwApCSEtCSIzyOhzARMix1MsBXKXsZhxn6PhzFYBlikeIVV+yxOHrQ4E1kiS5CSEzIA/kdgCfSZK0u4GbJWh4WgH4RZ4H4ADwjSRJCwghmwD8QAi5DcBhANco+8+HnBHyAIBSALfUf5MFDQEh5FsALgDxhJBcAM8CmIVq9BNJkk4TQl6EvGAAgBckSQo0+Y+gCWHRX1yEkL6Q3UGzAdwFAJIk7SaE/ABgDwA3gPskSfIoxxHz1vnDCAA3AtipxKsBwBMQ44zAGqs+c50YawQWtAHwJSHEDtk4+oMkSf8jhOwB8B0h5CUA2yArR6D8n00IOQA5WeG1gO++ZAVR0hoLBAKBQCAQCAQCgUDQ6BHuxAKBQCAQCAQCgUAgaDIIIVYgEAgEAoFAIBAIBE0GIcQKBAKBQCAQCAQCgaDJIIRYgUAgEAgEAoFAIBA0GYQQKxAIBAKBQCAQCASCJoMQYgUCgUAgEAgEAoFA0GQQQqxAIBAIBAKBQCAQCJoMQogVCAQCgUAgEAgEAkGT4f8BEPf5Je3jqcYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "def scale(unscaled):\n", - " s = rcp.RandomUniform(low=0, high=1000, shape=1)\n", - " z = s * unscaled\n", - " return z\n", - " \n", - "\n", - "def complex_weekly_seasonality():\n", - " daily_pattern = rcp.RandomUniform(0, 1, shape=(24,))\n", - " daily_seasonality = rcp.Dilated(rcp.Repeated(daily_pattern), 12)\n", - " weekly_pattern = rcp.RandomUniform(0, 1, shape=(7,))\n", - " weekly_seasonality = rcp.Dilated(rcp.Repeated(weekly_pattern), 288)\n", - " unnormalized_seasonality = daily_seasonality * weekly_seasonality\n", - " seasonality = rcp.NormalizeMax(unnormalized_seasonality)\n", - "\n", - " noise_level = rcp.RandomUniform(low=0.01, high=0.1, shape=1)\n", - " noise = noise_level * rcp.RandomGaussian()\n", - "\n", - " level = rcp.RandomUniform(low=0, high=10, shape=1)\n", - " signal = level + seasonality\n", - "\n", - " unscaled = signal + noise\n", - " return scale(unscaled)\n", - "\n", - "plot_examples(complex_weekly_seasonality(), 10 * 288, 5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generating Anomalies\n", - "\n", - "Anomalies are just another effect added/multiplied to a base time series. We can define a recipe for creating certain types of anomalies, and then compose it with a base recipe." - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:00.731282Z", - "iopub.status.busy": "2022-06-13T08:52:00.730519Z", - "iopub.status.idle": "2022-06-13T08:52:01.126462Z", - "shell.execute_reply": "2022-06-13T08:52:01.126923Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAI/CAYAAAB6VfRnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABK5UlEQVR4nO3df5Bc5X3n+/dXIyGIREAgVlaQ1iK2dl3sZi/GWowrLt/BXmPBTSGnTBKxtzBm7ZLLgUqytfkDUnVth+Ruxa5NUusbx1wl1hq7HAuKxGtdXzmYLZiQvRuwJJvfLGbAYKRgCxDIjEASo/neP/qMaI2mp/sMPX1Od79fVV1z+jmnuh/Qd54zn36eczoyE0mSJEmSqrao6g5IkiRJkgQGVEmSJElSTRhQJUmSJEm1YECVJEmSJNWCAVWSJEmSVAsGVEmSJElSLSyu6o1XrlyZ69atq+rtO3Lo0CGWLVtWdTfUR6wZlWXNqCxrRmVZMyrLmlFZrWpmz549L2TmOWVeq7KAum7dOnbv3l3V23dkbGyM0dHRqruhPmLNqCxrRmVZMyrLmlFZ1ozKalUzEfFM2ddyia8kSZIkqRYMqJIkSZKkWjCgSpIkSZJqoW1AjYhtEbE/Ih5usT8i4gsRMR4RD0bEhd3vpiRJkiRp0HUyg/oVYOMc+y8D1hePLcCX3ny3JEmSJEnDpu1dfDPznohYN8chm4CvZmYC90bEmRGxOjOf61Ynq3D49WMcPZYcfv1Y1V1RH7FmVJY1o7KsGZVlzagsa6Z/nDKyiEWLoupudFU3vmbmXODZpud7i7a+Dqj/6ve/y9HJKbjzb6vuivqNNaOyrBmVZc2oLGtGZVkzfeG7//59/LNVp1fdja7q6fegRsQWGsuAWbVqFWNjY718+1I+/LYRDh8+xilLT6m6K+ojR48ctWZUijWjsqwZlWXNqCxrpn/8zwd284+nVD+DOjEx0bVs142Aug9Y2/R8TdF2kszcCmwF2LBhQ9b5C4BHR/2SYpVnzagsa0ZlWTMqy5pRWdaMyupmzXTja2Z2AB8t7uZ7MXCw368/lSRJkiT1XtsZ1Ij4BjAKrIyIvcBngCUAmXkzsBO4HBgHXgWuXajOSpIkSZIGVyd38b2qzf4ErutajyRJkiRJQ6kbS3wlSZIkSXrTDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWOgqoEbExIh6PiPGIuGGW/R+LiOcj4v7i8Ynud1WSJEmSNMgWtzsgIkaALwIfBPYCuyJiR2Y+OuPQWzPz+gXooyRJkiRpCHQyg3oRMJ6ZT2XmUWA7sGlhuyVJkiRJGjadBNRzgWebnu8t2mb6SEQ8GBG3R8TarvROkiRJkjQ0IjPnPiDiSmBjZn6ieH418O7m5bwRcTYwkZlHIuKTwG9k5vtnea0twBaAVatWvWv79u3d+y9ZABMTEyxfvrzqbqiPWDMqy5pRWdaMyrJmVJY1o7Ja1cwll1yyJzM3lHmtttegAvuA5hnRNUXbcZn5YtPTvwQ+P9sLZeZWYCvAhg0bcnR0tExfe25sbIy691H1Ys2oLGtGZVkzKsuaUVnWjMrqZs10ssR3F7A+Is6LiFOAzcCO5gMiYnXT0yuAx7rSO0mSJEnS0Gg7g5qZkxFxPXAHMAJsy8xHIuImYHdm7gB+KyKuACaBA8DHFrDPkiRJkqQB1MkSXzJzJ7BzRtunm7ZvBG7sbtckSZIkScOkkyW+kiRJkiQtOAOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWDKiSJEmSpFowoEqSJEmSasGAKkmSJEmqBQOqJEmSJKkWOgqoEbExIh6PiPGIuGGW/Usj4tZi/30Rsa7rPZUkSZIkDbS2ATUiRoAvApcB5wNXRcT5Mw77OPBSZr4d+FPgc93uqCRJkiRpsHUyg3oRMJ6ZT2XmUWA7sGnGMZuAW4rt24EPRER0r5uSJEmSpEG3uINjzgWebXq+F3h3q2MyczIiDgJnAy90o5OVyYRDh6ruhfrJ1JQ1o3KsGZVlzagsa0ZlWTP9Y9myqnvQdZ0E1K6JiC3AluLpREQ83sv3L2MEFi2FNafCwar7ov5xGM6wZlSGNaOyrBmVZc2oLGumf7wGh1+DI1X3A1jJ7JOTby37Qp0E1H3A2qbna4q22Y7ZGxGLgTOAF2e+UGZuBbaW7WRVImL3ocwNVfdD/cOaUVnWjMqyZlSWNaOyrBmVFRG7s0s108k1qLuA9RFxXkScAmwGdsw4ZgdwTbF9JXBXZmY3OihJkiRJGg5tZ1CLa0qvB+4ARoBtmflIRNwE7M7MHcCXga9FxDhwgEaIlSRJkiSpYx1dg5qZO4GdM9o+3bR9GPi17natFvpmObJqw5pRWdaMyrJmVJY1o7KsGZXVtZoJV+JKkiRJkuqgk2tQJUmSJElacAbUWUTExoh4PCLGI+KGqvuj+oiIpyPioYi4PyJ2F21nRcSdEfFE8XNF0R4R8YWijh6MiAur7b16ISK2RcT+iHi4qa10jUTENcXxT0TENbO9lwZDi5r5bETsK8aa+yPi8qZ9NxY183hEfKip3XPXkIiItRFxd0Q8GhGPRMRvF+2ONZrVHDXjWKNZRcSpEfG9iHigqJnfL9rPi4j7in//W4ub6BIRS4vn48X+dU2vNWsttZSZPpoeNG4E9STwi8ApwAPA+VX3y0c9HsDTwMoZbZ8Hbii2bwA+V2xfDnwHCOBi4L6q+++jJzXyPuBC4OH51ghwFvBU8XNFsb2i6v82Hz2tmc8CvzvLsecX56WlwHnF+WrEc9dwPYDVwIXF9unAD4vacKzxUbZmHGt8tKqZAJYX20uA+4rx4zZgc9F+M/CpYvs3gZuL7c3ArXPV0lzv7QzqyS4CxjPzqcw8CmwHNlXcJ9XbJuCWYvsW4MNN7V/NhnuBMyNidQX9Uw9l5j007mberGyNfAi4MzMPZOZLwJ3AxgXvvCrRomZa2QRsz8wjmfkjYJzGectz1xDJzOcy8/vF9ivAY8C5ONaohTlqphXHmiFXjBcTxdMlxSOB9wO3F+0zx5np8ed24AMREbSupZYMqCc7F3i26fle5v4F1nBJ4LsRsScithRtqzLzuWL7J8CqYtta0rSyNWLtCOD6YjnmtumlmlgzmqFYRvdOGrMbjjVqa0bNgGONWoiIkYi4H9hP4wOsJ4GXM3OyOKT53/94bRT7DwJnM4+aMaBK5bw3My8ELgOui4j3Ne/MxloGb42tlqwRdehLwNuAC4DngD+utDeqpYhYDvw18DuZ+bPmfY41ms0sNeNYo5Yy81hmXgCsoTHr+Y5evK8B9WT7gLVNz9cUbRKZua/4uR/4Jo1f1p9OL90tfu4vDreWNK1sjVg7Qy4zf1r8YTAF/AVvLIeyZgRARCyhETS+npl/UzQ71qil2WrGsUadyMyXgbuB99C4RGBxsav53/94bRT7zwBeZB41Y0A92S5gfXGHqlNoXOS7o+I+qQYiYllEnD69DVwKPEyjPqbvfHgN8K1iewfw0eLuiRcDB5uWXmm4lK2RO4BLI2JFsdzq0qJNQ2LG9eq/SmOsgUbNbC7ulngesB74Hp67hkpxXdeXgccy80+adjnWaFatasaxRq1ExDkRcWaxfRrwQRrXLt8NXFkcNnOcmR5/rgTuKlZytKqllhbPtXMYZeZkRFxPY4AeAbZl5iMVd0v1sAr4ZmOMZzHwV5n5txGxC7gtIj4OPAP8enH8Thp3ThwHXgWu7X2X1WsR8Q1gFFgZEXuBzwB/RIkaycwDEfEHNP4QALgpMzu9iY76TIuaGY2IC2gs0Xwa+CRAZj4SEbcBjwKTwHWZeax4Hc9dw+OXgauBh4rrwwB+D8catdaqZq5yrFELq4FbImKExqTmbZn57Yh4FNgeEX8I/IDGBx8UP78WEeM0bvy3GeaupVaiuP2vJEmSJEmVcomvJEmSJKkWDKiSJEmSpFowoEqSJEmSaqGymyStXLky161bV9Xbd+TQoUMsW7as6m6oj1gzKsuaUVnWjMqqrGaOHIFDh+Css3r/3npTHGdUVqua2bNnzwuZeU6Z16osoK5bt47du3dX9fYdGRsbY3R0tOpuqI9YMyrLmlFZ1ozKqqxmnngC7r0Xrr669++tN8VxRmW1qpmIeKbsa7nEV5IkSZJUCwZUSZIkSVIttA2oEbEtIvZHxMMt9kdEfCEixiPiwYi4sPvdlCRJUt/JrLoHkvpMJzOoXwE2zrH/MmB98dgCfOnNd0uSJEmSNGzaBtTMvAc4MMchm4CvZsO9wJkRsbpbHZQkSVKfcgZVUknduIvvucCzTc/3Fm3PdeG1K/N//r+P8vSPj/B3rzxSdVfUR/butWZUjjWjsqwZlVVVzfxs/wHOeHEZ+f9Yr/3GcaZ/fOp/fRv/5OdPrbobXdXTr5mJiC00lgGzatUqxsbGevn2pdx63yFeP5aw7+mqu6J+ktaMSrJmVJY1o7IqqJnJKXh9CuA0Truvt++tLnCc6Rvr46f8wvLq73s7MTHRtWzXjYC6D1jb9HxN0XaSzNwKbAXYsGFD1vn7lR4c9TugVJ41o7KsGZVlzaisKmrmG9/7MTf+zUMAPPaH/1tP31tvnuOMyupmzXQjbu8APlrczfdi4GBm9vXyXkmSJM3foqi6B5L6VdsZ1Ij4BjAKrIyIvcBngCUAmXkzsBO4HBgHXgWuXajOSpIkqf4iTKiS5qdtQM3Mq9rsT+C6rvVIkiRJfW3EgCppnqq/olaSJEkDZZF/YUqaJ4cPSZIkddUiZ1AlzZMBVZIkSV1lQJU0XwZUSZIkdZUBVdJ8GVAlSZLUVX7NjKT5MqBKkiSpqxaZUCXNkwFVkiRJXeUSX0nzZUCVJElSVzmBKmm+DKiSJEnqKmdQJc2XAVWSJEld5TWokubLgCpJkqSuMp9Kmi8DqiRJkrrKJb6S5suAKkmSpK4yoEqaLwOqJEmSusolvpLmy4AqSZKkrvImSZLmy4AqSZKkrnKJr6T5MqBKkiSpq5xAlTRfBlRJkiR1lTOokubLgCpJkqSuGnEKVdI8GVAlSZLUVU6gSpovA6okSZK6yiW+kubLgCpJkqSuOmGJb2Z1HZHUdwyokiRJ6iovQZU0XwZUSZIkdVW4xFfSPBlQJUmS1FUj4RJfSfNjQJUkSVJXTd8kKTCcSipncdUdkCRJ0mD5Jz+/lAvOOZWPHPvHqrsiqc8YUCVJktRVpy4Z4b/+yhq464dVd0VSn3GJryRJkhaG159KKsmAKkmSJEmqBQOqJEmSum969tRZVEklGFAlSZLUfZmGU0mlGVAlSZIkSbVgQJUkSZIk1UJHATUiNkbE4xExHhE3zLL/YxHxfETcXzw+0f2uSpIkqW94DaqkeWj7PagRMQJ8EfggsBfYFRE7MvPRGYfempnXL0AfJUmSJElDoJMZ1IuA8cx8KjOPAtuBTQvbLUmSJPU1Z04lzUMnAfVc4Nmm53uLtpk+EhEPRsTtEbG2K72TJElSfzOoSiohss2gERFXAhsz8xPF86uBdzcv542Is4GJzDwSEZ8EfiMz3z/La20BtgCsWrXqXdu3b+/ef8kCmJiYYPny5VV3Q33EmlFZ1ozKsmZUVmU1c/gwvPIKrFwJEb1/f82b44zKalUzl1xyyZ7M3FDmtdpegwrsA5pnRNcUbcdl5otNT/8S+PxsL5SZW4GtABs2bMjR0dEyfe25sbEx6t5H1Ys1o7KsGZVlzaisymrm4Yfh7/4OPvxhWLKk9++veXOcUVndrJlOlvjuAtZHxHkRcQqwGdjRfEBErG56egXwWFd6J0mSpP6U6fJeSaW1nUHNzMmIuB64AxgBtmXmIxFxE7A7M3cAvxURVwCTwAHgYwvYZ0mSJEnSAOpkiS+ZuRPYOaPt003bNwI3drdrkiRJkqRh0skSX0mSJKmc6eW9LvOVVIIBVZIkSd3nNaiS5sGAKkmSJEmqBQOqJEmSJKkWDKiSJEnqPq9BlTQPBlRJkiQtDMOppJIMqJIkSeo+w6mkeTCgSpIkaeEYVCWVYECVJEmSJNWCAVWSJEmSVAsGVEmSJHWfS3slzYMBVZIkSZJUCwZUSZIkSVItGFAlSZLUfdNLfF3qK6kEA6okSZK6L9NwKqk0A6okSZIkqRYMqJIkSZKkWjCgSpIkqfu8BlXSPBhQJUmS1H1egyppHgyokiRJkqRaMKBKkiRp4TiLKqkEA6okSZIkqRYMqJIkSeo+Z04lzYMBVZIkSd1nQJU0DwZUSZIkSVItGFAlSZIkSbVgQJUkSVL3TS/xdamvpBIMqJIkSeq+TMOppNIMqJIkSZKkWjCgSpIkSZJqwYAqSZKkheMyX0klGFAlSZLUfV6DKmkeDKiSJEmSpFroKKBGxMaIeDwixiPihln2L42IW4v990XEuq73VJIkSf3HWVRJJbQNqBExAnwRuAw4H7gqIs6fcdjHgZcy8+3AnwKf63ZHJUmSJEmDrZMZ1IuA8cx8KjOPAtuBTTOO2QTcUmzfDnwgIqJ73ZQkSVJfceZU0jx0ElDPBZ5ter63aJv1mMycBA4CZ3ejg5IkSepDBlRJ87C4l28WEVuALcXTiYh4vJfvX8YiWHQqrDm1EbaljhyGM6wZlWHNqCxrRmVVVTMBi5bAkqP/4T8c6fV7681xnOkfE/DqUXi96n4AK4EXZml/a9kX6iSg7gPWNj1fU7TNdszeiFgMnAG8OPOFMnMrsLVsJ6sSEbsPZW6ouh/qH9aMyrJmVJY1o7KsGZVlzaisiNidXaqZTpb47gLWR8R5EXEKsBnYMeOYHcA1xfaVwF2ZruuQJEmSJHWu7QxqZk5GxPXAHcAIsC0zH4mIm4DdmbkD+DLwtYgYBw7QCLGSJEmSJHWso2tQM3MnsHNG26ebtg8Dv9bdrtVC3yxHVm1YMyrLmlFZ1ozKsmZUljWjsrpWM+FKXEmSJElSHXRyDaokSZIkSQvOgDqLiNgYEY9HxHhE3FB1f1QfEfF0RDwUEfdHxO6i7ayIuDMinih+rijaIyK+UNTRgxFxYbW9Vy9ExLaI2B8RDze1la6RiLimOP6JiLhmtvfSYGhRM5+NiH3FWHN/RFzetO/GomYej4gPNbV77hoSEbE2Iu6OiEcj4pGI+O2i3bFGs5qjZhxrNKuIODUivhcRDxQ18/tF+3kRcV/x739rcRNdImJp8Xy82L+u6bVmraWWMtNH04PGjaCeBH4ROAV4ADi/6n75qMcDeBpYOaPt88ANxfYNwOeK7cuB7wABXAzcV3X/ffSkRt4HXAg8PN8aAc4Cnip+rii2V1T93+ajpzXzWeB3Zzn2/OK8tBQ4rzhfjXjuGq4HsBq4sNg+HfhhURuONT7K1oxjjY9WNRPA8mJ7CXBfMX7cBmwu2m8GPlVs/yZwc7G9Gbh1rlqa672dQT3ZRcB4Zj6VmUeB7cCmivuketsE3FJs3wJ8uKn9q9lwL3BmRKyuoH/qocy8h8bdzJuVrZEPAXdm5oHMfAm4E9i44J1XJVrUTCubgO2ZeSQzfwSM0zhvee4aIpn5XGZ+v9h+BXgMOBfHGrUwR8204lgz5IrxYqJ4uqR4JPB+4PaifeY4Mz3+3A58ICKC1rXUkgH1ZOcCzzY938vcv8AaLgl8NyL2RMSWom1VZj5XbP8EWFVsW0uaVrZGrB0BXF8sx9w2vVQTa0YzFMvo3kljdsOxRm3NqBlwrFELETESEfcD+2l8gPUk8HJmThaHNP/7H6+NYv9B4GzmUTMGVKmc92bmhcBlwHUR8b7mndlYy+CtsdWSNaIOfQl4G3AB8Bzwx5X2RrUUEcuBvwZ+JzN/1rzPsUazmaVmHGvUUmYey8wLgDU0Zj3f0Yv3NaCebB+wtun5mqJNIjP3FT/3A9+k8cv60+mlu8XP/cXh1pKmla0Ra2fIZeZPiz8MpoC/4I3lUNaMAIiIJTSCxtcz82+KZscatTRbzTjWqBOZ+TJwN/AeGpcILC52Nf/7H6+NYv8ZwIvMo2YMqCfbBawv7lB1Co2LfHdU3CfVQEQsi4jTp7eBS4GHadTH9J0PrwG+VWzvAD5a3D3xYuBg09IrDZeyNXIHcGlErCiWW11atGlIzLhe/VdpjDXQqJnNxd0SzwPWA9/Dc9dQKa7r+jLwWGb+SdMuxxrNqlXNONaolYg4JyLOLLZPAz5I49rlu4Eri8NmjjPT48+VwF3FSo5WtdTS4rl2DqPMnIyI62kM0CPAtsx8pOJuqR5WAd9sjPEsBv4qM/82InYBt0XEx4FngF8vjt9J486J48CrwLW977J6LSK+AYwCKyNiL/AZ4I8oUSOZeSAi/oDGHwIAN2VmpzfRUZ9pUTOjEXEBjSWaTwOfBMjMRyLiNuBRYBK4LjOPFa/juWt4/DJwNfBQcX0YwO/hWKPWWtXMVY41amE1cEtEjNCY1LwtM78dEY8C2yPiD4Ef0Pjgg+Ln1yJinMaN/zbD3LXUShS3/5UkSZIkqVIu8ZUkSZIk1YIBVZIkSZJUCwZUSZIkSVItVHaTpJUrV+a6deuqevuOHDp0iGXLlvX+jaem4OBBOP10WOx9rPpJZTWjvmXNqCxrRmVZMyrLmlFZrWpmz549L2TmOWVeq7L0s27dOnbv3l3V23dkbGyM0dHR3r/xSy/B178OH/4wrFnT+/fXvFVWM+pb1ozKsmZUljWjsqwZldWqZiLimbKv5RJfSZIkSVItGFDryq//kSRJkjRkDKiSJEmSpFowoNZR5hsPSZIkSRoSBlRJkiRJUi0YUGvo8OQUr05F1d2QJEmSpJ4yoNbQe2/+Puf/5BeZOHqs6q5IkiRJUs8YUGvohVdfB+CVIwZUSZIkScPDgFpjU94kSZIkSdIQMaDW2JT5VJIkSdIQMaDWmBOokiRJkoaJAbXGpjChSpIkSRoeBtSayaZp0ynX+EqSJEkaIgbUmmnOpOZTSZIkScPEgFozecKFpyZUSZIkScPDgFozzqBKkiRJGlYG1JqZ8hpUSZIkSUOqbUCNiG0RsT8iHm6xfzQiDkbE/cXj093v5vBIZ1AlSZIkDanFHRzzFeDPgK/OcczfZ+avdKVHQ+6EGVSvQZUkSZI0RNrOoGbmPcCBHvRFnBhQ03wqSZIkaYh06xrU90TEAxHxnYj4F116zaF0wk2SXOMrSZIkaYhEdjBNFxHrgG9n5r+cZd/PA1OZORERlwP/OTPXt3idLcAWgFWrVr1r+/btb6bvC25iYoLly5f39j2PJtff9SoA/8e7RnjbOaf29P315lRRM+pv1ozKsmZUljWjsqwZldWqZi655JI9mbmhzGt1cg3qnDLzZ03bOyPizyNiZWa+MMuxW4GtABs2bMjR0dE3+/YLamxsjF738cCho3DXnQBcsGYt73qPE9L9pIqaUX+zZlSWNaOyrBmVZc2orG7WzJte4hsRb4mIKLYvKl7zxTf7usOqkxltSZIkSRpEbWdQI+IbwCiwMiL2Ap8BlgBk5s3AlcCnImISeA3YnKaseTvhGlT/N0qSJEkaIm0DamZe1Wb/n9H4Ghp1QXO29x5JkiRJkoZJt+7iqy5xBlWSJEnSsDKg1ozfgypJkiRpWBlQa2bKJb6SJEmShpQBtWbSJb6SJEmShpQBtWZOnEE1oEqSJEkaHgbUmmle1ms+lSRJkjRMDKg10/w1M+ZTSZIkScPEgFozJ3zNjHdJkiRJkjREDKg10zyDOuUcqiRJkqQhYkCtmRNmUM2nkiRJkoaIAbVmmu/c602SJEmSJA0TA2rN+DUzkiRJkoaVAbVm0iW+kiRJkoaUAbVmnEGVJEmSNKwMqDXTPGtqPpUkSZI0TNoG1IjYFhH7I+LhFvsjIr4QEeMR8WBEXNj9bg6P5q+ZMZ9KkiRJGiadzKB+Bdg4x/7LgPXFYwvwpTffreF1wtfMeBGqJEmSpCHSNqBm5j3AgTkO2QR8NRvuBc6MiNXd6uCwaZ5BnaqwH5IkSZLUa4u78BrnAs82Pd9btD3XhdeuzK/8X3/PywdfZdkP7unp+776+uTx7f+05wX+8oe9fX+9OYcO9b5m1N+sGZVlzagsa0ZlWTP94/+++l2sW7ms6m50VTcCasciYguNZcCsWrWKsbGxXr59KT937DAjS6dYzKs9fd/lS2DNWxaRR47w+uKAHr+/3pxTK6gZ9TdrRmVZMyrLmlFZ1kz/2LPrPp4+rfr73k5MTHQt23UjoO4D1jY9X1O0nSQztwJbATZs2JCjo6NdePuFMToKY2NjVNLHffvgv/wX+PCvwT//571/f81bZTWjvmXNqCxrRmVZMyrLmlFZ3ayZbsTtHcBHi7v5XgwczMy+Xt4rSZIkSeq9tjOoEfENYBRYGRF7gc8ASwAy82ZgJ3A5ME5jPeq1C9XZoeEXoEqSJEkaQm0DamZe1WZ/Atd1rUd6g0FVkiRJ0hCp/opatWZAlSRJkjREDKiSJEmSpFowoNaRM6eSJEmShpABta4yDaqSJEmShooBVZIkSZJUCwbUOpqeOXUGVZIkSdIQMaBKkiRJkmrBgFpXzp5KkiRJGjIG1DozpEqSJEkaIgbUOjOgSpIkSRoiBlRJkiRJUi0YUOvImVNJkiRJQ8iAWmcGVUmSJElDxIBaZwZUSZIkSUOko4AaERsj4vGIGI+IG2bZ/7GIeD4i7i8en+h+VyVJkiRJg2xxuwMiYgT4IvBBYC+wKyJ2ZOajMw69NTOvX4A+Dh9nTiVJkiQNoU5mUC8CxjPzqcw8CmwHNi1st0SmQVWSJEnSUOkkoJ4LPNv0fG/RNtNHIuLBiLg9ItZ2pXeSJEmSpKER2WaWLiKuBDZm5ieK51cD725ezhsRZwMTmXkkIj4J/EZmvn+W19oCbAFYtWrVu7Zv3969/5IFMDExwfLly3v/xkePwosvwplnwmmn9f79NW+V1Yz6ljWjsqwZlWXNqCxrRmW1qplLLrlkT2ZuKPNaba9BBfYBzTOia4q24zLzxaanfwl8frYXysytwFaADRs25OjoaJm+9tzY2BiV9PFHP4J/+Ae44gp45zt7//6at8pqRn3LmlFZ1ozKsmZUljWjsrpZM50s8d0FrI+I8yLiFGAzsKP5gIhY3fT0CuCxrvRumHn9qSRJkqQh03YGNTMnI+J64A5gBNiWmY9ExE3A7szcAfxWRFwBTAIHgI8tYJ8lSZIkSQOokyW+ZOZOYOeMtk83bd8I3Njdrg2x6dlTZ1ElSZIkDZFOlviqChFV90CSJEmSesqAKkmSJEmqBQNqnbnEV5IkSdIQMaDWmQFVkiRJ0hAxoEqSJEmSasGAWkeZ3iRJkiRJ0tAxoNZVpkt8JUmSJA0VA2pdRRhQJUmSJA0VA2odGUwlSZIkDSEDqiRJkiSpFgyokiRJkqRaMKDWmUt9JUmSJA0RA2odTQdTA6okSZKkIWJArSu/B1WSJEnSkDGgSpIkSZJqoaOAGhEbI+LxiBiPiBtm2b80Im4t9t8XEeu63tNh5BJfSZIkSUOkbUCNiBHgi8BlwPnAVRFx/ozDPg68lJlvB/4U+Fy3OzqUDKiSJEmShkgnM6gXAeOZ+VRmHgW2A5tmHLMJuKXYvh34QIQXUUqSJEmSOre4g2POBZ5ter4XeHerYzJzMiIOAmcDL3Sjk5U5dgyef7737/v88/D663DgQDXvr/mbnPTfTOVYMyrLmlFZ1ozKsmb6x8qVA3dz1U4CatdExBZgS/F0IiIe7+X7lzECi5bCmlPhYBXvvxgWT8IxwHW+feQwnFFVzag/WTMqy5pRWdaMyrJm+sdrcPg1OFJ1P4CVzD45+dayL9RJQN0HrG16vqZom+2YvRGxGDgDeHHmC2XmVmBr2U5WJSJ2H8rcUHU/1D+sGZVlzagsa0ZlWTMqy5pRWRGxO7tUM51cg7oLWB8R50XEKcBmYMeMY3YA1xTbVwJ3ZXqHH0mSJElS59rOoBbXlF4P3AGMANsy85GIuAnYnZk7gC8DX4uIceAAjRArSZIkSVLHOroGNTN3AjtntH26afsw8Gvd7Vot9M1yZNWGNaOyrBmVZc2oLGtGZVkzKqtrNROuxJUkSZIk1UEn16BKkiRJkrTgDKiziIiNEfF4RIxHxA1V90f1ERFPR8RDEXF/ROwu2s6KiDsj4oni54qiPSLiC0UdPRgRF1bbe/VCRGyLiP0R8XBTW+kaiYhriuOfiIhrZnsvDYYWNfPZiNhXjDX3R8TlTftuLGrm8Yj4UFO7564hERFrI+LuiHg0Ih6JiN8u2h1rNKs5asaxRrOKiFMj4nsR8UBRM79ftJ8XEfcV//63FjfRJSKWFs/Hi/3rml5r1lpqKTN9ND1o3AjqSeAXgVOAB4Dzq+6Xj3o8gKeBlTPaPg/cUGzfAHyu2L4c+A4QwMXAfVX330dPauR9wIXAw/OtEeAs4Kni54pie0XV/20+eloznwV+d5Zjzy/OS0uB84rz1YjnruF6AKuBC4vt04EfFrXhWOOjbM041vhoVTMBLC+2lwD3FePHbcDmov1m4FPF9m8CNxfbm4Fb56qlud7bGdSTXQSMZ+ZTmXkU2A5sqrhPqrdNwC3F9i3Ah5vav5oN9wJnRsTqCvqnHsrMe2jczbxZ2Rr5EHBnZh7IzJeAO4GNC955VaJFzbSyCdiemUcy80fAOI3zlueuIZKZz2Xm94vtV4DHgHNxrFELc9RMK441Q64YLyaKp0uKRwLvB24v2meOM9Pjz+3AByIiaF1LLRlQT3Yu8GzT873M/Qus4ZLAdyNiT0RsKdpWZeZzxfZPgFXFtrWkaWVrxNoRwPXFcsxt00s1sWY0Q7GM7p00Zjcca9TWjJoBxxq1EBEjEXE/sJ/GB1hPAi9n5mRxSPO///HaKPYfBM5mHjVjQJXKeW9mXghcBlwXEe9r3pmNtQzeGlstWSPq0JeAtwEXAM8Bf1xpb1RLEbEc+GvgdzLzZ837HGs0m1lqxrFGLWXmscy8AFhDY9bzHb14XwPqyfYBa5uerynaJDJzX/FzP/BNGr+sP51eulv83F8cbi1pWtkasXaGXGb+tPjDYAr4C95YDmXNCICIWEIjaHw9M/+maHasUUuz1YxjjTqRmS8DdwPvoXGJwOJiV/O///HaKPafAbzIPGrGgHqyXcD64g5Vp9C4yHdHxX1SDUTEsog4fXobuBR4mEZ9TN/58BrgW8X2DuCjxd0TLwYONi290nApWyN3AJdGxIpiudWlRZuGxIzr1X+VxlgDjZrZXNwt8TxgPfA9PHcNleK6ri8Dj2XmnzTtcqzRrFrVjGONWomIcyLizGL7NOCDNK5dvhu4sjhs5jgzPf5cCdxVrORoVUstLZ5r5zDKzMmIuJ7GAD0CbMvMRyruluphFfDNxhjPYuCvMvNvI2IXcFtEfBx4Bvj14vidNO6cOA68Clzb+y6r1yLiG8AosDIi9gKfAf6IEjWSmQci4g9o/CEAcFNmdnoTHfWZFjUzGhEX0Fii+TTwSYDMfCQibgMeBSaB6zLzWPE6nruGxy8DVwMPFdeHAfwejjVqrVXNXOVYoxZWA7dExAiNSc3bMvPbEfEosD0i/hD4AY0PPih+fi0ixmnc+G8zzF1LrURx+19JkiRJkirlEl9JkiRJUi0YUCVJkiRJtWBAlSRJkiTVQmU3SVq5cmWuW7euqrfvyKFDh1i2bFnV3VAfsWY69NprcPAgjIyc2H7sGCxf3ngMCWtGZVkzKsuaqYHJSXjxRTj9dPi5n6u6N21ZMyqrVc3s2bPnhcw8p8xrVRZQ161bx+7du6t6+46MjY0xOjpadTfUR6yZDt1/P+zaBW95y4ntL74Ib387vPe9lXSrCtaMyrJmVJY1UwP798O2bfChD8E731l1b9qyZlRWq5qJiGfKvpZLfCXVi3cWlyRJGloGVEm9ZwiVJA0Tz3tSxwyokiRJUi8YVKW2DKiS6sWTtyRpEHl+kzpiQJVUL57AJUmDynOc1FZld/GVNJxefvUof7z7ZV7bfya8EifsW3J0Ode/ZYpzq+maJEkL4s/u+0d+8tov8B8OH2NF1Z2Ras6AKqmndj39El978lXOGVnKKUffaD+W8JOjp/FLzx/j31bXPUmSuurw68f4T//jH4GVvPeFo2ysukNSzRlQJfXUVLG86ZbVL3L+W1ceb3/+KPzrXXF8vyRJg6D5tOYpTmrPa1Al9VQWZ+dFceLy3kVx4n5JkgZB8wevfggrtWdAldRTU8W5OWa0x4z9kiQNAgOqVI4BVVJPTR2fQT2xfXowmuptdyRJWlDNH7z6IazUngFVUk8dn0GdEVCnn3vyliQNkuZLV5xAldozoErqqePXoM5on37uuVuSNEhOmEGtrhtS3zCgSuqpqVYBNU7cL0nSIDjhGlSXCUltGVAl9dRU8fFxy2tQPXdLkgbICQG1wn5I/cKAKqmnpk/Tra5BNZ9KkgZK84nNVUJSW20DakRsi4j9EfFwi/2jEXEwIu4vHp/ufjclDYqWS3yP7+9pdyRJWlDexVcqZ3EHx3wF+DPgq3Mc8/eZ+Std6ZGkgdbyJklx4n5JkgaB34MqldN2BjUz7wEO9KAvkobA9KfHXoMqSRoGJwbUCjsi9YluXYP6noh4ICK+ExH/okuvKWkATZ+oZ+TT4889eUuSBknzpKmrhKT2Olni2873gbdm5kREXA78V2D9bAdGxBZgC8CqVasYGxvrwtsvnImJidr3UfVizbT3+I9fB+Affv50zpiaeT/DRfxocnKo/h9aMyrLmlFZ1ky19r/6xrnu8Vdf64t/C2tGZXWzZt50QM3MnzVt74yIP4+IlZn5wizHbgW2AmzYsCFHR0ff7NsvqLGxMereR9WLNdPej//haXj0Ed77s59x9rKVJ+xbRPJPR0aG6v+hNaOyrBmVZc1U60cvHIJ7xgB422mn9cW/hTWjsrpZM296iW9EvCWi8QUREXFR8ZovvtnXlTSYpr+kfOY1qNAYPFziK0kaJN4kSSqn7QxqRHwDGAVWRsRe4DPAEoDMvBm4EvhUREwCrwGb0wX2klo4fpOkWfYtCk/ekqTB0vxnsac4qb22ATUzr2qz/89ofA2NJLV1/CZJcfIUagAzr0qVJKmfnfA9qNV1Q+ob3bqLryR1JFt8zQw0BiQ/XZYkDRK/ZkYqx4AqqaeS4hpUTj5LLwpmaZUkqX+d+DUz1fVD6hcGVEk9Nec1qPjpsiRpsJwwg+rHsFJbBlRJPTX3NahpQJUkDZQTZlC9CFVqy4AqqafmvAbVJb6SpAFz4gyqpHYMqJJ66vj3oM6yr7HE14gqSRocJ9zF13Oc1JYBVVJPtf0e1J72RpKkhXXiXXwNqFI7BlRJPfXGNait9vewM5IkLbBsCqXmU6k9A6qknspMWmRTvwdVkjRwTljiW103pL5hQJXUU1M5+w2SwK+ZkSQNnqmmE9uUCVVqy4AqqaemMlsOPF6DKkkaNN4kSSrHgCqpp6ay9fWngSdvSdJgOeEa1Ar7IfULA6qknsrpGdRZUuqi8BpUSdJgOXEGtbp+SP3CgCqpp5K5rkFNP12WJA2U5jOb5zipPQOqpJ6amprjGlT8dFmSNFicQZXKaRtQI2JbROyPiIdb7I+I+EJEjEfEgxFxYfe7KWlQzHkNqjdJkiQNmCmvQZVK6WQG9SvAxjn2XwasLx5bgC+9+W5JGlRTc12Dip8uS5IGS/NNkrwRoNRe24CamfcAB+Y4ZBPw1Wy4FzgzIlZ3q4OSBktmtr4GNfx0WZI0WJq/+9QPYaX2FnfhNc4Fnm16vrdoe64Lr12Za//L99j/wmt8+cn7qu6K+siBA9ZMO+P7J2iRTwngvoNw9ZeH5/+hNaOyrBmVZc1U64WJo8e3/9vzx3imD85x1kz/+I+/+kusPevnqu5GV3UjoHYsIrbQWAbMqlWrGBsb6+Xbl/KP+1/j6OQxjjw/1+SxdKJjx6yZdpYF/C/nJGPLlp34sTLwSyvh/pfhuSH6f2jNqCxrRmVZM9X7V2cHKznCj48u6YtznDXTP/7h3nt58ueqv+/txMRE17JdNwLqPmBt0/M1RdtJMnMrsBVgw4YNOTo62oW3XxijozA2Nkad+6j6sWY6dNddsPcArFhxQvPo2ROw9udg069U1LHes2ZUljWjsqyZGvjRj2D7dnj3v4Z/82+q7k1b1ozK6mbNdCNu7wA+WtzN92LgYGb29fJeSQtsrptEeAMJSZKkodV2BjUivgGMAisjYi/wGWAJQGbeDOwELgfGgVeBaxeqs5IkSVJfivBDWKkDbQNqZl7VZn8C13WtR5IGnydoSdIwmT7vef6T2qr+ilpJmuany5IkSUPNgCqp9zIbYbTVPkmSJA0lA6okSZLUC34IK7VlQJXUe56gJUnDptXKIUknMKBKqg9P3pKkQeQHs1LHDKiSem+ua1AlSZI0tAyokurFT5klSZKGlgFVkiRJWmh+lZrUEQOqJEmStJCmg6kBVWrLgCqpXjx5S5IGkec3qSMGVEm9N9dNkjyBS5IkDS0DqiRJkrTQvAZV6ogBVVLveYKWJA0Tr0GVOmZAlVQffrosSRpUfv+31BEDqqTeM4RKkoaN5z6pIx0F1IjYGBGPR8R4RNwwy/6PRcTzEXF/8fhE97sqaWB4kpYkDRtXCUkdWdzugIgYAb4IfBDYC+yKiB2Z+eiMQ2/NzOsXoI+ShoUnb0mSpKHWyQzqRcB4Zj6VmUeB7cCmhe2WJEmSNCD88FXqWCcB9Vzg2abne4u2mT4SEQ9GxO0RsbYrvZM0mPweVEnSMPIcJ7UV2eYXJSKuBDZm5ieK51cD725ezhsRZwMTmXkkIj4J/EZmvn+W19oCbAFYtWrVu7Zv3969/5IFMDExwfLly6vuhvqINdOhgwfh2DEYGTmxfWqq8XPFit73qSLWjMqyZlSWNVMDR47Ayy/DqafCGWdU3Zu2rBmV1apmLrnkkj2ZuaHMa7W9BhXYBzTPiK4p2o7LzBebnv4l8PnZXigztwJbATZs2JCjo6Nl+tpzY2Nj1L2PqhdrpkPf/jYcOgSnn35i+9GjjeA6RP8PrRmVZc2oLGumBn74Q/jWt+Ad7+iLc5w1o7K6WTOdLPHdBayPiPMi4hRgM7Cj+YCIWN309Argsa70TtJgcomTJGmYeN6TOtZ2BjUzJyPieuAOYATYlpmPRMRNwO7M3AH8VkRcAUwCB4CPLWCfJQ0q7+IrSRpUnuOkjnSyxJfM3AnsnNH26abtG4Ebu9s1SQPNmyRJkoaF5zapY50s8ZWk7vJELUkaJtN3r/f8J7VlQJUkSZJ6wYAqtWVAlSRJkhZaq0tbJJ3AgCqp9+b6BNlPlyVJg8Zzm9QxA6qk3vNELUkaRp7/pLYMqJLqw+VPkqRBNB1MDahSWwZUSdUwjEqShonnPakjBlRJvec1qJIkSZqFAVVS7xlQJUnDZPp7UCW1ZUCVJEmSFpIfvkodM6BKqsZsnyT76bIkSdJQM6BKqhc/ZZYkDSrPcVJbBlRJ9eLJW5I0aDy3SR0zoErqPU/UkqRhMn2TJM9/UlsdBdSI2BgRj0fEeETcMMv+pRFxa7H/vohY1/WeSpIkSf3KgCp1pG1AjYgR4IvAZcD5wFURcf6Mwz4OvJSZbwf+FPhctzsqSZIkSRpsncygXgSMZ+ZTmXkU2A5smnHMJuCWYvt24AMR3o5TUgt+D6okaZh4bpM61klAPRd4tun53qJt1mMycxI4CJzdjQ5KGkCeqCVJw8jzn9TW4l6+WURsAbYUTyci4vFevn8Zi2DRqbDm1EbYljpyGM6wZtobgZHFsHgKpprbA2IKpiavvXayqr71mjWjsqwZlWXN1EKcBqcehaPHfuM3jlXdmXasmf4xAa8ehder7gewEnhhlva3ln2hTgLqPmBt0/M1Rdtsx+yNiMXAGcCLM18oM7cCW8t2sioRsftQ5oaq+6H+Yc2oLGtGZVkzKsuaUVnWjMqKiN3ZpZrpZInvLmB9RJwXEacAm4EdM47ZAVxTbF8J3JXpGgZJkiRJUufazqBm5mREXA/cAYwA2zLzkYi4CdidmTuALwNfi4hx4ACNECtJkiRJUsc6ugY1M3cCO2e0fbpp+zDwa93tWi30zXJk1YY1o7KsGZVlzagsa0ZlWTMqq2s1E67ElSRJkiTVQSfXoEqSJEmStOAMqLOIiI0R8XhEjEfEDVX3R/UREU9HxEMRcX9E7C7azoqIOyPiieLniqI9IuILRR09GBEXVtt79UJEbIuI/RHxcFNb6RqJiGuK45+IiGtmey8NhhY189mI2FeMNfdHxOVN+24saubxiPhQU7vnriEREWsj4u6IeDQiHomI3y7aHWs0qzlqxrFGs4qIUyPiexHxQFEzv1+0nxcR9xX//rcWN9ElIpYWz8eL/euaXmvWWmopM300PWjcCOpJ4BeBU4AHgPOr7pePejyAp4GVM9o+D9xQbN8AfK7Yvhz4DhDAxcB9VfffR09q5H3AhcDD860R4CzgqeLnimJ7RdX/bT56WjOfBX53lmPPL85LS4HzivPViOeu4XoAq4ELi+3TgR8WteFY46NszTjW+GhVMwEsL7aXAPcV48dtwOai/WbgU8X2bwI3F9ubgVvnqqW53tsZ1JNdBIxn5lOZeRTYDmyquE+qt03ALcX2LcCHm9q/mg33AmdGxOoK+qceysx7aNzNvFnZGvkQcGdmHsjMl4A7gY0L3nlVokXNtLIJ2J6ZRzLzR8A4jfOW564hkpnPZeb3i+1XgMeAc3GsUQtz1EwrjjVDrhgvJoqnS4pHAu8Hbi/aZ44z0+PP7cAHIiJoXUstGVBPdi7wbNPzvcz9C6zhksB3I2JPRGwp2lZl5nPF9k+AVcW2taRpZWvE2hHA9cVyzG3TSzWxZjRDsYzunTRmNxxr1NaMmgHHGrUQESMRcT+wn8YHWE8CL2fmZHFI87//8doo9h8EzmYeNWNAlcp5b2ZeCFwGXBcR72vemY21DN4aWy1ZI+rQl4C3ARcAzwF/XGlvVEsRsRz4a+B3MvNnzfscazSbWWrGsUYtZeaxzLwAWENj1vMdvXhfA+rJ9gFrm56vKdokMnNf8XM/8E0av6w/nV66W/zcXxxuLWla2RqxdoZcZv60+MNgCvgL3lgOZc0IgIhYQiNofD0z/6ZodqxRS7PVjGONOpGZLwN3A++hcYnA4mJX87//8doo9p8BvMg8asaAerJdwPriDlWn0LjId0fFfVINRMSyiDh9ehu4FHiYRn1M3/nwGuBbxfYO4KPF3RMvBg42Lb3ScClbI3cAl0bEimK51aVFm4bEjOvVf5XGWAONmtlc3C3xPGA98D08dw2V4rquLwOPZeafNO1yrNGsWtWMY41aiYhzIuLMYvs04IM0rl2+G7iyOGzmODM9/lwJ3FWs5GhVSy0tnmvnMMrMyYi4nsYAPQJsy8xHKu6W6mEV8M3GGM9i4K8y828jYhdwW0R8HHgG+PXi+J007pw4DrwKXNv7LqvXIuIbwCiwMiL2Ap8B/ogSNZKZByLiD2j8IQBwU2Z2ehMd9ZkWNTMaERfQWKL5NPBJgMx8JCJuAx4FJoHrMvNY8Tqeu4bHLwNXAw8V14cB/B6ONWqtVc1c5VijFlYDt0TECI1Jzdsy89sR8SiwPSL+EPgBjQ8+KH5+LSLGadz4bzPMXUutRHH7X0mSJEmSKuUSX0mSJElSLRhQJUmSJEm1YECVJEmSJNVCZTdJWrlyZa5bt66qt+/IoUOHWLZsWdXdUB+prGaOHIFXXoHGDZzeEAErVpzcrtpwnFFHXn8dDh+G00+3ZlSaNaOyrBmV1apm9uzZ80JmnlPmtSoLqOvWrWP37t1VvX1HxsbGGB0drbob6iOV1cxDD8E998Dq1Se2/+Qn8O/+HZx6au/7pI44zqgjP/gBPPssXHGFNaPSrBmVZc2orFY1ExHPlH0tv2ZGGhSLF8OSJSe2LXIVvyRJkvqHf71Kg86vkpIkSVKfMKBKgyDT60ylQeeHTZKkIdA2oEbEtojYHxEPt9gfEfGFiBiPiAcj4sLud1PSnPzDVZIkSQOgkxnUrwAb59h/GbC+eGwBvvTmuyWpawyv0mDwd1mSNATa3iQpM++JiHVzHLIJ+GpmJnBvRJwZEasz87ludbIKTz0/wXMTUzz5/ETVXVEfqapmzjk6xc/P0v7s6yMcfeFVOG2q531SZxxn1IlTDk1y9DXAc5PmwZpRWdZM/1iz4jSWLh6puhtd1Y27+J4LPNv0fG/R1tcBdeN//nuOTk7Bf/+7qruiflNBzfzTZSPc85YTr0G9+yW4dt8vwJ/f1/P+qCTHGXVkCTxQ1Io1o7KsGZVlzfSF7/779/HPVp1edTe6qqdfMxMRW2gsA2bVqlWMjY318u1L+fi/WMJrhw9z6lK/P1KdO3yk9zXzP56b5IcHjjG2YgVMvTFT+t+PNALr//7Pl3D6Uu+HVldV1Iz6y/jLx/hvP55kSSQf/6VTrRmVZs2oLGumf4w/uJt/XFL9jTInJia6lu26EVD3AWubnq8p2k6SmVuBrQAbNmzIOn8B8Ch+SbHKq6Jm/uPOx/jh//cjRl96Cd7yluPtPy3Gqus+9C5+4RfO7mmf1DnHGbWz86Hn+G9f/z6rT4Eb/u2/sWZUmjWjsqwZldXNmunGtMoO4KPF3XwvBg72+/WnUj8ZWRQcm+XmKZNF0+JF1X+qJmn+RvwdliQNkbYzqBHxDRoTiisjYi/wGWAJQGbeDOwELgfGgVeBaxeqs5JONhLBsVlu7jlVtC3yj1upr434HceSpCHSyV18r2qzP4HrutYjSaWMLAqmsvENFM1/xjqDKg2GkRF/hyVJw8M7p0h9bnr537EZ7dOzqoucfZH6mjOokqRhYkCV+tx0QJ2cscx3OqAu9m9bqa+5CkKSNEwMqFKfmw6oU5z4R+z0jKrXoEr9zd9hSdIwMaBKfW56dmVyZkD1GlRpILzxOzzL3dAkSRowBlSpz01fYzo1o306oHp/Fam/OYMqSRomBlSpzy0emb5J0swZ1GARiX/aSv3NVRCSpGFiQJX63PQM6szvQj0GjPS+O5K6zDtxS5KGiQFV6nOLF7WaQYWR8Jo1qd8tdp2+JGmIGFClPrdojpskOYMq9T+/B1WSNEwMqFKfm55BnZoxWTqZxQ2S0llUqZ9Nf5WUN/GVJA0DA6rU50aOz6CeaCphxL9opb7nNaiSpGFiQJX63HRAnZqxxPf4DKqkvmY+lSQNEwOq1Oemr0+beQ3qFF6DKkmSpP5iQJX63PQM6syvmZlMWOwSX0mSJPWRxVV3QNKbMx1QvzOxlId+8kb7k6/BIm+SJEmSpD5iQJX63KqfP5UAvnhgORw4cd+/Xnqskj5J6p6zlp0CwOaVM2+FJknS4DGgSn3uX557Bj+47EwO/88n4OyzT9i34vn9FfVKUrecfuoSnvr11cQPn6i6K5IkLTgDqjQAzlwSsGQKls7Yscjbf0qDYFEE+OssSRoC3iRJGnRegyoNBn+XJUlDwIAqDTL/oJUkSVIfMaBKgyJmWf83W5uk/uQHTpKkIWBAlQaBf7hKkiRpABhQpUFneJUkSVKfMKBKg8xwKkmSpD5iQJUGhdegSoPND5wkSUPAgCoNAv9wlSRJ0gAwoEqDYK6AaniVBoO/y5KkIWBAlSRJkiTVggFVkiRJklQLBlRpELj0T5IkSQPAgCoNAgOqNPj8PZckDQEDqjTo/KNWkiRJfcKAKg0yw6kkSZL6SEcBNSI2RsTjETEeETfMsv9jEfF8RNxfPD7R/a5KaikTIk5un61NUn/yAydJ0hBY3O6AiBgBvgh8ENgL7IqIHZn56IxDb83M6xegj5La8Q9XSZIkDYBOZlAvAsYz86nMPApsBzYtbLckdY3hVZIkSX2ik4B6LvBs0/O9RdtMH4mIByPi9ohY25XeSXpzDKeSJEnqI5Ft/oCNiCuBjZn5ieL51cC7m5fzRsTZwERmHomITwK/kZnvn+W1tgBbAFatWvWu7du3d++/ZAFMTEywfPnyqruhPlJZzbzyChw9CotnrNp//XU488yT21UbjjPqyGuvwauvwtlnWzMqzZpRWdaMympVM5dccsmezNxQ5rU6+at1H9A8I7qmaDsuM19sevqXwOdne6HM3ApsBdiwYUOOjo6W6WvPjY2NUfc+ql4qq5m774Znn4UVK05sf/FFGB2FlSt73yd1xHFGHfnBD+Chh+AjH7FmVJo1o7KsGZXVzZrpZInvLmB9RJwXEacAm4EdzQdExOqmp1cAj3Wld5I6M9dKCJf5SoPB32VJ0hBoO4OamZMRcT1wBzACbMvMRyLiJmB3Zu4AfisirgAmgQPAxxawz5IkSZKkAdTRhWmZuRPYOaPt003bNwI3drdrkiRJkqRh0skSX0l159I/afD5ey5JGgIGVGkQ+IerJEmSBoABVRp0hldJkiT1CQOqNMgMp5IkSeojBlRpEGRCxMnts7VJ6k9+4CRJGgIGVGkQ+IerJEmSBoABVRp0hldJkiT1CQOqNMgMp9JgyPT3WZI0FAyo0iDwGlRJkiQNAAOqJEmSJKkWDKjSoHNZoNT//D2WJA0JA6o0yPyjVpIkSX3EgCoNMq9BlSRJUh8xoEqDoNVNkiRJkqQ+YkCVBoFLeSVJkjQADKjSoDO8SpIkqU8YUKVBZjiVBkOmv8+SpKFgQJUGQas/XL0uVZIkSX3EgCoNAmdWJEmSNAAMqNKgM7xKkiSpTxhQpUFmOJUGg9egSpKGhAFVGgStvgfVa1AlSZLURwyo0qBz1kWSJEl9woAqDQJDqDTY/B2XJA0JA6o0yPyjVpIkSX3EgCpJkiRJqgUDqjQovCGSJEmS+pwBVRoELuWVBp+/55KkIWBAlQadf9RKkiSpTxhQJUmSJEm1YECVBoGzpJIkSRoABlRpEMwVUA2vkiRJ6hMGVEmSJElSLRhQJUmqu0xXQ0iShkJHATUiNkbE4xExHhE3zLJ/aUTcWuy/LyLWdb2nklrL9HtQJUmS1PfaBtSIGAG+CFwGnA9cFRHnzzjs48BLmfl24E+Bz3W7o5Lm4DWokiRJGgCdzKBeBIxn5lOZeRTYDmyaccwm4JZi+3bgAxFO50iS1BUu8ZUkDYnFHRxzLvBs0/O9wLtbHZOZkxFxEDgbeKEbnazM66/DM89U3Qv1k6NHq6mZiQmYnJy9/cc/9g/bOquqZtRf9u1r/HzmGWtG5VkzKsua6R9r1sDISNW96KpOAmrXRMQWYEvxdCIiHu/l+5cxAouWwppT4WDVfVH/OAxnVFEzAQFEwglJdAQWHYNjve6POldVzaj/BCxKmLJmVJY1o7Ksmf7xKhw+DEeq7gewktknJ99a9oU6Caj7gLVNz9cUbbMdszciFgNnAC/OfKHM3ApsLdvJqkTE7kOZG6ruh/qHNaOyrBmVZc2oLGtGZVkzKisidmeXaqaTa1B3Aesj4ryIOAXYDOyYccwO4Jpi+0rgrkzXFEqSJEmSOtd2BrW4pvR64A5gBNiWmY9ExE3A7szcAXwZ+FpEjAMHaIRYSZIkSZI61tE1qJm5E9g5o+3TTduHgV/rbtdqoW+WI6s2rBmVZc2oLGtGZVkzKsuaUVldq5lwJa4kSZIkqQ46uQZVkiRJkqQFZ0CdRURsjIjHI2I8Im6ouj+qj4h4OiIeioj7I2J30XZWRNwZEU8UP1cU7RERXyjq6MGIuLDa3qsXImJbROyPiIeb2krXSERcUxz/RERcM9t7aTC0qJnPRsS+Yqy5PyIub9p3Y1Ezj0fEh5raPXcNiYhYGxF3R8SjEfFIRPx20e5Yo1nNUTOONZpVRJwaEd+LiAeKmvn9ov28iLiv+Pe/tbiJLhGxtHg+Xuxf1/Ras9ZSS5npo+lB40ZQTwK/CJwCPACcX3W/fNTjATwNrJzR9nnghmL7BuBzxfblwHdofEfpxcB9VfffR09q5H3AhcDD860R4CzgqeLnimJ7RdX/bT56WjOfBX53lmPPL85LS4HzivPViOeu4XoAq4ELi+3TgR8WteFY46NszTjW+GhVMwEsL7aXAPcV48dtwOai/WbgU8X2bwI3F9ubgVvnqqW53tsZ1JNdBIxn5lOZeRTYDmyquE+qt03ALcX2LcCHm9q/mg33AmdGxOoK+qceysx7aNzNvFnZGvkQcGdmHsjMl4A7gY0L3nlVokXNtLIJ2J6ZRzLzR8A4jfOW564hkpnPZeb3i+1XgMeAc3GsUQtz1EwrjjVDrhgvJoqnS4pHAu8Hbi/aZ44z0+PP7cAHIiJoXUstGVBPdi7wbNPzvcz9C6zhksB3I2JPRGwp2lZl5nPF9k+AVcW2taRpZWvE2hHA9cVyzG3TSzWxZjRDsYzunTRmNxxr1NaMmgHHGrUQESMRcT+wn8YHWE8CL2fmZHFI87//8doo9h8EzmYeNWNAlcp5b2ZeCFwGXBcR72vemY21DN4aWy1ZI+rQl4C3ARcAzwF/XGlvVEsRsRz4a+B3MvNnzfscazSbWWrGsUYtZeaxzLwAWENj1vMdvXhfA+rJ9gFrm56vKdokMnNf8XM/8E0av6w/nV66W/zcXxxuLWla2RqxdoZcZv60+MNgCvgL3lgOZc0IgIhYQiNofD0z/6ZodqxRS7PVjGONOpGZLwN3A++hcYnA4mJX87//8doo9p8BvMg8asaAerJdwPriDlWn0LjId0fFfVINRMSyiDh9ehu4FHiYRn1M3/nwGuBbxfYO4KPF3RMvBg42Lb3ScClbI3cAl0bEimK51aVFm4bEjOvVf5XGWAONmtlc3C3xPGA98D08dw2V4rquLwOPZeafNO1yrNGsWtWMY41aiYhzIuLMYvs04IM0rl2+G7iyOGzmODM9/lwJ3FWs5GhVSy0tnmvnMMrMyYi4nsYAPQJsy8xHKu6W6mEV8M3GGM9i4K8y828jYhdwW0R8HHgG+PXi+J007pw4DrwKXNv7LqvXIuIbwCiwMiL2Ap8B/ogSNZKZByLiD2j8IQBwU2Z2ehMd9ZkWNTMaERfQWKL5NPBJgMx8JCJuAx4FJoHrMvNY8Tqeu4bHLwNXAw8V14cB/B6ONWqtVc1c5VijFlYDt0TECI1Jzdsy89sR8SiwPSL+EPgBjQ8+KH5+LSLGadz4bzPMXUutRHH7X0mSJEmSKuUSX0mSJElSLRhQJUmSJEm1YECVJEmSJNWCAVWSJEmSVAsGVEmSJElSLRhQJUmSJEm1YECVJEmSJNWCAVWSJEmSVAv/P79oABSaP8QmAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "z = rcp.ConstantVec(1.0)\n", - "\n", - "def inject_anomalies(z):\n", - " normal_indicator = rcp.BinaryMarkovChain(one_to_zero=1/(288*7), zero_to_one=0.1)\n", - " anomaly_indicator = 1 - normal_indicator\n", - " anomaly_scale = 0.5 + rcp.RandomUniform(-1.0, 1.0, shape=1)\n", - " anomaly_multiplier = 1 + anomaly_scale * anomaly_indicator\n", - " target = z * anomaly_multiplier\n", - " return target, anomaly_indicator\n", - "\n", - "target, anomaly_indicator = inject_anomalies(z)\n", - "plot_examples(target, 10*288, 5, anomaly_indicator)" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:01.133927Z", - "iopub.status.busy": "2022-06-13T08:52:01.133296Z", - "iopub.status.idle": "2022-06-13T08:52:01.581565Z", - "shell.execute_reply": "2022-06-13T08:52:01.582068Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAJCCAYAAAAWUkBaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXgbR97HvyPJFHCYoU4abps00ECTtimleGXuleHu2t6113vbJmVmbsrMnGLScBxm5sRJHI6dmFEW7PvH7qxmZ2dBsmzL9nyeJ0+s1Wo12tmBHxNFUSCRSCQSiUQikUgkEkl9wFPXDZBIJBKJRCKRSCQSicQtUoiVSCQSiUQikUgkEkm9QQqxEolEIpFIJBKJRCKpN0ghViKRSCQSiUQikUgk9QYpxEokEolEIpFIJBKJpN4ghViJRCKRSCQSiUQikdQbYhZiCSHdCCFzCCGbCCEbCSF3a8dbE0JmEEK2a/+30o4TQsibhJAsQsg6QsgQ5lo3aOdvJ4TcUP2fJZFIJBKJRCKRSCSShgiJtU4sIaQTgE6KoqwihDQHsBLARQBuBJCvKMrzhJDxAFopivIAIeRcAP8GcC6AEQDeUBRlBCGkNYAVAIYBULTrDFUUpaB6P00ikUgkEolEIpFIJA2NmC2xiqIcVBRllfZ3CYDNALoAuBDA59ppn0MVbKEd/0JRWQKgpSYInwVghqIo+ZrgOgPA2bG2SyKRSCQSiUQikUgkDRdfPC5CCMkAMBjAUgAdFEU5qL11CEAH7e8uAPYyH9unHbM6bkvbtm2VjIyMarW7JikrK0PTpk3ruhkSBtkniYfsk8RC9kfiIfsk8UjIPgmFgJIS8XuKAjRrBiQl1W6baomE7I9GjuyTxKO+9knbtm0xbdq0aYqimAyc1RZiCSHNAPwM4B5FUYoJIfp7iqIohJDY/JXF33U7gNsBoEOHDnj55Zfjdem4U1paimbNmtV1MyQMsk8SD9kniYXsj8RD9knikZB9EggABQViQbWqCmjZEkhJqfVm1QYJ2R+NHNkniUd97pNp06a1FR2vlhBLCEmCKsB+rSjKJO1wDiGkk6IoBzV34Vzt+H4A3ZiPd9WO7QcwljueKfo+RVE+APABAAwbNkwZO3as6LSEIDMzE4ncvsaI7JPEQ/ZJYiH7I/GQfZJ4JGSf7N0LTJ4MdBE4sh06BAweDPTpU/vtqgUSsj8aObJPEo+G2CfVyU5MAHwMYLOiKK8yb/0OgGYYvgHAb8zx67UsxSMBFGlux9MAjCOEtNIyGY/TjkkkEolEIpFIqkuMSTwlEokkUamOJXY0gOsArCeErNGOPQjgeQA/EEJuAbAbwBXae1OgZibOAlAO4CYAUBQlnxDyFIDl2nlPKoqSX412SSQSiUQikUgkEomkgRKzEKsoygIAxOLt0wXnKwDutLjWJwA+ibUtEolEIpFIJI0WO0srIdISK5FIGhwxuxNLJBKJRCKRSOoBUoiVSCQNDCnESiQSiUQikTRUiJXTnEQikdRfpBArkUgkjYhTXpqDmz9b7nyiRCKpPzhZWqUlViKRNDCqXSdWIpFIJPWH3Xnl2J1XXtfNkEgk8cZOUJVCrEQiaWBIS6wkoXl2ymb8tf5gXTdDIpFIJJLERroNSySSRoS0xEoSmg/m7QQAZD9/Xh23RCKRSCSNDUVRoCiAx5PgAqJ0J5ZIJI0MaYmVSBoB+WVVOFLqr+tmSCSSOPHH2gNYlHWkrpvR4Ln9y5Xo+eCUum6GO6Q7sUQiaURIIVYiaQQMeWoGhj09s66bIZFI4sS/v12Naz5aWtfNaPDM2JRT101wj3QnljQStueUYNbmejQ2JTWCdCeWSCQSiUQiqc/YWVoJkZZYSYPizNfmAZChZo0daYmVJCyKXHQlEolEInGHdCeWSCSNCCnEShKWQKjhLLpVwTDu+3Et9hXI0iYSiURS3wiGwnXdBGekO7FEImlESCFWkrAE6sOmwSULdxzBjyv34cFfNtR1UyQSST0jEArj22V7UBVsOHNifaMq0dcj6U4skUgaGVKIlSQsDUmIhbZ/qAs9eTgsNy8SSX1m5qYcTJi0Hi9P31rXTWm0JJICYX9hBeZsyY3uQ1KIlUiqRZk/iNziyrpuhoRBCrGShCXhNd8xUBfeXmVVwRr/jozxk/Hwr+v11/O3H8aESetq/HslNcOiHUeQIxfrGmXpzjwcKnJ3j6keKnNrlIILQyAUxvzth2P+fGNi2a58XPj2QoPg6laIfe6vzcgYPxmKouCdzKwaGUfnvD4PN322PO7XlUgk1lwwcQGGPzurrpshYZBCrCRhaUgxsQrMv2VFdj4WbK/5Oo+l/poXYgHgqyV79L+v+3gZvl22Vybnqqdc8+FSnPvG/LpuRr1iy6FiZIyfjMU78lydf+UHS3Dmq3NdnVvqDwAAiMCXozIQwtKdzt/56oxtuO7jZViene/qOxsz4yetw9q9hdiTX6Yf87sUYt+fuxMAsDWnBC9O3Yp/f7saiqJge05J3NpXXCmY0+VcK5HUKDsOlzmfJKlVpBDbSHjol/WYOHt7zJ/fsL8IGeMnI/tIdIO4MhDCE39sRFF5wPReRVUIv63Zb/nZQAK5b1UXReBOfNl7i/H3j2u+zqM/4P4+FpRV4UBhheHY1A0H0evBKSi3sOjaCapB6cpcb8krq6rrJtQrqPA6beMh158pYRRMRRUB+IMh8Xma0CLy5Hhw0npc+cES7M23TxpHhagC2a/O0PmaueFuhVhKIKhepKg8gEmr9uPM1+ZVy5IuIsTPrzI7sUQiaURIITaBKSoP4K1Z2+MS0/j10j14efo2AKrQ8e2yPagMiDdMIqZuUDdmk1ZbC52A6u726cJd+uufVu7Dpwuz8ZZAgH5q8ibc/d0aS8tAg4qJ1SB14E8cDLu/jyOfm4UTn59tOPby9G0IhhXsK6gQfsa0kWJIpDiyxsymA8WoqHI/3muap//chDdnxa5US0ToyA7HKCwMemI6Ln9vsfC9EpHlTWPd/iLhORVVIUOfU4XShv1FWCGtsbbQPmRnaysFgxV03g2Gw1iv9dHOGCw5JZUBlFl405jWyFpcXwKhMP797Wpk5cbPwiyRSCTRIIXYBObxPzbilRnbkLktvtrbqRsOYcKk9Xht5jbXn+neugkAOGr7b/x0OZ74Y5P+mrqyejzmxfWgZvErtdigiWJiX5+5DX+uO+Cu0Y2Q3XllJsso65a9v1AsiFJE1gbadVZ7cztra7TWi4ZOZSCEjPGT8facrFr7zjJ/EOe+OR93f7e61r7TiY8W7MKrM9zPP/UBqqCqjsFr3b4i4XE6j4oUj1bKyP6PTsXgp6brr6my6c3ZWbjMQliON8uz87HEhatzbfLYbxtw/SfLbM+hXcgqHalCru/Df+HPHc7W7HJNgRBWIkKxYBl05LjHp2PwkzOE7xnm3lrOTrx+fxH+WHsA//sx8XIf3PLZcrw0bUtdN6NGqQyEZNJGSaNHCrEJDNW+xtuaVVihuvaKXHytSElSHxXe1ZTy7bI9wiQl1BKQmuQ1vadv+gTxooA4Jvb1mdtx1zexbcZzy8OYsSknps9Wl9rw5NqwvwinvJSJTxdmG44Hmfs49qU5WLk7H7d9sQKbDhS7ui6Nw7OyMPHWALYWrrTEGqHCyMcLdjmc6Z6Csios2mEdW02FHLexkNXZGCmKgrdmbcfuvMYXO0TlHav5zA5W8SSqR1pSqc7V2Xnl+GrJbsP5lTbhAux7/Ph9b+6OqNsZLZe/txhXfbCkxr8nGj5fvBvzttknuKL3Kr/Mrx+jc5k/GMZP253XTrp+B8NhXYHgjUWKhXWSw0AwbFRa1qI7sShEJlGYtSUXb8+p+ee7riivCqLfI1PxksxWLmnkSCE2gSEOFrBYodpbkXXUCroIi5pyuMSPCZPW45bPzdkS6QY6TSDEOhFvd+Lx8ytw2xcr4npNt+iafcF7l767CCc8M7Na11+/rwh7NCs5b/kIMO7EgZCCS99djBmbcnD/z2tdXZs+h2FFwaIdR0wCWJBTNox5YY7+tz+oxj3TTXhjpyY2fle8vxjXfLjU0q2btYazAqrV+aEoJpzc4kpMWX9Qf324xI9XZmzDDQ6WroYI7VM3t49XFLBCikhgKfNHrK3fLN0D9uN+l2Eh/Dh9/q+GbamqDrQP//HlSv2YnxcYHaBZ4cPhSHZpUTjJhv1FuOubVULlhRNfLdmN3g/9FVFQxeBOvL+wIqrQoghKrF9ZI1QGQo1mnSnSDBE/r9xXxy2pv7w9JwsZ4ydLa3Y9RwqxCYxHt1RaEwiFcd3HS7FqT4Hr69JB641i9aEbIA8BLpy4wOCqQzddbMIQuthXaItjk2RrIdZqXxBvIbYu5yq7DcrK3QU4XOK3fN+JJTvz8LeJC/DVkt0AjPdtX0E5bv9ipdVH8das7ZbWdYqHcZO85sOleOrPTYb3AzYxt+v3F+Hu79bggZ+jczkLhRVkjJ+M1xqYy2lNsD23FID1eGGFWFZAZc+nG9kdhaGorMRXf7gEd3y9St8E0zFWEdOmuH5DXMzXFF5RUFkV6QtRIja2Dzu3TDXEudPkUGFFwYHCCmSMnyyMebWLXa8r1u4tRMb4ydhxuLSum2KAds+R0siaVhUMG+6hU4wsVTwEw2F9zZ29JRffLN1jOO+ub1bhz3UHsdci54Adc7cdRjCsYEduaUzuxMFQGKOfn43//eBOocmSaJbY01+Zi+Men+58YgOAPoaeRNEg1EPemKnmZIgl5EkKvomDFGJriVBYwQ/L90albaUTlF2ikN155Zi//Qj+70f3i1Asrk3UektAsHZfkcFVJyyw7NKJgboTJ/vMj9qWg0Z31qkbDhoSkSRyiZ3DJf6ohGz9/tXAmkMtsFmaMHOgMOLW/dqM7ThSKhaQN+wv1q1mReUB3PSp2HpG28xvglfuLsDwZ2ZaJnwCgHJtI7dkZ76eHMwN1HVPFDsaCIXx+O8bLX+XEyWVASzbVTeJbahyx81zUFQeiOoZs3I5ZK0sbB/SZ1JRFIx+fjb6PTIVTy2pjMpCRzfe/R6Zig37I/GciZwItagigOIasNhE4znD9sPni7JRymT+ZjdVReUBFPrDhuegc8s0oUBaFQrrXhhfc4ISkJiZwn/VstNnbk2s+rUii2swrBju4WszIonJNh8s1p9/+hzQbO6hsKKv4bO35OLBXyL1tIHIuhmKIgEf2yb2f1sEv4nOGbO2RB9mI4obrmmOlPotQydovofGkH2bPp+xuqdLIvcu2oRtQGLOpY0VKcTWAttzSnD8k9Nx/8/r8FE0sXAuNkWxuByHY5gA6QIrWq/oJMAKM3TjXKFbaIwNXLu3EAeYGNo1ewvxz69W4Yk/NurHyrmMjIlSc7QyEMIJz8zEQ9xmxI5oMgRHDaeV3ZpTgj15qmDbqkmS48e355biti9WYA6zkQyHlYhyQrvuYs5N+dfV+5Fb4scl7yyyaRqNLavCP79a6VqDSTdXItfWmZty8NmibJNF2C13fL0KV7y/2OB69sr0rbi6FmL3Iouf89gb9OR03PXNKtfXDugxeyG9/wGjEMuOQ6pQq46yiP0VS3bmReWKXFcMemI6BlbTYrPjcClenrbVMCfR2HE389T2nIjl8bHfNxpKjbGbqtEvzMY9cypQFQxjSPeWAFTF4A/L95quGQwptorPWLMmA6ow/RfjNh4v6D1LtK246E4dLKowKFlziiPr1zlvzMf5by0AEPktpZoCTxVirb/Lp63DbjfGhvhpmgGZKjms+thC0KRlgGKx6NWFJZaGTtiNscFPiZNgNSRCNagUr++UVwVx2xcrHJOQRoTY6Pdmbr1aNh8sxofzdkZ9fYl7pBBbQ2QVqFlI1+0rxI2fLtfLH+RFYT3iNyThsIKi8gA2HohYPCJxWO43KMHqWGKZj9DEQKLEIlR4pRtoPh6LdWFVFGDGJtVKxwrCVLPaIk0VxOJlma2uKwgVsH5Ysc/1fadtn7k5FxnjJ8fVtY8+H6ygfFh7zto0S3F1jdV7je7oV324BD0fnAIgklGTt9C1aprseN1yrqyLneux4TztHotub0j/vbHdQ5oBlu2Dt2ZnmYT0miDazce0jdYWktV7CvDC1Eif0Gfsvh/X4eSX5ugbbnZ8sr+5glM0VRdCiNDTJBiKLpawPnDTp8sxcU4WDjGCTDQKxb9NXGB4vSM3kgiLTYZGE4FVhcJIS/aiabIXP67ch8f/MCtwgqGw3obf1pgzuPNzMGXzwWKs3G0fjnLB2wvwr69Xxd2CTZVcdf10bOa8gkQC/xN/bMI/v4qEZiR5xYOYWibL9cROiu3z7/Wo2zCr/qFc/t4iXPPhEsOmm34mGFacHzzB+/6QOvajCS2KXK72BSlaoqghGMIqqkIG5VU00PVRuhOb977TN+ZgxqYcvDjNPukV3dfEEg/u1ihxzhvz8cyUzVFf346SyoBBSd3YkUJsDbH2sDow5m8/Ytg47skvR48Jk7HlkHNmWL60yamvZGLQk9Nx3puRDVA0cViUEGdhc0MkJjbymXPfnA9ArMmiG2f6Py9wKNzf1D2ZbRIVaJul+ABYu0tGSzytRT0mTNHdxuzgNyj8pskNi7KO4Oulu00bSXplVsinzw5VADjB3xLW3VbkLrYo6wgKy53dtp7gNtuijdqyXfmmskm/OtQjBmK3AOhKoRrYCH22cBd6PzTFctMaccu3R6TkKCyvMmSUvvidRXg3M+LWHwiFMWdLLn5fq95LKpxSy15BeQCzNkfKdeVrbnexJXUx4yFmRVMgFEavh/7C81MbVhIh2j/s86wrFGMQybYztTZF82kgFEaS1wOf13rJDoQVW8Wk6Jmat+0wznljPi59d5F+jkhQ3a1tmgJ1nG28qCKAqz9YYsiAXl3+WHsA57wxH1PWH8SnC3ehKhi2lAeXMvNikkVf0C6IJHZSbK3g9DLfLd+DjPGTdcUFz/LsAizakWdQDNL5xJVSVOROrPUndWkOhxXkFFfiw3k7LWvT6pfT/ifVsMVmHymLqX51jXo2abw0bQsyxk+O6bP3/rAGw5+ZCX8whKf+3KQnYmJ58s9NuPu7NcgYb9wPVgZCjnuKAJOj5GBRBU56cTa2HCrGf79fo8/rjYWbPzMmFKX7kpYOex+3ltglO/Nw/lvzDR4y0Roh4mm0uOjthTj5pTlxu159RwqxNQXN6Mo9vNM25kBRgM8X7Xa0TvCbot2M9kXPFqzQ/903TU/sJOj9nYdV19IN+4uw9VBkY0UXy9xisyVZlB2Tdyfm433Y9lrFCVNLLN0AxKtci9sJxWqjpHDNOCgoLcTDL7oiIdYfDNku6Nd8tBQP/bIBAx+fbhAgJ0xS3ZrZuDmqPHDrQmh3lkjXcc1HS7E82956I0IU43nF+4tNZZOenhxf7SULvSU1sRF6/I9NCIQU68y/Nm75LKL7dOX7S3TFkQh/MIybmAV93b5CPDdls8ESe/9PkQRbBWXqxiqWTaQIDyGmLOZ0g/Dl4t0xXfP9uTsSst6jz2t2AQ3FMBdT2I2nKEarKhhGstdjaf0D1HnUSjFZUFaFrTklpuPfLjPGzj72uzq/WMVixzs5VLQuqZPXHcTinXmYODt+dZZX7ykEoHqaPPHHJny0YKcrNYRIiC0oq9IFjEhiJwV2RlZqif1qidoXolJ1LKxwSdfOnGI/Fh1wJ9jvzitDxvjJ2J5Tore1qCKAvFI/3pu3AyOenYVnpmzGsw4WJP05d9l5szbnYPgzM/W9gaIoGPtyJv7BWLfd4mS1FrFhf5GlgkAEVaw77dMCoTCGPT3DoIidtEoNtfl19X58vGCXMEEh64324tSI1fCEZ2ZiwKPTHL8TUOfcn1bsw978Clz09kL8snp/XMdGTTJni+qVlpVrnpeiug4XT19UofaxkwKfCrFOStwHJ63Hhv3F2Jsf6a9ovcBiSVIaDIXx9pws0/q843DjK19nhxRiawh6Y60e9W+X7cH7Dr7yujux4PmnG3AqpIi0/6LJd9MBNZkPYHYhenHqFpz2ylzM2JSD899agLNen6cvknTzLdoIiTRZVHilWmO7QV9isbDQwUs3TqwQ67SZmrM1F70fmiJMue9mAvpj7QGMeWEOFmw3J5HgLblu1nB+0RXds3GvzUP/R6fqr9+YuR13WsREFmsTNasAYH9XpUUsshWG2D7uB1ltjEWCeI8J9prreFjTq2tIp/ekJrO1Wj1jbIK0aD9Px96cLbnCeB9+obzx0+V4f95OXRkEAKlJkSk/T6uBGS934v2FFaY2hKoZAvDcX1sMSeS+XrobeaV+5JX6HbNq1yR6HGPIPCftzitHxvjJWK1ljA+HFXy6cJcufIisLGzNbrFnSwjJPo+l9Q9QrTNWhtjL3hPHrR/VpqnhNU0Ixc617Nxg58Xy/twdhlAXJ3YeLnXlzREPrv9kGT5flC18j/YHnRcKywOu3N8/W5Rt8iBhXQdFiZ1E+LhOc4ryEVliP1m4C9dMdfBe0drw5zo1tnnS6v2Gfh769ExD/dxCQR15fzCEP9cdgKIo+p7DrQLi6cmbkVvi1+cjKkA71ewVEa0QEQyFcf5bC3CroAygE05hTMUVARwprcKjv200vUfvr0hhyl6VXWNp6Jl9myLKUDp/+zRliM9G0QWo89HE2dtNCbBySyqRuTXX4lPx5w9t7FAlUrygVu+WDvlA3Fpi6ZzHerlEu3fgn9fPF2Vj/nb7537S6v14adpWvDFru+15jR0pxNYwdovXoh2RGLxlu/Jx46fLDNY/YpOkI6fIj5mbckD3UHvzKwwa3E8X7kKPCVNMMbj3fB+xeFENMOUdxjWRQmOA7CZykSarUo/H0wRR5vO/rt6P+3+KZFNmrUMs1CIhEmKdMsq9OWs7AiEF2wRCN23LqzO24RhGaGShmSbXMxlXiysDWJh1xDSBucnOyC9iontGLe1ztqgLyWszt2HyOnEyFa+2UBnqSzL3xyoW2QqDezfz4sr3FztuqgzXcfg6tj1l/iB+2lb7rk96DHHI6M0QT4JhBQeLKhAKK9h6qARLtXhb+p1Oj4xdFvObPluOk140uxNZaXvZZy2NKXWVX1aFVXsK8OnCXfaN4bjy/cU4Wft+9s59MG+naQNGn8943OKs3BI89MsG3P3dGgx9eiZOfH529S8qYNGOI/oYtIJuGEXxicu08jbUJX7y+oN44o9N+mYkr9T8zLOKPNGmqqgigGSvx3aDGgxbW2KttPcd040x87SfjHOJ8TeKxktRRQDP/bUFN34aERKcspGf9spc/CqI3bVD4WqTTt1wyFWCvXnbDuOx381CBgCUVRnnylBYcf288h4kxYzbKGuJ5cfzC1O36NnkeRdwp011GaME4b2T7NodCofx25r9hnJ5/JyRytRzF+07Xp62FXd9sxoLs/L0we82KikSM65+MGJNdPd5lmiFCHpPl+yMPiu9k+KVzgXU1Z69p/TZ4pWWlYGQQXiP9h5UMQm5qBBLvTR4pQjPhgNFeHn6NvznO+Oze9UHS3Djp8trLX8B/Zp4x/UWVqjza0qSdVlHIGLEcbLE6nksmGNulCiGBGzcM/TY7xtx3cf2tdTLbZSekghSiK0h2HhWNvkHS9dWafrfr87Yisythw1aKX3SF3z2jNfm4tYvVhgmzFMYP/kfV6hFsIc+PdPwOVaLS5X6/mDI0mVv5uZc5JZU2mqDRItuobaY0wFIB/2yXfm45/s1+uTOM3/7Edz46TKUVwX161JNWFXIrIG2glos6GTPQgXKN2dtt2wHLQnEbhL+9dVKXPvRUpP1wM2kzysB7LStN3223HliDdm7WEfcuN1aYsXHl+7Kj2sJBfZ5fW3GNvy5s/aL09NbQu8N//wqilLtONGc4kqMem42Xpi6BWe9Pg9XapmPRQsiAJNlNZYkZlbPwktMggv2nMLyAC55ZxF+0OYKtyzdla+XdeLhk2PRsRZLnCgPFaZiLa3klms+XIqbPluOovIAzntzPu79fo1pjFNhklWm8YoquomiFuMP5u3Em7O2CxUQLKI6sQXlAdUS67Fesj9ZsCtupR+W7spHQVkVbvp0GZbuivTpSS/OwUVvLzSdTwWy5lr+AkVRDEmQnIh+nlLv/z+/WiksJ+Tm2nd+swqnvZypbzCppdzJcsrDzmnsvM4Km1SgpbybuQP/+3Et7vtxrancl9/CCk4pZ67Fz1Mhm7n6m2w/7v5uDb5brt4vAmKa+1J9kY2/6L7RcV9SGdDnUbcxsZFEleprUZ4Nnp9W7sP5b5lDKKIpVQjEloGW4hQHroc7aW0qZZ6BYi4WdtGOI5g4ezvmctbnaEvl0LnG6yH6vEj3PKyXiGgdo4qKNXsLDcdp0qzaKm1I75vNlBYT9LliQ/kURTG56dM4cNF8y0Kvw87vbjyMWOUHe08Pl5jXr1BYMVnGafO/WLwbY16wVthOWrVPaKxpLEghtob5Y521ppkY/ja7NthlHqabUXag+INhXbvXntGw99KyzALG+Dc6iL9assfgssfDJpPhyS2uxJZD5gF0x9er8NqMbYaC74C1QM+SufUwHv1toz650AmDvTdOk0iyNqGLrFO3fbHCsQ3086zgvG5vkakdgDutHG8RdUqawW8g+GeAZvl1FGLjoFWNp570lJcy8aSW7CnrcKnhvakbDgnrwsYbei9pv/Ga9o8X7EK/R6ZWS1iiC9XMzcbswpEs35G7umxXPk56cQ76PzI1kjAobL+RFeHGVZuNCauuG3FucaXp+XtTU3bRJtMSHomYnPiBn9bZWvFen7UNGw8UY9Lq/aaNHU2wxG6ATMnrFNVqyca7viqIjeOx6kcnd+JVewr1+89iFwfIZjlmn7N/frUSt3+plt1irasAsHaf2WV4pzaWM9qq7smiRDZ22HnWsJs72sJo9GqlFgrDyesOYueRMn2NKGXcf6N5XFnFMKvEYed4UchMQVkVflxpViBVBkI4XOLH5e8twq4jZgs6mwSskht/lneREOwrV8+lz6OHmNePFCbcQCTI00fT4yH6HOW2L/hElfQ59wgEuDJ/EPsKyvF/P67Fhv3FpucpWmVNLLVAKbSdP6/ch1NfzjTNxyFeiGX6miZJIwT455crcc2HS/Hy9G36/oISrTUy4k5M9JwkVHilc9NNny1Hv0fMnmb0uWQVLit3RxQpVh49/mAI/R75y3VG5dzysG2ZG9qFNZVhmX1Gvl++FyOfm4X1zNylx8Q6PBv0Muwa4CafRmUVuzZE/j7hmZmmc1+YugWDn5phSKrHjj+2agfPvT+sxbjX5jm2h4WuTQ0BKcTWEHRc7rQJwmbHLtVGbdhfpE/YdHDbPWv8InT9J8uwcnc+2jGlVdjBzC649PqrtNgtK16Yap2qfOzLmXhvrlgAfmPWdn1C35NfgWW78l27zfy0cp8eA1jiD2JFdr7htzqVaqGuNaIJeZWLGAy6mLObVL92LV676RS0vzuvDK/NNG5enRJMsMJnOKzgV27hCIUVBEJhU9kbSkVVCEGb96Mh3ovMJwt3IRAKm2Ia//nVSoPV0Ap+OHwwb4fhGX5v7g4s3pEHK6igKMowC0DP7mu3cDgRSV5iPM4uTCWVAYTCCnZoAkBFIIQhT83APd+tNrTJH3RXosZJg37Z0K6Gc6JxUxIpXdwoHETjNJratyLi5Rnw/Yq9jlY8Ci9YJgniqXjF2ofzd+GLxbuRF2W20Hu/X4NJq8zCTZKDOzEAoULx2o+Wupp3eeXcgUJnhSNFL+mlld2KVgFUFQyjzB/Eun2FhuNLduZh8FMzMGOTdakpJ9iNoeg5pr87kvDNvTsxYD2Xs2ttqSg3g437/2eLdmF5doHw+WQzvvPrf0ix7mi/Nt/pAhQhprUrxccKseZr0PnL5yH63+6FWPVEOu/auRNf89FSjHlhDlprzxNfUiRqd2IHa5sI2i56j//341rsOlJmGid6XhKtSezzQJMMEQBTN0bc6/lxLBLkiwQxyZSIO3FEGUnvCBXO5gvyeXy/fA8uFtR1v/TdxfrfVvuZ3GI/KgNhvOByT3H/vApbr5PI80OQV+rHnDjF49JbyVpil2jKJVYB5HVpiaV7Mfa+uHn+WOG4qCJgay2dotXgLixzr/xTFHOYgluuZkoo1nekEFtDuJnXWTccOsF/tigb1328VD2m9Y4CVQsoQjQwLn13sT7587ADi066TlZNu3IwfB1QK/5YewBXvL845rImz0zZ7JjY6XCJH2e/Pg9788t1baSbrHCsgBAIhfHr6v26xYNdsOj38xYsp7hTUcIHq2RWomt+v2Iv/vv9WsP7f649gAd+XodJWtxd++bG2DZ/MCxcxGIh3u4+ALAw6wi25ZQ6n+hAOKzg2SlbcAmzMD//1xZc/eESQ+KEGZtykDF+Mh77bUPEnS1sjmFSFEXve3r897UHkDF+MuZszTUkrlm1pwArssUxVlTLzQqt6qITWRCPe3w6Hv99oyHBWlFFAL+uOWDYCN31zSr0mOC84DznkE2UlqqiuB27z/+1Bcc8Ng3TN9rHOIrQ6/1CtUKu3VuoJ5bhyS2ptK1XauWKzSpDFmw/gi8XZ0fdTv47ABisJWwG9r355fq8S5UVe/LK9YR5LIt35EVtlQyGFdz7w1rTBiXZZ19ix4q1ewv18Ag7+M3cgSL3SpwjJaqgnqR9z+ESo+CelVtiu474g2Hc/d1qXDBxoSEZH1VO/ePLFaq1VxE/A1ZKntySSuQy7nsP/GzOv2ASSqJ0JxYlDwSMwowoJtnK4u4PhvXKAJ1apLpuB2DvTkwNQ1SAIjALwWyejLWcuylgLM/HugMfLvHjrm9W2QpeVPnEz7siJSn9bmo13p1vvH/RZnt1UtSLoO3i+6nUH0QorOD3tQcQFig8WEUJDT3iFW+8JVkkyA96crpl2+g99BCiz0H0ObaKib318+V44Gfn+HH2907beAhfLlEzy9M1zSnW1IqXp201rFHhcEQQv/rDJbjp0+WOyv1tOSW478e1pv1fRVVIH4eR5yxyDu/KDkRiYp1czcO60oW1xBq/P/tIGaYx62PG+Ml4cFLkXt/86XKMe22eqVoJhc7Pov25FaGwgvIYvamW7MxPSO+oWJBCbA3hRohlF0p2Il+nuzxEEjv970ejEEMRCUiAtVWGfXCj1aTGg4MxZhRtmZZkmOAOFVVi1uYcPPzrej0xza+r92PLoRJ8ujCbcQd2HqmHS/164p135uzAPd+v0d1ARe66ldxmz8m1SSRwW7m4Ra4Z+Y4duWZh783ZWZi0KmKdvWBQZ/1vD1En9fjV/4z/A8K7KLLc7uDuzW5YRTUtKa9MjwgV1IX8c6bUy3tzdyIQCpuUI7oVXy8Pkw0AuOnT5YYazZe8swiXvbdYuNmj7WLH+JHSKvzvhzUAIhuFL5fsFm6Y2XjCmZvdaahFVjgWfnMjKpclgnpa3P7lyihKVGgLv2YxqAqG8eas7bhQEE9JufjtRXq9UhGijev0jYdw4vOzdS3+3z9eikd+22gp1EycbZ/p8WhGO81apdiN3bjX5qFYG7/USm5Vt8/rMVu73PLmrO2GWLlkrwfJnAXno+uHuboW774ogneri2aTQzNdU4UoX6vyjFfn4Zw31NjGZbvyDYn9APU+rtHCNSqq1FJjj/++Uc/CHlaAp/7cZOlObLXeDX9mluGZys4zC5P8JjYQCkdVwoWPd6U4ZZk9IkjwBaiKEWoFpxYat1guRYToQiz9vbvzykwCGquoyiurwnZGSf7jir26IoKPG/5x5V78ue4g3rXwygIighodD3ZCLA9fZmTTwWJM33gIPyzf6/hZQHW5jBZqHT39lbm6twygxiR/tWQ3/vPtavywYq9hfZ+87iCyGauxKIkbYP49Vvfgbi75EoW1YtP9CFW08fG1VHByu46wz/4/vlyJR37dAAAo0ATyFAuFWFZuCe79fo3lvmPinCy9Ise+gnL8pSV++2bpHl2hzVvcef751Ur8uHIfvuf6vf+jU3Hc49MNiVHZ51OUJNWpxE4orGDca3N1Txo7S+wV7y/GP75cafBumsUkBzygxeNahopo8zM7ZzgFNYQUxTEsrTHgcz5FEgtu9v0hg6bI/L7uFhGDxsTNxolueqsTyE+IebOT4vNYarecNtpWtGqSbHAR5V1ibhrdQ58g9heW6y7DmVtyMf7ndVg8/nTD+axG7JoPlyIrtxQ7nz0Xh0vVyYbW0BRNOmZLbGRR3nigGMd3a2l4XyTEOlln2M+4ERzYmmjNUnworgzEpZxNXTDdwnWwqCKAwvIqoxtSNQq7/7H2AAZ3a4lT+7XXjwXDEUtscWUQs7fkONbDvfDthZj9v1PQs10zQ1sBY3mst+dk6YsZ278fL9hluuZuwWLu9ZCo3ehY9nJ1jxdkRW+pv9hGCGXRY2KjqMVLS2+EwopwI0aVDezculZzP924vwin9o30Y26JHx3SI1asykAID/2yAT8L3HSteJOpt8haKdnx7w+GbN3gqkLh2IVYrt5jss9jui9O7sWUYhdlO6KpFzz0qRlY+ciZ+mvqPkxd7+xiEK/9aIlpzfEHwxHlUVjBF4uz8RlXEmfO1sPo2zFdeM1gOIxkeFBUHkBastfS8ixKQlQVDKN98xTdYku9W9zy1J+bLN8b0Ckdm2ws0CL8gbDeFrvQF9HaG7JRn9P1gHpg/LrmAI7t0sJwDj+ffrd8L0b1bIMzBnTAfUwVgapQ2DAPt9XCl7bbuEzSZ5e6wgZCzs+K/ru4eY/NCn3FCd0cPx8NGeMn46oTuhk8ZFg397KqoJ6waXd+uUEw4kviWbnV8wmfrITY39YcwBtXDTYc255TomaHhnrvw/qYMyZ4olSF1LEhIhxWTK7MovmqKhgJ/7ESYr9asgeTVu9Hv07NcfvJRwvPoVz0dmT/xlbp2JNfjgGdjWP8jZnbsW5fIcb0bquH5z0zWTzmxrwwR38WWWE8Eo9tNhxZ7VXLqoIGbzE7IZaO1zV7CzGyRxvh9QBrgZneU3avxy/1Zf6gQcgNh60VaI0JaYmtIdwIsawFT7Q1jcTERr9xtXJxYvlj7QHc+c0q5Ja4j33iETUt1cbd5JcoNwiUZqk+xkJt5tOFu/R4ymkbc/TEOpNW70d5VciUKZPdXNPMmiWVQX3hCtokTnqdcxuk/Thh0npc9PZCUxY8UXIlfhHjCRpiF50nqhZMTbS2zVNwpNRvmfQpWuzcki8Z0gW92zezfD+eXDBxAU55KdNwb1iLj5Wrjh0VgZBhcQoz7sQP/bIeN3/mnAQMAM5+fb4eSwtE6viyY5ddwNjf4Nbd1Grz4JamydHrLHkr83bGK8BNbKpTZs+Js7dj0qp9eOy3DfoxUcKpqlBYqJThhxbNjssnxJm28ZCjAGv3/Ni5ftplZ60Khl0rCd+8erDt+8lej6lESNOU+OmhnRKcsPDCDt1cRRKTWf/m5qnm+o3+QEgfd8FQ2DIhHfUKCHBZ5+k9HvTkdN3rQjT/iR5ZfzCEwd1bWrbXCT7LK0uTZC9evnxQVNe7/+d1jjHFTZO9phASABAk44+8J3iE9zt4Rn28YBduFXjGBEJhva8PFVVESunZ7FXofMFbYgMhxVRv19z2mvd9/GH5Xmw5pCocvlu+1zAPsW7WZf4gmqeq4660MmjrsUD7kX/u+OzudjHrt3+xAhdMjHgAnfnaPPykhZexn6P3iL+WPxC2VCaWCvIiiITYCyYu0JUYKT7x/q576yYAgB251nlgADWHhdXzvSff/Nkth4qx4UCRIRbczqVZV6hpvzkUVvQEauxjRLvUSrDk+5VVZF749kKh6/yhokrbeZT34qviFA/svp3//ms+XIKRz83SX8/YnKNbfqPNbt2QkEJsDeEm7TyrzeHdl058bpaulYlFGHFbf2/yuoO2wqEbhh3VyvC6uptt1vXt36f1QvMUH75YvBtZh0sNFkeWLxg3URF86Q/2ntLvW5YdKSeju+gIJqSdR8TxObQuJN9fos0xfw2eb5dFEnqwsZ1XDOsqPD+d2Ri2a5aCIyVVBs15TTGgUzqm3nMypt5zUo19B7V0U+skO25Yd62Jc7IMAiHdODz3l3WsqM9DDP0VDCu6262VlVeoqQ6F8Z9vI9aBiDtx5ByDEBtmBWfL5hm/o5pKicf+dozjOVf3M8bS27n/OlmFS/1B3C+IQWR5efo23PvDWoObd3lVECWVAYMCwB+IuH2zX8u3oBmzuWQZ7yIWzC42yir5hz9gb2ktqQyYSqhYcRxnFeNha/xS0gUCYax8oLn6uYXtH9o3dCNtpxCgAgDF5yEorwrpVuWqYNhgBRPx/Yq9yGUy3QdDYd0iTsuXiFztRFfdebgMyRYb82j4+Aaza3dKkgeXDe2KT286wXC8c5SxrjxNUnwGTwOK3QxRJXjTrQKNV6RXBSNC7LacUszdGlmjiioCQsW4lTsxoCqe7aiOB4qIvFI/ek6YjAGPTsXK3fn4eeU+3P/zOpz9urmcDxBJ5AaotV+baMojGh8ronmKz7IM0TuZRrdrOyFk+qYcfY/G70e8HmKaA/n2+IMhS0WaSJkuKkvIetBZGT0iJevslWHPTrFODCXyQKoIhExeIm6ENqpQYfNWsFZz+vhZzftXa2XxKLxwyldXANRxYefRso/zhvIHQzhUVKkbrEpt3In5rPD/+Xa1rjxM9nrw5B+bDHG5PG/PycKNU8tsLcr1ESnE1hBu9CLsw8RvhA4URZKcROPm5YZju4hdsmKFj+k7IaM1AOClywZieI/WUV+vaUpkQ5FfVqUnQcovq7K0+kWrh2IndWplue2LFfrkSDWl9KfZZWKlCgi6geO1nm7K3Pz3jD6G1+wiV8Bo/Kys3Kxw37Z5immCHdOrrWMbRvVsg+tHHeV4HktKkhdeD0G/jun40GV8XrTwVjBjtu3IpP/qjG0Y9EQkGQa97e/Ptd6ce7gMnaGQoiensaKg3NmFWbQ5rLQox+LW3bS61ogWTZIwlFM48ZzUxb1lz06oziurwsTZWcJNiRNbDpbguMen46slEcHWHwrpz4HRom1sA9VoV3DnuCknZHcOW2qLpTIQMpU5YXGTCZ3SVCCksjQRvN8iLQkbnjjL1fUHdLKf99kYezew94s+C9T6Yfes8oJ322YpyM4r010F/cGwqzhJ1pq1aEcebuLi7IVhGBbXrYgiU7cVLZuYFQrUasW6ur9z7RBcNyqjWt/VNNmrW75Y7NyJA4I+cfIIovD9WcVYYgFVAQyo5fEGPTEdw5+ZZRinP67Yq3so0fmOFZbY+y8qy1KdzbbIK+2+n9YhrKheTpe+u9gy5wjlTyY2udwf1IX6ksqgZRIwtsyh0+PsxqvlqT83YQ03n4iEOd5bwx8MW2axFZVwclqPsvPKDYp1SmR+Nn/ejWcgAMzbftjU15WBkGludrPfE5Wz21dQgdu+WIFSf1C/J/Q55eu38mEA/O8S9XuVw1rzr6+N7ub5ZVUY+dwsffxsyynVvcvcOGBe+5GaBNbnJfhk4S7840vr2tzva14sbMmy6pSeShSkEFtDuJlyDZZYwSRNx1516znynHtcJ9fn8lpzSr+OzfW/+aa/fPkg/PCPUbh8WDf88I9Rps/ed1Zf2+9swrg95nDJZ1o2EWddjhbenYciik8EYFv6Jb+8CpOZjKu8Vd3NAtyppTvNfJqFEJvOCLEd01NNiVXYBRUAMtqYN0DXjTrKUcjhSWUEvjMHdHC0JsUCLyw9rCWaEGXXjJZnpmzGvxkLajCsGLTuInh3cRHU1YjVpvotMg/GGjPJIspI+cXNw03HREogNoY7GieK71fYJ1X5nItpdAt1z5zDWHf8gbAeB8fGBZnrt5qTdTjFhr8+cxv8wRD+9ZX1BmDXkXIMeHSqKf61Mhi/BGppyV707dDc8v0mAnfw9DSfKeu0FXZZxk/u087VNVjYfqDWDDr32c15fHvbNk82WHp+XrUPzzhk2ua/g4/33nWkTBiGIUrCBog33tGS7DXPzSKvpHOP66Qf52N3X7xsoKvvapLsM8UOAg5CrKBL+HXCCn5Ne+iXDQZPH1ESK7Zu6n0/rcNBPbkNjYmN3HO2r0RlWWIVYquCahZ4nmgzhrPre6k/qP+GykDIUohl3eadsl27CRn7eMEuXMlZB5fszDd5ekzdeMigCKgMhCznQBpby+JmPTooWAPp50T7VbuEfRSfh2BvfgW+YbzQAHVs8vO8GyVXcYUqqLIhwu9m7sCMTTnI3Jqr77k/W5SNs16bhxOemYlFNnki+Hk+LPA6qQqGbdeDPM6NmoYdUT5ZuAunvpyJvFJ/VOFRbjxy2FwflHjMe3VNtYRYQsgnhJBcQsgG5lhrQsgMQsh27f9W2nFCCHmTEJJFCFlHCBnCfOYG7fzthJAbqtOmRMFNin631hi3pTDcUhBFMhyrrJY9tKL2gHkCTkv22lpgRRprFnaT07VVmuG9VKYYe7fWzHtRmmIvcpugxsU59/+0zpDQge9LNwvwsKNa4ZIhXRzPs4oFaZEWuWdnH9vR9D7/OP75n5OwaPxp6NMhItQ0T/VFHVvBW4ZP7CVOahBLzBlVlNi5ecYjeRVbD5aNibVib75zhu1DmqtjOZN4wWrBsBv7brLKAkaN/LUjumPefaeiv8Dydv5ANYv1a1dG4vS+vW1k5DqC7r9yWGyJU2JVvr2qxZyzv53d2BYylnC+/+ln3s3coQulTnUAX5+5HY/9thFLbdx+n/h9I8qrQga3SQB4e84OPOtC4OIRCY1Nkn2YcnfELT/F58HLlw9Cp6ZEe9+LFy49zvAZqtQ6f6CzYpJ9/nhFYg+BUssJtoYp7Qc3MbG84NamqVHB9unCbFffz3q4vMjVMr/qg8XYX+jeCyAeiogkn3nwWIXW0HvAf+JvAzvj6HZNzR/gaJ7qQ0Yb83lWv2Kj34dFeeZ33SbGi2Wepd3Du3UHNFdkdl+zaEceRj8/2/JasXqhPG2RAKg6EYTlVSGD8tSqaWzfO5VxqU5yTRGsIHjma/NMVkbKvoJys6u4i75m92iHS/z4ZMEu/Z6I3PjdlNN79G8D0DE9Fau5ckiiselmm/Ltsj24+7s1Qit3qybJhj7cqiUkW7/fOrTOJMQqwH0/rjVk5PYHw6gQ+e1r9G5vVFKKarUXVQQw9OmZmLHZuTZ2T20f3qppZE9tpRChCl62f/icIPWR6lpiPwNwNndsPIBZiqL0BjBLew0A5wDorf27HcC7gCr0AngMwAgAwwE8RgXf+oybOSlkEGLNH6DPYrzdiW84McN0rHf7ZkILqWhDf/Xwbnjp8kG6gOnGXVa9ljqInLRGbZqp1tbzBnbC+HP6Gd5jhaZBXVu6+t7qEEtSrW05JYbPuRFi05K9eODsfs7nWQix9L6cOaADjhK4mbVtFrFgez0EzVJ86NwyDdP/e4puxWuemuQYy331cKNAcxS3+b1vXF9k/t9Y0+eevuhY2+uKoElrqoJhyzp/8UpeRVmyMw+/rrF3q9xbUO6oJaXWWrYesFXCB7sNzBtXHW/7PRRWiD2lTzt0b9NE6H46pndbrHrkTFw8uKv+OTbWkt0c/Pu0XjilTzs8eF5/V22INylJ4uXJoPzTMxarDacL9c4jZXoJB6cNJKAmcrGD9qPoWoU2tTGtYO+z10Mw9KhW8HoIvB6CC49XFQ1dWqbhsqFd9bWkaYpX7zcK/d1vOSSFAozryJ2n9jK8110gEDnx5qxIuSI2JjYcVizd1OZsyTV4Dfz7tF6W3j5O2JXBySn2u07KBkSX1MqKZK8H/xprzMpqlSWZKls8hOA0Jjt6is/jyrX0/EGdhTHSIUX82Rv2iD1krErA8Fi5o9pB1z3erft/P67FjZ8uMyVbtEsyFQqH9VJ6PBnjJ+P7reLfYZUrozpV48qqgvrzvutIGca9Nk94HqtwLneqCx9FFnc3vMvF3G4QCGfpqT7kFFea5rT7fnTOpcEKdPd8vxpP/rkJGw6o7rcrdhfYZqm2ItXnRWqSRxDTa743B1x4QwHA5PUHhfH1YUURCm8eQhAOK/jv92tM7z092aisDIbD+HHlPoOXnj9o707MhyLZVZ5wk6uGWlXZLMWBkPrbFEXBGzO3Iyu3BBnjJ+tejex3XvHeYvR+6C/H70lkqiXEKooyDwCvvr4QwOfa358DuIg5/oWisgRAS0JIJwBnAZihKEq+oigFAGbALBjXO9zIPmX+IJZrvvB2i4ST2140XDK4C7q2Mgs5Zx/bEXee2gvPXWLU9Pfp2Nx07jnHdkKzFB8ePX8AADXV9+IJpzl+d6oWH0Q3111bpeGb20aYzqPxnaN6tjFZ+lhLLLv5SaTcbPf+sNZgpeC56PjOpmOpPq+jBRAw/n6WjumpWPnwGXj7miHC7J//G9cXd2gbrBOPNlpLqWtOeqrPMUbCp/kkHtM5HW9fMwQDOUWCz+tBRlvzhrh5SpL+HW6hz4k/GMIl74jdkeJdRuju79Y4asUPFlY4CkaixSkWZZSoL0Ww7lV0/DRN8eGbW83jq3VTVaGx6pEzsYopkwIY44dO6t0On9883DKZmgg3ViS3uEkQRzciVGnk43xmFcVaoIqFb5dZj+toYOervw3shJ//daL++uLBXQwn0Uc8LclnEIpYzw03go/d5koUXxkNAcYS+98f1pgso5SbPjPGrR7drplQ2eIGN8oJ19eKhzuxz2PKbcAqHY9q0wTXjuiunwuoyoxPbowkffJ43KSEVD13UgXJqMLMc1AUBB7YTlAesl4f3dZ9jsVSSAWzckEZEKuM96JYS0CNLWez0/L8tcudIok+a+7uspgyf0SItRO8WU8SK2+6/5ymKpPcuOFXB9FYqQyGsTy7APO2Ge/5/sIKzNyUI7So0rh91quDusSWMnGvbI3UrS7LKqYkqSXEeOVUdb0kRFNjYXlAL4vD4vGoZfvcVNHgkwcCqmIv2yZpJ6/wdF93XQzNxMy684//eR16P/QXNh0sxmszt+GWz43KPPY7nbKT1wdqok5sB0VRaADBIQAdtL+7AGClsX3aMavjJgght0O14qJDhw7IzMyMX6vjTFF5FZxEq6W78nH5e4vx0slpKC41a5bKK+L/gBUeyRHet6JDe5CZeRDJFZHJ6ah0D1qFCgEAY7v6sP5ICHmVCjauX4fwAS+2HlYHQ0lpKbauXqp/jr/+/SekIsULvLlaHXBbN23AJ2c1UWMa924AT94RdVLdkbUNmZW78NToNDyyUL0Xhw9Fsi4X5EbiVCrKo08g44YjefkxPWfTV2xB18pdmLsvgC2HjNq3sgJzXcllSxbCjTy2Z6c5wdTAdl4smB/RBousx0sWzsfwVMB/bDKGdig3/iZF/eL1q5ZjXa79pHrooDq5pytlaJq/FZmZ1rHCLDvXL8OE4akoqVIwcY27ibuiWLW+LlyyTPh+bm4OPGXiTQ8AFBcXY84cc3xVddm8ax9mZYq/d0RHL5YeEi+6sdRI3rZRnHAk2WPMNqqEI/d028a1qNgT2UDdMCAZbdKIq+e4tLQUdN5au2Y1ynerm5bj2nqx/oj6u5K9gJU8fvdxCpYeTMbXm6Or39urpQdZhcYBcCTXOtMiZf8h1eUqa+cuZHr2o7jYOGdOm5WJvMrEy8CYnx/R/R7KMc7JmzS3z/JydZyqyZIINqxZgdxtkX69oH1hVHNTaWWkT/jP5e7YaHjdtRnBvlIFBOaQilYpBAV+BaleYLY2vvzaRjMvPx8LsuwnskOHIwLMti2bkV8Q2yZ15RrnjNNuKSyxzxZP6dbcg70l4t+3YukStEgxrvk5Bw8gM1P9vU+cQADkITMzE9sPaSWJQiFDX2RmZqJMW8uOb+fFmsPie7Nn40rsKzW3Y0nzdBzQhMfv9ngwNZfA0ySMoMdj7WvsgvkLnWMaTZ9ZsAht0jzYLHBjtuK6j8Vz/ewt5jUzWjwECATV+11UFPve6sN5OyznP5aigshzvj9HvF70DO9H12YES7YfwgOfzsDp3WtiSw5s2rLddKyZT0F+EPhmjnmNufWLFRjUzqwk8Wr5rzds3orMCjVhYnmptjcriCRCytsXSaZ41utiSzVP1tbN8FdU4VBupWFMFJfHXgISAJavMOc6YPNgsOzMysKismxX1310kvgaPyzYKDwOmJXuq9ZZK2aioag8IpDTOtcLl6rCa3Gp8VlfIZg3p8+ag2SXNccTjZoZMRqKoiiEkLjtIBRF+QDABwAwbNgwZezYsfG6dFwpqgjgxqnmZAJW9DluCJLWr0JHn6LH0gGAx5cMwL5eHKVn26aOZVsAoHeP7hg7tj8wdbLh+EnDBmLsgA7IKa4E5qq1qHp3aYteXVsCO7Yho3tXbC05BFRW4oShgzEsozVSd+YBK5egSZOmGDv2ZP2afL/QV59tm40ifwVGnjAEQ7ozHuNcW9q3bw8cOohj+/fH2KFdkVNciUcWam3qkYFp2aogd87IYzE1ew0AoEnTpkCZc9yFHaf1a29aLFu2aoUexx0LTM2M6lrz9gWxozQJ+wuNm/lzju2IW0/qgRnvLgagllo4UFSJM04dq2p3Z021ve6gYwcAG9cYjv3+P4HjwjTjPaV9MlZwzZN3r8DMzTk467STkbd0D7DRemLN6N4N2L0LnTp1xNixx1ue90rzfXrGx29uG4ETj26LsYCq9V1j3qj07dAcW3NKcNtJPfDhfNVt7KgunbAiZx+OO34IsMi8iUpNbw1/khc+T44wZio9PR2jTxoFTIuvu4yvaUsMHTEImD0bTZO9KNN2NH8b1Bl/H9FdT74xulcbYeKMaDj5xBHAkrmm42kpSahikpOkJiejLKA+a6efNAqdW0bixce6+SJtDDZr1gyAOo8MGzoEg7VxOnYscNZr87A1pwTt09MMccSUZJ8HF4w7FWMrA/haS6bi9RBX1oUu7dsgq9C40Zu9x1nZ0axFa+DQYXTu2h1jx/bDqxsWAEURN6xBJ4xUXSYXLLC5Su3Trm0b4LA617Rt1x5jx+opItA0Ox9YvhhNmzTB2LFjEZ49BYCCsWNORPv0VMt5lp1H+3VsblKasMbGsWPH6uenJXlx2Tmn4KGF6txz31l9EQ4reGXGNhBi9iq6YmQPeAjBu5k7cPO0cvRs21R3eW6e3hJgBHQRzdJbAnnqOQOPOxbKvkLM3LPD9jMievTuA6yLjyD72W2jcd6bzs9IqxbNsbdE7OY39uQxauJBZu49uof6XPIEN+UAa1Ygyecz9MXYsWPRbPVcoLQUd58/xJRxeVTPNkhL9uKsM07A5oPFwBJjSZghxSU4tpXqaTNfM0EdDYImCKMAsZcRGnrCcGCeeR6yY/iIkejaKg1Lp20FEH3/xpu0JC+qQmEcM3QUtk6dqR9v3TTZlOBqRI/WljHybh1qunXqiOWHVIEiuWk6kFdoOuekMaPx0fZl2Le/GN9vrcKDV44FZrjfO7qlW0YPYKtR4Tzx78NxzUdL0aFjJ2Cf2dtvZ7FZqGnZLA3F+eVQ0jvijtn7MfGawWjdagd2FBXAm5wKQFXA9OjVF1gf3dgcevxAzM7ZipbpqRg7VvVOGPPCbJRFEa1xzYju+Ibzght0/GBgyWJXn+/duxeS0lMBrHI893CFeF1bkeNeafP5puiUvVaIHEn6DDgOWLocKSkpgD8iV3Tr2RtYbxS0+w8egW7V9MapK2oiO3GO5iYM7X8qFewHwAbUddWOWR2vt7D169yQV+ZHMKTg5D5tceaADvrxaNwo/s8h4y/FKrtvR63mHBtbF1YAr6adSfZFYhWo2yt193OTxAqIuBNbJas5qXdbQ3ZbGt/GuhWy7rQXDOqMbq3TcFSbJq7bYIcoa/P87UdwykuZ+ms3CVQoIleNd/8+1OCeOemO0Xj/uqHweoj+eymiJEtWJXaqw1tXD8a0e05GapLXMRmPj4nlsuPSoZHYvROPjpT34X8jhWZPbpri0+MFaaklq7jXzK2H8deGQ5ZxZ0D8Y40ANQnJqOfUJCRPXxyJ9b16eDfdVReIlJpyy3e3j8TKh8/QX/du38zSzfNfY482ZJhmn5VYYgxFZbf454/ey4FdxfF1Cx9QQwpYN8fPbjoBQ1wk9Yq2tjTNsrxRi8Oq4rLjUoorgq7cift1bI7vbx/peB4AzL1vbBQtNceNJ3mJwf2Xn7no/ErPaZtG50H3Y//Tm04wJY+ymiLXPz4OKT6v/jx5PUSvQSrUPyhAG+Y5Z5WnbsYba41I8hI0iXFOq06uiC6MkudfY4/GMZ3dZVW3S3wnmoesQkT0c7XLLXjgVPx252jtkHqwabIPg7u3xOXMXHrR4M66+7FoLbDy+o1lo9eTCQsRuV46cdKLc/DM5M2m+My6Ii3Zi0BIwZ1cmRM+7wagCkPVhX0eRC7VgLqesiEQORY1WKuLX7Cud9RqFe8Q1DsFjPkcKGlJXhACTN94COVVIdz82Qrdtbi8KoTmWh6LWEI4UpO88Hk9CIYV7DxcirxSv1BZascFg8yhWqLM2Vb8vGo/7vjaWYCtDaoTtw1YZ+AWuTAfKY1+fCcKNSHE/g6AZhi+AcBvzPHrtSzFIwEUaW7H0wCMI4S00hI6jdOO1VuijdXZkVuG/PIqJHk9BgHPrv4gDx+31rVVmrBcCrv5YOnQQhUi2CB4RVEQClHBleiCYkS4VBdR10KstuhaZUP78pYR+OPfY0zxXckGITaycBNCMDyjDYIhBeX+EK4Y1lU7J7bH2k4YAlRLG5tA5S4uOYoTT1xwDABj3F7HFqk465iO2nHj775RkIAr1t9mR1qyF3212GenEju0jVEmMWY+L24/TfaV7PNg2FGq8Ec3gLReshVWG8udh0vxiUXJpHjRlCl7kqYtwrRNbmKcWUb2bIM2zSKZWt+7biiSfR6cziR+oRzdrhky7ztVf03vQVqS13XJFZYf/jEKyx483XCMV1Qc0ZLADO5mfkbaNU9Bu+Zq25MYRcVJvdth0h2jbb/7jP7tLbNu89B7QQV1urmuCoXx/F9bTLX9Zmw6ZFsnmOIhBCN6tsH9ZzsrA6mAFyt/H3kU/n1aZO7g3f/p/aN38e4hqXjn2iFooWV1/+72kZh2z8m23+EhBDePzgAAXTHSvnmK8Fz67HTREvV5CUG/TtalfgCoFmEBayxK2LCw87/P6zHVZR7mssxXeTVi5dg1WpT4xYqTtHrbz4xOM70nGu9WawodK3SD3bVVEwxiSl3Rz/5yx2hDEi4vM3+KkvxlB8xj/+lsD2JR5Q1mvKWu4kq7uMUqsVJdQPcOtCYnRaRAO7l39CWneNi+32qR6MjnIYb58q3Z1vXoq4NoL5ma5IWHWAuxIghR7xeb1bqwQv07t8SvC76xlG5JTfLC5yEIhsM47ZW5GPr0TOcPcYj2AnwcPguvvLXLThwLTpU4KKJyeG7tMlZ5RqzKZ4linYujEPQTjeqW2PkWwGIAfQkh+wghtwB4HsCZhJDtAM7QXgPAFAA7AWQB+BDAHQCgKEo+gKcALNf+Pakdq7e4LSBOeWbKZlQFw0jyegwTWjSZV3u1b4bhjOVnwjn9cdFgc2hxawshtq1W5sDLfL+CyIbD5/HoWnkqaCdrJQXcDranLzoWg7q1FJb+YOGnIVaw57XPdNIrqwqiSbIPax8bh2UPnYFYcIoJKPcHDQL26F5tbc42ct7ATnpWaH7TRuGFd9F9tcpOHC9G9myDTU+ehRtGHSV8/4JBnTGoW0tTdlO3WFliczTvhaNaN8Xp/VVBhSpH7Gr0AuqGdNIdJ5qOF1cG8fL0bTG104pOLYybd1ZgpIswoCqVrDwO3JbNoZurGzVhhCXEWbyo8uHjG4e5SvLD0yTZZxJM+A3BaK18kqh8Fvubovn+Zik+fHTDCa4tsR6tTc24hFdfLN6N9+aaLT4vT9+G6ZvMpQr4vY6X6TcnRG21K0PEftUvd5yIR84bgIFdW2LiNapCjDdeUkUPvY0tUojBS2Rkzza60snyOwkwtm97ZD9/Hto0S8FXt4zAr3eKlQm0v6jSwushplIQPJ1biIVY3nL7f+P6mM5h17UkDzEp7x7XlH1OWCWPcgNrKYpGIXfPGX0w976x6NLcY1BEAOJazVZjvV/H5hjSvaXQCkj7nV6PXS9Y64pIoXl3biv8cRjI5fav/nD0cwKb0Z7y6hWD8J/TewvPF3kp2dUmtsNNtu1osVo7eeXDqX3bWWZGjwY387zPS5DGKEL/WHvA5uzYEVlifR6CtCQvCqLIrt4iLcm0BysTWJlFpWN4HvvbAMPrDukp6n6uGuWG3NSPZbl2xFFCJTEP6yEYDU0Ftb1FxJqhHYBuBOGhQqzC+fqI+isQ5yoPtUl1sxNfrShKJ0VRkhRF6aooyseKouQpinK6oii9FUU5gwqkWlbiOxVFOVpRlOMURVnBXOcTRVF6af8+re6PqmuKK6MTYik+D3FVl1REqs+LH/45Cr00NzuflwgT/LQWLExAZHPILsRhJVKYPNnn0YWKJM6l1G2JnUHdWuK3O0e7domll/XZCbFeddIr9QfRNMWLFmlJuktLtDhZYnn3mqYpXoNbmluSXO6a0tPMv0NUVkHE+sfHYf3j46JqF6VJsg8dW4h/V7vmKfjtztE4KoaSHIB5o3dujyQsnnCaPhGPOroNbj2pJ165fBCuHSEWpHmqgmFjjHWcYTOO8v3dJMVoiaUWnhZpSQaFFBVYANVt3g3Juru++T3+2OXDumHufWMNrtvVhRdi37xqMH6540STxQiIfRGm7utuhNhnLz4uUg7KZoyLarDyjO1r3LjQn2onxPbp0Aw92zYVCumn9rP+zibMRmZw91b6XEstgPwmg1KdDKq8dXFM77aGOGkRrBDLzjMPn9dfV2BQnK5FuXxYN5x9TEeD6zsrxPq8HpMQwc9xY/tW3yrG1sMGjIoFj8v5OMXngcdD9LnveG4c0Ofi1ztH44z+aliQ1ZpCCMGkO0bjn6ccLXxfPUf9n51HWE8qq3X039s8GL7c+L1VMWwsRG1v3zxVKDwvGn+aUGiLVqigdG5ZPW8HEVZrJ99uQohrRaMdbgRhn8eDDhYeElbw1QXcIApt8nDjHADOthCIKF1apenhItSzQ2Tx+3C+s/cLP+47NE9V93M2ORR4JTIPv7+wCn2hHN+tpaVincWtRZXHredctF5bLEMsPFesakCL3Kvrc63YmnAnbvRY+aI74fN68Nua2DRx1IIaETSJyZJ31QndHGurshtXRVH00j9JXqLXxqSDni5Q9DsnXjMYP/xjVNRt75CeYrAQ03VP5KbMTwpJXtW1RVEim0W3liDeouQ0kfAp1T2E4LUrj3f1XdF8D+WWMT0MNQQB88blPIsY3eapSa7Ls4iw2lg7CfpO8O7Eozr70KlFGm49qQc2PXkWWjdNhtdDcOnQrpZeA2f074C+HewtRfGErY17LKeRbZYS6Y+0ZC+6tkpDj7ZN8dSFxxosKCN6RDYe7KbZzoInctf/92m90DE9FaN6qtdjrTaxKhas4DegPq9HdzF89uLj0LJJElqkJeHWMT3w4fXDbK/VymITQK09buI9rxnRXZ+f7Fym2zZNxusO47JDegpuP7mn/pr2Scu0yDM3tm87w3U+uG4YZgtqIANAizTxswpYC/hEnz9tmxoTsQgP9N7yyotbT+qJly8fZDhm5ZrM0yE9Fe9dNxRjGMUNW65FlAuAn+Oqs8GjvH1NJHHWPWf0xhtXRZRKTvfqo+uHYflDZ2AlV47qOG2D/MQFxxjqOR/frSXGaEJ/D0G5MSfoc0GHPStQsTF/0cSRF4ejv4ciQS7JS4RjtXPLNKEwYFVaxo4XLx1oGXZSHUQliQCxZ5TP4pl74oJjMPt/pzgKNcd3a4lkr4XQzHyfKPFdh3T7sdXKIq8JC69onLnZnN3Z5yGmsea0vo/o0VqPaT+1r7UF0407Mf9dHg+B1+OxDR9yCnfi565XrxhkcSZwx9ij0b9Tuqv5JZoycyxpyV6hqzBPtDkhWLoJSmYCQL4W/sMrQ2duNnsmxbtUYW0ihdgagNbNAmBI1OJEis/j2krDo2veqfXSE0nEdPXwblj9yJl4/tKBwpiB9/4eWeBZDX6/js31hzvZa3YnplbdiwersajnD+wsdDV0YtH407GccQG221LwCxGrebOqN8gmVmHPP4Wz2DhpX3nNqtdDMOyoVnjTjesTs05ZuRPzpCZ5cetJPQzHqEvUfWf1xdIHT7edpOPBGf3b46tbIrVGq6uhZjc6J2S0QuemWvwfIQaLFRBJ7MST7CMmYdIJXoiycokTwW5o+nOxgmybU5O8SE3yYs7/jcWY3m05N3hm48KMsXvH9cH0/56Myf8ZY/peurCxHhXHdE7HkgdPRytNwI/EKFczC4QAu4X1mhHdsebRcVj72Dg8fP4Ax8yGb109xHTsptEZutLLrfse/b12Hgml/qClcoclzGweaZ+M7BmZv84c0MEQkmHnQWJnibYWYtX/eV0d3dx1cLA62GH3PFglp6NTo2iNMCg3oY4JUcy+FeweyR8M4cSj2+CCQZ3Rt2NzJHECC//cVVdxBhiFyXvO6GN4Xu2SNY3s2RpnDOiAds1TTIqT9s1Tkf38ebjhxAxceLwxdOf6URn47c7ROCmG2MrbtDmftpHdZLMKMCdlbTS5Dt+51jw+RWPS5/VYzgtWgl+0pKf5XFnH7GjKzQ/3n90XJ/YSWzD5Ne0yJpEWT/c2TdCzXTMsHn+6pSLtvb8PwS93nGj53PL3r2sro1dDv4724VZu5sq2FgpgNpTLo7kTszS1UQ5+f/tIXDGsm76v7FnNmuCsNw3dYxxxSCDmFE7Fj2WrRKZARDB1s6dxozgQ0SzFp+casKM6ijorr4XDWrIm3iAhMrLFUgc6UZBCbA1AXXoBGBK1iGAzADZP9eG9vw8VnjfYIcMnb730MYmYUpO8+qZXxNnHRjY17CRw/9n9dDeDJEF24vTUJGx68izcE4VAIMLrIYbv5TXRhnO1xY1a6diF02rRHtmjDb67fSQ+OasJnmGyyfJCr5NwOfEa40LvIQQeDxFmxONhJxJR7JQIn4eYNNIeD0H28+fhzlN7oUN6qqMF67c7RwvjRR3bqzW3V/vmBitKdTcq9Ld3bpGKH/95ou0G0uq3ERCcc6y92xMPb5WOJg6ObSOf1IdP7MTCbmLY89jrpfq86NOhuTA7Kl1cjRZWY8NpQqzqbvpEtLEIPXDDz/8ahZn3nqK/HiNQzl07orv+29xqomliGzshLRBS8wvwG1kWRTGGQejhFF6Pbh3nv0PkGkaFIypUi5SQVt4vkesbJ64ebZvipcsG4o0YvDz0a1vczh3Pnos3GSukqD30+Vz58BmYf/+p6jEu4R9gnVBEBBvDXVwZxDGd0/Hm1YPRLMUssPDzcrLXg9/vGo2Hz+vv+vso5xzbEVufPhs+rwerHzlTT17GCg4DOouFhgsGdcZHN5wQ9XcC6vMkcrt3wyVDuiL7+fP0TXasG9xotqXnHNsR6ak+PHXRsXj6omMxtm874fyb7PVYKnPchsk4kezzVEtZOrJna3TlrFN3jO0lFDofPq+/ntsjPdWH7OfPM8Sf84IoVbikJXst78PZx3YCIcRyTuNDIe46rbfBkt/PId7dTV4MK0H3yQsj8eY+gTux3Zw5omcbEBLZq7nx/Hn0/AFCl97T+rXHOMZ1mbpIO5Vja5bqs41h5fcTdhZUak13M77s9imUz28ejlevGIThPVrr+Wk6pKe6eparo6hrZjEPU4u2GwE1mvw7iYYUYmuAU10EilNYl8nmqT6hJmz2/07BPWeYE2RQJpzTT59Q6ePKCj/RWGlY7W6S16NP/OmpSabsxIBqiXIbU+S6DTbvdWieivMHdsJHN6jui6xAKMq6BqgC5MiebeAhRqFQtFmyg4+HjGadZQVst5sSdsGghKP0PRzUrWW14kXjbeDTXRarIXQR4j42mHLPGUZFC5t5c93j4/DNbSP4j+jw2XbZazVhrMVJ3G+i/ZysxdJR6D04qXdbPeOsCPqZo9s104UjuuGi0DIJ8RdhYbKMR8PQo1oblHlur+8kGImyY/MbFbpop9tsYBTFOJbY61Hhlo8rFW1aP7x+KG4e3QM92jTFzHtPxgfXDTNsSL+5dQTusEiCRr9TNKQvH9bNVvEognVbs5rzvR5iOV/rQqz2f5tmKbo1kJ03LxnSVbuW+wmQ/Y1VwbBhnePnwybJPvx+12hcN/Io7X2CgV1bWsbI0zXqy1vMbnthRdGFsVZNk/XkZalJXmQ/fx7m3Xeq7hY5jilv998z+uDVKwbFlOk73vDzCkv28+eZYob/2UW92Z8ejG7dX/f4Wbhu5FH4+8ij8NlNw4Uba5/XWjiLh9s3ACR7vdXa1KenJglLPYkEkVtP6qk/xx05z4c/7hqDGf81ZgFnLyHKOcLCX++Zi4/Fkxceo7uhU5J9HkNyHqfs525yiohcpzump6JXu8ic7PWY+7KJxfPOWurpPNE+PcUU7sSTluw1zEVNk724clg3fHzDMHg9BDPvPRmP/W2APic57SWTvR58fKNYsXTWMR1MfSx6Jgd1a4mHzu2PCwap3hNJ2ppqJ/BeeYJ12A/dN/o8BJcM6Yof/jFK3590TE+1HBePnD9A34Oy5zxy/gDh+VY4JY8SldThkTGxElewQtKf/x6DN68ebBzgFhNIz3bNLBeyLi3T8A8mOUQkGVIk1qI6Mua9Z/bFo+cPwHnHdTIldqopaLkNkXUp2efBxGuG6IIZe46dKwylVdPIRJXGDf5oF85YXTjttHorOPdztt/TU316aYb6Cn0moylrwUMIMVjF/nOaWEhgaZbi0zWvv9xxIk5mLGbpqUloa+Mx4eUE0HvO6KO7iLJjgXfvox/rycXF0a1PNHVk37hqMP59Wi+c0se4aaD1na2SOCQy7OJLQzCcnm+q/BApBShUq5xuExOuQDFYYtlrUCtd2+ZGIVK0ee/Vvjke1TZhvdo3R1qy1+BaemKvtpbj3S72PxbYhFbxjIkFoGtJmqf6dJfEaJYBXvnWzCDEmr9vYNeWuoKXChmpSR5cPby7qZ4v/amiRFhOe7PuTKjJB9cP0+syX3h857i5x1YXOq/wyakovLdOE6/18/TURcdavscjet6bp/os1/9o79fNo3sIj6ckeaLKws97SKSnJQmTA/EeUAseUL0MyrVNPm9ZPK5rC5NAWci4YjoltDyjfwc9dwGgJiW6flSGvgb+78yIYYLdG7LC1OhebXDR8UZPLzfJgkSW2LOP7WhQHnsJiYSIaX0tssQe16WFwTpNm9oyLUlPbnZUmyb46pYRJq8vr4cY9p+je7XFC5cN1J/pXu2b4ybmOXBS0tt5HL1/3TBTOJyIe87ojdtO7qkLmvR5tsrbAAB9OjS3NHLQe80+XyVactf26am2Sig9AzlzjhvPPhanseLGyiqFWIkttKYfa3U5tksLXDCoM07oEbEI2QlhwzNa4+8jzQW4eWU4dVtN8nh0NwO7uIBMi0QllLRkL24e0wMeD9EFx5oWYsef0w//OKWnYeKkWFm7AOB6i7Iw7FpzXJeW+t/sIq1mk43ud7lxMYkWXpCm39G+eQrWPX6W68zO8SLev5Bu2GOx3lMNJYFRG33vOOfanoGQoj8HXVs1MQmcdhYXPmYPAObff6plyRIK3XxfM0IdtzSGiC5SfHZTyrnHmV2lWzdNxv/G9TU9c7Rsk5MLWiLCWtNpRncnIbadpmxgN3rPXXKc4Ry/tiDT7N6tmyYLE86x6zYr9N11ai98cN1QU+IS9pl58sJj8OlNsbma8teLkwxrIJa8OLowKJJhtWPsfY/GEsvHsLNrnVUSH/p8UIsXIQTPXXIcRjCCwXUjj8IxFu7AQPQKgmEZ6hpn5aJXV/xx1xjLpIn8muizmVpHCHJWLBp/mvBckZt111ZNLMNh7DbrgKpwGzeggz6P/99ZYu8yr4cg1cLTZp0g4z4fKpKemiTc89A1p0myF+seH6e7HA/v0Rr/Gns0Xrh0oOkz/G9l40CdknYl+zz49vaRGKKFgtE1iwrY7P1l10N2jL1z7VDT2LFSALP7H5EreFqy1/B7vExMLP1fZInlYypHauOvRVqSvocKKwrG9G5r8vryeYhhbnUajU6KAaeEX+z6OJWrpT39vycj65lzTPM6FU6t9slXD+9mCnljSRUYXaj1s2VakilMLZILQdE9LNm10G24GSUenpB+6U4s4bnl2GTcrcWK9unQDHef3hvf3jbSdB5bvsMuLszn9eDpi44zbTB4jTv1ovF5Ca4c1g2P/20Abjupp+V1MywmYjYZEuWjG4bhz3+PqRHhjaVFWhImnNNfKFTy2l464E/u085SE8xOi+wmmV0Mpv/35LhYYj+yyNLqdi/Fu4bQSbuuw+4vGNQ5Lq7FnbTSPf85zV0c9eIJkQ0WtTo2S/VFXS83EAobMnfz2CmQRItEyybJlkIo5fR+7fHTP0fpbpFT/nMSNjxxFs4c0AGLJ5xmWQpm4tVDsOPZc22vTTm5TztkP39eXDMTT73nJF3xVpOw441qi7tbJIiiJV7uPLUXnrn4WFzOJF8565iOhkzDAc4Se2rf9hjeozVe4TLsslp/tnSDz+vBuGM62ibOuX5Uhm12Tp6lDxqT1wHm7O7xpDqWWFF70lOT8NjfBhjWMH66FdUVpdw0OsPwTBmEWAvhh27m7dzhnrjgGL3doozqTjF2PM9efBz+uvskW8+MuuC4ri0sN9n8OmlXE1a0dluVLenXMR13jI14edFamVZyhFOiqSUPno4Prh+GW8b0wM5nzzWEEzx54THo1lpdG8JhxXJ+F5XWuppz9ezSKg0fXDfUkP8CiKz3TZJ9Bi8Nn9eDB87uJ8yGz96vzU+ebUi69NH1w/DR9cMchQ76BNL9Ha2DarVfYcMgWqQluRrLnVqk4skLI79XtJdMSzK69hISiYm9eXQPdG2VJiyxM5FLyvfCpQPxx11j0KZZSqQMHCMDsbHrfPiC01RnNV5pv9O1++XLBwkT1NntTdOSvMJ77mSJvWOs6ull1c+puiU2cm2qqEhN8pqU4OxVbh7TA9nPn2dQOvDz4S9R5DSxqujghLTESkyc1DUJ/9XcRQgh+O+ZfYQxYj6vRw8Cp5PsyofPsNSO7nruPENZDqsJLslL1AySo3tYCmdW7hHT/3syfhNYmZqnJkWdFTbe8BMJnZTs1pETMozawfWPj8P0/56sL8Z9OzRHB87t40WBVpZCb7lowjxjQAfceGKGq+LYRwuy+/HXrGmFgRV0EaSbiTevHoxdz51X7es2TVGTZ7BZX+1gY3vOPrYj/ntGH0MMuFuqgmF9ARUJpVaWWLaUyDCH9P48Hg/BsIzW+uYuNcmrf08nizq89HN11e+AunntW8uW3YfO648bT8zAdSMzTO8N6toCn92kxjsm+zy4dsRRpjmNnQYDuiVW3ZRQd69Lh3bFC5eqVls2sdPwHq3x+AXHIJ6c0b+DboEH1Dg33spMm1wjltgYhFhdqLbYz9w0ugeX1TfSB6f0aYcp/zlJV9jwEEIMz1QzQyy5eB2iOQhybTKWejwEYzUXez6ZDxC9giA1yWvI4Fof+L9xfQ1lWfw2+1HRRtxO+GQ31zRbvJUFno9nt1MK0zmYzqnXj8rQlZTBsGL5TPBtPb5bS7RlxlWzFB9uGHUUOqSnmmKo6Xc6WYytvo/Pw9CmWQrOGNDBUblL5TJ6rbvP6I3WTa2VoHxsppukfbzwlyJYH5twllhAfXb6dWyOG048CgseOA3tmqcY9oWn9m1nMnSkJnn1uF76fLDff8uYiHtwktfD7c3sx6MolhmIWMCpsvayoV1xen913A/PaK17Kditm1b3kR5v3dQ4P1N3dxqGZGXxpHsU9rupoiLZ5zF7SjhYk30ej77/7pieisHdW+n7kPf+PgQPnN3P8rOZ9421vbYV9VmITSyfmUZAsxSfSbN8TJd0LMvO1yfjNs1SbDXId57aC3+uO4CyqpBJeNOTLzkMlHWPj7Pc6PSpxRqc0cJPwnTC91vUJVvwwKmmhEy0huoBrQA4vQ0pTF23K07ohtdnbsOBokrTNZO9HviDYcv79/gFx6C4MoCBj0+3/B3z7z/VVQHtaF1L4sV1o45CmT+E2xgLV13Abhy8HoK7taRKQUHGvVP7tsOcrYeF1/F5CZ6/9Di8OHWrMBGC1eI3X4ubmnffqaYYSUlsTLxmMArLjWn+O6Sn6uOG5/pRGaZNLf+aHYu6EKttqlmrBI2bVBCxxF51QrdqJbESQRPP2UHbbFWTuTrEMm3Q9ji59FHo3uzq4d3w3CWq0m/Cuf1Q6g/il9X7bT/LjkGrOY6WjsgtNs/B3VqnYW++On/felIPXDi4M9o3T8U1I7rjm6V79PNqwsqdaHRv0wTf3z4KY1/OhBeKQYgdnq7go/4KBi51zuotooQZjzeeqG7qrdxZ6Trbo21T7DpSBp+HwClS/+vbRuheGPed1Q93frPK0j08+3mzElVRFIOgednQrgZr231n9dWfI9rueIdDqXOKgvHn9MPoo83ZyXV3eO31CRmtsYqrOczCJ5x002f0Of/61hFoluLDgqwjpnNSk7ymda5vx+Ymt9tJd5yIS99dBH8w7BjnnMy4E1N4wd/gTuwwHK0UaOPP6Y9FO44YQszotbq0StNLO9oJsVbPLb3fKUkeLHvodLw1KwtfLtmNe8f1wUPn9devyc9Tfx/ZHU2SfVi8I09tO/Pj6P49xecxtOnq4d2QnpqE9+fttFxzvB6i72tpicsxvdti0qr9OKZzC9t72CQK5f6ATunYdLBY/Z567E4shdhaZu59Y1FcaRRiJ5zTHxcM6oyjucxxVnRv0wS/3Dka416bZ5rg2MROdtglPUlkeOGcuoCUB4xF1R84ux9aNkkSaucp9N7RSTeJCyZik0OwyRSSfZoQyzRl9v9Owd6CCv01787Db1Sd6mpS6s4S69UFxrqE3kfewiPKTvzedUNx2xcrMW+bKsjeMfZo/Pu03vhsUTYuGKQmajl/YHRJE6imubvAvZ7y879G1euYktpmeI/WaN9c7MLIz0vz7z9VOFbMQmzkb7ogC+sA6vFITBZihzHWIT0FOcX29Qtj4fjuLXF0u6a47yxrzXqsOLl2iqC3ySnrqn6+YIPbJNmH16483lGIZV0mrTbKdO6+4Hiz18Yfd43Rk5kRQvTn6dmLj8Ouw2VYvFPdWA60KG/U0KDd3c4XxoXtiJ6Z2AMgndnl0X2B10NcuVqXaHuV5y45DmdrZc3ocBnRozWW7srXz+XLZXk9BDeP7oFPFu6yvH6Kz6vPscN7tDa53DsRVoAgY0Xi5+E7mczg3hgssa7QLnd6v/boLTAA/G1gZ6zbV2RSplvBexnxwpOo1+g9HN1LFaKXZ+ebzmmS7HU1LxzbpQUePq8/Hvlto2PYTiQmVvx+sxSfqca0HVaW2KFHtcKoo411fuk0xf4iu4SRVpZUmryrsLwK7ZurytR7zuht8s7i14mnL1K9ei5/bxEAoJIxpFBFarLPY7jnz10yEJWBENo0S8YVw8T1iH0eos+PdC177pLjcNnQrujWugnW7SvSzz2TyagORJdc7aMbhmFfQQVu/Xx5va4TK4XYWqZNsxRT7dhkn8dQ8sMNeoIcPibWpSW2vsIL5zROqKLKqBj4FxPLY4UuxGqvefdqei8/v3m4QTuc4vOghLtWz3bN0JNRQvDXitUgQH9vIzAoCCGEYMtTZ5vupyjmJ8XnxetXHo+n/tyEa0Z017P/unkWqsPQo9xnGZY4l7La+vTZ6PvwVADWAia/EWXnwSptQaYJXwxWAuYzvJufFXPvOzXq2Eo3NEvxYdb/xsb9urGiW2Jd6mOqk2GcDa2xEipSk7zY+rR57APqvG8VI0rnzAnn9DO4NjZk6CM+NDWA45sn4+GMMJ7O9oDvSjYDtSsh1q9aYpszrsLHd2+J47q0wEPn9ccFExfqxwd0TseLlw5En47NcdHbC+HzEDz6twG2Qmx1aZLsNXjl+IMhy3MjQmx890Z0irKaR249qQeuGdHdVfUEwJx9mApffx/ZHXeM7YVpGw8BAMb0aosFWUdwbJd0U+1nUbhNNIYL+p1OQiy1xFopvpql+Az3xUlBxs49/To2x5ZDJXjv70Nd5yuxS3Jk5fHRRnMjzteUYl4PMe3R7T5/ev8OWJ5dYAg9CjKWWJ7UJC9uP9l6T+LxEH280SSPKT4vTtSs/NS1ejwzv3VpmYYKxpBz4tFtsEizEFvRJNmL4T1aI9nn1S2+9REpxNZTqMKKH7R0ioh3fc+65qg2TbA7r9y0qdUtsVXWi5cVVM63inGli3y/js0NiT7aNkvBkdIq200Av6Ad7VAz04rqbBQbCqIFmd5fmvCH0rppMl678viYvuc/p/WC1+PBazO3xfR5iTuctMV2SS4o/PjiXQoB4JS+7bBidz6uH5UhvEbYZbmn2s4IXlfQexitC240p187ojt2Hi4zCBJ2CldRllUn6Dzep0PzhCmTU9NktG2KD4c3xZiCXABt0US7bXSJ+iyjFO1bNdPvtdt1ZWTPNpiy/pAhoVGTZB/++PcYAMDtJ/fEESZm+YoTuulhOjV179X114/7z+6LS4d0xU8r9+nv2XnE6G6hcbbE0hAFK/mJEOJagAXMzzwVnrq0bILOLdNw/agMNE3x4dIhXbHjcKkw/It3SQZU5YNbaHiWUz12KlxahSA0S/Hh0iFddO8oJ0KMJfaZi4/DDZ8sw7FdxO7lom+0C7+yEnBp2UWnPST9/MPn9TfkPPnHyT1x0fFdDHWBqXdALPMXoCpaVj58hrDWef9O6Vj20Olo1yxFn7Pn3X+q/n7WM+egKhTGgEenWV7/iQuO0ZWAyV6iJ0Osj0ghtp7Sp0MzXHh8Zz1zGoWPv2gofHf7SCzekWfaUOrWlhgsJdTywLsVU6g2jbcEfHLjCZiy/qBtch6Wr24ZgRE93VvrrhjWFVm5peoLvUmN1BRrw9IHT7ctUB4t947rizJ/UAqxNUw07nxuPUro/uT2k3vi/rPUkkt9OjTH+9dZZAuHEqlZ3DjkHEfoPXQrxMaiX3vm4uNMx+ItVNCNrKhWaEPmzA5JgOZp2ER7punWdGx6CGiqoIhE4vtuHdMDcx2Ei+tGHoVzj+tkma35wXP7m47Ru15T+RwWPHAqFCUiYLGWWLvYPo/+26Mf8Gf0t85EbpfoMRb4+ZFeN5JYi+AKLbmnVf4SPt7yxhMz9D78z2m9MEoQu8tCrXpOCrwUbfK08q5pmuLDhcd3QXpqEm76bLlziR1mzA49qhU2PHGW5bmKwJ/YNrGTxXv9OqbjxhMzhCUsRZ8/rV97g9cdIcQgwALM3lET8pul+HCxy2SWFJE1mMKH47C/2+f1OMZR09J8AJDk80hLrKT28Xk9eINzIQGAiwd3wYfzdyVcnbvq0qlFGi4ZYo4haNssWdWERTlBAKzwKn6fCsb8JqtzyzTcalO2iGdMb/sFg+fFywY5n1QPGNi1BYoqzIl64gVfiD4esIt2rOnqJfaI6u5a4XZjSF3HR/dqa+tSpiuqmJjYWDL5NkT0EjtxEP5uGm1OxmVFvO8+tV7UYYLvOidVm8b4UDeqoPB6CR4+fwAedrgOISTqckNhG1fKaKAeFf8ae7ThmeQFq4BNTCwLfb6dwhl4sp45x3aOoO/Eax7hlem03dGUlWuaYjyXzb7upq66Xxdi7e9Vpea+TWNxrdrRR8tMfuHx9jkpqBD73t+H2J4HMF6HzAxit15Y9Y/XQ1xlp6fXduOGz7sT2wnjNYHdGsjH0SZ5PTI7sSRxmHBOf/zn9N5xz7aZqBBCMEGgDXYDXcushvt/Tu+N5/7aEnVN0nhCkwuwWfnqC7/fNaaumxA17CJol0FSEjvRFGd3a7Ud3ast1j46Di0cMn7Tq7HZieuynFFd0rNtUxxiMv8O6d4KXyzeLUxOEy2P/c19yaJ46xAeO/8YdG/dBGOjqOPbYKC1UGmSLvY9RUHLJkn4+8juuHKYvdWpOnRtlYZ/nNwTV2j1W2f89+SYlOovX+5OmRtgXFD9AbuYWPV/PoGjE05u0VTojGZeiwbq+h2NSzJ77htXHR/1d1JLrNPeZ0yvdrj79N649SRx7Dl1p+3SMk2YXZrnyQuPxbNTNuPMAeZ6tVaw84edm3x1PQN0IdaFp0rEnTix3HxaphB8eL3RO+mFSwealB71icYh6TQi1KDw+pl5uPbRMzII3/3HKUfjH6fUbFIgJ5ok+7DqkTNNNfgk1efNqwejQ/PorAyS2iUaAdNJgAWMQ/2C4ztj1pbcWq+JmyjMvPcUw+uLBnfBkO6tbDNx1wSxZFK2o0WTJNxzRp+4XrNewGyu03hLLBMyQ7Oq1hS8YjkeShE7RvZsg/fn7gQAW7dIarGLd9LLiCW2etc5c0AHlGnlF5+/5Dj00+oV65ZYh/hUFlrCqkvLNFwoyO7txHUjMzBrS66jC2yyz4P/nmkea+cd1wmT1x+M+nsvHdoVlw4VZ+11g50iobrKyhOPbottOaWuEmRRY22sMbHxIjXJY8iaXFplFsCHarWa6ytyZyxp9CS6HUa6tdYMFwyKrtyOpPZxcj0+kSu74BZFUXDh8V1wwaDOcRei6guiDV9tC7BA4s+/9QZGiE3lYmL59xsSp/ZtjwnDU/HcskrLevFAxO24pkrsVNedmLWQXTU8Yimnwlc0NUCpZa3SxjJtR/c2TTC7GpnT37p6MC7uVBTz510hKLFjR3Xn+YfO64/rRh2Fzi5LJQFwnVW5JvjtztHokJ6Kkc/N0o8FG+AUIIVYSSNGS4Ild1ESSUJip1nf+ey5UV+PH+uNVYCNB/GSibq3boLT+7XHrC258blgY4XpECqnNVC51UTzZPUH25XYoXGKNWeJrZm5ZGDXljjrmA7o31mcpVcEtcRWxCjEVhePh9RYYi+KYrN/69Qi/vkykrweHN0uuioTdSnEDurWss6+uzZJLIdtiaQWoQt8TS0+95/dF4+cP6BGri2pWdpI63fC4/GQmOPQGure/m/10LvA5/Xg4xtPqOtm1H8YiZVu7BqDJRYAWqSo88BZx1jHUuqW2DgLFnpMbA3JbO2ap+D964ZFVee1iWaJrSshti757vaR+O3O0frrR88fgM41INTa0UWz1iZavoVTujY8u2XD+0UNiIfP69+Q1506J5Ldrmbgyx9J6gfrHx8Xd229BJh//6nIYRIJ1QU0Lq6hzqtvXT0Yb11tzlovaVz0agJc3E7B7V2YB72hPvQAmiYRrH10HJrb5I4IaAHCSXEWLKgOPJG8OlJ8Xpzatx3+PvKoum5KjWH1OI/saQwxuXlMD9w8Rpx4qqb45Y4TI2USXTL1npOQW+x3PjFGFo0/DdvWLK2x69cVUohNYKIp4yKJHr3MWOKsPZIEQCZGqxm6tW6Cbq1rP+aSRY51SYNFUfQH3EeA1/o0XKFVhFNit0hMbHwVlNSTS0kwJcGnNw2v6ybUKKISO4lC+/RUtI+yBGC/juno5z4pc9QkmlU4Xkhzg6TRQmvmJeIkKJFIao7E2m7WT6RCIMGwE6IIadCWWDcM7NoCgLlOZnVhy3ZJao8zB3RA5xapluV9JEYaaj10aYmVNFqUmvYnlkgkCcWQ7mo5gcuqUcZBUjOc0qcdBndvWdfNaLg0ciH2mM4tsO3pc+KebOfmMT3w0rStek13Se3QtlkKFk04va6bUW9oqJZYOeokjRaa3Y4d2+9eOwQllcE6apFEIqlJurVuguznz6vrZkgEfH5zw3Z/rBUaqLUlXtREttg7T+2FO0+V+S8kiY23gc4NUoiVNFr0mFjGFHvOcZ3qqDUSiURSf2iqWZ6cYhElCUAD3cBKJBJ3kAYaPCqFWEmj5fhuLdGvY3NMOLdfXTdFIpFI6hXnH9cJBWVVuPKEbnXdFAnQ6N2FJRKJNdISK5E0MJqm+DD1npPruhkSiURS7/B4CG44MaOumyGhOAmxUsiVSBotDTUmtoEamCUSiUQikUgaCVKIlUgkHD5NeG2ghlgpxEokEolEIpE0aKQQK5E0OiZeMwSDurZAkqdhinvSnVgikUgkEomkPqMoDdfcIpFIYuLsYzvi7GM71nUzagwpxEokEokkoRjYtQVK/bLUlUTiGjtLKyHSEiuRSBocUoiVSCQSSULx+11j6roJEolEIpFIEpiG6SQtkUgkEolE0liQ7sQSiaSRIYVYiUQikUgkkoaKFG4lEkkDRAqxEolEIpFIJA0ZGRMrkUgaGFKIlUgkEolEIqnv2FlcpRArkUgaGFKIlUgkEolEIqnPhMPW78nsxBKJpAEihViJRCKRSCSShowUYiUSSQMjYYRYQsjZhJCthJAsQsj4um6PRCKRSCQSSb1ACqkSiaSRkRBCLCHEC+BtAOcAGADgakLIgLptlUQikUgkEkk9QAqxEomkkeGr6wZoDAeQpSjKTgAghHwH4EIAm+q0VdWlrKyuWyBhCYdlnyQask8SC9kfiYfsk8QjEfukogIIhYBAwPxeMAhUViZem+NFIvZHY0f2SeJh1SdJSUBycu23Jw4kihDbBcBe5vU+ACP4kwghtwO4XXtZSgjZWgtti4kmQPdUoKiu2yGJUAm0kH2SWMg+SSxkfyQesk8Sj0TsEwIQH+BTAJFJloSBUPiWW2yyP9VfErE/GjuyTxIPuz7JT+y+OmL1RqIIsa5QFOUDAB/UdTvcQAhZUaYow+q6HZIIsk8SD9kniYXsj8RD9kniIfsksZD9kXjIPkk8GmKfJERMLID9ALoxr7tqxyQSiUQikUgkEolEItFJFCF2OYDehJAehJBkAFcB+L2O2ySRSCQSiUQikUgkkgQjIdyJFUUJEkLuAjANgBfAJ4qibKzjZlWXeuH23MiQfZJ4yD5JLGR/JB6yTxIP2SeJheyPxEP2SeLR4PqEKDItu0QikUgkEolEIpFI6gmJ4k4skUgkEolEIpFIJBKJI1KIlUgkEolEIpFIJBJJvUEKsTUAIeRsQshWQkgWIWR8XbenMUAI6UYImUMI2UQI2UgIuVs7/jghZD8hZI3271zmMxO0PtpKCDmr7lrfcCGEZBNC1mv3foV2rDUhZAYhZLv2fyvtOCGEvKn1yTpCyJC6bX3DgxDSlxkLawghxYSQe+Q4qV0IIZ8QQnIJIRuYY1GPC0LIDdr52wkhN9TFb2kIWPTHS4SQLdo9/4UQ0lI7nkEIqWDGynvMZ4Zq812W1mekDn5Og8CiT6Kep+R+LH5Y9Mn3TH9kE0LWaMflOKlhbPa9jWctURRF/ovjP6iJqXYA6AkgGcBaAAPqul0N/R+ATgCGaH83B7ANwAAAjwP4P8H5A7S+SQHQQ+szb13/job2D0A2gLbcsRcBjNf+Hg/gBe3vcwH8BYAAGAlgaV23vyH/0+aqQwCOkuOk1u/9yQCGANjAHItqXABoDWCn9n8r7e9Wdf3b6uM/i/4YB8Cn/f0C0x8Z7HncdZZpfUS0Pjunrn9bff1n0SdRzVNyP1bzfcK9/wqAR7W/5Tip+f6w2vc2mrVEWmLjz3AAWYqi7FQUpQrAdwAurOM2NXgURTmoKMoq7e8SAJsBdLH5yIUAvlMUxa8oyi4AWVD7TlLzXAjgc+3vzwFcxBz/QlFZAqAlIaRTHbSvsXA6gB2Kouy2OUeOkxpAUZR5APK5w9GOi7MAzFAUJV9RlAIAMwCcXeONb4CI+kNRlOmKogS1l0ug1q+3ROuTdEVRlijqzvALRPpQEiUWY8QKq3lK7sfiiF2faNbUKwB8a3cNOU7ih82+t9GsJVKIjT9dAOxlXu+DvTAliTOEkAwAgwEs1Q7dpblOfELdKiD7qbZQAEwnhKwkhNyuHeugKMpB7e9DADpof8s+qV2ugnHDIcdJ3RLtuJB9U3vcDNWCQelBCFlNCJlLCDlJO9YFah9QZH/UDNHMU3KM1B4nAchRFGU7c0yOk1qC2/c2mrVECrGSBgUhpBmAnwHcoyhKMYB3ARwN4HgAB6G6u0hqjzGKogwBcA6AOwkhJ7NvappYWeerliGEJAO4AMCP2iE5ThIIOS4SB0LIQwCCAL7WDh0E0F1RlMEA7gXwDSEkva7a18iQ81TicjWMSlE5TmoJwb5Xp6GvJVKIjT/7AXRjXnfVjklqGEJIEtSB/LWiKJMAQFGUHEVRQoqihAF8iIgrpOynWkBRlP3a/7kAfoF6/3Oom7D2f652uuyT2uMcAKsURckB5DhJEKIdF7JvahhCyI0AzgdwrbYZhOaymqf9vRJqzGUfqPeedTmW/RFnYpin5BipBQghPgCXAPieHpPjpHYQ7XvRiNYSKcTGn+UAehNCemjWjqsA/F7HbWrwaPEYHwPYrCjKq8xxNqbyYgA0q97vAK4ihKQQQnoA6A012YAkThBCmhJCmtO/oSZK2QD13tPsdzcA+E37+3cA12sZ9EYCKGJcYiTxxaA1l+MkIYh2XEwDMI4Q0kpzqxynHZPEAULI2QDuB3CBoijlzPF2hBCv9ndPqGNip9YnxYSQkdp6dD0ifSiJAzHMU3I/VjucAWCLoii6m7AcJzWP1b4XjWgt8dV1AxoaiqIECSF3QX0AvAA+URRlYx03qzEwGsB1ANYTLcU7gAcBXE0IOR6qO0U2gH8AgKIoGwkhPwDYBNVV7E5FUUK13OaGTgcAv6jzLHwAvlEUZSohZDmAHwghtwDYDTUZBABMgZo9LwtAOYCbar/JDR9NoXAmtLGg8aIcJ7UHIeRbAGMBtCWE7APwGIDnEcW4UBQlnxDyFNSNOgA8qSiK20Q4EgaL/pgANdvtDG0OW6Ioyj+hZmh9khASABAG8E/mvt8B4DMAaVBjaNk4WkkUWPTJ2GjnKbkfix+iPlEU5WOY8ysAcpzUBlb73kazlhDNQ0YikUgkEolEIpFIJJKER7oTSyQSiUQikUgkEomk3iCFWIlEIpFIJBKJRCKR1BvqbUxs27ZtlYyMjLpuhiVlZWVo2rRpXTdDwiD7JPGQfZJYyP5IPGSfJB6yTxIL2R+Jh+yTxKO+9knbtm0xbdq0aYqinM2/V2+F2IyMDKxYsaKum2FJZmYmxo4dW9fNkDDIPkk8ZJ8kFrI/Eg/ZJ4mH7JPEQvZH4iH7JPGoz31CCGkrOi7diSUSiUQikUgkEolEUm+QQqxEIpFIJBKJRCKRSOoNUoiVSCQSiUQikUgkEkm9QQqxEolEIpFIJBKJRCKpN0ghViKRSCQSiUQikUgk9QYpxEpqld/XHsDe/PK6boZEIpFIJBKJRCKpp0ghVlKr/Ofb1Tj/rQV13QyJRCKRSCQSiURST5FCrKTWKaoI1HUTJBKJRCKRSCQSST1FCrGSWkNRlLpugkQikUgkEolEIqnnSCFWUmuEpQwrkUgaIfsLK6QSTyKRSCSSOCKFWEmtEZabOIlE0sjYsL8Io5+fja+W7qnrpkgkEolE0mCQQqyk1pBCrEQiaWzsOFwKAFi6M6+OWyKRSCQSScNBCrGSWkPKsBJJzREIhRGSPvsSiUQikUgaAVKIldQa0hIrkdQcvR/6Czd8sqyumyHhIIQAAOTsJ5FIJBJJ/JBCrKTWkEYiiaRmWZB1pK6bIJFIJBKJRFLjVFuIJYR4CSGrCSF/aq97EEKWEkKyCCHfE0KSteMp2uss7f0M5hoTtONbCSFnVbdNksREWmIlksZDKKzg22V7EAiF67opdQqp6wZIJBKJRNIAiYcl9m4Am5nXLwB4TVGUXgAKANyiHb8FQIF2/DXtPBBCBgC4CsAxAM4G8A4hxBuHdkkSjLA0xUokjYYfVuzFhEnr8fGCXXXdlMRATn8SiUQikcSNagmxhJCuAM4D8JH2mgA4DcBP2imfA7hI+/tC7TW090/Xzr8QwHeKovgVRdkFIAvA8Oq0S5KYSBlWImk8FJYHAAAF5VV13JK6hUhTrEQikUgkccdXzc+/DuB+AM21120AFCqKEtRe7wPQRfu7C4C9AKAoSpAQUqSd3wXAEuaa7GcMEEJuB3A7AHTo0AGZmZnVbH7NUVpamtDtqwuK/REpti7ujeyTxEP2Sfxxez+/2OhHegrBRb2S9WPx7I+dO1Xhdc+evcjMzInLNesjmw6qy2Hu4dyY7q0cI4mH7JPEQvZH4iH7JPFoiH0SsxBLCDkfQK6iKCsJIWPj1iIbFEX5AMAHADBs2DBl7Nha+dqYyMzMRCK3ry7ILakE5swCgDq5Nw2hTz5ZsAvt01Nw/sDOdd2UuNAQ+iRhmDoZgPuxdaN2/g3jTsCESevxyx2jsXTRfNvPT9t4CF8v3YMvbnZ2ltlCdgDbtqB7t24YO7a/qzY1RErXHQDWrka7du0wduzQqD8vx0jiIfsksZD9kXjIPkk8GmKfVMedeDSACwgh2QC+g+pG/AaAloQQKhx3BbBf+3s/gG4AoL3fAkAee1zwGUkDQuZ1qj5P/rkJd32zuq6bIWlAPPXnJmw5VIKNB4ocz/3Hlysxb9vhWmhV7TFnSy78wVCNXZ9oqZ3o/FdQVoUBj07F8uz8GvtOiUQikUgaOjELsYqiTFAUpauiKBlQEzPNVhTlWgBzAFymnXYDgN+0v3/XXkN7f7aiKIp2/Cote3EPAL0ByGKHDRCZnVgiqRmUaowt+sloYjer832JxKo9Bbjps+V4bsqWWvvOlbsLUF4VwruZO2rtOyV1y8YDRcgYPxl78srruikSiUTSYKiJOrEPALiXEJIFNeb1Y+34xwDaaMfvBTAeABRF2QjgBwCbAEwFcKeiKDWnFpfUGTKxE/Dq9K3IGD+5rpshaWBUZ2xF5FH3UmyogQzmgjI1bnd3XlmtfaeuNKjGNQ4VVWLTgeJ4NEdSC3y3bC8AYM7WXOH7lYEQiivVRGgfzd+Jn1buq7W2SSQSSX0lLkKsoiiZiqKcr/29U1GU4Yqi9FIU5XJFUfza8UrtdS/t/Z3M559RFOVoRVH6KoryVzzaJEk8GnKJndySSox4dia255TYnvfm7Kz4f3dxJdbtKxS+t/lgsSs3UUn9JhiOvRZrLJbYaIZyIo16RVHw5ZLdqKgy6klJDaYQppemygLqkeLmO8NhBesPB02W75HPzcK5b86PazsBVTiWRM+8bYctBVQAurt6ik+85bpw4kIMfHw6AODpyZvxfz+ujX8jJRKJpIFRE5ZYiURIQ3YnnrEpBznFfnyysPZrYp7+ylxcMHGh8L1z3piP895cUMstksTKkp15WLO3MOrPVUOG1aWraMQ4N2M5ESvLzNqci0d+3YAXpqruw3UxJVGB1EOAMn8Qpf6g5blfL92NV1b68ce6gzF/3+R1B5ExfjIOFFbYnvfnugMY+dwsLN6RF/N3NVau/2QZbvp0ueX7/qA6QFOSxFuurQ7KT4lEUr9YubsAGeMnS8VgDSOF2EbGZe8uwn++rZvEQA3YEFunlNhsgmPh55X7kDF+co0mu5GIueqDJbjobbFCwo74WGLdi50iIdYfDCV8rGyJ31i7Nh6uvdFCb5GHEAx+cgaOfWya5bm7tRjKQ0X2AqgdP6xQXVm3HrIXlFZkFwBQvTck8cUf0IRYnzfma0zdcAhVwepoqyQSSW3x5eJsAMCiHUfqtiENHCnENjJW7C7A72sPCN8rqQwg+0jNxYbVtiX2yT82YeXuxMwAWpeb/ddnbsOcLdaub89rVqrC8kBtNUlSTapjiaWP4uESP37cWuUq3pU/paQygL4PT8Wbs+LvLh9P6H3yEpoxmLr21tx30ksrmshM7x0hQFXIXceRaojZdN71eCLXmLftMP73g73L6qo9BZi28VDM3yuJ4ORO7MTCrCP451cr8cr0rfFsliW7jpRhb75MQiWRxAohxqz0kppBCrESnas/XIKxL2c6nherha42BTdFUfDJwl249N3FtfJ90W4yazIxzr6CctsyKK/P3I6bPrN2fauNjb0kwoxNOVienY/HftsQ8zWqZ4lV+3vCpHWYvCuApTud3Ul5hRRVeFCrn+H6dbSK+4MhU6y4dTxqzT3s7K+//pNluPObVQBUS2w0n42VMOO+zLbj51Xi5EH0Oy95ZxH+8eVKaf2LgpNfnCM8TpUVHkJQGQhFfU/ztARk+x1cwuPFqS9n4iSL3yKR1Dd+XLEXJZW1q5TXcyHU6rc2PqQQK9HZsN/ZjWzOllz0fXgqFmUdwUO/rDclSLHiyyW7caNNzFC8qSvXZbf79Zps3+mvzMX1nxirVEUjSOiWooSMamwYHCyqQEFZFQKhMG77YgUuf28xPl+8O+brheIgKNK4vWs+Woor3rdX/vBJ2iLJixTTsbri4V824IKJCw2xoBFXXu11LbSDFfhZ5ZKb+6MwVtuYv1+Tl0RCs5t54YKJjSumPhxW8O2yPQi4tJKz7LGwXlJ34lBYQb9HpuLid5xDBliBlY43N4oPiUQSYc3eQtz30zo88mvsSuJYoPunhpwLJhGQQqzEhN3GZtaWHADArV+swNdL9+Drpe423o/8ugH7CqLXIr89J0uY9bGgrAplNrGgiV4CpCYnNr9Ayy869tPKfQiHFWRuzYWiKFienQ9FUfR79+JU59qZK3fn46P5Ox3PA4AN+9VaibVlTUhkRj03G8OfnRm357Q616GPYpI3shws22Xvhs9/Hd1cJ9KoW7lbjfGsCEQUbSHFKAzEQ0h0gt4rfsi7s8Ta31E3Gd/pXFNSac5y7Oa52eIQS9vQ+GnVPkyYtB4fzDPPa5sOFOPK9xejKmR93/h7XBkIoUxT9tLnb6NWHmnOllx8yiQD/HJJZD0d/fxs/W/aT15PzTyoS3fm4fRXMl0rpSUNA38whD/WHkj4XAYb9hfFXGO5XNsn5pb449kkRzwCxW48eHbKZvR9WBZxoUghtoExadU+LHHhDmhHwGaBposp3Ri9OG1rjU6AL03bKsz6OPipGRj32jzLzyW69iuW9lXnPosE/k8X7sLXS1UL+fWfLMPl7y3GlPWH9Lb96KJW4aXvLsbTkzebjn+/fA827DeW9vl8UTYAYOF2megAUMdZNF2qKAo+W7gLRRVmt6hohVh2s0o/Go2Vh39+FYvjdQl14UzyRJY5UXwoULOJnazGLX+7dx0pw7fL9nCfpeeKWxhw4UZOr/HPr1biq6XG68fDgt/QKNbGV15plem9x37fgKW78vH5xir8bDE/8utnv0em6smyeKXDTZ8txxN/bNJfW1mLwpzyJd48NXkTdhwuw/bcxqWwaOy8PG0r/v3tasxn1uTckkpbA4ET23NKsCvOuVXOf2sBTn6pfrm386XVePbml2PMC7NxMMqkfR/M2yk0SjRWpBDbwLj3h7W46oMl1bqGnRtVMETLcagjtCoYxr+/XY3yKvOkt25fIa7/ZJkp/odfh897cz7GvTYXr0zfisNRaMvsLHrspv7X1ftdXzNWnCYsnlgsZ+xH9hdW4JXpRgWCnZBb5leFlrdmbTcczylW7zddxPbkl1c7EcENnyzDAz+vx/lvGd0QqUUsNTn2DJ31GUVRTH20ak+B68+v3F2Ax//YhAd/WW96j32eKgP21pRwWEH/R6eajvuisPLwm/GQrWXK9WXjimgeiwjs9EjNN85qrPMCycXvLMSESeuF1lWrngla3Pdz3piPH7X4ZFZQnb05x3BetUozNXBEVvCg1jcLDwTxvx/Xos9DZouIXXw627XRhXiY45rjCV3PpU6jdvAHQ3jgp3V1Xn6Fur+zZb6GPzOrWiEEZ742D6e6yK1SW0Sy79fu9zp5J329dA/2FVTgl2rsTxdlHcGirMZtFJBCbIKwdm8hvuG05PHG7aJpJcSWVAZ06xw7Ify57iC+EMTz3f/TOszbdhhZuaW237fxQDG25ZTirdlZGP/zOldtpFjdM3bjlogpzu1kWOp2m8Vpxdl+ueubVXhrdpbB1c9OMKYC5CszthmOpwkEyupa0+ZaJJWi1r+0pMYpxF75wRL0mDDFcOzaj5a6/jzdQB8uNit62Hh2p9gfPiMunRd83mgsscbXdLwl0iaYCnisUKFYWLRqxZ2YO85+56XvLtKTY1WFwjhUVIlrPlyCQq0UkFX7hIJ6WMHmg8W476d12vdHvpn/3dISa8Yuqyg/x4qyS9t6MjEXrXBQNgHAkVK/9r3q6x9X7otK0esW+lgkkidFdVm3rxAZ4ye7SlRX28zZkovvV+zFY7/XbpwmD32eeQXmjsM1V6WisUDnEasxFa3hQ8Q1Hy3FNVHsIRoiUohNEC58e6HQwuKWykAIGeMn255jt7iyWJV9OFAY0RryeyrRQPRYDGK7/SKrEXQjdFvdM9aaUVNxRNXBLpbtD60E0vRNRquJ0doWNh2z25CKBNxgSMFL08wlG2KxErv5DN20NVYh1inO1IlkrTwHPz73FZTrGW8BZ+uulStSVJZYU2xlWDseOVbXicHofTKMET1Bjvq6JvbsZf6g4TvDFgI+K1DS+F1AFUzfzczCoh15+HWNuBxa5FzzD+D7l51reGE40XMHxINFWUdw+xcrDGuLHXZPrZXl23iOtSU2xChUgi7u/bCnZ6qfYx4ePuO2oijYlmPvBnywqAJFFiXT/MGQwX3Urv31iQWahWrOVutM/XVFRMCp23bQ+YPNhyCCKtY3HigSvr8w64jr3BiNhYhiSPx+TcXMNjakENtAcKOdtatJyG6wrdL/JzGWGj5GSzQHUuHxQ25ys4rvAoybYzeLvBUhw8at5jfT0X6Drcbb4mLs/fALtPi8Fxs7OYq+b8dhs4WckNg29m4yeVIhlu2Op5dU4JnJmyw+0fBx82j6gyEUlFXpsZ38vY62nu/gJ6cbXtP+jkbZwws/kSYlzoJMBY6QYRyo/5tjYqMbwfll5nhJQBUYj3lsGh7+db3hmAirbwyEFJNCigq8e/PLcTzTf4FQGIqi4JhHp+KLxdkAjO7kmw8WGxUL3ANnJ+DyVAZCwnjsROeGT5dh+qYcbHcQ9CiiTNsUkdDf60GjdwU7T/PXoFmKAXdJuUTn8oqLL5fsxrjX5tkqyUY9NxunvCyOKbz2w6W65U0BUNlA4u1qWjYIhMK4/L1FMXl6RRLL1e18Sb1UnOZ+qlCfvjFH+P61Hy0V5sawYtRzs/CyQIFek0Qzx788batjhn7n79OwssSieoqMun52EgUpxDYQ3DzPIsGHwg5YK4utnTAoSjhB58XfHKwJLOwmoTr1CdlNYG0aYp2yiVJiceNj781OLXECexn+muzkGI1CgP0NbjdaroRYmqGTuWZWYRgfzt/lum01iaIouPTdRZi+8ZDpvZLKAC56e6Gja3y0uHk0b/18BQY/NUPvFzoujpT6kTF+simmxklpw3cpvS67kUl20Mzzjy/dDFVnXf1z3QGDRbm60DbpbsWhsJ5gh49XmrrxkOtNQebWXAx5agbmbzdbeKii8NtlkXq51pp4cT9VBcO6UoB2CT31z3UHDUqLYEiBPxhGWVUIj/62EQBQydTxPueN+YbxzH/j4KdmiBsn4IKJCzDoiYgArSgK3pi5Hf/+dnVM5WhqipW78w0CHd0sunHfVc9XEXWbKN6Vn1vZe8ErjsuZhGrRWMGNyt3INSsDIT2B3hXvL8acLeZM/hT2ufEHQ3o7VzBeAIqCBpehOJ467HA4ktcgp7gSy7ML8H8/rI2+TfR6dSyH6DlOHO6RVzshXp4bB4sqMXFOFp77a7NwvXUDVeA5EcuaNHFOVrU9p5xiYqvrwt8YvGjcIIXYBoKbzG12llgWqw0J62bEDzyRJo+3drghZNA4i9vhZuJi9xqJWFsvmnmrKhjGe3N3CDMGshtUs3Us8vqit811Ca0EW4MigekDRVGQMX4yXpqmlt5hs3OWVAYdvQHoJvL6T5ZhWowLlxtECZTcUFwZxMrdBbjrm9Wm9+ZtO4I1ewvjoj021lJ1fjZp0i3aL3RcUBfCSaucs0hTNh0w14KmzWFdJVOT7JcGfvzT8Sa662574q5vVmPyuoMuz3aGKuPofXtp2lb8pD2zIndiq1hunhXZ6qZ/9Z5CwXca56yXpm3BO5lZ2ivOumpxiwOhsGVdUOpSTqkKhU2JvFhrH8BayYGlu/INdXOtOO2VTNOxbTlGBc60jTl4beY2/LH2gCkTeV1y6buLDUpZes+cEp5RoomJFcGOI14RKyr35Ab2e9nr93tkKn5YERn/b87ejuf+2ow7vl5pe72+D0/F+W+ak/coiuL6PlFK/UFdOZRI0Hk2ltXfHwxhyvqDhrm6qDyAng9OwacLswFE9jyxKKTp2K/rGGS6B3Byk6f5Epx+a7Su6O/P3Ynbv7R+VjfsL8JeQe3lcFhB74f+MmT2TjToGmPpiVNNl/Lq5jNoKJZcKcTWAh8v2IWM8ZPrXMNpZdlcnp3v6jzWQstPeqJ4Oivh0W5RYQemVTvcbCSMlljnZWxFdr7QslJT2P0G3u3l66W78fxfW4R1C9l5iJ8sY1kgg6GwYVKl8XUHCiv0v9+eswMA8L8fIxroaz9aihOemSm85qXvLsLo52cbnn83NWhjpceEKUJB1I5VewoMViaWudsO6xbCeGw62HEUzQYrIsSq/9OM002Sfa4+X1EVwrlvzjcdp61hYyl5BVRJZcAgLPMLaFCPiXXvnmrFPJfCpFtoW1mhM6Ilj7SXtZIVllchY/zkqBQEgHnOenvOjqjrY/uDYVNJFQJgd14ZSiuNiqxpGw+ZLIysJRYwblaKKgI449W5jm3Y6SKxC006BdROyEasUCH26T/duTvq7sQ22YntYC2l/PPACojRZIaevD6i3LFTRhOogsGU9Ydw7w9rbDeqWwXu1QrcW6wpt3y2HOe8MT8q9+jaJJZH89Xp23DH16v0uFoAyNee9881t336c2OxiHmqKcDECyp0HiqutM2UrLfXocFu5pZoOP+tBTjpRbOBhpYWo31RU0Sr0GFxElL1JbYOLLFLd+ahx4QphlwM9RUpxNYCH2rCR0G5OI7KCUVRhPGLbigsr9IteKKELoqi4PL3jL7/VoukYXHmzuE3vW/PyYppgLCXtUpA4yZBFTvZuhFiL3tvMa77eJlzAy2IdqF0MwHRuY32X6GoPqhNDLGplqeLyfLl6cbsxYFQGMFQGCc+Pxt3fm3t6mlXF27l7gLsL6wwFBuv6cWb3fS5YbmN69CbTFki2uyCsir4g7EtcKy1Lprnhm6I6bigZa146xx/yWAojFHPzcK7ukXQCH0u2DFdWB7A98sjmb9v+GQZ7mXc5vhniU1eVOoP4pFfN8QcP3n9J7GPQxF0rLH3WiR0seNld56q/adWFxHsFXYcLsXjv2+Mqn6f1RwQCIX1ca03kxCc8lImXptpHJ8vTduqJ3mj8K/5eaA8BmUqmxTpw3k7cevnKwzzagLmztOhrvE7j5S5ErRslawuPs+uT/w6ySryorGksAoYN8mlAGDSqv1R15MMhxWh8jiv1I+8UrGnzVJt7nRTs9iOiqoQ/lznPvTICb3Gcgy2WFq+r4BxwU7R5lm6HlMBMJbcHdHGxE5edxDr98Xf24G2fcKk9Rj53CzT+0UVARwp9evj2+n5z84zW01jwR8MYXee9Z4iUurRGaqMikWZUVIZe71cipXi28nd2IlYc8bsL6zAlVoZzqW7Ei9zd7RIIbYWiGbwiBbZjxfswumvzDVkJWRdzuw4/skZOEVzNRYtTu/O3WE6tje/HBnjJ2MKJwjYCY9e7keKst66IRxWkFuiagWthGk3i2XIIMSKz/lp5T5sOWR0g6puZsaC8oArhUMsyreQKB6L6ZN3MrPw25r9zPm8oBH9d248UIxpWjKHWTbxVvp3uPySRIvnsNtQssIq3XQMfmoG/vVVbPGb7DiMZoNFN6RUCKaW2CSH0jhlVSEcLKrEm7MthFimXWk+4B+n9AQAPPBzJDnRKs51lu8++hyGFQUzN+XgyyW78ZbF99U2tG0ioYvt9uoY2W/8dBk+W5StC7/q9XglEtcuizGw60iZnkmWtcRawVsL+NfRDjXRxvrWz5frfz8zZTNmbs4xNKquM1HbwSp57Ma5oiiGNZY/deamHBx0UdfTrTtxrJZLu/hjXjkTbaxyMKwI192hT8/E0KfFnjb6Z10K11aMn7QOd32z2rQmxwptTSzCCxEImfQvqtDRwxVi+N30E249e+78ZhX+Vo3arQAwY1MOJkwyVnNw6rNRz83CsKdn6q7TsQpOs7eYv9uO+35ch1NeyjQdzylWx191nzVFUVyFQBRXxp7Izqo6ByUSFx3bb8ktjsxF0cwlvzM5alJ99b9ShBRia4FontFAOIwvFmcb4h+pu+9+xi2t90N/4abPlps+Tzn3jfl67NOR0ios25WPdQJNnigGbZVmQWVjHoH4CR7sosJvmEKKguHPzMLI52ZZuzW70C4b3IktpNj/+3Etzn7d6F65N0rXP54Zm3Jw+ivOLjWizVQ4rGBh1hFdc8hvQEQTN/ucfLowG3d/t0Z//SpXE1aUlMSJGz5ZFlWyHbdx1/EUYuduO6zXRo01zoNdBHg3QkNGUSUiJMzekouHf10fdQIyQ79abLBEixL9Xvp5aol1Ko/gqJjRvqoqGIaHy05d5g/i0ncXmT7y6+r9hk2A/jwrQKumyfbfx5BbUmlp4YmVksqAwSWZbhLYuH2Rd4ZbV2iRm2leqeplw46xGz+1np8B6zFwx9erdIWRm0RxrGBUVB4wlWCJh5vnkp1mTwX2FtV1bJ8dBiHW5l58tXQPLpi4EHO3qS6k7JnhsIJbv1jh6vvenpOFJVptUt4SaoiJjVHhR8e/m7kuEHLOD8AqwYJhxdX6Kv6u6imA1+4tBBDlfikUtryPEUusGlsZzdpA78iirDzM3qIqcek4op4OeuK4KMfXn+sOYOqGg9o1o/qoaw6X+PHe3B36b96WU4LbvliBb5ftMZznZBCgXhu85fjX1fvxQhQhQTd/Zv5uOzK3ihXmI56dhakbDrreZxworBDmAPh8UTbOf2sBFmUdQcb4ybjls+VYv68I+wpUJSSd/6tjiaXLjcj4U1IZwCva/izWqfOMV+fpf0fjccGut6kNoNyhFGITjIVZR/DobxvxxB8b9WN6QWpus0oTkYg2KZsOFuPKDyJuwle8v9hQU5VORqLaedRtNS3Z+IDbbYbZify5KfaxR1Rrf6TUj2e4tOzsb3ETm8tDE1OI3IkrggrOem2eZa0zQJ1cagPRpu+rpbtx7UdL8edadYHj3QJFi+VDNrWFeVfIDfvjl3zDSvBwG0MSqxC7YX8Rth4yxnLd8MkyfLlkd7Wua7cmsuVUFEXBEea3f7Vkj2qVigJ2AbYssyLYXFSYhFj1tcmdmLuok/s9fdcfDMFLjONu8Y48YVjAO5k7cP5bEcsAve8KohOahj8zy9HCEy3jJ603uCTTceMxCLHq/+w4FG0m1ttsftn7TPuCjVnlE0XxiqtokgTZCYnsmFu6Kw/PTjFuLt0ImD0nTNbnC7cC6X0/rYu0U3teZ2/JQcb4yThS6net3CkqD2Dxjppza2MzbVv9tsMlfl0RFhESI+/zccZ2TN14CFdp7np2MbFu3Yl55SN9nkWPDz+fiIQ89nn+aP5Og/U2FA6b1hm31ii3deitoIog9p4t2ZlnW4Kt90N/4cZPxeEHVAE0d9thnP/WAj1j+K2fr8Ashzmb3pLvV+zFzZ+pygv+2RGV8HLDXd+s1tviZqzFkiPg7u9W4/m/tmDzQXWtfOy3jcLz+Lnaaq6j7aS/9Z7v1+DdTLMXH897c3dgjaaccPoOwzk2763eW+haIX/i87MNHkWUlZpnEQ1xmrUlF3+buABjXlC9FptpeSaKq1FSjD5DIuNDDmtFjYP+j51XJs7ejozxky3PZfczKb76LwLW/19Qj3AzYdEHfndeOQ4UVkBRFH1xECVPAqytX3vzra2KdGETaZpoKv4mnBAbsBltu/PK9JiN9wUJiEQ89ttGfLRgl+EYu4BaaXbtNL7vzd2Jfo9MNcSP0tu2rSCErTkltq7O1V2IragMhAwxpaKNPs3Ct1+3oBsFRdHvPuDCvY0isqjFipXg4VYjGM3CHwyF8eas7SipDOD8txbgrNfnWZ7rVkPrtj3bc0qQx0z6YUX1bODZeqhEj31fuTsfGeMnW8YJs/fIyuInWvgi7sTqe1SodRIanSwkdFMRVlSFD3sPy6rcaaJ1IVZRYnI5+2V1dAmU7OCzWVI3fHb6XLOvCJ8u3GWYkw2WWEYcmMbVRrR7dEVKQQrfp66EWO0cq3MHdW1h2MCI5i83Y429fCjs7KLOUxVUL0AF4cd/34g+D/+lz2V23PXtKlz94RJHBWJuSSU+mLcjam8L1gIfCivYdKBYt5RSrvt4qf63wSdDUVBUEXDlRiyCnw/ZeGS3yp7sI8bnmVpKRRt5fj6pCpqFUrZNT0/ebBAagyGzOzHrtmhHdS2xJVzujv2FFbjqgyWOJdho9nYe+pjs1uaDzQeLEQormLk5B7d8bm9V55/+01/JNK079Peyc1+0eRLcPMpucgRc9/FSPP57RFDN49YoQ61sQ21o4y+1jtO3n4eseP6vLabKCKJL8IppOymWgCCgzTexJpQr1eaaZinipIjNUjUh1qUCZ9WeApNin97y/DK/qa64oZZ0HGqrs0o2Pq8JoIbOvT1HDe/JZ3Lz+KKc5xMRKcTWIm6UR9Q1cMXuApz4/Gy8MWu77h5mVZA6lo07HUQiTRPVTvFZT+0ssR/O34W/TVzgboOhu1mYr8cOditN/g3cpK4oCgrLq/D72gOYOFtNwlNsEGLVL0zRBmy533qhmbRqH76IIeOd089emHXEkGxINJF7uZobP63cB38wpE/UiRZHKoIv72EFW2/Pjs0HizFv+2G8OmMbHvtdrE1moYtbtFhtKPlEFWFFMS1WHgLc+8MaPDNlM/bkleP75aqWnd8oU1ihwyqWUCTEsp8rqQzoSWL4bKL8bY1mfvAQo7s+655uB302w4o4dtuJ/36/1vkkB2jty6ameUttGxu3P2/bYTzxxybDnGw1vA4WuQ8xsBNiTeEBUYxnq2zBPq8Hv66OxDiJBJtouyMUDju6qPPQ76Vz1Z9amIpdxlMK/W2scqiiKoQn/thoCJf4z7er8eyULdjCb3ht+HJxNtYzbu/hMHDum/Nx1QdL8K+vVuou8ew16fOvKMAH83Zi0BPTXYWIiODXMFZp7NY9+fy3jCEvMzbnwB8MYf42sfBm+P5Q2DT+7eboqRsPoZJL/FXlck79fFG25ZwXDXSeG/38bP1YLC7x9BM+phSOW0GbF452HC6z9Iyic9/E2Vno+/DUqLy5wooSl6oV87cfwWeLsgGobtk0ieiWQ8V44Kd1hpqnrJcPv6W0UnjxAnt1EF2DKgh+W7Mfq/cU2Bp8PCT2JGIrd6tVKOg83dRCiKXHiysi47WoIoBfuZrslEveWYRLOCMBvZefL96NIVo9bkVREAyFDet7PCIx+GcTMI6Z//txrW68YffY9WFP6YS72gySuCCaIDK35mLt3sgiSydw+nC9PjOSGZUKsfzmP9qYPECdlFKTvMKNFK33SSeSksoAjnt8Oi4f2tXxum6SGlUFw8jcmivUArGbQL/FgrOTs3Dtza8w1cll7wl1I6SG5bKqoKUA9fVSNW7j+lEZ9j+Cg+/bjPGT8Z/Te6Nd8xQ88usGXD28u/F8wX0XWT/YjV2sSRXsaNUkCU1TfFGXAbHCrSY6pCiOE2jm1lzc+OlyXKY9d07ZGc9+fR5O6t3WXUM5rO4tr6k9VFQp0OITdEhPxcYDxVi6K09fUNIs4k1YYdQq6di0jYdw/8/r8NC5/fVjrLB65ftLMKhbC+16xnGyPbcUy7PzcUJGawDOFhJ2zHlJbBYVQx1LF8/plPUHLbXgsdL34akY2LUF2jdPNRzXy9UIbjY7bq3mhOembMG6fUV47crjHdsgquVM4e9LNBsI6i5vumYojN/XRoTY2Vty0bZZMjdvRNefIk2+E4FQGAVlVdiRa5z/rcYAS3PN6nGk1I8ebZsCAL5ashufLsxGsxQf/jeuL4CIABjNfXuEc6Nk+/uvDYew+WAxMu871fRbAHVz+cOKva6/SwQvQLIbyN0uM7ny1vV1+4pw0gtzDNnerT8bNinE7OboSav2Yw2XxM1qPli6Mw9dWqXpr9+ftxPvz9uJ7OfPc2yXCA8x5hwwtCEcRorH+CyxNa+FY1ehHmyqQiYcVkyW8SOlfngJMcXxu7FP8fflZ60c1+ESP5qnJrm4gmqs6P/oVADA+sfHuf6cFeGwggsZyyebUZ5SFQwjRUvowwvrVgIV/a1VwTB+WB77mFAUxVZApUpTu3nDQ0jElTusYO3eQgzq1tLxuwkhuPRdNcSuX8fm2jHxuboQyygk/vXVSizakYeHf92A3+8ajZ7tmum/CTCO5+LKgDCz/TOTN+OjBbsw4Zx++rF45CwQjZmQosAjeJILmYzblYEwvl22B5cN7Rq14jJRqJ+trgf8vL3KkNERMFoo8kr9OOPVubjx0+WGsgl2NdpErmW3fbHC5KrghmBIsfwc3YhR1yeqKf9xpbPL36Eid0lavl22x2R55Mlx6cK1bn+h6dgMJuaFz0Ra5g/GXQMlutybs7brcVZ8UgPRRO4T3I8jJX78qG2kaqIOX7fWTapVC42Hdx+82SL5WCjs7Ha6UdukbNPqGTq59G05VOLoesbiD4Z0pYvVwspvjrbnmpU0hACtmqiboOLKoD6GU5Mi/clep6KKcd+zuAdvah4FzzDx5aywuulgsR5XJZoz2LJATtZpVuDxkNhc6iMxsYpp08zfWn8whDu+XhX3UjqAusFvlsLF8tOYWMGGhZ0H2HaWM27UVaEwfmE08PQ0kSvbUptSTbwnS3XdL9VrGG/ub2sOmNzda6M+eSCk4Jw35pvGv5t5tkWaunE/zAhl1MVONDdVx3IRCivGBF+Ch0IXYmEWeqJhztZck9dQLGu1CCsBlvfsmLrhkOk5E1ltWHglsdVzeuUHS3BajBZqETTnR6Xgnq/aXYjDJX5UBkLYm1+OYChsqHkdVID52w/rayUQGae0v0Nc+aDdeWUY9vRMDNasZCxu3FT5eY4Kht8t34uM8ZNNCq1xr83F1VqstAg3OSsqAyHstDEUuLFQsnOGyRJrMV6pMian2I/7f14nPIdHtKaGws7Ka8DexXbinCy8Py8Sj/tdDEI1Vdxarfs0VpT16Fukxe2X+oN4Y9Z2fVyI5girkn1faMrI5/6K5C2wuh1F5QFc8d5iPdmUHUIh1tI1PNLeL5fsxoRJ6/G5ZsWvj0ghtob4Y0cAMzcbM6yxa8GU9QeRJdgQ2wmxVAhmJ6EZm3JcZX1rysW3vjZzm+7iYNUGupGzcmMW4VbrXxEIY0W29YYPUBO0AMbEHMJrCTZpk1ZFNp18YfGyqlDcrZrRxmkJhVjGEksn0cU783SX1nhseinU6tutVRMcrWkU4wGfkXW2RVkef9A6qySFz75bneiN3OJKU925h37ZgNNfmYvC8irHxdsODyF6cqVyf1BfUGjmvwOFFYa4IFZAsnoORZZxv8XcwLv/AUBucWSTu+lgxII9896TLX8HoFpio3E/3nG4FHmlfv13VAbCmLrhkO1n3JQ2AFRt9qAnpmPRDme3SXb88QnpQroQa36C2HtKx+TkdQf1OnrRYhWfB5gFTisBqUfbpujWOk34Hs+mg242vu5ioqtDIBTGIUHspJtNNbU+sUIsVXCy98xOrtieU4JfV+83/BZRcpOwohhyS+w8XIbn/zImwvIz7sSxCrGEADcJslO7rZ383CXH4YSMVjF9N8vrM7ebXCCjSVIFiOcDvbZ0NYR8+nmqnKXr/H++XW067+oPl+Bvby3AP79aiZNenGNIKgaoa/t1Hy8zHKePAl3rQmGjOzFbwoVPwuYm1JLf66RoSssPtNwIvEJnW04pFtu4W6ckOW/H/+/HtTjtlbmGNYTFjYBYEQjh6T83Ibek0qT0sHQn1hShe10IVBRRU0KK4ipG30mRyu7v2PFcVBHAvoJyx70S9eqwmp7o800tsfz1fltzAPdrzxrrnk/39KKwEisjxF8bDuJ9QanLP9YdwLLsfLw9R32vMhAyJGdlEboT27iGn31MRwBquBZQvQRWdY0UYmsYdlE1aP0tzrfTmgdCCp7+cxN+XGnUPLlZSHg3lS8Wi93TWMqrQjhc4sftDrE77ITvVFaCsjDriOtkGVWhMHYeLsV3y/aYyv4AzhuDg0WVyBg/GZvyNOHchSWWX/BEnPXaPNyllZ+J1rIrOp2djDPaqG51fzFxtOVxtKhQxUSLJkl4/7qhcbuuW/iEI+z9Kyirwp68clMd1BhzOAAAhj87y1R3jsZvlVQGLS1ybsYWYdpWVhXShVi6KXs3cwfWMq7QbFycVbI2EVYWc9GmdGtOCe75Tt0M0uyM39w2Ar3aN0fm/421/A5/KGIZc8Ppr8zFKS9lGhbMqRvthVir+E6eDfuKUFQRMFiVrWCVf/w4maa1R2R1Y0tqzdysZtb9ZKF7az4AZOW6i9Hk5xMrAenxC47BzHtPiaoNl9mEejgpJWhGTh63gjRgXbdRNC9OWX9Q3zwBkfHN9hs9JlKK7s4vMwneZ742D/d8v8Zx8xsKKya3ufe4DSQdZwqsFUdOVLf+4nkDO6Fts5ToP0jMSufneCHdZd4CijHxk7X1ifKZi/GTV+rHhRMXoM/Df+GJPzYiY/xkw8ZftPYeKq5E5lZV2PyFE8yNickUvDJ9q75P8jIxsW7zbLhzJzY+a7yy/Y+1B5AxfrJrxcUl76gxlav2FFjuPaiwbWW1/b8fnXMLzN6Si48W7MJDv2wwramKRbfS9ojK1Vgh2uOEw+48yqLZT3k9RL/Xg56YjjEvzHGs4U77RCTofbN0j952GhO7WaAs/G2N+gyy6+8Zr6qeCcWChKklFqEmB4sqTWMUiFQdoM/slkMl+Gap2GAlChEQ3cOA5o3QhPNW4iuf1Cfqb8vrCezEbLVRZrETYkNhBR8t2IVHuTgfNxa6aNPAA+qmYkV2vmMG3Gg24np7ohT6TntlLsZPWq9nWGOhSQysNnI0Rf38/WpfuLHETl5/EL0f+stUc5Fla06JnsAkWsOu6PezE0m31k0AGBML2Vnpo4W6Lid7PWjZxH1dT5Y3rjoe2c+fhy9vGR7T5wuZLHl0UfnfD2sx+KkZOPmlObo7Fm0rL4QEQ2HbGMTC8ipkjJ9scDFjYQu4G0qtMOe4sUoqiBS8L68K6lpR2sW8CyGb+KO1oKYqjQvksbKoWW3cf11zQF9ogcgmK6NtUwzX4mV58ioVPPa3AXjywmNw/sBOwnN4Sv3BqIrPZ+e5E2LpvXcTq8NuFPms3lPWq0KsV6AF+ZjJjk49Z/iSEDzsVFpRFTLU67ODVzbst4hDP6VPO6T4vFEpbdKrEUtnlUH48qHdXF/DapyI1qY7vl6Fc96IuILS+1lRxSp31D5nnytqNbrrm9V4evJmZIyfjOmcwsRpvIbCimNGTjrOorXEnnNsR/3v6s7VaUnemGrvEtivx1m5pVFZYgvLqwzzS6+H/sKK7HzbBGZW8dujn5+NW7V8Ar+vPaAr9kTnR1ufc2VO5PwjpX68NTsLOZo3CutO7D6xk/M5JndizpJKLbJuPU8AtX8ueWcRbvhkGYrKBcKv9pVXvL9Y6PFC5zo7qOfOjE05piRp7D6RXbfofYtmn2NpiY2zF5zXQ/AlZ5QRlb0TdaloX/zgL+v1NlIBUqT8oHG7IqWQKLlXcUXAVjnCK6mpNx4VUO08ZsSJncznPb2kEsGwYqo8Up+zFEshtobJL6vS/fsNac4tHki7xc9qArbSLrKLWSzxlP5AyNUiLorlZMlo0yTq77aiT4fmpmPU3aJDulhzTTdprPLJKc7gd23zvyK7wFW7or2//IT0+aJsPPVnpB4e/S3s5jzWMg8i6MLutpQGTYTAQoWiXu1jc0few5RCoa7tNDkGECnvsiBLddHk3UH/9fUqHPPYNOG1CYlc/3Mu2/SXS3Zj3rbDzOZG7NqcV+p3dMWkn6duk2X+kD6G6XjPKzMKVVRLm5bkFY7p4y2SVETrBggYswuzwqDdkG2emoTrR2WYhEe7REx2SjI+vokv/yBi+sZD+ibRKZwAMCarsLq+W12b0yaLjl1ak9otbBuvHt7NJGzzJDnMqyzpadElyXKTVMvrIejTwd3YtlJiXPPhUpz+SqbtZ6ngya59dFNlJZRS5cOzUzYbNtsfO8TEh8KK43pVoVtio4uJbdkkGX/+e4zr8+1I8nosBQYnpbHd+zd/tjwqS+zxT87A3d8Z3Xt3HimzVR7uOFwmrGSwv7ACM7XMyuwYE/WHVUZwq9/20frIM8BbC/XETop1f/JzjFXWeIqa08F4Lf4aNE+CmwzdFOquu2hHHs6fON/23C2HVOtgtOEAdom92H5hw82sxqFd5nahEBt2504cDV4PsV3P7LCat+g9pX0sWhNo2IpoXd6Ra1bULsw6Yjuf8M8JfZ7+XHcQRRUBW8OL0BIruM+7i8MIhMKmxFnRrDWJRv1teT2B3ahc/cES3R3E0hJrK8RGF7dnqI8Xw8Sxdl8RljvErQL2i2aKz4Mf/3li1N9tR8f0VAw9yhwvlOLgwpXCCGzsxke0CFDhkZCIC9WevHK8PSdLeH60WnN+UvyMC6xPT0sybTTjqcGkfZbssti1yLWNap6d7rsVTklOeOUM/5jN2GRdsJ61urF7jazcEjzy6wZc/8ky/R4EBckm9uaXY+jTM125ZwVCkc+rllitfqv2TLDxqYBaOglQs7KyY/qZi4/FUxceg56WltjqWXcMQqwLUwM/ru3cjKN5Nt24aN/+5UpdwLezxNJkLazlJs/iuRK5E0dLmT+o18GevP4QXp/pPpMvbeNTFx2L0/t1cDw/Gu04X1bIiScuOMbxHK+HuE6iZJcLYQfjPs72PbU00Q0Ym91Tdyd2iInNzivXQzoAGJIkilDXQfsfpY+zKKdbRVFwbJcWGNMrtgzpouuJSLGZswmxdw0sqQxEPY/w7vnBkKK7vlrxwwrrJJB9H55q2JCL+pWvzUxxM4b55Hs+5lmy2is1STEqFJ2mR38wZHiW7/h6JTYfNFo1adbtQ8WV+Hqpc/gWYPTO2JtvFhDZJ4I+HtEm4rObf60MJVbfMeq52ZbXErsTK45xqNHi9ZCo8rawWP1eug+3q9OdamOJFeVx4Pd4PHyyNnZvlltcaetFsOuIOcTCruYvL8TGo1ZtXRGzEEsI6UYImUMI2UQI2UgIuVs73poQMoMQsl37v5V2nBBC3iSEZBFC1hFChjDXukE7fzsh5Ibq/6zEgXXXqAiEcMMny3DCMzMtXersFhirYH6rOm7sJjRWAehrCx98w/fYbLZaNklyZUlxS0F5FdLTfMLf4ySQpTL7vDJD/I35WnQxWbWnEL0e+gsrd+fjls+X46VpW3U3JZZolQR883lLZ7MUn0GIvfD4zlFd3wmPbolV7xmf+IuHL0EAAMle9TPsfY/GtdxU4JyjiusXVvD6hHEDFcFuwFlrNuv6SZPHiDIlH3awkrGEwpGMvGxMrLpgK6Zsn9RC3CzVZ1iYRvVsg+tGZSDJ4jl2sgo3d7CuJfsI87fxO166bKDpfH5cp8coxIbCRoul28RRVMNtdT8A1a2uz8N/GSw/VsoRkTtxtLDX3nywGJ+7yC3AM6R7S0NMklUCn2hcUlMdxi/Li5cOREZbZ+8YLyGutzZuFBO5JZUGr4SNWsIxugmcvikHi7UMoOzYdCJHkFDKClGZFR49sZPrq6rQ+capTqhb7xern57qULbI7jEvKA84bqadCITClooiSqnf/h4UMJ8XCSCHLbIvu1lf2NI7QCTTcFhRDDWwKT3bNUVheQBztx42fcaKyoAxp8OU9YdMic3o78ovq8JDv2xwbDfgnDiJHWdUaIk24SO/rrJYjQ2RZd0JoRBrk9gp1iRqOw+XulLKirCat+g8T+cfUZvTkrw4VFSpe4qxiNzhnZRHbD+qpYgi7yX7PLbKitdnbteVqxQ7wwqvGHbjcZaoVEe6CAL4n6IoAwCMBHAnIWQAgPEAZimK0hvALO01AJwDoLf273YA7wKq0AvgMQAjAAwH8BgVfOsz1LtLFIB/uMSvx1LyiJL3DOiUDsA6ToQ+/D/9cxTeuOp4/bi3mu7EbnEqlVMdf3s2zghQBZJmKT6T1umm0RlRuVnRpEGAeBGgccArNUv0M5MjbmvxKPtwy+fLsXpPxFW5eapRAGnTNBlNtY1ux/RUvHL5oOi+wIFI5ka17xZNON32fJF1kFpiWSVFNFmf38k0JlThswfP4zJGsjzJuF6L8HkiG3CryZw2OxgyJ/wQbXas2Hm4FJO1BFxqduJI/FChRVIPQlTrGfvspWibUyulz84j9jWYvQ7jjF24WE1sss+Dy4c5xz+2sHFZ3XXEOs71i8W70e8RtRbibV+ssJz7eGhSDX7Tz5aZWLlbHUPsJkMk+ITDSswbHcp1Hy/VXdyrQ5umKQYFlZX7czRzSiiKTabHQ1zdC4+HuLaO8C77PKGwguHPzMJlWp1GIJLgi9280iRZ9Hsnrz+IC99eiFenb8U6izrRNH+AG0I2LqU8Vr99eA9xPDl9Bp0S8DV1UDZddYI6Fp3Kf4ggII6Cv2jTHQ3xyJK/Yndk7RM9i1YbfjeKKDZMBYjsfWZuzsUf6w6Yzj/hKLU/SxjB240l1kmwo/s1fl2zg89K//jvxvwnrMeDAtWl+AGXJW8odgonq/diMYIIS+woiuVelK4R0TJtY45lXL8TVgpVqqShz7poX5Oa5MUFExfghanmpEwiz5Rsh7rQwbCCN2Zuxx9rD+DduTtwG5NQVVWU2z9v87cfxoeMIGvXZ7xiOJ5lFmubmIVYRVEOKoqySvu7BMBmAF0AXAjgc+20zwFcpP19IYAvFJUlAFoSQjoBOAvADEVR8hVFKQAwA8DZsbYrUaDrWG5xpdBy17llqvBzosROVJjhNYz6d2kTT9MUn8FawroVxTsOgcVJsxyLEHvucarw2qaZ0QJYWB5As9Qkk5avZ7tmjtpTdlCzVm27RZkKs6v2FOoTW0ll0LXrhhXlVSFcrLlkLd2ZZ0rxP7Zvez2WhwgyTlYX2n49S7GNla1Ph2a489ReJiUBFYrcWhac4LMH80SbsVDXolp8jipfvl22B7+vNW5uonHRenN2JNnY4VK/nvTkti9W4BauVjQlLckLr4cYvidVW1isLI8i9zLKfWf1dWynlRCbZPFs8etwG5tsqR87WMYB9ZmjLuDtmjtnXqUxpLxQP/7ndTjtlbkGbwonweFQcSW+t0jw5Zb5248I5/Joad00GU0Y999orP5WWClLRHg97uYTL3FvjbR7NgHVCgsYk0jRjRMbz9VMU+axG+C1ewsNY4wnmnmBKqyuH3UUNj15lq1yUHTVCwZ1xtvXDMHozmZBNOzSMubk+n35sK7a9cTv21liCYlv2ImIYFhBx3Tx/sUtKxkhVrRsi/ZBhDgr6gBzbCHbH18tMXuW0XhyfyCMN2ZuR0FZlWN24m+W7nFcI6gHEF9q0Q5eiOWt5mzXvjU7C7d/sfL/2Tvr8DaO9I9/R5IlmZkSO7HjOMxxmBymQsoptylema6/tL0y5XrlXhmuzJRCGo4DbaBh5jjMaAZpf3/szmoWtbJlW3bm8zx5Yq+l1WpnZ+bl17JRkGKWE2v0N68gGObRGxl79G6P11s3zyc1eJqh95wZKe30K9Fr1VO8E6Ochv2aAyl0SNl+pBivzN6Ku75ehf+q1rtqr+D3eTtVWqXoK889sQFACMkC0B3AUgCpgiDQWXUIAE3+aQ6AlSL2SceMjjdaqjxeeQLPMeiTabTP6YWQUcvt7+v0Fyu6SDsdNlngsxGgmPHcWmzfasqzF3RC9xZxmuP+BKKaJI3Tqq3q2P1TZZWIdmnDia1YaNl5WlIZeHgj5Ux5lcaaX5NKkgDwd+EJXPbeEoVw/PPtA5AW68aWw6JX4uDpckvN1wOBGjXYs35zc1/d117XPxtOh01jMae/BfvajAjEEONmiiYZ7ZlUHlI3SxcE61Us1exWWVtX7Tml+zoCbY6vzxMb+P08v1szv9EWrDGJDT+l8/edq3ri3p4+5VL9TNe2QBuraLZMiMCkAdmmr1+4TTTslFV5sGK3Lzd/mdRInr3X/kJK/fWutQpbUbsmRLsdcDpsCoHwxoGt5J/ZwkDq6Ifr+mcZnjfOT1uk/jmJyEkWz2e32Sx5ee12m18tNsZtLRd362FtFAFdQ9m1lLamCWT6mfXmVfPIz2JYZ1qsGxFOhyYChmWdjuf3xUu6Ijnapbvem+Uofnx9L7mugLoyqBq6zhopB2ZpMwdOlQW1FZseVdVexEXUvBq2Gj1PrF6brqQol6VoK3VYr7+1nLYfnLflCF6ZvRWP/bLBryf2jbnbDeUxilkFZyOOGShFRqi9zlYw64BhGE7sFQwN3UbKVW36xAaKXnSCev6c1Kn27O/ZqPII+ObvPbr1N4yiWR6buj6giDQKLTYa4w7TzOFRryzArZ+vMH2/ulAgNRjM26LVQTTRTTUoGhkqBFYNQgdCSBSAHwDcIwjCGVagFQRBIIQE7YklhNwMMRQZqampKCgoCNapg0pJlfFXfmlIOO6fX4YTp/XzAQ8f0xZSKjltXlzp+Elxs1359zKcrPApJ5e0ceCLTZWIcxGcqay9FptashN3dyC4TmXMdHqNF96KikosWDAfI1s60DPVgSnLLPaGPSFuEFt2KRWM8iovTp84iqJi5ffZvm0L/BnjxJ5/4vO5YasvlHXhIvMiFWr+Wr4ap3f5BJF58+Zh566aNYu+5J3FmmOndqyGKtI2KM96ZrQNqREEyw97UFkpXu/OnTtRIPju8dBMB+btVd7IXdu3oKBsJwRVE7kVK1bg5A7xPjwzIBwL91dhRqH4XqddjEa4u4cLr62svacJAEr95FmxCNWVWL5yNQCgolL/84uL9CMbBAFYuSawEK1AKa30aD5/6Z8LYbcR7DgQuPCzZvlSVFWbv+/PP/9CvFvc7I8f8t0TwVONgoICuAHkhJfLz9qBg8r7dmCv//x4M36f48tHLik6jUMHzMOjacjh1NUHMHX1AXwwKgIOG4FLEBXJ3+b7ejsuXWte0GfzVl+v2eRwgqNlNTQ6rTEOY7+uoxMfbzBXciNsHhQUFKCU2SOSy8X5NzrLgWPbVqFAutTH8gAgEtdNF8MRkyr1heYxWWFoUVko//6fweH4bmsllh3yCSaZjiKc9orPx+ZNG3HM7d9QsmPbVpTotflgeKCHA6+u9OBEufn9nLtktebY5u078eS+Xdh/0nfP1qzbgPDjW7BxX83WU3+skdon7S3chYKCfdhx3Fh4U+eyA8CfC+eDEIKKqmqom3YcPHQIBQUFKClT7nFxLgIc3IjqKinPrsJc8Vi9aiVO77TjuIF3u7LMODyVhiwOy3Rg0YFq1IU+u33nLpwuMl9rtm/fgRvWb0dOnB39dbzWCry+cxEY202qKyv9RgYkuIEj6pZmJeb3+/DeQgC+YlK/rjmAzkn+c8xZb3KwqGlYbCDsPmBs0Pt7xSrd40ePHQcxqL0yp2C+7vEjp0uhniN//bUYQRBFNVRWaOXKOfMKFL+v0WmdtonZF/Q4dfqM3GedpXWcDYeP6hvPPq1BnQQA2LFbLIbmra7Z2ldSptyv/1qyBKuOePDNFu2etHO78nvv3nsABQXHa/S5DU2tlFhCSBhEBfYLQRB+lA4fJoSkC4JwUAoXpmaA/QDYxKsM6dh+APmq4wV6nycIwnsA3gOAvLw8IT8/X+9lDc72I8XAHP2JPWzwQGD+LBCHC4B24jkjooCTSuE2q3k6/j5kXO0vLDwCOFOMwQP7i21Ylv4Ju92GZ68dCeGndZi54TC8Fb4HvFmsW9P79eq+LQ37u1FGDBsKALizcgveYMIdJg5og+emafMCAMDpdCI/Px90qKYs+930MyiD8zrh262r4IxOgO8REmmR0QxHC08CRT5DQMf27cWQus3GQqaX2AGIK2hyWgawQwyBvH9+YBvHm6sr8PcjI4A5swEA/QYOxorK7cAO45C3QKDP9UdphzHp4+W+Y9P17934Lun43UJIUVxMNFqmRmP54X2wOxxAdTVyW+cgf5DPE5Tc5jTmvb5I8b5unTshv0s6HHOmo8rrk4r69M5Dx2ax8u9FBTswo1B8Dl6+rDti3GEY3CYZJ13ra7ywswQikMXHRKJ9x3bA8uWwO8KASu3GkBgfD5zULtwCgJOuVAC1U9rMuHN4LpbuPA6c9Bmohkvzq3jtAWCtvjDBMv+f+XII9pjh+Zi8aCZgoMie0yUdE0Z3l73myyu2YMZu8Xl1uVzyM1dQUCD//MuR1cCB/bi4ZwbO69pM7Jm83VhZzG+bjCkXdkHf5+fo/j2nY3dggWgwSklKRHbzGGDXDt3X6tGuex9kxEfg3a1LsOvMcSS3yAEkpTI+NR3YZTxeGS2zga3itUdGhONoWeAeDABIaNYS2KQv+HRs3w7YYG78yEiOQ35+fzG/ac4fAIArzhmGLt1Po21atH4lZmne9+jWDVi+VPPnf4zvja6ZccAM8XWXjBuGBadXAYd8IfLt2rTGAe8R4PgxdOnUEakxbmCJufGufbu2mHdoB1BqfK/y8nqh87HNmnQINVGpmcBG5VhXhyfifyoPeas2bZGfl4mDy/YA67XCY7Do1L4N8vu0RNL+0/j334v8v0Fi6FBxjv531XQAygUpOSUV+fndQRbMBOBbb6Ii3MjPz0fE4jk4VVGO9OR47DxtLDD2ystDp+axeGfrYuC41oCdkhiHnTqG7UG5SbJXukVmBhZenYM+z4lz8cNr83DDJ8s176kJx0ksHK4SRFVXGXobT4clYM7Ww1h93IaHr8gXD6r2r/tHtsG7C3YiPsqJ05Ji7wqzGYc22h2ICLPjlI7CQmmWGIsjpacUxxxh+rIWpXvn9vhis7IK/fGqMKjHt6mw4rDx94pu3hr4W1uEKjImDo5qL/YVn9L8rXff/sDs2Zrj/1mjNZT16t1H9PotMm8fFChOlxsoU8pxAwYOBmaa59m2aJkNbPHtaWpZyh0RCZzROpySEuLgFQBy4kTA9VCMiE1MAfYdgNvtQlFV4IZ/Ub71yN+hLC4bruoSAFrZq1OH9sAG3zMfl5iM/Pwemtc1BmpTnZgA+BDAJkEQXmb+9AuAa6WfrwUwlTl+jVSluC+A01LY8QwAowgh8VJBp1HSsUbLESmcRS+HgOazGLnv9WL7W/oJ46OhB067L5yYhtfaCdEkmWfEK89XOGU8HhrXTnFMHSJcOGW8/PPw9r72EN/c3BfdMgOvw+Uvp6at1A82KzFSU7nXabdpQlKs5HhVGeTE1gQ2d6S00lMnITKDcpMtve6+kW0wuE0yLs3LQGZCuOHrbDaCIW3Fc7ZPi9F9Tcdmsdj8tDIl3R3mC1GnPD2hk1xwjMKG9LRLi8HgNsma41a5pl/LgN/DEma3+cKJDUJ7zHK19XKngknzOLfhM2vWUoaFLRBjt5lXkn30nA6KsO9wRUij/jvpI90/JxGD2yT7LeD25HkdkRZrPK9Pl/kswk6HzW+/TjWzNx5Gtcfra3/AhLEZjRctDMeGZ9Wm1c5Jk6qsVtpV0TQJdRuUTs1j/Y673UbQKllbYE3vOVIfCrPb5PG322yWcl1txFqLHSth5idKtEYkNh/tnC7pimPBzptT3w+6N8e4/YfFdm4eqzlmVHkV0ObD0T2ZztcIVU7szYNbKX6nYYpGtyDKpX/N7PNTVumRQ7MBcc+u7ZpKWbT9GPaeKEN8pO861C3YaOim2ZyIdDnQOztBMTfN2rWdLK2Sje8Z8eG4c1hrPH2+slWUXnh4lZ9nSS8k3krubV3xf2PaYVBucNo0AUDzOGOZQM2jP+tXUV626wRcButTIOlYHkHbzq6mZDPpFnqFlF6aucXvOdSVmtVpaUbXSuULs/XxruG5pvdeXSCuTJJJa1pFn4aC03n/5K8bDXO72fXwwu7Nca1JqkqoU5uc2AEArgYwjBCyWvo3DsAUACMJIdsAjJB+B4BpAHYC2A7gfQC3AYAgCCcAPA3gb+nfU9KxRgtN9tarmkgX9dIKfSX2pE7O1YU9Mkw/T1ZiHTa5jQYVbOw2oklebx6vnVhqgdJMMKGbcpvUKPRplYhumXEBL7rf3drP9O+5qdH46bb++OeYtvjtzoF4+VJfAQ6Xw6bJSbKixLK3oSb5KixsC4CHf1xX61w5PawqM+mxbnw6qTdeuLgr/nOxslDJsod9VYftRCxMsubxUejQTFRA9fJZ3WF2hdGCGl5Y4f/qvi0172UFlgSmJQ/d43J0BHA9OjWPQTsDJdsqXsG3QRltNMEulhUIbqmwkx5We/eqX2eWl63OJWOLwxjJFPR8Nln5Mb8ef88rW13d6bAFXBDsiV834oHv1sgGqCoLif5UYXhnvs8LWJsqxSdM5rmV+ZrEFKq7Z0Quvrypj+XPdtgJpt01CD/8Q7l26n0ft0oZcNptskBjt1mrfOywE7/9AyOcdjmn0Ax2fXQ5bEiLcSuUl/gI8b5U1JESq55rVHmNspDTe7WO8kdl30fP6YD/GyMagGkOnlqop+3JaE6hup1ZqsqgS6/VKCfWKA+ZneNlVR6Nkc7qfgL4jMxtUqMM16OECN+zrFYeKyRDk9lcC3fa4bTbFDmaRp9138g2it9dDhvuH9VWI2PpGSX8VXXVe36J39JOdUe/nESM75wetPN1y4wLynnOGLSOoi2yXrioCyb4aQVo1ic2UFgFUW+IP7BQbNBfL3p1jvDYTmmYevsAOBkjuRGx4WGG9wwAvr2lH0Z39DmEaAGwmsoldM2kXSMA43ol7LWP6phqWHG9MVCb6sSLBEEggiB0EQShm/RvmiAIxwVBGC4IQq4gCCOoQipVJb5dEIQcQRA6C4KwnDnXR4IgtJb+/S8YX6whoUVGWuoosXYbQZidGFqv9NroJOj06GShVTrFwk6SwkF8n6eeqHoeYrWQa1atluq7dI91Omz4dFJvxWvGdzFfhM0KalC6t4iHy2GHw25TbE5Oh7YwicPmf9tho5TUFQwDhc2Hmb7hEL5aVrvKp7WBLX7Vt1UivrpJLNDUJSMWKYyAxFYiFnQKOxlBPan+hH92wWefH4+0a13ZxycMmilqt+drKyEHWlTI6/W1zTFssWNRmXn2gk7yz0Y9Pa2SIRmQXA674f00arEz9fYBeGisL2JC7eE2VWJV52Q3TyOFgR4m8lpivl34U77PMBV0nXab5nz9WiWavh8Afl59QFZ+rFSAjHRpPTuBWrrZ8T9RXCk/2+p12Z+S0L1FHLozUSv3jGiD/jnWjX92mw3uMLtGUKfz+u0re8jrcLhKUQpzEEWxGj0F6Y3Luyt+9+eJvbZfS2QlRVpay08xubXN4sLhDrMp8v/oOSqrvThyprwOPLHKMafKa0Kk06+nSl1cEPDtfa2SIuW1iQrnauH2v1eI95WOSYRq/1XPY7tqf1VjpHgrPLG1VGJp9wQbIZh97xBdIzWr/KkVaxoSbLZkuMNscIXZFMUs9dY+d5hNbjtEoR5btfE9RqcNmL91Qq/QVk0KJgWL1BiXZUMmANwwMBvxJoW2AjmXGezz1LeVT+mhsmyEy4526ebGZ7HFVXDCtFNijIsQWoU1bgJilwuW06qq7w+Pa4+umXEIUxlf9HDYCC7sbl6jVm9OWlFiz+3aTJYl1LAGTKNrZItx+dvXQ53GffUhSv+cJExs69S0h6GYhczo4a+5eUW1F4SIkyZM5Yl12IimUppeGKU6xM6sl51cPZE5prb4qD0BagK1NrHhPU671hNrsxG0SY1Wv03B6Qrfe5bXsCgDtVg98/smP68MDt/c3Bez7xusOPbCxV3w0Nh2uLx3CzgdNs29p/dWfVxRdE3638owyJ5YP6/NTRE3gG6ZcYrx9cgePd9rzUKMXWE2zfMxumOawav12XK4CA98J+Z8GMnDc3Wq9unBPsuf3WDdc6YHFZjcqu845/4h8s/sxjawtU947JoZh1uG5Mi/O+02vHBRF0yWFFuz1h1qr2dGfAQ+u0FUeIwEALUn1l/PUH9CMqvIOO02jaFCHVbJ8twFnQGIyg5Vfvzl8APa0E3Afw9INfGMx+lESSWiXA78/cgIzP9nvuJ1DjvBaxO7YVi7FN3z/HTbAFyqEsYDgd4v9dygc2ls53Q5hF+txDrtdtlgJQj6itAoxrBBP8doyLc9OxZPni8q9/F+jKyAUhjs3iIO7jC7QlGgCtFb87aj93NzMNegqn9N0SixzP720239TSsG6+2/gzLE97dPj5HXVbrOsevN/SPbID1WFDapsTld5XlVr4X0WpsZKNdGRgN2Xy+v8mi6AgRS9ZwK85UeL1okRuiuv1S+iXY5NM81TZeyEwKvV8D9367RvN/tsMPlsCnkE719wSton/l/jW8vnl91XM+r6i9iw598VVewBkmWGHdYQDLi2E5puH1oa8O/B6sFHusmYO8ZNRaz0R5GeLwCLpaKWbKKsBXUaWXJTAh7MIxeL1/aVU5roKiVWPq8OR02v9F8dhvBY+d2xKanjDuG1lSJddiIYcs7N+OJpa3N1LCGtgBsWyFJI7/80KRzRizGZIcZLo7+cgTNrGpG0JwnORdWmgh6+V/+ytQDPqFRD/p+s/YKbEiD/jl8f2dDV584twOm3j7A8DMBcQFRC94OG8HA3CTMvX+ILNTXBRlx4ejUvHahroHQp1UiWqcoF++hbVNwy5AcPH9hZ2x9ZqzmPVReo/fsmQmisMla7gTZy+b/WVB7Yp9S5SFRBrdJxuanx+Bn1fjR9dLOrJZ0bqRHaj8/wunQGFqM8leNvJaKz5e+rNrjYtV4y87jQAUeuqG8eElXFDyQLwu44WFKTyz7M527rVOi8PmNotJMlRMAuKJPCwDi2F3aKxO3SorttyYh+nobI/0uRvdBUCmx/nKf/K1rrEDgdNgC6h+dHufG1X1bSj2axWNHLbSjUIduAoEb0FhB40RpJaLdDiRHuzQCs8thw/ndmmNoW2u57IFi11Finzq/I7KStGH6au9hbHiYPNcFQcxZH9XBp7Smx7o1grOdEEPDBXtPJnTz3xGPHfth7VLkdlIU6jEvkgTDRdutt82xgnrIWUUwJcaNb28xnjt6SkCvNAcKp4xHWqxbPje9V+d19YVUqiMgAKCnKppDfS/oOD13YWeN4C5eu758wCri5VUezd5v1RPbNSMWYySltVzy5OjJDHYbwbKHh2P6vYNxRe8Wir/RHsA2G8Gx4gr8sFJbmNIdZtdck96aIAiCZs72l4x76tdH6xjfqSfWaKvT87QHm4t7KlPCLs3LUBgkWSKc9oC8p61TokxlumB5YtnUAlZ+o55VV5hxdBGFbYt2+9DWAeXrqluyJQVZie2dneC3TgN9DsPsNt2oSZYwO4HdRjQGRfVrjD7DDEKAJAPjIbuO67UVApRKbG3Sa0IBrsTWIW4DRc6fIMxa/q3ilePhxXP3lULz9GQQK+EDRqEKgJhQ/8i49njryp6Gr6Ehb0ZLi5EAe1XflmKlTRVsCKDTYdPkVdCJ3yo5ShbqA+VpSdnrmqEt5MF+Tn1semb4W+Pos0Dv2VV9W+K1id1kZRZgvWz+P48+r1S46qRT6ET9WhYq3CnGUBJe8lK1QkeXjFjNwmr0zG56egweGNVG92/qz2e/fyAYzWMrUOt1v5xEZCVFymMj5sT6XsfeGyoAdpHu84p/jcD71/jm2rMTOmHHc+M0n5WjCoVi0evVTD3Mhp5YaY7RS6tiWizoea78emIZRSbMbtMV8I2IcYcpCnlYRS+iJNBNmxU0TpZUGhYDosID+6wG6m0wgwqq9PqToly4pl+W7mvVa1RcRJjPEyv9P6aTz7tGz8neGpufYmEUp8OGHjr9w1nYnNjwMLtmY6pJ8bdAUI95tEs/JFsPf4KtuhDTS5d2xYU9RMWefXZeuawbHj+3g+Y5Vhvi6HyMcjlwbldtjiH1IvdtlYDXmRDwB0a1Rf8ccd/Xi0oKs3iP3782Tw7VLJe8bHr3p8ojICXGjeZx4SCEKLzbcjgxIYYeK3eYXaN86a3zgo4n1vd6tSdWR4mVBsaoX31t1nd1cUMj1NdlFuJMCAlI8YyLcGoMISyBhJGbwU5ZdtwqWE+sn6X1AJNCYCdEkWJiBJ1D6uKZbKRjbWucAFKKix/Dqs8TS/z2Y7YiZ+vtgQT+FVk7IYaRnuzzbFTAtEWCbw0KtMBiqNG4rz7EWavTLB3wv2HrNRJf/dhI+WcaSsNCJ3hseBim3zMIL14iFvgpZnpr3juiDQoeyDcML/lz8jD5Z0KIHN6nVuoIIbhpcCvTSqRmObWAuAgufHAoFj44VHHcymal54kNRpGenKRIFE4Zj1Emoat2GwlK+JGVPDKzazBDDt9lHrPzuzVXhFbScDGjkDUW+rzS9TbQnMJL8sRQMzavii604WHAP0e3lY/bbUT0xDLf8a0rexhamu02graqIlDqZ48KlzWtSlsbowW9VfQe0udWXdiJHat+rRLx8Lh2eEpSuhOjXArrKiHE8BkwKp6l991ptIT/cGLxd7YCpN7z6++53HbY16ogzEG0Y2ry9riIMAxvrx+ma4ZeTmygzwGrZFR7BcOcRHUV7wu7N8ezJhEtgaL1xBoLwm6nnidWehc1KuncB1bQd5iEE6vxF9FRwgh84U67Ig8SCDzFJlDUl6d+LuTIJZ2v4U/Go3+n8yXMbtPd/1omRuL6Adma9ZMWY6Sw3m+6V7M5oVQ+KK/yKry+iVEufHlTX/x0W388ek4HzeebRa28c1UP+Wc7IbKhhgrBekbnKlWtDfa66ftsRBuSSdcOMaVC5YnVGQCvIBgK2urXmxUZM5J7zBRAf/x4W3/d4+yeBgC9s5TGLH9rpZUIIwD4+max/oWZIh40TyyzFrAGkZ9X7Zc/x986wNYisdkIelkoKETHXu1tjY904oNr8kzf29ZPipnic3RSXNTQucvKgNf1z8K1OsXf2HN9eK3+deqNs8frv4KzjZiFE/uurYQpIMsWCxvTKU1eExu5DsuV2LpEHf5A8bdossnls+8Tc+XiGO/sdf2zNJONXWDapcXID3IxE/KQEOVEVlKk4QKqDu14eFx7FE4Zj6l3DDS9Xj1ogQWjNYEQgsyECE11QaNF0OEnJzYYSiwVbs3yo2qixKo3tG9u7ovHdIQMq/gTwukCaHZPru+fha9u6qtol2REjCSQ+arUBnave7aMR+GU8chMiEDb1GjcOiRHPodbJViow+GTopwY1zldHv+M+HBcpyoHr94H1Ju2R+WZDhQzIcBfMSL6idQaTg0MLtWGrwgtthHcPDhHtwCbP6bfM9jyxi17Yg2ihGkoI62eyoYTv3F5D933AGJ+70uXdNUcX8MY9WxER4k1IS3Gjcz4wIp7Afqe2EBTxNQeLFaBZ7+DHJ5N32dBKAoEKszRc5opmGrDiziHieL69IwoNw3OZo5Zv3az1BK9awtX5SoHy1sEQPZGsrDf5fFzO2g8IPRexOgon/48FUTliQXM0zXUw6beT5QeL5vmWK6UXrLzaLHu9XRvEa+7R7HPcesUZdQGu8bZbUS+D9SjqncPzKqz0sIx1R5BUQTx0XM6yJWP3WF2jXKs98zp5cSy18qi5wCg0DHPTAjHr4xMUxsjpZEs0LNlvOL3bi3icNMg39x6eJzWEcGiNmzosfihYXLEnZkRyKpC7A/2uWXTNL5dvk+6BpvfyK7tzDNrtxH894rufjtbUOODWuaLdDrkLgtGGLWy1MNhNzYOU6inlo2W7J2dgM4ZcdrXMucyKs6qtz+UV/m/ZpuNINEwnNg33iWMJ5Z6btukinNflud4ODHHiKGqAh/0WYnVqaDHkstsMOrNBhAXY6vV2NgwC/qwBlOwMoJaoq304bMCa7F1OmwY2FqZd6beZIe0SdYNxTLDYaDEslZ1BxNObLVggtrznpeVoFtwxir+Fh2fEms8vW02gn46wh7LZzf0xk+39WcKOynDGWvCjHsHY/LYdnIIUrxbmXdHL5luAFQwpGOTnRSJJ85T5uSqBUWjSIeaPvZmX1cvpIedX1dL4Z7UUk4VRruNKMYxWO1+wuw2ecM0yl2muP14Yu8anovvb+2H7i1EgYyGwP1rfHv0zk4wFD5ykqPQx08YbVqMWxsebLKkRbocNfKk660/gc49tYLFCjCs8K/33AUz34jODXofzHaA0R1TMaC1b37r5QqyzykNe39gVFukSqGkdkJw53BtwRg9of8/l3SV8yj9Ee60a6qN6/V5rCkXSS3pIp12uYUROw56io7Z3uhvbvbKSkDb1Gj8c1Rbzd/03qmebzHuMLx7dU+5Fgb7V7rHsPmItFcwLRhlFVrYKa9lPJ44V7k2sEqQzUY0kRZ6z7Y6R17vedx5rERRBNFh81XJtulElBjJJsbHldcV5XJghEHEBr2Xbocd6XFuzfGa8vtdAzXF3NRKi91GkBApzqsR7VMMi6G9elk3ANZqVbDjb+aJ1TMQ3TG0ta5saQa7T+vleboc/gs7FWw5Kv9sI2LU1WsTu5u+h16/ut97uE5OtRorCiGFwL9sTNcJdg1xOfSNlewxo+vUCycur/a/FtqItjczhTWssK08qSNMNrBJxxuy1WAw4EpsPUIf5Lhw/QXsX+PbY3CbZORZaONx82BreZ8KJVYabSsLZG2hYT3+woop/hYP9YLw3IWd8MM/fKE86rXgk0m9NS0j/EEns9pLwGJjlFizCs4samut3aaf89IuLRqLHxqmOa65Bj/jR4Wk2hYlHJSbLCswANtqpfbPD91c4lzmnlj5uCSs6FbzM+lXy+ZX22xEYYEPFL08cXYjodZ31vP+f2PaYuszY2UhMVeygoY7VeHEQZyTr1/eHW9f2cMwX5JCr0mda0Rx2G3IY8LgqOeF3l+zdcSf96pFQgTyshI0rblqwjdSSJ0eemHPgYTXPXpOB42Qyyqx7POo55UJpoBA7yk9o1m16Gh3GL64sS9uHCh6f2w2whQgEv9nC0LRvxFCZM+7jRBc2aelovDep5N6Y8lDvt7TlKQoF965uiem3zNIVlA7pMfgc51q3hFhDvxrvDISpbzKg7VPjMK/L/KFX9f03tF5yoYws/NLz4FonhNrfh1RLgdm3DsYnZm0G7mFmc5b1Z4xu41gdMc0/Ofiroh2OxQRB3pCbpjdhu9v7SdXF7cKfVbDnXbNWsYqqXZCEGa3oWtGrBxRoRc9plZsrdjV1YYobU6s/r02MmBplGA7MfR60e/vDrMrwuZrKg/RcezYLFZjkFOvO2E2VtEx/rwJUkuWQK/IzBOrt2feP6oNHh5X8wKYetFqToctIEMj3U/Y8dLLrfdFMSmPhzttfr3MZZUedPeTrw+IxvEol8O/J9ZGlVjfNbscdv0Cqsy1GRnW9SqG+2vdA4jr2eiOaRjXWWs4ZA0arKGJyuK+zhT6slZjgyux9UiY9LDERyoVuz5SXkCHZjH4dFJvRLn8K36Tx7ZD4ZTx+OJG85Yfegnv7IZu1A6ittBm51aV2Bn3DtYNQaSwE62i2gOXw462TOXGYPS6okJihEl4kcNG5EXCrKUJi25ol11r+U+IdFqyrvv7qh7G2xdMfIte7c9Fw9TiXMq8O7oZ+MLoBOl38biVan50Y3PabejNGITsNoLOGbGGRcvY8F11wY6ptw/Ab3dqFeAkyRObGuOSIyjY61EX6Xj98u747IbeSIpyKTZgsxD2QEmOdmFsZ/M+zYAvJ9Zq3iMVOujYmD1eZs/e4DbJchicnseWXZNevrQrnmY8yh3SYzT3qmWiccEnvRy5QHoKXt23pdYTG6m0wlPU85yQ4M5BdessK9/iX+d0kJVQdU5su7QY2fPD7gk0reQEU4yJkhrjRqxJyGa7tBi5gNfTEzopvMEUt9OG5GitFyHGHYbLerWQ8zzthCgqKFuFTVGhHmZ2GDw6Xl+zcarJGMp5+DoKUmKUCx9f30veR+j5R3RIxbonRiu8XGrDAyUvK0HRA9wM9edEOh2aWgjqcGIAmHrHQFwkVdVVC+F3D8/FcxcGnu/tsBG8ell3jO+cjpxkbWpToKGN6vfreXflz5b2DpfDuIDPaxO7Wf7szU/7Wqe4VPdPve7YLYSqspgp1noKkVmdFb1T1URxZ59BvWgWKzmxgK82RoWOx/HBMVrFmraNVM/bcKdD/hugLxuUV3t1DWlq3ru6JwghlqsTxzFyrSvMpvvcqjtq6KE2UqXFuDX1Alhoi0da9VivuKqRQYNes9rAxpVYjinNmOJH1MIdq/LEqvsxBvJQuf2EtvbP8YX8ValKzZ/frRneulKZ2/bTbf0NixUEwhkpF1edY/S/63vpVg/OSY6SN0w92AWBJqu7mYWhJiHS1w/IUvxO77taSFZX7KRFU1il59K8DHx5Ux+8rbqfAOQcIBafNyvgy/a70dNws5E1EABNP1clRNeGFy7ugrap0Yh1KSugyiHL0tDSvzlkpd9/yCbd0F0OG8Z0Ste8rtIgXIe1YI7qmKqw4HbNjFNYXyk0RIwdEzOvaow7DINyxVD4bKYIk1WvfjCh9+mqvi38vFKEhubSUCqzp8AsLPDTSb1lQZ1uuJf31r+GC3tkyCHZAPDrnQOx9vFRyusySc9Q52p+fkMfw77BethtxDSc+M5hvnDbugonpmfwVScWfw9AFwfgy6VMYhTIljSsl7lM2s5JzwBpZW+i/YDTYt2iEUd1/9ThyINyk3BBd9/aTwtn2WzA21cZV8A3IoX5fnq3X903HQi+EkvDf42GP79tijyfzJ4RErBPTsmc+4dg0f+J0T103aMtXAqnjJfnhyKcWOd62Gf74+t74d6RbZASbU2J7tEiTn6W7DaCDs1i8OaVPXQL6bRMjMClecZygBp1NILDZjO8n6wn1mh90nvm/znaF2IPALcMaYUvbuyj8L7R+zeyQyp2PDdO09orzOZrKWZlSTAz/hf8Mx9rVGsga0BTtwA0+rhAny02pF3PMB/hdPhN2YmP8PXA1Qv11S02R8OJ1Z5YVThxcpRL0VcdEJ95K3srfZatVAUGlHuAy6Hta68+l1E4sfo4WzFeD6qImj1DRgaNuAh9TyxvscMxZdZ9Q7Dq0ZF47oLOcs9Htg/sNf1aoouUFE6t04EoZFQgMCow8ODotnKuEvWk0LOnRLs07+veIh49mBDSQJh21yB0ah4Dp90mC0dD2ihzV4e2TalRH1d2QaALPGvFsjoR2eIK6jwxusmo8z1YBcVhI3JBnAimwuULF3dF/5wkdNMJXWmTppPXXAvPsb+FNic5CuufHI3LellTTqzi8+TU/lyjO6Zhxr2DNeM2ULLSqu8PDddqq9M3UX07qIHAFWZXGCTofbtjmDbPD1DOIafDhntHtEGE067broJCQ6Hsdp9H2arQSwssNBSEEGx+egyeOs9a66F7R7bB0xM6yeuJ2Zwz8nSoC7kBwLZnx+JZi+2P7DaimPe/3jHQNMdVLcAMzE0yDcNVYyNaAyErwLAKdk0b1/uDyiR22ZNE26iZ5x2ruWdELr68sQ96MSHivqq8vuuc2CsTv981ULN2s6+3QrIUaq/OnVQrsQ+ObqfwVNB12U6IX6EYABY+OBQz7hks/+6w29A8Lhz/HN1W3uvYIkTqSrGAuVBYEwOpOu9MD/qZVs4vQJQb0k06AuiRkxwlpzzQliDsvkXXPLUnUY2vfRRBflv96C3BIDYgLdYtK3X+WuqE2W144WIxIsuszR9FrdjYbMb3k4YQx4Q7DF+jt5bcPLgVlj48Qv79+v7ZGKBSlnw1D6jxQv09iSYdwIzspEjdVoOAuKaplVw6fomRTlzRW1spFwCGq6PuAnys/S2bUS6HrBhP7JWJjCjtBzgdNlnJ1mslya5DNCSbjpW6Ym+4yhgRiHFS3XGDGkL9rW/UcNGMyal2OewY1i4FF/XIwGsTu8nKokNHZlWjzs/3+/kWFE+XQX607HSRi86J/wfSrz0UqX/z/1lGpMuBSBdwRR+fQkEtzS0TI/DU+Z1Q5fHigu7N5T6PgQgKVOEyqrDnsNvQQlIo6Uau7msXLDo0i8Fvdw6Sf/9r8jBLLVyswCo153TRhkpanYgDWifh/YW7AEDTKsPniVUe/+KmPhjz6kLxNcTXvFqv75zeOCTrJODrh/hY+AKw5gmtSWVbf9DnJhAlwAr0dGM6pskh5XQs6N/65yRhzv1D0Ewn3FoTTsx4YtnxoMaIa/ploUeLeJzzxiLF+0Z2SMX//iwUz2G3YXCbZGx8agzMkEP1VNWFrVBTY1EgpMe6cZBpa6AmkErb7jA7ru7rE5Doc3hRjwyM7qj0+hsJiZ/rpD/UpjJtu3TzSsx65/bXvoBy48BsXU9iWqx+QQ0KOz2CUfkx1kVwrEyQZc5wpx2z7xtiSchncdht6K8SvuXoCuYYIQQdm+n3grbyfR4Z1x6fLimU52FajBuHzvieQaPKwBS6dnkEwdJal5kQoRlT2i5u2a4TAHxeyHZp0cj1U73bbiOK89WkoJj8bgvXb7rfM4bDFf8aafw6C8hKLLO/ySkFzOv0Loe+zurcYYlyOeQx19Y6UL6WKsIrHx2J48UVGPnKAj9n1/HEGtxPGh7fLTNO95krrqjWhH0+eV5HzRqiZ3+mSqRhAR8bkQ2qZuGiLN0z47Bm7ynNcb056K++AWA9gurOYa3xxtztmuPsmfVkALsq717cA5SvcznsuHNYLvpkJ8qhsepzULpmxGHR9mNyQUH1s+cOE8OX+7ZKwJKdJ0y/O8uax0fB5bCh3aPT5WNEVg4tnUKRx+ty2OB02PDSpaLs8u8/NuMUqhTrnJE3WJ2/7U+OtSLnGoUT02vQ5MRyTywnUOTWFkxfuU7NfUKD0YN6w8BsXKwKuWUFGyOoJ0EdThxkXURDsBRYwOeFSIx06i7GRoLAA6PaKPrqspuUWjilgre60l+7tBjclp8jfY5NDgOr0smt0lMKCCGK4igs7BjQ0NRQhd5iq5uFVajg0iY1Sr5/euOZkxyl+5yrhRY6rq4wm8ITywofepbRR8a1lwsl6IUcqtn1/DhZaLHZiPw9rG6EcRFO3D40B88FsZeomtn3DcHKR2sn/BpBv2f/nERNb2Ujo5q6jReLkSfHDH9eLL00ixEW2koBYj6peA7lehDIuhaMHnz/18uNx87poMiza50SFZABwohAQ8qsfJ+bBrfCwgd9Bequ6S8aPs7t2kx3HVTvd9QDQ/Pm9bhQKoBDMVr/6deiEQD3jGij/zpGjV/80DDMupfx7NaRJ5ZipiQT1etq2usa8EVFsUZg6rVjo8P09ld/ve0BrTxBzxnhdMjz0KhgH4UuuwmRTkRYMMSqq4/bbfpCud1GcLSoAoA4d+h3pPu6nvfs3K7NcK2qnRtgEG5NPdoGXjCbjchF/XYeLTH9ThRal0FdRVjvWXdbMDKo9WujJ8lI4RIEQTc1isXnIBGg98g4pdBbdWcEX8Vq35pN0+9o2LG6lgEdwwulVAS2evH/Sbm1eilVseFhiuf5iXN9RebYZ1+vKKDe69T7AX1uzYxT9O0aJdbgPTcOzMaLl3RFe+mZYG+FOhXH6HOpcZD+Wb7njTwnlntiGwCXqt2GGqOHUK+BeWZCBCb2ysT1Bj1pAZ8QRq3RhFloGhtGCfJG1qQ7huUCgFzmn1VcjTwCZvkodhvkkC62By/FymbPkpkQgV3HxE0tSaddSyhBN6iaWOMtoQrbBqx5fdVCBX1G3A67nL8MKOeVnqHIYbfJYcsVJgK073J9vU7thKBdmrjBZJkUGlLzz9E1rxBpBRoJUheY5fDrCcLtdELBWWihtNQYF8Z3SZeLw5nhz7ug9/frB2RhQvfm6PvcHE2oqx7qPrGBtOgJRjhxcoQNlww0Xt9rg6+fqbXX1yQNgho0jPYbjVfMQlu2ly/rhh9X7ff7Oip0j+yQiulMyLEauma0T49BSrRbke9ptxH8eFt/2fhsDfOcWEC/6JTx2Wq/5nZoFqMxItw6pBWuH5Dl1yBiVv2WMrZTGn5efUD+PSM+AidLTwMAnA79cGJtv3vB8G8U1uiXEuPGzHsH49zXF6DCIxV20lnbbQSgqwn9Luy9iI9wYt/JMlR5vHjlsq7okB6rm7oC6Msa9AgrXyx7ZDh6PztH/p0qo+qcVSMuyctAj5bx+HRxIbYf8fVX1c9ZlnpUC9q9jS3gwxYnNFo73QYyjABg1n2DUV7lxc9Gc086pVfQ747gr5qwjRAU/HMoSiqq8fmS3QB8LWfULXYocuEn5tnp1DwGa58YJa89a58YhS5PzPRdJvPdrzOQnWPcYSjSkfEov981EA6bTSOTUsO52bymMrm2FZP2/rDP6VsF26XX+f7+/IWdcby4AjM3Hkar5EhD51TLxAiMznLgwYvyADAtdhq5J5YrsQ2Ay2G+qQciKNhtBFMu6mL6GjphfOHE4vFgh4XWJVXSQmYUrmNVWGQXHLWXht73uAgn1j0xCp2fmKlbHTNNUmLPlFdp/mY1ZIcuXoNykzCqYyrenb/TsO9XqHB+t+bYPH2zbCENFnqPoRxObOH92hY74vxKiXHphhOz51dD52alx1iBWveEr6iGg/EwXD8gC3lZ8XKOe1OHLlP+HvnCKeMtGT56ZyfgpUu6YmzntFr1UTaisxTtQojYhsPOSrYmsOvEZXmZmr//cscA7D9ZJv/OFvUJ9aIZdA+yum7VxLNMFSQjIVStrAQzFSIzIQILHxzq13seGx6Gb27ui/bNtAqG3UYCDv33eWJrN/513Q6PEGLJo2/kYWR54eKuuGVIDsa+JqbeDG+fgnX7TyM91i0baPVyRVnYvcBIiWVTswCgTWo0HDagwiPu4XrvE+ehL/JNzZA2yVi3/zSiXA5FkTE99OZ0par9GABN4SuXw455D+QrCo+ZQQgRvcaq43p7F/3clGgXJnRrjp1HS/DO/B0AgETJitkyMVIR8Wf0ZOm1UwIACGK192i3z/N71/BcvD5nm/wSajTKSoxAmjcMW05W6F6nEXYbkaN1qDOhdUoUlu06gdzUaLx0SVfc/90aRcFUoz6yrJder1+4P/ztWUYpF0Zh41f1bYHPl+wB4FPmsxMjcfPgVnhvwU4Avg4mRlDjunp/fGB0W+w7WYavbu6LvSdKNe/78No8EEJweTuXnLZIPbCNvToxV2IbAOqts2qZri1OlRJLz954VFhRGBnfJR23GvTHtZoTyy6i6kWIve/R7jCFBYzdt6gSlx4bjsNnKkzDTozISY7Cj7f1R6dmsTh4ugyzNhzWhIqHGrcOaYXr+meZhq7XBPocsiMYyBxQC9ZRUuGSrMRIhcDChs0YGYro82HmiWXDOul57DYCQshZo8ACrCdJf6wu6ZmBVVJOl5XxJISYViivLepWCw47AbR2KA1s7vu/L9YaDLtkxBmOe2MREKxeZk2s9tSQZCQUqiNiarKemqFXTEyPPq207YCAGlYnDsDDbcmW3MCbtRUvtNNhQ/v0GES7HCiqqMbFPTMwqkMaWiVHYuth0ZN4ulQ54bSeWPZvgVtMbAbhxOwapZdicO/INhjXOd1vvjQAEJ3LolFu/pQ0dT/Z2/Jz8FbBDtP3qIde73EMd9rx0iVd0S8nEU6HDZPHtpOV2EG5SfjgmjwMaass1Gb0bKrTqfSu47JeLXCytAo3D26lUGIHt0nGp5N6o39OIhYt3I/CKSOQNfl3+e9WlFjKrUNyUFxRjQdHt8Pek6VygUX1HkHlW3920ruH58q93K3gEQSc360Z5m46giKdVpVGUAVT3e/18XM7+pRYhy8N6eFx7WUl1qggIqVEuo5Il3I+tkmNxrS7xXo0u3UWlOE6KTRNpU8sV2IbAKrEGkWyBfuhGt8lHW8VbJer1VJhvjGFE9ttBG9e0cP47xaFK1apSYt1o3DKeHmRtVQlUhC9qO9e3RM9W8bjhxX7MMKklc3tQ/WVbsBX2KdlYiTmPpBv6fobEsIUtQomtFqoXtVUK8KbWom6YWA2jhdX4lKV18yKJ5Z6w9VFv/zR2DeCmkBvp9E68h+Tvs/1yapHR8JuJxprPBvalpsShW1SyN7dw3MVURa1yRkK9VAtnyfW2uv9CaF6yJVbDeZyXXpig0FNlKkr+rTAN8v3yu2K9LByL0PF4GzUwk+Pu4bn4tlpm5AS7UZGvFTcSyqGdqxE6ZlTr5vsWuJPoNfDYbMhI15rtGA/R+++09Y/VtCb07TnqZWwa5YHx7TDg2PaIWvy73L/VH8YeeeNDIA2GzGVUaJcDlzbvyXenCcqvVYNFncNF1O1+mQnoDlTZM7smU+MNE+ZYvfySJcDj58r9gg36xAQ5scpRLl3pH4+vBGvXNpN7pbAKuL+uHVIDuZuPqKpLs0+N0Zh1XrFQllKJMU43CRSia6zkU67/Ho96JRo7LJLaO0WZwk0XMMonLcmhSTMaBYXjlWP+UIg5Y2xoXfGIOCwEVR7BcsTMZKZ/OqwokA2zdFSIZtbdHrestR1zmNTYGBuEtY+MUqhZMg5sQbveeGiLkzfWuXfEiNdeO+aPM17FDmxBs/LBd2bo6yyGpf20oaN6kHzcEI9bLQu8FWrbuAL8UO8geBEoze+vrkv+rZKlAWVQIUdY2pXiKc+oCGPw9uZF7v64Jo8lFZ5FFEIVvH1ebSaE2tNLPl0Um+FQrL4oWEmr645NRHyumbGGRbzo/zv+l74YcW+gNvmqHn98u4oNxFWg0EgYc03DW6Fmwa3Uhy7ZUgODp4qxxWqIjTqCCr2CQlEDqKPls0m5pKu3HMSX/+9V/4722LJX16mP/TW+nGd0/GfGVtwUY/mOu/wz5rHRxkWw6stRoY0GknTJSMW/xzdzqfEGlyHkbz6zS39TD9/lVRY8Mtle3ClKhRcc601mGt0PINdq2OgRaOCmt7ZCbpz3+bHkAL4vr9RV4HSStETG2HyrNDxbpsWjZV7TplcaWjvTVbhSmwDIHti6ymcWA3dkEJc9rQELYxkdf1KZvJRtDmxVkIeA7o8BWseH9U0bnodoPaS+VMKWSVTXcXUyBjBbiJGc8xuI4ren/6geTiN3ZpZE+hXboiIjm9u7ouTUssMljuHtcbSXSfwjyE52HyoyPQcbCh4MEmVFMMWTBirOowwVEiLdWP5v0YgQadnI4uZJ8cf/iJ/1Ouuv3DihQ8OBaD1+KTrtN8KBnU1t3OSo/DgGHMjZ0epCNBQdY9PhvO6NgvqdRlxaV6GbliiFWLcYXj5sm6a4+pCNlZyYs1w2MS2K6M6piqUWOopBWrX0gvQzwvPTorUVVx+u3Mgdh7zX43YrJjkncNysfNoCRZtPxbQdVKMDGm0PZm6AjPNf26dEoUHRrXFrZ+vAFDzlozUiHj7UP3+7Cw1iVyh48l2Igj2ljQoNwkLt9Xs/uuRmaC/Vsktrwyun7bJUocTs3RqHoOHxrbDRT0z8Me6g/J71LDtkBozXIltAHzhxAZKbJ0XcxD/b0yFnYz4dFJv/Lb2oOXKvqxAovHEWgwn9sekAdn46M9dmuNmGxVHCbXQW3lGqXVSfq+RgkqMx76m0GdGr3F7U6eu+k1bwSh/8f5RbeWfzQR/wPeMBduLPrx9Cj6Z1BsDpZ6s397SDznJoanEAqjzgnJGzwkh4nqqXnfpOnnnMKXQ+/yFnZEQ6bSc4xosgh0ZFQjt0mKw8anRdVLoTA3tt2nECxcHPz1AfWfZ9b4mxgO6xpuFgKurjQdKIOtFp+aximJKNSE52oWPr++F1o/8UaP3m6XO6CnedG+MjwjDmE6+1mnBqJBtBC27VZPCcfSZyUyIwL8v7oLXZ2/TtPCpLZ9c3zuoxtr/Xq6fGkdDuY3uteyJNVkPCCFyhKCZQb55fDiOFFUEpQ1cQ8KV2AbAF06s//e6DkGjYSRNQIdFZkIE/pFvHtJrhLbcf3Bm82PndtBVYjnWCaQ6cffMeOS1jMfy3ScBGI8je5gd+hsHZqNFYs0E426ZcXhkXPuQL8pVFzTmVl2AT1gL9nJLCJF7cgJieNnZDFUs1NVDqeCqnq8uhx3bnh2rWZ/V/RDri4aOsqgPBRYAPruhjyLstj5Qrxzs7zWqzCy9xczwUNNwYlqwqiGeBnXxs0AI1ClCn3fqZLmufxY+/quwxp9vBSJZtGpiUKTLSs+W8WgeF65bfK+22GwEtiCOvFGKi9uPbvDshM54ZfZW9GlV+z3l/Wvy8Of2Y5oq2o0NrsQ2AP48sXVNQ4YBNhTzHsjH38uWKo6pN8mzMCI0ZAlk4w132vH9P/r7LdDFnpMd+3/p9F+2CiFEk/91tiDf5ka6jMg9fi1M/A+uyVMUL+FYh4bODWitzDGTBVcd+TxYkRLBINSLcwWLMLut3u+7OtKmttFhdKjMlL6aKrE/3d4fczcfqZVC2RAEapt3qJTYSQOy8fFfhfXi9KiJwahvqwS8cXl3uU5JbblzWOt6T/9456qeSIlx4USxmCJjpBpkJUXitYndg/KZSVEunN+tZjncoQRXYhsAfy12KGlB7sdJ8YUT18npQ5LspEjsjhDve++sBCwr9IVN9cqKx9+FJ00tv4H2+yt4IB87jxX7fyFHF+qdqckzahTJ0NAelaaGrYl4Yq1Qm5zQs52WiZFY/NAwOVeYcs/wXLw0a6vfipwNTagX52rMsEvH4DbJeGB0W+MXm/CPri4sOhGJKMlrbdZyL8xRs/FsnRKN1in+W/CEGlaNMF/c2AeZ8RFyZfYqj7JyeX0s8zXxxBJCcG4Q88LZlJT6goZtL5LzbgU0i3XjgE5xJ44SrsQ2ALQMe4JJufHvb+1X4xBHf/TJFvMFLuje+K0wNeGTSb1xuszXQuPj63vj8Blri4XVdTwrKRJZQbbmfXx9L+w86r9IRFOAFmcKJA8nIz4c+06WGf6dC6PBheoeDRRQUmuooFvdWL9AI0Kv6NKdw3Nxp9Smw4znLuhsueYBp3FB1/cJ3ZrhVR0P01tX9kC7NP+KY+dkB+68xFcl18wwEkpe/vrAqvGWRkqUVFTDabfhnhHi3IyLEHPU60NerG9Dc0QdtAysDW6msNP0ewejuNx6f9qzFa7ENgBOhw3PX9gZA3KMS3jnZdVdHlWWQSW9s4Vwp13R7zTS5UCr5KgGvCJr5LdNQX79GwkbhJqE8P14W39sP2Ls/T5bwgLrj6bhia2qrt88QE5gXOGnLQen8eKVpp5RFNS4zuk1Oq9aGZp172CMfGUBgIYt1NUQBJpbHOlyYOuzY+Xfo91h2PjUaEv9Y2tLfe7RM+4ZbOpIagjknFiIFb3VXRs4WrgS20A0VJEKTu04u7a/hqMmIUwp0W7TIgX1aeV9+dKuIdtWJVj4SvQ3ViVW6YmdcmFnRSsODodTt9CVI9grM9s+79p+LZHDGKlrVDDqLKe+iovVZ2ZBWwse/vqGemIbq2G4IeBKLIcTAHxpqR+cdhtyU6Jw9wj/4YZWqU/Z5cIeTb9acUO22AkGtJULfSwmcsMih1OvUGHdimL52Q29UVFlzchEiy+lRLvw5Pmdan6BnHrlbK9bQVMNuQ5rHa7EcjickMNmI5h135CgnOvmwa3w3oKdQWuhxBGZ0L0ZPluyW1N1trHw7ITOaJsag74GPWc5HE4dIwnrVgyMg3KT/b9IwhFAizZO6BDsnt2hxne39jMt2OqSc2L5k2sVrsRyOJwmzUNj22HymHa8sFOQ6dkyIWRy67+8sQ/2nzIu6qVHfKQzqJ5+DocTGIPaiAawq/u2DOp5adE2VhdIjnbhaFFFUD+HE1yauhLby0+tG5fdlxPLsUbIKLGEkDEAXgNgB/CBIAhTGviSOByZJr62NmkIIXz8mjj9G6k3mBO6xLgdOMOrg9Yp6bHhdWIIs+s0sZ5172BFVwJO6HBVnxb4ZPHusz6cOMIlKrH/yM9p4CtpPISEEksIsQN4E8BIAPsA/E0I+UUQhI0Ne2UcjshFPTLwvz8LMaEJNIfmiPx4W3/EhfPqfxwOR8u8B/Jxiis9jRK9fP24CCfiIkKrGi1H5PFzO+Khce3PeiU2zG4LmeimxkJIKLEAegPYLgjCTgAghHwN4HwAXInlhARZSZFY/+Tohr4MThDp0SK+oS+Bw+GEKIlRLiRGuRr6Mjg1gCqxTSm3cNpdgwLyJA9vl4I5m4/U4RUFD5uNwG0LrZ6tnMZBqCixzQHsZX7fB6CP+kWEkJsB3Cz9WkwI2VIP11YjXEDzSMC4aSWn3ikHYt3A6Ya+Do4PPiahBR+P0IOPSejBxyS0MBqPIgCJjzfABYUQif9umM/lcyT0MBoTARBOAmca4poscszoD6GixFpCEIT3ALzX0NdhBULI8nJByGvo6+D4IIQsL+FjElLwMQkt+HiEHnxMQg8+JqEFH4/Qg49J6NEUxyRUek7sB5DJ/J4hHeNwOBwOh8PhcDgcDkcmVJTYvwHkEkKyCSFOABMB/NLA18ThcDgcDofD4XA4nBAjJMKJBUGoJoTcAWAGxBY7HwmCsKGBL6u2NIqw57MMPiahBx+T0IKPR+jBxyT04GMSWvDxCD34mIQeTW5MSFOq3sbhcDgcDofD4XA4nKZNqIQTczgcDofD4XA4HA6H4xeuxHI4HA6Hw+FwOBwOp9HAldg6gBAyhhCyhRCynRAyuaGv52yAEJJJCJlHCNlICNlACLlbOv4EIWQ/IWS19G8c856HpDHaQggZ3XBX33QhhBQSQtZJ9365dCyBEDKLELJN+j9eOk4IIa9LY7KWENKjYa++6UEIacvMhdWEkDOEkHv4PKlfCCEfEUKOEELWM8cCnheEkGul128jhFzbEN+lKWAwHv8hhGyW7vlPhJA46XgWIaSMmSvvMO/pKa1326UxIw3wdZoEBmMS8DrF5bHgYTAm3zDjUUgIWS0d5/OkjjGRe8+evUQQBP4viP8gFqbaAaAVACeANQA6NPR1NfV/ANIB9JB+jgawFUAHAE8AeEDn9R2ksXEByJbGzN7Q36Op/QNQCCBJdewFAJOlnycD+Lf08zgAfwAgAPoCWNrQ19+U/0lr1SEALfk8qfd7PxhADwDrmWMBzQsACQB2Sv/HSz/HN/R3a4z/DMZjFACH9PO/mfHIYl+nOs8yaYyINGZjG/q7NdZ/BmMS0DrF5bG6HxPV318C8Jj0M58ndT8eRnLvWbOXcE9s8OkNYLsgCDsFQagE8DWA8xv4mpo8giAcFARhpfRzEYBNAJqbvOV8AF8LglAhCMIuANshjh2n7jkfwCfSz58AmMAc/1QQWQIgjhCS3gDXd7YwHMAOQRB2m7yGz5M6QBCEBQBOqA4HOi9GA5glCMIJQRBOApgFYEydX3wTRG88BEGYKQhCtfTrEoj96w2RxiRGEIQlgigZfgrfGHICxGCOGGG0TnF5LIiYjYnkTb0UwFdm5+DzJHiYyL1nzV7Cldjg0xzAXub3fTBXpjhBhhCSBaA7gKXSoTuk0ImPaFgF+DjVFwKAmYSQFYSQm6VjqYIgHJR+PgQgVfqZj0n9MhFKgYPPk4Yl0HnBx6b+mATRg0HJJoSsIoTMJ4QMko41hzgGFD4edUMg6xSfI/XHIACHBUHYxhzj86SeUMm9Z81ewpVYTpOCEBIF4AcA9wiCcAbA2wByAHQDcBBiuAun/hgoCEIPAGMB3E4IGcz+UbLE8j5f9QwhxAngPADfSYf4PAkh+LwIHQghjwCoBvCFdOggBcl5KAABAABJREFUgBaCIHQHcB+ALwkhMQ11fWcZfJ0KXS6H0ijK50k9oSP3yjT1vYQrscFnP4BM5vcM6RinjiGEhEGcyF8IgvAjAAiCcFgQBI8gCF4A78MXCsnHqR4QBGG/9P8RAD9BvP+HaZiw9P8R6eV8TOqPsQBWCoJwGODzJEQIdF7wsaljCCHXATgHwJWSMAgpZPW49PMKiDmXbSDeezbkmI9HkKnBOsXnSD1ACHEAuBDAN/QYnyf1g57ci7NoL+FKbPD5G0AuISRb8nZMBPBLA19Tk0fKx/gQwCZBEF5mjrM5lRcAoFX1fgEwkRDiIoRkA8iFWGyAEyQIIZGEkGj6M8RCKesh3nta/e5aAFOln38BcI1UQa8vgNNMSAwnuCis5nyehASBzosZAEYRQuKlsMpR0jFOECCEjAHwIIDzBEEoZY4nE0Ls0s+tIM6JndKYnCGE9JX2o2vgG0NOEKjBOsXlsfphBIDNgiDIYcJ8ntQ9RnIvzqK9xNHQF9DUEAShmhByB8QHwA7gI0EQNjTwZZ0NDABwNYB1RCrxDuBhAJcTQrpBDKcoBHALAAiCsIEQ8i2AjRBDxW4XBMFTz9fc1EkF8JO4zsIB4EtBEKYTQv4G8C0h5AYAuyEWgwCAaRCr520HUArg+vq/5KaPZFAYCWkuSLzA50n9QQj5CkA+gCRCyD4AjwOYggDmhSAIJwghT0MU1AHgKUEQrBbC4TAYjMdDEKvdzpLWsCWCINwKsULrU4SQKgBeALcy9/02AB8DCIeYQ8vm0XICwGBM8gNdp7g8Fjz0xkQQhA+hra8A8HlSHxjJvWfNXkKkCBkOh8PhcDgcDofD4XBCHh5OzOFwOBwOh8PhcDicRgNXYjkcDofD4XA4HA6H02hotDmxSUlJQlZWVkNfhiElJSWIjIxs6MvgMPAxCT34mIQWfDxCDz4moQcfk9CCj0foUe9j4vUCp08DggDExACORqve1BklJSWI9HiA6mrlHxwO8Z6FKElJSZgxY8YMQRDGqP/WaEc5KysLy5cvb+jLMKSgoAD5+fkNfRkcBj4moQcfk9CCj0fowcck9OBjElrw8Qg96n1MTpwAvvhCVGInTABatKi/z24kFBQUIH/HDiAiwqfkV1cDZWXApEkNe3F+IIQk6R1vtEosh8PhcDgcDofD4cDpFJVYjjF2O+ByAWFh4u9VVUBlZcNeUy3gObEcDofD4XA4HA6n8cMV2bMGrsRyOBwOh8PhcDicxglVXLkCa44gAGLf6yYBV2I5HA6Hw+FwOBxO46WJKWgc/3AllsPhcDgcDofD4TReqALLvbHGNLF7w5VYDofD4XA4HA6H0zgRhCanoNUZTchbzZVYDofD4XA4HA6H03jhnlj/SPem3Atk/WnDG/vtDXxBtYMrsRwOh8PhcDgcDqdxwgs7BcSZavH/Tw5zJZbD4XA4HA6Hw+FwGo4mFCpbJ0hKvkfS9e2N/HZxJZbD4XA4HA6Hw+E0frg31hjp3lRJt8jR1JVYQshHhJAjhJD1zLEnCCH7CSGrpX/jmL89RAjZTgjZQggZzRwfIx3bTgiZzBzPJoQslY5/QwhxBvMLcjgcDofD4XA4HA4HqPCK/9uauhIL4GMAY3SOvyIIQjfp3zQAIIR0ADARQEfpPW8RQuyEEDuANwGMBdABwOXSawHg39K5WgM4CeCG2nwhDofD4XA4HA6Hc5bAva/WkHrplktKrAON+775VWIFQVgA4ITF850P4GtBECoEQdgFYDuA3tK/7YIg7BQEoRLA1wDOJ4QQAMMAfC+9/xMAEwL7ChwOh8PhcDgcDueshSuylqGe2MaeE+uoxXvvIIRcA2A5gPsFQTgJoDmAJcxr9knHAGCv6ngfAIkATgmCUK3zeg2EkJsB3AwAqampKCgoqMXl1y3FxcUhfX1nI3xMQg8+JqEFH4/Qg49J6MHHJLTg4xF61PeYzNpZgXYRycgM9wLbtgF79tTbZzcWiouLUZCQAADYKFV2KrcRFERFAY10/tRUiX0bwNMABOn/lwBMCtZFGSEIwnsA3gOAvLw8IT8/v64/ssYUFBQglK/vbISPSejBxyS04OMRevAxCT34mIQWfDxCj/oek+um/w7AjcKWe4AePYCcnHr77MZCQUEB8g8cAFJT4RVEF2wMBOQXFwMXXdTAV1czaqTECoJwmP5MCHkfwG/Sr/sBZDIvzZCOweD4cQBxhBCH5I1lX8/hcDgcDofD4XA4ughsGDFvsWOOlBNLw4mbfHViPQgh6cyvFwCglYt/ATCREOIihGQDyAWwDMDfAHKlSsROiMWffhHEJ28egIul918LYGpNronD4XA4HA6Hw+GcPXjZVFhB4LmxBhwq8WJNeRhe3kOwuVTUXu0NfE21xa8nlhDyFYB8AEmEkH0AHgeQTwjpBjGcuBDALQAgCMIGQsi3ADYCqAZwuyAIHuk8dwCYAfGefSQIwgbpI/4PwNeEkGcArALwYbC+HIfD4XA4HA6Hw2maeLzcE2uFyQvLAKQqjjX5wk6CIFyuc9hQ0RQE4VkAz+ocnwZgms7xnRCrF3M4HA6Hw+FwOByOJVgl9pjHhiTuibVMY1diaxROzOFwOBwOh8PhcDgNSbXXK/+8pNzVgFfS+AjjSiyHw+FwOBwOh8Ph1C+sJ7bU28i1snqGe2I5jR6vV8D7C3aiqLyqoS+Fw+FwOBwOh8OxBKvElguNXCurZ7yNPPKaK7EczN96FM9O24Snft3Y0JfC4XA4HA6Hw+FYglViy7yEVycOgAOVwGlP41X8uRLLQUW1mE9wqox7YjkcDofD4XA4jYNqVonlntiA2FFuw/8djGroy6gxXInlwCbNeYFbrzgcDofD4XA4jQSFJ1bgak2guEnjlf35aHNgl7TYxh4bz+FwOBwOh8M5e9DkxHKHTECEN2JN0G+fWE7Tx0aoEssnPqd+mLp6PzITIhr6MjgcDofD4TRiqrkSWytc3BPLadRI4cTcE8upL+7+ejUufOuvhr4MDqdJIwgCPl1ciOKK6oa+FE49c/hMOXYfL2noy+Bw6hzWE/tbSQRXYg1w25W/OyXl1W1rvPeLK7EcGZ4Ty2koBEHA2wU7uNDF4QSRv3Ycx2NTN+CJXzY09KVw6pk+z83BkP8UNPRlcDh1DqvElgg27Dxdafm9+0+V1cUlhSSxLmXRq5EJ4v88J5bTqKn2iA9wqIQT/7X9GOZuPtzQl3FWsO1wEVbtOdnQl4GjxRX49/TNuP7jvxv6Us5avF4BR0u9DX0ZIY8gCPhrx7FGYfSjYXYHT589ghqHwzm78KjCCEurrO1jv645gAFT5uKv7ceCdi0V1R78se5gSO4PXgEYH+FzFNCiru5GrAk24kvnBItqjzjhvUGSXzs/PgOXvbu4xu+/4oOlmPTx8uBcDMeUka8swAX1HNart7hXSJtOhcXN52xj59FifLBwJ7xeAceLK4J+/sNnyvHqnG3454Iy7DxaHPTzNyW+W74PV7y/FL+sOdDQl+IXt0Pc4vm8apxUVHtwWtX67rPFhfjkr8KGuaAQ5rXZ2zD2tYV4ZdbWkFQgKOv2nYaX524FlWpJeB3kLgcAlFVbu7+r9pwCAGw8eCZo1/LyzK34xxcr8ef240E5X2llNY4Fac/3CEAEEzrskjRA7onl1Cm3fLYcV32wtM7OT631wfLEFlVUY+muE0E5V0Pj8QqYunp/rTedI0XlyJr8O2ZtbDwe5sJjJXhxxpagCwRVHh0lttoDAHA5QmtJKq6oNvRi1acgcv6bf+KZ3zfh2Wmb0POZ2dgUxE3X6xXQ57k5eH3ONgDAvpPWvXZTV+/H6r2navS5WZN/x0szt9TovQ3JjmOikn/gVHmdfs6+k6W1PgeRivbRXuBGVFR7cOAsCqujnCipRGll3ecLbztchKzJv2P7kSK/r/1rxzGs3XcKAHDNh8vQ9cmZir8/OnUDHvcTHr6GmZOhrNAFk1dmb8Wmg2fw2pxtOFZsPZy0Pvm78ATO/e8ifLhoV0NfSpNh74lSlFSI8kNPt6jslfpZ7yikDlrKHjwt7gvHS4KjeF709mLkPTM7KOfyeAVFNV+qxDbmzrqhJTFydJmx4TAWWQx3mLv5MNbvPx3Q+akVi+51VR4vzpRXmbxDn5dmbsG3f+8N+H2hzP/+3IW7v16NH1ftr9V5NhwQlY7Pluyu1Xk+W7Ib09cf1P3b839sQvtHp1s+148r95n+/aZPl+O/87YHpNRYoVxSWFnoJuQMMSX2kncWo9/zczXH958qQ6uHp+GHFeb30B8er4BDp/0rQ0XloqA9ff0hAMDmQ+ZK7NGiCtz86XKcLq1Ch8em47r/LdO8hnp41HO9OoCQjLu/Xo0Jb/5p+fWUSknIeGPu9oDf29BUSVb+MHvttv4Dp8oMFagZGw5h4L/nYf7Wo37PIwgCLn13MeZs0hrIqqQom/Iq7Zxj+b/v16L/lLmorPbilVlbcc/Xqyx8g8ZPj6dn4bz/+n9+T5RUyvOlrNKDUxWBebbnbD4CAPh8yR4AwKnSSkOjwRXvL5WviTUG/7LmAH5fq7/2qzmfmZOlleZjHyoM/PdcjHttYVDOFWzl5FRpJR6ful42tprx0aJdyJr8O4p0ZKhdR8VQzi2H/RszQpFdx0os3YP6wusVMOiFefjHFysAAFFEnJdWwonLKj2yMSGYdh6HtC9QY70gCNh+pObRTUE1WAuAg/G60hTZSqHxqrGhJTFyasyh0+U4XVaFSR8vxzlvLNL83UxYrlLlxN7/7Rp0eWImBEHAJ38V4q0Ca4LmG3O348Ef1tbwG4Qmh89IVrVahnPQJYK1ih8rrpDPb8a6fadlYffRn9fj1s9X6r7u3fk7UVblsWx5v+/bNaZ/p8qmnodeEIQaeyL1QhtLpO/nCrNr/taQGG0g2yQhZGoAIaVer4Bf1hxQ5O+8MH0z+j4/B0eLrD1fVBmpYsKlSiqq0fGx6Ziz6TBW7D6JOZsO462C7Zi58TC+W7EXpZUeFGwRlaEVu0/iTHkV1u47ha5PzsRvaw9ovBZ6nvJgUx/er7rgm7/34E/JoBhmr9322X/KXFxpEGGz65go7H65dDc2Hffg2o+WyWkfak6VVmHZrhO4++vVmr9VUiXWj+A5T3o+jhVX4LU52/Dz6tAPlQ4WegKmIAiKdbTH07Nkj+jl7y/BPfNEBdSfcYDSLC4cALBDCtUf9coC9J+iNY4ZUVntxV1frcLtX+qv/WboVaYWBAHP/7EJGw8ET0CuLftOlgUtrLO6BmvY//7cpXAArN9/WpZ9Xpy5BZ8s3o2pFubFp4sLAQBP/LIRZSoDQoU0H/XWjjmbDhsaqEOBI0XlGPpiAZ6ftjng9x4+U255rgQCNcBSI2+MFCprxRNL11gguPVgwmzi2HokY/AXS/dgxMvz8XehfnTiBwt34r5vVwft883wCIAdQMdI8ftST2xFIw7W4EpsE6Hv83Mw8uX5hn9/aeYW9H1+Do7oKE3qwk4016uk0oPHf9mAF6ZrQ/4EQfDr8b3zq/q35j83bRM+r6W3k4WubbWx7AqCIIf1seQ9Mxt9nptj+t6i8iqc+99FuOur1ZY/74lfNuDZ3zcGtGlc+cESHDpdruudrdIRnu/8ahVaPTzN8HzVHi8e/Xk9Vuw+gazJv+N7xmOpd12lkifWVUvFoK5QKxDycxHAOb76ew/u+moVvly2Rz42S/KenS7Thr8dPiOGoC/Z6cutKZPuXWlltSyAFh4vQUmlB/+ZsQUXvf0XbvhE9MACQGx4mPze8ioPLnr7L9z48XLM2CB6dGdvPIwTJWolVvyup0ur8N+52zRFM/RYYMFjyFLSSLxDav7vh3WyF6Wy2ouTJdbDFgVBwK5jJSiuqMbVH4rKK83JUpMY6QQgRuH8++9yzN96FIXHS/DAd2sw8N8+5edMeZUczl1cUa0xYFVV+3LNZ2w4ZLgmRLnEIDMrRrX6YsfRYjzz20b5O+0/VRbU9AbWkKKe320fnY4L39avFUDv93PTNqHdo9PxyqytWLXnJKo9XqzddwordmuF1YOS15Uaq45I/1d7vLjs3cV4bOp6AMahv/R5qQlUwFccq6jGu/N34ooPlvh9/76TpY2u0GKliRKz6eAZXcX+yV83KhwA57yxCC9MF5+3QHLK6Qj+sHIf3pyndADQ+ejUieK44ZPlhgbqUGDtXlHe23IocC9yn+fm4JoPtdFAtUW9d8XYxPv73Q7/ns+9TLpGMHU4u8oTu3K3WDhzz3H99JBnft+EH1f6j/QLRvqS6IkFfu4iYEs/LyLt4jktphCHJKEpMZ4leL2CQqmc+N5iXK8T9kfRUyZYjph4c+ZK4UxHJY/irmMluP/bNajyeOXwQfUcMfMOzdl0BOe8sQjfLTcOH/61ngufVFR78N6CnfjXz+uDdk56S0gA6sr2I0W4+dPlqKj2YMuhImQ/NE1WRAKVv+hmrCcYGfHJ4t14f+EuPPv7JsPXqBWTP7cfR9/n5+C+b9fg/m/X4IulPkPA5B/Woai8Cp8t2Y3vlu/FodPl+E0nrG3GhkOYKSlH+06W4bMlu3HR22KBr8+X7EZFtQfT1x/UDUd6b8FOANbDiX9dcwDT1tWt1ZoVKEsl4X/MqwvwyV+FssHHZvJYVHu8mL7+EEa9Mh8er4AjZ8T5dJSZ876P0J6IhhL+HxPdQJWQJ37diHGvL8TGA2dgkwwkrDWZhj5GOH0ZMPR+LSs8gTfn7QAgKj7qKANqUHj+j014ceZWzNt8ROOZUvPcNONnTY/SBu5bumTncYWA6e/7AZANA5Rnp21C96dnWf7M/87djqEvFqDT4zOwcJsvPYQqRbuPl+BbaT2t1FnrV+w+ie9X7JPD+7cdLsIjP61XVPS+6dPluO/b1XKrKipIHSmqwC2frcCUP/S9KNFuqsQGFnEiCAKyJv+OnIenae5PbbnlsxX4YNEu7DkhCn93fLkS/523HZt1hOgjksHHLPy62uNVRsIU+QRgds9YXngCldVeXQMDu3bRNeu1OdtwwVt/4ZqPluG8//4pr3nvLdiBP7cfw9GiCjwv3fei8mrFNXZ/ahaW7jqBTxfvxtbDRQrjDru++asxUVbpwehXFuDvwhMaYVdPYSuXPseKcvbwT+sx6ePltQqJrG9KKqtReEzZrs3jFfDu/B0Y+9pCjZxlZqir9gry3+0WrNnsOlyiijgpkcYi0CiOp37dWO/ylBrqucxKiqjR+5cZeCJrw8lSpRIbLSmxSw5X+JWX2TSpQOWyz5fsVsyHvSd8hp4wSSio9nhxqrRSnrszNhwyTdNjn8Hp6w+i3aN/YMMBn6PIX10DK3gEwAEBYTbRC3tdOnB5sgfXJ4SO8TJQ/M4kQshHhJAjhJD1zLEEQsgsQsg26f946TghhLxOCNlOCFlLCOnBvOda6fXbCCHXMsd7EkLWSe95nei5rJoor87eit7PzZHDfJfsPCGHdemhrlJohaLyKni9Pk8gnaz3fLMaP6zch/X7Tyti9wHAIU1Cs4po9Fq+95MT+Pwfm7Bun9Jju3jHcbw6eyvu+3Y1nvx1g2wFf33ONjyvEob3nSz1m7sJiJ7myT+s8/s6NSv3nETW5N9x8HQZ1uw9hRemK4W8mnhi/++HdZi58TCmrz+Ej6ScC2qNEwxsfp/8VYg/tx/DtsNFeH/BThwtqkBxRbVcdKvaI+DGTwJrP6PufzZn02F8tWwP5mw6LHv09Phh5T488tN6+bsv330SbxfswKM/r8c/v1+Lvs/7vMesUHjLZytw82diboo6r3L13lNo+6/puPXzlfh6mdLwcaKkUt7grCqxd361Crd9obVal1d58PWyPZa8NV8s3Y2F24znG1t8o7TCA69XwOZDRXj8lw3Mc+F7MDYdPIMVu0+iuKIaJ0oq0fqRP3Dr5yuw9XAxisqrdJ8hKvAs0xFSaTjSbsaCq5a1Zm48JIcobj3s21T18l31wseLyqtxUqV8UKGXPiNnyquQ/dA03PvNaum6BFR5vAphOdypDQOftu4g/jt3m+b4lD82Y+QrCzTHg8XLM7fIa8a783foFtOZ+N4S/GfGFvk7ZD80Df/8XpkKceRMOe77ZrUseO6tZaGlJbv0q1XSnOKRLy/Ag9+vhdcraMIQAXFdoczbfAQjX1mgEWxnbzqCH1fux5D/FOC+b1fjSJFSONHLb1+775TsXf76b1+UwBtzlGP3zvwdihA8wGfo9HgFTJkeeJihGVSoo49ZseRRVM+jbYeL5DXpMymUE/Apo/Q6Wz/yhyIK4hhTeOXrv/fiVGklNh08g4vfMa6sP8rkuf1rh3J8n5u2GVd+sFQxBmfKqnDtRz4FqohRMG/6dLnCs6+3vrH8vvag/JzvOFqMLYeL8PjUDRpht7i8GuVVHmRN/l3O4afKspUwSro/U2PL9PWHcNOndd894J6vV+EuKZpr44Ez+GDhTsvvveCtP5H/YgFOMUrO7+sOysaEvwtPKuoKsBEKbOQLICoPHuk+2VVWy9LKauw/VYYVu31t6thbalM9rKekdVnPSKXHmr2ncNOny/HRn7sCimy79N3FNQo9B4AXZ2xB1uTf5bVREAS8M3+HvM/oGVznbj6M12Zr1/ryKk+dFECk51SHNkcylXf3njBfr/cpPLHWr3HH0WL86+f1GPe6L3/73P8uwqSPl4uFkyQDRaXHi/P++6csh83ceBgPSWv4R4t2aaKX2EJQz07bhPIqL8a/7osMsBJZd1xqVWikLHtUObFRDuD57GrE2huvK9aKxPgxgDGqY5MBzBEEIRfAHOl3ABgLIFf6dzOAtwFR6QXwOIA+AHoDeJwqvtJrbmLep/6sJstMqVKt1fLZp0qrdC2GrLWGZcfRYnR+YiZu/XwF9ksTlk4EaoktrqiWFS2vIOaFUMVJrzrmM79txC2fLZetXP4aRb87fydemb1Vcezy95fg1dnb8OPK/fjfn4Vo/cgfEAQBL8/aincXKDeqy95dgvu+XSNbwNfvP61bEOONudvxk1R8ie4bR86Uo6Lag6NFFej21EwUntYuAp8vFj2OC7cewwVv/Ym3CnbUqHBBRbUHz/6+EafLfGN099ercUoKE42PEMMDjWSGx3/ZgCs/WIqRryzAs9M2odezszHy5fmyEFZUUY3Zm47Ir/9p1T5kTf7d1LBBr8PjFfDDin244ZPleOjHdbjhk+UBe8K2GVjhyw0s+WZ5lauYyplTt1cqwtLDA8yJVSurL0zfgsk/rkOBn/DWQ6fL8chP63G1FOKkp/R+t9xnPCmprFYInHqe2LGvLcRFb/+FTo/P0IRclVd5dceenufhn9Zh4nuLMWDKXGRN/h37T5VZyut6dfY23PGlVrhZI1U39ZfLvXTXCfyhysOiSpvbIY4FVX5/Xn0Aq/acxNjXFqDT4zMUgpjeuN32xUq8OFOc+0fOlMsC5TvzdyhepycQz996FLMDqOS9/1QZNhw4jd3HS/D63O3ymvH8H5tlzxjl4Z98yuCKPSflsVcb5B7/ZQN+XLUfV3+4FIIgaBRCPXYdKzE0oJiFOB45Uy7fz0qP16/AYqV4348r92tSQdTFqMa/vhDn/fdP+dksYIyoL83yrdunSisx5Y/NuOqDpQoPRP6LBfLPwSz4svHAGVlhrvJ4MX/rUXmfXLrzBNbtO42CLUfw5/ZjuO5/f8uKLv0e6/efxsXvLMbL0negue2/rfE964u2KYsljnh5PsbqFBZiI5J2G4QEqmG9QOw9LTJZd22EBGSovv3Llbjv2zUQBEEuJlNUUaV4vgGguKJKNl78V4o+oHOc3i+PV1RU1M/V2n2nZOWcPpO3fr4CszYelhWJqav3Y8yrC2oV5q333p9XH5BTm8a9vhDP/L4JgiDgji9X4tJ3FmPLoSKF8shC96UzZdVYsvM4TpdWyUZByphXF6LwWAm2HS5SRJSpiy9WVHlkmUitxF7w5l8YMGUuLnr7LzkSgTUUfbF0tzKiR/LMfrp4N06WVKK8yoO7vlqlCDVdXiim4Bw+U44r3l8idzRIiXah2uPFfd+uVoxTlceL9xbsUKwZy3ad0BQB+8fnKywVBntPMhZQL/LLs7Ziyh+b8bVUtLO8yqORQyd9vByvzN6Kz5Yov2+7R6eb1knxeAX5nuw9UarZN5/8dQO+YgxPR4sq8NCP69Dq4Wn4c/sxLFeNv5NR0HYeVRrcKqo9uOWz5fJawI7T6bIqv3Up/vfnLvy4ch+GvySm7bHr+Slp7HMensYUgPPKUSSUHUeLcfB0GZ76bSOu+UgZDcB+vp4R019dA0CMkHy7YAee/GWj5m+CIMAr5cQ2JRz+XiAIwgJCSJbq8PkA8qWfPwFQAOD/pOOfCuJTvIQQEkcISZdeO0sQhBMAQAiZBWAMIaQAQIwgCEuk458CmADgj9p8qVBGEAT8tvYgxnZKkxdG9fq9/Ugxnp+2Ca9O7AY3Ixz+uuYAXpuzDbPvG4zWKdHycdZaw0JDymYywuDafafRIiFCtrzf+81qubCLVxDw5K++h//eb3yem1s+W45tR4rlhWHGBvGc+06WIWvy75h+zyDD77xo+zHM23IE1R4BIzuk6r6GLgwsXq8gK8klFR489/smfCIpnYVTxgMATpZU4re1Sm+E025DSUU1ej83B1f1bYGuGXE4VVqFWbsFXKf6DLfkQSqr8igs/q4o8bhVC93U1Qfw/sJdqPLohyXSDeGvHcex42gxcpKj/J7z4OlyQ4vtOwXiRtP1yZkY0T4V/XISNa+Zv/Uo+j43Bxnx4ZrF/ufVgVVbps+SmtLKaoQ77YrvfLSowrTiLnuun7ZXYXhvn+BGW+yc88ZCtE6OwqsTu5te16NT1+P+kW0RL+UQ7pTan1T5Cb3ZylSH/GjRLjz120b0yU7Apzf0hktS3tgwvMNnyjGJCdtcK0cX6Lvo1feLDSsrqfTgeHEFEqNcit7MS3b6vLHjX1+I+0e2Mf0OZlAjgpX2NwtVwjz93u4wrY2T7SnMenzUSiwrUBVLc9EdZsPmp8dqzqnXdop6q+g898cAqUjOp5N6y9dOr6+sUgzr33m0GNnJkfhyqU8ouuSdxXj36p7y7ydLKuVniSprK/ecwvN/bJbDR9VUVHvw5dI9aJEQgRs+WY7XJnZD31aJiHI5cKqsCs2loj5m4WAHmPlSUe01NA5RWAXTDLVi6WDCGAVBkKum++NMmfhM7D9VhhEvz8esewdj3f7Tysq3gmgIOKdLumLfouw8WozESBdcYTZZyXznqh649fOV+O3OgejUPFZ+LevlUHsvzdrLUKMQ9RpRbwwNO0yQxvbQ6XJZwaXotWXJmvy74WeZwaZy/GeGtTZS0W6HrFwGwp4TpfLzsvdEGfaeUK7tReXVcu4gzX2mn0PvV7tH/5DXDDrnVu89pag8fry4UuHdKqvyINLlkAuKiV6omgXSWfUyVnq8cirL6FdFr/jXN/fF34f079uB02WY+J5x3u/Nny1XRLAAQHxEmOL3impf1AmNUqus9uLb5XsVVYZPl1Up8tUBUZneeawESVEuXKnKP95xtBhlVR78suaAoo3bi1LbMfXaHWa3YdPBIvy4cj/W7D2FaXcPgscr4OdVB/DctM2orPbijmG5mGqwt/+x/hD+WH8I47uYr6lhNoJKiOt2tDtMU0H+p1X7sengGXx6Q29sP1yM/q2T5L89+vN6ZCVGYFBuMsqr9Y2DLP/6eR2+WrYX/xrfHs9Ic4Zd8//3ZyEA4PLeLQAAd321CoslT/mCbUfhtNsUMpIDAv5ueQi9dqdJskAq3i7YgbyseMS4wzBjw2FsPHgGCx8cpniW352/E+/O32m637CyMeW6/y3DJT0zFcfo99UrXrj5UJGi28GFb/nm1+nSKry/YCeeNUjNsRL6f1ya53oKLzU8OIKaAdzw+FViDUgVBIGadA4BoJpJcwBsrOA+6ZjZ8X06x3UhhNwM0cOL1NRUFBQU1PDy657i4mIUFBTgTKWAimoByRGi8PD3oWq8uboCF+eGoahYfMgf/3Yx7urhlt/7yJeLsPSQBy98W4B+6b4h+vIvcTH5dvZS9Eu3Y/cZL1Ye0bfOzJs3D7fN1lqNn/ptI16b5Zsk7MZ9psg454UqrUa897vxRlFZ7cX1/xMVgJeGhOu+ZucxrZLEFg56/5cF+GSNz1JFx/63nZX4fqvSel1R7cVbP4l/X7hxH8gZMU8T3ir5fb/uqESVF6iQFtoNm30Czez5fyI10obC0x6s3Sme+6+129Da4xN+1WzcK77u478Kkej2beQHDosKwv4jPgXloS8W4bZuvvGePXee4Xn/WqKfI32SGavZmw5jtlQgKC2C4FCpb5E6dKYch3SKtTznp8KgnQCHGI934VH9Z2POgj9RVi0g3OH7zr2eNe9pphYWf1woeg6cdmD/wUOYPXce1u8vxfr9ZzAhzdzj9PmSPdixez9u6SrezwNHxGteuXY9nEeNv+OKw74N5qnfxM1p6a4TeOiTOWgdZ8eP2ypxvMi3aVzxvrKwCvVonDh+THcdmrNCuREt/GspCqW5+uGiXfhw0S58PCYSZeX6yv6p0iqs2mhNUTGD9d5b5btlu5DnPoRPFpt7nQoW+IxnZ04dV9yHU+W+ezd1lihslld5Dddso+P/979ZKK0WMCEnDAKAokoB8W7jAKIlK0TDGxG8mDtfUoQEryzw6onYt0gh8ADw2BcFuKiNqOgcOOlbk4wUWAC4/6M5+G2nbw16c8Za3H3S9/0/HhOJ42VerN2njSBJiSA4Uipg0VLfNdz07hzEu2qmDKhRB+4cOHQYP8+YiyoP8PYa/xFAD308CwOaOXCkTClA6YWDL9l2AD+u2o8Xf1+LUVlhGNZCVAZ2n/Fg03Evvt5SieRwgqNlvot6dupqAMBrvyzBle1dutfwy4IVusf1OH78BAoKCrCsUPKGnDqq+X3G7HnYX1L7/DIzPv6rMPA3lRdj2QrrIaOUOQuXoFLn67SMsWH3GS/++f1aXN9RfKary4pQUFCANUfF9c/jFVBQUKCInKFzcWahcl99ZfZWRVTV1W/ORt9mPvlkTsF8hNmAFYc9yEu16xYzVFPhEfDxhgosPuCTY9RrAfv7XR9o9xYzJfXXheYhtWoFFgBOHD6IggJfSPGCPxfj8BFxz1q8aj0e+3GV4hmmvPLTIl1P+5Ily3C41Iv1+5XzbcHSlfK++Xehz8i8cZ/48/szV8Mm+O5LZUU5fpgnygNniksx4t8zsbfIi0vbiPNs3ZadKLDtx93TfevWZ7/OhYMAW08a318N0mfOXbgYzaP019rNh4rQ+1kxhP+BPLfib1d/uAwvDQnHmeJSqFfcn6fPxd4iLzoni8/NV8vEa32GMfroXd+sufNwuETAniO+/fLogb0a7/ry+Dg0CweiDwCL1m5HWvke/HtuKRw2oFWs+F32nijDvHnzsPuYdn9jP1st1+hRsOWoItKCZd12Y3mRspLJu7/CoFI9ZeHipSiM9o3HxuMebDzuwYW5YXhnTQU8AhAn7RvHjx7R3MdKaY7viYpAAXvfbDYgKgoIYX3KjJoqsTKCIAiEkHpR7QVBeA/AewCQl5cn5Ofn18fH1oiCggLk5+ej21Mzcaq0SrbwPPfKfAAV8EalwOk+AZSWYeURDwYNHgJMF5W2tLRU4NABuBKao2efVsAccbEgDieACnTs0B67iivx1GKtZYjStfcAlM/QLzpy2qCetjs8ApCUozapUboLvBHJzTKBbf5zVjxJuQDE8JKHx7Xzq0xR1AJXwZlkPDC6LWae3ARAu1i8uVp8fY+cdLRIjwE2bkKUKwz0mbluumhhv3FgNrB7F2JSMoCtYlh1h649sf9UKZ6Y7tsA5+6txnNXDUFarHLBphxctgfYICpjx8t999cREQ3gFIgzHIC4YAvuGHyyyyH/3r13f2CmvuLXtXsP4E9tH8MjpfpjWG0Tn5Haoo5k1ROSAODjbWHYePAMcpIja/xZc/eKG39ydDgSkmLxxkafsD9o8BAcLapAWqwb87ceRfv0aCREOIHpvmCNmIQk9OzbFV8v24uw8P3AyTNontUa+f2yDD/z1Kr9wKrVmuOJaRn4z6Jdlgs9JCQmYciQnqLANt3ntTljiwHgM1y069wNR7YeBXb4Qml79RuIsL8KgHL98fpxW3AL5VjlRLmAV9f73xp2kGYARGW+WVoq9roTMKpDKuIiwtDhsRny65KyOwCLREWkbfc+wHRtaxHNWi7dy2+2iMLjiF4dMWvjYfy29iD+c3EX/Hv6Fix9eLgvvE96fWZOG2DNOkS4nOjZqy8wbx7sdjvgFQUzf8O64YwTt+R2R4f0GJRMN66+zbLmlAOAb6x2q1Jwv9obJXn3tUrsa1f2weXvL0GL3PbAclGBWXbIgwu7Nwd2Kz0qA1snWe4XPqJ9KhZsO6oJYV5x2IMVh633ff5qcyWm7vTg2v5ZAHaYvtbpCgeKS3GoVMCnGysxcUQfdGgWo/BmqoX/vNbp2LtqPzzhCcjP7+X7AzOXPt1ovQJ0fEIC8vN7Y+XMLcDm7ThFopDTpTtWVu0DNm+DKzYJt8w+hHO6pAMInXYmMW4HEhPj0aZDC2CFdaUdAA440vEBk79PeWB8V9nD+ecxJ4BKZKYlIz8/D8VrDwArVkEA0HfAIGC6r7/4dwdiMLZTGiJLTgGbteelrDziURjRe/cdgA8X7cKbq7fjtYndcH43Q3+EzPcr9mHxAWWu/vyiZNyW3xqYLu6JGR3ygOlipNaMwsA81V9ssv7sUCISUpHduTUwvUD8zCNRSEgkwJEj2FwWhaNl+gWKftquv1536d5TjPxZpfyeiZmtpRBSpafzTKU4R5Yf9iA1xoWiKqkgYJmAPZ44AEdQVE1wVDIsZbVqBWzdgoTUdHTs2Va+bwDw6J/auZ7atgfap8cojk18bzGOF1firSt7oGS6aKBq36U7erSIV8xFPSpjMjTfoSqxNarLtwFQGmk/2enCqj2n8MColrhjWK7uuaOyuiAvK0HMxZb2+RnHE/D9in1IjnaByjd6+2P/U6eQVS4gNyYG1a4YeJMzAayGzWbDVsaw+OXeaJRVa5XYHn0H4I4vV8FOfG3Hnp7QCVf3ben3Pqj560Bwixd27tYD3TLj5N+vk9bVeyb0w7IZ4phlJ0UCqEZcQjLy88UIo+KKanR6fAaeOr8jgA1oU1qKfBsz/lVVQHExcNFFQb3e+qKmSuxhQki6IAgHpXBhau7fD4D1rWdIx/bDF35MjxdIxzN0Xt+oEQQBP2+vRMtOJXKs/EM/rlPE9hdVVMPDaApsoR0a4lXp8Spi42mIHiEEK/bo54JQjHpSmcEmg4/v3AyV1ftQ6CcH6LWJ3XD316st5WgBkPMj/jW+PYa1S7GsxKr5+K9CS9Zup90m39sZu6tR5fEqKgPS9gNsUY4PFu3U7QfX9/k5huEmRvY6WuFyB5OfcaKkUmF5VReUYfFXYU9NcUXgik+b1CicKavW9dj6g/b123FU60kPBIeNICY8DFUeAWuYQmBTV+/Hfd+uwX0j2+DlWVtxTpd09MpKULzXRgie/HWjImyJFiuq8njxx/pD+HHlPhQeK0HBP4cCgDIMkuH9hcZCmx6zNx3GTZ+uwJC2yYrj6gqqpZXVms98dfZW02qw0S6HbNl3OmymOZXBRi/MtGVihCIn8HUmzGzjgTOYuvoAZqw/hGPFFYqcKdZSzYZSsZRWViPC6cCkj//Wzfuv9ghyGCGdL0eKypEW41Z4fM5I+Uhhdpu8XppVkFaz81iJbp9tM/aeUAqK6rBhsyiWjHgxMuV1VRGlH1ftR0Z8OEa0T8XHfxWia2Ycnp7QCUOZHFQzot0O9MqKx5/b9YtJBUJppQdvF5grsIC2bdK41xfilzsGmL6HhjuXVXqw61gJot0OJEXpe2StMH/rUQiCIK/5K/ecwqAX5iFOChH9Y70YlaMXwt6QZCdFoqTCgzmbAr8uPQUW8IUOAz6Po91GsPdEqaJ4UbtHpyve9/vag5ZyJ9U89ssGudDYcZ3QbMrRogo47TbERoTpzs3//VmoyA0eYdI6sC74fsU+xV4yb8tR5Evr+5kaFNfcfOiMYo9vFuvGgdPlpmHxFPX+QLtMsOkG9F5/tWwvvlIVTdTj8V824Lb8HOS3TZGP0VQWGpUEiGlVVlqn6eVxT/5xHa7p4NQcp/LQizO3ymkbai5+ZzG2PDMGDzL3jD6v/vJW7YIXAEGM04YTFdVyhW/13mk0/99fsFPznR/9eT1W1EFl5UCh+9nRogpFOhTbQovWEWDDiWnbNJrWYG9i4cQ1bbHzC4BrpZ+vBTCVOX6NVKW4L4DTUtjxDACjCCHxUkGnUQBmSH87QwjpK1UlvoY5V6PleEklft5epRA4WAUWEKsGVzPCGltFj+ZiFZdXy2GiAHBGeliPnCnHaoP+ghQ2RE6PoSqhG1AumAmRYbhtaGv5d6PIoPO7NcdleZkBC0tllWI+TV1T6fEqlAcqxFCKJKWPbbJupaH53hOlqKj2WGrNoUat8NGNSQ+9PDqnSXl+s1y6SJ0KsgBw48BWOLdruuH7/BGnyiGyykAmlybcaUdxRZXieQd8xhiav+YVBM3mbyNE04ON5sB9uGgX7vpqFQq2HFUYZMyqM/ujbyulEj1702E8qmrrpN7YjxVXalpd+FOY++YkymP91hU9NHPwxoHZlq63bWq04nd1zpdV2qjOwyJvnlUehQIf5XJo1j49Ojw2AzuPFmPu5iO6bVLu/05bWfmhH9ch+6FpCkMPve+E+OaOUU9aRyDabR0RI/Xx1WtfcqasSlZEXHZbwEXPUqP1o0bqCj0B019bFna8hr5YgLxnZivyxGrCrI2HNYXlTqkqcAejXYU/HDaC4e1SFMduHZIj/5wS7VPWI10OLCs8gW+ZYnK1xaWT015a6cGgF+bh8yX+52SgsJWy1QXEWHo9Oxv9pojRZepCSTI1kLOjLcoTGfHh6Mp4tKxADWt7TpQixh2Y3KI2Uld6BMljFhwC6VUNiEWfrpPSu0a9Ml+uJwAoiyEVV1Rrig/pccpAsV9tkOpGeeQn41aIZZUehRxmtTtEszBxXkfYCYrKq7HdIA3K7HP1+NmCTFjXvDB9M7YfKcbtX67ElUzo8Uwdhbyiyoui8ip0fmIGpkkGKars0jZETQUrLXa+ArAYQFtCyD5CyA0ApgAYSQjZBmCE9DsATAOwE2JswfsAbgMAqaDT0wD+lv49RYs8Sa/5QHrPDjSBok7FOs3F1VRUexUeB72iEj+u2q/IFaA88/smv1WB/ZERb97ryx1mx6V5mXLRE0HQbkz0b/1ba4sKqcNV1AzITUIEo1R1C3BTsUp5lQeny3z39i5VAYlA+yKWV3lwprwKg16Yh8enbkD2Q9Pw4swtmLcl8NxDK+h53168tKvua5OiXPjyxj6G5+rWIg6PndNB/n1Im2QUThmPS3tlIi1WP1f53hH+iwsNYJTRQOid7VMGy6s8Go8WAI1lmRaYYTldVqXpQXe0qAIvztiCzxbv1rweAMp0ii5YoXDKeL9zR48Hv1/rtx2VGqfdhphwUWCKcjs0Ic43DMrGncN8hqbrB2TJP791ZQ95vo7vko7JY9vJf1v56MgAr16klYngRQ1yiVFK6/p1/bN0Xq3PMJ3ibmZQDy/b7/UtyWN46Ew5bvzEvA1IbLh/Zf7rm/sGdE2BEmUieAvw9W/1CgKSo10Y3VG/MJ7uuQMUts24sId+aOizF3TSHHv8XN8aU+RnL6RKLLufrfRjoPXH8t0nA45gqQuSolyIVRmMJo9th3euEjsPJkQ60am5uE+qlf03Lu8uP59X9mlh+TO/vaUfureIAwBEOh2a9ftwDaJtaoLdphUt/y48gas/FIXv0koPSiurMc/AgPvjqsAD8swqP7MsfHAovjGY10bKJd2HSys9SDfYK1nuGZFr+LdqrxcPj2tv4Up93JafY/g3dS9aq7w6eyu2Hi5WzD32Z6vRfOqKwn2kfX3tsZobivUM1UbQYm3nt44BFVHDHQS7jpVoKhT7wyiqwR96461n7Pjf9b00x6yycs8pjHh5vqYdn16UTEW1R2rtV60pAhhnb/i1MZj4VWIFQbhcEIR0QRDCBEHIEAThQ0EQjguCMFwQhFxBEEZQhVQQuV0QhBxBEDoLgrCcOc9HgiC0lv79jzm+XBCETtJ77hBqU6c9RGA9LlRRG9c5TfGa7UeK5UpiAEyruQaLZMbymxbrxoRuzQCIQu61/VoqXkv7daYzOaCpMUrLfm6KWGG3byufEkvXGr3eYGF2gsIp41E4ZTx6tIhHhNM3yQPxDhl5FPX4Y/0hfPO3UhFiK6fuPl6ia+W7eXArDMrVKmftHp0uF6miJeffnLfDb+ErM8w8LGd0hEAji/PcB4YoKgUCwBcqpXbSwGxsemoM/pw8DP+7zregXtc/C/8c3RaAcizuYJQkNcPapeDxczsgWRX+R58Lf5j10zOC9up8+vyO8jG235/vWBH+O2+7xtjzVsF2bD9SLHv7aOXYQLDSWxEIgmGGQA6tdOn0z02IdCqOp0nzs1dWPMZ1Tpe9UWnMvL1lcCvdgiuDcpNQOGU8/jc6Ar/fNVD3clpbGNcol3Ie61XNtkIg68GrOv0JBQF+w+NjGCX2KeZ5YqGKRG1CXM0w9EQBuGFgtqyIVnm8sNsI3r06z1AAV8O2bjMybj13QWf558t7+zKB2MuKdjnw4Oh2UPPLHQNwZZ+WmuOskYcNT9SDekittq6xwsHT5YbKkVWocmmF2fcNln9mhdkot0PX20/3Vq8g4Ptb+2PdE6Pw6sRuitcMa5eCAZJxmKZPpMW45fcmRemHYrZOicJnN/TBy5d2Rafmsbh7RC66ZviqPqvTHACgS0asrAgEi7fnb9e06Hvilw2KSui9nplt2cNlNk9Yzu3azO9rCCFwOWxyKD/LBIM83qWM4pAY5cTc+4eYfsZdw4yV2KpqL9qkWtsjAXF8HhzTTlFFnUXd59sqeusmC60M7A/1M/XNLf0se8WNoonU0XBmo5+ZIK434Q6bLFRE1LBKdk3RM4iufWI03rhc2V1haNsULHtkeECGqUAZ0DoR5VVeQ0dX/NnmieUEDqvEllZ6cF7XZnjrSuUCpLZQT/lDv6y2EWz7DXZCXJqXoXgdteR/f2s/zHsgXz4+ODcZ53QRF/y0GLciTxQAshJFiyQr5CeqBDnqRWAFPGrJ1GsNo9Zr6cbUPC4c0W7tIvDx9b3w251agZoNc7aC+nPZvpjHiivRJkUbJpkc5cIn1/fGE4xXgWLUm64mDMpNMg1tZT3H53ZthtEdU9GZEUpYYlT38Lr+WcjLite8LtxpR/O4cNgYwcBuI7ioh/jssG04WOFBvel/dF0vXD8gW+NNumu48QbOwiqDekqaHlTYZZ8XvSgGozDGF6ZvwYiX58s5yXohd/6w2rzdSDEKhIt7imPCzrE3r+iB6/pnweWwy+2AXA6bHO6rNghkJIQbFqqade9grH1ilCwgEULQMlHfG9G9RbxYcAhABybSgjWOqVsLdW8Rhyv6tMA/TDwJepwsrQrIWFUT2LtEn32Wx87pICsh0QZeTSsFzZKinJh6+wDFWvbG5d3xmkpxUXP38Fz5Oa9kwmPDLdwXAuDu4W1gI6JBjjVufXdrP/lnNhWgWWy4/Jyxz9A9I9sgLdaNj6/vhUeZSA69NjoAkJXoU2L18ptZ2F6NweLXNQcULYvU+IsSSox0IkUnFPvqvi2x5vFReOtK0ZPaPC4cj5/bAa1TojEoNwldM+MUvZ1Hd0zVVb7onPUK4j2MdoehT7bS2OMOs8upIZEuBz6Z1Bs/3z5A9nLdPTwXG54crTl3eJgdUS4HLuyRIX+2vyrB6bFuPHmeb61iL7lVDQv27T1RpmhJBij3FcA4zF+P+yy2G4tgnskBOhFiFEIIFj44FO3SfHt/18w4hbNBz4gNiHtiKz8t8mw2ojASs1R5BcM1Vu+zqCGaDT9n2XZYa5gAlOtyfRNjIcoFEB0o/vCnEFO5xO2wiV4UQhBhUlX4cR2ZLlAu790CmQk+eYhVYtukRsnzplmcbx2hz0NKtLvOUuk6NotBXIQTFdUeRQshljiuxHL8oe71Rr2xeh43mptB8/VuHtwK7dNj/FrqMpgJxG6UvbMT0Znpt/fppN6YNCAbPVrEI8rlwKDcJLRKikSn5jEY3j4Fz13QGQ+MaqvIz/3ixj7ydSVEOuV+kWprU4Q0EdnP/8eQHNwyuJUitJEKvHpO9u9v7Yefbu+vEHwA4J2reiK/bQo6NtMKy+qw5i4GSp0RbP9bwGfJY4l0OWCzEVw3IBu/3TlQV8itKXSjvLJPC0v9YilD2ybj3avzkBTlwgKpQFGEiUD7xHkd4XLY8c5V+hZcNREu8VxGvXzZ0Mqfb/cVbFEvyEZW8yfO7SD38QSUSuyojml6b1HAbhqRLodYMbCW1MReq67cbESnZrH48qY+spHpqr4tLHkz2Wu7YWA2/n5khOIZHdkhFU9IQidVwiOcdvRtlYiumXF4cIzSa5ZpEv6cmxqNGHeYIioiyuXA+C7puIMxFq19YhRap0Th5cu64efbB+Dn2wfIQt7kMe3w4239Nf2I7x6eiwinA89d0BljO+mPr9kYdsmI0xx79bJuhq8PFNbQFuG046VLuuIuKfKgXVo0Jg3MRrO4cNgI8KAUpaDGij3D5bCja2YcOjWPxeKHhmHJQ8Nxbtdmfqu3EkIQJc1J9rkxUh7VtE2Lxs7nx2tCF9mQSXb9sNuJ3LKC6j3ndW0mj1F+2xTcwHhOjCJIrOT7BTIPagubhwqIhXWMSI1xYc79Q/DSJV3xymVdFV5vu40gNjxMXjO6ZMTi+gHi/fjshj6YevsA5Er79suXdsX9I9vikjzRuz37vsHY8swYAEpPLHtuFruNyBFD7jAbhrRJRlqsW85vL6qo1hWE9YyB9PP+T7Uu0Hx7h92Gc7s2k1NN+rZKlL238RE199DuPl6KkyWVGPXKfNzz9SqssdCzWo8BrRMV0V5mVEnPb4TTjuHtzEPvCSFyX9v3ru6JqbcPUCiX9xik0rApPmYK1kADJbhaWnf+uHuQ6fUBSgO/UfrDydIqRbQNIMptRoY3I8yUu34W7z/FqhLL7jtGlFd7TCO1qLHTzciF4TpLU8vECLx6WTdcPyAbyx4Zjj8nD7N0jQAwor0yt/2OYa0RyVw7axibee8QzL0/H4DPYNU2NRpDmfx4tx+jPV0OzHLL1Sz451B8e0s/2AnBjqMlhuHgZ104MSdw1AVcqNBBlS1WEFB7dW4f2hp/3D3IbxU21jPDTvBotwNf3OQLHeuSEYfHzu0ge90+ub43Zt03BIQQEEJwRZ8WCHfaFYUu+inCg4n8WdTrMKJ9Kq7o00LXUxLtDsND49rLC254mB0fS3kAegJfXlYCUqLduFhqGP38hZ3x7tU9MUYSelkrMv08Vhee2CvTshfPCDZkmoZVRbp8361T89gaW6T1eGhsewxvl4KHx7XXDWnSo01qlGJTbJEYgdcmdsO0u7Qb4R1DWyvGhn4Xf1GwMe4wLHxwKJ48ryP+mjxMc+7mceHo3DwW/72iuyJU9mSp0hNqtOFcNyAbg9sk47r+WRjbKU0W4i7o3lw3t47y6DkdsO3Zsbigu8+QEOmy4+kJnZAaIz6brPf3qr7WQ3X0IgaMoN9Z3ZuOMrJDKlKiXXjsnA745Y4BsNkI+uck4cEx7XB135Z4cEw7WQC6tl9LvDaxGy7vnSnnG17YvTm+vcXnJaNzlBpvxkiKvpN53umzH+F0INxpx9TbB6BnS9H7/vSEThjVIRXpsW5M7JWJIW2SccMgce2ZevsAU0/gm1f0wAOM4sYKa90y4+B02PDe1Xn45+i2OK9bM/RoEa9RXlijFZuKMPNeX/hlCx0DEiUrSfu3So8X658cbSls0B80b7JtajQIIbioZwbuG9UWv905EN//oz8A0Viy8/nxGNtZ32NgJbScFSbTY8M1bbq+uqkvru3XEs9M8M2BOVK4Yv+cJFzdwYkXLuoi/y3QAk9qEpnQUfZcdkJkYyZdd/85uq3ieWMximJQe9z0oBEGgfDAqDaKHHCrqEPa6Vp+jSqFJj4iDD/fPgBxEU7ERzpxQfcM5DDKNn2ezUb8vK7NsOSh4biwRwZsNoIeLeJROGU8WqdEywKtXJhPdSJ1sSGqQLIRNi0kYy+tH3Bu12YKA7BNx4D4/IWd0S0zDud3U84ZOn5h0nvCpHG2ESIrjUZh/e9e3ROjdIydrAG9otqLXs/OxtbDxbUqjBMe5vDr0acUl1ejd3YC3rs6T/4+ZtDcXWoQcDpsuK5/Fj66Lg/t06M1RfEAoFxaw+c9kI+Cf+bjX+PbKzy6lDC7Da1TojT3kH4Vdf0A/evzjadZDn9CpFPxd49XkCspf3BNHnpJEVlm662R5xmA/H4jjHRMvZx/tcOCheaLs1R5BIWTJSsxQnaM3D+yjbw+uan3lVnHWDLjIzBBiiRKiXb7TSUaxiid6jXb7bDJYxMeZke7tGi8eUUPvHmF9voBIEzlGc7yY+hzh9nxxuXd5W4KFLNrbpEYgUiXA3skD6xR/1ruieX4Ra3E0vCvd67qidcmdsMj49rj9qGidfiEqrIcTQbXm4QsiZEuXNQjA72zExQLSLTboRRMVJuazUZ0PWVUuI6LCNNshDSMuEVCBNY8PgrvXd0Tz13QWTdMySlNVoeNbog+j60ZLRIjsOv5cbi8dwuMNvDKhetY7UZ3SpM/i4UtaKEXkszCht3QRUJtIVRbxPQKnYzrnIZdz4/TDfOivHt1T2QmRODD63qJ3sR+LRUb5b0j2sjJ/+zxz2/sowlxO79bc2QlReKWwa3wwz98ys8Do9tiw1Nj5N+t5psColc6zG5Ds7hwdGimDLsjhODXOwfKYegU6lWhAqZePtkPklIAiB7it6/qKYe/jumUJgt4AOTcXEAsHHPDwGyE2W1IYIQBujmO6iA+K+cyYUkdm/n3zD92Tgf88I/+qDCp5swy457B+PQG0YtcbeCKndCtOZY9MgKTBmYrvIix4WF4ekInxLjDZI/+/aPb4vxuzfH8hV1koxEhBL2zE2TlUj1qb1zRHWseG6U4Ru8ba3ShXN23Jd67Jg8Ouw3xkU58Mqm3/Ax1zYyz1Mfx65v74tYhObpzPdxpx+1DW8upCOpw9vO7+85PDWH3jMhVVDk2C+fWsxX0ykpAlMuB8BqEgavXPeqhvm2o0lPXqXmsrvClFzpspMT+dFt/uQK8P69Ev5xEPHl+J9lI0i4tWo7QcIfZMbxFmCKEmL1nO58bp3vOFiaCIh3LK/ooIwPsNoJmUtEa+kyqCxOx0H2Gva9D2ojfmY3E0aMmlaHHdk7H/aPamgpyeoXE1FFNdwzNxa1DcjB5bDs8MMq3T1zeu4WmaA9rgKBbMr12PS8SIcSwlziFCt0e1bMzlYluAcS177kLOisijYZKbVFoZMMbl3fH3PvzEem04zwDw05OchR+vn0AmqnuGx03qsiFyb8T2fCuTvPp1DwGD45pi+HtUjTnA4CvVPna/uSYKJdDsTfocWlehjyGdw5rjYm9MhV7hPrzvr2lHwbmJummffxrvDIqgY4la6h54ryOGNYuFRFOB2bcOxh5LZUKHF0HspMikRjlwo2DWuGHf/THTYOysezh4Vj28HD5tX/cPQgLHlQqInrPj5GSyC67ZuuIxysoDMFeryDnUvdvnQgi7SasEss6QtqlRaN1SjQKHhCV8tEdUxXzzG0Q8UWjttTRPselfPyOzbSywBzJS5mdFImc5Ehc3ttndDYKsy5i2j8SQjDt7kEonDIed0rRPoDv+QWA4+W+zYPKboKFktdsrvlHTDi4eq67w+yyse6Lm/qAEILxXdI14dHUUKpO17uge3O8eIl+gU5AlO3O7doMzePCMff+IbhEMvrlpkbhbp10LTZdx6x4W6wTMIm0bpTUfY+TsxBNOLG0IcRHOmXB8foB2Zi/9Shen9gd7y/cJbehoAKGUalvSlKUEy9JVWr/LjwhJ+HHuMM0E8YK1CP1xLnaPD6X3RdO7K+iJ/1sunDYCJG/v79iGf5yd/RCd5x2myzg9clOwNbDRThZWoXh7VPwymyxKluH9Bi0S4tGVVkJDpYRTb9O9julx7qxbv9pRfEnQOnFTIx04tkJnfHjSmUFRZr3zG6IOcmRuGlQK0z+cR0AaBR0l8OOb2/ph0qPV6FMb3pqDMKddnR4bDpKKz0I01HUKQ/5qXRY12vWxT0ykN82GSnRbtw/Sl+40Ktse17XZji1Z7PmnrBKN+slj2IEKjoeT57XEdcNyEJOchSyEiNQeLzUb+hZWowbk6RoCDNP7MRemXLxrraMpb1XVoJuWftwp/95d+ew1rhxULYiFJB+F7oH09/V0yHMbkNshPIz6GusVNqtCX1bWQ/lY72trCIGiIIx22P5o+vyEB7mwM5jytzlfq0ScWmvDNz7zRqUVXnwyaTeuFZq88C+n1Wc3GE2/PuiLrj769UAxPHVK+pEvTmZCeEoeGAobvtCbENm1rKK5Y+7B8PjFeARBHR6fAYA0VumrqqdGOlE9xbxuKxXC8zbctRySw467v6K2LB50Eaet0v8eDrZe3ltv5b4ZPFuOGwEn0zqjWWFJzCifQp2Hi3RGCZYqKJT8EA+Br0wDwBwqRQ++/i5HfHzqv2KojMLHxyKV2ZtxY+r9ltWYru3iMOp0ip0bh6LbEnATYp2aYqWRLkcKK6oxuPndoCNEHz0p1hlNL9tskYxjY0Ik6t13zEsF4IAvDRrq66xz+Wwo3PzWKzbf1o2WAxvn4pzc8IUld4DQS+cmDLr3sFynnBchBNXqArAZCZEaHqV22wE600MpyxvXdkDP6zYhzmbj8jzge7VdO+224gcZk7vCL2/GXERuC1fNFbqpbIEGiXQMjECPVvG4+kJneQ2Zf1aJWKx1Bf0hYu6yKkm7PcurazGh4t2oai8StFOiVXk1N7b7c+O1UQJ0Llm5ulVt0tjIyYokS4HHhmvfR7C7DaFPPZ/Y9rJHk/2Xl2al6noHU9hn0n2POd0SZf7ZgNiGDV7Po8g4KVLu+KJ8zqKCph0mhaJEWIfEIhr8Iszt2LB1qOycTUrKRI3DmqFGwe1wswNh3Cz1KqRNTJTXr+8O7pnxmH2psN4eFw73Pr5SvlvR6RIwsFtkhVFsbKTImG3Ecx7IB8JEU447DY8f2FnJEqVuo2eH3YdUe9H9D0VzHPA5sT2y0ny2+/2nat64MNFu/DqxO6KlkPf3doPhcdKNPmlLodNXsOMjNqAGJlwWV6mpiYEIQQX98zAg9+vUUQobn92LE6VVSGO2c9bJUchQVKuI5x23DuyDV5T9RVni2myNVYinHZZ3h2Um4T+sWeAY2hScCW2DmiZGIm8VDuWHxYfHr3claQoF367UwzXfHZCJ3y1bI9sxQaMLZgtEiKw50SpolF0r6wENI8Lx/5TZQHnQVCqqvUtRoDYyoMQYGwn/0n4ceFOxXkIETfZ72/tF1D+J8u1/Vpi2vpDGNI2GcsKTyjydMLsNvn+XpKXiTA7wd1fr0aLxAg4bGJYic1GMP2ewSgoKMCTy309LeVrZrwNYzunYebGw5qwG/Vw0OJIehXgWAGNWh2pEquHnreDKub/ubgrnv19Y1DbZdQEM6HTZiO6hVAU79fJ7SCEoGWMb9NqmxqNLYeLFMobu3myZ+gkha3ZbER+rn66bQCOFVdowlqzEiMwrF2qLNiySgKtjvrYOR3kSqqz7xuC1ilRKK6olpVYlhsGZmNEh1ScLK3EsaIKeaO3kqtosxHNekCFWXpdPVqIVvkLLeRhd8+MR79WiXjuws5+X1vXsGuPvzDtYVK+WovECFw/IAubDxahuKIaH16XJwsc5VUeeU1Ue5lY4S48TPRCrdh9Ep8u3g1XmA1rHh+FKJcDOQ9Pk1/nDrOhvMqL8iqx0i+tpGx1brHGqUkDspGTEolh7VIwbd0hLNl5HFmJEbhzeK48V2i4YM+WCbrnU0PXoZ4qz4+aaJcD+W2T5bSUb2/ph0vfXQwA+PKmPuifox8W+N2t/XS9U3I4XpgdabFu+V53YkJD9aBrfGZCBBIjnTheUqlI7VDvYZkJEYiT1m69Qn56pEa78dNtSg+l3lo0897B2Hm0BIQQXJKXIc/1j6/vrXmtGq+B0YhyWa9MSYkVf7fbCC7KdZp6qc2gBkk9J35uajRyTfoxG+HPAEwZ1zkdu46VKJRYujY7ZMOzco3c+NRoOO02fLN8L/KYZ1mv16rdRhAeZjcsVji4TTLKKz1ySzS6ZrDPza35OVi88ziu7dcSl/bK1D1PhNOBlY+ORHFFNdbvP42J7y0BAIXBQm0k0Atzv3lQKyzbdcK0B7a6+q+VPE418/+Zjz0nSjEo1yfj0XscG66MtEiJduHa/ln4z4wtMNp2X7q0K/6Rn4N35+/EL2sOoNojKM7h8QqIcDrka6XnGd4uBV8u3YOHx7VDl4w4uViU3hrInu+K3i3wtKrSeIuECGQmRGDX8+M1jpvHzumA9+ZuwvndmuE/M7YAAD67obf8/dV7NE1dKdSRzegePWlANpKinbi2X5biNTQKSS4URgjubx+Jdt1y0Sc7EXtOlGLB1qOm6VRjOqVjjI582ysrAb2yEhRt3ADxWfrHkBzc+Oly024MDrsN/764i+HfbYQonlOH3aZbCZ8q6kYyBisnfTqpN877r9hrOznaJRfD/OyGPiiYO5crsRz/jO6YBtdRN66bLk5IvdwuFpuNYOnDw3WLKHx0XR6W7DyB9xbsBCAWQtpw4IxG2aSew5pWPaNhD3r5T6M7phmG+KppKX1X1qoLiLmvNeXJ8zvh8XM7yr0SL+6RgQd/WCt9jq/4SVmVBxf3bCl7u+feny+3ZKGkRLuw61gJbh2Sg4//2oXyKq+sNADABd0zMKB1kkYpYxeaf50jej6N5AZCCB4Z117RP/e3OwdiucW+ayx6ISr1zdKHh1v2VhlhJTpg6h0DUOnx4qule+RjrHBDQyT/Nb69rrcqPtIpG3d+uq0/9p0sw51frcIF3TMUwoDeuF3dr6WsxNIQS6PvbLMRZCdFIhvKjbimuYo+IVoK+UrUeluMaJEYoQnhayhYGcFqn06xwqsy+oOGzdG1rHDKeE1ROFaRyU6KBCEEIzuk4tPFu+HxChrP9HtX94Q7zI5rPlomr5WPndsB7dKiMbAGfY4fY4qg3DAwW1HngNIrKwE/3tYf3XQKVOmRmSC2N8rVqZbOYrMRhXLG9ls2UmDp9ehx1/Bc2G02S0YTI+i+we4fX9zYBwu3HZOFWAB4YHQbpMe6cV63Zrj/O1+BvcfP7YDX52zTKAxunbDxVy/rJnt+Kc3iwuXwVr0aCV/d1BeHzpTJSjQLXduNFEEaRdI+PXDlUg/6MQ3dTFBckz2yQYGu0TZC5PkzrH2KrAip2ykNbZuCmwZlIzXGrehnv/ihYdh48Ax+XrUfJRUe/L7uIMZ3SUfb1GjcPLgVjpypwOD/iONHP5s1SnVIj7G8/kW5HOht8Fz7C2UGgBEdUv1+Fttnvqa0TIzUDZX9+PpeyE2NxuaDYpu49Fg3frtzIA6cKpeUWOUz+dNt/ZEY6YLLYUfHZrG4bWgOfllzAB6vIKcCAFoFnv4tIdKJHc+Nk/fP6/pnYe7mIxiuKlwE+BSmdmnRuhXR2bmp3vsmDcxGq+rdyIiPwMDWSVi0/Zil571FQgSu6NMC/XMScceXqxAX7lNio90OOQqAhaaZlVYznlg75KJq1VJeCrtOUv6cPMxv1COgH+lk5dnxh81GLFUHpGNB970vbuyDBduO4t35ol7Aprt1yYjDXcNa4/W525EQ6Qxq+7JQhCux9UCrJP8eSHUP1uRoF44WVWBo2xQMa5eKHi3i0DolGikxbqTEaL1ej57TAY9NXa8IQwiEmwa3QsHWo+ghNUqvKerwM73KvzXBZiOwgcjhapQwu02uEqe2BrZIjNDkhlEhq3VKFN6+siemrt6vKa6k51WkVuvbh+bIBYboBvPRdXmaPMybBrdS/N6peaxfz0ZdkZeVgAndmuFei20K1KifzZpgRYl1h9nhDrMrFFRWKO6VlYDf7hyoaO9iRPcW8ejeIh79cxIRH+HEq0z4DZuD89rEbtgoGYU+vDZPsVlZrQw4tpPovVeHLVqFft3aFihraK7t1xLLC0/grx3H0dWi4qZHv1aJeOycDoqK4GoFg4bRdkiPwXvX5AHwhTey3sb+OYn4a8dxjOqYJvfipnnQseFhmnkabFgDmRWs5HPr8cplXbFsV81af0W7feG1NYXOb/YZ7pIRh87NYxVKbITTobnng3KTcP2AbLwuzdF3ruqB9xbsxMo9p3TDGDMTIjDjnsHYdqQId3y5SvN3PUOsWb9imrfXSSd/DwD6t07C73dZW3esQAXS5haL+gUbmrZy+9AcFJdX41Yp1JENZ5/QvTm6ZsaZeiidDhseGd8BGw6cVhyPi3Cif04S+uckweMVkN82GRd0by57QjMTwpEU5cSx4krZE0vXwAndmgXcGkYvpB4ARnVIxZQ/Ngd0Lj2eOK8j/jNji6xMBZN8Kcc5yulAjNuB1yZ2R2KUCweltUq97nVXrSc0d7/K40VWUiS+u7UfLnlnsSan/6kJnTCgdZLm/Z2ax2LloyN1r40qplQhLnggHx/9uQufLt4NAIpaJEZjIH4HKM5jhs1G8NwFnWVD470j26CiyosHf1hrmGs+QJrb47KiADrczGe1So7CvAfydYtaWe0Tf2leJo4WVWjCeGuL3WIEBb29VOYc0DoJ5VUeWYlVPyfUs+7WWT+bGlyJrUO+vaUfPl1cWCNFburtA7DrWIn8cOqFOrBM6N5crrwGiGEjgYQl9W2ViB0GRUKs8P2t/RS9+egi1EfH+hUMqAHL5bDJE1atxOrRJSMWC7cdQ05yJLq3iFeUPTeDKrHsokMXlqzEyKAoenWF02HDqxO7N8hnuxw2VFR7LTerB0SLP7Xsq4t2BWoIoEXJaEXhO4e1xm1Mfsr53ZrLnvvh7ZXVNgkhuHlwK4zuaN6q4a0re6Ci2mu59YmaCd2bY+PBM4piZI2RxCgXvrypL9bvP13j1AFAvO+TdDybLDRX+oaB2XL4VXiYuA6wBXM+ndRb9sjEhIt/D6QidWPhgu4ZiurddckXN/bBVlVvSj1PLOATrsx6dr6uWpuax0Xg3K7NsHLPKV1PLCDmqLdNi8aXS/dgYm9l3qie4mvGqI5pKHgg37RiaE2NC3okR7vw9pU90CfAtiXB4uIeGXCH2TG+c7piXabzxmYjCLPbTBVYFrMoHbuNyB4xCiEEcx/Ix71fr8YDUg2FAVI0xDU6hblqSqvkKBROGY8th4pwQCftxypX9mmJK/u0RNbk34N2bWpiI8Kw9glfXrO6ToIRdM+ha1yvrAQ8ek4HRWoaICq7FwVYEZwapqhNMCspEncOy5WVWKt1GOgaEEjggTvMLns5vV4BMeEOuYijGjrO2L4d2KT/KVbafpm93umw4d6RbTC2c5om5Lk2WBWL2qWJBjR2LpnZBGiEg5ViVo0drsTWIb2zE3RDGKzAhkfVhA8NGm3XFepw4WHtUvDvizrXmWDlsNtQWe1FmN2GC7o3x1sFOyxVW71nRBsMbJ2ssUie362ZplI0C12wE5hc5GZx4Sg8XlqjQlpNnbeu7IEfV+7D5LHtsHjH8YDeG+60y/mxJvWsAoJu8uFOu+X8MQCaHpt6EEJqrMAC4ob91PnGLYYaG/URcTBpQDaSo104v6tvztPcKFZHddhtoDoN9SzQqsGcmjGgdZKsdFB8Bf20E3bVoyPlHtR6sPUdALEdBRXQ/FV2/vImbSi9WcVrI/y1vAg2Ri2b6gObjehWMqYRDIFUswestVRSE+MOU8goqTHuWoVm3tndhdED9WUeavAIBnqtdOoCalxIiNSGv7PERzjRKysetzM9vfVSG2qCTceDmhztwuanx2DH0WLLHnNfwcKaKVQ2G/HrxJEJQqz+uidGGcp07dJiZIUyGFAP9sfX9zLtnT24TTJ2PjdO4fFmn2n1jKXPD6370JThSiynTrDZCC7rZb1fZ6A4bASVEHvbNY8Lx9Znxlp6X5jdphta9pofT+U1/VrCFWbDZYwl7L9X9MDczUeCFjLdlBjXOR3jJEGttZ8cPz3oxhmoQGUEPU+gXhpOaOKw2zQGMnX4mxpCCP6cPEzRJ5UTHJxS6L1eLrRaSfVHmN2GK/q0wKEz5bh1SI7/N2iuhRsVa4Iv2iiw99G0C6N+wvVBz1RHnRvPVvxrRI2KOtWE9unRePScDprevmrsNoLvbjVvUVRTaGvELFUurzvMHlBkwrX9slCw5Sg6BTGaQRd23a+FEmu16FwwSIh0oqi8Gl0z4vyuk+qQ7cyECOS3TdbtBzsoNwnjO6fjifM64vJ9mchgWyAFSaYKFbgSy2mUUEuT1bzF2uKw2zSFLRIinbg4wBAdjjWuG5CFR35a77fnolVuy89BWaUHV/apO8MKp2GhvQxbm4QyW82B4gRG27RorNl3WrcAjBnqHq6AqIS6w+yWoiD0aOy55Q2FlwknDgS6Fw8wyTtuCiTqVI2tKwghQfOo1pTmceF4/5q8gKIJ9R6doe1Sal0AKSAakZL26aTemLHhUMCGPsqdw1pjeeFJTUX79NhwvHllDwDaNKkGrygXZLgSy2mUyC186rwLKqchoHlIwSLaHYYnztP2QOY0HWLcYfhkUm90zWiYAmpnM0+d3wljO6UHFGq34l8jdJXe2qZnBJIuwPFBW0K1TAgstDo9NhzvXd1TE2LOafyM7GBeD4Jlxb9GaGpY1DtUQWskilrLxEjcPDjwaBNKz5YJlntEyzSx9ZGbLDmNkntG5AJAjfvicjicpseQNsm6bVQ4dYs7zG65SB4lMcqlCM+kYqdeT+maYLXwDEdkaNsUvH9NHm4fGrhQPapjWo3b+3GaBolRrhr3TuZwagpfdTiNkmv6ZeEaVdNrDofD4TRurLadMOO7W/shM57XKggE2muZw2mUUO9rE/M0Bp1G4qW2CvfEcjgcDofDaVAmSNXlA82r1aNXVkLQ8uk5HE4jo4kpakGliSn53BPL4XA4HA6nQXn0nA64d2SbWrWr4nA4ZylBqk7MaVzUyhNLCCkkhKwjhKwmhCyXjiUQQmYRQrZJ/8dLxwkh5HVCyHZCyFpCSA/mPNdKr99GCLm2dl+Jw+FwOBxOY8JuIzyPlcPhcOqKJqjcByOceKggCN0EQciTfp8MYI4gCLkA5ki/A8BYALnSv5sBvA2ISi+AxwH0AdAbwONU8eVwOBwOh8PhcDgcQwTBFyrbBJW1oNHE7k1d5MSeD+AT6edPAExgjn8qiCwBEEcISQcwGsAsQRBOCIJwEsAsAGPq4Lo4HA6Hw+FwOBxOU4KHE1ujieXE1laJFQDMJISsIITcLB1LFQThoPTzIQC03F1zAHuZ9+6Tjhkd53A4HA6Hw+FwOBz/NDEljWMOEWphsSCENBcEYT8hJAWiB/VOAL8IghDHvOakIAjxhJDfAEwRBGGRdHwOgP8DkA/ALQjCM9LxRwGUCYLwos7n3QwxFBmpqak9v/766xpfe11TXFyMqKiohr4MDgMfk9CDj0lowccj9OBjEnrwMQkt+HiEHvU+JuXlQHGxqMQ6nUB0dP19diOhuKgIURUVQBhTe0AQAI8HSExsuAuzwNChQ1cwaasytapOLAjCfun/I4SQnyDmtB4mhKQLgnBQChc+Ir18P4BM5u0Z0rH9EBVZ9niBwee9B+A9AMjLyxPy8/P1XhYSFBQUIJSv72yEj0nowccktODjEXrwMQk9+JiEFnw8Qo96H5ONG4GFCwG3G2jRAuDPg4aCOXOQf+AA0KyZ72BVlaj8X3RRw11YLahxODEhJJIQEk1/BjAKwHoAvwCgFYavBTBV+vkXANdIVYr7AjgthR3PADCKEBIvFXQaJR3jcDgcDofD4XA4HGNoVCkPJzanieUL18YTmwrgJyI+MA4AXwqCMJ0Q8jeAbwkhNwDYDeBS6fXTAIwDsB1AKYDrAUAQhBOEkKcB/C297ilBEE7U4ro4HA6Hw+FwOBzO2UATU87qjCam5NdYiRUEYSeArjrHjwMYrnNcAHC7wbk+AvBRTa+Fw+FwOBwOh8PhnIXw6sRnJXXRYofD4XA4HA6Hw+FwOJw6gSuxHA6Hw+FwOBwOp3EiCL5QWe6JPWvgSiyHw+FwOBwOh8NpnPBw4rMSrsRyOBwOh8PhcDgcDqfRwJVYDofD4XA4HA6H0zih4cSEcE/sWQRXYjkcDofD4XA4HE7jhyux+jTB+8KVWA6Hw+FwOBwOh9M4oQoa98Sa08TuDVdiORwOh8PhcDgcDqcpQys4NxG4EsvhcDgcDofD4XAaJ03Mw8ixBldiORwOh8PhcDgcDofTaOBKLIfD4XA4HA6Hw2mc8OrEZyVcieVwOBwOh8PhcDiNE1Zx5UrsWQNXYjkcDofD4XA4HA6H02jgSiyHw+FwOBwOh8NpnNBwYvozR58mdm+4EsvhcDgcDofD4XAaJzyc2Bq8xQ6Hw+FwOBwOh8PhhAi8sJN/mti94Uosh8PhcDgcDofDaZw0MeWszuCeWA6Hw+FwOBwOh8MJAXg48VlJyCixhJAxhJAthJDthJDJDX09HA6Hw+FwOBwOh9MkaGIKfkgosYQQO4A3AYwF0AHA5YSQDg17VRwOh8PhcDgcDiekocpZEwuXDTpN7P44GvoCJHoD2C4Iwk4AIIR8DeB8ABsb9KpqgyAAR4829FVwWKqr+ZiEGnxMQgs+HqEHH5PQg49JaMHHI/So7zE5fhyoqABsNv48GFFVBZSVAeXlvmPV1YDH03DXVEtCRYltDmAv8/s+AH3ULyKE3AzgZunXYkLIlnq4thoRAbRwA6cb+jo4PsqBWD4moQUfk9CCj0fowcck9OBjElrw8Qg9GmBMiAOwA4AH8AhA04qbDQLlQGwkUKy6N6QaqDp1ww1FDXZh/jlm9IdQUWItIQjCewDea+jrsAIhZHmJIOQ19HVwfPAxCT34mIQWfDxCDz4moQcfk9CCj0fowcck9GiKYxISObEA9gPIZH7PkI5xOBwOh8PhcDgcDocjEypK7N8Acgkh2YQQJ4CJAH5p4GvicDgcDofD4XA4HE6IERLhxIIgVBNC7gAwA2JM+0eCIGxo4MuqLY0i7Pksg49J6MHHJLTg4xF68DEJPfiYhBZ8PEIPPiahR5MbEyI0sZ5BHA6Hw+FwOBwOh8NpuoRKODGHw+FwOBwOh8PhcDh+4Uosh8PhcDgcDofD4XAaDVyJrQMIIWMIIVsIIdsJIZMb+nrOBgghmYSQeYSQjYSQDYSQu6XjTxBC9hNCVkv/xjHveUgaoy2EkNENd/VNF0JIISFknXTvl0vHEgghswgh26T/46XjhBDyujQmawkhPRr26psehJC2zFxYTQg5Qwi5h8+T+oUQ8hEh5AghZD1zLOB5QQi5Vnr9NkLItQ3xXZoCBuPxH0LIZume/0QIiZOOZxFCypi58g7znp7SerddGjPSAF+nSWAwJgGvU1weCx4GY/INMx6FhJDV0nE+T+oYE7n37NlLBEHg/4L4D2Jhqh0AWgFwAlgDoENDX1dT/wcgHUAP6edoAFsBdADwBIAHdF7fQRobF4BsaczsDf09mto/AIUAklTHXgAwWfp5MoB/Sz+PA/AHAAKgL4ClDX39TfmftFYdAtCSz5N6v/eDAfQAsJ45FtC8AJAAYKf0f7z0c3xDf7fG+M9gPEYBcEg//5sZjyz2darzLJPGiEhjNrahv1tj/WcwJgGtU1weq/sxUf39JQCPST/zeVL342Ek9541ewn3xAaf3gC2C4KwUxCESgBfAzi/ga+pySMIwkFBEFZKPxcB2ASguclbzgfwtSAIFYIg7AKwHeLYceqe8wF8Iv38CYAJzPFPBZElAOIIIekNcH1nC8MB7BAEYbfJa/g8qQMEQVgA4ITqcKDzYjSAWYIgnBAE4SSAWQDG1PnFN0H0xkMQhJmCIFRLvy6B2L/eEGlMYgRB+H/2zjo+iqP/45+5uzgRQiAQLLi7Q3EpUqPupd6n9rT9PW2pC7Sl7u5e6gZFS3C3YAFCCCHuLmfz+2Pldvd2T+KQ7/v14sVlb29vbmdn5uuzjQuS4Vdw9SHhJwZjxAijeYrksXrEU5+I3tTLAXzv6Ro0TuoPD3Jvi1lLSImtfzoCOK34Ox2elSminmGMxQMYBmC7eOhuMXTiMymsAtRPjQUHsIoxtpsxdpt4LJZzniW+zgYQK76mPmlcroRa4KBx0rT4Oy6obxqPmyB4MCS6Mcb2MsbWM8Ymisc6QugDCeqPhsGfeYrGSOMxEUAO5/y44hiNk0ZCI/e2mLWElFjirIIx1grALwDu45yXAngfQA8AQwFkQQh3IRqPczjnwwHMAXAXY2yS8k3REkv7fDUyjLFAABcA+Ek8ROOkGUHjovnAGHsMgB3At+KhLABdOOfDADwA4DvGWERTta+FQfNU8+UqqI2iNE4aCR25V+ZsX0tIia1/MgB0VvzdSTxGNDCMsQAIA/lbzvmvAMA5z+GcOzjnTgAfwxUKSf3UCHDOM8T/cwH8BuH+50hhwuL/ueLp1CeNxxwAezjnOQCNk2aCv+OC+qaBYYwtAHAegGtEYRBiyGqB+Ho3hJzL3hDuvTLkmPqjnqnFPEVjpBFgjFkAXAxgqXSMxknjoCf3ogWtJaTE1j87AfRijHUTvR1XAvizidt01iPmY3wK4Ajn/DXFcWVO5XwAUlW9PwFcyRgLYox1A9ALQrEBop5gjIUxxsKl1xAKpRyEcO+l6nc3APhDfP0ngOvFCnpjAZQoQmKI+kVlNadx0izwd1ysBDCLMdZaDKucJR4j6gHG2GwADwG4gHNeqTjeljFmFl93hzAmUsQ+KWWMjRXXo+vh6kOiHqjFPEXyWOMwA0AS51wOE6Zx0vAYyb1oQWuJpakbcLbBObczxu6G8ACYAXzGOT/UxM1qCUwAcB2AA0ws8Q7gUQBXMcaGQginSAVwOwBwzg8xxn4EcBhCqNhdnHNHI7f5bCcWwG/CPAsLgO845ysYYzsB/MgYuxnAKQjFIABgOYTqeckAKgHc2PhNPvsRDQozIY4FkZdonDQejLHvAUwBEMMYSwfwFIAl8GNccM4LGWOLIAjqAPAs59zXQjiEAoP+eARCtdvV4hy2jXN+B4QKrc8yxmwAnADuUNz3OwF8ASAEQg6tMo+W8AODPpni7zxF8lj9odcnnPNP4V5fAaBx0hgYyb0tZi1hYoQMQRAEQRAEQRAEQTR7KJyYIAiCIAiCIAiCOGMgJZYgCIIgCIIgCII4Yzhjc2JjYmJ4fHx8UzfDkIqKCoSFhTV1MwgF1CfND+qT5kWL7A+rFSgsBKKjgcDApm6NGy2yT5o5qj5xOICCAoAxoG3bpm1YC4XGSPOD+qT5cab2SUxMDFauXLmScz5b+94Zq8TGx8dj165dTd0MQxISEjBlypSmbgahgPqk+UF90rxokf1x6hTw3XfAVVcBzdAw2iL7pJmj6pPiYmDpUsDpBG6/HTBRgFtjQ2Ok+UF90vw4k/uEMRajd5xmW4IgCKLlwrnrH0HUFqGCMUEQBNFIkBJLEARBtGxIgSVqCz07BEEQTQIpsQRBEARBELVFUmRJoSUIgmg0SIklCIIgWi4UTkzUFcbo+SEIgmhkSIklCIIgCIKoDZLySjmxBEEQjQopsQRBEARBEHWlFt7YZYlZ2J5S0ACNIQiCOLs5Y7fYIQiCIIg6c5aFEu8+VYRAswmDOkU2dVNaFrV8hu76bg8AIHXJvPpsDUEQxFkPeWIJogXjcHL8uicdu08VgXMOp/PsEeZbGiWVNiRll2JnaqFP5+eWVqOwwtrArTqDOAMVWavdiYoau+rYJe9vwfnvbGqiFrVgahFObLU7G6AhBEEQLQNSYlswnHP8sCMNVVYHqqwOAMCOk4XY5iG0qbDCikd+PYCk7FLDc77bnob4hctQWm1DTml1vbeb8B2r3QmHk+OLzSdRpFBY/tqfifcSktHj0eV44Mf9uOT9LejzxAp0f3Q5Plx/AgBwz/d78cLyI7rXLa604sJ3NuFIlvFzQDQMB9JL8O66ZNWxfw5kYcizqzD7jY247IOtAACbw4mZr63HPwey3K7BOcfo59fivLc2ur234mAWVh7KbpjGN1caSIF96o+DeGXl0Vp/nnOOkyUOcM6x/lgeLnl/izxXA8D1n23HgKdWIq+sBv/5Zjcyi6vk95TnEQ2I8tnx8Bzll9dgzpsbcf/SfXjwp/1YczgH2SW0PhIEQdQWCiduwaw9kouFvx7AmiO5WHMkB29eORT//WEfAHVoU7XNgf2ni5FeVIWiSiu+35GG73ek4dqxXZBZXI34NmG4ZmwX9GjbCgDw6G8HAAALf0nE8gPZePWyIejRrhW+356GqNAAPDK3X6P/1pZEUYUVs9/cgGcuGIA7vtmD8T3aYMuJAmSX1mDhnL4ABAVVi+QVeOGfJFw9pgv+2p8JAPjvjF7YeqIAk3u3RWm1HUWVVny3PQ3700tw17d7sOK+SQi0kD2sIeGc42BGKU4XVeL/ftyPKpsDC8bH42R+BapsDqw+kqM6/+7v9iC3rAbHc8vxn2/34IIhcThdVInf7pwAzjn2p5cAADJFIbrSakdooAU1do47vqHwxvriy62nAAD/O7eP7vvrjubC6eSY2qcdDmWWoke7MIQGCstypdWOD9en4M2t1QiNO40PN6QgJa8C/Z5cgTun9MBDs/tiW4rgdR/13BoAwIC4CPnaGcVV6NmuFcpr7FiWmInLRnSG1eFEUaUVHSJDGvJntwieX34EU3q3xfjWogeWMXDOwZ0cJpPaK5tWUImn/zqEI1mlsuHvp93paBMWKJ+TmF6Mt/9NxjtXD0O11YnI0ADVNWrsDvy5LxPDu7aW11qCIIiWDCmxLZjiKhsAYI0oAP+yJ0N+b1dqIYZ2jsKrq4/h/YQTup//Zlua/PqzzScBALec000+tvyA4M35v5/2qz537/ReCAsSHr3k3HK0iwhCRLB6wSbcKSivQVZJNQZ2NM51O5ZThgvf2Ywqm0NWRracEDzrf+3PRHJuOZ46v7/X7xr09Cr59XlvbUJKfgX+N6s3Xll1THVeSn4Fnv37EK4Y2QWdWodgy4kC3PXdHvx0xziMio9GYYUV0WGBqLTaceE7m7H4ooEY071NbX7+WU+1zYFqmwP55TWY8doGfHrDSEzvFwsAWHYgC3d/pzY8XPTuZhzPLQcATOipvqd/J6q9r3+KBolPNqbgVEElvt52Sn7v9dXH8Oba49j40FQ8uMHlySuutCIyJACMMfy2Nx3Hc8px7/ReCA4w19+Pbg40whY79y/dhwfP7YO4qBAUVVgRERKAvWlFuPHznQCAL24chQXi61/+Mx4/7TqNH3aelj//6qpjyC2rkf9+L+EEjmaXuX2PcnxuP1mAnu1a4cbPd2BnahHahAXhy62p2Hg8nwwUfpCYXoyk7DJcPrKzfOzHo1YsP5mCjzakIPV/YwAAFQ5gykvrERpkwfoHp+KLzSfx9F+HYTEx2A3SNAoU0TF3frsH6UVVmP7qeuSW1eCtK4fhx12n8cicvnj278PYeDwfABAZEoB9T87ET7vTMXdQB7QKIjGOIIiWCblPzkIKymtw4+c7VKFK7yUkY9DTK7H7lGC5P5xZijfWqBWSDcfy5NeXfrAVv+xJ11Vgb5/U3fC7P9l00mv75r61EZxzWO1OzHhtPW77apf8HhcFSc453k84QeFWChYvO4Lz3t6EQ5klquPLErPw8M+J4JxjwWc7UGXTDyPMKK7CmiM5mPjSOtXxr24a7fF7U/IrhPO2ntJ9/5ttaTj/nU0Ytmi1XKTksg+24rVVRzF80Wok55bhSFYpjueWY/Ey/fDklozDyfH11lRc8eFWDH12NWa8tgEA8NhvB/H73gykF1W6KbAAZAUWADYn+1bddPGyIyoFFgDeXHscAHDb17tRanUJ20OfXY0lK5LAOcf9S/fjvYQT6PvECo+pBIQ+v+3NwPgl/2L/6WIMW7QaQ59ZhW8U/SApsICQ06pUYAHICuy3t4zBxF4xAIC1Sbkev/Ox3w5i7psbsTO1CACw81ShrAh9vvkk7vpujzzfJqYXo6C8xvBaLZkFn+/EQz8nIl9xf5aftMmvL/nuEKodwB25bZBXbsWpgkrsTSvC038dBgBDBVaLlHqTXlQFq92JO77ZjX+TcjHz9Q1yvwFASZUN7/ybjId+TsTjYtSTxNdbUzH46ZWwOSjXliCIsx8y4Z2FrD+Wh3VH8/D0n4cQEmjGb3tdHtZL3t/q83Ue/uWA7vErRnVG/7gIOfR4w4NTMelll2LUr0MEFl80wPC7ThVUotsjy+W/t6UU4v2EE3hxRRIA4L/Te6G02obPN6fit73pWHX/ZJ/bfDaz46RggDiZX4Hk3HJwDqw+koNlotdt9sD2sPopvDwwszfO6RmDu6b2QMLRPDw2rx+u/ni7/L7Si6D0BPnCW/8KeZu7TxUhOiwIgJAXdtkHW3DPtF6Y0DPGr+udrSw/kIUn/jjkdjy7tBr3Ld3n9/WuGdMF325P031vTLdobBefowuHxqGkyoaEo4LxSi+/+cP1KSoPFCAozH3bR7ide8ZSS0+szeHEd9vTcMWozirv9O5TRfhhRxq6tgl1+8yF724GAJTV2PH7vky/mzqhZwxGdG2Nr7eewiurjqJGURhoSp+2cl9KHFb06YfrU+TXz4gKVkpeBbJKqlBcacPVY7rg+fmD/G7T2Upybjkyi6tgEgs2bTlRgGWJmTiYoR4nuzPLcaBDIDZWu0K057+3RXXOVaO7oMbmwK/iWqw3Rm0O35+/V1cLBug9acW49atd2HaiAIvnD5TnkQMZJRjepbXP1yMIgjgTISX2LGLpzjSkFwl5UICwkGUoCn14IsDM5EW0X4cIlUA7uXdbfHrDSOxPL8bKQznoFhMGi0lw4gcHmNA5OgSPzOmLOQM7oHN0CKwOJ4IsZjw2tx+eEwsDMQa0CQtSWbOVSAos4PIMAcCxnHJc/uFW3DOtJyb2auvH3TizKSivwc7UIswe2B5OJ8eqwzkIMAvCVHGlDY//ftDtMzd+sdPtWNvwIOQplM/H5/VDeLAFhzJL8dXWUwgOMMFkYnjw3L548FwhX/aROX2RX16DjzeexMz+sfjnYDbmDmqPo9llOJFXIV/r8xtHyeGQnnj4lwNy27NKqpFVUo3rP9uBnu1a4XRBBZYPKD9rcrw45/h000lcMDQO7cKDVe9VWR2Y+9ZGZJVUYdsj0xEWZEGl1aGbn+wPT5zXHz/uPI2jOUJ46UXDOqoE5IuHd8SEHjGY3q8dIoIDsOxAFib0jEF0WCAcTo7f92a4hfwDwOtXDMH9S/fjyy2pquNJ4tyw5UQ+use0QlRoAIIDzEgvqsT1n+1AXGQIHp7d96zd4qXG7sA329IQHmTBU38ewlN/CopD69AA/HTHOLy2+qhHz/hNE7ph2YFM5JTWYEa/dlhzxOVRvWp0Z1TbnCrDY7cIEz66+RxEhggpF8EBZtw6qTtiwgPx5B+H8NDsvhjfow16tG2FbSkFiI0IxtRXEgAAE3vFYHtKIZ69cAAW/upulFTO8ydyy/HjrtPo2z4cx3LKMal3DNYl5eKS4Z1gMZ99QVt5ZTWosjoQ3SoQNTYH2rQKgtXuxCXvb0GQxYRdp4pU57/4T5LhevpTWZjH74pvE4rbJ/eA3cmxNaUAz80fhFsndkdJlU3Ib/98B6ptgkHiipGdkVZYia2aAovn9IzB+J5t8NIKV6GwtMJKpBVWAoBsVAaA277ajevHdcVdU3vCbGKw2p0IMDMwxlBWbUNiegnG92gDVouKygRBEM0FUmLPAmwOJwLMJtlz2ktUYn1RYL+6aTR6tmuFh39JlEOWFl04AJd+4PKiOjmHxWzCiK7RGNE1GgDQpU0onp8/CN3bhoExhtsn95DPD7IIXolbJ3XHhcPi8MgvB/DsRQPRMSoEhRVWXP3xNlwztiu+3XYKSTp5XVp2nCzEdZ/uwKCOkfhswSi0DQ8SCmhwuBXQOBu489vdcj7x/idnYfWRHPxPoWT8tDvd52s9Pq+fLNz8ePs4jO4m9N/XW1MBQDZ4KJH6cuGcfvh6ayr+OZiNLtFheO+aEdh4PA/XfboDt5zTDVP7tMPnN47CqkM5uHREJ1zyvuB9SF0yD/d+v1fOwwT0vQzJYjjs9FfX47n5A3HNmK4+/67myqHMUixedgRbTxTg0wWjVO/9lZiJk2Jo9tBnV/t13ctHdsLI+Gg89HMipvVth3evHo7E9GKsTcrFTRPicfM53RC/cBkAQZlS8tT5A2QFCADOHxInvzabGC4YGuemxM4b3AEjxbEuhZFfPKwjft2bgZWHstE/LkL25o3pFo2lt4/DT7vSkZJXgZS8Chz5fAd2PzHTr9/YXCmttsHu4IgWi/As3Xkai/4+7HZeUaVNDgX3xPR+7TAgLgL/99N+zOrfHjdO6IbjOWVoFxGMuYM6AACm9W2He77fi7mD2mN221L0ig13u878YZ1wwZCOMCvmwLGKfPN7p/fCnVN6IK+sBp2jQ1VKbHRYoLy90mNz++GLLanYfrJQ9tIrWXYgG9P7tsOwLlEYGBd5Vsy5pdU2zHlzI/LLa9AtJgwn8yvw0qWD8dDPiYaf8bSeKjc5kqJXHpjZG+N7tMGlH2zFrAHtAQBvXTVMDuGOj3Epvv/+3xREhATI+a3VNgcqrUKO/Mn8ClXUysiu0bj8Q9f6PL5HG5w7oL1sTAGEiJfXVh/Da6uPoX+HCBzOKsX147pi4Zy+cr2DoZ2j0LVNKN68chgA4LXVx/B3Yib+/b8pXu4eAQhpIA/9nIgbJ8R7rFNBEETDQUpsM+P6z3bggiFxuHREJ7f33l2XjJIqGx4Vq/t+sjEFX209hbTCStX5ylw5QLDsLt0l5FiFBJjlnMkPrh2BSb0F7+bFwzti4/F8bHxoKjpHh2LRhQOQmF6Cn3anY0inKN22Xj2mi9ff0y48WCXMR4cFYsV9kwAA143tKgvev945Hj3btcKba47jU4O82gMZJRj13Bq8eMkglFXbsXjZERx65lyEBpqx9kgupvVtd1YIWJICCwgVMDccV4cI7j9dDABYdNFAvLLyKEqqbLKg0jY8CEsuHoSbvxTyjNuEBSGmVSCuHtNVVmAB4JoxXdGvQwRGxkfDCLOJ4bKRnZGcV47/iIrtOT1j8OaVQzFnoCBsT+3TDlP7tAMAvH/NcPmz5/SKwZ/7MxHfJhSpBYKnoFPrEESFBqBrmzA5BFri4w0pZ7QSW1Rhxfgl/+KiYYKCuDYpF/tOF8PhdOKS97eiXXiQrKAYERsRhJxSwWv+3a1j0KNtK4x5fi3eu2Y45g7qAM45auxOXDg0DiGBZozp3kZVJGt8jzYY270NOrUORafWIbhubFcMiItUKbB6BJhN+ODaEbjjm90INgOT+sRi4ey+iItSV7B9+bIhuHliN5z/9iZZgQWA7ScL8ce+DNW5BRVWHMwoQXGlDeN7tEG13YHQQAtKKm34elsqxnRvg5FdW8PJoVLCmgTOMaR6GC7fnofHevVye3uGWGgndck8HMspw5J/klTvXzmqs1sO640T4nEos1ROAfjg2uF4ffVxtI8MxvgeQp+N6R6NTq2FkGNtaP15gzugX4dw9GwXjoSEBMOmG907ZeGmztHCd6y+fxJmvi4o2eHBFnxz8xjU2B0Y1qU1ftubYaikbTiWJ9dLeGxuP9w6qTs458grq0F4cAAYwxlV7Mvh5BisKFwnGZb0FNio0AAUV9rcjmupcAqe6l0PTkKBDdiUnI+bxSKH2iJaet5P7VgLDjDL91T73uhu0RgdH40dqYU4+cJcMMZQbXOolFglUkj5V1tP4WeFAXTf6WLsO12Mu6f2RK/YcLwlRkA5daorE+6kFlTglz3p2JNWhHX/m9LUzSGIFgkpsc2IkiqbLDBcOqITCspr8Nnmk7h/Rm9klVTjZXG/wUfn9sOetCJVkZyfPXjn5gxqLyuxf9w9AbNEQWb2wPbyOfOHdcKcgR3khfO6cfEAgBsndEOv2IYP9ewUFYKI4AA8cV5/nD8kDhe9uxnXj+uK+cM64vsdafhxl+v3KXN1Bzy1EvfP6I3XxSJVn984Ch9vSMFnC0bByTnKqu2IjVCHdVZa7SiqtKFjlH/bTHDO8fzyI7h0RGf0ae/uGVFSY3fguWVHcOHQjiipsmJa31icLqzEyyuP4sVLBiMk0Iy8shq8seYYHpvXDzNf24CM4iq5aIuE1G9aIoItuGBwHC4d3gmMCVuqHM4qxTtXDcOY7m0wpFMk9qeXwGJm2PW4u0fMZGIeFViJsCALFl/kypNjjOHCoR11z52jUNIuH9kZ5/Zvj4gQC77dnobHfz+IN64YipHx0cgtq3ZTYkuqbFiWmIXIkABUWu0Y0jkKF7+3BXdM7i4/i4DgQVmemIUrRnVuVqFwW04UoMrmwPc7XP11kZj/CAj5xF9sSUWQxYRZA9rL2xfFtHKF2G9/dAZu+2oXIkICML6H8BwoBWDGGK4ba6zof3frWPn1poen+dX+2QPb4/Cz52Ljxo04d/pI+fhbVw3Du/8m462rhsFsYhgQF4mrRrvn8ylDGSXOe3sTAMDEACcHPr1hJNYfy5M9u5eO6ISfd6f7XSl3c3I+2kcG12sIegks+PhgEa7Or0C3mDDkllYj0GJCZEiAnAtutTtx0xc7UanZf/WFiwfJSuwFQ+Lw5/5MXD8uHl2jQzHt1QSkFlSiZ7tWWHHfRNUzKymwejDG0LOd5znGX5Te3PBgC/ortuPJLfOtgN6KQ9k4f0gcHvhxn1z1PC4yGFsema57fmm1DZzD0JCy6lA2xvVog3AP1en3ny5Gq2CLT/29JTkfYUEWxEYEo32ket7/cddplFbZEB7sm9iz7ZHpMJuYvH0RAGxZOA1tWgVi04YNKGvdG4uXHUF+eQ1KnEK/BgeY0KdNmNf1oa58fuMoFJRb5ecpOMCMa8Z0gZMLSuux7DLsfXImnvzjoGrt1D67AHDuGxugrD21NaWgxYYaJ6YXg3NgSOcor+dW1Aj+9yCd7eU459iUnA+7gyPAbEJokPmsyVH+etspdIgIxoz+sU3aDs45lh/IxqwBsQioY7pDUYUVUaEBhs98SZUN5TV2v2VGouEhJbaJsDucsDs50ouqMOO19fjyptFo2ypIdc7jvx/EPwezMb5HDK771FVs55ONKTiSpR+Gq8xnHdQxEh0igzGlTzusun8SzCaG7jFh6NchAgvGuwvDetZ0paDTEIQHWVBWY0cbxW8f2jkK+5+ahdBAs7AABFpUC7GW1xVVlqUczWM5ZXhu2RFsP1mIY4vn4L2EZPy9qwqWjvn4eGMK1h/LQ8rzc/2yOGeVVOPjjSex6nAO1j841eO565IEYV0S2E++MBfP/HUIa47kIjYiCF9vO4Xp/WKxLDEL+9OLZS+IsgqlJ/Y8MVOVp7b4okHoFZuKEV2FhfLJ8wfggR/3NXj/eULa5/CaMV0wtnu0LJS3Cw/GuO5tVDlfRZU2ubIxIIQ5ZxRX4Yk/DiGmVRBmD2wPxhgeWLoPa47kYliX1rKgmFtWjdT8SpWnWUlOaTV2pRZh3uAOyCmtRpuwwDrn+FXbHPJ42X2qELtOuYdh6jG6W7RqnH+2YCQOZZbK3p6Prh9p9NEGJzTQgiCzejxcMCQOFyjCjwFh32BJid3zxEzc8c1uJKYXyzl9kSEBKKlyea8kAfm+H/ahrMYVeCkZ3gorhK18uJi2oCSvrAYOJ5cVEs45rvlEmAsbYpuYqa8k4N5pPeWiZOGK7Ut6P/6P2/ldokNVgs+bVw6VjVQAsOaByUjJr6h3hbS2bHxoKia+tA7nDVb36R2Te2DxsiO4fVJ3hAdbcMGQjjiSXYrbv94NQNjCaXNyAXafKsLYF9aqPptZUo1bv9qFD68dgYIKKz7emILLR3aC2WTC9FcTEB4cgP1PzXJrS2ZxFW77ejdm9GuHj64bCQ59z7JUDCt1yTxUWu148o9DeHh2X5RV2xAbEYzf9mbgomEdYbM7cfUnrnVSej6O55Thiy2phsXO9Nj+6HTERgQLz5uiCJPkFTWbGC4a1hF9O4Rj9hsbUSJ6YoPNjaP4hQVZ5G3qJJ4Ti3LZHE44OUeQxYzFFw1CQbkVd07tgaTsMjz2m1BLYVLvtugYFYz5wzqpQpMByONrYq8YJKaXoENkMB6e3RdT+7ar99/x2upj+GV3OjYv9M3oxjnHB+tTcNGwOK97He9KLcSpgkpcohPVBgAn8srRPiJYdR8veMf1rAHC3PTuumQ8NLuPnCaVX16DxPRiueBXUnYZskuqseVEPmIjgjGwYyR2pRbK0VAS0jVzy6phZkwl8wCCcZ1zoW8rauyqdnHOm41R4QmxHkdTb9O18lA27vpuDx48tw/umtoTAPDHvgyYTUye3w5mlCCtsBIMgpGdc45DmaXo2iZUNpyV19gxfsm/+N+5feToCYn9p4ux61SRnD4iRT54I+FoLqptTpWjSCK3rBo1NqccIaPE4eQ47+1NuGtqD7c5+ve9GRjepTW6iAUDf9iRhrVJufi4CWWG5kCtlVjGWGcAXwGIBcABfMQ5f5MxFg1gKYB4AKkALuecFzGh598EMBdAJYAFnPM94rVuAPC4eOnFnPMva9uu5sLhAgdG1tjRKsiC/PIaxGgmrNu/3o21Sbl44WJh4flrfyZmKSxbUpgtAOxMLVRZShcvO4JAswmz+seif1wE3ljjKoT00x3jcN8P+7DvdDH+uucc+XhvhRX+n/9OrLffWVf+uHsCDmWWugkvSsu9lOOrFY5funQwiiuteH65OrwPAK76aBsqRKvz038dwneiEHKtwhjw94EsTO7d1mu4pYSkaChbeiSrFBYTQ6/YcGQUV+GTjSlIyatwq+iaWVKN0mpBgP94oxAuvfqQsD+vttrlPdN6oqjSim+2pWH+sI54/YqhKCivwYjFa9CpdQj+vuccN2G/vShoSIzo2tqrot1Y6HmVurUNk5XYd68ejl2nCvH55lT5/WRFSPx/vt0DLc8vP4K+7cPx4QZXxdX9T82S+zKtoBJWhwM924XjgR/3YXNyAbq2OQfnvb0Jd0zugYVz+iKrpAqhARZZ2VZyPKcM/xzMxuyB7dE7NhzbUwqQVliJL7akYu6gDnh55VFcM6YLKvysMvvWlcPwyx6XQaZ/hwgMNgjXb660Cw/G8efmoEjcA/jH28ehyurA1pR8DO/SGpEhATiUWYoFn+9UFXKTFNgOkcHIUmydNXyRkB/ct3043rpqGK79ZDtyy2rw2YKRePrPw0grrMTRxbMRZDGjyEtoZ2m1DRU1dnSIDMHaIznILq3GhUM7YnNyPs4doBYoftubDqcTmB+uzteWFFhlm5UM6RyF8T3aICzQjHmioHH31J7oEBUMxpiswAKAxWxSzb1NTefoUOx4dDrahqvXo1smdsctE9Vbp3VpE4r/TOmB7JJqPHPhANz4+U7s1hQ7klh9OAfdH3VVnP9IMS5Lqmw4nFmKp/48iA+vGynnFpdWC325/WQhHvhxH37fl4nLRnRCpdWBS0Z0xPgeMQjUzHO/783Ez7vTkVZYKYdqA9AtdPfqqqOY0qednKuvR0SwBaXVdrx3zXDcKc4zny0YKUfvMMbw3PxB6NM+HGGB7uKSpNiUOEwIgLsRpilQeqUCLSY5nad/h0j8sTcTY3u0wQMze3u9jmRQLamy4cYvduKioXHoHB2KvxOz8PudE3TnTSUn8yuwLDETN07ohsNZpcguqcacge1hMZvw29507E0rlo2865Jy0T8uwi1qSou0q8GLK5Lw6Ny+6B7TCjP6x+JAnh0ffrQNX988GhazCQ4nl+t6zBvcARuP5+Oddcn47/SeaB0aiEEdIzH91fWY2CsGX988xvD7Fv99GL/uzcDobtGY2qcdFv6aiDWHc1Babcc1inSqe7/fix2pruexfwd34/E5L/6LzxeMwsXvbUFZjR1Hnp2N4AATGGP4cksqnvrzEAItJrx86WD894d9GNG1NZZcPAg927VC/ydX4vKRnfDMhQNV17Q7nLjn+72Y0qctpvRp5/X+Sew/XQwn5yipsmHB5zvlNLKUvHLcv3QfvrhxNFqL49QTNocTNocToTpjwwjOOW7+chem92uHk3kVWLrrNH6+Yzz6tA/HgfQS/Lo3HQ/P7isbiX/enQ67w4n5wzvCxJj8fEtriHIbRikiqFe7cPSObSVHAwHAg+f2wYC4CCz4fCdaBVmw6KIBmD+sE7JLqlBlc+CzTSdxw7iu8hgurLDKBjSJ47nliG8TBrOJweHkSC2oQLVYFK5jVAh+2Z2OFYeysfqwINsdeuZc/L4vAyfzKrBwTl9YzCaMfk4wAt4+uTvWH82T0+sAoaDnkaxS3P3dXsS3CZNzrb/fkYZHfj2A8CALDjxzLk7klcs1Dqx2JwI10QA1dgcCzSZDhftsShlg3M9tBeQPMtYBQAfO+R7GWDiA3QAuArAAQCHnfAljbCGA1pzzhxljcwHcA0GJHQPgTc75GFHp3QVgJARleDeAEZxz/dVSZOTIkXzXrl2eTmkyckqrMeb5tZg3qANunBCPSz/YijevHIoLh3aEw8lhdzrR5/EVAIAnz+uPZ/8+jMtGdFIVS/GFb24egwk928Dh5Hh55VF0aRN6RucVeuJ0YSUiggNQUFGDaa+uBwAcfvZchASYVdv11IZzB8Ti9sk90LZVEPLKazCsc5Tb4C+ttuG6T7Zjf3oJWocG4N7pvXD1mC5yP/aJDZerw9YWqUL06vsnoVdsOI5mlyE+JlQWlP7cn4mx3aLRzseFqjlTabWj/5MrAbgsusm5ZdibVoySKhsWLzsih6H6yl1TeyA6LAiXDO8oF046+cJcXPjuZiSml6hyFxddNFC2KLcND8KDs/rg8lEuw4PSiPTbnePdtszwxP/N7I2LhnXEwl8TcfukHtibVoyZ/WPRo10YgixmWO1OfLHlJK4fF9/scgkTEhIwZcqUerlWcaUVZdV2hASacfXH23AsRzBMaCvy+sJjc/vheG4ZUvMrZWEx+bk5sDuFPOHIkAAczizF3Lc2AhD6XTsvfHDtCBRU1GDOwA646qNt8nhd0D8KXxwudvvO1qEBKKq04c4pPfCeuF920qLZjd5n9dkndaGwwoqHf0nE6sM5GNs9GttSfIs+AIDO0SE4XViFVkEWBJgZZvSLxYiurXUrJkso7zsAnHh+Lr7amurXGtkqyIJyHUMEIHilL35/C/LKalT5wr54mKQ+ySyuwvgl/yKMOWECcOCpmUDwmTU/3/fDXl1DXHCASY6u0PLmlUPx+94MnCqsxPe3jnVTnjjn8vgb0jlKruNw7/ReeGBmb9X8quTkC3Px0650mEwMU/u0xaebTuL+mb0RYDbhdGGl2x7nAHDJ8E6yYVAqWKaM9FFuEychRSQAwNc3j8bIrtFYdThbVoIemdMXybnlchFFZZGu+uTeaT1x3bh4Vci6lqvHdJGN8FI0wkcbUjCjXyxKq2xy9EGAmWHtA1PwzF+HcMP4eEzq3Racc2xLKURkSAD6tg/H2/8mI7WgQq5+PrFXDDYez5fl0wve2YTEdGEf+r7tw5GUXYa/7zkH3WLCcCKvHMsSs2TDceqSeVjw+Q4kHM3DW1cNw/mDO8hy0/aUAuQcT8SwUWOQWVylqt1w3tsb3Qz3vdq1wic3jMT9S/dhT1oxAOC5+QNRVm1X1SAIMDMcf24uThdWYtmBLCz5Jwk3TeiGh+f0we7UIlUkRligWXZkSPSObSWvQ4BQgb99RAiu+ngbAGGNOJhRgp7tWiE00IzbxEgUiSfP64831x5XOVMkZvWPxSpReZVQzj+RIQEY0y3a7Zy/7zkHIYFmPPLLAaQVViK71KWUpy6ZpxpLALD+wSmY/HKC6m9lRFBuaTVGP78Wiy4cgNkDO6BteBCWizsS7N2+GZvK2+Gn3YKh4NIRndwU4OYKY2w359zN7VxrJVbnC/4A8I74bwrnPEtUdBM4530YYx+Kr78Xzz8KYIr0j3N+u3hcdZ4RzVmJ3ZNWhIvf24LIkABM69tOnjA2PDgVF7+/GfnlVvncmf1jsfpwDuYMbI+4qBDDokaAMNle9+kOAMLk98CsPg37Q5ohNocT1326HRcP6yQrHdtTCnAgowTT+rZD+8hgrD+ah3cTkt0mSn94eHZfZBZX4ettp9AxKgRBASakKLaXAYR8wXtruT1KXGQwMkuq8efdE9CjbSt8s+0UrhvXFRU1DjcvydnK7lNF2LB9N+6/fIbquBTyMyAuAkeyymTFRKqO6w/hQRZYHU7VfppG3DW1By4Z3gnz3tokFz/zh9snd8eH61Ow4r6JZ+w+qg2lMGUUV+Gx3w4g4Wge3rl6GHq0bSUoMz5U8zVi9oD2WHFIKIL2653jcbHC0DC6W7TKU+cvb145FDP6xeK77WlYMCEeFTV2VbGdxqS5KLESGcVVCDAxjH7eFVYsFQbTctXozqo8cX/o1a6VW5HCjlEhPm8b54nl905E/7gIfLbpJJ79+zCSFs3GkGdWocbu9EuJlSJkAKCt2YGdj88EQs6svDmp0v+kl4Uw8w/Wn0BkiBAC/tGGE7qRTkqB/Z5pPXHd2K5Iyi7D0p2nkVdeg1n9Y1U1O5Q8N3+gHNasZUBcBA5luq/bQjrOYXyh2e6rttRm7W4fEaxSMLzRs10rVUSREXrKlh5tw4PwfzN74/udp2WjgCdW3jcJL65Iwr9JuYgMCcCSiwfpRjUBwH+m9MBNE7rpKtNBFpPu+qndYi8kwIzQQDMKKqxu5140NA4vXDwYCUdzDdtgRICZYcH4eDmCrb7mAIm3rxqGe77fiyCLCTGtguRr680/tUUy4vnL4osG4tVVR1URSJLsqOR/s3rjspGdERpoxq5TRbpbH47r3gYTosvxyi5XdNTtk7vjZF4FFs8f6LYlYHOjQZVYxlg8gA0ABgJI45xHiccZgCLOeRRj7G8ASzjnm8T31gJ4GIISG8w5XywefwJAFef8FZ3vuQ3AbQAQGxs74ocffqhz2xuCbVl2fLBffz9Ub7QLZRjezowVqWrrcZAZeHlSKO5dJ1R6/WK2533pWjpWB0dysRPlNo5yK8dXh4WJ9aq+gfg+yX2SbQjO7x6A1sFM/m4AiA5meHZ8CEIsQJmVIyr4zLCCNRTl5eVo1cpzwZa/T1hxqMCBB0cFY3OGHZ8etKJXlAnHi40VUwsDAsxAlb4TplaMiDVjbAcL3t3nPrY/mBGKYItg8becwWE6vvRHXSisdiJa8czbnRyHCxywOYEeUSbct05Y6AfGmHEwXxDs2oUy5FbWj7HVE1f1YPj+BEewGfhgZvOZXxu6T2qDk3PctFJYiy7sEYD5vQKxYIVg5JvZ1YLVp4SB98rkEPxvvf/Cm7L/jWgbwpBX5XouIgIZbh8chDVpNoyINeOTA8K8+860UASYgcxyJ97ZW4MpnS04v4d7qGRpDUelnaN9mPc5WeqTKjvHf9YI96FtoBMvT20lbIp+hsI5x3dJVoyMtaBPtBmcc6w+Zcd3OmtmkBmo8d/W50b7UIbsBh7f0cEMhdV1/45ukSacLHEiNpRhwYAgvLjTWKltE8wwrYsFPx3zXt1ayez4ABwpdOBUqXfDqz90asWQXt7w86gRQ9uasS9P/cD0iDThRInn39mntQn3Dg/GXWsr6/T93SNNSClxYkKcBVf2DcTjm6tQUuO6H3O7BWD5Sf2+umdYEJal2JDipa16fDgjFEEWhoc3VCKnHp/zEbFm7M6phwEI4PbBQRgX17xLJE2dOlVXia1zqxljrQD8AuA+znmpMgyTc84ZY/XWa5zzjwB8BAie2OZknVZyOCEZ2H9U970BcREY1iUKgzpGIiWvAh9uSAFjgGRLmNq/E168dDBeWpGE9xJO4Ln5A9EtJgwD4iIRFmjGveuE4iLN9bc3J5SlRO4pq8HWrVswcvRYLHtjAyb1bou/NRVyJYwsqDeM64ovxRwePRbO6YuiSitGdY3GiK6t5ZyS81MLxUql6/H+9SNVoTUtHV+8TMq3pwG4paQKrUMDMfiZVbCKFuIu0aFIK3QtcucO6oBXLh2Cfk+u8Hjte6f1xLVju6q8SkY8evEYDOschQ7xabJ19N2rh+Ov/ZmYPWOE18+fCTSF10/ph79vnRBm+OzlY2TP6q/3TEGQxewx5E5iap+2eO+aETjnxX9VHoGbJnTDwcwSpBdWqqzY147tgm+2CaF6/WOisXR6L3SODnXb1qQpaW6eWIlUTcp90Jp/UGN34v/mj8PqNzYivk0oLj53Cv63XgiF27JwGg5klGBirxg8sHS/7EWXePbCAXjyj0N4YGZvODnHQUWth9smdVfl2QYHmPDbvZNxxYfbZM9Jz/aRuOvSCbgLQq6gtdVh9G0fgfMUuYsLLqifAjlSn9gcTmCNsCa35g5MGTv2jPPEapmq6dcxVjtKfk7EwLhIvLjC5ZWd3CcWARaTW6X5h2b3wUsrBPnnwqFx+GNfplu6zauXDZH3pn79mjEor7Hj1q/8i6xLfm4OjuWUy5E6l43oZLiH+q93T8aUVxLwv1m98d32NDdPlpZbJ3bD+J4xcDg4blG068/7Z2BPWjG6RIeiW0wYXtwpzFdPn98fv+3LVHlIW0eE4aUbJ2H6oWxUWh144EfXXtzzh3WUI/Qknjq/P2YPbI8OkSGwO5y4b+k+WUaRCmBqWXbvOVh9OEdVF0VZ8R5wbbGYXs5VWyxKfHXTaFz/2Q6P90NCqksyuXdbrD+W5/0DCrQKLAB0i4tBjakM6UVV2PHodHkdnj2gPdYm5cDm4Lhj1iDMG9YJpwKS5edqSp+2eGxuP+xMLcKjv+mnJNw6sZvsvV0wPh4z+8fig/Un8Pi8/ujTPhxjxlbL39ejbRhevXEilivkhQXj43He4A7oFRuOyJAAPMA5vt9xGuN6tMGba47h932ZuGBIHMwmhtevGIq0gkpklVThio+2YdGFA5BRXI2KGjvOnSHkMf81ohppBZV48OdEeVuvuvDDvbNw+9e78W+Sf6k5oYFmtyrl0R27YYq4jeKZRp2UWMZYAAQF9lvO+a/i4RzGWAdFOLF0hzMAKKvddBKPZUDwxiqPJ9SlXU3N+YPjsPfICQzq3R2vrT6meu+LG0fL4aKcc9w1rSciggOQVVKFtIJKWcF5aHZf/G9WH93k665tjLdmIPRpGx6EiECGuKgQ7H9qFhhjeOUyB3JLa7D+eB5qbA4sXnYEt03qjkfn9kO1zYGfd6cjObccX2xJRceoENwzvZesxB585lzMf3ezHG5yyfBOuMNgEhglbmVz8JlzG+fHnuVIVSlX/HeinB/9z38noqzajpT8cqxLysXdU3shJNCMq0Z3RnJuOXq2C0dybhnCgixIOOpafKWQ/GcuGICtJwoQHxOGQIsJGUVVqgJMgGCAMpkYrh3bFbP6xyI5rxzje8Rg3mDP+78S/jO8S2t8f+tYrDyULW9F8/DsviohGgA+vG6EXEH3hnFdcdfUnggJNOOlSwfjq62nZEHryfP7AxDm3IkvrUOg2YRvbx2DXxRCb4CJkYGpDvxx9wQkZZWhb/sIfHfLGPQXx8v71wxHr9hwxEWFyMaBD64bgeTcMixLzEZIoAlXje6C8OAAXD6yM4IsJpzMr8Aba45jdLdovH/NcLQODcSQTlGYNSAWJsbg5MLWJZsXTsM1n2zD5uQCPHX+ALktFrMJz2qK4AD6e7TWBYuJybn7wYy7rNFnEaGBFrx79XCcKqhQjb97p/eSK4wrjYgz+8XKysa5A9rjj32ZaBcRhI+vH4lJLwt5qPMGd5CV2B5tw9AuIhhf3jQaN+goUyYGTOsbi9JqG9qGBwkV/Z+cJRZNa4WLh3VEZVEOXrh4kEqJXXTRQIzo0hon8ysQHxMmh4nfdE43XPbBVgyIi8A1Y7rio40pOJBeojKCXjOmK+JjhGiM5fdOxNy3NuL9a4YjPDgAk3u3lc/79IaRyCypxnVju+LasV1xxze7ceOEbjiQUYIZ/WLBGMNscU/1fw5mI9BswtGcMtwxuYesxC6+aCAuGBqHCMU2UxazSVVI7KPrR2LtkRz0aR+Ol1Yexd1Te+KCIXFoHRaIAXGR+O/0XvhzfyaKK224YXy8PCZeuWwIJvRsg6W7TuPKUZ3x3PxB2HIiX05LA4DhXVsbhkqPim+NnalF+N+s3vhwfQp+u3M8okID8fveDDcldt6gDlh2IAsXD+uIqNBAxNqy8MIO9TUvGBKHcT3aYFb/WLy19jhuPqc7ggJMsNqdcq2PduFB+OA6wSh8Iq9c3lprUq+2eGmFUFDx3um9EBsRjF6x4YhpFYjdaUW4+RxhD/P/m9kHswbEIio0EAsmdEP7iGC5cKhyP25lbZE1D0wGYwwfXTcCOaXVqm39JBhjuFo0iL12+VC8fNkQVRG1Lm1C0aVNKA4+cy5aBbmrVu3Cg9EuPBhf3TQa5729CSVVNrlAVO/YVggJtGD/6WKsf3AKLv1gK76/dSw6RoXgRF45auxODOschSs+2oqdqUX4z5QeCDCb8NmCUdh9qkguXnf9uK5ysTTh9wpV5Xu1a4VpfdthbWIqPr11IlILKjG8SxQsJhNGP7emXsOzG5u6FHZiAL6EUMTpPsXxlwEUKAo7RXPOH2KMzQNwN1yFnd7inI8WCzvtBjBcvMQeCIWdPCY0NeecWECw1E6ePBmXfbAVAWYTUvLLkVNaU+ey5CfyytEmLBBRod4rxxFqvHk0iiutCA8OUFVKlqrCvXP1MJw3OE4uSJG6ZB5OF1biq62pKKiw4pE5/VpMLmt9Ulcvk7I/fKGwwoqT+eXIL7diQFyEx706C8XtQt5POKEq438209Rev5WHssE5dLcmAFz9vWXhNFRaHejZrhXeWHMMe9KK8dF1I1Q5qzaHE70e+wcTerbBt7e49tB1ODkYhL2SP9mYIufuvTIhBpeeb1yptKlo6j5pKnJKqxEcYPZaPV7K6WzMapvKPun3+D+osjsxJqgaSx+eA4SevUbm/PIajBRzgFOXzMOxnDLc9e0efH7jKFz+wVZkllQj8elZyC2tRnGlDb3bh+OlFUm4b0ZvxLQKQnJuObJLqnFOrxh8vyMNZsZUBfUqrXZc/uFWVT0L5dxutTtRWm1z2+1B6o/csmrkl1nhcHIM6hTp8+9yOjm6P7ocjAEnnvNv673a4m3tevjnRCzddRr/m9Ubd0/r5de1iyqsWHEoG1eK+6k7nFwl11TbHFh7JBe/78vAx9ePRHmNHU/+cRC/7hEqMUeHBiIpuxQ/3jEOUSGBbsV/9qYVYf57W/DSpYNRWGFFbEQQzh8ch2M55fK2fgkJCeg+aDT+SszEqPhoXP7hVjw3f6DH4qMn8soRGRLg1r8SNoezznvCKskuqUa1zSEbLBqTfaeLERxgwuw3NuL8IXFYcvEgVNkchr8dAFLzK/DOumQ8P3+Qqk8mLPkXGcVV+ODa4bjjmz2Y0a8dFl80CK2CLeJ2WyYEWcy6a8nsNzagU+sQfHLDqIb6qfWCUU5sXTyxEwBcB+AAY2yfeOxRAEsA/MgYuxnAKQCXi+8th6DAJkPYYudGAOCcFzLGFgGQMpGf9abAnikwxvDTHePAOVBcZUN5dd0T9HzZ8J2oHXqGgStHdUaX6FCM7yF4aP6+5xy5pHvn6FA8Nq9/o7aRULP3iZl+nR8dFojoMP39ZPXOvXNKDxSWW3GpwV6DRP2i3QZHy54nZsLmcKqqod43Q3+7kACzCcvvnegWuaIU5oIUgkDAmZvKeFbi63YhjLEmTUPt3SYY+3MqEW2u3xzG5ogkYF88vCMAYeu+1Q9MBgD8cNs4bDieh4jgAJVXcfFFg+TXPdu1Qk9xy7yrRrvCvCVCAy34+56JqLY53CrDAsKWQZ6EfMnb5S8mE8M7Vw9D/w4RjWYMuXi4sFuFETdP7IZ1R3PdtuvzhdZhgar7q93CMDjAjHmDO8hRRK2CLHjl0iF4fv4gn4rXDevSGgeeniXvtSqh3Ze+S5tQ2fi7ZeE0dIj03Dfe5Nv6VGAByPuPNwVDO0cBEApkDe/cWnfvZy3xMWF45bIhbscXXTQAN32xCwPiIrHvyZkICTTLu1p447tbxyIiuHnnw3qi1i0XCzQZjfbpOudzAHcZXOszAJ/Vti3NGWmBFYRn8p6eaTDGVCEoAztGynt3EU2PL3vZ1YXw4AC8eOngBv0Ownf8nUO1QpWWIIXAFnAGF+Qimo7JXSOwP6cSrUzOszKcWMvJF+bqHu/SJhTXtqmfLf6CA8z46qbR9XItXzlP3PO5sXjt8qEe3+8dG44dj83weE59YjIxBJt8r76uVWC90ZzqDDQnpvZpV+drTOsbW+sozzNdLzlz1W+CIAiCqANKrwN5YonaEBcuCIFW3jIeoPrOKyYIgqgtLXt/D4IgCKLFEqwIJ7aQbE7UgvAgwRBS6aQHiCAIojEhJZYgCIJokSjDiQPNpIQQ/tM/RsirmxrqedsWgiAIon6hcGKCIAiiRaL0xAbg7M9nJOqfblHB2NclA5GsZeTEEgRBNBdIiSUIgiBaJMqcWAvFJRG1gXNEmTmM61wSBEEQDQEt2wRBEESLxKIIIQ4kHYSoLZIHljyxBEEQjQYpsQRBEESLpFNr1x6y1rN/m0+iISEFliAIolEhJZYgCIJokUSGBOD7aTGIhB09wn3fI5Eg3KCtZwiCIBoVUmIJgiCIFsu4dkHYH5aIyEBaDolaoPTAkjeWIAii0aBVmyAIgmjZkBeNqCukwBIEQTQqpMQSBEEQLRcqykPUB2QIIQiCaFRIiSUIgiAIgqgNZPwgCIJoEkiJJQiCIFo2jJEyQtQdeoYIgiAaDVJiCYIgiJYL56TEErWHnhuCIIgmgZRYgiAIouVCSixRX9AzRBAE0WiQEksQBEG0XKiwE1Ef0PNDEATRqJASSxAEQRAEUReoOjFBEESjQkosQRAE0XIhDxpRF5TPDz1LBEEQjYalqRtAEARBEE0G5cQSdYWeHYIgiEaHPLEEQRBEy4aUWKIuMEbhxARBEI0MKbEEQRAEQRC1gcKJCYIgmgRSYgmCIIiWC1UnJuoKPTsEQRCNDimxBEEQRMuFcmKJukKhxARBEI0OKbEEQRBEy0VSYgmiNnBO3nyCIIgmgJRYgiAIouVCCghRV8iTTxAE0eiQEksQBEEQBFEbJOWVvPkEQRCNSp2UWMbYZ4yxXMbYQcWxaMbYasbYcfH/1uJxxhh7izGWzBhLZIwNV3zmBvH844yxG+rSJoIgCIIgiEaHvLEEQRCNRl09sV8AmK05thDAWs55LwBrxb8BYA6AXuK/2wC8DwhKL4CnAIwBMBrAU5LiSxAEQRANChV2IuoDen4IgiAalTopsZzzDQAKNYcvBPCl+PpLABcpjn/FBbYBiGKMdQBwLoDVnPNCznkRgNVwV4wJgiAIomEgJZaoKxROTBAE0agwXseFmzEWD+BvzvlA8e9iznmU+JoBKOKcRzHG/gawhHO+SXxvLYCHAUwBEMw5XywefwJAFef8FZ3vug2CFxexsbEjfvjhhzq1vSEpLy9Hq1atmroZhALqk+YH9UnzokX2R0UFUF4OhIUBzfC3t8g+aeao+qSmBigtFZTYqCjAYmnStrVEaIw0P6hPmh9ncp9MnTp1N+d8pPZ4g862nHPOGKs38zbn/CMAHwHAyJEj+ZQpU+rr0vVOQkICmnP7WiLUJ80P6pPmRYvsj02bgKNHgZEjgUmTmro1brTIPmnmqPrkxAlg1SrAZAImTwbatm3StrVEaIw0P6hPmh9nY580RHXiHDFMGOL/ueLxDACdFed1Eo8ZHScIgiCIhoW22CHqCoUSEwRBNDoNocT+CUCqMHwDgD8Ux68XqxSPBVDCOc8CsBLALMZYa7Gg0yzxGEEQBEEQRPOFjB8EQRBNQp3CiRlj30PIaY1hjKVDqDK8BMCPjLGbAZwCcLl4+nIAcwEkA6gEcCMAcM4LGWOLAOwUz3uWc64tFkUQBEEQ9Y/TKXjSnM6mbglxJsM5KbQEQRCNSJ2UWM75VQZvTdc5lwO4y+A6nwH4rC5tIQiCIIhaQeGgRG2RFFd6hgiCIBqVhggnJgiCIIgzA/KeEfUFPUsEQRCNBtWCJwiCIFoupHgQdYWeIYIgiEaHPLEEQRBEy4YxUkSIukHhxARBEI0KKbEEQRAEQRC1QWn8IEMIQRBEo0FKLEEQBNGyIU8sUVfo+SEIgmhUSIklCIIgWi6S8kFKCFEXKJyYIAiiUSElliAIgiAIojaQ8YMgCKJJICWWIAiCaLlwTuHERN2QvLD0DBEEQTQapMQSBEEQLRdSYom64HQ2dQsIgiBaJKTEEgRBEC0XUmKJ+oKeIYIgiEaDlFiCIAii5UKKB1EXyAhCEATRJJASSxAEQRAEUReoOjFBEESjQkosQRAE0XIhDxpRF5TPDz1LBEEQjQYpsQRBEETLhsJBibpCzw9BEESjQkosQRAE0bIhJZaoLfTcEARBNAmkxBIEQRAEQdQGUmIJgiCaBFJiCYIgiJaLpISQMkLUFXqGCIIgGg1SYgmCIIiWCymxRF2QttghCIIgGhVSYgmCIIiWDSkhRG2h6sQEQRBNAimxBEEQRMvF6aTCTkTtIU8sQRBEk0BKLEEQBEGQEksQBEEQZwykxBIEQRAtF1JeibpA4cQEQRBNAimxBEEQRMuGwkEJgiAI4oyClFiCIAii5SLlNJIXjSAIgiDOGEiJJQiCIAiCqA1k/CAIgmgSSIklCIIgCFJGiLpCzxBBEESj0WyUWMbYbMbYUcZYMmNsYVO3hyAIgmgBSIoHKSBEbaBwdIIgiCahWSixjDEzgHcBzAHQH8BVjLH+TdsqgiAIokVAhZ2I2iIpr/QMEQRBNCrNQokFMBpAMuc8hXNuBfADgAubuE0EQRDE2Q550oi6Iimw9AwRBEE0GpamboBIRwCnFX+nAxijPYkxdhuA28Q/yxljRxuhbbUiCOgYBpQ3dTsIF9VAZDBQ0tTtIFxQnzQvWmJ/mABzEBBYA1idgKOp26OlJfZJc0fZJwxgwUAwB3g1UN3UbWuJ0BhpflCfND889Ulh8+6rfKM3mosS6xOc848AfNTU7fAFxtiuas5HNnU7CBeMsV0V1CfNCuqT5gX1R/OD+qT5QX3SvKD+aH5QnzQ/zsY+aS7hxBkAOiv+7iQeIwiCIAiCIAiCIAiZ5qLE7gTQizHWjTEWCOBKAH82cZsIgiAIgiAIgiCIZkazCCfmnNsZY3cDWAnADOAzzvmhJm5WXTkjwp5bGNQnzQ/qk+YF9Ufzg/qk+UF90ryg/mh+UJ80P866PmGcqukRBEEQBEEQBEEQZwjNJZyYIAiCIAiCIAiCILxCSixBEARBEARBEARxxkBKbAPAGJvNGDvKGEtmjC1s6va0BBhjnRlj6xhjhxljhxhj/xWPP80Yy2CM7RP/zVV85hGxj44yxs5tutafvTDGUhljB8R7v0s8Fs0YW80YOy7+31o8zhhjb4l9ksgYG960rT/7YIz1UYyFfYyxUsbYfTROGhfG2GeMsVzG2EHFMb/HBWPsBvH844yxG5rit5wNGPTHy4yxJPGe/8YYixKPxzPGqhRj5QPFZ0aI812y2GesCX7OWYFBn/g9T5E8Vn8Y9MlSRX+kMsb2icdpnDQwHuTelrOWcM7pXz3+g1CY6gSA7gACAewH0L+p23W2/wPQAcBw8XU4gGMA+gN4GsD/dM7vL/ZNEIBuYp+Zm/p3nG3/AKQCiNEcewnAQvH1QgAviq/nAvgHAAMwFsD2pm7/2fxPnKuyAXSlcdLo934SgOEADiqO+TUuAEQDSBH/by2+bt3Uv+1M/GfQH7MAWMTXLyr6I155nuY6O8Q+YmKfzWnq33am/jPoE7/mKZLHGr5PNO+/CuBJ8TWNk4bvDyO5t8WsJeSJrX9GA0jmnKdwzq0AfgBwYRO36ayHc57FOd8jvi4DcARARw8fuRDAD5zzGs75SQDJEPqOaHguBPCl+PpLABcpjn/FBbYBiGKMdWiC9rUUpgM4wTk/5eEcGicNAOd8A4BCzWF/x8W5AFZzzgs550UAVgOY3eCNPwvR6w/O+SrOuV38cxuE/esNEfskgnO+jQuS4Vdw9SHhJwZjxAijeYrksXrEU5+I3tTLAXzv6Ro0TuoPD3Jvi1lLSImtfzoCOK34Ox2elSminmGMxQMYBmC7eOhuMXTiMymsAtRPjQUHsIoxtpsxdpt4LJZzniW+zgYQK76mPmlcroRa4KBx0rT4Oy6obxqPmyB4MCS6Mcb2MsbWM8Ymisc6QugDCeqPhsGfeYrGSOMxEUAO5/y44hiNk0ZCI/e2mLWElFjirIIx1grALwDu45yXAngfQA8AQwFkQQh3IRqPczjnwwHMAXAXY2yS8k3REkv7fDUyjLFAABcA+Ek8ROOkGUHjovnAGHsMgB3At+KhLABdOOfDADwA4DvGWERTta+FQfNU8+UqqI2iNE4aCR25V+ZsX0tIia1/MgB0VvzdSTxGNDCMsQAIA/lbzvmvAMA5z+GcOzjnTgAfwxUKSf3UCHDOM8T/cwH8BuH+50hhwuL/ueLp1CeNxxwAezjnOQCNk2aCv+OC+qaBYYwtAHAegGtEYRBiyGqB+Ho3hJzL3hDuvTLkmPqjnqnFPEVjpBFgjFkAXAxgqXSMxknjoCf3ogWtJaTE1j87AfRijHUTvR1XAvizidt01iPmY3wK4Ajn/DXFcWVO5XwAUlW9PwFcyRgLYox1A9ALQrEBop5gjIUxxsKl1xAKpRyEcO+l6nc3APhDfP0ngOvFCnpjAZQoQmKI+kVlNadx0izwd1ysBDCLMdZaDKucJR4j6gHG2GwADwG4gHNeqTjeljFmFl93hzAmUsQ+KWWMjRXXo+vh6kOiHqjFPEXyWOMwA0AS51wOE6Zx0vAYyb1oQWuJpakbcLbBObczxu6G8ACYAXzGOT/UxM1qCUwAcB2AA0ws8Q7gUQBXMcaGQginSAVwOwBwzg8xxn4EcBhCqNhdnHNHI7f5bCcWwG/CPAsLgO845ysYYzsB/MgYuxnAKQjFIABgOYTqeckAKgHc2PhNPvsRDQozIY4FkZdonDQejLHvAUwBEMMYSwfwFIAl8GNccM4LGWOLIAjqAPAs59zXQjiEAoP+eARCtdvV4hy2jXN+B4QKrc8yxmwAnADuUNz3OwF8ASAEQg6tMo+W8AODPpni7zxF8lj9odcnnPNP4V5fAaBx0hgYyb0tZi1hYoQMQRAEQRAEQRAEQTR7KJyYIAiCIAiCIAiCOGMgJZYgCIIgCIIgCII4Yzhjc2JjYmJ4fHx8UzfDkIqKCoSFhTV1MwgF1CfND+qT5gX1R/OD+qT5QX3SvKD+aH5QnzQ/ztQ+iYmJwcqVK1dyzmdr3ztjldj4+Hjs2rWrqZthSEJCAqZMmdLUzSAUUJ80P6hPmhfUH80P6pPmB/VJ84L6o/lBfdL8OJP7hDEWo3ecwokJgiAIgiAIgiCIMwZSYgmCIAiCIAiCIIgzBlJiCYIgCIIgCIIgiDMGUmIJgiAIgiAIgiCIMwZSYgmCIAiCIAiCIIgzBlJiiTpTY3fA7nA2dTMIgiAIgiAIgmgBkBJL1Jk+j6/A/Pe2NHUzCIIgCIIgCIJoAZASS9QLBzJKmroJBEEQBEEQBEG0AEiJJQiCIAiCIAiCIM4YSIklCIIgCIIgCIIgzhhIiSUIgiAIgiAIgiDOGEiJJQiCIAiCIAiCIM4YSIklCIIgCIIgCIIgzhhIiSUalBUHs5BTWt3UzSAIgiAIgiAI4iyBlFiiwbA7nLjjmz244sOtTd0UgiAIgiAIgiDOEkiJJeqNW77chbSCSvlvB+cAgPSiqqZqEkEQBEEQBEEQZxmkxBL1xpojOVjwxQ75b1GHBW+i9hAEQRAEQRAEcfZBSixRr5RX2+XXDieprwRBEM2Biho7ymvs3k8kGp3M4ioczChp6mYQRLMgObccuWVUS4XwTp2UWMbYZ4yxXMbYQcWxaMbYasbYcfH/1uJxxhh7izGWzBhLZIwNV3zmBvH844yxG+rSJqJx4VytqDLmeu3gpMQSTc+nm04ifuEyOMmoQrRgBj29EgOfWtnUzSB0GL/kX5z39qambgZBNAtmvLYe41/4t6mbQZwB1NUT+wWA2ZpjCwGs5Zz3ArBW/BsA5gDoJf67DcD7gKD0AngKwBgAowE8JSm+RPNHqxcwuLRYUhqI5sCSf44AAGxOZxO3xJ2DGSVIyStvsu9PTC/GT7tON9n3E40HTccEQZwp2GnCInygTkos53wDgELN4QsBfCm+/hLARYrjX3GBbQCiGGMdAJwLYDXnvJBzXgRgNdwVY6KZ4ilk2Fs48dRXEnDu6xvqu0kEoUIKCGiGOizOe3sTpr26vsm+/4J3NuPBnxOb7PvPRE4XVuJQ5tkV+nkoswSvrDza1M0gCJ9ZlpiF0mpbUzeDIIgmxNIA14zlnGeJr7MBxIqvOwJQmvzTxWNGx91gjN0GwYuL2NhYJCQk1F+r65ny8vJm3b76wupQK6pWa438u4trBK2Bc657L07mVwCAX/epuMaJpEInxnbw/9E90/sk4bQNg2LMaBPSOKnsnHM4OGAxMd339+TY8dbeGrw9LRThgfrneKOh+mRZihUVNuDyPoFyyHvChg0IsdSunQ1Nfd8Dq4Pj7xQbzu8RgACD/tP7/qLScvy9ah1a1bI/WwILVgjz1hezwxrl+zyNkQobR7Wd+zUn6F3r5pUVcHBgaECm4Xg3wubk+CHJivk9A1vMc9NQ89aZvD41JlnlTjyyqQrD25lx7/DgM35tPxupjz6hPq1fzsZx0hBKrAznnDPG6i0mgHP+EYCPAGDkyJF8ypQp9XXpeichIQHNuX31RUWNHVjtyrMKCQ6Wf3d2STWwbi0YY/r3YsUyAPDrPs15cyOOZJXizvmTEREc4Fdbz9Q+4Zzjj32Z+GLFPnSPCcO//5vSKN/77rpkvLzqKBKfnqV7r9/7YCuAGrTtORhju7ep1Xc0VJ8sEJ+t926fBaxaDnCO8ePPQWSof89Mg2MwBh75NREhARY8eX7/Wl32nX+P488TxzC4b0/cMrG71++fOGkyzCaGc1/8B0eLKpG6ZF6tvrdFUIt5qy54GiPjXliLrJJq3/rLQ7sd4nttew1DbEQw2kcG+9y+3/dmYG3aPrRu2x6vXDbE8Lz4hctwzZgueG7+IJ+v3Vyp93mrkZ+pM53E9GJg02bYAlphypRzzti1/WymTn1C46FBOBvHSUO4dHLEMGGI/+eKxzMAdFac10k8ZnScOAPwVLzJKb6nLf5UF7JKhD1n7Y7Gz5dYdzS3ScIIf9mTgfuW7gMAFFRYG/F70wEAeWU19XZNq92JKz/ait2niurtmr5yJhUa+37HaXy2+WStP19lcwAAauy+xVBXi+cfLWqGMdeEIVkl9VvB88J3N2PckrV+fYaLm6jZHN6fnW+3p9WqXQShREpVMvsZNUAQALAuKRd/7CM142ygIZTYPwFIFYZvAPCH4vj1YpXisQBKxLDjlQBmMcZaiwWdZonHCD/YeDwPx3PKGv17tcWbTIonqiG22JGWrPpUjH3lxs93Yt5bjV9BMltU3AGgMdfsQLPQmTW2+lNsUgsqsC2lEA//0nh5mNKzYvczKbbG7sDOVG3K/5nPocwS3PbVLpXSUWl1+PRZh5PjyT8OIq2gsqGaVysKK6y44bMdKCivP4PL2YQ/c7G/U6tJLElPdVjqTlOsa2cipMQ2HdU2xxlfE+DGL3bivz/sa+pmEPVAXbfY+R7AVgB9GGPpjLGbASwBMJMxdhzADPFvAFgOIAVAMoCPAdwJAJzzQgCLAOwU/z0rHiP84LpPd2BmHYskcc7x8YYUlFT5XixBKxypqhP7sSAXlNdgT5p375wkMLWkynVMsW+R8nVt2He6GNtSCrye53ByJGULRhGrFw+LpxZJSs+6o7n4dFPtPYv1gb+FnZ756zAu+2ArknObrnpwQ/C/nxKx6nAOjimMXpIn1huHM0vx1dZTuOf7PQ3VvFrx9dZTWH8sD19uSW3qpjQ7ft+bgR6PLm+w68tKbAPMyZVWOwp9iD5JL6pEpbXh98BNL6rEY78dqLOBdv2xPJSJRYlmvuYq7GZrggijMxFZia3jelhflFTacMfXu1HUiJFSTcXDvyRi3lubGs1gmFtWjfPe3ihH4RGEkrpWJ76Kc96Bcx7AOe/EOf+Uc17AOZ/OOe/FOZ8hKaRiVeK7OOc9OOeDOOe7FNf5jHPeU/z3eV1/VEvAanfi6o+3Yd/p4lp9Pre0Gq+vPgank8Pp5LA5nNh6ogDPLT+Cp/885PN1tCGaqn1iFQv9msM5yCk1Dn274fMduPi9LbB7U5jEL7D6GCbpjYbwFjckJiZ4ne74ejdyPdxPIy56dzOu/Gib1/O+2+EK+zO611IYoSf2nS7CV1tP4cbPd2LR34dlL09jehykb/LXE3s4sxQAVEadiho7Moprt5hml1R7jJY4kVeOdUdzPT6TP+xIw7fbT9Xq+yUCLcK0v/ZIrnxM64k9mq1u567UQjy//Ijs+fA1TLmxkOahuhp5AGDDsTyflfqGJK+sRqg5IHI8pwzPLz8ijx2lEJlZXIW9BkbAZQeyVH/X95wnPRMNMZfOfmMjhi9a7fW8c15ch+s/3VHv36/lgaX78e32NCQX1/75L6u24YbPduDyD4V5+LjCSOZtjvpp12m3OaTK6sBXW1NRWGGt87y67mgutvtg5GxqpPFuapwah4Y88msiLnhnE77cmooVh7K9poCcDZ52ydlQUdMwc6T2Hv248zQOZpTi6611W/eMqLY5fEqFOBtxODmW7kzzKnc3Z5p4CiBqS3JuObacKMAjvx6o1ecf+HE/3lx7HIkZJbjn+73o9dg/qBEf5OJK362J2jVXKULKObEAbvlqFy5+b4v8nnaiSs0XwhO95XhJMmp9eGKzS6rR49HlWLqz7nlav+/NwBO/H/R6XqXV7jZhvLwyCQ/9vN/Hb2J4ZdVRrDiUjeUa4dQfPC2mFTV21W/xNsFrFYeiCquhlVYS0ppiKffXEyu1URmxds0n2zFhSe02YR/7wlqP0RLTX12PGz/fiXKF4qJVphb+egCP/aZ+zjjn+HTTSZ9zlwPNwg96bfUx+ZjWi3XuG+p23v/jPny0IQXpRcI49eSdzy+vwamCCp/aUl9Iz/PJ/ArEL1yGgxm1C3c7llOG6z/bgaf+8N2Q5ysHM0rw1dZUn88f9dwazHlzo/z3VR9vx0cbUmTP5IjFa+T3xi/5F/MV86sSyWghUV8GQAlXOHHtt1szIq3Q97D1XY2QZy8992YfbCXVNgfOe3sjdp9SB5ZViQajI1mlbp+x2V33yenkKoMZ5xwP/pzoltLy6qqjePKPQxi+aDXeSzjh82+RSM2vkOeZGz/fiSt8MHI2NdJc3tThxN/vOI3EdNdc40lHHb5odZ2j5ZoDUrSdP5F2/uAW3dfA6Qp9n1iBKz7c2jAXb+b8sDMND/9yAJ9vTm3qptQaUmIbEWlLmfpAskDWNoRLEoQYXJZ6aTnwJ6JJ64mVBJpDmSX450A2ANfErlyQlWFT65JyZcH9dJFnoUVqY31YjiRB+6dd6XW+1n1L9+Hrbd4thf2fXIk7vtmtOvbuuhP40cc2mJhYmRFAXFSI4XmZxVXI9OAxLKp0eRcv/3ArXlcoNMpFGRByQ/XQW8PSiyoxbNFqlYCtpCkKcknttDud4JwbeqzcP+fu3fM18qEunrxShefXl9D+5NxyLPr7sM8hvlqlBnAVgtKy9UQBskqq0CU6FACwV/z9ngwbY59fi8kvJ/jUFn85kF6CrSfcPUWSQLUuSfAu/7k/0+dr5pRWC5XUATnE83hu/dUXeOqPg9hyIh/3fL8XT/5xSFd5AQRDwvBFq5Fw1OUhVypx5TVC2yx+up+CNP1tNJ79gXOO+IXL8MnGFNnIYyTUHs8pw9d+KO/NGckIZ/ahC47nlONgRime/OMQvt52SjYyVXuoMTDk2VWyQemNNccwYcm/suFIin7QGpCUc8SyRP8Mm3aHE1NeScA93+/163NNjU3sB1MzCSf2pRWFFVavqSkOJ8fTfx6S+1wJ59ynlKsdJwv9ckT4i3TLG2ol1zoopD72JfKrtuxJK26wazcnquzC8yUZ0qTw96IGfF4aGlJiG4l1R3Mx9ZUE/OVBuFp7JAcbjuX5dL26WsOkxVi5IErC+oZjeXhpRZLbZz7ZmIItyfmqY25KtDjBzXtrE15VKEZaqhWClDI8MrPYsydWmtDqI3coKMAMwHvOZ32zRhHG6S+MuQoteer78Uv+xfgl/6LK6sDSnWluntfPFPmpO04W4s21x+W/tQK8J6FL2w6l50jP+yIrP03ginVyjl/2ZGD+e1v8Evb0BBRPRpQ1h3PQ94kVXotfGHnDKxRe0fVH8zDkmVUec62k26z0xDIPYlWAjgReZVDY6aqPt2HGq+tlxUk6T+kx0tKQ+ernv7MJV33s7imSvtJs9j8/c8zzazH2BaEirzQH1petxWp34sutp3D1x9vl6AQjJTatsBKFFVY8t+yI6vivx634Y1+GPA49jXu9glvuSmzt57urP96Gx38/IF/jxRVJXsOJZ76+AU//ddjv7/LVUNkQubhGSEY4XzyxkrB/PKccT/x+EP/3kxBtU+3FiJBRJBgfE0RZoKBcGPvKCA0lFkVjjNayzOIqlFS6G8Sk832VO5oLUjSBv3saNzR1VbT2nS7GF1tScb+4G4GSn3an4+L3tmDFQfe1K7+8Bj/uPA2nk+PyD7fi2k+316kdnmjo4pra9UO2U5z5kdhNzvKTNnyxJVWOCJK6sJnYgmoFKbGNRFKWoBgc9CDY3vzlLlz/mX95PRnFVX4VYpKQlMDyatfC+MYal9L5hU6BlMXLjuDqT9STo3thJ8+kF1Wi2ubApuMuZVipkEpeqAPpJbj5i51IyVNbLqU1qz5yGALM9Ztf64mEo7kePaO+YmJMnuTtTo5qmwM7Tgrhah9tOOEWRvnc8sN4+JcD+GhDiur4O+uSDYW/smq1sGSk4EifVj4Dys/2eHQ5vt2mDtWW7nVTrEd2J8cJ8XlK9SHc1dMa7cnwIYV5H8nS9+ZJ98tI6Fd6q19fcwwlVTZsTSnQNSwBrrGgHEeSMKUnaOgpsZ7GU4XVIbdVUl6aWw6RpNhJQm1t9RpzHYoUfbbppFu0TXGVy/hQKo6NCqsDyw9k4e9EtUEzyCIY1So0ysqfJ2yqSpqelNhJL6/DaU0IbqCmv+tSbXzLiQJ8sy1NnhPMJiYLQP7csr1pRao1QA9fDZWNuXWW9NxLxo4tJ/IRv3CZx1B+aa6oFPtVef8/WO8e/iut57LCLD7T/xwUIpu0ipsypNbIyz5+yb+Y/Mo6999jPzOr/Er90FzaXV9KgKeaAyl5wtySohPRd+e3e/DQL4k4Ka5rBzP0DWX+kltajSs/2qoqrsZ8SB/wF4eT47HfDuBEXjkcDn2Zsql02L8TMxG/cFmtCscZGZ5qw1N/HESvx+pWoE9atqW5Wvq/uUQ01AZSYhuJ+g6FkCbxSqsDcxXeL38//6JCMN6rCKno2z5cPm/VoWyVMGy1O3Hxe5ux6Xg+bv1Krs8FwHthlXNeXIfbv96NO791hT7qKUHnv7MJa5NyMV1RuVF5fX+L9OghXcIXJbYuRUsOZpRgwec78ZQPBbO2JOdj6c40/KPId1XeUgZX3zmcHM/8dRiXf7gVJ/LK8fzyJJz39iY5JBJwWfVf+MddARryzCo89Ycrv/K3vUJIs3YBNQo1lfDkeft1r3ovtqYsCHTDZzvwvh85Y9KYNTGG9xNOYNqrCfJ7nrzTkrISHmzRfV9aDI3um1JBlBTOkiqbYb6bFLrsq+dKL5zYm/dUapMkJGuVeM45Xlh+RDYSNDbS9CR5jPUErN2nCr3myvqS36lHeY0dz/59GNdqjHx63q/KGjvu/HYP7v5OHcIp9V9Zjd3jfXRyeDSIaesKaI0WVTYHpr6SgNdWHTW8hjekOcFiMikEI/U925tWhHyD3Pj5723x6i3yVTmtj4JSdocTuWXeC+VJ40T6rZ9sFCJa/tiXoTJ87EotxCZN1FJokDAfKD2xS3Tm5Us/EPLztNvISHUKtJ51ZYVeTwaKYp1nscYhtOVME2KlNduXdifnlvntad6cnO8x7H7HyULEL1zmdtyfaSO3tBrP/HVINW9LhvWj2WVu0Tdy2L7O8y4VeVT2/4LPd2D14RzfG6TDp5tOYltKIX7cdVo+xmRHQv3JtEeySvHt9jTc98M+N9nOqPr5j7tO4wEdj3V98/JKYZ7MKTU2VN34+Q78vNuVElZWbcPfiZkY+NRKPLB0H77bnubz2lhSacMtX+50M4x9ufWUT/e8osaOUc+tweZkdyOhdAtdIeFiypRPLWuekBLbRBRXWuu016JS6KxNtVTJypuUre8tSiusxPGcMry7Lhm3fb1bVck0q6QKe9KKce2n21WVFQHfBsP6Y3loFx4k/60UQl5fc0w1GXAOVfiMcgK1OZz4ZKOwJVBtSttLeTW+KFa+ep42Hs/DW4rQXMBV6dWXwjtXf7IdD/9yAP/5dg+e/OMgznt7oyo0lDEm953DyXFYDE1UWkqzFUKsMofzmKaqZVmNHV8qKv7dv1QId9Mu3ssSszx6phxOJ77fkYbz3/a+h66kcElGEc45Xlt9rF7zxY3wtAjpIa2lHBwvrkiSLeGA57xCyYgQLIara5GqOho9U8rxIIUKeoq2kCoL2xSf8xROHKTjifWmCEjvS8KjNrf5ZH4FPtyQgju/Mc7LtdqdDRaC5tQI/HpK6CXvb8V5Xp5R6XO+KEb7FWNLymHTWuuLdBQHPYMS4BIKK2rsmP7qet1zAGEMjfdQXOyRXxNxMr9Cfr6CAtT9XV5jx8n8Crz1bzKSsmvnsZGUWLOJyfdKe8/nv7cF897yz8CanFuOXeLezL4qp/WhxC75Jwmjn1vrcZwl55bhlLhmS18pfffiZUfwwQaXkenSD7a6KaitgoT5wNd8eWl90v4+rRHKrMiR9tdI6FIG/fqYV1LzKzD02VVuUQH1hdRuXzyxM17b4FeE28GMElzzyXa8sFx/nK46lI3LNYWA/KmKLskqj/9+EJ9vTlUZOySFrcbuxPnvqOcq6bduP1noFq0hPSHKMZhwNM/NySCfz7lKZnA4uW5Vajm9QjH/S4pyfda3kMaExcx0CjsJ/2uH+e7UIqxNqn1qlq/YxGctwEMOwbqjefifmC7w8+50DHp6lRyF9uveDDz62wGPc7qS73emYc2RXHy8McX7yTocyylDXlmNykHlQriJwny3xmV0OcOMWEpIiW1kJOFy1usbMOll9/AeX6lrYSNvk39+uRUzX98ge/KUXkRPC6WvHoxxPdoAAEICzG6WN2kykNicXIA1h3PAOXftE+vg+HrrKSxedgRDnlmFYT5sw6BFGyLpCV/z/K77dAdeW30MNXYHHvk1Ebll1bIwqec9ViqWWsXoq62ndMOClJ5YqRsv+8C1qJYpFjilED3Lx8qIWmv+1pQC3W1dJIXklz0ZeOTXAzjgQ0XY/4geeOlu5lVxvLX2uMoz3xj4o0zpCcmePLFSNIHRGJVyXo2Eb6W1NcDk8sQaISkUeWU1+DfJ2PJeUF4jjCGdsa9n4VUaLmyasaJVwKU26F1bMtj1fvwfPPb7QdTYHSipsqGwwuoxCsLmcOLBn/Yj1QcDh9RUSemva62Akiob4hcuwy+7jQuuXfjuZvn17DcEZa2o0oYl/yTJfetPgRXpnnqbau7+zvNYOZFXgamvJOC/PwieXrPJXYlVtluvUNa2lALc/MVOQ+OVFE4cYGbyvdYLjvHXcDTjtfWyJ1L53f94qMRem3Di5NxyVQV1SRj2tG3ZAz+61iVXOJ7S+1qE1PwKw+I9oYGCJ9bXcG7pGfo7MUvl9dP2pzInVrmGFFdavW7DJo177bg1ilh44Z8jeOYv7xFFP+46jeJKm18F1vzB6iWceOnOtFrn+UrKnbYfx7+wFov+Pqx6DiTeW5cMQB3yarTGSLKK1qsPqNeE9CK1c0KSfTYez8cDP+4DIDgUvth8UlZGvEVNSXy/4zSGL1otb9f0zF+HcMVH29zqOEj2TmksXvz+Ztlp4ikaLresGgtWVGC3l4rhb645jnVHc+X1NMhiUhljAZcirY1mtDt5nfeG9kUOsIpjJKuk2qdojXViYT69LSUdTo7/+3G/2xZ2Ek4nl41fRs+2tzZL0Uh68oXyo7llNfIdPXNVWFJiGx1pIOb6uB2GEUZhBUb5i1o8WZWUSAuk0turzZlUciKvQhV2acQf+4TFjTHvCuLX207hlq92YdmBLIUn1ulmjfQXSWi0+lCt0+anhXvN4Vx8v+M0nv3rsCr0W4syFNzIU6tc5EwmpbDLdSefut4XPaX+iT8OycLv1hMF6P3YP/Ii629FTMA1mVbamibTxRe5VzpFuRhI+YUVNXZDxVK6TzYHh8PJUVqtPq9C8b6rPYpwfYWCeFQUMjyFQSs9O8sSxYrgkDyKwvH1x/IwYvEavLHmuK5y7dARSH7YedrtfenZ0I5ZqQ0hCq+f9D1z3twoG+y+256Gaz7ejiHPrMLwRatxlweFbM+pIvy0Ox0P+rD9lDRGmPy38bklVTZ8tTVVVxiQvAvSWHxjrXFxOiM+WH9CFt6K/ahX4Knon5L96d6NRQCwXKwOr+3bGzReKT1v7B3f7MbapFzD9ut5YmsT/uvJK6m83n88GLm0OXRaVhzMdjNGzHhtvaqCepjoJc0vdxkdUvLKVUphkiLHXfoJyp9sNjFMeSUBM17T97gEB5hw93d7fN4KSPL6fr9DXVcgv7wGF7yzSfZyWlQ5sUJf55XVYMTiNRj9/FrVZ7s/og6BlYxIxZU2laJsFLHw4foU1XYcRkYO6aincN+C8hp8tz2tVpFk3jyxD/9ywO/6IhJGzqnMkmp8uukkggPcxeYKzdqemF6Mbo8sl+tVrDyU7fYZV4Ek4f/rPt3uMVJE+VsPiXuY3/LlLjz912FklQj3UGnM9oRUAf2EGF307XbhGdOu/VKoujQWlUZ1T3KbZBj7XNw31+nkugbL19ccw42f75QNu8EBZtV4Pl1Y6XafJJycw+bQv66v+BLFIclbl32wFaOfW+v2vnYdke6ZXjrR5uR8/LInHXd+u9vtPUBthAgweLaV9/32r3epUsIA184lep5ytyPSfsvkiSUak9OFlbKVXcvPe9KRVlDpcWA/+NN+pPoYyqz3cCtzLqf1bef2vjLs0hs1dqcqF9cTWcXVcnvW61hZ4xcukydNX5BDZHzwatsUgqB+mIYayUJotTtlS161YqF79LcDWH04RzUh6VnuALVSyqAu7OTt/NpgtMdnlihsbDyeB6vDWWdDDABUiU09klWKW77UD33ylYziqjrnACmRFie98N6bv9yJIc+s0v2cdP7Tfx7Cs38dwuCnV6mEYdlTq3imlN9R44M1fdNxoaDMqYIKlXHE1Wbhb2kB/nWPIMQnHM3VNYA9/MsBNyv8o7+59qCWFkQjg0+VVfiekEBXCLXNIRTS0uZoKoV4qb9u/HyHWzi6P+YNOQxY/L+w3GroCX/01wN48o9DutsqaMdUrhdPopHXTVIwfPXErjmcg082+T53+Yrd4fQa9qdnXKusUYf9a5GMpRaTSeGJFf4/XVipmy8oobxnniIM9BSkgxklbkYhb8rzHd/slisDa5GeEclLKnlarHYnpon7Nh/PKUP8wmWqdcLJBSVXGfXirVJudkk1/k7M0i3mpGXjcdf6FqKTlpCYXoKJL60D51yl3HAuFKIZ9dwa3QJy2lvqKU3G4RSiZKQ+Um79BAhhsd0fXS5vLVdRY5flDtmo5OGWjFi8Bo/+dgCXvu/a39jh5Kpn7tNNJ3W3RHPt11t/wvf9S/fh4w0pSPNS9E8qwKaH1HRp28KdYmj87V/v1pzH3T6z0UuhMz2FXapcXdv81JWHsvHn/kz5GZHmim0pBVhxMFv20OuJGp6eHZf3VOC+pfvQ+/F/DOcT6RkLtqgj8ya+tM6Vv6n5rDRX++q40cOX++YtlUyrCEv9FBbkrsRKhhUj2U153Gwy4UhWKe76do+qDdIYq7I6sPJQjiolDHD1oZ6nXBsEos2RPRMhJfYM5IoPtxoqENklVZj08jpc9sEWjH5ujbxgFlVY8euedHDO8ZOHEDkteguz5Gl6/YohugusP/iTz1ReY5eVwy+2pOoOPH8K97gEc19yYl3t9OU7JIuaw8llQUlpZftue5pbvsol7+tbUQvKlZUBXe12OrmukaG8pvaT+prDOdiiE14IuBak9pHBtb6+REF5DdYczkGFwhO75kjtFNCSKhuO5ZRh/rubcetXu7DioLvVW4svT520ZiqFZGk8eAqTlBbb7NJqeYGptrqesQIxXE2pXCifL2/h7VGhAfhVLMK142ShvIi3Dg2QF0G5YrHT5ZkBBC+eXnVLQNgWywjJY2bUNsmSvjnZ9exY7U6f84DWHc3DgYwSlWdOLv+vE2/w9dZUVWiXNqR1xaFsPKGxUEtIXgttyHFWSZWbgchbX8x4bb2ul0XyLukV09FSXGnFLQa5a3WlpyJiwgg9IVBSEhwqYdv12lNOrFGonMS5b7jSGjztT6hVTp1OjvPe3oSbPt+pPk8Z9u5nmo3kQQsTjS/SOJGE6i0nCrBDVERUbeHAtFfXq/KiLV42j/Vn6yllVI7SMKQlrbASb/+brDqmDQ/3tL55er5/2nUar60+hkV/C9sjLdDcd8lL/+H6E3h3XTIGPLXSlSsq/lSl+OBwct1oo6ySajmtpsejy/HIrwfwycYUJKYXY9HfhzH/vS1un5FzeRVfsEMnV1Rp7PYWhvnb3gw8t/wInvjDPVxaaVDx1B/ybxK3Cmwfob9WJqaX+K046K31da3M/dveDNyr2CNYGj9XfrQNd3yz27CoEuA5J1ZuKRdkHSms/IJ3NuM+HQeMtCtFcIDJTSY0aRRiCalNFXUIKfYlP107pzzya6Lqb20fSO01kqMA43unNLxazAz3/bAPyw5kqQx/hzJLUVZt091LuLzG7pq7NfextNqGdafV90qak85gHZaU2KbGU8Ecu8Ppti8rAOR48IAVVgiTwf70EuSW1cjx9S+tTMIDP+43FOyM0Mtxk7wnY7u3cSsa0pC8ufa41xyrNq2CPL6vRBrAviwDel6dkiqboRVQUvTtTm4YTqzd+sIIZYVPE2Oqgh96C6G3DdU9sfmEsTWYc0Hg9rUwiScqrA7c8tUuFFTXbRGutNox5JlVmPX6Btmwc8c3+qE6vvDmmuNyeKXUh1sUipm2gIeeYKT3i8pqXMpMvthO5eKoDEH0pjgxqKvoSgpFq2ALHE6OgvIaWZG3OzgOZZYgURGCeiSrFEM6RyG+TajH71EaqKR7YSQQl+ukGEiVT/1B+ezKOVA6VTmf+OMQ7hJDTJOyS/GNWERDuXD/uU8/PFcyGGg9G+Ne+Fc3rNobegX6JKGsqNKGmFaBHj8/9Fn/8/n9YX96scf3CyqM51SlcUWphP0uVh23qMKJhfcCdKpfG6GcE5X9a7U73b2GYt9ow3GV7ZI8yCsOZuH2r70bBiSjqNT2GrsTSdml8u/Ttks+pjPIvWXo+BP2qCzeZFQgDgCu+NB9z2Rt0zwVoVvrwXC48FchEkMv75BzLq9LuWU1cgVXqZCgK7zfdVNeXnkUo55boyooJKGs1/DDztNYvOwILnhns9t5ADDvrY14Y81xsR3CsZIaYX9UKVdUQhk6X5dquso5OafEOC9SmrOk4opGY0HIp9dXzozQExfqu1CeNipNMubo1RiQDPQfrj/hJgfdIyrGHFwV0XMgowS/78t0G1NSsUOL2eTWT67CTlpPrCRX1V6JnWtQeI5zjp2pheBiyLKS73ecVv2tinRwct1+0iKt/cL1XfdcOZdZTEx+T1lh/vIPt2L6q+vd8p/TCiox8KmV+FLcHlNrNFM6QySke0eeWKLWWBUPs5aXVx3F1Z9sV1WYBTxbTYwGtBQC841m305v6C3gUj5rqyCLxwW2odGrCNgmTF9gzC+vQZlV+C2ZxVXYeDxPVkyFCsjZ8r37cedpjFy8WtUnehb+Ic+swnlv60+C21IE673d6Qon1ioncVG+eTSVOUMMroXb7uS6Xqq6bFxfWmW8IDicHBOW/IvnDao21oaCKt8Fu/cT3PfBXfT3kVp9r97aX21z4PU1x3Dp+1txKLNEvu/vrHN5OrQ2HT3vit61lR45SWkwqjDuSeiUPidtsfLYbwdRZXXAxFxF0m76Yqd8PZvDiXlvbUJ5jR3Du0TJ1wg0M69jV7lISrmCeoJ4YYVVlWIgUZtcJaXX8EcxJ1e65dWa+yIVLVN65pRWcaUBTum1tRlYqoU2+y8U6uU+ZZVU47e96SipsiIq1FiJ1fPi1jfePLGeQqbtOmFsgGLPUlVhJyF8/B4vhafU13fd79HPu3JUq6wOt7VH672otNrdzpO8MhuP52PNkVzVNhN6a5kkPEth8ltPFGD2Gxvx3HLXvKKnsFp1DuqFZfvzvhLl9kueopSzdVJQtPOPdhy+ueY4Phb3DTfatksJY8xNPvl1T4acf6k3zuUoCkXbVx8Wnhmj2g++KmRSPiigyNUXn43DWaWG1zFKG7rtq13y3t5KlPKFsthkmQ/pOpU2se6BhzlQqZzd5UNhQ6UntjZ7M/uCtr2fiikOeh5fm8OJZQey8MI/SXh9jat2gF6otBZtGoFdYZh3r04s/Nhvtqm3HpS6s8JD5FlBeQ0W/31YNY8p26dNdZH4c38mLvtgK7o9or8v6ycbU+TrKNdxq8PpU8Vs6Te+ufY4ej32j+wYUI4lxlzPrDbPPresxs3Is080Vq4Ti9RJ8+XHG1IQv3CZroFWunf+VNdubpAS28isP5onTwyAoNisOZyjGixSzk/iaUFg14bIeErCLtXJMeKcIyIkoFbtNap2Fx0WiLBAi9uedY2JnmJpJJiPXLwG9/wreEzmvLkR1326Q1UF745vduOJ34UwooW/JiK/3KpSOrXWOGlSPGGQ/yspktJWQHqEBOrvI6pFuQ2SsuudnOtaNKRtd2qDpxy1CqvdrYBFXcmv8m0VrrE78OKKJLfCF0ovtV6xMk+RDgDw+O8HMFsMb5T6u7zGjiNZ+iGR2rGn17d6Vmvlfc0vk/KY9J8LT9VLA8wMZdV2OVTJ7uRIyi5FSIBZ3rNTme+ufG7H9WiDUDEULsBsQlSo/3OC1hBTXmPH8EWr8fRfh93O9UeJjY0QIiikEKnDmaX4XeNJ1Vr7pZ4wK/pdKQAphYkZirBmqViW1e50ez6qbO4C6om8cox+bg2yS6pV4aMS2n1YASEn7v6l+7H7VBGiQgJ0i8EA7rlyTUGewV6ugPoZ1XteTYzJ/VxYYcWPu07L+yT7gvKayqJKlTa7mzB7m8az2v/JlRj9/Bq1J1ZUYgvKrXA4Oa5R7NurVEwlpGdK+l+7tyugfqa6itELenqMp4KHQO1rFUhtu3REJ909nt1R3zftmH19zTE8t/yI7pYqejC4G3w8eferrA45v1spHEvjxGhe8CfcWkKa3uTcPjBc9bG7dxpQK2jK+hOrDufoVsdnEPrs6T8PyTmuXhHbIW9F5iGyQ7ozkjLo9r5mOdPmPgO+pWMleonEUHLb17tVWxxqv0+JXZHOpIxGqdExdmkpqKhRzb3SmlVjd3i8Z5JX1+5wygqeJ+PQE38cxCebTqrCyn3xyBvJdRKLlx3BzlQhIkT5O2rsTp+KJEnznlS0TUqrUI4BT7KjHpJxKFKU9aVrSfOeFKWppK7VnZsDpMQ2MknZZXKOCSBMdhuOqz1n130qhMBID5jZxHDZB1tcBYU0Y0QZ9qcnQNTYnbUOATVSaj6+fiRMJobOrd1DEjvUQ86kL+iFMK45koOVh7KRU1qNfaeLddsvHdNapk7mC6GM0jxSVGlF/MJl+H1vhttkotzXNNNDdUWHk/td2dgTyjVL8MTWnbaKPXs9FaLxtfKhP+iFE+eWCtsSOZ0c324/hRq7A0WKCVjpqVQW9tDzSnvLGfpmWxqSsstww2c7VKF1RtW7teuTckGstNrxfsIJXcFCmftXVmPD4cxSw8XUUzixXiG1NeIezsIee2pLsLI/o0ICZaNTgNmEDpEhht+jJTYiCBHBFjcvsSfB3J/wPakIhhQSrgzzku651pMiCQvKsHxlUSzls6GcF6VHosbucLumXj75N9tOIbesBssOZKm21XF9xvge5JTWICo0oEkjVryR7yE9RdmHespHUnaZnEOYUVzld5VLIyGt0upwG7vKfGuJsmq1sit5FvRCVmWvko7n1pNxTmmUumlCNwDAxweEe7boooFYdu85GNm1tVvBKb3fVBsqrQ6EBZrxymVDEBHs3fCkNYIZzSdXfKSv7OmhHcue2nFakaunfBokBVyZWqHEk0J2Mr8Cv+/NwHfb1ZFk0hou/UTGXFFQWqSxnpRdijHPr8U320553cf2rbXH8YUYnukP0ljxNAdKQ0VvL2nA3WCq5+HzZSsxyWNXbXPgzm93y9vqGPHorwfcjun1zV3f7ZG/X7m++bJlYUG5VaWwSZXZa2xOt+9SKomSIaTX4//IjgJJTn789wNuBT8lWc9iNsnROEZKslRM7e21xz1urSYhRUGoPLE+KrHSZ6QISWne0ka++LOGSkqs5LDSyrd6hUOltauh9m9vDHxzBRF1xugZsTqc6NG2lerY/tPF+GNfhrywFlZYsTO1SLb8aAe50luqVNqm9W2Hf5NyUVFjr3UFt5WH3HNmLhneCSO6tgYA3DA+HgczSvCrIoeoXUSwYZhGfWJUzfP/ftwvD85+HSLwz38nyu+pQ4TV97G8xq7KhZLy895dl4wllwxWnZumWPzGL/nXsI12h9NQUPNlax8tykJbTic3fK7euXqYKiTNiNcuHyLnMwGo1XYHdSFfE05cbXNg9PNrcemITpjetx0e++0g0ouqcP7gOPmc/k+uxJ4nZiIyJEC9sOusHUaCkXbPufXH8lQLoJ53Te9L1h7JwcXDOwEAXl99DB9v1H8mlX2x/EA2lh/IxsI5fXXPNQonvnxkJ7QLD9YdkxVWB8wmhooahyr8UClQhgaZxUXThgAz86tAV1igxW07A4eTq3JttfjqieWcy4KK1e6U88kkJOPEO5oCNpKsEKioFqoUoPTy+ZXU2JxuSqyeUi6NOSOvvl4otZKo0MAmjVjxhidP7PaUAkSHBSI2ItinKu5JfkaBKOfgNmGBMJsYcstqUGV1+HzPlGN8bVIuYiOCPeb5KtNzpHXRUwi/8pmSvBxSs4MtJgyIi0TXNmHY6qGeAKAuQBMeZPEpLFX6nJRbWeWD50Rb6Oa11UcNzvQNxphb30d6iOxSyhomJoyptMJKea4wSlnxtPZMfSVB97i8w4D4/ykPuy7IEQOix//7HWl4/HfjGiEcQuEjf5CeRJcS68kTK8wrRkakME0BKeVaL4cT++G9Ts4tx/ID2Vh7JBeTerc1PE9vnBvtOSpFHygNNN7SYQDhvg7uFOV2vLTaJu8TLWHXUWKV96LC6gDnHN9sS8M329KQumSe/J60/+xHG05gc3IB/rr7HHSJ1q8F8dhvB5FfXuOzsUnqN+W98TWcuNLqwPsJJ+Q5TlpDVEZDh9MvB0h5jTZEW91nekpshaJ2y5lK811ZzzKMFRmn7gP0x75MeTFQhpNqPT3axUQZTjy+RxsAgsWotlZgPZQ5YGYTw/zhHVXvtzYIU/z1zvHY9+TMemuHEUrPyJGsUtVErxQctDlWx3LKcd/Sfa5zxQn6eG45TmiKJXnyvijZn16CX/boL4Secjm0tA0PwsReMap+fGXVMd3KmQDQLty7gtIuPAgXD++kev4aw/igRBvh8qt4r1YdypYFguTccpWl1+HkKKqwYt3RXFUYlt7SYWSpdjo9h+oYKbFaI6ty43tPodh6GAlcUtESLU5uvC8iIEQm7Egt1Ox16YoYCAu0yM9t79hwxPmhxJpMDGYTUwn0S3eedquwrcTqY2Enq8M1B9ocTrecua0pBcgorpL3MtSiVHZUWxR4sYjX2J1uiraeEispw0YLvbcw0qiQAHkD+uaIJ2v/038dxpjn16La5vBpbvAWhqdF6XmwO7m8tlTZ3D2xRijXw7fWHsfF723W9cTGRQYjq6QKlyi2dJEUPk+VVpUeVu16GyR62KPDApDp5f4ony1fKtxKVFkdcrSBUXqPEu1aL+0XXFuO55ShQGPosHioYqVUohljGPDUSsxR7IdeVm3THWe+VjJX4pDnDe/nSnOX9LjoFWRTsuFYnt/byEmyhryftg+eNKPv6BUbrvpbP3XFt3YdzS6T2+SLp9T9e/S/SFpPDmSU4IBopPCUDiPxw87T2KOzdZLe9oxK+Y0xIb1Dyb3f78Wzf7unswAug4oUxfH2v8cx5Fn9rfFKq21+ycmS0UWlxOp4Yo2McS+uSJLXlFKdbfdsdncjq4TeriBSM6TfoB2h+kqs5AEmJZbQgXPXnmdGD4nV7tStfFtldciLwVGdzeglojWFjJSCtBQmOu+tTW4DvzZIC6m2kIlWsI42KGTSPiLYY5GThkKZF6Ws0ObNYqj0sDz0i7qsuq9KrKdz/SkNHxkSgCCLyWdPaagPQpKkqH1542gM7BghH+/eNgx/33OOz22T+HzBKL8/o0XKeVF60QorrG5Cqd3JcaNmywc9ncXIUPDWv8no9dg/hu0wEtJ8MLL6TK7BvsBGOJzcsxKr85wpF+XQQLN8zoSeMZjc2z002QgzY7BolFhl1Un99vgmENgcXCGMOnWNAXrbJkn5dkZ5gmYTQ1pBJbYZ5P7dt3Qfjud4N05JQplRuKi36r9RoQFoDjrs4E6Rtf5spdXhUzpBmpfwTC3KugQOJ0e4GKZaaXX4vP2a9rzMkmrdEM38CqsqLQFwVTP2ZNBautNVjVSZegEInlhAX6jUojQWaMPL/zOlh+Hn7E4uP+O+3JK67hOuJSm7DBdqish4irLQq8uhJDmvHAOeWlkvbZPnDR9uTHmNHVxRzb0h9hWRlBLp/niKXpDWK71CV/FtQlVyYXGlFYuXued0+xJODAjbWtVlP1Wj71HKSBe/vxlOJ/dZSdZ7TvVkIqUxK72oStfY8fnmVNXfu1ILMeiplfJ2ahKrPOwjbxx9pc+nm07isg+2uCmxWjlkSh9jr7e0nueWViN+4TJ8oojkyiqtNryXYUHu842ka0jh1VU2h2qc6u3sIRvxyBNLaHFyYU87aW81m0EcvpEnttrukBdYSXHRW+i0k4vyoVcqjNoKxwBw0dA4/PKf8brt0lMIJEFMq8RqvQx6iuqT5/VHXJSQg3fugFjd7wSAVy8bYviehFQExle2KoRYZTVQb5Otp8qN9SEo+HONIIvJpzAVCaNCMtprAkD/uAgsudgVLn3eoA7o0z7c6GOG1OYzRpgZkxWKihq7m7dLL69Fz9u1UZNv7iu1kW/8TSvJKfNPibV7UWK9FX1Rbr4eERyALm1C8ekNI336brPoifVnX2dft3pSzoF2B/eYx66EAdiSnI8dJ/WjEUwmYNLL63ClJvdPqYg8qdlyTC/PXsqJM9of2igHTyLAbNLNk/LHE+6Jvh7G3cReMfLrP+/23zAlUZtK074ghcuVVttgdThdnlirHb7uduSLxzY00Ayr3enmyZQEPk+/T1lZXKt8Sp5Yfz12Wu+Mt6gBX7ZjW3TRQADeIwNqgzb02dP9Uo5VvZ/14fqUemuXrDT6oJ9d9O5mvLHmuPwMWOrTIikizY81Du+eWCl9RS+cP8hiVsmFRsUafVViAd+8+EYY6eLK+dLm4Jj71kavzoHR8dEAgAd/TnR7r1rHi+vPmgMAl3+wFZd+sBVlNXbDfGM9jKpme2JnapGqfacKKtycUp7WbOmdb8QoI2k/XQBYlmhcTEwvkkMykkmGa5uDo/fjLkO9XiVz6dzabC3XXCAltgHYdDwft66qxKHMUqw/locTeeWwGWzdYHU4dCe6akW+lrRx9n+n93ITfDxNYp1aey7cEhxgRsco/XOSFs12OzYgTrDkD+oYpTru5okNcw8nXjA+Xn79/PxBHtvkjSqrQ7VdiD9I++YC8Fqd0VN+jZ6w6y/+zM1BFpNfIYlBFt89sYDao98uItirUKVH+4hg3D65u9+f08NkYrKSH2A2uSmtemNGL09r4S+evYVGGC2cesJbbYumZZf4H6rmSfDyJs8ovfOSsjC9n75BadGFA1R/W8zMb6HP1/xIm8MVjWI18MTqea1NJuBqRZSFFqNnOEaxl/RxjaJdH2kXV4zsrPrbqADbzRPrZ6zM6m9sFOwfF2H4nj+MfWGt13N8q5yrxuZwYtPxfAx+ehWsdqdcMEivsJP2cxK+CGCtRcOqNqKjQiHw+YJ2rZM8sVJevK9o1zlvyog0x8wwGK8AMKxzFAD9sMH65tXVxwzfUyr99ZnGpId033yIYAUA/Lo3HdVim/wxCv/yn3E+nWd3CoWJfMmJle5NiU4xxeBAs2qNM+pTf2SIulSiNSr8oy2IlqQIWzbi8lHC/Ohr+o0/eb8ADFOsGgqlseG2r3e7GRw8FXqS3tOreu+JYB35TnrmjMacXoqFdIw8sYSKnNJqKNfEfw5kGVZEq7E7dd8rVBSmKKiwIiTAjOAAMywai6yn9btH21b47U59TysgCL1GYZN6StCtE7thzxMzMU7MtZXQCrd6nlhleKjSIwSorbV6+QPStgYSpdV2t/tQG9YdrcN+qg1g7QaAGyfEA3BXyAK9eGLHdVf3SZCOJ1b6eLeYMADABUNdxZJaK/qsc3So16I4ephMDGO7udrx3+m95NfPapQir9diLk+1xczclEfd6AUdZdKXYjR6GE3qekps3ydWgHOuyl33hXwPBXX08BZOrC1WpSVUsaVTK529TSVumtANXdqEqY6ZGPNL6AOAUz6Glmo9sdoQMAC6+YZ61aiVGN2NmFbGKQ3+pAkYIRkIrh/XFc9eOAA3TegmCyu3T3IprkYVsP2lbXgQ7pnWU/e90IDGq90YXAsl9sutp3Dtpy5DhHTvKq0Oj4rdkGdceW3rxXn8EYNCaQDQWjSsar0teWU1iF+4zGcvldYwIoW0j+4WjTevHOrTNQBhnVs4py+uHtMFADCsS2uP50vP/3vXDMf+p2bpnhMbIRi4G2pt8hVl7nSRjuBcn5RX25GcWy7vxe6NTlGhcl/7U0l7RNdon8ar3cFV65BRBJ4SPc95sMWk+qyRwdMvT6xCuUk4muvz5wBjo66eYuwtbFkrz3mjuStYP+06rfpbKwd4es58zfvXor3m7lOFXqNlij14pf31djcnSIltAC4Z0QmRQa6HLL/camjpNQon1savS8WSlILqxF4xhg+fVH3O0+LIwRGg4937464JAIRtdP79v8lyKFOroAC3HFzAXRFu7SXv1VMolZ4ndsV/J8ltkvAlvErJy5cO9n6SH0hWRCNPdm25cKhQJMutzDz3HP70xpVDVeHmSiOE1MYrRwsC08XDOiLx6Vm4U3G+MjzFqHqfEXGRwbIAp9x7NNBikvvp+nHxhtV49TAzJue5cO7uKbn8Q/f8vPq0+p8q0C9QY6QUp+RX4ECGcaVeCV/CvI2we/HEepOXlHl72pQAJRYzcx+jJuZ3cSJvuXESVodTlRP7tqIKcc92QuX2LJ1ccG8Kp5Ew1UZnDpPwFuLfSmGAO3dArHxPlfmm0hYHJsZw/bh4hASaZUPd0M5RGNtdCKfzNwfLCIvZZDhmQwJNiIsMRrxGcKyvUGYlQbXYRuiIxmvhCid2ePTAKMf6W+LzMrhTFOYOaq97fqco4fefKlSP60OZ7mP2tkn6HvLtj053y21Whg4O96KIKtl1qgh3TO6B5+cPwo5Hp2OmB2+6kkCLCZEhAXjxkkH44Nrh8vFnLhiANmGB9WYYqQvpioroBQ2sxO5PL8GM19aj3MeoUaciJ9bfyJLZAzt4PcfuVCuxdgf3qsjr5doHBZhVMoBRPr4/OpCyCKIvkQdKY5/RUNQrGuYtL757TJjH97XUJQy6oVCu4x9uUIfHV9sciNAUPzWithF9Wr34kve3eq1742n7RH+28mlukBLbQMQEu56y3LJq3eJNgGAJ9lYlD3B5NyVB9Ynz+uOrm0arhGpJwTSbGL66abTbNbR7TIYFWXQ9sX07CDlWM/vHonvbVrK1LyRQ/3HRCreeyu8DgvX6rauGuYUsAvpCfoCZoUOUWujStrtteBCGeQgxHtrZ+L3aIJXeP3eAvtBUW6SQT234jt3h1BUSH53bF2semITYiGA8PLsvAi0mcV9K132MjwnF1kemYfGFA7Hj0em4a2pPRAQHqDaiV+KPYv75glHY8sh0Wfke1qU1erQVFqlAswnL7j1H9sLeMdm4eIkWJ3cJQHrFz/SsjvW52D2/PEn3uNFkf1JTVXFgxwgM0Smko2ek2fDgVJ/aNH9YR10P+fS+7fD0+f3dnpn2EeoxY1aMGU/h5mYTc2unlBPrDz4rsQpDnrZAy3RxztKrjKvcqxmA/NxJGCmxnuanXafcK2YqUSr/fWLD5RBapUKqN4Yly7my/7RC9KUjOuGyEf6FpUrXMbL2B5hN2LxwGhI0z9hzHlI6POFpbvDXsKhHbQo7SVjMTGVkUCJFD2nzMaVt65ToGWGfuWAAYiOC3cZAhOJZ6hwdit2Pz/CrzYCQvgEAr/hQD0LiilFdVErVzP6xMJmYT1XpG5r0IpfByd9ok9qi3arNiO0nC+UQSqP1z4hXLxuCyR62pgEEuUC5LY/N4cSwRas9fkZvTQm2mFThxN628fKFjcc9bwGlZXwPVz79L3vS8cJy98JSemR6KD7ZOjRAFREEAFeJxnUjPtIoiQ2BnnPGE+HBAbhXEWmmxObgqvXTkyfWyBDrzRil9+xqU2O0ePJoU04s4UaUQoldfiAbhzL188Me/DlRZSEzQrs4BweYhP3bRGF+/5Oz5HOMFn9JuLp+XFc8PLsv/jerj65gqg2ZkpRYo3xV7TWiQgPwyJy+srVo9f2T3D5zwZA4OV9LGVKhJ1ybxcV540MuQUzrxeAcWHrbOJw/JE77cY9tryt6VeLqQs+2rXDd2K54++phquN2J9dV8Md1j0HPdq7CLolPzcL2R6erBEoGhg6RIYKQExFsGCr81U2jsfzeiR5z25R9AOiHf5/TU1j8AswMvWLDcf24eMPrGaEsQmB1OFHpo4I6ulu0XDiiMdGGzl4xqotuFESo+BwqBdYuXsKr/r7nHKQumYd5gzu4hUz/eud4fLpgFBZM6OYWPqv0zt01tYfP3rdgi9mtX1tpDF5Pn9/fq7HD17DGd9Yly/OY9vdJc4s3r2v7iGA8db7aKGa0D6enUGpvSDmbgCBIuJRY172R2qychiVBxswYqsQEvtBACz5fMArnDRaUkYoau09VxbUEmI1TDbJKqnUFHm1Kh5Inz+tv+N7bVw/DX3efg5cuHYxBHdVGmtrkxGoJEqM3/NliR8LEGFoFuRsobjmnm5xC4QtRmi3ipvZpixvEmg7KtfHBc/tgoOYeaA0kFw9Tbz/nCU9VTL0hjU1/ix42BMpcR6meR0OTV+X7syIVzNFL45KiJPQItJh8ur/KKsJaBfXqMV18MloGBZhV7dMLOfbkWasPIkLUc4TW42hERpGxEhtoMbnJMdr9cI24cKi+bFdbvr1lDIZ1icKXN43Gtkem+/XZ8CCLytuqRVno7eLhxnOA0bqmVfS11He8RXMP2fYEKbENhNZpaVRdzufriQKCNLFJYWxSCGlYkNlrGIekIJoYw3+m9EBYkEU3pE0rEEmPt9E2AlqPgtnEcPvkHnj2QqFaYrsIfeFZEqSUsoqeoiYJYZ2jQzG6WzTum9HLzVLFubANgVGxgIZSYr1NNt7Q3juTiWHRRQPRt726IIvNwXUVfK3QFBxgRpDFrBJcfTU4T+rd1mshGO3zoie4SvlJgT4Ul/KF5Nxyw8qwWmwOJ64b19Wncy8aGoeHZvepS9NktOHHHQyeeel+tQoyq571724dIyszEvdM64k2YYEqQVm7ZZAyhFGbH/W+Itzwf7P6gDGGN64YKuddGxEcYEJcpEtBHRAXgRcvGayaF64a0wVjunk2FkgLtDLsUQ9lFUap0vB5gzsgPMiCib18E+ztTqecQiFhpNjVZcwqPbG9YlvJxiLlsy4prMrUD2kMms0Mp8V5ultMGKb2bYcrxEInlVaHl6xmfSxm5maYkp6tUQYGHU8K51APES3tI4IxqFMkLh/ZGbMHqqNQ6iOU1WxiCAk0o7zGhj/3ZXr/gAKLibkZKLq3DcPj5/X3yzgQpZlTlfUXlPdZLwRYW6vh/pm95ddSQbGrRnfR9bp6Cm/94baxHtssPYcdIus3vaU2KKNkjLxys+s5gslXTyzgMpDqRfOEeVUe/HvGtUqKiQlGS2XVcD1CAkzIKa3ByfwKFFZY3SJRGBgmLPnXr7b4i9Jg5w/pHjyxgRaTm1Et1INBTYknw1ttmNAzBr/dOQGTe7d1mw+vGt3Z4FMC4cEWrxGHyu9ZLFYO9xVvin19b9lGObGEG9KCVNsqulqkQSZFVUoK5V1TeyJ1yTyfCh1JxX6UYW56gp52kpFON9qgXXsN6bdfN7YrUpfMMxzseguGN2Xzx9vH4b4Zvd2UKUmAf3RuX1ykY7EzartRbuDBZ8712A4Jb8KRtFgbCXhGhoG4qBA8Pq+fnMtrdzih18Vaa6mSS/ysmOkL2jBuPcVaEg589cxcO9ZzOJE/ZBRV6d7r724dg/evUStTQRZzvW2zoA1tjY8J1TUeSCPPYjJh40PTsOYBIUphfI8YN4/1/83qg91PzFQd85SzqV2H2iiq8Epj+qJhHd08llqCA8yIDA2QPVKPzOmHtuFBqntlZsznnM7aeOjGdIvGgWfORXsfvcdagXRUfGuvESkSWo+iJzqI3udhXaJw3uA4+bcFmt2NRnqORDNjcsXS7mL489jubXDNmC5YdOFAN0PEmG7R0Cn2rsJiMskewgFxEfjlP+OQtGgOkhbNdlO0hohpFUbVRqPDAj3mdipDbbXhw/7mTOthMQlVsL/ZloYfFPuzAq7n6M+7J+h9FGYTQ7hG0JUMCkbzPwDVHtmAu2FQ5WVXDGpPeeUAkLpkHjqL0RBBFhN+u3M8dj42Ay9cPAiX6oSNewrX9zZPSWNRGrPnDoj1uF1dfYR+G6HMg9VGQ0iFrDq2DnG773Uh3w9PrDQv6Cmxes+JMhVJb05/bG4/t1QGib/2qw0xsizlRc6RlNapryRg+KLVutuIaSsD+8NdU72n9kT4qKRpSffgTJGeu15irQPAtz2WAbiN7YZE60TQEhESgPE9PRsilGiLoXrD03wF+FeUTNWOOP3rkieWcENa9/wp9qB7HXHxkga/HNpbi7AzKUSwto+r0WSjFWZ9zZ3ThkhHhwX6PHFqBaY3rxTCb/u2j8AbVw5zO9+ocqaRcODrxOpNiZUMB1P6tMNtk7q7VelV9qN2a45bJnaX9161O7nuxGWUAyZ8vhsA19YLdeWh2X3c+lqvCrKUp+3JM6NUKC8b0dlrrpGvVNkcMGueja5tQjG+RwzmDFJ7OoMCTG7n+mpd1SLlG0lGq06tQ3Wt9pIQYzYztA0PUoWCGykWSvQ2g9deu64EyYqZ8L90i5TjWvKY+UKA2YRPrh+JMd2i8ePtvm1VIRmzfPXuaRdh5d+DNbnJ2jH7wsWD0MFHZTkuMhibHp4q/w7pHinHhWQw0A0nNjH8cNtYPHvhAMVvNOG5+YPQpU2oWx/OHdQB704Pw9Pn98fbV7nPa8LnmWzgiosKwYiugvdVzyD4zc2jsfb/Jstt004p2hA57TZtyj7X9k1APYQTm80m9FAIuBL9OkSgs9gWi8mEBxQeTvmzOp5YSen0pLRFhajz4SI14cTKtUaZVx7uwVOlVHD/uvscJDw4BZ2jQ1V7FGvxZATwtqZKz9/5Q+IwOj4a90zrJRdF0z/fdT0jr6Ce0uDpmt64flxXdGvjX1EfTzw821Uo0OoQjBzzxDm+f4cIxLQKdJvPlb9JLxdVr8L974qiknq6w62TuuOf/06Si296QvpGaQ4yKnKktx1KfTKss3e5tLaeWL1K8hJSxMo//50oGw+1MlhMqyC3ORvwLOtoiYsM1r3G5oXTPLTNNf68GWgjggPQMSrEY/i5kh5tW7mlYknopeV48jr3iQ2vdThxsM56umB8fL3XdmlMGkyJZYylMsYOMMb2McZ2iceiGWOrGWPHxf9bi8cZY+wtxlgyYyyRMeY5/uwMQJrstPk1/iJNjHI4sagghNYiPFbymmkFJW+hShK+5sT6apEPVeST/vKfcVjx34ke8wyUaAUobSihFiNPtZTQr12AaqOIP32+ey6ZtJ9XcIAZj87tpwrTBFzK8pDOUXhRp4KyNJnZHE5ZEFYqfJ488P06RGDZvefgvzPcBb7acOeUnm7CoJ5wKOWAeDLgKK2YvWJbGZaH92QkePBc91DgKqvDzVv82YJRup8PNJvcFlBfCjx0V1jdtVsbfXHTaKx5YBKCA8zoKxogPrh2BABhsZJCTPWqgitD4Y2MK55CYX1Rgj0hCVTSOJcMFNJ4lv6PiwwGYwz3+/hcBZhNmNE/FktvH4fO0b6FO0rKkq/eXu1+jIcVNQi0W36FaO7hwI6R2PrIdJ8MV0EBZnRqHSq3K8DC3NrZUSxCpxRQpe42MYYBcZGGeeJGPbhgQjfDrSlU4a5epq3w4AD0aNtKfr60xb+0hjLp2dVDa3Csj5iGABPD97e6r0dju0erDAH3Tu/lliNnNrkKO0nrrvRzlELhgLgIvHnlUPSOFRQybf639nmxGHhijUL+/rhrAtY+MFn+e1CnSJ/CfJVTwquXDcH1irQIb2uqtB6O7d4GP94xDgM7Rnqs1yCFRT8+r59hMSitMi+0Q/hcdx3PozfnUJGHLT78ZWb/WLcotwATk+es84fEYdfjM9285VJfBppNupXmPe3D64lAi8mn+cMV1Sa0S0/RAhquINaiiwbipgndMLlPW3x+4yiPUVDeIg0kYloF4ZoxvkVTSXKsxWxCnDhPalMhAs1MN4rm+vHxbik3eszsH4stj0zXrUIf4GGC7NfeZVD2Zjw9V0yluHiYfrTb4/P6uR3rHB2qu67r1XHRqzUCCIaglfdP8qso2fvXDJfrhOhNWU9fMAAXGNSSORNoaE/sVM75UM75SPHvhQDWcs57AVgr/g0AcwD0Ev/dBuD9Bm5XgyM9YnXdz1RaUF3hxFKl4Np7YrWMVQji1+vkE0pVjY0+rxyXMa0CERvpW3EJZSjqiK7RaBcR7PPgrM32FOd0dJ+Uf/nPeLx91bBaL17KfA49JV9aVKVJUeutkBc+AwVEet/ucHlih/jhWR0QF+l3VVlPuIUT63hip/Zppwql08NsYhjZVVByQwMtqLHrh0Zpi4wpkXLywoMtspVTbxsao+dW8MT6r8Qqn1uTCbhXsUdnRHCA7F29bGQn/Hn3BMwe2B57npiJVYoCZ3pVwaXw36fO74/k5+fqfvf/zeptmF/jz56BSr66aTR+umOcfC+kfErJQCENNanN08WxEhkaID/Xy++daHh9pYW7bSvf5gbpuddb9PU8RFqvSo1oFBnfow26aBRnpfKh3Ntzg4GlXK9dEnqe2Gl9Y/HNzWNw8znd5GNKBcwTUhfqnWZYgdjEZM+qr2FmgztF4vF5/fD6FUNVx7Uf92SEvXBoR5U3zGgbEH8i34yqYDMwV5i2qOprf6uJuYyKsaJiJl0rLipE9tKd0ysGFw7tiL/uOQeHnz3XLapJK7wrDU7KthmtVUM6RxnWgfBEoNmEIZ2j8MG1w3HJiE5yTQnAeD93T23xZPByjXWzoeFDz9MshdYuEAtdKVEaROYplA3JW3U8p8znZ+G7W8Z4fL/a5nCTrSxmk7wXpuTxVs79/TpE4OLhnTA6Pho3jHfJOcqK4L1ivXmafX+YX7xErwK48OxKz1gbzXw4tns0Vtw30avX0Vv9EyO6tQnDk+f3R4DZhKl92mHxRcZVyvWi4gLMDC9fOhgz+il3uuA+R64FKfrMZRx1j+jQU2IjQwLwztXDZeOTEdLVtPcW8CyPK43dnuTLb24eIyt9Rqky5w3WVwr1nn/tvuVxkcGGY1e6Z/7MqX07RMhyWmA9yoLNhcYOJ74QwJfi6y8BXKQ4/hUX2AYgijHm3eTSnBGflbrm3ElFJlyFnUQlVjdUzPPEL+fEeggoVi6cEu9dMxybHp5quGhLVSRjWgVh1+MzPW7foeWxuf1U4Tq+4m1R12NgjLpdQzpFIio0EOcPicPCOX1rVdlRmQujp8RKx+QCMJrJUVo0b57YXff60mI3vmcbWdjwtH9iQ6N9nmubW2VmDN/dOhYfzhQU3RoDT6z2uNJiGBkSgEPPnIvtj05XKZ9ar4VRBEGg2T0n1peQMOXC9fDsvphrYB1mjGFwpygAgnKs9AbpzQsjurbGqvsn6QqIEqGBFlw7Vr9wlfRYdIsJk5WLh2b3MazYLTGpd1uMio+WF3hpK6dARSE4wOXNUt5rKWRaW2FZ+VwoX1vMJmx7ZLrspTZCEiL0hI7f/JgvXr5siNt8pBQQJikKR/kSrhaiMdrIObEWhmcuGCAL7+f0ilF5GKRX3pTY/83qjfnDOuJiMZ9db5seLRazSTZg+KrEMsZwy8TusndXCinVft5TPrPZJBQI/HzBKNw7vRdKq/RD3bWGqC9vGm1YodVoXh/drbXcNqloq7at1TanHE7cTpzLledI3hMpeiLIYkZooEWOlpHQzmnKENra5qL5AmMMf9w1QXc/UiM5YuV9k9xSVCQ8FSmSrhdkMcmG1YuGxuH9a4bjP1N6oE1YoJux6Kc7xsneSz0hu31ksLyG9u/gyimcNzgObcODVEWuvNnbxnRvIxs59Th/cJy78mN25ZtL25tJxv4F4+Px9z3n4Inz+uPHO8apwro7KkLmLSaTak95rQHUn+43KqoGGBtLWwVZ0Ld9BL64cTTevHKo17nbX4y2SdRDLyquX4cIXDayM6Yqtmt0ct8LZyrnE2ku1HpiA8z6SqzET3eMx1s6qRUjxOdF6iO9e+xJbmzTKkiO/PKkxCpD1I3O82fXCmU7U5fMw5ZHphs+Z1L7/ZmFAi0mV+RQw9Q3bVIaMlOaA1jFGOMAPuScfwQglnMulaLMBiC5vzoCUFZxSBePqfaeYYzdBsFTi9jYWCQkJDRc6+uI3WYDwHDyxF2CkH4AACliSURBVAncODAQnx90z3G4ok8glh71nPtgrxTC4vKyM5GQUCCHE+/bvRMZoeoBVG51DXy9e5OeehIAkJkhXEvJrYMCwRjzeE+TDY47OcekThZM6+z583r0AlB8Ig2eis/qXTM70+rxnFcnh8BsAgqrOQJMQrtsNdVQDv+ysjLV567rDbyyy3W9R8cE4/ntnrcISNq7XX6dfNR9H7WsDOGxzs3OQkJCIY4XqT2OxQV5+GJ2GFB0DAkJx3S/Y8nEELQJKcLKk7kAgJOppwx/d0Pw8qQQBJr1+3bHti0Isfg+pTIIE8OmTRsQYGKwVVUgISEBRaX6lmVtyNeU1kX4U3y9b8cWWZBRCvsHE/epPrPToI27k1LQK0o9hmpK3QtoaKkud4WqFibvU1XG9NYfVVXC85S4by/KU/VXlEwftuMb3NaMCitXfZ/NJngh7uzvRFucRkLCafQH0L+Db89JZYVQVTLp4AGwLDNqKoW/d+/Zg5IUMwryhLbnZZxCQoJQsCTEwmF1AFs2bcSIWDN25wjPt5O77sm+PbuRf1xznyuNK1gCwL79++HMtKDG7urXSZ0s2JBuR9qhnbqf0fuNB3ZtQ1aG2kNYeSpRfr1t62b52fAlHDs9NRkJNtf4KxcrneZmZ+Hc6EJ0jdNvR1mZ8Hv37t2DspOeJYkLY4GvDwvhhMeTkxHTpgYJCQk4XaZv6Encvxf5lULb8/Jy/Z4TlkwMQVhAJTYeB0ZFW5GQkAAzE56xrVu2yuf1jDLpXpsBGB4AfFxtFAKpvq/OjINIydSfM44mJSGhRL3SPDQqGMH5R1ElPjM7d+1EboQZuTnq78s7tgfp5cJ32SuE/V/Ly11zfDjneP6cECDrMBKyDsufK8hTX2fLpg2q7+7hOIWEhDSh7dzzGttQ7N61Exlh+gJzFwAJCalux5V54eEBQJliGFitwh8px48iV1yTgqvyEVJQgjHBwJiJAXh9d4l8/quTQ1CRmojeFuFcluu+VpWWlKJPhAk5pUCaKGsAQHVWMl6eYAHykpB8Uvje9PTTmBtnwUFxS9VQC1CpsIFs3LAeFWXqOcLCADsHbh8chHYVJ7Bvr3otddhsuCiuAvEBgUg/vAsZRxis4jOTk5WBjRvy5HNPpbpuxulTqQgLACpswL69u9E1wjU+F48PUvVzZqb7My69X12jfm/vrh1u52ZkCnJARprw/SdOncb7M0KxL9eBDxNrkJdfIF8vEkBZYf2GFe/cvdfr/CORlLjX7ZjZWo6EhATEOrk831utVmSmn9K5gjtjo8rl35cvjrsTx9XPUk1VpW6+srIfikrdI7cGhFVgN4D8/HwkJCQgP8tdtt66eZPu9STsDuG6SUcO6bY/LADISNqDgmRh/jqUrW+427lV/3v0HBDpJ5JwXf9AtAl2yVh5+frr4+nTp5GQkIOyUuH9qCCG4hrP69au7dtQJD5H3G6FUgZmaNx5rCFoSCX2HM55BmOsHYDVjLEk5Zuccy4quD4jKsIfAcDIkSP5lClT6q2x9c03h1cCsKNnr57o3DoUnx/cpXp/UMdIPHDJSCx9fq3H6/Ts0gH78tLRvWsXTJnSD3zlMgDA1EkT5JL9EpVWO/DvSgCA6t6sED7Tr08vIOkQOsTFYcoUdRjJFNSNad4j8Xzm6455qLY5cetXwj3T6+edNUnASZfm68uzsPfH/2/vvOOkKLO9/zvdPTnBRCbBJGAY4sAwDDAMTRpJggviyrqAwoqIgu7qy5p18dWL69199/Wz3rvqGpa7e02rrigG8AoGRAEzUYKMiEgQJAdhnvtH1VNdVV2dZjrOnO/nM5/prq7ufrpOPeE8J70FwDUpdMhIh9PpsurE7zwEbPhI+zwngPs/Wq69XtOlIzY0HUFOWgIOqnXARjqdwIrXAAADqvsAnxkX2JUVZXhl5zbtmmd9exT4yDXAdcjKgdPpXwj4jtU7ge1bUdS5GPh6F7JS4v363S1GvW+mjR9peRwARo8YHpBrd9b7K3HoxDk4hyvvW716NZxOJ+LWrwJOnMLjs2ow528bPL6/fugQYLXSZ0abb7o3l2P20FLMmdADhxK2anXtDG3Utf3WqYOx9ftjwMbPtWOVZcV4b69rATanvhSPv+96DgC52ZnYdkRJ5OR0OnH01E/AOyu0595I/Oht4PRp1A6scasxGQhWX2Nf/SZw/jyGDR3id1ZfPR02rUHTsR9RW9MfA7p0xH9sXYtdRw+jd59+GFSWhRf3fQrs+w7VvSrhVJOQ/avXSby99QAa60vROApYu/MHTH/sQ+gN6EMHD3Kr0/n/Nr4PHDsKT/To2RvOqjwlVvqt1wEAT85vxKlz5xU3xzeXu73H6XQa5AsAF41yYlPzV8DXimL03qIRipv7CnUcHd5gtCJYfK6emr694dSVlvl703psPHQAJZ2L4XR6rq/60OY1wNEfUV1drSVe8saqoxuBb5pQUVGB1J+a4HQ6sX3/cWDNu27n1tYMwM6DJ4AvPkd+pzw4ne5WCn+4uNH1eKdT+X+hWeC/dq3FNcPL4eye47Wvn1/5Gqyieq9uKNdKZP1z3mDUqBaqF0oPY+naJrysK6XTp1dPOHvn470+pzDs96sAAI3DBqEiNxVLe5/Ek2t2Y8bEKthshDd++AJQNwkbuuVgxIhanDh7Hs98vRbjBhZj7cub3MZ4K949vhmr97j6+MgRI7T7YP7UUYZzhRDAm8p4H5b1h3o/D6mr81lP2hL1Pk9LTsRxXcIdR1wccO4cqvv0wvndh4FvvkZZeRmcDa6stS99/yk+P6jIZsyIYUhPjIMTwLwpyus3vWPsK2np6SjMTwO+3YPKbhXANmWjYGrjMM3atMO+C9i2BUVFxZh/cRVE5g48+OY2zBxajhc++VabV51OJ57YtQ5bDrsUz1snVOHHU+dww6iucNht+Gr/ceADV39ISU7E1HEjMVXXpqe+XoevjhxEaZfOcDpdru97P2oCtm4EAHStKMcnR/bg60MnUTtwIHrkp3uc+1Ye+RLY8w1uG1+J+1/bqrUVAJI+fBs441I+Rg2vB95ZaXh/fqd8OJ19cHDDHmDzF8jMzsO40f0Qv2U/HvliAzIzM+F01mrnm+9NM78dW4mLeuZhz5HTmPWES2l+bGYNNjQdxiPvKHPg7KGleGPjPvxifIN7wqY3rMe8kQ1DgPeN69NunQvgdCqW6oLKYxj/0HuwO+JQ1a0CL27fgum1xXh63R6rjwMAXH+pqz9ldz2Knz+yFtdOHoanNrm+p6GqCO/vOAScMm5s6/vbroMngA/eMbzes0d3YPOXyM7OhtNZgx32XXhxu3FHeKRzOLDydbfPk9j/5w3gwgX079sH+NR9s3TTvRMMz09+sQ/47BPDseR4u2EM0X/PiKYNeGvLfsP5Myc0uMXh/+WrtcAP7hvqnYuL4XT2wMNbPwB+PIK4+HhAt3ny15k1+NVS4/rJ2VCPFYe+xKcH9iEtKQGAS7n/6PZRHmPiY4WQKbFCiL3q/wNE9BKAWgD7iShfCLFPdRc+oJ6+F4A+NWuReixmke4AzcLdhWHFrxvQJSsZZ35y31mfXtsZx8/8hFfV2olmd2K5kWPlTuzLtVO6A3rLqhgN+FMb0pxV1h/MniRm1zBvyTNW3eyEEAIj//COITmA3hVGuh5lpybg0ImzKM9J0Y5JucWZLIKe3GitkG5tFTmp2PS7i4Ia69pSAnWXf37eELz71UG3xXDH5Hg0/XDKp2JnlRBJsnuJa4K5dXwP1JVl4el131i2cU59KXrkp2P7gROG4+b76vbxPdyUWLN7aiCuQ9KQ0xJ3+FB/tl0bs5QPkuEH8h7Vap3qrmdpdooh9rOuLBN3TaxCnJ1w58vKbrZlkgwvfnmFHZK0RBSG8iY2CnjsIl0poOm1xW5x2ub7cFLfAgzvloObnv8cVphd7FzuxN7HI80V1s9tWxm6oTcOewrnsBFpLrbeYshbgt1G+Oe1Q/w618p68vy8wSBAU2JrdC6WA7pkorJTukGJlX1VLyd5u3XJSsE9k1yus/rrIUscpSY4sHzhMKzffVh9r+/rIUMIFo3tjlkeEm5ZfWc4sbdyvJD33ZiqPKzcvB/J8XYcPqmEDsg+YJafXtlJ9bO2srw++jHXW4iGXMec+emC25om15TJOTMlzjDWmOc/K1lL91DzHKD/LoeNtNhvWcLsmbl1OG9xP8uvsHKfNXtydEiOR25aAg4cd7emdlGzNMv/rnhvIz3y3cMuJvcr0PrM1AGFyE1LRFlOKvIzErXSPL0LM7D3iEsJrC3tiLssEk96w2o9mZ2mK7Elq10IoSUus8q064lehRnYtHis4djVw0pxw+huGPsn42adOW7UKieMFi8Kl6u8+zne+5GWeNHPjXmr0LzNpt+k58+/qMY9yzbhmfV70DkzGa8sqLesiCDdqS+rKcJzG77Vjks3eNnPzps81YZUuJfyibfbtDWBPhqmsENSzCuwQIhiYokohYjS5GMAjQA2AlgGYJZ62iwAL6uPlwGYqWYprgNwVOd2HJPIriKEcBsMOiTHIcFht1REz56/YIgHMJcMkBOC1Xt9JZGa3K8Qt4/vgRtHd/XnJ0Q12/cf1x6/fdNwL2d6xk2J9bJQKM1O0WIFzQtRbXFPhIemV+Ol+UPwwrWD8fy8Ia73qG86edboBhOIEjumKg+vXF+PSwcUISXB4XccSkv5VX0p7vUQbyUJdFFXmp2CWRYxn4/OGIAHpvZGnikhylhT6vdAFLQRlbl4dGaNZRvvnKhM6OZJzdyFzPE6gHvil5YkbwtGTU0zUvn0puh7Q07ccvEmF7Hyc11jmufPICLMVjcIJIHUiR3dIw9rbhmpZUb1dH91z/MeU/vqgnr85ZeKh4O8Z5otupp5IfzQ9GpMNdXw1Nf0NI/HrlgjP5XYVsSz65uqz9JJpJNRhJQsb3hrk7k/65/LDQxPm3X6S26Of5PX2R+l/uqGMiwYWYHZQ0u9lrbQ0ysrvMFl3rKq+qIiN1XLW3HPpJ5Yd9soLf470WHT+qc5Q/xVQ0u0x1bjoBkB61g9b/KXMdmdMhI1hVOWT7pnUk/cNbFKS5yXZ1pwm8c5q+SASXEOy/br49/tNsI1DUpOCmntrivLQr2H0kOA75jef85TSnC9fsMwQ4Z9qfTUlmbi6avrtHqtUvEyf+7U/kVu841cT86pLzUoIfI3DO+Wg04ZiYbf3JJNf6tx+5rhLku9bIcAML53J/z/y/sZXm8Jt0+oQmqCwy0m9tUFxsSBcv2rl6MWL6r+bKvcLL7GR2lYSk6w49ZxlV7PBYzyunVcpcca1pLEOLum8E/qW+CxpJ/cUBpZaUw4Kj2spGjNGy3m+H7AGBMrAPzDR9K0WCNUiZ3yALxPRJ8DWAdguRDiDQBLAIwhou0ARqvPAeA1ALughF0+BmB+iNoVNvRdRS5yU+LteOHawdrAE++wGbIBx9ttmDW4xKjEqp30hLpD+OL8oVgypbdfk4oZu41wdUNZyJWfcKDfJS7L8a92nXneMY9nvnbptMRKpplGvs9hJ0zqW4DizGQM6JKJzJR4zUIg31OVn47ehRm4fbySgj3Qsii9izLCtlC9Y2IVZviwTASL3PRE/Hyge5r+K+o6GyyswVb+AknUIssRmC0EkktNyo83/K1/GgjyHmupJfbfp/XFsEIHako6AlDKMVzrLNc8I8ar2V37Fvt2g9ZPzv4m/3ryyoH466wa3ycCeHVhPV7wYiHsVZihJchxLbb872vv/p8R+PTOMXj4F/3x4KV9tHINZkuwqw6pj2uu88zxB5kRXp8cRipzKfF2VBW4NglsRF6zGkeSC83Cq8eIWRGxW2QC9tRH9Rmf75hotDLJZEVZJguOFYlxdtzU2N3veXHd7aOwsH/gSQBbQ0u9bj65cwyWXT9Um2fi7TbkpifqvC30llijEuvvvKohhEeLoqREtTzKhIajeuRh6exaXD2sTNvwlcpjaoIDs+tLsXBUVyydXWsoywa4j3NWnm3Sm8S8maHfjHLYCGN75WP3kgk+LVNWtb+113TfIZMMZaUmoFx3HfXT/eDyLNcGqIfrZrMRFplKycl729M4LzcG9P3GnyFYX7sdcFdifzu20rDucllild8+uV8h4uy2gJJfecKsxCabvJ1kX9XnzJB9RFNiLSon+EtpVopfCrk+Qdj43vlaIkdvyH7mNTRD3XFNNP0GuTks78NJpjJjZr2gKj8ddhtp640LzUBnL1UjYpGQuBMLIXYB6Gtx/AcAoyyOCwDXhaItEUMOSsK1YE2Kt7vFQy2e3AtL1zYBAL66bxwA12L0kRkDtKLX0s2lNDvFLb7MF3PqS7Fq2wHfJ8YQd0zsgWc3eI69sEJOIPEOG86dbw7InRhwTQrmicZhs+GnCxcsF1vymNwJT4q345UF9Th/oRl7fzxtcI+KNWTJilDiVoM4yMqfebK0WsQsntwTiQ471uxU4mA7WmQ91Cva/hCKLKc9CzLwcdORFl+j4sxkzOmdoE2umSnxhhIqjT07Ycd94/yyPKf7kcFRz9/nDPJq+TATZ7f5XcdQfr9e1IUdkrD3R8/JpaRFRmYblgsPcwZj2a99KUCaFdtPRbqhWw523j8edhthtZrnSN4zRGRYTNuIAs5OHC6am4VXa6h50aXfSFTG42afCtyCkRVucX7VxR3wu0k9cUm/wsAb7YPctETfmxZBpqWbd9JCvXT2IDy3YY/mlinnwgSHTdvkMSuxgaJYYr17HIyuysO/rhuqZQ8GXDXeL+qZh8/3/OhWhstht1nWgTdvOp/5yd0SK9dN5jE7LcF1vwTiSaMp6ULg2bl1BiXm3kt6YvZTG9TzXG0b26sTvtx7VHmfh8/V1hYWm9pXDOqC8txU/OIxJV+Hp0oHWhtNbQX8s8QOqcjGVUNL8OSa3SjLTnEbt80Kld6dWM+WxWNReecbPr9PzzXDy9BPpwDqDQXjenVy69/SVXjRRd3xf5dbZ0L0VFrPH+T9MqV/IV78xHNkY11ZFpbOrkXf4g4erapmpOJtDi3TIy2semvy6pudKMk2up+P65WP+37WGyW3WMc1/9sUJfeNHD8uCOM93BYIZWKndo02mAvhcxG3fGG9ocNd0LlCSfcmsxtqINw5sUpzn2wrtCSu19xlA1WQclITcPnAYlwxqAsu/rMrOZNmibWYKFyTk/G4w24zxHfFIg+bdm5DgbnvtLZkVc+CdGz6zpVdWC58LulXgAl9CjCyMhd3LzNmJpypWqNXbP4egH9leDwhNLfPFn+ER56YNRDb9h8PqMRVoPi74DNYYi0WE+afH0jpB60tft4LcvF17LQrI+krC+rxvS7RjS/KclLx2Z4f3ZTY0+eU+8eqpqIeqUwEkgTNLeZPWhpgvH9s5LrG/ir2ocBqwXdBZ53zB/1vdvhwJ9bc5y2uKRFZhi3EKq2Nia0qSDfMN/prJ/tHMCq3ubyVFMueVYK5fh7qnF87vBxT+xe5hZR4wjwWWYXmHDimxKMWdTTGauotsYGs5S+pLsTStU0Y1i3HYGEF3F0/JfOd5ehZkI4rn1yPgaqXixlvoRo2G2FIeTbe+s1wnDh7Hq98rsTD+rvpDvjnVp/gsGnKk1XfMY99mhJrOk+/obdobHccOHYWT32w2+t33zquh+H5wJJMvL5RmW+tLIdEpG0cSyVWXju59jbLZ9XNTq9tAJRYaP288MfL+uHui3ui7+9WeHyP1QaLN0ZW5uLRd3cZyruZyU1PxNbvjxvG8xKd8cqVc8fzzfvJnWO0eaebWtIuM5Fc+RYCanX0wkpsiNC71Wj+6B7ump4FRve8EZW5WLXtIMpyUrRA/bbgAhxs5jvLse37475PVPEUyyqRi2L9ovul+UO0Auo2G2HJ1D4wIxcYVnOKXIB5q3vGeEZev7/8cgBSEuytdqVedn29YQfytKrEJsU7MKbKehEiuWNCFeIdNnWx8mWLvl9+cyhcwjOS41Bb6jvzbTjQb8r5o2zK2DUr7pjQwzLhl79WR+kOrd/4ykyJ91ir0YrHZ9Vg43fH3BKKyPvH1y78kil9MKBLR6+1L30hLyORshBa8rqSHTUp3o5JfQuw7+gZQxxjuPnjZf3wh2l9UXrra9qx8z7cic2kWtRS9iRmOaS2dmMrFgj2b9S7n0+rKcbW749jgRp7qmfagCK/NyGkWymgjHPjAvTUISK/FVjAP68caQQwJxzS32c/nvZe5lBP/84dvXrdlOWkYNfBk4ZjRARn91x8cMtI5HvIGt+/S0eU5aTgZpPrsB6Z2PFVVYn1ZskDjIqrP4b8eNXi/V8fNqF/Z/dxymw4kJbgIeWePWjmNZTDZiOfSqyZP17WDwmOL/Cvz77zuyiqjJOVG4pd89Kw5paRWPzKJpw4e17zYLzWWW75+wDFsmom2Ak068qyfHpu/enn/fD21gOGGtV6SrJSsGbHDx43Ty/pV2CY3345qDO65qbidNMXyElNQHFmEu6aGNtGFAkrsSFCv7MWqHvfjLoumNhHuQlLs1Nw98VVmFLtX7zdQ9OrUdCC8hqxyKKxvgPv9ZSkK4PuZTVF+PuH37gtguVg1UE3MFR7GOwM79MyMlpZBJT/F9qI64Yk2SI7YCiQi7exurImt4yrxFAvE6c3FBm75C4tsVaJ0syUZKfgP64YYOm25i8dkuOx7+iZoGeRjTb0Sro/CrtVtknJr4aVefgO92NpiQ4cP2Os3VfQIQmvLqh3y0wcCFmpCRhuseN+6px/SmxGcpzH3+Evenfibnlp+PzuRny06wcUdVR+13Uj3JWQcGOWdXOzCMjFuYuujIzmAudhA1C6rLYksZov3ls0Iqo2joOtxOakJWDXoZNIiLMjMc6O+37W2/K8B6e5RYVpTKkuxIufuizvAiKsror+XJMHpvbGqm2d0NWUCE5v4ZKb1MFg+YJhlgmmAGUc8kRqggNv3+T06zv0iST1mK94aY7OcudFExxakYU1O36AzUYYU5WHrfeOtbz33RJMOWx46zfDvWYkbknuFkCZD6TMfI0fD17aB+9uP4SRlbm4Y0IPTK915dYo7JCER2YY8yz8NsB1YyTm6syUeFw6oMgt2ZrkzolVcHbPtfRqsFKQiQh1ZVlY/Q0h3mHDe4tGup0Tq7ASGyL0MVD+JjbR3kuk7aIQEa4a6n/c5KS+Bb5PaqdkJdmwe8kEHD55Dn//8Bstm59EuiOZ6+/6Qiq/VmKWr7UmK2m08cU9jWEb2K02Bua1MgOinsaqTljy+lZcXuuq8LV58UWY8fg6fNx0xPI9rdmZfeLKGqzYtL9FdVzbMv7GE+mxWpi9t2iElgRPT2tq8npDKrFmV7tQ4FJilecZSXFoNGXvjjYq89Nx+py7PDyht/b0KkzH98fOeHSb1BKZhcAS25oNj1AQbGvQw1f0x6qtBwIqiWLmwWl9sfiSXth18AQm/XkNAO/KUrDxJ044KzXBMuGe3lPkpMV40VKS4u1eN+SCgb/uoANLlOSSh0+e82pN/+vMgTh0wlUGyNPmjdUY58lSaObXo7thcLm7ldMbQovz937etJpiTFPrlrd2o9AKq9Jy4cIVqmb87sQ4u0/PsfYCK7EhIidZuenyMxJDUhOSaTmZKfGWu1XlOam4ckgJZvuxafDs3Do0HVbqsMkBxmrHUCp73mIXYg23YulBpiAjEd+pbvSh7juds5Kx4/7xhmPJ8Q48O7cO5z1sPLRm0ZyfkdSmYvVairmrtESJLeyYhHG9OmmxU4Bi6TYXjg8lUkEL9cIVcF2zWJlN5Bi76+AJH2cq/MFk9fvT5dX48tujhuQ5ejR34nYwvwY7/CA7NUFb+LcUu42QmuAwlIdp6JaNJ9Z87ZcHU2tpzThMRPjynkYseX0rfq2W9IkVvMXPAsZ7pSInFetOHvb6eUnxdo+bNvF2m5aIyFxeLBBuaEFZx2bN5T2y/TvBYUNdWSbm1AdfQfaFzUa4cXRXVli9wEpsiBhe5ICzti+Gd8vBoRNKzEXbUWPCw6sL6lvluhkodhv5nWxpUFkWBqnxE1pMrMVg6+yei1GVubhtfA+31xhr3vh1Awbf/z84ec4643M4cNht8JQfKRprccY6LdnlttsI//nLAahevAJDK1rmXt5a7vtZb9z/2hYUdwyf5S7Si7qW4qk01YjuOagpyXSrz5ua4PBqvWltXWQm+Di752LL4rFh2dRpqauqJC0xzqMbdVQTxu6//vbRqL53BZpF+EKIJNFS+5qI8MzcwRH7/htHx9YmS7hhJTZEyGB+5XGEGxOjhMoFMNjIRZSV5S4p3o7HrxwY7ibFNOmJccjLSHRLkMG0HYI5JH56V2MQPy0whlZkY/nCYWH5ruYQZrYOJTKxoSxXZObJq2pb9LmumNgYuyBtDJlgSMZMhkOBbc9olu8wmEUykuNwcd8CvPzZdy2qCNEamnXJxxjGE6zEhgEZfxErShkTGJyBOJRE7zUtzmx5PFl74L1FI7Q610zrkRbYcLpLB4PizGQsX1iPyk7pQf3caHE3bO90z0vDbeMrQ1KTl3HHlTzLeDxUEUsPTO2DhaO6hiXuX0+mWsouK4As8u2V5Qvr0dy6Ms8xCyuxYSAtMQ4vXDsY3UwZ8pi2wYjKXGw/cAIdWlE/lIktli+sR34GK7HeKM5M9hhrJV3EZtR1CTjhR3slOzUBiyf3xKgesRcfZS4jFwxi1TIdCNmp8Vo4UrRCRJjbELxkey3h5poENA4bFNE2RDOt6SKJcXa3mqvhYMbgEqQkODClv3+VOdozoRhfYwVWYsPEgC7RUb+RCT6/HVuJmYO7BFTjjvHO+F75+POqHegYpVan9jxpBAOZyGnqgCLLMgGMNTMHl0S6CT555fp6fLbHOrN3MJGWp0hkDQ0Xb9zYgIPHz/o+sZ3TK9vRbowErsRORtNr7yJlToqGWuHPXTMY/1y9oVWfYbdRq5OPMW0fVmIZppXYbaTVamSCw2/GdMOc+lJ0ZFeiNsm/T+uLFz7+Fn2LeDOgrdG7KENbUIcSGb7Rlt2Js1MTAi75xrRtPLkTDyzJxMd3jEaW7n4JR9ysFbWlmTjV1L7n7mfn1mmZnZnQwUoswzBRh81GrMC2YTJT4nF1Q/hLFjBth2bR9pVYxju3j++Bbp3SIL7bFOmmhA27mkjS6rbPMm141FfkYP3uIxz6EgFk9QomtLASyzAMwzBMTOFSYiPcECZiyI2w1d9FuCFh5OphpTh4/Cyu9KOe/YKRFZhWU4SCDqzEMm0TVmIZhmEYhokpODsx0x5JS4zDv03xr76tzUaswDJtGq4SzjAMwzBMTKFZYnkVwzAM0y7h4Z9hGIZhmJiiPSR2YhiGYTzDSizDMAzDMDFFeyixwzAMw3iGlViGYRiGYWIKtsQyDMO0b1iJZRiGYRgmppAxsazDMgzDtE9YiWUYhmEYJqaYU6+UGKnslB7hljAMwzCRgEvsMAzDMAwTUzT27ITdSyZEuhkMwzBMhGBLLMMwDMMwDMMwDBMzsBLLMAzDMAzDMAzDxAysxDIMwzAMwzAMwzAxAyuxDMMwDMMwDMMwTMzASizDMAzDMAzDMAwTM0SNEktEY4loGxHtIKJbIt0ehmEYhmEYhmEYJvqICiWWiOwAHgYwDkAVgOlEVBXZVjEMwzAMwzAMwzDRRlQosQBqAewQQuwSQpwD8AyAyRFuE8MwDMMwDMMwDBNlOCLdAJVCAHt0z78FMChCbQkOzc1AU1OkW8HoOXeOZRJtsEyiC5ZH9MEyiT5YJtEFyyP6YJlEH55kkpYGZGaGvz1BIFqUWL8gorkA5qpPTxDRtki2xxtJQHEScCzS7WBcnAEyEoGjkW4H44JlEl2wPKIPlkn0wTKJLlge0QfLJPrwJpPD0S2rQ55eiBYldi+AYt3zIvWYASHEowAeDVejWgMRbTglRE2k28G4IKINJ1kmUQXLJLpgeUQfLJPog2USXbA8og+WSfTRFmUSLTGx6wF0JaJSIooHcDmAZRFuE8MwDMMwDMMwDBNlRIUlVghxnoiuB/AmADuAJ4QQmyLcLIZhGIZhGIZhGCbKiAolFgCEEK8BeC3S7QgiMeH23M5gmUQfLJPoguURfbBMog+WSXTB8og+WCbRR5uTCQkhIt0GhmEYhmEYhmEYhvGLaImJZRiGYRiGYRiGYRifsBIbAohoLBFtI6IdRHRLpNvTHiCiYiJaRUSbiWgTEd2gHr+HiPYS0Wfq33jde25VZbSNiC6KXOvbLkS0m4i+VK/9BvVYJhGtJKLt6v+O6nEioodUmXxBRP0j2/q2BxF11/WFz4joGBHdyP0kvBDRE0R0gIg26o4F3C+IaJZ6/nYimhWJ39IW8CCPB4loq3rNXyKiDurxEiI6resrf9G9Z4A63u1QZUYR+DltAg8yCXic4vVY8PAgk2d18thNRJ+px7mfhBgv6972M5cIIfgviH9QElPtBFAGIB7A5wCqIt2utv4HIB9Af/VxGoCvAFQBuAfAzRbnV6mySQBQqsrMHunf0db+AOwGkG069nsAt6iPbwHwgPp4PIDXARCAOgAfRbr9bflPHau+B9CF+0nYr30DgP4ANuqOBdQvAGQC2KX+76g+7hjp3xaLfx7k0QjAoT5+QCePEv15ps9Zp8qIVJmNi/Rvi9U/DzIJaJzi9VjoZWJ6/Q8A7lIfcz8JvTw8rXvbzVzCltjgUwtghxBilxDiHIBnAEyOcJvaPEKIfUKIT9THxwFsAVDo5S2TATwjhDgrhPgawA4osmNCz2QAf1Mf/w3AJbrjS4XChwA6EFF+BNrXXhgFYKcQosnLOdxPQoAQ4l0Ah02HA+0XFwFYKYQ4LIQ4AmAlgLEhb3wbxEoeQogVQojz6tMPodSv94gqk3QhxIdCWRkuhUuGTIB46COe8DRO8XosiHiTiWpNvQzA094+g/tJ8PCy7m03cwkrscGnEMAe3fNv4V2ZYoIMEZUAqAbwkXroetV14gnpVgGWU7gQAFYQ0cdENFc9lieE2Kc+/h5AnvqYZRJeLodxwcH9JLIE2i9YNuFjNhQLhqSUiD4loneIaJh6rBCKDCQsj9AQyDjFfSR8DAOwXwixXXeM+0mYMK17281cwkos06YgolQALwC4UQhxDMB/AigH0A/APijuLkz4qBdC9AcwDsB1RNSgf1HdieUU6WGGiOIBTALwvHqI+0kUwf0ieiCi2wGcB/AP9dA+AJ2FENUAfgPgv4koPVLta2fwOBW9TIdxU5T7SZiwWPdqtPW5hJXY4LMXQLHueZF6jAkxRBQHpSP/QwjxIgAIIfYLIS4IIZoBPAaXKyTLKQwIIfaq/w8AeAnK9d8v3YTV/wfU01km4WMcgE+EEPsB7idRQqD9gmUTYojoSgATAVyhLgahuqz+oD7+GErMZTco117vcszyCDItGKe4j4QBInIAmALgWXmM+0l4sFr3oh3NJazEBp/1ALoSUalq7bgcwLIIt6nNo8ZjPA5gixDij7rj+pjKnwGQWfWWAbiciBKIqBRAVyjJBpggQUQpRJQmH0NJlLIRyrWX2e9mAXhZfbwMwEw1g14dgKM6lxgmuBh2zbmfRAWB9os3ATQSUUfVrbJRPcYEASIaC2ARgElCiFO64zlEZFcfl0HpE7tUmRwjojp1PpoJlwyZINCCcYrXY+FhNICtQgjNTZj7SejxtO5FO5pLHJFuQFtDCHGeiK6HcgPYATwhhNgU4Wa1B4YCmAHgS1JTvAO4DcB0IuoHxZ1iN4BrAEAIsYmIngOwGYqr2HVCiAthbnNbJw/AS8o4CweA/xZCvEFE6wE8R0RzADRBSQYBAK9ByZ63A8ApAFeFv8ltH3VDYQzUvqDye+4n4YOIngbgBJBNRN8CuBvAEgTQL4QQh4noXigLdQBYLITwNxEOo8ODPG6Fku12pTqGfSiEmAclQ+tiIvoJQDOAebrrPh/AUwCSoMTQ6uNomQDwIBNnoOMUr8eCh5VMhBCPwz2/AsD9JBx4Wve2m7mEVA8ZhmEYhmEYhmEYhol62J2YYRiGYRiGYRiGiRlYiWUYhmEYhmEYhmFiBlZiGYZhGIZhGIZhmJiBlViGYRiGYRiGYRgmZmAllmEYhmEYhmEYhokZWIllGIZhGIZhGIZhYgZWYhmGYRiGYRiGYZiYgZVYhmEYhmEYhmEYJmb4XwElJdKTIhP5AAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "target, anomaly_indicator = inject_anomalies(weekly_seasonal())\n", - "plot_examples(target, 288*7, 5, anomaly_indicator)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generating Changepoints" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:01.586593Z", - "iopub.status.busy": "2022-06-13T08:52:01.585888Z", - "iopub.status.idle": "2022-06-13T08:52:01.588660Z", - "shell.execute_reply": "2022-06-13T08:52:01.589075Z" - } - }, - "outputs": [], - "source": [ - "level = rcp.RandomUniform(0, 10, shape=1)\n", - "noise_level = rcp.RandomUniform(0.01, 1, shape=1)\n", - "noise = rcp.RandomGaussian(noise_level)\n", - "homoskedastic_gaussian_noise = level + noise" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:01.594503Z", - "iopub.status.busy": "2022-06-13T08:52:01.593570Z", - "iopub.status.idle": "2022-06-13T08:52:01.595900Z", - "shell.execute_reply": "2022-06-13T08:52:01.596315Z" - } - }, - "outputs": [], - "source": [ - "z1 = homoskedastic_gaussian_noise\n", - "z2 = weekly_seasonal_unscaled()['unscaled']\n", - "z_stacked = rcp.Stack([z1, z2])\n", - "change = rcp.RandomChangepoints(1)\n", - "unscaled = rcp.Choose(z_stacked, change)\n", - "\n", - "target = scale(unscaled)\n", - "target, anomaly_indicator = inject_anomalies(target)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:01.599881Z", - "iopub.status.busy": "2022-06-13T08:52:01.599253Z", - "iopub.status.idle": "2022-06-13T08:52:02.507011Z", - "shell.execute_reply": "2022-06-13T08:52:02.507494Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7EAAAReCAYAAAABlreAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddXgUV9vG77O72bgnBJIAwd0pxQlFirSl7t6+dXvbt/2oe0vd3Z16oUWLBHe3QEKIu3uycr4/RnZmd1biG3h+15Uru7MjZ+fMzJ77PMY45yAIgiAIgiAIgiCIzoCuoxtAEARBEARBEARBEJ5CIpYgCIIgCIIgCILoNJCIJQiCIAiCIAiCIDoNJGIJgiAIgiAIgiCITgOJWIIgCIIgCIIgCKLTQCKWIAiCIAiCIAiC6DQYOroBzSUqKoonJCR0dDOcUlNTg8DAwI5uBqGA+sT7cNsnnAPFxYDFAoSGAv7+7de4MxC6R7wP6hPvg/rEu6D+8D6oT7yPztonUVFRWLVq1SrO+Rz7zzqtiE1ISMDu3bs7uhlOSUpKQmJiYkc3g1BAfeJ9uO0Tkwn44gtArwfOOgsYObK9mnZGQveI90F94n1Qn3gX1B/eB/WJ99GZ+4QxFqW1nNyJCYLoHHDe0S0gCIIgCIIgvAASsQRBeC8kXAmCIAiCIAg7SMQSBOHdkJAlCIIgCIIgFJCIJQjCu2FM+E9iliAIgiAIggCJWIIgvBkSrgRBEARBEIQdJGIJgvBuOBessSRoCYLwAg4WmbEppahdj/n99gz8vCuzXY9JEAThzZCIJQjCaymqbkC5VY9vygNQZ7J2dHMIgiDw5p4GXPfFznY95hN/Hcb//X6oXY9JEAThzXTaOrEEQZz+zPtoB4qq4wAA1am1uHt8BzeIIAiCIAiC6HDIEksQhNdSVN0ov/Zl5E5MEMTpR3pxDXaeKu3oZhAEQXQqSMQSBOG19I4MkF9H+9HjiiCI04/E15Nw+SfbOroZBEEQnQoaFRIE4bWYLFb4MSEW1kwhsQRBdHLSi2vwwfpUcCeJ6upNlnZuEUEQROekRSKWMfYlY6yQMXZYsewZxlgOY2y/+DdP8dmjjLFUxthxxti5iuVzxGWpjLGFLWkTQRCnD2Yrx1jfRvk1QRBER9BgtqCiztTi/dzw1U68tuo43lqTgqTjharPDmaXY+CTK7HmaEGLj0MQBHG601JL7NcA5mgsf4tzPlL8Ww4AjLHBAK4EMETc5kPGmJ4xpgfwAYC5AAYDuEpclyCIMxyThcNPjIU1kYglCKKDuO7znRjx7OoW70eytL67NgU3frVL9dnu9DIAUJXvaTRbsTvde+JlC6vqsfVkcUc3gyAIomUilnO+EYCnT9cFABZzzhs456cApAIYJ/6lcs7TOOeNABaL6xIEcYZjtlrhr5PciUnEEgTRMezUEJK3frNLY03XGHTqYdfFH26RX1tFF2O9Yp1FK5Jx6ce2eFnOOawd+Cy85KOtuPqzHR12fMI99y/eh+f/OdrRzSCINqetSuzcwxi7HsBuAA9xzssAxAHYrlgnW1wGAFl2y8/W2ilj7DYAtwFATEwMkpKSWrnZrUd1dbVXt+9MhPrE+3DXJ/WNZpSH+QI1QHJ1LfVfG0P3iPdBfeJdKPtizbHCJveNqbFe9X5vZrn8+kRqKgAgNycLSUmCq/G2Y3Wq9cc/vwKNFuCt6QHoCLJKhfasX78ejLEOaYM9dI+oWbK/BgAwJajQzZrNw2zlWJVuwqyePjDqta8B6hPv43Tsk7YQsR8BeB4AF/+/AeDm1tgx5/xTAJ8CwNixY3liYmJr7LZNSEpKgje370yE+sT7cNcnfM0K9G6swyYEo6efP/VfG0P3iPdBfeIlrFwGAEJfiK8BYNq0aU0Sc8F7klBYW6P5WUKv3sDx4+jZswcSEwcBAD5L3Q6UlsjrFNRyWzs6AvG7T52WCL3OO0SsN9wjO0+VIizAB/1jgju0HQDU16oLrFaOE4VVGNg1pEm7/257Bn49cRjxPXrh/sR+mut4Q58Qak7HPmn17MSc8wLOuYVzbgXwGQR3YQDIAdBdsWq8uMzZcoIgznDMFqscE2t2ks2TIAjCHX/uy0ZFrfvETJX1JjyweB9Kaxo1PzdZ1GnSG5qQNv2xPw/hZJG2gAUguwnrFaJY50YgZ5TU4Oavd6GmwexxO5pKSXWDQzZl+/NwpnP5J9sw+62NHd2MJvHlllOY8/Ym7Mkoa9J2teK1Vt3Q8kRnnY3DORVILazq6GYQIq0uYhlj3RRvLwIgZS5eCuBKxpgvY6wXgH4AdgLYBaAfY6wXY8wIIfnT0tZuF0EQnQvOOSwclNiJIIgms/FEkZzlN6WgCv/9+QAe+vWA2+1+2J6Jv/bn4ovNaQCA11cdx7TX1suf1zaoS+B4WhLn9VXH8eOOTJfrmCzCM+7DpJOySHRm5a1tFITEs38fxbrkQmxJbZtkS2lF1Rjzwhp8uy1DtdxCz+N2xWSx4ocdGbBYOdKLa/D+uhSnZZo85UB2BQAgu6y2NZrYpnDOsT65sEPjwQHgvPc2Y+abrTtZ0WC2IGHhMny15VSr7vdMoKUldn4CsA3AAMZYNmPsFgCvMsYOMcYOApgO4L8AwDk/AuAXAEcBrARwt2ixNQO4B8AqAMcA/CKuSxDEGYw0oPNhHHpw0MQ/QZyZZJXWImHhMhzNrfR4m+u/3Ilbv90NAKgThWZ+ZZ2rTdBotuJwrjCw99ELw6P316cio8Q2yL/p652qbepN7h9MS/bn4P31qW7Xa1Q85HakleLX3VnILNG23BZWNgAACiqFGNuwAKPb/Tujsl5tUVvwwRbc+JXwPXPKhXO2+mi+ap3Olmhvd3qpR5Z4b+XzTafw+J+H8fOuLFz/5U68vvoEcivqces3u7HzVMuyV3uihT/flIbVR/Ldr9hGLD2Qi5u+3oXvtqsnU77blo4bvtzpZKu25Ym/DsmZxPdklGFvZtMs2hJ1jcLz6c1/T7Ra284UWpqd+CrOeTfOuQ/nPJ5z/gXn/DrO+TDO+XDO+QWc8zzF+i9yzvtwzgdwzlcoli/nnPcXP3uxJW0iCOL0wGwVBnQGJvyZO9eYiSCIVmKVOHj+fW92i/bD4No195WVyVh2UBiy+PnoNddRJmIC3FtiK+pMuH/xfo/a91HSSfn1qZIaPPzbQaSXaFvJCirrwTlHgShmpeelFp9sOOlUgBzMLsfwZ1ZjxSF5qIYDWeVIOi4Mzv3F8yANtCXMnWBW8WB2OW77djcazBZc+vE2XP9Vx4id1qC8rlH+Xy268y47mIs1xwrwzdb0Zu1Tuhs43P+4vrDsGG77bo+wXQeEQudXCJM19lbjJ5ccwYYTRVqbNAv769wZnHN8vz0T130hXFOXfLQVF3+4FUDTy1BJXg2NTQhN8KR9b685gbwK1xN3nZ1WdycmCIJoDSRLrAEcPoyTOzFBnKFIcae+huYNWTz1utytiA30dDDrLia2KdZjJSkFruPuCqoa0OvR5SiuFkSsNABesj9H5ZZYWW/CyyuSZQHirH3OhIDkzmxvcW4td+Jfd2chYeEyFFU1eLT+ikN5+GV3Fi77eCvGv7TW5br3/rQPq48WIE2MQz6QVd7S5rY7mSW1SM6vlGOjObedeylTdK+oQKfbZ5TU4NE/DqGk2vH8tlSMtmeaCqmtrXnMRrMVDWbbfb49rQSDnlqJbSdtidT2Zpbhqk+3OwhMaXwCAHsy1JbwF5cdw9Wf7UByvu3ev/LTbTjXScy05NXQlPh6dyTnV+HtNSm4/6f9rbZPb4RELEEQXok00++jE9Kodzb3NYIgWgfJ2ulr0LaOumLQkytVFk5XRAfZXHLtXWzdta2sphEHs8sdPr/qs+0Oy+yZ0DvSYVlJtXZiKYnCSnWpHmkAfP/i/Xj2b1uN0N0a9W0lVh/Jx35R2C3eleUwGAdsz2F7i3NrPY9/2S1UWDxV7DzhlZI7f9iLR347iF3pZci3Owf2SILHrBAcnvarJxRU1jtYpK1Wjoo67WPklNchYeEybE4RrHQpBVX4bY9r74Kpr63HnLc3ycm+rFZbneBy8TjOkkRzzjHttST8tDMTr6487vB5axhUt50sweGcilbYk2tkEe/k8+ZMqsx5ZyMGPLES9/20DwCwS3TL3pxqm9BZ+PtBbEsrQVpxtSoGWSl+L/nIVscZAGrFCbD9Cq+N7WmlOG43MbUltRjXfO4okFuDXDEMoKax7RK+eQMkYgmC8EqkQZIBgjuxiTQsQXR6ThXXoLxWW6DtySjFikN5yCmvw5Fc28BYtsT6NH3IUmeyYKWGK229yaKR0dc2rK+scz34CzTq5f0AwMO/HcAF729BWU0jCivr8cDifXj2b8/Se4zXELHLFO69Wryw7Jjd+6M4lmez/CzemQmTxYrd6TbrclW9CYUK4XXbd3uweFeW/PklH21zKlbr7JdbWueBLImTllh2X91Vhw+THGOOJTfZV1cly8veW5vS7OMAgjX36SWHUVbTiLNfWouXVySrPn97zQmMeHa15jW+V7T0/7RTSPA1662N+J8HycYAm1C1cA6LKKbKxAzazryU7K3nP+3MlBOCKWmJdfOqz7bjvPc2N38HTcRZWz1NsKZEstAvPZALADCKnh4frD+J9cmFqmWNZqsqZr3cRXy1UYynl9Z3lozqnh/3YktqCYo0rOQt5ZZvhHwAR3IrZUGrpLCy3ulkS2eCRCxBEF6JlJ3TR3QnJkssQXR+pr+ehPnvag96L/loG+78YS8mLVqnWkeyVEiDQ2fkV9QjYeEyrDzsPgHNuW9vxJCnV6mWldY0YFLfSIzoHoZtJ4txk4sYyusmJACwWcNKREGxObUYz/59FH/tz8VXW9Kdbv/B1aPl137NEOf2ZJXWYe47m+T3C/84hH6Pr8CHCiv08fwqjHtpLZ7/56gqBlZJpd3AVhqI24vYqa+tx8UfbsGC91smYAx61yK2pLoBz/59BI1mq2Y2Xs45jpZYVZbG2kYz9mWWyYJnU4otPtHZz4jZYkVyfiUynCTSkrj8k234ZlsGssTYzPXJhap2LREFkZbIMYhK1L48kScCXnLrtnLAKh5PKgOl3F7ZlipFCZx9WWV49I9DeE5hpW9KfWNVWzRsuC3NlOwpzuJ37a9PZ7y/LgUbnbjOK8MVjooTQrIgNVtVmcldCU/ptErPreIa27q/7cmWJx8kqutb11pqL1p/3Z2N4uoG7Cu0HWfcS2sx/fWkVj1uR0AiliAIr0Sa6ZcTO3l/HhGCIDwgRzHIqjdZMPiplU5FFWBz3ZMEz9trTmDGG0kO6x0Q3Xnv+F47/lMaXBZVNagyDkuU15kQFmDE3KFdkVtRj/XHnSeMiQj0AQDc/t0enCquQbdQPwBAcXWDWzfXLsG+GN0zTH7vLIlUa9EnWoiZ3CG6S648ko87f9irua69dcZk1nYnBoQkVweyK+RSRtlltZj3ziaP41sBmyXWWWKqZ/4+iq+2pGNdcqGmdVyrnu9zfx/FRR9uRXaZowXKWVz13T/uxZy3N2Haa0ketVtKruTro1dNsEqC0qoh6o7lC+6k9hOyWtZReySRyDmHdKrKRGuv2SK4MOeU16kEbWpBtfxaOs+5FY7XZnMniAsV/XzEg9jv0ppG7GtmBl+miAnWwpUlNrOkFp9vSsOp4hq8vvoErv9yp6Z11KgIV5A+91GKWMUxqlwIT+lcSx4k9Y22a/t/vx7AfYv3YV9mGcrEiY5yFxbRjzecxMUfbnH6uT1FVQ2YuGidallBVT1u+XoX3tnboLrWnNXC7kyQiCUIwiuRsxPDSomdCOI0Y9WRfHDOkVNeh9pGC15d5RizJ9EgukVKE1tvr0nBySJHi5m7xCjJoog468U1quV7M8twqrgGdY0WBBr1siB1RUyIbZ1HfjsgD3ar6s1uRZzFyhEd5Cu/lzIAj+we5va4zeGGiQkAgNdcnGOJPDuRIyWwcVVKSCpl9MXmUziaV4kl+3M8bptknXRmjawSY1gNOobscseJh3TRcqo0KmqJVwkprrqkukEVi7jqSIH82mSxIul4ocO29SaLfI2V1ZjE/elUllXpe9ifL8453hVdme1FozKJWEl1A55achgl1Q3ydweASlE0WawKd2JJxFqtmPP2RkxatE6VcOjqz3fIr6Xrs0EhxKRTtvaY7bs3BckNFxDqp/7uJr73tm9346IPt+LX3Vku19PCnc3YlYid+tp6vLDsGM5XuD2X2bl7H82txEvLbS76JitHamGVPPFT02hBrSL84Im/Djlvq9jYBrMVpTWNqvhZQIilvkjMZAwAS/fnwhmLViQ7ZER3RbVDiIQg4tPEmPMGu+ty28kSVehGZ4NErJdSVNWAvw/kIre8DpxzZJTUgHOumo1be6xA84JtKZxz/LUvx+W+OeeaKfbtb9bWoK7RonqYS2w4UYTCKtsPrtQmd6n/G8wWj1xfiqsbUFlvkn/oKmpNDt+Pc44GswUWK3f6EG00W7EltVg+pslidXAnckdpTSOWHcyT95FXUaeZbdAV9olAtDhVXON0vxW1JtU10druQ9LMp3S+5TqxOuaRJVYYDKvbp3WezRYrnll6RBU/pqSy3oTUwmrNz1y125N1LFaOrNJaZJXWCsXbjxeisLJe1c6ymkbVPqvqTbjuix04UVCFijqTgyuSkmUH8/DjjkyH5WZFbI59e51di876N79CaK/yOtmVXurWDU86zva0kjafAfakTyQ2pxTjr305Dvev/fc/nFOBramuyyZIz+h9mWWqzJRa3L94Hx78eT/qGi0exXM56yet71pYWd/kmoVV9SaP7mmzxYqfdwmxdUdyK+S+NFmsqGkwO4m54zhRUKX6Drd/twf/KJ5prjwbGyzSM8HNs93NeWw0WzX78OIPt2L660mobbTA30ePYD+Dy/0AwKBuIXj/6lEAgC4hfrJ4qawzuRWxZiuHQeEaLcX6+reRRTYuzF99fBfxrFl2JUw8+a2aPiAagO1a1LnozJzyOjmj8r7MMtSILpofbziJyz/ehgkvr1XVPW1UxENL2XiVnBCtjWH+PrIVOSEqwOnxfX104JxjzAtr5IQ+9nywPhU3frVLTsAk8d46WzxtiegiajToVMJRmgSoV4wVMkpqsOaYTRRbrFY5LhZQu8J+sy0D327LwJgX1mDYM6vl5dJvr9KdWBLKZiuXj2tyYtGW+rFRoz9XHSlwmERoMFtkt1RP45V3ayQGUyL95j7820EAwrim3mTBH3uzMeb5fzHlVbUFcdnBPDnZmDvPZ0/qNSvHL/YeBzd+tVP1ucVqVYnL2kaz6hha16KENEmx61QpRj//L95bp47XtnfHXqOYRPhld5Zc5kuJJ8mfOOfypI6Sg9nlckYse7frJ/46hA88qGHtrbh/UhNNZtnBPLywqRbYthZn94pAaa0Jw+NC8ffBXFTVm9E1xA+9owNxwYhYDOoWgnqTBV9tTUej2Yq4MH+84yLxQJ/oQAyNC8USxc1186ReGNE9FFX1ZvgadEg6UYTB3UKQVVqLvIp65JTXoUdEAIqqGnD9hJ4w6BlGxIeBQyjQ/NuebPmzFYfyMTg2BF9vTUdkoBFL752MU0U12JRShH2Z5ahpNOPec/rh512ZsqvV8PhQTO0XLRdzv2BELMb3jsRf+3Lw0Oz+2JJaDF8fPepNFpTXmtC/azBC/Ax4YdkxGPU6XD+hJ9YcK8Cu9DJceVZ3DIkLhclsxbheEbjvp33yDNL43hGYPqAL9meVY4Ui5mn+sG64b0Y/3PrtLvnBcsvkXsivrMf4XhEoqmrA5Wd1x9ESC6oP5uKxPw4hNswfU/pF4YGZ/fHG6hPQMaBnVCCO5VVia2qxIBYUMS03TkzA0gO5CPP3wWVju6O0pgF7M8uxP6tc9YAf2DUYE/pEont4ANYcK8CswTGqTJFKJvSORJCfATtPleK2qb0xuW8UftyRicGxIQgL8MFXW9KRUVIDs4WjSny4TugdiUBfg+qhBwBje4Zj0SXDkFpYg4PZ5egTHYR9WWUY2DUEw+JCcdkn29BotmJ87wg8OncQIoOM+OdgHgoq61FvsuCqcT1wOKcSj/0pzC6GBfggItCI2gYL8ivrERfmr3IBlBgRH4qHZg/AyB5heGnZMSzelYUbJvREsSi6AWEAZbJYUVjVgDum9cHUflE4XlCFOpMFPRo5HvrlALqF+uGX3VnyjPRd0/vKMSkGcJxoMOBEoQUvLT+G7LJaDO4Wgj/35SAy0BdPnT8YZivHhR9sQWSgEReMjMWI+DA88PN+AMBj8wbi802nMKhbCG6d0kuu6/a1XW29Ed3DMLVfFP7an4Os0jrcldgHh3Iq5HiqJ+YPQoDRgJTCKugZQ3SwL95fl4qqBjMCjXrodAxV9Wb8b3Z//LEvB7MGxeCu6X2x9EAunvzrMC4cGYsQfx98u01drF2ib5cg9I4KxOqjBRiXEIHbp/XGN9syUF1vwt7McsxWpOf/7pZx+HZbBixWjnViAooXLhyKJ/46DEAomv7IuQNQZ7LAR6/DY38eQliAjxyn9di8gbhwVByeXnIEyflVeOuKkVh1JB/ZmY3YWZ+M3PI6/CU+Y2YM7IILRsYCAL7cfAoHsm2ztleN64Hc8jq5PMf0AdGoabBg5uAu+G57Bm6YkIBGixWHcyqw/FA+IgONKKlpRLdQP9w8qRcYE54XC/84hBmDuiA5rwrBfgZcN6EnPtt4ChV1JjwxfxAaLVa8tPwYzFYuX1e9ogJx7fieOJZXieP5VejXJQgHssuRW16POpMFo3uEYXSPcKQUVsNHz1BU3YgDWeU4Z2AXTB8QDZOFI7O0Vr4O+q4PglGvw7QB0egbHYSHFAlXekUFytlT7z2nL2YOisGaYwVYe6wQVs4RG+Yv98PVZ/eQJxLW/y8Rr6xIxubUYlQ3mBEe4IPtj83Ar7uz5Wf4H/tsVqv5w7oh2M+AynoTbprUC41mKx5YX4vylcvkY284UYQgXwMazVYUVdvcYqf0i0J2mXDdSoPEp84bjCA/AxbvzERsmD8uHBmHd9el4KDYh5eNiUfXUD8kDoiWM2xGBBpRWtOIK8Z2x6Vj45FbXofn/zmKJ+YPRt8uQdh6shgvLU/G//0uPCsGdQvB/TP64s4f9oJzoHuEP/x99DhRUI1xvSJgslgRE+yHlUfy8esdE1TXfGphNQZ0DQagLXwKKusRE+IHi8ICe9vU3g7rSXhSoiJb4zkmUWeywN9oQLCfj9v9BBj1OG94LN5YfUI16KyoMzmNzzsrIRy70sscRIFkJfNpRgkhZ89mJfbfx+JiskKyYkqJq5Qi1tlEaHiAUbVfvbN0uQAmia6Oj84dqEqKtEuRgOp/vx7AxkemA7D1qdnKHWqEAsAJMeNrWa0JI55djS0Lz8H32x0n8iQMOibvU0r4VWw3cZsjnoPNqcWY3C9KXq4UPsVi9mh7S6zElpRi9IoMRHmdCRd9uEUVI7s3oxxbUm1lXGoVltjoYF9oIR1bmChTf6acuHc2QSG5v6rEkKKbymobEaXwDnhx2TF8uy0DB5+Z7RCL3tzSPPHhAXKGXs45Rj//L4x6nSysS2oEq+HstzfgnIFdsPyQ0D9zhnRF3y5BAITf7QUjYzGqR7hq357GxErc/PUu9fYOdZA5KhUTcjUNFs0JAHusVi674G9LE/p4xWG1KHV1/h4Rn93zh8/Hd9vS5eUVdSaHa+OuH/aAgeGDa4T4+sW7svDoH44W4kqF63OdyaK6BsprTfL92xlh7RWM3dqMHTuW7969u6Obockfe7Pxv18POE0g0N4oB2BE50MaVHYkSgHUnvgadFjdNQfvVIXjjwr3Ln6tRXSwb5PiugjCm9HrWKvV9WwJH1w9Gnf/aIvFDAvwwY+3jse8dzehf0yQbFVTsubBqVi0Ilm2ZK18YArmvC0kMFp823hVZt8Pk1I1S4koeefKkbh/8X75fYBRrxIR/53ZH3OGdsW5b9smjSb3jcJmOwvu3idnISLQiAFPrFCJ59E9wpy6/03qG4ktqSXw89Eh+fm5SFgoTE58fO0Y3PH9HnlypCl8ct0Y3O6kBqzEsvsmy4myRsSHqiai7Dl/RCz+PpALX4MOx1+Yix93ZMqTm85YMDIW71w5Co/+cQg/7czE8xcOxdyhXbE9rQTnDY/Fu2tT8PXWdPx11yRMfW29R98rfdF8AMB5723C4ZxKfHztaGw7WYJv7CYB7ftmSr8oVSInex6ZMwBXntUDo5//FwBw4OnZeGrJYZVhwL4dj/95CEaDDo1mK34QJ6ikyaqZg7rghQuHYfzLjjVru4X6Obhna/H7nRMxpqcgyr7dlo6nljhmtR7YNRjJ+VX4z5Re+GzTKdVnF4+Owx97hcmw7Y/OcGiLv48eBh1DVYMZvaMCMW9YN1w/sSdeXp6MP8VJtNX/nYr+McHyNue/txmHcirw43/OxrC4UNkqnPriXLyw7JjDJDAAXHlWdyy6ZDgqak244O01+OLWyag3WXHxR1vxwoKh+GlXJvZllqNLsC9+/M/ZmPmmdt1ULXRMnZTrr7snYWT3MPke+u6WcaiuN8Og12HW4BjVttI6zp4xgDBpU6N4DtwyuRcKRY9IQJjEHhoXiis/dV0yK/n5Objrh73ypGZzOfXyPPR6dLn8fs2DU9G3S7BqHel7DeoWgvhwf4T6+7gt2fTbHRNgsXJcIX4PHQPuSuyL/507oEXtbWsYY3s452Ptl5Mltg24eHQ8jMUp6D10DF5afkx+wF40Kg6JA6LlH1A/Hx3qTVaM6B6GVy4ZhuP5VcgoqcWb/54AINykkYFGZJXWorS2EQmRgfjvz/sxonsYpvSLwtC4UPj56PH2vydwLL8S+RUNCDDqcff0PvIs+e3TeuPOaX2QXVaHyz/ZhvOHx6JPl0D8fSAPFXUmJEQF4rIx8SiorMcrK5MR6m9EcXUDPrpmNCrrTfJ+LhsTj13ppSipbsS1E3oiOa8St07pjcM5Ffh0YxoiAo0YGheKC0fFobbBjFMlNcgsqUVRVQPGJIRj5eF8XDe+J8pqG7E/qxzJeVX47IaxSCmoQklNIzaeKMKYnuE4llcFPx8duoX6Y+OJIvSLCUZWaS1yy+vQKyoQdSYLbp3SC93DAxAV5Iu04mrkVzTgUE4F0oqqsfpoAX649Wx0CfZF0vEivLj8GPp2CUJqYTV6BOvQJzYST5w3GLGh/hj01EoAwiCgoLIev+/JxnMLhmLVkXx8mHQS3UL9cNf0vpg9OAZfbjmF+cO64WhuJTamFOHp84cg1N8HPnod8ivrkZxXiVu+2Y0bJybgqnE9EGDUw6BnWLI/F/OGdgNjwEcbTmJPehnun9kPWaW1uHRMvGyh2Z1ehkHdgjE2IQIVtSa8uuo4zkoIx/0z+iE8wIhGixUlNY3yLPb9M/ohOb8Sj80bhO+3ZyBctJrWmSzYlFIkP6jvTOyD/Ip6jO8dgap6M0prGpFfWY/eUYGYPaQrIgONOFVcgx2nhL4d0T0U2WV1CPEzoFuoPwKMemxLK8GtU3rjub+P4ve92fA16OBv1OOCEbFYMDIOl3xki+2QWPPgNKQUVGH98ULMGdoVv+/JwdiEcEQEGvHzrixkldXCqNfJcW0Tekfi1UuHo7CqHl9tScfWkyX4866J8K+vRZe/M/BmXA0eHx2OV6ui8PPuLMSH++PDa0YjzN+IX/dkye46r1wyDP/3+yGM6B6GGyf2hMUKxIb54d21KTAa9Nh4oggzBnbBXdP7oEuwH6a8Kgyodj4+A2+uPoHFu7Lw2fVjMalvJFYfKcCx/Eok9u+ClMIqLNmfiz0ZZTh3SAyGx4chPMCIKf2isDezDMfzq8AY4GfQ48JRcegS4osvN6djfXIhdop1Gif3jULigGj5+kgprIbFyvHIbwdxKKcCj8wZgAExwegW6o+tJ4vxwrJjmNw3CvOHd0Oj2Yq+XYLQJzoIJosVC/84CKNeh7lDu+GzTWkIMOoxumc4Lhkdj1PFNUgrqgEHh9GgQ5dgP5TVNOKKcd1xIKscw+PDsDezDJkltejbJQg5ZXVYfbQA95zTFwt/2oZpQxMwoGsw5g3rhqKqBsx6awPiwvxxyZh4pBfX4O8DeZgxqAtmDoqBTsfgo2MY0zMcR/IqRXdSC/49WoDe0YHoERGAjJJaGHQMt0/rg20nS5BbXof+McHYk1GGFYfzEBXki3OHdsXyg3l4YGY/fLMtHWuPFeKtK0bi223p2J4mnL8ZA7vgtqm9ERfuj64hfiisasDKw/mYNTgGhVUNiA3zw8YTRUgtrMacod3w445MbDhRKFtMPrh6NI7kVsjtk6xXf98zGbszSvHs30fxyJwBqKgz4dfd2fj+lrOx9WQxAn0NYADCA404kluJd9em4Iqx3fG/cwcgq6wWDSYrVhzOQ73JgsfmDcIlH23FyaIaDIsLxaGcCswY2AXrjxciyNeAecO6IbWwGodzK3DL5F648qwe6Brqh8o6E47lVeHaL4QYth4RAega4ocR3UMRXJuLjcUBmDk4BsF+BkQEGBEb5o9GixUnC6vx6cY0FFU3YFKfKPSKDkRBRT1iQv3Qr0sQ6k1W7Eovxd3T+yK/oh53/bAHfj56vHXFSIQF+KC4uhExIb648/u9iAoy4sFZA9At1A8ZpbX4+0AuNp4owtC4UIzvHYH31gpeB1FBRrx/9WgczhFciY0GHU4UVOHa8T2RXVqHxbsykVJYjd7RQXhhwVCkFVfLv3mldnFo5bUmfLc9HYBzF9SZb25ETIjNAqH0lrzy0+2y2AEcXQQ9odbOAhNgVLsTRwUZ8f2tZ2PJ/hwH8Qs4utvmljuKFkk4Duwagi2pJQ6ugdIEg9GgPgfL7puMIF+DnGzojctGqDwEAO1EN3OHdlV5KwX52r5P3y7BLkWsZO00eejCDQhWUosiVEHPGO76fi92ppdifO9IfLnlFMprTR4LWCVSDF+9yYrMUkdLrH3ohzurdKPZqiqtNOLZ1XIZFS02pxSrhKuEVELHoNO2xAKO8cXOkKyAZotVU8ACtnjufRoTJBa78BOJIF8D+kQHQq9j8sRKWnEN3l+fKnvOSZRUNwIxQlzzm6uPy4Lu3bUpuDOxr7zes38fxXfbtb2JJNYmFyCj0or31qWitKYRjWYrHvn9IBIiBTfvmgazyvLuCfZzcBd+sEV177+zJgW7xRJGyuWcc3kST3kfuCLY1wCzxaoqk1RZZ/KorNTdrSBgAUfLsisjwrG8ShzLq8RV47q73e/9i/er7hErFyYTOytkiW0jkpKSkJiYiIo6E15fdRz/O3cAQv2FC2Xl4XyE+vtgQp9IcM4d0pwXVtaDie6K9mitr8XJomoE+xrQJaRp1ivOOXIr6uUYmsLKekQH+7o8pslihUHHmp2uvTVpNFs1f5AsVo5NGzcgMTFRXrYjrQQ9IwPRVSOJh8UqxLYZ3JR0ULI9rQTjEiKgc+FK1VKsVg7G3KfGN1usTWq7J9SbLDicU4GxCREOn2WX1SI62BeNZisKKhtk1x93LF29HjOmTUGg4sfFYuUwW61CAo6KCmDxYsDfH4iPB845R3M/u9NLYbZyjO+tfU9JWK1c1T8pBVXoHhHgcXbQ9OIaRAf7qtrrjtKaRoQH+DhtkxQjHWBU77OkugHBfj6a17PkUtba15r03PIWymoaUdNoRlyYf7OfLznldTDqdQ7PU84Fd+KekULm1sM5FRjULcSlK6TFylFe24jIIG2XP0AYoJXWNKJ7hPO4PJPFKruQSlitHF9sPoUFo2LRJdj2TPK2PmkOyfmVmPP2Jjwwsx/eXqMdLjOoW4jTOHUlSrd5QD1gffSPg/hppzppzDPnD8YzipCOFy8aisf/PAxnPH/hUFw4Mla2PB197lwEGA04UVClcuk/9fI8MMZka4i7Ng+JDYGvQY95726S2y1t+/YVI/HAz/uxYGSsyiIoHWP2WxtwoqDawYoMAB9dM9oh0/AjcwaoLNK7n5iJsS8Iyaz+N7s/Xl99wmlblV4oz184FGU1jfLEujMkK9bgbiE4mleJVy4ZhtdWnUBxdQP+uXdys+qI7nxsBqKDfTHl1fXILqvDK5cMw6cb0zQTeimRQhZccVdiH1XpIU+5alwPOZZVsvjOHBSDx+YNxDlvbPBoHyO6h+FAVrnD8lcvHY69GWWqur2eMn9YN7mu8O93TpBDA4x6HW6alIBDORXYerLE1S7wwdWjMWNQFwx8cqXL9aKCjPLEoD2SJXbxzkws/OMQLh0Tj8ySWnkiV7JmA8DFo+JUoRTNQXkPKbkzsQ/+b85AAMC/RwvwHzHxWL8uQUhxku9C6ZERFWTEuUO64mB2BQ7lCBM+15zdA72iAh3qM7cVl46JV1lVv7hhLGYMslmYOecqS60zHp83CC8ud93mNy4bgUvGxDe/se2AM0ssJXZqY0L9ffD8hUNlAQsAc4Z2xYQ+gguU1sCsS4if07gITwdyfaKDmixgpf0rk0B0CfFze0wfvc4rBCwApzOqWgPTs3tHagpYaf2misDxvSPbVMACgmjx5Fy3toAFhDIQWgIWEGJdfA16BPv5eCxgASDEyBwEoV7H5AySnlZhH5sQIbsVujo/9v3TLya4SeUtEqICmyRgAcEd3FWbfPQ6BwELAJFBvk6vZ8ZYm19r3kB4oBHx4QEter7EhflrPk8ZY7KABYChcaEuBSwgXJuuBCwABPoaXApYAA4CFhCuzf9M7a0SsKcLgeL1XeJk8AsIbm2eoBSwgDqxlZa1wt+ovr/dWWsDfPQINBowpmc4Pr1ujHxv9o8JRvLzc+RYUXfX5I0TEzBWdBHlAEb1CHdq8ZBi7ZSxh2senCof47c7J2LDw4mytXr+sG6yVdD++wGCR4jqOynWiXJz/RZVNSBW/F188q/DbgUsANlqJ+Ux2J9VIceZ5ntojbRn3Etr8cvuLFSIfbrjVClOFtXIbXOGq3IlEs0RsAK2a02qp9tgtqgSO7mje7i/5vJHfjvYLAELCIn1JI7mVcmvGy1W+ProNZ839lTWm/DKymS363mSQEm6nnenl8oCFhCMDBGBQvzlH/ty0K8JYwUtdiv2reSjpJOyZ8ALy2wTWK7K4iit2XodQ0phtSxgASCztLZNBOzMQTGay+3dgnecKpXvBUA7C7E9T5432CNxGh7YeS2xJGIJgugcdFKvEYI405Hc+Fy52bnKaOsKKV6Tc64pUBkYPrlujPw+zY0lz19M0vb7nRMxe0hX1Wd+PnqseWgaHh3nfqLh0jHxeOXS4YgN9cO5YoyeMxEruaP6GHToHR2Iqf2jVfFvIX4+6BkZqCpH8+T8wXjxoqGY1j9a8zs8Nm8gLhoVh+X3TUGA0YA5Q7oiLMDHI0Ezf3g3t+u4Qpl51517ryuO5FbKSQ33iK6i0qDc30evmSCnLWO/lT9BkiDalFKsmRHWGcoJrukDonHt+B4u1vYMZb3WJ+0mefx8PBvmmyxWh2zMWrgST0VVDTicU4H9outyukYt5r7RNuEaojDueNpOJZd+vM3pZ30eW46HfzuIceLE+8CuwQ5tN+gY3rlyJAB1UjiDTqfKkA3AZZx1S4gO9iyp0qcb03DFp7bvqxW2YI9Bx+RJA2f4++gx2i5JVmeCRCxBEN6LctRAIpYgOiUBvoIlUClorhvfU7WOM0usr5uMvYt3ZSGtqBq9Hl3u1GXy3CFd8d5VQjkcd4lPtCybSrqF+mNAhHvvjQCjHn2ig7D10RmyV5R9CZ0/75qID68ZLbtYGvU6rHsoEd/ePE5zn0FirG5YgA/8jXpcc3ZPTYtwsJ8Bt03tg7euGInBsSEAgI+vG4P9T83GsPhQt233JDuzp2RpxLF6ijI2WYqt7x4uiMAAo96tVbm1sSp+gyoVsafLDzmWRNHi9qm9VYLh9ctGYPqALm63s88O3BTsrfLOqKwz4WSR56XltFibXIjz3tvs0k24b4xNxOoV1+4NExJadGwtft+bjQazFQmRAegS4ucgYv189JrPF4Peswm1/87s3+I2GvU6j7M9J+dXYeabG1DdYMY/B21hB85KgknfY+1D05zuMz7cH2GdODsxiViCILwbzoWc9CRiCaJT4qsxkFYmawLgtO6EJ2VznMXZCvsV/k3qG+V8HQVNdXEc2DVYc7lW2IG94BzVIxzzhnXDhSPjMLZnuMvyQYCQHO75BUPwxHmDXa7nKoFN/5hgrH1oGm6e1EvlmnvPdFvyHk8T4ACuy+kAQL4H9cmd8cF6tdtv11A/uaau0aBDr6hArc3aDOVPkDIuVCnGugT7ytY9JXodw6PzBqnCtQKMBo9Cf366bXzzGgyxLq6Lz+cOFbwNXl99ok0qajwxf5Dq/RBxUgUAdIqv3pRrrinUNloQYDTAqCFMffRM0zNBuqbdicvrJ/R0vYIHGA06j7wjJFILqzHy2dXYosjIPSI+THNdyXMjIdL5feIqqVlnoHO3niCI0x/pl4RELEGcNtjH/lqdjKCluFJXLD1gs0rEhvrh3CG2ODNpHOrJYO2li4YhPtx1PLM9i28bj+X3TXFY7ix2/sFZ/fGRWNdRIjzQiN/unIjYMO14SQnGGK6bkOAw4L/yLHVWUmeWGYk+0UF46vzB+Fph8e0ZafveSjdPd7gTH57GxP5+50S368SG+cuWMx+9Dv1jWhZT2VR+dWLFP6koYcgBzB7c1WEdKYlqN8XEgZ+PDj4eBIOP8eAecEZVvRnOErjeMa0P3hU9FFobSTPaX4vKiQflLe/KAyK8BdlzaxvNCPTVjgs2GnSakwhS7Omd0/q43Hd4oBETFCW+moPR4Nk1oMRs5dibWY4eEQHY/H/TMaK7tneFQZwlcDXR5M7TxdtpUesZY18yxgoZY4cVyyIYY/8yxlLE/+HicsYYe5cxlsoYO8gYG63Y5gZx/RTG2A0taRNBEKcRJFwJ4rTEPtmWMomKxOS+UXjripFN2u97V4/GJ9eNxcWj4gDYrJ9Kl0xng2LJKtUUwgKMGBwbgh//c7aqxIW967DEfTP6Ye6wlsWc2vPSRcOw6/GZ8vsgX88G/cq6oEoR4SyxpBZuRaydJfbJ8wajt4YFtU+0e6tqfJg/eosxlToGDIjRtoIDQr3UptKcXHkhfgYcVly7nGsLMinxoDIumjH3CSS1rM3xTpJDaVFS7bze+cjuoU2yAj4xfxDWPOjcNVVJmK9wMgN9DUhfNB8PzeqPJ88brLpelOLa7MIMHO4mrtPHhftvTaMF/kaD6nveOrmXuJ1Ote39M/rhqfMGy9mtJ/dz770hzbG/e9Uo1YRAdLCvyuruDF+D3uEa+OfeyfJrLau+RKCvAfHhAU6HSUpL9193T8JLkx3bc6ZbYr8GMMdu2UIAaznn/QCsFd8DwFwA/cS/2wB8BAiiF8DTAM4GMA7A05LwJQiCAEDuxARxmuHOWggA/WKCENPELPv9nFjnlINVSaQNiQ2Rs/zOH9bN7WDZFRP7RKGPKLCC/Qxu3WxbE51OKMknZU4O8uDcSlw6Jh5xYf4q0R3ZhPPgSsSG+BkcLLG3TO6FKPH83yKKCUDb5VxCcouMDfNH/5hgvHDhULx1xUgHF/E3Lx8BQOhfrcoDc4d2dRlfmvbyfKefOSMyyNcumZT279Sn1wvVQRhjWHzbeDwpuoS7ir/8/pazseSeSQ7LlYnKJH69Y4LmPv4zxbmLum8TMvMDgluqvUCf2EdtiWRMKBkl7VrySLh3Rj/cMrmXykPh5YuHy6/r7Oo1K5Gux1A7D4GbJ/XC0nsmuezT0poGBBr1KrEmXX86xlTbnje8G25WXJOeuDhLIjY8wEflslxS3eCRd8FFo+IcRPjQOJtlVel+bY+UddyTkIuR3cPQLdB2nP/NFuJ52/M51Ra0SMRyzjcCsM9xvQDAN+LrbwBcqFj+LRfYDiCMMdYNwLkA/uWcl3LOywD8C0dhTBAEQRBEJ0eyTnhSikvHGIwGHbY/OgPHX5jjkbUuWBx4SlJCGqIp41GVZbUixKQm/V1Y9TxF2q+zONm2Rir10pT4wtcvG4EtC89Rn5MmiNhAX20hdPjZc3HByFhNC5uUnCkhMgDbH52BXY/PdGkRkoST5G597fieGNUjHL2jg7DmwWmI8BP6Vrq2RnUP09zPG5ePwJPnu44nbir2FndprnVUD3UblH0yvnekLOB9FOayiECjXN8UABKiAhAiJtmaJWa4DvYzaLq8D9dI2MWYUCbR2fyvp0mfbO0JVH3f5xcMwY//Ucfr3jmtDy4cFQejKI4C7crHKc+D8hlQb3IuYsPFezTATkAnDojG8Pgwl9dOVmkd/I1qd+LJfaMQGWjEFWd1Vy23t0o786ZQEuZvlLdVTgpYOZyWcJQYGheC7hEBePK8wfJ3sLeyKyd3ptplIpeEf4NZ+9zZ97vyGdjZLbASbRFJHcM5l1K15QOQglPiACiLYGWLy5wtd4AxdhsEKy5iYmKQlJTUeq1uZaqrq726fWci1Cfeh9s+sViAyEjBL6ahAaD+a1PoHvE+Trc+uW0wR4DBH/t3bsXXcwJR2chx3zrtDLY52VlISrKV5XlyDPDlYQM2Zjsv87FhwwYAQH6+YAFMTj6GpKpU1TrphYL7Z2VVNbo2CvFvUXVZSEpynlVVibM+OXxK2FeQpapD+qxHMJBaDuzetrnJFpbUMttA+PCe7Q6fPzPBD8tPmbAz34LYQIbcGmGEXF5R6bCuv0Fog6nMseRRUlISQsRzfvxECro3pLttm1TOpjE/BUlJaQ6fW61WAAwZyQfw+Nl+6B6sff63b9mEUzmO1841A43oH6Fz2OaNaf54aIMto/aUOAM22W1vqhMy+sYGMeRWczQ0NiIpKQl3D+S41VZpyOn1kFlpO+8Lx+jRRTEc3rNzB1JFt9xregDX9BAmcfbt2OKwn62bNiI+iCG72qZcOBeOW1amXebo6KH9aMhyLdTuGOGLUCPDgAgdso/uxilxUiLQB+jekI6kpHS8PNkfj24WjtFYkoWkpHzoYQHAsH//PtRm2I5RZ7a1T3lOelidZ3iurxSyjjOz2jX62OGDsObqwS1CnzBo28HLiwpUSZrSjuzF65MNYCwbB/ZlyMv37NqBdH+buDuwdxcGRuhQXMdRXKfe87xePkhKSsLcaI7A/j6oyzgIKwdm9zRgdYYZ88XPXVFRKTxHQgF8OtMf+TVW+OnV52XPLtu9OMC3AhsV22eXCNd5Rpb6vEyI1WNbrgXHjh1DUqXt2VddXQ1pWi8nXbiPikvKOvXvS9ukAxPhnHPGWKv5AHLOPwXwKQCMHTuWJyYmttauW52kpCR4c/vORKhPvA+3fVJSAvz2GxAYCERHA9R/bQrdI97HadMnK5cBAGZNdUxgdN864bMld0/Cgg9sA/QePXogMVGd3XRN+SEgW1AHt0/tjU82qkWNdK7+zN8H5OVi8OBBSBwVr2rDE+cPxyO/H4R/QACuPX8arj2/aV/FWZ8cZyeB48m4YOIQ2zHbkVHjTDhZXN2suo9d8yuBHZsAALNnTMfwY5uFGpI9wzGlXxQm9olC8u8HsTM/C3fPHoKR3cOw4UQRlu7PBSqq5P0EGPXY8n/nIDzQiIqwHPx8fL/qOImJiZjGOcYcysO5Q7qqrF+Le5Tgr305WLwrS7XNXYl98GHSSVx73nTNGFLruuUAOKZPmaSK5/2nXwXOe2+z/P6c6dNRuS8HOCy0KSzAB+W1Jlwx8ywMlzK8itcIAMyePgXYsFp+P3pgL2zKsWXCXvXAVLyw7ChSyotxVt9uWLI/FwYfH/naODDBhBHPrpa/txYpBVXAVkGaXD7vHFUbzpk22Xm5I0U7AWD69OnYPB3ILa/D8kN5eGHZMfm4n6VuF35L7Thr7Bjhe9vtS+KJ+YNwq4Y78pqh1egS4itbiQHg3+JdWJdciLmTx2JMz3D8dmI1TlWZcM6kcaqax1YrB9Ysl9smHfua887BlfM4+jy23OF4g/r0wMbsNEwf2h0/7LDNDJx91hiM7B6GoB3rUN5Qh7um93HIaA0AQ/sloLLeDGSmAwDOmTZFtginFtrO/9TJ4vUjnf+pk3HpXCMOZpfjgvdtz6VTL89TWTXPUxxrxjnqY+8cU49xL64FAKQvmo+lB3Kx6UQRft2TDT//ACQmOokxFtswfeoUYL1wDQ0bOgQ4tE9epd7KkJiYiD/y9gE5tuR23WK6Ark5GDBwEBLH2J5DSUlJmD04CCO6hyE+3B/fHN2PgOAQJCY6uqx3FtpCxBYwxrpxzvNEd2FpGjUHgDKFXry4LAdAot3ypDZoF0EQnRWKiSWI0wJ7l0Al9i6RWiUupIyb953T12UM6+Vju2PJ/lyM7RkhL0scEI3RPcJlV09LK9cUuWFiAmJC/LBgZGyr7tdTQgN8miVgAcd4w6X3THZYR6pn62vQY0hsKIbEhuKPvWrrdVyYv9wvU/pFO+wDENwazxvueI7G947E4p2ZqmWvXDIMl4/tjgdn9XeaBCnSn6GykcPPR/15dw23W6VojggworzWJF9T9tjH6Qb7GfDHXRNx8YdbAQADugajwSScE8kd/awE2/Vm3x4tXCV2chUnPCI+FAeyHZOhxYb5y0mkJJQ/nUvunoQGsxWfbkxDvy6u3d61BCygHQrw4kVD8dPOLIwUXbkv7ueDO887WyVgASF+2xla3gPBfgb8Z0pvxIX5Y87QrioRK60uucbOGtwVY3qG4+avd6v2ERXsiyO5No8BP4UrrfJ6sI+tldyJB3dTx6Vq1WZ2RoRdDdYLRsRicLdg/LonGxYPxjTK7MH2WYyl+/GGiT1VGdqlGAqtrNRSbPb65ELVPjorbSFilwK4AcAi8f8SxfJ7GGOLISRxqhCF7ioALymSOc0G8GgbtIsgiM6G8iFMIpYgOj1+LuLMGGPY/cRMfLH5FD5KOgmdxmDRbBUGXYG+BpUlaOHcgapY1El9o5C+SJ2o5+ubhJIyqYWCC2hr18X089HjwlGa0VBeT4gzi5+C/uL5TVCU47HaPZeVGZ6bElsrcf3EBCSdKMIfd05EZKAvQsVsvq4SID0w2g/G2IEOVkstbSoJHqNeh+4RAUgrrkGjRXsgr0y40ysqEBeMjEWXYD98ccNYlIh1YhvEbePD/bHsvsmqbMKuEg5JGDSE26S+kdiSWuIy6+5vd06ElXPMfWcT0opqVJ/Zl025dEw8tp4ULLEjRJE5rlcE7JkxsAuSThQ1a3KnW6g/HpzVX36vYwxDYrVLv9x7Tl+MTXA8PgCsfGAKcsrqcMs3u/HYvIG4bapQ5ub6CQkO60rPB+k8G3QMRr3wfDkrIRx+PnpsSilGZKAvFs4diLWicDM4iYP1MajPtzQJYdDr8M+9k1VWfU/RmqSIFsuLXTLavbeGsi8Neh2m9IvCphShRuzMQUK05pieEVh+3xTMe1fwpGCiinXVi1JiPZOTa7+z0CIRyxj7CYIVNYoxlg0hy/AiAL8wxm4BkAHgcnH15QDmAUgFUAvgJgDgnJcyxp4HsEtc7znOuX2yKIIgzlSkQRKJWILotAzsGozk/Cq3dQmjgnwxoXckPko6qZmgp160fAX5GVT1TG+cmOBSICvpERGAMT3D8fC5Azz/Aqc5rizkEv+Z0hsTekfKQgiw1fdlTEjq88DM/k629ozRPcKx/6nZTdom1JchUaNskdYkiCRiDXqGNy4fgR+2Z2J4nLbYUlrc1v8vUX49Y5CtDrFkyQr193EQbZ5Y7LRK3Hx63VjkVdS73F7a7p97J8vWYAn7++Di0fF48JcDbtvyxY1n4ZmlR/D11nRV5ujW5qHZzu+7gV1DMLBrCFJfnOs2rltKnCT1qdnKZeusXsfkc6TXMaeJ5FwldlKe/6FOrpHmEOrvg+MvzPFokkPZBh89wxc3nIU6kwWNZitC/G0Szldh9Zc3cTFkkjKYn9GWWM75VU4+cijQxQW79t1O9vMlgC9b0haCIE5TmOwb07HtIAii2fz0n/E4VVKjOTBf8+A0VNbbkgBN7R+N7Y/O0MzuKZWTCDDq5QHrlH5RHgtYQBj0elL+4kzCE8Gl1zGVgAUgu0R+eeNZmD6gi8M2PnomZ01ubwJ9Dfi/OQPxyspkeZkkHCICjYgK8sX9M/u53U+wi2zPUmbYsIDmlWfSsjAH+ho8yt4NAAFGA+wP7W6iyBVPnTcYC+cObNL91Ba4q5977Lk5ctbqIbGhOJhdgUCjHhV1wnPER6/DjRMTsC65ECO6hzq9vpXiT8sq3la4chV3ho9eB6NBp5lZWJn12aZhnd93UtZoT8rzeDNtmtiJIAiiRZBwJYjTgvBAo9MYVq0Bu7PyFI2iaPAz6BEmupo6K6lCtD2id7dTq5JRr4PJ4rx8SltzZ2IflYiV4gS7uSl/IrH0nkno6qJWsWQFtY8p9pS2EE5aAumX2ydg5ynH5E726HQMfrqOFbCeoKxX+/T5gzF/WDf0iwlGZqmQ6dygY5jaP9ohpMAeZQkgdxM5l4+Nx5/7PMtgrmTh3IEY6sS1uim4ulaig2wJzSb0icSve7Jdlg2T6vU2tQ63t0EiliAI74cSOxEEAZvlwNdHhzE9I/DTf8ZrxvcRzSOyiXGsUkysllssIFi9axo7TsTaI/2KjPIwAZactdgJ0cG+yCmvc1ov1x3uLI7NwVcjodS4XhFeeZ9sfHi60zqnnuLno8fkflEAgDixzuqkvlEebavlsrz8vikorKp3WP7qpSPw6qUjmty+O6b1afI2v985AScLhVhnPx8d6k1W+LiwsCsTZl08Oh6T+0WhS7BzgRoRaMQ7V47EhD6RTtfpDJCIJQiCIAiiUyBZvqQELp19EOZNHHn2XM04UldISYCcJSHqEx2E3RllLW5bS5HcLSf2icQHV4/G7CExLtff88RMj/b7yXVjsPFEkUvB4Iq2scQKYmdoXIibNQUGdg1GUVWD+xXbgB6RjhmkXXHjxASsOVbg9POBXUOw6ZHpiA/3d7qOOwbHhmAwPDt3bcWYnhEYI2ZW9/PRCyLWSRZtidcvGyHHuHpyPS4Y2TmT0CkhEUsQROeALLEEccYjxWBqWZuIlhHoIvbTGe4ssZ9ePxZbUotx70/7ND9vD/Y+OUuOPWWMYf5wxyRQ9kQq3DNdERPih8vGdne/ohOcnbeWwBjD73dORJ/oQPcrA1j5wNRWb0Nb8cwFQ/DMBUNcrtM9QlsYx4X5d5hYbwl+Bj0Ak0P2ZHsuHdP+tak7GhKxBEF4L5JwbaJ1gCCI05M3LhuBzzalURyslyBZYrWSzQCC2+L5I2I7VMQ2pdTP8vumeBQ72lq4y8DbXMb0bF694NOZpIcTO+VcuFzqpx0TT3UWSMQSBNE56Iy/PgRBtCrdIwLw3IKhHd0MQsTmTnx6WMYHx4ZgcGzruZJuWXiOy3qvRPvRWa9RKVN0o5nGQPaQiCUIwnsh4UoQBOG1iBrWrVB7+vzBnT4TanOIC2t+bCbRPlw+Nh4ni2o6uhlOGd87Esn5Vc1OHnY6QyKWIAjvRhKyJGgJgiC8Ctmd2I2V66ZJvdqjOZ2SriF+uObsHh3djDOW5mQcbk8enz8Il46JR89Iz2KczyRIxBIE4d1I8bAkYgmCILwKKbGTs5hYwj3bH5vR0U0gvBgfvQ5D41peZ/Z0hJ46BEF4LyRcCYIgvBZ32YkJgiDaCnrqEATh3XAuWGNJ0BIEQXgVp1tiJ4IgOg/01CEIwrshd2KCIAiv5MpxQiwnZeAlCKK9IRFLEARBEARBNJnnFwzFsefmgFEtb4Ig2hkSsQRBeC+S9ZUGSARBEF6HXsfgb6TSHwRBtD8kYgmC6ByQOzFBEARBEAQBErEEQXgzJFwJgiAIgiAIO9pMxDLG0hljhxhj+xlju8VlEYyxfxljKeL/cHE5Y4y9yxhLZYwdZIyNbqt2EQTRyZCELAlagiAIgiAIAm1viZ3OOR/JOR8rvl8IYC3nvB+AteJ7AJgLoJ/4dxuAj9q4XQRBdBYoOzFBEARBEAShoL3diRcA+EZ8/Q2ACxXLv+UC2wGEMca6tXPbCILwNki4EgRBEARBEHYw3kaDRMbYKQBlADiATzjnnzLGyjnnYeLnDEAZ5zyMMfYPgEWc883iZ2sB/B/nfLfdPm+DYKlFTEzMmMWLF7dJ21uD6upqBAUFdXQzCAXUJ96H2z4xmYDycsBgEN6Hh7dLu85U6B7xPqhPvA/qE++C+sP7oD7xPjpzn0yfPn2PwqtXxtCGx5zMOc9hjHUB8C9jLFn5IeecM8aapKA5558C+BQAxo4dyxMTE1utsa1NUlISvLl9ZyLUJ96H2z7JyQH+/huIiBDeU/+1KXSPeB/UJ94H9Yl3Qf3hfVCfeB+nY5+0mTsx5zxH/F8I4E8A4wAUSG7C4v9CcfUcAN0Vm8eLywiCIKhOLEEQBEEQBCHTJiKWMRbIGAuWXgOYDeAwgKUAbhBXuwHAEvH1UgDXi1mKxwOo4JzntUXbCILoRCjDHSg+liAIgiAIgkDbuRPHAPhTCHuFAcCPnPOVjLFdAH5hjN0CIAPA5eL6ywHMA5AKoBbATW3ULoIgOiskYgmCIAiCIAi0kYjlnKcBGKGxvATADI3lHMDdbdEWgiA6MSRcCYIgCIIgCDvau8QOQRBE02GMBC1BEARBEAQBgEQsQRCdBRKxBEEQBEEQBEjEEgThzZBwJQiCIAiCIOwgEUsQBEEQBEEQBEF0GkjEEgTROSCrLEEQBEEQBAESsQRBdAaEcl0EQRAEQRAEQSKWIAgvhnObBZYssQRBEARBEARIxBIE4e1IVlgSsQRBEARBEARIxBIE4c2QcCUIgiAIgiDsIBFLEIR3w7lgjSVBSxAEQRAEQYBELEEQ3g65ExMEQRAEQRAKSMQSBOG9kHAlCIIgCIIg7CARSxCEd0NCliAIgiAIglBAIpYgCO+G3IkJgiAIgiAIBSRiCYLwXiThSomdCIIgCIIgCBESsQRBEARBEARBEESnwWtELGNsDmPsOGMslTG2sKPbQxCEl0GWWIIgCIIgCAJeImIZY3oAHwCYC2AwgKsYY4M7tlUEQXQ4JFwJgiAIgiAIO7xCxAIYByCVc57GOW8EsBjAgg5uE0EQ3gDntuROBEEQBEEQxBmPoaMbIBIHIEvxPhvA2R3UltbBYgGOHevoVhBK6uupT7wNd32SlgZUVgKBgYDZTP3X1tA94n1Qn3gf1CfeBfWH90F94n0465OQECAurv3b0wp4i4j1CMbYbQBuE99WM8aOd2R7XOEHxAcAVR3dDsJGPRDqB1R0dDsIG570iQ7QmwGzHtBxgPyL2xC6R7wP6hPvg/rEu6D+8D6oT7wPV31S6t19VezsA28RsTkAuivex4vLVHDOPwXwaXs1qiUwxnbXcT62o9tB2GCM7a6hPvEqqE+8C+oP74P6xPugPvEuqD+8D+oT7+N07BNviYndBaAfY6wXY8wI4EoASzu4TQRBEARBEARBEISX4RWWWM65mTF2D4BVAPQAvuScH+ngZhEEQRAEQRAEQRBehleIWADgnC8HsLyj29GKdAq35zMM6hPvg/rEu6D+8D6oT7wP6hPvgvrD+6A+8T5Ouz5hnOowEgRBEARBEARBEJ0Eb4mJJQiCIAiCIAiCIAi3kIhtAxhjcxhjxxljqYyxhR3dnjMBxlh3xth6xthRxtgRxtj94vJnGGM5jLH94t88xTaPin10nDF2bse1/vSFMZbOGDsknvvd4rIIxti/jLEU8X+4uJwxxt4V++QgY2x0x7b+9IMxNkBxL+xnjFUyxh6g+6R9YYx9yRgrZIwdVixr8n3BGLtBXD+FMXZDR3yX0wEn/fEaYyxZPOd/MsbCxOUJjLE6xb3ysWKbMeLzLlXsM9YBX+e0wEmfNPk5ReOx1sNJn/ys6I90xth+cTndJ22Mi3HvmfNbwjmnv1b8g5CY6iSA3gCMAA4AGNzR7Trd/wB0AzBafB0M4ASAwQCeAfA/jfUHi33jC6CX2Gf6jv4ep9sfgHQAUXbLXgWwUHy9EMAr4ut5AFYAYADGA9jR0e0/nf/EZ1U+gJ50n7T7uZ8KYDSAw4plTbovAEQASBP/h4uvwzv6u3XGPyf9MRuAQXz9iqI/EpTr2e1np9hHTOyzuR393Trrn5M+adJzisZjbd8ndp+/AeAp8TXdJ23fH87GvWfMbwlZYlufcQBSOedpnPNGAIsBLOjgNp32cM7zOOd7xddVAI4BiHOxyQIAiznnDZzzUwBSIfQd0fYsAPCN+PobABcqln/LBbYDCGOMdeuA9p0pzABwknOe4WIduk/aAM75RgCldoubel+cC+Bfznkp57wMwL8A5rR5409DtPqDc76ac24W326HUL/eKWKfhHDOt3NhZPgtbH1INBEn94gznD2naDzWirjqE9GaejmAn1ztg+6T1sPFuPeM+S0hEdv6xAHIUrzPhmsxRbQyjLEEAKMA7BAX3SO6TnwpuVWA+qm94ABWM8b2MMZuE5fFcM7zxNf5AGLE19Qn7cuVUA846D7pWJp6X1DftB83Q7BgSPRijO1jjG1gjE0Rl8VB6AMJ6o+2oSnPKbpH2o8pAAo45ymKZXSftBN2494z5reERCxxWsEYCwLwO4AHOOeVAD4C0AfASAB5ENxdiPZjMud8NIC5AO5mjE1VfijOxFKK9HaGMWYEcAGAX8VFdJ94EXRfeA+MsccBmAH8IC7KA9CDcz4KwIMAfmSMhXRU+84w6DnlvVwF9aQo3SfthMa4V+Z0/y0hEdv65ADorngfLy4j2hjGmA+EG/kHzvkfAMA5L+CcWzjnVgCfweYKSf3UDnDOc8T/hQD+hHD+CyQ3YfF/obg69Un7MRfAXs55AUD3iZfQ1PuC+qaNYYzdCOA8ANeIg0GILqsl4us9EGIu+0M490qXY+qPVqYZzym6R9oBxpgBwMUAfpaW0X3SPmiNe3EG/ZaQiG19dgHoxxjrJVo7rgSwtIPbdNojxmN8AeAY5/xNxXJlTOVFAKSseksBXMkY82WM9QLQD0KyAaKVYIwFMsaCpdcQEqUchnDupex3NwBYIr5eCuB6MYPeeAAVCpcYonVRzZrTfeIVNPW+WAVgNmMsXHSrnC0uI1oBxtgcAI8AuIBzXqtYHs0Y04uve0O4J9LEPqlkjI0Xf4+uh60PiVagGc8pGo+1DzMBJHPOZTdhuk/aHmfjXpxBvyWGjm7A6Qbn3MwYuwfCBaAH8CXn/EgHN+tMYBKA6wAcYmKKdwCPAbiKMTYSgjtFOoDbAYBzfoQx9guAoxBcxe7mnFvauc2nOzEA/hSeszAA+JFzvpIxtgvAL4yxWwBkQEgGAQDLIWTPSwVQC+Cm9m/y6Y84oTAL4r0g8irdJ+0HY+wnAIkAohhj2QCeBrAITbgvOOeljLHnIQzUAeA5zrmniXAIBU7641EI2W7/FZ9h2znnd0DI0PocY8wEwArgDsV5vwvA1wD8IcTQKuNoiSbgpE8Sm/qcovFY66HVJ5zzL+CYXwGg+6Q9cDbuPWN+S5joIUMQBEEQBEEQBEEQXo9bd2LWxkXZGRU9JgiCIAiCIAiCIDzEk5jYr+FYL2ghgLWc834A1orvASFZSD/x7zYImeTAGIuA4ApyNoRA/KeZLTX6RwD+o9iuU9QmIgiCIAiCIAiCINoftzGxnPONTKg/pGQBBL94QCikmwTg/6AopAtgO2NMKqSbCLGQLgAwxv4FMIcxlgSx6LG4XCp67NY/Pioqiick2DfLe6ipqUFgYGBHN4NQQH3ifVCfeBfUH97HadsnlZWA2QwEBAB+fh3dmiZx2vZJJ4X6w/ugPvE+OmufREVFYdWqVas45w5GzuYmdmqtQrpNKnrMGLsNgoUXMTExeP3115vZ/LanuroaQUFBHd0MQgH1ifdBfeJdUH94H6dtnxQXA5wD/v5AJ/t+p22fdFKoP7wP6hPvozP3yapVq6K0lrc4OzHnnDPG2iU7FOf8UwCfAsDYsWN5YmJiexy2WSQlJcGb23cmQn3ifVCfeBfUH97HadsnX3wBMAZ06QJMm9bRrWkSp22fdFKoP7wP6hPv43Tsk+bWiW2tQrpU9JggCIIgzjQ4F0QsVUggCIIgmkFzRWyrFNKloscEQRAEcQYiiVcSsQRBEEQzcOtO3A5F2anoMUEQBEGcaVBFPYIgCKKZeJKd+ConH83QWJcDuNvJfr4E8KXG8t0AhrprB0EQBEEQpwlkgSUIgiBaQHPdiQkvpt5kQWW9qaObQRAEQRDOoZhYgiAIopmQiD0NOfftjRj+zOqObgZBEARBEARBEESrQyL2NCSjpLajm0AQBEEQzqHsxARBEEQLIBFLNAmLlWPtsQJwGngQBEEQzYWyExMEQRAtgEQs0SS+3HwKt3yzGysP53d0U4hWoN5k8foJiZzyOuzJKHW/IkEQBEEQBHFGQCL2NKey3oS6Rkur7S+zVHBVLqxqaLV9Eu5Zc7QA+zLLWnWfJdUNGPjkSnyx+VSr7re1mfbqelzy0baObgZBEK0JuRMTBEEQLYBEbDtRWW/C3T/uRWlNY7sed/gzqzH99aRW2x+HMODoqPJ+FbWdI+vyPwdz8fCvB1ptf7d+uxsXfbi11fYHAOklNQCAvw/ktup+W8LLy49h8c5M1TKzlQa5BHHaQiKWIAiCaAYkYtuJH3dkYtnBPHy84WS7Hzu/sl713mLl+GB9KmoazE3elzTe2JNRhoSFy3A0t7I1muiU5/85KousdckFGPHcamxPK2nTY7YG9/y4D7/uye7oZrikpkGw0Af6ui0XLXM0txLLD+W1VZPwycY0LPzjkOZnVhKzBHF6IP2QdNRsKEEQBNHpIRHbThh0wo+12dJ+A3FnsY7/Hi3Aa6uO48Xlx/DaqmS8syZF/iw5vxJz3t6Iijpti6e0xxWHhJjYbW0sKL/YfAr3/rQPALDzlOBOu9eFWy3nHCaLtVnHemrJYfxz0DusknsyyvDoH4faNF61ql6YxGiKiP18cxqeXnrE6ed7M8tQpOFq/vmmNGxNLW56IxXUmVrPLZ4gCC+BLLEEQRBEMyAR207oxBlnayv8YHPOkVpY7XY9ixPLlSSo88rr8MH6k3hrzQkAwA87MnD7d3uQnF+FLaLgOJJbgWFPr8JTSw7jmaVHZFFlsgpC0ah3PpNe02BGfSsKD714tVrsJgIazVbUNgqC7NttGej3+AqUVLuP2f1rXw5OFFTJ77/dloF7ftynWodz7vQ8OsOZxfBobiUSX1uP8lr3LuWXfLQVP+3MRGVd063l7njz3xNYn1yIUrEdQU0QsWU1jWg0O58kuPjDrbjkI0e35xeWHcPVn+9wuW93fVbTaHbpjv/A4n1Ysj/H5T48od5kwY5OYO0niE4LCVeCIAiihZCIbScMothrqiBScii7AiaLFT/tzMLMNzfIA22LlcOsYX10FksoWd4q69UC6fE/D8s1ZqV2fr0lHVUNZny7LQNfb013qIpgNDi/hGa8sQHjX17r+Rd0g16cCLCIB0/Or8SmlCJc+vFWDH5qFQDIIuZUcY3D9t8dbUDCwmXy+wd+3o/Zb210ecyrP9uBQU+uBACU1jSirtGCl1ccU7li2wurN/89Ib9W9vd761KQXlKLLamOAqnRbIXFylFvsmDY06vk5TWNzkWsxcrx2ca0JifuendtCm76ehfKxXYHGPUeb1taa9K81gDI7ZCSf3liRc6rtuKdNSngnGPionUu192dXobRz/+L3/Zkg3OusvimFFThr/25uH/xfg+/iY2Mkhq8sfq43N5H/ziEKz7djuwyqrdMEARBEAThjZCIbSf0kjuxKGoazVZUexiTeus3uzHuxTU4//3NeH3VcdmdVkrMc+EHW9D38RX4v98OqkRToxOxIVmDKxUuw/YuoNI6Br36ErHXJT56x0tIskTmV9ajvNaEMoXIe/SPg9ic0jy3Ur1OONbbouiZ8/YmXPfFThzMrpDXCfbzAQD8uDPTwa14babtfHsq/LallaDRYsXWk8UY/fy/uP7LHfhkQxreX58KANiSKixff7xQ3mb1UVv5oa0ni1FU1YDUwiqsEMsSWTTEXf8nVuDGr3Yip7wOVYrroqbBrBKNc97eiI0nilBa04h/DubixeXH8PbaEw77c4byexeJls+mzKuU1zbCJE6afLn5lFrMKyzMBZX16PXocvy6O0tlmZZef7c9AwkLl+HlnXV4a80JFFc3okFh4c0pr3M49t4M4brfnFKED5NO4qwX1yBXXG+Wm8kILdYfL8ThnArcv3g/3luXKns37BGP056u/wRxxsEYZScmCIIgmg2J2DYkReGqKlsRRTfcqz/bjqEKi5sr1hwrkEvaHM2rlIWAJOoO5Qgi7ufdWTicYxN09oPw4uoGnCiokl18UxQuyWe9uEa1rrStj527MId6n/Yi92B2OXo/tlyVfEkS61Yrx087s3DtFztgtlhR12hBSkGV0+y49pY85aGKnLieBvsJVuY/9ubglRXJmPrqepXLMACkFlbhhx0Z8vuEhcs0RZOSqz8TXGF3pQsCJ0u0NkqW34ziGlnQKV2Ar/tiJxa8vxkz37SJrPt+2odpr62X30v9sSmlGCXVaqtuTaMF9Qpxl5xfheu/3Ikbv9opx7RW1XvuclxSYztv324TzkGD2fNasaWiO3Hfx1fguX+OqhKVlSraPkG0wP+8Kwv1ZptwziqrxbKDeXh1ZTIAoFLcxD4Ge5KGVbZGIcCl41bWNz9b9U1f7cJ5723Gwexy1b6kfvT1occjQbQ5JGIJgiCIZuB5MBzRJLbnmvHxSkG4vHjRUPiIgtNs5Vh5OA+7M5pX89PPRy9b8jSMoDioELENZrW1cfZbGz0u8XMopwJD40Jh0KkP8studcZde/GzSbSyrj1WIC+TRJpSzDz/z1F8s80mJM8fEevQBpOdCNfpbIK6rEZbvEiWWAD4fW82ympN+HjDSUQH+crLlYJSYn1yocMyVyw7lIepu7Jk9+vM0joMeXoVPr52jIOwyq2od9he2u6ZpUfw9dZ0efnlnwj1UOcP74ZlB/NQ02BGg0Zc8cHsCswd2g0A0JT8nvYiGRAEf0WtCV/ceJbDZy/8cxSfbz6Ff+6djAFdgx0EsyQ+TRar7EYM2Ky7JitHrUJ8XvrxNhRVNTjE4TpLJKbkJ7H0Tr3JKrejqdbSijoTFq1IxmPzBjq0tVws3yS5cNPYmiDaCLq5CIIgiBZCIraNSCm3Ddwf//MwFl08DIAgGP7Ya0s+szW1GIdyKnD7tD6a+7GPofXz0cvLdBrlCaoUAupAVoXqs6bUqP16azq+3pqOQd1CXK4nJfmxWDnWHCuQXUKVwqXeJCxTurJusnMpNlmsDq7JSnfgl1ccQ0SAUX6/4IPNDm3hnMuWWAAoE0UJ50LpFlf8vtdRnNc0WuDvo9fMiss58MjvBzG6RxgAyJbnO77f4/I4SuoaLSoBq+SyMfGyiK13kkjpk42CNVLrOpCorDdh8c5M3DK5N/Q65vQaWGsn4j9Yn4rtaSVyPy09kItbQ3o5bJdWJLi03/n9XqxRTFxImMxWtQuz6FFgP8Hy9NLDDtt+tz0D143v6bBcmZ26wcm5qTdZYOUcueX1qGkwY39WOUpqGuFr0OGnnZnoGuLnsE2xaN2XrtfWSMJGEIQT7BMsEARBEEQTIBHbRtiHXJqcBB5KGVudiVj7jK2niqtxOEeozaolXk7k21xnlYKquWVnjuW5rgMrxfjuTi/F7d/ZjvfDjkz5tSQClWIwzS7xUm2jBaH+zkXsJxvSkDggWn4vCQ0lDWarplXSE1fZfZnl8uvf9mTjyb8Oe1TSRZpQaE75lwmLnCe9ig8PAAAUVDWgr5N9S1ZIxoTM0v4+elw8Ol61zjtrUvDF5lOICwvA/OHdkO3Cbbqgsh6bUopx6Zh4vLbquOqzg9nlsqVSya70UtQ1WjQFLAA5WZU99lZ26ZpWTho8+ddhnDskxmHbQkX89iUfbUX6ovkO60xctA6lNY0IC/BRtfup8wYDULtVSxTbWalpbE0QbYj0+0U3GkEQBNEMKOirjWiwG6Q/+ZejpUlJdYMZN361E1mltdiXWYaxLwhJa95Zm6JaTxrsA4JAsBdof+3Xji+tbWIGW095Z00KiqoaZKunFtvTSsC5tpiRWHk4D7vSS5GwcBkKKgX3W/vEVPbWW3sazFYHcQQATc3P8/XWUx6LUilOs6kZggFoikKJENGi/ORfh7HhRJHmOkrB/vifh/HgLwcc1pGSQmWW1iI5vxL7FWLdnqs+3Y7//XpAs9TN9rRSpBU5lnVqMFtdxhObrNYmCfwQf/W8mjO3cSX3/LjX4b1kcba/7qWkTVpu1bV2maBpbE0QbYR0c7nwIiEIgiAIV5Alto1oqqb5+0Auko4X4dVVx2G2WFFc3YBz39qoylTrcAyz1a2brES+Rlxma5BfWY+fd2Wii4Z7psSb/57A8fwqXH5Wd6fr/N/vh+QkUhtPFOFUcY2D+HFXnqjBZNG0OFc3MfmPcqLAHZJ7rL0AaikBipjRrSe1a5ZK18biXVnysvyKehRXN2BoXCgAgImDxF93Z+EVMZmSMyTr+JgX1Em+4sP9kV1Wh5QC7drEM9/c4HyfRTXIa8K1F+Lng4JKm4gudpLAKybEV17vn4N5qs+U77uF+snxx4AQy+xsv1mldarYXPskZgRBtAE0W0QQBEE0AxKxbQDnHCfKmqZilaVKwgOF2E9XAhYQYiJPFjnWQ9Ui6bjzxEVRQUYHV8qmkFtRD3+j60tp2aE8WUA4Q7KiPvf3UYfvHhFodBvTK1hirSqBA9higQdF6HCstHlu1c6QRI99zV1PMOiY01q+AT622q3O4j4lGhWfS3V5Nz0yHd0jAmSRbe++DQAXj47DrvRSZJW6zsx8/ohYfJR0EkucZJF2x+70Uo/XDfH3Ub1/+FdH6zIADIkNRUGl+2RcGSW1iA72dSghpWUFX3ogV+UW3YKSzgRBuEIpXEnEEgRBEM2A3InbgLf+PYHaJmoaqQwN5xzhAT5u1haQBOzcoV3drvvyCudWuEDfls1l7E4vxffbM9yv6CFa4j0hMsDtdvUmC0wW7pBRuUQUsQMj9FqbOfC/2f3l169eMhzzh3fzaLum4kzA9o4OVGVi9iRzrz1SpuCMUueTHAtGxmF4XJjbfcWF+QOAXEe1qXy26ZTH6yoTcwHamZ0BYEis64RjSsYlRGBKvyjVsuN2ZZcklO7HnpYdIgiCIAiCINoXErFtwOVndUfXANexPrdP7a16L9Vs5bDVlPWUq8b1aNL69vgZPBN3zjhRUI1TGpa+1iRWFFIAcM7ALprrrDqSD5PFCqNBfVlLltiugZ5d7tP62/Z/2dh4xIaqXaX7xwR5tB9PGBAT7LBsyd2TVO8PZJU73b5bqLYbd255HWoazDiWpy3WAMCo13kUkhYX7u9+pVZCWSLJFa5E7Nm9IlTvfX10Dss8gSyxBNHGUEwsQRAE0UxIxLYB8eEBWDTVueVwUt9IzBumtu4tU8TxuUvCpByQT+kXhcggo4u1gan9o3HLZMfyKBJ+Pu4vgyvGOo9nbQuUdUS/vHEsQkU302A/A8IDtL/v66tPIKO0FgademAknc+4IOffs3d0oPxamVyIMebgKj21XzRag4hAI/6+dzJmDbZl4GUMDjVU3e1DoqfCWn00rxJDnl4Fi5Xj4XMHYFp/xzb7+uig17kfRMaHtVzE3jQpwaP17C2xzhgWHya/fmTOANVnD8zsjxsn2o7na9DDz0d7oqZ3VKDmcgFSsQTR5pDHA0EQBNEMSMS2IZeOide0lNU2WlTiQ8myg3n4fLOj++W6h6bJr5+YP1h+7WvQw9/JAF3iwVn98cT8Qbh4VJzm5+FO2qLklUuHu11Hok+0K2EguOi+dNEwPD5vkNN1JvaJlF/76HWyiPXR6+BrJ7qHxtmsclV1JvjodTj4zGyHfYYYnQs2ZT3cUH8fzB3aFf26CBbXYDtROaJ7mMrlGAAuGhWHkd3DHKzArgj01cNo0OEiRb8I1lHXwvL8EbHy63euHCm/ntY/GteN74khsSH4aku6vPzas3vim5vHyeVqJN3qa9DJZZrs3W2VNNUS++Cs/vi/OQNVpW8SBwjW7T7Rgbh9Wm/N7f64ayKiPLgWH5s3UM7eDAAxwep7rFuon8rA4+ejcypilRMI9pAlliDaCBKuBEEQRAshEduGvH7ZCFw3oafD8gaT1a311J7e0TYX1h4RNoubjsHpAB0A0hfNx8juYWCM4VUnQjQy0NejNrx/9Sgsu2+y2/X0OiZbdzc+PF312ZVndcflZ3XH1Wf3kIX8WQnhDvu4b0Y/+bWPXoeoIKGNlXUm+NoJxWBfmwtqg9kKHz1DiIZbaqAPML63tlvpYIWIDfbzwUfXjsG/DwoTB/auqwFGPe5K7Cu/f//qUXjripH46+5JePHCoZr7VyJZPyUBOW9YN1wpZm62/25aKJM+9e0SLNc+1TGG5y8cilcusfXzQ7P6I1SMsX7j8pFY8+A0+Iru40oRO3doN2z+v+kqV+kp/aLw4TWjEeAiadfvd07Aq5eor6v7ZvTDnYlC3WPpWo0W+69bqL98fHtG9wiHQW/7/oO6hcCoV5+PJXdPwm1T+6j2YdCrRX/XUD9YFQrUz0cvlxoCgE+vGyO/7uEi1prG2QTRhkg3GN1oBEEQRDMgEdvGDI0NdVhWb7a4FAYSiQO03VZDFYmfrJxrWmJvnJiAX++YoFpm0Gt3t7KUiL1omD4gGq9fNgIAcN7wWAzR+D72mK0cGx6ejhX3T0GPyAA5MRCgzj7bV7R0phRW49kLhqj2IZWIAQQR210UQ2YrV7nbGnRM5SqdU14HHyffU69j+PCaMdj35CxEBRkRpjiPd0zrg4+uGY1f75jg4GI7skeYKtmWv1GvSrwU5u96QsLeRXbrwnMAAJeOjpeXSSWKnFlyH5pls/zaT4BIpYmkurpK1+i7p9vEdpCvAX27BMEiDhp9DXrZKmvQMcSHB+A/U2xW0lsm93Jwe790TLzq/ZieEbhsrHqZkt/unIDvbhmHQd2C8fyCIXjnypGa7utSO6oVSb3G945AlPhdF108DOMSIjCga7DqOwttt+1vZPcw+PnoVVZUzoEqRfbocQp3/HOHdFVdB0qoxA5BtCGSuwSJWIIgCKIZkIhtY6b2j8b2R2eoljWYPCvz8tWNZ7ldx2ThmpbYZy4YgrMSPEtmwznw9PmD8ewFQ3Dixbmqz84fEesgXLToHRWIj64ZDUCo5xoT4ie76L51xUgMjw/Fw+cOwAMzbRZWSaiePzwWCRqxiTMHCS6o0UG+Kuvz7dP6yK/3PDELfbqoEy3ZW+YAyK7UEYFGhAcase3RGdj52Ez5c72OYe6wbprnLMBowL6nZsui234CItTfUQRdPCoO48R9vXjRMFyvsMjHhPjhxAtzcc85NoEZLYo1ZSZi5Xe+d0Y/vHbpcFw1rgfuPcd2DgHIot0kltpRtk+nEfPKZRFrs8RKgk2n8MPVuq4m9La5eX978zgAQtzwW1eMcFgXALoE+2FKv2gwxnDdhAREBvlqWmKlNqcV2TIg3zyplyzqx/QMxy93TJDbJLlch/gZVP39gXQNKgbGhVXqDMfKSZDIQCP2PjELF46MhT3W1q3GRBCEBOfCH2MkYgmCIIhmQXVi24GuoX4YFheKQzkVAGx1P0d2D0PXED+sPJIPQIir/HNfjrydNFCXrKPbHj0HZrGW6sCuwUjOr4LFylUuqD/eejaigj1zD5bQ6xhummSzZt44MQFfb00HAKeun/ZcNra77JoptVFiXK8ILL3H0Q1Zr2M49twc+Bp02KWoJfrPvcK6H187BhV1JkQG+aLeZEt2FeRrQPLzc5BeUoPQAB/UNKpL8miJj8n9ooDKcvm9M2utKySX1ECj+pwoRezswV3xffdM3DujHxb+fhCAIMKfWzAU326zlSGyt7hKIt6kOHer/zsVA59cKb+/bGx3XKaRYGtkjzAAzrM22yNZKX0NekhGTGlZuUJEa4lYSePOG9YVUxXJoi4aFY///qxd09Xh+BrBpv1EN+ZH5gxEbJg/njpvMAx6nZxUS6sc0Zc3jkX/mGCcEMvlTB8QLVv9lccoqKzHCxcOhdnKcff0vjDodXLtWMYYGAOuPrsn/tqvroNLlliCaEPIEksQBEG0ABKx7cQfd01EcXUDJry8Do1mQZD9JZZSSVi4DIBNDI3rFYGHzxUyrn52/Vg5TrFbqM0td+Hcgbjxq10wWawqa9vEvs4T9CgJ9fdBRZ0JQ2JD8JhdgqWnzx+M+2b0w2eb0uRkQFq8ftkIDO4Wgl92Z+GGiT1RVNUAADA3wYTlLwpCSTBFBRllC61Br0OkGEvp56PH0nsmoVp0C/Xz0WNg1xDVthJltUJJnftn9MM7a1MANC3jrzMkgSkJ+4+vHYM3/z2OmFDbpEFogI9cIke2coqDtOhgX6fjNSnmOUAhkF3FOgcY9bLb8MCuITj23Bz5XAJAvy5BTjMPW8VGGA22JFLSMmU9Xi03daUAbi4NZnX27SGxIfjiBsHroH9MMJ5bYIsr/vCa0fhy8yn01yhFdM5A4doMNBpg1Otw21SbhV45sXDjxF4IMBrwX4VL9pr/TkOdYmJkXK8InHhhLvo/sUJeRmNrgmgj6OYiCIIgWgiJ2HbCR69D1xA/XDWuBy53EkNYLoqvi0fFyW6tzrKnSu6XliamUH39shEI8jXg801p2J1RhqfPH+KQKZkxhohAI/5vzkCX+5rQJxJxYf54Roxn9fcRBKa9JdYTJMHlKsnUcEVZFSX2yZAk8fffWf2x4UQR9meVI8jXgMYmt0qNJM4l99U5Q7tiztCuTteXDA1SF20TY2G1iAvzx+fXj5Utku448uy5qvf+dtZhKSmVFiF+wgSG0aCTaxJLbZwxyHa9acWuSpmgXX1vdzSKngizB8dg9dECvH3FSKfZuntFBeJ5N8mywgONDm7wD8zsjy4hfrhxYoKmmA8N8EEo1G7g9tZxGmcTRBsiuRMTBEEQRDMgEduOMMbw8sXDnH4uCZH4cOcZUyUkIaXlZukKKb41OtiIh3896JB5tyn42Q36g8QERq7KljhDyiY8d1jTxZG9iP1QjIsEbGMko0HXYhH7zpWj8MH6VHTx0F37xokJ2HqyRE5G5CyxlsTMJpw3d2V4XPH7nROxJbUYeh2TEypxhWKTrPRaluCBXUOQ8uJcTXfsj64Z7dGYtF4UsaN6hOPqHtXop2FlbSn+Rr3L2sieYCUVSxBtBwlYgiAIogWQiPUCjAYdooN8sXDOIAyODcWkvpFut/ERgxkl6+CdiX1UtU7dMaZnBNb9L7FZ7dXrmBCLaydyAowG7HhshlOrmit6RAZg0yPTEd/EmqSAozjsrkiIJA2TWkOOjO8difG93feNxOwhXVW1Ur2Fvl2C5CRVsjuxYjKkT3Qg9maWw6CwYP5nSi+sP14EwHk88Vy7TMbOuGhUHD7dmIa5Q7si/XBWs75De0ASliDaAZosIgiCIJoBiVgv4NAzs8HAYDTocN14x7qyWvSMEoSaVBLFnetvazJrUAxWHsnXrGkaI5aKaQ5K8dlc7D1Hn7lgCJ5ccgRDY0OxI73Fuz/tOH9ELL7emi4kvhL57Pqx2JZWIscjA8Dj8wfj8VbS44O6hcjiPr11dtkmkCWWINoIurcIgiCIFkIi1gtoTpKcED+fDrPyvX3lSBRU1jcrw29bYx//ODw+TE601Bl54cKhzbJOe8qYnuEO11FkkC/OG+5YcuZMg8bZBNEO0I1GEARBNAMSsUST8fPRo2ekY11Xb6Bvl6bFV/5469kwNTGuuD251kPLPNH6cBpcE0TbQ/cZQRAE0QxIxBKnFd/dMq5J63takog4MxjbMxy7M8oAUEwsQbQZknBljEQsQRAE0Sy8zx+UIJrB+N4RuObsHogK8ixzMEFo8dNt4/HZ9WMBqJNdEQRBEARBEN5DiyyxjLF0AFUALADMnPOxjLEIAD8DSICQt+VyznkZE9KgvgNgHoBaADdyzveK+7kBwBPibl/gnH/TknYRZx6Lb5vQ0U0gTgN89DoEiqWuSMISRBtB1leCIAiihbSGJXY653wk53ys+H4hgLWc834A1orvAWAugH7i320APgIAUfQ+DeBsAOMAPM0YC2+FdhEEQTQZqewQjbMJoo2hWrEEQRBEM2kLd+IFACRL6jcALlQs/5YLbAcQxhjrBuBcAP9yzks552UA/gUwpw3aRRAE4RZpXE2JnQiiHaD7jCAIgmgGLRWxHMBqxtgextht4rIYznme+DofQIz4Og5AlmLbbHGZs+UEQRDtjk6yxHZwOwjijIBELEEQBNEMWpqdeDLnPIcx1gXAv4yxZOWHnHPOGGu1XyhRKN8GADExMUhKSmqtXbc61dXVXt2+MxHqE+/DG/vkRJkFALBv/wGYsptew7kz4439caZzWvaJ1QpERgIGg/DXyb7fadknnRjqD++D+sT7OB37pEUilnOeI/4vZIz9CSGmtYAx1o1znie6CxeKq+cA6K7YPF5clgMg0W55kpPjfQrgUwAYO3YsT0xM1FrNK0hKSoI3t+9MhPrE+/DGPgnOKAV2bMPw4cMxtX90RzenXfHG/jjTOS37pLoa+OEHQciaTEAn+36nZZ90Yqg/vA/qE+/jdOyTZrsTM8YCGWPB0msAswEcBrAUwA3iajcAWCK+XgrgeiYwHkCF6Ha8CsBsxli4mNBptriMIAiiAxDcia3k5kgQbYPy3qL7jCAIgmgGLbHExgD4U8zkaQDwI+d8JWNsF4BfGGO3AMgAcLm4/nII5XVSIZTYuQkAOOeljLHnAewS13uOc17agnYRBEE0G52U2Kljm0EQpzckXgmCIIgW0GwRyzlPAzBCY3kJgBkayzmAu53s60sAXza3LQRBEK2FrcQODbIJos2wpQHv2HYQBEEQnZK2KLFDEATRadHR2Jog2ha6uQiCIIgWQiKWIAhCAZNjYju4IQRxOsO5zRpLEARBEE2ERCxBEIQCm5cjqViCaDPInZggCIJoASRiCYIgFEhja7LEEkQ7QCKWIAiCaAYkYgmCIBRI7sSUn5gg2ggSrgRBEEQLIRFLEAShQCc+FWmcTRBtDGN0oxEEQRDNgkQsQRCEAkrsRBBtjFK4koglCIIgmgGJWIIgCAVyiR1yJyaItoPEK0EQBNECSMQSBEEooMROBNEOUHZigiAIogWQiCUIglDAxME1ldghiDaC7i2CIAiihZCIJQiCUCDnJqZxNkG0HZxTYieCIAii2ZCIJQiCUKCTLLEUE0sQbYfkTkwQBEEQzYBELEEQhAI5Jtbase0giNMWyk5MEARBtBASsQRBEApslliCINoUssYSBEEQzYRELEEQhAZWshARRNtD9xlBEATRDEjEEgRBKJCNQzS2Joi2gYQrQRAE0UJIxBIEQSiQ3InJEksQbYh0f9F9RhAEQTQDErEEQRAKJEssDa0Jog2RbzS60wiCIIimQyKWIAhCgZzYicbWBNE20M1FEARBtBASsQRBEAqkkFhyJyaINoRzwRpL9xlBEATRDEjEEgRBKGBUYocg2h4qr0MQBEG0ABKxBEEQCmyheiRjCaJNoHuLIAiCaCEkYgmCIBS0d0ys1crRaLa2z8EAmCxWpBVVt9vxCEILKwc4Ti9rbHpxDVILq1p9v4WV9UhYuAy700tbfd8EQRCdFRKxBEEQCto7Jvb+n/ej/xMr2uVYAPDismM4540NKKisb7djEsDR3EpU1JpavB/OORatSMaxvErNzzeeKEKfx5a3yrHakt7p8bg1WQdY228Cpy3gnOObremorDch8fUkzHxzY6sfY1taCQDgm20Zrb5vAKhrtGBzSnGb7JsgCKKtIBFLEAShoL0tsX8fyAUAFFc3tNo+Oec4mF0Oq9XxS2w7KQyIy2obW+14hGs455j37iZc88X2Fu8ru6wOH284iXt/2qf5+fvrUmGxchzLF0RuamEVbv56F+oaLS0+dqsh3lxryzq/JXbnqVI8vfQInvrrsMNnZovVIy+Lwqp6nPvWRmSV1mp+3iDuw6hvmyHb438dwrVf7EB6cU2b7J8gCKItIBFLEAShRBxXt9QSm3S8ENUNZrfr+fvoAQiWOmeU1TSisEqwnKYX12DJ/hz8uS8bh3MqNNf/bnsGLnh/C3o/thxfbD6l+ozKc7Y/0nVwOMd5H7sjOb8SeRV1SC0UXMH1ThIjSYutVo63/j2BWW9txLrkQgx6aiWWihMmXkUnvxAlgVlS4zgpNO/dTR55WSzZl4vjBVX4emu6vGxPRqksbCUhbDS0jehPzhNcoD15XnUGNqcUY8EHW2CydG4rP0EQriERSxAEoUDXCuPEvIo63PjVLjz483636/r5CI/hynpt98/j+VUY9fy/GPfiWpwoqMId3+/B/Yv3478/H8B5723W3Ob3Pdny61dWJMuvM0tqkZwvDFh3iC6KTeVAVnmztz3dsVg5csrrMPiplTiSa5tgKNdw7XWXOGz1kXxc8P5mWDnH3wdyMeftTUh8LQmnRGtZaICP5nZ68QJusFjxztoUlUb8YlMasstqNS30ZzoWK8cPOzKaLHyk863cLmHhMlitHCcKhAmHhb8fdJhM0uKXXVmyNTbpeBGOF1Thyy2n2twSK10Nymul3mRBSSt6h7QnD/6yHweyylvVu4UgCO+DRCxBEIQCqcROSyyxDSZh0HnIiaVUiXSUWg13z6+2nMKd3++R358s9CwhU6nCVbjRYsW019bjmaVHsGR/jrz8mb+POhVSrgTWgg+24IpP1W6xtY1mnP3SGlz/5U78sisL761NwZ6MMysJjclixSUfbcWkRetQ22jB/Hc3y+exVLTSSVbSZQfz0OvR5cirqFPt4/NNabjowy1YfSQf9y/ej4PZFSip47LrcIPZilQxKZckRO2FhiSqiqocB/AHsisw+ZX1eHddSit96+ZhtheKXmCN/XV3Fh7/8zC+2HwKVivH7Lc2uLRcZ5bUImHhMrlvSu0ssfmKmPPFu7Lw6kphMulgdjmO5VXi5eXHUF5r87AAgKoGM67+XLi3TBbhnNQ1WmSB7Ct6bbjj0T8O4ust7kWzhHSd1jbaLLG3f7cHY15Y4/E+vAmzeG84m6sxWaxOvVgIgug8kIglCIJQIBlimzOuXnk4D1d+ug11JkGQSv+1eHP1cSz4YIt8nFoNV75n/z6KNEWc2p0/7MXArsGqdaSBZ1ZpLW75ehe+25bu0PaMklp8LSafUXIsrwq1jWZYrRyFVfWobOC44pNtmP+uzcJbUFkPi5Wj3u67WK0cm1OKwTnH/sxyFFQ2YOOJIjzy+0G88e8JXPLRNtX6S/bn4KXlx5yeD29gb2aZKuFVdYMZDWbPYklv/noX9meVq5YdyBYGylL8sY9oSXtPFJHpxYLVzWrl2HayBC8sO4Z9meW47bs9sIgj8PIGdWf+uCNT3ufezDKMeWENVhzKQ12jBVtTi+VJmOwytUBW8vaaFHy3Lb1FWbF/2Z2Fu3/cq1pW3WDGr7uz3FqZGzvYzfOcN5LwpF0Mq+RKu+JQHrLL6nCioBr3acQdF1bVY32mCauP5gOwiVf7SYNTdvGlFiuHxcpxwftbMPedTfhkYxrmvrMJ415cizXHCuT1skrrUFLdgNIaYX8phdWoEu9bo16HynoTrvx0m6ptX285hT/3ZcNi5aiqN+GnnVl45u+jTT4vtYp7fMOJIgBARZ3tmbE1tRgbxeXejEm8rhucPH9fXHYM5723GRklnScGuLLehGeWHvGa2Pbd6aU4nt/6mbhPZ1o72Z7JYpVzXJypGDq6AQRBEN6ETrbEqpcfy6vEgJhg6Fz4G9/xvTCoL6kWBrb2A45NKUWICDRiSGwo3l2XqvqsptGClYfzEOTrg8n9opweo7habfEZ/NQqfHHDWNzyzW4AwNrkQqfb/qZwMwaEmD1HBGFVWW9CYWUDZr65Qf7k+Atz5Nff78jAU0uOAAASB0Q7PabE/Yv3AwD+N3sAjAbvnD+9+MOtiAg0Yu+TswAAQ59ehTE9w/H7nRPdbrtJI7vr73uyceEHW/DInAEAAF/xe+eUCwJTmoC47ssd2JKqHoxIQu/FHdpZpE8W1eDiD7cCsLmevr3GZmHNdpIkSOJJse96RAaiqt6E84bHyp9V1JlwOKcCk/o6vw4f+e0gAODtK6yyOH/+76P4eXcWekYGYlyvCKfbNlqaNkNktXL8tCsTl4yOh0HHYGihW21aUQ3Simrw/IVD5WWSlfNAdgWu/HSbs00x7sW1AIC43HTV8jK7AWqm3fk3WzneXnNCtSyvQujbHafUXguvrEzGL7uFe3VPRhn2ZJQBEFx8hz+zWl7v7StGot5skQVrSkE1vlVkML7uix347pazVfvek1GGAV2DEeRrwLG8SgQY9fKkl5ZAyimrQ6i/4Lp+9ec7AADpi+Y7rOdNSPdOvUk9WfLbnmyE+BmwKUUQ4nkV9egZGejxfvdnlaO63uzy+QwAP+/KxOGcStX11VLeXZOCr7emo2+XIFw7vmer7be5XPqxcI94+7XQUl5ZmYy4MP8Wn/PvtqXjySVH8NN/xuPDpFS8d9UohAUYW7TPd9ak4P31qfj9zgkY0zMC+zLLMDQuVH4enwmcOd+UIAjCA+TER7ANtPdllmHuO5vw+eY0j/aRK7qJNthZuq77YqfKyqmkqKoBd3y/F9d+sQMbThRhyqvrNNdTxlpKSALWHfYDbVcs/P0gftqZqVq2J71Mfn2iwDYLn3Rc2zqTsHAZUgurVJa5/k+scBr/q+R4fhXKNJLlOINzjpeWH8PhnAr0eWy5bLG0J7e8Ds8sPeIQ+yh9V3u3UElAHMgqx/rjzicItPhuuyAoPlp/EoDgMv7QLwfk66Ks1oSKWpODgG0qjRarg+UvzYNMsxtTinHDlztxz4/7sPqIYFlctCIZI55djWs+36GywknszSxT9Z8yo64Ug+gu87WDhcyN5fb3vdl4/M/DGPjkSvR93DFRUqPZimeWHlG55gq75SoXWWeYLFa8/a9NYOZWaE8cKGvAShMRzqjUOHfv2U1cOcPZ9fC5XVxtVb0ZD/58QH6/5liBKjnTppRibE8rwXVf7MCiFck4lF2BSz7aintFC/rcdzZh2mtJcuhEjbjtt9vS5X1kl9WCc646t2+sPu7R91ByOKcC6cU1+H57BhIWLlNdW4VV9ej3+HLsaqU6uNK9be9F8b9fD+C27/agql74nld+ul3ODg8IyfgSFi5Ddpn2BNCFH2zBtV/scHrczSnFuPuHvfi/3w/J976Sg9nlKG9GVviTRdU4Lj5vtSYALVaOm77aiWFPr2ryvpUs2Z+DijoTdqSVyM8Die+2pWO9iwnS1uL77Rl4698T7ldsJz5KOoknNDKPe0JFnQkJC5dhxaE8LBJzU7y4/Cg2pRTj193ZLre1WLlbq7v0zM8pr0dKQRUu+nArXl6e7HKb0w0SsQRBEArss/c2mq1IF93OPM0um1fuOAhWJtOxj4UEoMpMesOXO5FVqj1IbooQBYDPrx+LLQvPwdVn92jSdssP5Tsko9mgcCX8frtaJE7rH41gP0fnnrXHCjH+5bWqZYWV7hOunPv2RqeJq7TIKKnFpxvTcN57m2GxcrzsxHX56aVH8PXWdFz+yTZVPOmjfxySX+/PKke+nZBZ8MEW3PTVLgfxezinAqvsBnz2VIniwGLl+H1vtuzGW17bKE94SEQF+Wruw9eF9frvA7lYsl8dv3kwu9xlmwBh0C5x23d70GC24OMNJ+Vl1Q1mbDhRJLvKZpQI1t/bvrVNmmSU2Ab80gDbnZvyxgzFfeQky7KSIjcJetYcK8DXW9OxaEUy9mSUYeHvB/Hgz/vx1ZZ0DH5qFU6KccRmi1WOTZXaOe+dTTj37Y2a2YUlcsvr8Mfe7CbVgE22c7X04GvKuBPIEr/uycJKxbVX0+A46L3y0+3YlFKMjzecxPnvC/fTVjsXRMlq/PBvB5FaWCV7WABATaMZn286JVugAUGMN5qtePCX/bjs460etfW89zYj8fUkfL5JmAiU3PbrTRYczKqAycLx7lr3sdq70ktRb7LAauXYecpR9HLOZS+a2kYLBj65AovtJuOUQv/en/bhKjHGX/JU2S1O1jWYhXjkLzafwssr3IdCXPvFDiw7lCe/V8Z+cy64kksiuNFs9bg274w3NsieHjqNC+mVlclYf7xIfs7Ys/JwHhIWLnN4pikprKzH/Yv346IPhZwHt323R/X5k0uO4KavdyG9uEY1oWFpYpK4ijoTOOeoaTA7TGaaLFY88ddhvKO4Dgor61WTR54iTRZwzvH7nmxkldai72PLXZ7zNUcLUFzdgKFPr8Ife9UiM7WwSrMEVo2LjN7SZMhba07IE5dm0QtFOUluPwEJADPeSHLiKWXDV0wK2WCyyJOvX2451azz1VkhEUsQBKGAQaoTy5FWVI3+T6zAX/sEgWDQOx+JKq2NSpF601c7sSu9VGWduvN7dSxhUxmXEOFU7Ngzc3AM4sL8MWtwjMv1Xr10uPy6d7S2i90GF/FwQ+NCMK2/o1vxyiP5KLATramFVXh1ZTKySmvxxF+HVMJw8c5MXC66qkmD+dzyOny3LR1WK0eD2aJpKUkrVie9kgSV2WJFRZ0Jt36zC++tTcG/R4X4w32Z5bjg/S2Y8UaSw74u/GALEl9fL79X9u3ejDL8uS9bjhE+773NuN1uwKfF0LgQh2W55fVyAiAp82xsmJ/m9l/deJb8elhcqOozKZGNcrmVC8f84y7nrtAmO7feX3Zlqd4/+ddh3PDlTnkwNe21JADA9rRSGES3eqXlWhLalfUm/HMw12ls7MP/OlqpJJQDRc451h8vRL2dRcJ+v9K99cfeHFzy0VYs3pWFP/blyNawTSeKYLJY8daaE/gwySbS8yrqcDSvEmlFzq3WF36wBRMXrcODvxxwuo4Wf+7LUb3/z5TeqvfhTrJLKzn0zGzNe0rC/n70VPw2mK3452Cu6r2EvVBvMFk1PVDKahvxx94c7FJ4ZyhJKajC9NeTVJMiAORnAYPgzTHwyZW4VZwUUU5u1TVa8NPOTNUA/0RBFS77eBsWrUjGDzsycPkn2+T7GRAmCpWeLmW1jag3WfHcP0dVVln7+P5taSV4ZukR/HNQEKA1ovX+7h/2YtKidXj+n6P4ZIPjOWgwW1DbaIbFyjUzfpeL1maLlcv5EaSJ0FdWJuPaL3Y4nWwqrm7A0dxKB+unUjT9uCMT5723CZ9utLVtxLOr8fMutWiXrH72MftKpMSCyntByxMm8fUk1YRGSY3jBNPve7KRX6MW8F9vOYXDORUY8exqfL8jE+NfXqtyjQeAQo1kdBMWrWvS5BEA/LAjAyOf+xcZJTXYlV6Gh349gLnvbILZyvHd9nTVuuuTC+UJzVu/3Y3LPt6G6gYznl5yRBUzPfPNjZjy6nrklNfhm63peOKvQzhZVI0hGoJXwiqegso6s+ztIP3WSZfLH3uzMf31JGxJtYnrqnoT0ktqVdf+1tRivG+XkM9PDIFoMFtVYU6enK/PN6UhYeEyr4mxbi4UE0sQBKFAp7DESj8i0mDxj705ePaCIQj2cxyAblOUnVmsEAPrjxdh68kS/HL7BHlZUxJiPLdgiMoyAgABvnoMjQtx6sarRd/oIJefzxxkE7kXjYzDGxouXcn5VdDrmObse1SQL4qrHAc9+zLLHZZJscOSoPh+eyaW3jMJw+PDsFBhEZW48audOFFQjcGxIfhqSzr+OZiH5OfnyD/iAORyJhJGgw7J+ZWY8/YmTOobiS2pJVhzTD0glAb9DtlyoY6nU8Yh/7gzE0v25+K/Px/AP/dOVm1z0ag4B/Eif4eJvfC/X9VC6Mstp/ClmEU2PNAHBZUN6Bbqh4PZji7j3SMCcNW4HvhpZyZiw/zkzNevXjIcj/wuxKeOTQhXZcS+fGx3jO4RrtkeLZ60u87WiQPooqoGJOervRCkK6Cy3oQ7v9+DmBA/+BqE/hDctTmib/PF2b0jXR7TxAEfzmUr9SO/HcQz5w/G1Wf3xL9HC3D3j3vlMlQSezPLBavw6HjkVdQhpUA7a7d0/5bVmvDEn4fx8261SLe/ZrRwNfBvClP7RavERr8uwdipcJ89KyHcQRAG+/kgSMO7QUIrDluLt64Ygf/+rL727vnRMWmVFu+uTXGYhAKgKl9T22hGgNHWzsM5FbIXxaIVybhOEU8oiTktF3jJMrfqSL5qYmjHYzPw6B+HMKancC0fya2QPVcyS2vRB8KEy7JDeapJFek7MqgnW7SmVpSeMOW1JpRUNzg8L+y54L0tOF5QhYFdgx0s74AQilBa04hH/zjkEB97LE+4nyTX5sySWjy99DDevmIUQgN8MHHROk2PBqUV+bE/HZ+VFXUm/N/vhxAV5IsZg2Lw6+4sOU9CZb0JBZX1CPX3QUlNI5LzKjFjUAwq6kx4/h/HRGDvrUvF1P5R+NlucktJSXUjcsrqMLJ7GBhjKKisx0O/HkBMAMOVYrjs7owyPPP3UfiIk8AbTxTJ31uJUjQfyCrHgK7Bmr81XHxeGPQ6lNY0Ijm/EuN7RUIn/jZ9I/blsbxKVIveCdJ5S4hST9De/eNe1DZaZG8E6ZqsajDLk3ZKJi2yhflIk9t/H8jFxaPjHdaVJkMq602yaLVlzha+gzQ5prRul1Q7/o5K8ejT+nfB/qwyXH12T3nScMn+HPTt4vr33R7J2l1a24g4o3+TtvUmyBJLEAShQMru+sa/JzRjTaUYSUCY0b/7x704kluB11c5jxNrMFux4IMt8nv7rMVKC9pj8waqPgvydRzE7sssR6boxnnjxARM6huJb28e5+prIT7cH9eN74knzxuMVQ9MlZf/cvsELLl7kpy8RceAuHDHH7U+onW2b3SQPBgBgBHxQtsjAo0I8PWsBIgWzly1D2aXy2KjsLJBtpYMfHIl0u2sNEp89DpZDLqLOdWK/VTyicKatCPNJjwWrVDHH43v7TyZ0XnDu2HNg9Mwc1AXAI5uw5JoHhob6rAtAAT6GhAZKCQCiQg04rPrx+L3OyfgvBHd5HV6RATIrz++dgyun5Cg2sfrl42QXz8ws5/Ttmox5221a5s0uKyoM2HF4Xx8vTVddm+TLLxltY1Yc7RA5X5sT7WF4aHfDqLPY8vlZFHP/H0Un21Kk63U9gl67vlxLx785YCQfGrROpUA0aKsttFBhAPAf13UcVbWZB3bMxxvKM6dK/5vzkDN5ZP7RWFsT9uEQi+7wfTnN5ylei9NkDTYfffvbnF9n2vRNcQfLzQzyZCz+GDlQFvpUg5AdhmWGKIRq1lvsjoIFB1jsFq5g2fD22tSsC65EK+Jz1ilIJUsoN9tz3CIZ5fgUFt53WWeL6pq0BTuEreImcilOFUtAQsIZYqkMAX7bNiSQP15l5DN+9tt6Vh/vAgjnluNsS/869QlXxL6VW7yCki/XQ+L9xQgZN4++6W1+M+3u3HhB1twyze7wTnHgz/v10wI+OWWU7jxq11Ycdh5uMT32zNw0Ydb8eWWdADAdnEyt6DWdpKl8y09F6TfGom6RguO5laq6mkv+GCLKgP3VoWl8qedWej7+ApMfmUd/vvzflz9mZBHIqu0Fhd+sEX+vbjj+734c5/aSuonTrRxLsScShZoLZded0jCuKbBgmUH87AjrQRZpbWytVyKx1eWz5MyZ3Ouzh3w358PyF4Fygmi77ZnqDKC3/T1Ljy55AjWHiuQJ3F3pZfhp53OJxq0kNrYlLwT3giJWIIgCAUukg8DsMW0AIKQWnYwD/Pf3Yy9meV4YGY/bHpkepOP+fe9k/HL7RPw3IIhCPJV/8CP6B6GnY/NwM7HZsjLqupNsgvg/TP64Ydbx2OoKITnD+8GLRhjeP7Cobhlci8MUJTpGdcrAiO6h0GvY/jPMCP+fXCapnAeIoqrvl2CVINAyYLr76OHv4d1LLV47M9DmuVsLnjfJv7v/EHthp1aWI3bv9uNb7amIzlPPZD089GpLLWueM3FBAQAHC+oQmSgESF+BlX9z83iwOrSMfF49dLhuHRMd83tR3YPg5+PHn27BGFYXBgAxxjX4eJkwCS7zKe9Q4X1gv0Mcsyxr0GPWYNjMKZnhMoCphSxc4Z2dWiHMov0vec0TcQ6w/68K/l2WwZu/XY3Vh8tQGphFXakOU4m/FAdhN/3OdZjPZZX6fRelLL6Pv7nIc1aoNPtsmV/uy0DB7IrMNXONbdaI57tpkkJAICoIFvm0EfnDcIlY+IxqkcYAOCGwUasedA2EbTmwamY2CcSzy0YgjsT+8jL7Sc1hsXbJih6RAaoPlMO7MclRMiWFft7QtnHAPC9XfZhLYL9DA4utADwv9n9nW7z1HmDXe5TOdBel1yIzJJabEktRk2D2SNBcOf3exwmngCgoMpRNNsnmFNe8y8uP4acKvclm9KbUE7nUE4Ftp50buVem1yICxWTkvZ4Ev8suZUuPZCLue9sQnig7Xqzz0CvpFq0YConU51h7+K8XvTc2ZRSLMe5/6Kw1DYH6bweEt2ilZMbJ4uqsfpIvmyRlFDmTjBZrFjwwWbMe3eTqiY6AKxWuIpLlkgA+G2PINiyy+pkL6ncijpMeXW9Q212+wnMzNJarDycj16PLsegp1bKy+0nJJvCzvRS3P3jXlzx6XZMeXU9xr0o1FfWilGXJoUazFbU2n3+yYaTyCqtlTM/A8Lkx/Vf7pTfS/ddekkNfFwMVjJKavDJhpOoN1lQ3WB2CMGQLo3z3tusadHvLJA7MUEQhALGGIJ9DU6TZNz67W58ddNZSNSIVevbJQjdIwJww4Se2JRSLGeIXTh3IG6e1As+eoZejy7X3O+4XhEY1ytCjq/pFRWIa8f3RB8NN2ArB764cSw2HC+SBz8RgUbsf2oWqhvMWCZaK/+6e5LT7/nZ9WMdxOqkOB/0iQ5yqDEaH+6PCPE4faIDZXe8D68ZjXOHdEXfLkGYNThGdpPuGRngYJ3xhP0arseueODn/ahuMGPVkQKHz04UVCPJw8HZYhfucoBQuqR/TDCGxYfKLqHXje8px1yO7x2JS8eo3cl+vPVsPLHkMB45dwDmDLVNLMwb1hVvrTmB80Z0k+PsooJ88e6Vo5BWXIOYEFtMbNcQPzw1QY/ExEQAgEUciPg4ic12FyetzGyqdzdbI3LBiFgsVWRwfemiYfKgJzbUD/uy1J4JSraeLEGInwGV9WY5TmtSX7V78evlYZrHrWkwu22jVId3cLcQHM2zWVqbUsHnwpGx+EuRFEtyiWYKJdI/RrgHLxkdj32Z5RjRRY++XWwTQX27BOPH/4yX3z+/YAiKqhvx4Kz+SFi4DFPEiYnYUJuHg1KMbll4jqpNv9xhCz04KyFC5TYcaHfPuiv3AggC+ZLR8XhhmZCcyKBjMFs5ekQGYlSPME2X//BA1zG7n25MQ2SgESU1jXht1XF5Imju0K5yv7iisKoBH6xXx8vmlNepsgU7w16oPL7FfSywq7hne5RljQKMepUlzRNigv1Uk132rDycr4r/TM6vQp9oz5IG5pTXobbRjBu/2uV2XeW96QxPM2Y7Q7Jw55TXYcYbSTipOM8z3hDKs/Wzc3VVxvWW15pky6mz31yJHWkliAnxc7DkAtAMZdHiz305miEfWvG4zaWm0YJ/jxbgXo060xLvrk1xSGTWLcwfyxWJwVzx0vJkdA3Rzp8ACLWQVx8twLfbMpBTXoe7EvtglFH7wRisMWndWfCaljPG5gB4B4AewOec80Ud3CSCIM5QfAw6wMVv2k1f7cLy+6Y4LA8X6749u0Bw3ev/xAo0mq24eHScLCDiw/1VIlHpYqhkRHwobpncS7Vs1QNTce7bG/HgrP4Y2DUEA7uqkwWFBRgRFmDEO1eOxOS+UYh0IWpcJXqyiBkppvWPxjc3jwPnXM5UPCw+TJ7V7R8TDL2OYe4wQaRdflZ3BPoasGBkLPIr6+UkK/YiwxlXiFlCPUVpSdMabP7hJD7VGT565pDsCADyK+uROCAaC+cMxIyBXeBj0KHBZJVFbIRiwH/OwC5Yl1yIiX2jsO6hRId99YsJRvLzc1BZb5JF7IaHExHoa8CYQCPMFivmDeuKsxIiMHNQDE4etM3Cx4UJIsg+/un+Gf2w9WQxBnULQf+YIKf1XY16HT66ZrRcR3Pjw9Mx9bX1musCwLZHz0FKQbUsYoP9DLj67B74a18OYsP8cLygWo7tAyDXNlVSaRf75mk5ofXHizTd2rWY0i9KdX2d3SsCm1KKHNxGpetaQq9jePvKUbh1Sm+8tuo48irqYLSbILhtam85Bv6as3vg0jHx2L7FddbQ6xRu3MdfmAODTrj3b5qUAA6OPtFBiA4W7s1gX4Pcr0vunuRgxbx7el+cN7wbzhEFgdK7IExMDjVjYBesTS7E+1eP0ox1DfYzICzAiEPPzMbB7Ao8/89RJOdXoUuwL76+cRwq6kyY885G1f2jJRQA4PKx8fhld7ZTF1pXrqee8FIblQhJKaxCz8gAdA8PwObUYtyZ2Acj4kPl+HxnGDyc7FESH+7vUsTeYWdxBCBnNY4O9oWvQYfssjr0jwlSxW37++iRdLxIlUndFZd85LzesYT9hKVE7+hAj4S/JP6cJfgCgJRCdey5MvO+MxdwLaTfhzGK38zIQCMazELSNiVSHoSO4j8uQiicseJQniqMwR2urjHJii3lfZDyT3zRrcChNvKoJuRN8Da8wp2YMaYH8AGAuQAGA7iKMebal4UgCKKN6BLsPvOvlLH14XMHyMvC7DKO3j5VyEga5m9zFftVYWUZGheieu+OAV2Dkb5oPu6b4doVdMHIOJcC1h2Sa7LkWskYw40TE/D1TWfJMZ0AEGgXAxsT4oebJ/dCZJAvhsSGYsHIWNx7Tl85M2NLuMzO0mnPiPgw+fXSe9QWaGVSLYnf7piAz64fq1o2e4ijC65E94gA6HQMZ/eOxOge4ZjQJ1J2CVYWrf/8+rE4+dI8l23189EjKtDWP0rrmkGvw4fXjMFNk3qhu53r6AUjYvHdLeNw+Vi12/J/Z/XHr3dMhNGgw6oHpuLp84doHteo12HusG5YMDIOgODSmr5oPvY+OQt7npipWjfQqEe3UH9M7R+Nz+3O0y93TMDbV45SifemcNWQSPwV62g9t8e+jJMzlNl1g30NuHNaH6x5cJrDemYLx/0z+mFsz3D8dfck/Clmbh4aF4pvbh6H1f+dJk82zRvWFffP6If7FfcaY0wlIv+8a6LL7M+AYNmVLMoGvQ63Te2DGYNiECIKY6Xr6YjuYbhwVJxqe72OobfCG8NPYU3f/H+CBfeDa0Zjy8JzZG8JeyQRHuzng0l9o+R4y/AAI0IDfNAjMgDrHkpU9bMzEdsryn0CGUmUN4WmJqZxx40TE+TXZgvHvsxyDIsLlV3q6xotqvvWGVqTWvbYuw9HBqn3u2XhOS7FiZRXYER8KHY9PhMPzhLcvMMCjHj3qlHyeucMFJ69ynJaGx9ueviKJ/x82wR8eaP6vpfyItw2tbccn+8un4AWmYoM5Fq1gbVKtSlRulJHBBo1vQb8ffQY1E2Y5LWPP1fSr0sQUl+cq1oWG2qzcAYY3Yek/PSf8RioCNHRaos9Si+ox+cNwoj4UJjF5HZK3FUVAISkcJ5yyze7MfPNDaplfZxUI+gMeIWIBTAOQCrnPI1z3ghgMYAFHdwmgiDOUN5TDBwkgn0NSF8032F5b8UPZLjdoOjBWf2R+uJclRuncqD5xQ1nqdwWASBWHAD2d/Gj2NZ0CfZD+qL5SBxgE6wGvQ6JA7qo2quMTdPinStH4aHZA1yu4ym93WRXjg3zxz3T+2JcrwiHEjTjekXgjctGqGIUxyZEYNbgGDnu8sdbz8b5dvHEQ2Jtlu6edjGMgK2/wxQDfp2OeeSqq2uGhYcxhin9oh2uGft1mnrMiECjgwCyKCYeRnQPE/Ztt12wb/NE7OTuwYjSqa2iT5/v2bz1U+cNxr4nZ8kuij0jA3DPOX3lz7c+eg50OoZAjWvTbOX476z++O3OiRjZPQzDFRMfEpI7d3SwL/47q7+D+66SUT3Cm5T9WYm0X1f9pYVBIYakgbCfjx5xYf7y+/G9I5C+aD6ev3Aovrl5nMP1eJs4uaa0dHcN9VNZ8J2JWF+DDo/PG+SyjWf3cp7gTAt/H73K5VRZVigmpHmTcc9cYJvIabRYkVdRj2FxobIF3N+od5h0VHLRqDj0igr0yF1b6SYOwCF7fVyYv2qyo39MkEogSjkKpOepJJw457hgRKw8KZBoF+v9f3MGOsRWS8eT+PbmcZg1OAZPzLf1mfK1FlP6RSE62BfTFc9/wHZvRAQasefJWU7LREUH+yIx3vl9oywFJdXYfub8wfDz0eHcITEYL2Y0X3TxMHk9+9AX6djBfgbEBDu61d4wMUHOat7bhYh98aJhqnsKAKYpzrP9BKzWBM3I7mG4RqzDLj0rX7lkGCb0jsS4hAh8qSiPBgiW5KvG2SYiJ/aNdOo9o5Wfwp5f75goC/9dj890s7Yj3Zox6eQtMGd13Nq1EYxdCmAO5/xW8f11AM7mnN9jt95tAG4T3w4A4DobRwfiB8QHAGdOxeFOQD0Q6ge4D9Yh2g3qE++C+sP7OF37xBfwtQJWADABTTfndCCna590Vqg/vA/qE+/DVZ+UendfFQMA53yO/QdeExPrCZzzTwF82tHt8ATG2O46zse6X5NoLxhju2uoT7wK6hPvgvrD+6A+8T7+n72zDm/j2PrwbySZOXGYHGbGBt0mTVNmZma4vb1tysz0lblJuSknbdJwHGbm2DE7ZiZZNN8fC1qtdgVG2T7v8/ixNBrtjnZ2ZufMIeqTwIL6I/CgPgk82mKfBIo5cQ4ApZNPT7GMIAiCIAiCIAiCIGQCRYjdCWAgY6wvYywYwFUAlrRwmwiCIAiCIAiCIIgAIyDMiTnnNsbYfQBWQEix8zXn/HALN6uhtAqz53YG9UngQX0SWFB/BB7UJ4EH9UlgQf0ReFCfBB5trk8CIrATQRAEQRAEQRAEQfhCoJgTEwRBEARBEARBEIRXSIglCIIgCIIgCIIgWg0kxDYBjLF5jLHjjLEUxtj8lm5Pe4Ax1osxto4xdoQxdpgx9qBY/hxjLIcxtk/8O0fxncfFPjrOGDur5VrfdmGMpTPGDorXfpdY1oExtooxliz+jxPLGWPsfbFPDjDGxrVs69sejLHBirGwjzFWwRh7iMZJ88IY+5oxVsAYO6Qo83tcMMZuFOsnM8ZubInf0hbQ6Y83GWPHxGv+J2MsVixPYIzVKsbKp4rvjBfnuxSxz1gL/Jw2gU6f+D1P0Xqs8dDpk0WK/khnjO0Ty2mcNDEe1r3t51nCOae/RvyDEJjqJIB+AIIB7AcwrKXb1db/AHQDME58HQXgBIBhAJ4D8IhG/WFi34QA6Cv2mbGlf0db+wOQDiBeVfYGgPni6/kAXhdfnwPgXwAMwBQA21u6/W35T5yr8gD0oXHS7Nd+JoBxAA4pyvwaFwA6AEgV/8eJr+Na+re1xj+d/pgLwCS+fl3RHwnKeqrj7BD7iIl9dnZL/7bW+qfTJ37NU7Qea/o+UX3+NoBnxNc0Tpq+P/TWve3mWUKa2MZnEoAUznkq59wC4GcAF7Zwm9o8nPNczvke8XUlgKMAenj4yoUAfuac13HO0wCkQOg7oum5EMA34utvAFykKP+WC2wDEMsY69YC7WsvzAZwknOe4aEOjZMmgHO+AUCJqtjfcXEWgFWc8xLOeSmAVQDmNXnj2yBa/cE5X8k5t4lvt0HIX6+L2CfRnPNtXFgZfgtnHxJ+ojNG9NCbp2g91oh46hNRm3oFgJ88HYPGSePhYd3bbp4lJMQ2Pj0AZCneZ8OzMEU0MoyxBABjAWwXi+4TTSe+lswqQP3UXHAAKxljuxljd4hlXTjnueLrPABdxNfUJ83LVXBdcNA4aVn8HRfUN83HLRA0GBJ9GWN7GWPrGWMzxLIeEPpAgvqjafBnnqIx0nzMAJDPOU9WlNE4aSZU69528ywhIZZoUzDGIgH8DuAhznkFgE8A9AcwBkAuBHMXovmYzjkfB+BsAPcyxmYqPxR3YinPVzPDGAsGcAGAX8UiGicBBI2LwIEx9iQAG4AfxKJcAL0552MBPAzgR8ZYdEu1r51B81TgcjVcN0VpnDQTGutembb+LCEhtvHJAdBL8b6nWEY0MYyxIAgD+QfO+R8AwDnP55zbOecOAF/AaQpJ/dQMcM5zxP8FAP6EcP3zJTNh8X+BWJ36pPk4G8Aeznk+QOMkQPB3XFDfNDGMsZsAnAfgWnExCNFktVh8vRuCz+UgCNdeaXJM/dHI1GOeojHSDDDGTAAuAbBIKqNx0jxorXvRjp4lJMQ2PjsBDGSM9RW1HVcBWNLCbWrziP4YXwE4yjl/R1Gu9Km8GIAUVW8JgKsYYyGMsb4ABkIINkA0EoyxCMZYlPQaQqCUQxCuvRT97kYAi8XXSwDcIEbQmwKgXGESQzQuLrvmNE4CAn/HxQoAcxljcaJZ5VyxjGgEGGPzADwK4ALOeY2ivBNjzCi+7gdhTKSKfVLBGJsiPo9ugLMPiUagHvMUrceahzkAjnHOZTNhGidNj966F+3oWWJq6Qa0NTjnNsbYfRBuACOArznnh1u4We2BaQCuB3CQiSHeATwB4GrG2BgI5hTpAO4EAM75YcbYLwCOQDAVu5dzbm/mNrd1ugD4U5hnYQLwI+d8OWNsJ4BfGGO3AsiAEAwCAJZBiJ6XAqAGwM3N3+S2j7ihcCbEsSDyBo2T5oMx9hOARADxjLFsAM8CeA1+jAvOeQlj7EUIC3UAeIFz7msgHEKBTn88DiHa7SpxDtvGOb8LQoTWFxhjVgAOAHcprvs9ABYCCIPgQ6v0oyX8QKdPEv2dp2g91nho9Qnn/Cu4x1cAaJw0B3rr3nbzLGGihQxBEARBEARBEARBBDxkTkwQBEEQBEEQBEG0GkiIJQiCIAiCIAiCIFoNrdYnNj4+nickJLR0M3Sprq5GRERESzejcaitBcrLAaNReG+3A3FxQEhIy7bLT9pUn7QRqE8Ci4DuD/U8pMThAMLDgaio5m9XExPQfdJOoT4JLKg/Ag/qk8CjtfZJfHw8VqxYsYJzPk/9WasVYhMSErBr166WboYuSUlJSExMbOlmNA579wK7dgFduwrvc3KAOXOAAQNatl1+0qb6pI1AfRJYBHR/7NsH7NzpnIeUlJYC3bsL81IbI6D7pJ1CfRJYUH8EHtQngUdr7hPGWLxWOZkTE/WDAoIRBBEoCNFjCYIgCIJoJ5AQS3hHLbCSAEsQRHPjbd5xOJqnHQRBEARBtDgkxBLe4Zw0HQRBEARBEARBBAQkxBLe0dKAkDaWIIjmxNOcwxjNSQRBEATRjiAhliAIgiAIgiAIgmg1kBBLeIfMiQmCaGloHvLI8kO52HCisKWbQRCEBla7Aweyy1q6GQTRpiAhlvAOmRMTRMBRa7Ejq6SmpZvRfNCc45G7vt+DG77e0dLNIAhCg1eXHcMFH25GSkFlSzeFINoMJMQSBEG0Qu78fjdmvLGupZsRGJBPrE8kzF+Kh3/Z19LNIBrIR+tSsCu9pKWbQfjB4VPlAICCyroWbglBtB3qLcQyxkIZYzsYY/sZY4cZY8+L5X0ZY9sZYymMsUWMsWCxPER8nyJ+nqA41uNi+XHG2FkN/lVE46M046MFI0G0OJLpqN3RTsaiN3NimpN84o89OS3dBKKBvLniOC77dGtLN4PwgyCjsNy22WmeIojGoiGa2DoAZ3DORwMYA2AeY2wKgNcBvMs5HwCgFMCtYv1bAZSK5e+K9cAYGwbgKgDDAcwD8DFjzNiAdhGNjVb+RVowEkSTY7M7sC+rzGMdi811fJqtdiTMX4rfdmc3YctaAG9zDs1JHuHt5PpY7Q6sO1bQ0s0gCBeCjMIGnNVO+awJorGotxDLBarEt0HiHwdwBoDfxPJvAFwkvr5QfA/x89mMMSaW/8w5r+OcpwFIATCpvu0imgHSxBJNyPG8Sqw7TotQAHh71Qlc9NFmHDlVoVvHoloUFVUJ5mrvrDzeJG1avC8HFWZrkxzbK6SJrTe2dqKxf3vlCdy8cCe2pRa3dFNkUgurGk14aS+bEW0Nk6SJbSfjkCCaA1NDvixqTHcDGADgIwAnAZRxzm1ilWwAPcTXPQBkAQDn3MYYKwfQUSzfpjis8jvq890B4A4A6NKlC5KSkhrS/CalqqoqoNvnF9XVQEyMUyPbsSOQmQkUtC5Bo031SRtBq09uWl4NAFg4L6IFWhRYbDhYCwA45/2NuGd0CCZ1c07ZDMKuYdKGTYgJcQp3pWZhnFab6/y+372NkaxKB57eXItJXY24Z0yoX8duMOp5SElYGGCzAS00vm0OjoIaju6RDQszseWUDaM7GRER5OxPf+ctvbpmG/dapy2w85gZALBpx16YMxu0xNHFnz4pq3PgoXW1OKO3CTcMC3H7PKPCjjATQ+dw3+4dpRDUkv3o4Bw/HrXgrIQgdPKx7U1FUz/ba20cf5+04pKBQTAZ6hchvbRYuC/3HzyEkMJjjdm8gITWW4FHW+yTBs3wnHM7gDGMsVgAfwIY0hiN8nC+zwF8DgATJkzgiYmJTXm6BpGUlIRAbp9fbNkCHDsGdOokvC8uBoYOBYYPb9l2+Umb6pM2gmafLF8KAM3aVz/vyMSMQZ3QIzbM7+/+uTcbtRYHrpncu0FtMFvtCDYaYFAskr5M2Q4UFwEAjtXF4NHEifJnxpXLYHNwTJw8Bd0V7c4trwWS1oIZTT5fw4d/2YcLRnfHkb0HcNVpk9C7Y7hmva0ni4HN24DQGCQmnlaPX9kAtm0DjhxxzkNKqquB6Gighcb3438cwE87srDjydnoHFU/4f5EfiU+X74Bc4d1wec3TJDLvc1bZTUWrD5aAGA/AP1xk1teC6xe67FOW+CnrF1Afj5GjhyBxOFdm+Qc3vqkqs4Gu4MjJiwIaUXVwLokJFcFaX4nYb4w3x154SyEB3tfklXX2YCVKwC0bD/uyyrD6hWbUcai8NvdU1usHUDjPts55/h6czouG9cTMeFBAIAX/zmCZWlpSBw3FFdM7FWv4/6RuxfIP4VBg4cicaymnqZNQeutwKMt9kmjbJ9xzssArANwGoBYxpg0E/cEIEWRyAHQCwDEz2MAFCvLNb5DEATRpFTX2TD/j4O45ott3itr8J9F+/HEnweFxWU94ZxjyNPL8dTiQy7lDoXpoPQ6t7wWX29KkzUyap9YKdCT1eab+SLnHH/sycFNC3bi4311mPnmOpitds26kklksIkC2yvZniZEiq2odTWzrrHYsOpIvk/HqLUI1/xUea1f535o0T488ut++b1Dx1zxtFfX+nXc1or081syo/Dkl1dj9PMrYbU75HFbZ/U8Huf/ftCnYyvNktccdd5bj/y6H3d+t8ulblWdDfu9+NTXF8ms2d7GzJt3ZZTixX+O4PE/D8hlNvGam23a86InbHYHMotrYGpkn9gP1iTjru92N8qxiPrDOW8/wRUDkIZEJ+4kamDBGAsDcCaAoxCE2cvEajcCWCy+XiK+h/j5Wi7MgksAXCVGL+4LYCAASnYXaKh90drYg4tofBwOjj2ZpV7rFVbW4YrPtqKwhVIPSIuw4ipLg44z/NkVugKEJzYlF6FQ9GP9cXumy2fKYSa9vuTjLXjhnyNyuXpRJAuxirZwzrH2WL5m+6wa0TKnvqYt8EjnkoKUNCstHNipuKoO9/6wB+W17v7A0tVQN+GZxYdx+7e7PPo0SxjEOdbfn5FbZnZ5P/Hl1bjwo83+HQRASkGlWxCxHWkluGnBjla1SJOun0H9zGomrvtyO6rFDYmbFuyQhdc6L5tKR3K93yOAqw/8rd/swuYUwVLjt93ZWHHYdcPk/h/34MKPNjdog609YHc4BRFpjlM+D4wGg/iZ/+Pg7VUnMPPNdSioEOb4xvKJfXvVCSw/nNcox2qL2OyORr/v88rNqFNtZMx5Zz1OfyvJ72PlV5jlzRGi/jRkO70bgHWMsQMAdgJYxTn/B8BjAB5mjKVA8Hn9Sqz/FYCOYvnDAOYDAOf8MIBfABwBsBzAvaKZMhEoaK2qSIglvPDZhlRc8vEWbBcDrNgdHJtTitwCk3y3LQM70krww/aMlmimLNg1RsCUMg0BBwDeXHEM9/24B2U1roKyxebAdV9tx7VfbPfeTlkT6yq0KBe1dTY7vtyYJh9bYsn+U7hl4S7Na6wODAUAJdXaAr10TCldhJrdGSWC+WRT4Gf/fLUpDb/rRGh2ODg+WpeiKZDq8cHaFCw9mKsZ9ZlJAqiqPF28FlWKxVS/x5fijeVOn7htqcV4ZvEhjzGrPMFVZy2uttRL+zbnnQ246KPNeH9NMrJKagAA9/64B0nHC1Fc1XpyW0rj2NBCxgKbRKESADanFMuLXvXiFwD+2OO8l1IKqtwsIOwOjk+STrrcP+oULQWVZt25S9qUqLE0/pJKfcbCyrpWKyxPenk1pokbdybxxlFawUjTnV3DH//XXVl4b3UyKnWC3W05KTz/SsW5vz6a2O+3ZSBh/tImEXoW7czEwezyRj+uvxRX1QkuD43EvT/uwfBnV+CDNcn12oQ7VVaLQU/+K8/3NRYbpry6Bs8tOeJS72RhNTLF+RIQnrXKca1FbnktJr+yBh+uS/G7XYQrDYlOfIBzPpZzPopzPoJz/oJYnso5n8Q5H8A5v5xzXieWm8X3A8TPUxXHeplz3p9zPphz/m/DfxZBEC3NsTxBsyAJXT/tyMS1X27HsoPau8ecA99sSW+u5snUZ3ddDz1t8kfrTuKfA7m454c9LuWSCWlyQZXW19wEFC2Uwurn61Px3TanoLpVXEDlVwh98PTiwzhZ6DwX5xy/7sryeg65veIiW8+c+NJPtnrcla6us2FlU2gPNCTAF/85gv8qzGyVrDtegDdXHMdL/xzR/FwLScAIDTLA4eB44Ke92CtaGkhnd6iECS3B1MGBj5NOyu+v+nwbvt2agfM+2ATA//3Bhih2Xvv3mFt/vLPqBO4QzRSltmidwmZ36JqdtyRSHzAwVNfZkFqoPbaWH8rFgs1p8vtNyUVulhD+oiVMShpYaZwu3peDaa+thc3uwMO/uN6fiW8mubxfcTgPry8/hmf+OiQLMGohyGrjLptOnHP8uD0TO9JK5Ii4tSoh9s7vduHNFQ0LLpQvzuvST5748mqcL97DzUFBpRl3frfLbWMQAH7ZlYUVPs4zO9NLUFxtQZ44R0oCq1JjKmlitbSo//vtAN5dfQIP/LRX8/hSiAOj+KLO6kByfiUW7/Pda+51cdOr0tz4mwSP/X4Q53/oW7/dunAnBj3VNEv08S+tdnN5kNLFfbEhVedbAr/uysKyg7kuZZJVwturTmCtIuXWoZxyfLs13Wt7pr62Fha7A4/9LpiV788SBP3tOlHPpawAD/y0121cq9mVLjw31hxt2uCoh3LKkTB/qbwp2RYhxybCN5SrMUqxQ9QDaaF16JTrrq9ynf/sksPy6/poRgsq9LUSeki7tI1xRxdUmj1+nq7SUtZYPS9KlGsmte+rhFIIL1ZpUA9kl+GjdSlQrnuv/Ezw/eWco+/jy/D839qCnNZ1lMwk/zmQ67YwVlJVZ9PUPD36+wHc8d1uF0HaL+qRYkdrkSsJ4zUWOw5kl2HCS6s162l9J8RkRFFVHZbsP4Xbv93t0iy1lkzdJC2NQESwa1r05pxZP11/UhZYlVTVCVol6R7QuvduWrATQ55ejjeWH6uXGX1ToWzJbd/swhlvr9e8l+/6fo9873+6/iSu+2o7nvjzIL7cmOo2TrNKasA5R165WXeMW2wO3P39HrdySdB3cKC81ooHf96HnLJa/LzTffMor8KMjGLh3JnFNXj4l30AgD/25uDBn/fBbLXjloU7Xc9rd7iM+4paG5748yCu+GwrgkWJrNriOs+sOJyPj9adREO4+wf335rqxQrjy42pfltq7Ewv0UyX9P3WDKw4nI8XNOavR387gDu/2607RxVW1uGjdSngnOPyT7e6fCbdKsp7WopIrB7fSvTMwSWzdmnmqrPZcea7G/Dgz/t0j6UmxCTMEVpC7Dsrj+O1f4/Jm5flNVZc/PFmfL+t8S2b1hwr0H0O+ctfe3O8Wl9Jv/fT9Z7v1f/9dsBtg1iJcrPtvA824ZnFh5FeVI3vtqbLwqce0pydUlAJQLjHb124000r7u04SlLETeuDOeVYrREzweHguP6r7diisOqoD7+IG9RK3/m2BgmxhHe0UlqQEEv4CAfHjDfWYqGoZS2oqIPN7vC68PVXQ5pVUoNJr6zBJx4eeOU1VhRUuC5CGzP5fL7o91RhtmJ3Ronb50wlhHkSBNXoBfyx2Bw4fKocVrvDbbG+cEs63lxxHEsPnpLLKsxWcM69mtJWapgG1ijK/tyrr0kY8ewKeXGZX2GWfULTCoUFbK3Fjt0ZJfh6U5rm94/mVmDWm+tcBct6+sRWafwO+dZjgplwUVWdHJxJD6mvXIVz0XRV7Fct02yhae7CoNXuwON/HJA3BtR11fy9/xR2Z5SgzmbHyOdWyJocT5s2+7LK8PCifTjj7ST9H6aBNOXLQYk0Fq6S2ezHSSdxQlzgBQJS39ocHFtF4ceTP2pxVZ2LBchLS4/i0k+2yO9PFlZhxhvr8MI/RzDl1TWY9PIazePsSi/R9FG8aYFT6DymEHSe//uwW10AuPjjLXjyz4N4aNFemBXBoJYezMXWk8U4WegqBBZW1mHuuxvk97d84zyfFEyoxtJ0Zr6+msGX11rx0tKjuP4r764TSi7/dCuu+tw96F7naCEK+B97c2B3CD7/aqFI+t1Wu8NlA+nhX/bhzRXHcSjHXfCUxrAUK6Gwsk6+jzz5sxoYQ2ZxjdvmnaSJlfqyth7WC6FBwlJdKz/3+2tT8On6k3j6LyEoYGpRFfZmluGpvw651W1sOOf13sB6aNE+PPmn5zZK95bawkVizdF8/KvSwALum4XS95Vt/XV3Fp5efFgzOJZ6Tk2YvxRPL3aO1zXHCtziB1T5oSVXPpOW7D/lds604mpsTC7Co78fcPuuklqLHX/uzdZ9BsixGnxuWeuDhFjCf0gTS/hJVkmtrIktrbFgwJP/4oavhfhth0XNrPqOsik2T676fCse/FnbXEtCMlte68FEZ/rrazHpFeci1GZ3yAuTxrilJQ3jrQt34tJPtnrctS6vsco7sroo2pRTWqt5vNu+3Ylz39+EZxYfcosUKl0T5WLN4eB45NcDGPPCKo+nvu7L7bKp8eFT5fhqU5qLz5vkH5ZXbtbUrvwlCrmJbybhnPc3un1+6SdbXQJUKflwXQoyimuwMVm1E10PTayWACMtZgyMyQsAb2txs3icwso6eaGrPqUyOvG21GLsyhDMxix2Bwor67AtzalRmvPOevy0w10bdyyvEmar3W1hcv9Pe3HpJ1vx+fpUVJpteGvlcaENOu1dtDMTF320GX/szUGqSvD5ZWeWR+FXWgRKaz4trbqSUJOrNvmvvTlu5pKP/3HQzeSvMam12PH7bueCzu5wyAKEp82i6a+vcwsCpdRsFokuAgs2p3s8vy/Th1KA0dukK6m24IftmdiTWeb22c0qLSwAvLcm2eX97gxnMD1Jg1hdVz+zbz0/T084HBzPLj6E5HzXjQ1JG2b2EqVZfSw9IkOc6YgsDuCWhbvchCJpbh/y9HJc/LEz2JnkXmHSCFAnaVul/5d/ukW+plo+sRJmqx0z31znEmX646QU7BRNR6Vrqbd5WF1nw1eb0pBTVgvOOd5bnSy3M0R03/DFh78x3WO8cfu3u9DviWWNftzn/z6MhZvT5P4vrbHigZ/2ugmnt36zS9MiIKfUdcNXmuqU108K3JVV6m5qq7XxqWZneqlLrACtTV89lJtKS/afwuy3k1wsLI6Km12Du0TpHsNqd+DFpUfwn0X7dTdgpU3zADKUaXRIiCW8QwIr4QfPLD6E+b8fkKNyWm3au6KbUopw0/JqMcelO8qH8bbUEizeJ+xYZpXUIGH+UjdTGy1fJkDwdbv7+93gnLs8aGotdgx48l+8s+qES33OORLmL8X7qsWhL0gPH2nhUmtxFUaUa+XZ76zXNOVUmikpfWIdXAg2oUZaFP60I8unBaKDc/zuIfDEojumAAAOZJfjf78dQML8pTj3/U148Z8jqFIshp9efBiL9+VgyqtrcPpbSW7mVZJgIC3cOdf28PXZ/NuPeUi5WNFKbSLdgwbFfpxaS65G+n3/tzrZTSiQvqvUuim1RxabAxd+uAk3Kz7PKNb3U7rk4y3o98Qy9H18KW5fWY0Zbzh9xd4W79duMWEoqba4CagSj3lI2fLo7wdcFp/q6MkFlWZU1dnk6+TNhFAdbOyhRfvczCV/2pHp0eSvobwg+kBvTxUWdDYHlwOQ1Yj3YHmNFTtUC75aq91jECizzm/fmFyIPPF3H82tcNPMaKG8P5qKM4Z0ll/Lv98PTeyGE4V4d9UJJOdXYuRzK3WDoylRjuGMkhp8szUDd6rmNkkwCPEjPVe+B/cMpdXDgkNOYUK54SLdl3YHxwFF8CIp0JWWNYlkmSMJTOmKcWqzc3y5MRUJ85e6CdjS3Ks03Xxj+XH59SmxLaXVzrmJc45/D+bCbLVj9dF8vPjPEbyy9CgOn6rAu6tP4D+L9gEAQoOETaJ3Vp1AwvylHq2HfA3+tC9LcDVpCHrP7jqbXVd76gsLNqfjub+PuDzLl+w/hY3JhbJ/p9bvlO7V1CLXzWGpLcXVzvtEil+RX1GHtKJqmK12HMoR7pGyGu+bBa8vP4bxL62W31eZbS6WRVL78isE322lYFyh0tqeLKzGuuOF8j0lRZzv7iFv/cAn/5V9+PW0wM6I9213DU9CLOEdik5M+IjZase3WzPw884s2bROvXusd+uoF4F6D+Ok48KD8+8Dp1zKJWFFvVt7/dfb8e+hPBcB1uHg8kPs7/2ux5GE53dXuwq3EgWVZrz4zxHNhYQ6sFO1Rdhdl5DkJKvdoetDo/RVU++gVtXZPCojlx/yHszEwZ0aGi0iFBoONWpzNqWgctf3rovWOpsDnylMu2s1tItSPQl131XV2VBptgqbA57mHJV1yJnvrFcc310LJVU1MuYi0HpCqYWWfUal0yvqFVSa3aIDW2wOeRGrRZTqmh/JrQDnQjutDsGSQc2OtBKMe9GzNt0Tysup1pQ7OHDhh5vkOmarA28sP4ZjeRXILBY2kZRc7SXHcnMsojJLBGFeEm5sdqcQWysKcTcv3IErPtvqNnaNGoNKCkynpcXNrLDj+q924IavBdPYyz/dijdXHHer1xIoBVbp9/uiiS2vtSKzuAY3fL0D761Jln08k04Uev2uctzK2krVJZXGT0iQ/rLzuSWH0fdx572lFPjUKDdWduQ5f59yQX/RR5s1zU2lPv1cFTCorMaCAnEOTy6ocmkLIMxhLy09CkDIGau8r9XzzNID2lYHpQoXibdWHsfdP+zBG8uPo0jUDFaYrbLwVq0S/CWNsCeTZD2XBjUXfbS50e5ZtUA/+KnleGhdLTb4cO944v9Uz+CbFuzEueJclaOxoSsF8lNbBknNO5bntA5QbpCc/lYS7vxuN877YBOq62x+Ra2XqKqzuVgWSULru6tOYMXhfCzel4Nd6cIGml6ALqlc0tpXmq0oq7HAand43Jy47dtdmuXSM60tL9dJiCUIotHQ0kaogw3paXXUDzyrnaPGYnOLgFooPuwdDiFS4KKdmTiaWyH7Fqo1sdIEflzxAKswW90EMgcXgilIUS2lNdjqI/mY++56ObjIq8uO4atNaZqRBdWL49TCannRI7Xlru92uwUTUfLn3my5jeoAM++vSfb4QPLFDArw7NsVrgo0pKRUJ/UO4L4rb7E78Oq/zgioygWTctErLdTWHstH/yeWCRGVxY8f/+MgRj63Eme/t9G7IKT4vKBSqZlxv9+k8zPGnIKoFyFWufCQNDlabZr1RpJbnlazF3PcwV31zcZaipOF1fLvy6uoxcdJJ3HLgp1Ye8z/ICFqC4G/9ua4RAb2h9JqC7akFLktNNUWH4ImVvIJFa6/ND+p5xStReW7q04gu7RGM7LnM1uEBfCJ/CqUVFt8HndNDWOuWiTp9ysDO+mNoys/24qZb66T38vptDR2d5Tjl3NXwUmKfZBaWI2E+Uvx8w5RWyReI7XpuZKFW9Jd5jdP11VPG6n+zjKNjT09IfDBn/fh8T+cFgzqS6XMHVtndbj8bvWUquf+IqXcAZwblmlFVS6mqbIWU5yUTKqUZlYPlhGegk/Vl8LKOlWfu56j0sXNRPiswsJllyEAePXfo5p+4Jxz3Tzav+xytwKoMNvAOfcYSEn93HQ4OA5ml+O+H4U+MRqYnLdXYr24/sgtN/ukiVWj1oZKc4pksr5gczou+3Qr1h0vcHE7UVJSI21kCN/9a98pjHlhFQY++S/OVPi9++qHbDBI5sRtV4olIZbwDue+R28g2jV7Nfy41NrJUi9RYCWsdgeGPbMC019f51IuPbwW7crClZ9vw2O/H8TZ722UNRB6fkuHc5zmZCXVFrkd0hqtzubAxuQi3C+mSpBMRG/7dhdO5Ffhqs+3uUQm1Vpgqf2R1HXKaqxYfjjPo+lhenENMotrcOVn29w2AFZqRDJsbDxpYkt87DstlD6FSn/nGosdNrtD9iXTi15aYa3fg1hLiJWESuaDOXF5rRXPLTnsch+7mxM7X2stkCtqPQs5krlgQ+kYEYwfb5/cKMcCnAtzySzzVLkZz+lEswYEAbNcYwGoNmd9aNE+3ajY3hj74ipc8+V2XPfldiw9kCsLmWoNlM3uUJjTOiMEA+59pB5nALAxuQjTX1+Hl5cddftMSaZO+oprJ/f2/mNEHpg9EDuemO1zfT0iQ0wu2ibJnFAptOsFuVJ+D3BuLmnlhLap5ljlxuT321zTFEm+29Ii35MmVo1k8aDE7uCwO7juZug3W1yDO+VpBMTTE2IPZJd5bM9ShVb3aF6F5rWUhCxPG4Vq1h0vxB4xXVdFrRVmlfZfPTN5ClTma6BCtTVOYWWdptVBea0VE19ejVcV40D9nFMKZWqN9KAn/8WOtBJ8tj5VfgYo63y/PdPFEsQXq438ijqP6YbSVK4aO9JL8NtuZ/yBPh3CXTY6lRRUmLGmHht1ap/Yqjob/tybLY8HKf7FzQt2agboAgSN8NaTxZqfpxVVY2d6CU57dY3mfKXU1FbX2XDj1ztkc3nyiSXaN2ROTPhIscbuqDolha9CrLQIUO+4ai2SAaeJmN5OtHLxfSK/Ctd/JewS6wkQdodr/kUAmPTyGrm+1kLIYnO4CDv7VYsiX/NqFlfXyf61zU1MWJDuZ540sf6gXARVW2x4e9UJeVGhd41Gr/IQBMvDJludxvGkcxiYMq+okDv07ZXHXTYfPlybjIVb0lFZZ5ODydRapaingv/0YR1NgoS3nf1QPxb2AHDr9L6a5a9eMhJT+8f7dSxPSNdGyxdbDeccY19chdEvrJTLpPmgxo8o3B7bo1iNHcwpx70/7sGMN4RNLvXiXekTq16ca/lJK2HM9zYfVqUMkwjzY2OCc+5x80iP2PAgfHvLJPm9us3SsJAEvp3pJRj1vLN/kvMrdcebpA1atCsLB7Ndf6NyjmXMswmr1c5RZ7PLmwEhJoN79FgHd4kQLQkyWoLK3HfXY+RzK3SF2K9VGn6tY+gtX6JC9ec+Ndd8sR1P/KHtd/59PfIN78koAyAIjep+VDd3jsJdQo2v5sTq597El1fjys/dLYSkCPF/7XO63ajHmlLoUo8ti93hliJH2Sd7FYHIAKDv494DRV36yRaXAGZKVhzOc9N0/rY7G99sdW5uTBugP0de8+V2r0HctFBrYh/+ZT/+s0g7X2y2hnuIxIn8Sl0B/e2Vx5FbbpbNkpUoNzY2pxRh/YlCeS1CmliCUOeJJQgNtKZKdYRZtWCoh54PiJ6JmfTgL6yq87qb+9kG50PVU6CRVzS0MNLitMpsc1uM5VWYMfFlZ7CHT5JcH96+7s77eo3qy4fXjNX9zNP1SPcQjMgXJG2P8oFbXWd3ST3iMQhNPeYeLa2FtNAyKrQRnAu5Qz9YmyInuAdcTWFjw4PkNgO+m2+rNzPUhHgwsdRiTK9YzXIp7Yg3Pr1uHKJCPQtNkSEmebHvi6+1pElSctmnWzH5ldV4bol2Oplfd2XJZsGHcsrx1F8H4XAI+Vi1NEp5Ffp+xer6doU58d7MUnyc5Axi4y3NSceIYI+fK9HzfVQKCc+eP8zjMewO7tGMX48gowEzB3XS/VwKMFdnc2B3RineXXXCRfg7890NGPL0cqw/Uei2eaU01z7/w01ImL9UzsOtntc8Bf6y2R1YvO+UHMhsW2oJ+j+xzGVDbEd6iUuOcGme1BpfJwurUWOxywHOvKEUCDnn2KSOeK5AT6uuxz86fb/1pPY5Ij1sVEjCZ3pxDTLEduzPKsPO9BK36+tpg0W5wZCr0ELXWGz47y/7kS1G49XavJWCX609lo+3VhxHnc0uz5/KzWR1e5SWJlquE+rnnlLg81XoVpJTVosP1moHpbrzu90wW+0eN2NPH6I/ZuqLek7xtAnt6TfHR4boRgVXW5Yo8cXaoi1CQixRPzyEmifaL75s+PmaAkCvnp4pjvQQqTTbkFlSg192ZWGvxsIacDVx9mTKqeW7ImmSi6vqNBfOvhLtQYhYtNM99Yontsw/w6/6g3RC9zNom9UGawi29yT29+ucSt5e6fSPrbXYXVKcqPOm+oyXFDtbThbhh+0Z+GNPtrzQsju4vEutDBSi9KlSxlSWhFh/czCuPaaf9gnwz8QSACb37SC/Vgri/TtF+PT9s4Z31b0HJPp0DIfVIS1gvW+qXPqJuxYnraga+RV1WKPz+//32wHc/9NePPDTXpz3wSZ8vy0Te7NKMeXVNXhRI/2SlMJKTXWdzc0C49klh+VNl/fXprhEin12sbZQLSHNPeeO6iaXaWlWO0YEu/g4KlFuBp03qrvH8902o5/X6NhKpPswWMPUV4vVRwtw6SdbdNt649c73HyMv9LI4ZxZUoM9maX4UBXV1tOcbnNwzU1F5XhTa4OleVU2QfYjorEa5YK/xmLHdX7mqVXywdX6m39Kiiq1x4uvFhfKKLeXf7rV582yUc+tkIMbAUK/AoJAde77m/D7nmz83+pkj23ZnVGC+b8fxIfrUnAop0JTK6h+7v20I1OO6v/qsmNu9ZUuPvuzylx+T2PmaZfwJsR2iAhxK7t0XE+vx71kXA+P52wMbA6HriZWMgFfecR9U1EpuKqvaX1z+bYGSIglvNOGTRGIxqUxzVbUfleA8KDQM2ktU5gpF1TW4dHfDuDij7do1s1W5JFTpwdRoqWxkXLQ1Vrt3vO8eiDEg/CspdXyRLSHB7YWHSOCsf+ZuW7lemviNy8b5Vb26Lwh+Of+6T49/NUo011U1dnkABQAUFNn8560VQuddDB1Nju2nizGNV9sx5N/HsLDv+yXtau/7MqWAwIpBaS0ompZw6a8pSOC/Tf59AVvmtjBXaLwybXj5Pedo0Pxv7MGAxAu1dxhXRBiMsjmkAkdwzWP8+l147D18TPAGPOq+Tt8qqLRp36tCNAbThRiiSJC+KZkQdBaJ0Yhv/v73UiYvxS7M0pxUme8ZZbU+KXR2ZqqLcxJSObHZw7tIpd1i3XXcl801n1R2zNOSIsRpBC8PEUDP/DcXHTwQ/OrbFeQKs+p3lkayzXBaGAuabYAIXK2FLxJizqbQzPdk3KhrTa3l8aktJiXNFDefFa1qFVYdmjlBPWH80d3xztXjPZaT4p8O0QVsM3beHps3hAM6BzpFnm3QMMC4fopfdzK1KlbTuRXYfmhPFzw4SY51oBk6aJn7v7qsmMurh1aAnR2Wa1L/y3Zf0rORb5EFe0fcNUOX/jRZhcLpwPZ2ub4DcFsdXgUYrU2kPvozJlKXrhwhO5nNRYbBnSO9K2BHqizOnTzWkuC6orD7j67iW8m4XPRwsxtc11x4+VXmPH5hpNNbu3VXJAQS/iPKp0FQfiK3uJaC60d2ju+260Z1AAAvtjo3L3Wi/6nZFzvWK91Kmqtbg/DHaI/yg/bM3HeB5u8HkOib7yrlkwy54xQCROhQQYUVVlgNDCkvXqOT20N9VNTERcejJhw94e8SWcVrLfIHtEjRl60A87IxkoNljfKay1YpQhYVWOxa9ulA57NicU5Sa1RqrM63FLAKM21pP48pAj8VWOx494f9+BQTrmL1r4+fotKLtEQei4a090lt+erl4x0qzN9YDzOHul6TZWa1E+uG4+Dz50lv//znmny63nDu8qvu8aEoVuM0F+eLBC6x/hmluwvWkGC1GwRTTGlDYN/RVPm67/arhv0K6O4plFN6KRNIWXU6G4a12RQF/dFqzTOlb/VaGS4aWqC9rkUfphqoVTJKxc77wtps0IdtVYaHqN6xmC0jsl5QziWVylr9ySKqurwmSpVjS9c/PEWXPrJFhzILpOtW+IjhXnmVHktdmeUyvk+q+psWLA5DRd8uFn3eHrUKDYilenLJF66SF8w0aJnnPdnmGQ6ffmEXi7ldtW6KSrU5GJF0z02FBdrzBFq4TQ82IhBPkY0v+v73S6a8t0ZpdhwolB3/CvnOLPVrpmD9JKPt+DFf464TMf5Hkz91ebESosAvU1kvU22h+YM1D2PhNlml60VtFD6PneKErSynnKySuhZBBhEH/rs0hqcPaKrZh1fySqtQapinjtzmHMjTc+SAhBMlF8RteAWlWVErdUub+7+vCMLryw7hl93+WftFaiQEEt4hwI7ET6ip4mVhKD4SHczHj20TNQ2nCj0aFp1pbho0DM5Bpzml75oL/dnl/ucM04pjP5z/3S3z9VC7HmjuuPT68bjntMHyGW/3XWavHi3OzgYY9jxxGz8ePsUj+dWL2aVxIkPc6U2yKDSDH12/XixjvYxJE1hv/gIrH54psvvU5oCSz5fd83sj+1PzMZvd53msd0AsOygq2lUQ4MAqftrc4q7f1pehXsAsl0agULO+2CTS0Rof/0Wl9w3zeW+uFZDe/LyxSNdFipXqBa+gPPeunJCLwwUd/tNCoHHaGAuJt9xEcGyuaBykyFWcc9Lx3z90pE4Z6Trwktp2ippF+5ugPm4hC8ax+1pwqaC4JPrnANCg4wo1EmrkVVSI29caQmb/vLulaPxzHnDMKRrFHY/NQfLH5qBzlHux9UqkwhW9I/JwHCjhhD75Q0TXN5veuwMXV/lqyc574uOorCnN99+fdNEt2M3Br/vdk954g9qIWB3Riku+HAzSqstYAx4+EzBuuDs9zbi0k+2uMwNnqJZdwpjukKL8hKpc4IDwCSFab4WceFBePOyUbJfsyfTZqVpf0xYkFv+Z7W7SUSwCV0Ufuxx4cGY0s9zewAhr7Hdi+XBiB7RmuX5FXW44esdOJijrQFVziN1NodmhGhASD2nfIp4CtioFwvCk3m13lyr5dqipqzGih4ehFLlGJOicHePDcV/zxwkl988LcHte1oWFVvmn4EJfTpgY3IRzFaHvIEBODdl/Gm72te3c5TvayYJdQqmz9anYtBT/8Lm4HI/NYUZd0tAQizhHRJYCR/RulV2PTVHNiOMDRcmdU/+oBJ6UYY93Y63zxSitnpKaSIJWp7MjeqD8ngdIoJdzLWundwb81Q7tGFBRswb0dVF+2I0MDdNc+fo0AalYFly33T8cNtkWYDQ2smWFlvRIdqaIGnhFmQ0YEDnKIzoESN/Ji2kH5g9UF7EBZsM6BIdigkJHfDkOUPx1LlDddunDuSUW17r9wPWAYaVpQY4HNxNiNXyxzyiEVHWl2nOX3PiUT1jXRa2AMd5Ki21dG3vmiUIicr6390qRJ6Vomm+ftkorHp4FgDngkpPOS2ZTJ/Wv6NcFhfuXFQ9ce5QXDKuBy4Y3QN3zNQXUO9J7I/N88/AY/OG6NbxlZiwIF1TOTVRoSYX/+iSaovbhofEifxK1NkcOHdUNyx7YIZfbdIyq+wZF45bpvcFYwwdI0MwpGu0ppCkZc0gCSrKBavRwORxLgWNev3SkZij2LwAgC7RofImhVJoBVw3FqS5RrqW94kbYVJ5VKgJnaJCsPupOW5adbWJqz9obfT4g55gUlZrRXRoUL19Xw0MuH1Gv3qde2DnSLx+qbv1g0TnqFBcPqEXbp4mPFs8+a8feeEsWXiaPiAeQSrTFrUQG2RiLuM9LjzYRaj99LrxmucxGJibYDgpwVX49bTB4gllhgGz1a7rnxkZanLZwNRLWQPop83pHqMvaBp1TPD1hNNtj8/GA7Odzzal8DcxIQ4AMG1AR6x+eKbL81TaNO0eE4b7Zw+U78E7ZvbDiodmupxDy289LjwYuzKc0YIvHe90r0no6LpxHVuPNUdH1cb/6YO9B6XSe34+t6VWzuOs1ta2VkiIJfyHohMTOqg1A0O7RSM+MkR+eEsLwdhw7xoZT9pUiVE9Y1zedxUfip6imEoLPX+E2HG9YzFjoDMsv9aCdmg35853VKjJZdF087S+LhoxwLkLrVwIeDK3vG6K73knAeCn26fg21smoVeHcEwbEC+fR6n1W3jzRDw0ZyCsYv/EBAt1zhruuriWmqhelAHOBYoyXY1yAX/7zH64bUY/HHtxnmY7pQiqEnsyy/zOh/thXhDuSA3F3wdO+WRK7kugIi3CVAthrftALRQpNfAhJiP+78oxOPKC0/RX0qLPP3sI0l871+W7MwZ2widzwjG5X0eoMRl8e3yP7xMnv1ZqIDpHheKdK8YgLNjopjFQEhFi8qjV8Ae7g+M/i/b5VJcxho9VAYT0+FXUEE7p1xFxOtpevfGuJZRoaUxiw4TjXjTGGaQpTmMekwRv5flMBgOiQoT3F43tgfTXzsWVE7XHs2Qhovxc2gS6TUytJNWRTAQfOWsw0l87Fz/fcRqePX+YbDnRMTIEMao23nBaAuYMdR3f9cWT+bMW4TqbQDUWOyKCjS5+xBK+bHgyQBb+9Rir45LBmNOKIS48SBZ4JN67eozLe0/+68pAWzMGxstjVJLHbA6OLfPPwGuiy4B6vo8ND3IRPgdqmKtLx1NaKv117zRMVmlw/YmwrUSZLsxsdeBkobYJf1RokM/mxHoBD7X8zCWYjof3BaO7472rxuDScT1xoWIsdo4KcQlsF6qYq3uJJuDDu8dgQGfXTZxzRTeNruJmzy3iGIsJC8LgrlE48Jx77Agl6mfCLdMS8MNtQq7uBJX1VXxkCG6amoAbT3O3yNHjojHd5ZRqo3vG4MNrxukK+BJ60cKzq5z9YLU7wDnH2mP5rTrwEwmxhHc4dxdcSTtLaKC+KySBSZojJdNW9e302fXjsfVx4eG+9r+CpumeH/YAAM4b1c1FgFSiDqQgmUiqU0Ao6d1BeKBF+5ETcFLfji4azD7iDmuw0YD9z87FP/dPx3RFGyOCTS67vSEmg9siWnqw6z2Q3rtqjMv7ly4aibRXz8G+Z850CfIj8f2tk7FGvHYAkBAf7pJ+QzqNcuGUOLgzHpozCD3ExcTU7sKC8aNrxmH3U3PketLOrpaQLfU5A5OnBa3FbUO0yd74t0w49oM/70O2IiiKt+itnXRMtSb0idMsjwgRzmNgQPpr52K6Rr7BSNWi+9Prx+P7Wyfj0+vGY0SPGJiMBoQHm7Dg5om4epL3jYkwHUdlk48ChDKth9qMXKJnXDj+uX+6mzYHEEzIGwur3YHlh72n6wEEP8iPPYxjLTwJPHoayK6i5itOsSGhdd9IGxbKa6ilWakSN9+UG3UGJmhtdzwxG0+co2+VAABvXT4az54/DKPFDTrGhOjFAPDUecOQ/tq58lyivtcGdI6UNYYSau1mTFiQvElVH0FnxsB4+fz++ojrbS7WWu0IDTa6mGBL+LLhedGAYMwd3lW2XNBCayNG+v2ShYXNwfHNLZNcgjcN6epqlqu+nqsfdmrrGGPysy06LEje1AtXuIh0jw1DD3FDU32fxYYHyQL1af066m4eGQ1Mns8fmD0QY3rFum1qdVBtTM0YGO9iLqtFRLDRxbfcbLVjf1aZZt1go8FlGZjnZ4BEQDtKsISeroQxhgvH9MDbV4zGzIGK55uBuWwwhJqMOH1wJ8wZ2lm+plopjp67YDj2PH2m/Hz639zBOPT8WXKf+WIdoJQBGWOyFljtQiSd73kPAaLUhAYZ8fR5w7Dw5on44oYJiAgxucXRUJIwf6lPqaIsNgf+3JuDWxbuwo8eArMFOiTEEt4hn1jCR5S3xX/PHISHRPMeh6yJFR6sDHBZcJw1vCu6xYThqkm90VH1YBvXO043kqI6WqkvaSokrZMn7ZMaB+cuApy02BrdKwYxYUEY0SNG/nxA50gYDK7RX0NMBjehWYqmalC1+a97p+Hli0fgwjHuAT4YY4gND5aD/AQbDXjhwuEAhOA//Ts5hXqj6rjStdHy6xnQOQr7n5mLGT2dAWOU/ot944Xj3qFhsudQaGKl7vclgM8NfuxGe0Mp56XkV8qvPS1AgoxMdxH/2qWjNPNvSgsbafH+5mWjsfjeaS511H5w3WLCMH1gvJs5+emDO2sGcfIV2ZxYR2Ox9fEzsP2J2R79pZWM6BGDr2+eiL/vc/o7L39oBgZ6ScXjD1Y711yYawmNO9JK3Mq0UN7Oepo+wOlH+sx5zpyt71wxWvZTVgpk0maFEsn0VxkVVsuvXvLZV2rppbHXOTrUqxYlPjIEN08TTJlfvngEVv1nllsdaW7xlusX0BZiJZNVb3mrteaK1y8dJZ9fz7x+6QPuMQEAfY2c2WJHWJBRc97Qm9LvnNkPGx89HemvnYsp4uabp7RR6k3E3U/NwWYxqJIU6MdicyA82OQxyqx640AtiMlCbKhTiJWsbtQbl5JwJUXGlYSs/c/OxcJbJiI0yIgrJrhHfzcwhhtOS8Ct0/vizpnCnKze1OqkMkOdlNABfbxsSEl5piUhqc7m0PVDL6+1utw/nqxnUjW0uQtumuh2/654aCaGiRZN6ueiFuqNUaVVhdXuwIKbJ+HLGyfK6xItITYs2OjyrDMYmEu9EJMRL1w4HEmPJHptj0SPuDCM7R2LmQM7udxL9TFilO6RxMGd5f7xNM8B2nEg1FhsDpwSN3yV+YRbG/UWYhljvRhj6xhjRxhjhxljD4rlHRhjqxhjyeL/OLGcMcbeZ4ylMMYOMMbGKY51o1g/mTF2Y8N/FtHokAkx4QNK3xdJmAOci6VYWRPLMGOgu5AAuC/Mgk0GNzNlSTuUWVKDb25x3X1/+WL9Xc4nzxmK60/rg3NHdcNlGgF09LA7uIuJofRaWSZpH6WIpkozo2ANIVZKI6E2iR7TKxbXTvYu4KW/di5OvHw2bjgtQfNzvcWynhmq2r9PWngHGRk6RAQj/bVz3SLkAs5daIOByf3vy2zx1LnDNMvV10PVKM3iUMVPUgYsUWsjlNgdXFeTFGIy4JubJ7oF95AW71IrwoKNGN0rFssemIEHzhD8Env7EYG7IXjbKOgWE+biX+cLkSEmjOwZI2+wSCa0Ep9e57QA8DTO9LDaHai12nHtZFcNdJcY/4OXSCivg6dAMZKgrBRCLhnXUxbylIK01iKxR2wY0l87F2N7O7X0RnHBe/8ZA/D25aPx74Mz5GiuWqbG/nLt5D6aApUkPI5XtEUPtWl0p6gQpxDrxfdcy1y+e2yYPLdpCQXj+8RheHcPY1iDNccKdIXYgQrzzwcVPo/dYkLRq4PrWJPmWPX9Bbj3aYeIYFkIkp450n2vt2kqneOf+6dj6QPT8Z85g1w0+IBzUyk6zATp8qqFLaM8twq/9/e7p+L3u0+T59yYsCBZqyjN40+cM0QOqGc0MIQFCxo6aQ5Tz/duMRiCjR5/1w+3TZbbKd0fJdV1qKmz4ZZpfd1SshXpCLdq9HyRw4KNbim3BnSOlO8pX5ac6g0a5ftTCoscp0bcvS2+mMTfcFqCm2mwkt/vnooesWHyhnJ4sAl/3jMNI3vGYOVDM902OpVoBZBybZ/7mAjX2GRT4ouK6a+9OXhr5QkA+huhrYGG5AuwAfgv53wPYywKwG7G2CoANwFYwzl/jTE2H8B8AI8BOBvAQPFvMoBPAExmjHUA8CyACRCu/W7G2BLOecMiCBCNh5bWVSOHJ0FwLmhGrpzYC2cMdaYNkVILdJA0sR7mTC2TR/UO/oNzBuJYXiUSB3Vy8xeM8mAmfP1pfRAaZMT4Ph3EuiY5cIXg06n9PbtDrYl1BjqSkPInxou7usqFS5DR4LaQkfLgju0dh55xYS65axsDtbDqowulC59eNw6Du2pHuZRQTg/3nzEQzy45rBv5eflDMzDv/zYC0I/UqO79cb1jsSezzGMbQhVf2pNZhmHdonFXYn/MHBiPaa+tdQkQJOHg+gusEJMBjDGcMaQzFmxOl8sl4UGt8R/WPVrOYVmfaJL1QV60+rD++N9ZgzHZSxRWJWN6xWLVkXw3jeS8Ed1w09QEJB0vQN+OvpkZT+7bQY44LAV/UQs/naNCkVXivP/H94nDbjGIUO8O4R7N44KMBtkE0tMiXc+UWlr41te26NDzZ7m8l1K6eErx0VCGdY/GD7dNxkQN8281ah/OrtGh8nwcHRbkMja2PzEbRgPDws3piAgx4Y892Zr+4xGyRYL79VbP1b/edRou/3Sr13YWVtW5aRNnDIyXo00/f8Fw3Dg1AQWVdfhpR6amhUFYsBEpL5+N8lorftjuaiKp9n1WjmFJiJXmMm+uD1JgO0lYv3x8T/kelw4bEWKSLZDU84y0qSs9R+IjQ3Qj90saybAgo6xN1nIlUGvNe8aFI/21c5Ewf6nw/WCjx02eiBCTnE9YehZJaesiQ02ICQ/C/mfm4qvNafhiQ6rHQE4A0CfagIwKh6ZGdcFNEzFFfG4fy63E0+cNQ0J8BIwGJveTug9OH9wJiYM7u5Sp+1R5r98xyxmsTrollYL+O1eMxqfrT3p1OdFj9cMz5Wfs+D5xslZfjcHAPGqVvd1rWu3zFmBQKy2SmkpFlgcvxiEBTb01sZzzXM75HvF1JYCjAHoAuBDAN2K1bwBcJL6+EMC3XGAbgFjGWDcAZwFYxTkvEQXXVQC0I4AQBBHQODhHl+hQvHrJKJcHivQwl7R9/syZ1XU2N7O3YKMBj80bohnwxpNfnHpXc/3/Tpdfe0r/Y3dwl4eJJIApjydFdZSiCUoL6svH90REiMnlAXrJ2B5ysAbAaerWGFb60mJGLbRKD1K9tBxazBvRTdOvR4kzsJOQRiT9tXN1H8wDO3s3TT2SW+Hy/o97puG8Ud0Q50EmUK/NOkWF4ILR3REbHoyvb5qo+z1vaRzUOSGlHXCtNYl0j5qMBkzu28Enf1c9Nj56Olb9Z6bHOv4E1bn39AGY4IPAI/HeVWPw933TNTeEnrtgOJL+dzqmDojHgpud1zY+MlgzCIpWECF1MBR1Pyh9kpVC0e0z+rpp6pULMOm+O390d5c6I3pEy+NCOp70XhrD/oyLJyaH4o97pmp+9uudp+GWaX09BgBqDKYNiPcpZYdacIkOM6FDRDCeOncofrx9Cm6f0Rdnj+iK1y8diS7RoYiPDMEjZw3G3Yn90U3HJ1PqP63fqI5Eq2URouXKYba654dmjMmbfZLgdt8ZAzB9QLxbH0uYjAbNAFFK9wr1PaS+z/3133/z8tHY8KjwLJH8NGPCguTNArVFgxR4x5f+k54NwSYDesaF4ZZpffH1je5z2gVjumNg50g55oOasCDPmthIxYaERaWhlz6LCQ/Cw2cOwjUamm41ncJcx5tcHhWC08W82FP6dcRvd0/F6F6xzt9pdEYHVjJvRFe3NFXq+0+piVW6LSifURKXjOuJlf+Z5ZMLkhYDOkd51M4qke5dreBy10zq7dHHVese8eZGUFln03QF0KUVW1o2ik8sYywBwFgA2wF04Zznih/lAZCeYD0AKLPrZotleuVEoNKKb3iiaeHQFlClh7meJkuNcv6tqrO5LTDVE/ubl42S/Qs9aWLV83qHiGAYmPDA87SgcHC1ObHw0FEKtpLGQMrPJy3M1bvHAPDOlWNcApa8eNEIjO4VqxuN0h+kRbn6Gr91+WhM6ddBDirSWCh9Yr1hNDCM6hnjFrRKida90TEiWNhN17lv1Br0R+YOll976lc9MyrpO33jI/DLnc5ct9L9q7WzrhSOFt15WoP8XXt1CPfqi2oUdymaYjYODxbMir0xtles/PqPu6dpagiGa+SrVAutaqFBGXBLuQj+z5mD3O4PZd9Lx3n3itE4/PxZeP3SkVhy3zT8c/8M2ZyUAfj3wRmy5kQaw5wLvpwbFBtbegyKM2KcjinvhIQOeOZ8bVP5lkC90Jeu320z+qFvfASePHcYPrluvGa05LcuH6V5TKn/pLF/7eTe+P1uQai3q+bqIA0TkK2Pz3Yrq7M53IQnBmeqNWlR3iM2DN/fNtljdHmpT5WR2KUxe8u0vlhyn6vPrtoyQL3J4g/PnD8Ma/87C/GRIbL1w8NzhYBKUk5ai4dAeWruO2MAHpozEJeM6wnGGJ45f5jm3NA5KhSrHp6FdY8k4vhL7nqg8GCjR+E8IsTkEsnc9buq66NxnHUqn1FpXDpULkZLNXKoK5GuSbjKV1XLSkq9QaOnaZbuyfpYIzUGQ7pG4YlzhuD/FM896Rr26hCO3U+fCUCII7L36TNx1USnq5PWJtCbl492yf/+zS2T3DYvukSHutz/nmjNmtiGmBMDABhjkQB+B/AQ57xC+YDhnHPGWKNFAGKM3QHgDgDo0qULkpKSGuvQjU5VVVVAt88v6uqA8HCnCXF0NFBaCrSy39em+iRAyc2tQ12d3e06dwhhKDZzHD0gRByO4LUuddT1TQywiDNHTlYGiopdzUGPHj4IY/5R+b3kXZuUlIpTVc6FkNpEeP369W5t/nh2OAwMeHqzvjlvds4p7NjmDJZQUijkHi0uKpDb3oNzPDk5FIa8o0jKO4qKEkEzu/fgIUSUHAcATOlmRI9Ig+Z9+J/hwLbNG3Xb4Ct3jjThn1SOHVs2uglbdw0CNm/coPvd+owRW4kQjbUqLw1JSVleagMPjwBQloykpGS3z+4aFYJPD7iaqSUlJeHUqTpYOEeSch5SUMRcVyeH9+9GcYpQllnheu+YGCC6I2PjCe1IuVs3bXRZPBgZYOfAiSMHAQA2q8XtOkWbHYgLYRhqLGjUeUavTwprhOvgcDhabF6rtTkHV+rBHUgVX8/ubcKaTMFcLfPYASycF4GvDtZhY45Qlp2eKn8vIgioKnMNRJKd7oxKXGN23g/bNm9EpSrCrcXqNIvbt3sHssOc90IXACUpQFIKMDGM41QfEzpUnkT+cYZ8COZj+/KE7xvtZhSe2ItCAKnwjL/jpCWfO0UFwvW7bGAQpvcw+d2WmT1N2JAtXKOHxoUgKSkJVWVCH+QVlwEAivNzcWi/MCeWV7hem717drkdUzkH3TM6BB/vr0NNnRV79h1wqVdaUgKLGLsv+cRxJFVr94xWf7wyPQzxYZUYHhqCnCoHUlOFeyorOwtJSe65owGgSzhDUlKSy8ZJfftOMmZeOC8C5syD+OzMcBiZWTienWNUJyPOjK/w6fhjTMDmjafq1Q6J1ONHUKKTBxwA9u7YhnuHADtiQ9A9guGrQxZkVAhzTFrKCSSZ0+S6edlOE/PukQzzEoKQcWgnrhwcjEXHhc+Ecclc/K4vS7DhyJ5tOOKhnWUlwr114NAR2KzOdGmHjh5HUo1r/2dXOo+dlJQkz4nSe4mJEQ5sC2cIKkxGUpJvabu84e99MQjAkd1Z8m9/a2YIrHYuH2fhvAgAOdi/MwfzOgI/eznPDUMMeG8P0Dkc4KcOo1twnXzPAYDNYsa1vQ0IMQfhn1TPaecy0tORlNSw+6ulaJAQyxgLgiDA/sA5/0MszmeMdeOc54rmwtJskQNAGUmlp1iWAyBRVZ6kdT7O+ecAPgeACRMm8MTERK1qAUFSUhICuX1+8e+/QGWlILwCQEUF0LUrME3fWT0QaVN9EqAsyd+HjNoSt+u8ZEwt9mSU4vzR3RHZ6xRmDOgkmBYvF/x11PVDk1bAYrbh/NHd8cplo3D9V9uFjRORCePGyj41asprrXhi00oAghZCGd7fU/9vrjqEb7ZmAABund4XB7LL5Bymnbt0xemzhgNrVwAAevfsjs2nMtGzezckJjrTMSi9YlaVHsTmU5no038QEsWIps1x+yUCeKie363PGJnFOc7LLNPdxfeI2P8S86+Zg0LTfvy+J1suS0xMxMaqIzBkpyGxpgaIcdcQfqHapp89c5qszTtZWAVscW5eMIMgkY7uGYMrJ/bGO6uOu/n9zT7DVRsXvGY5aq12nDZpPLBjM4KDQzSv08VN4Aij1yd55WZgwxoYDIYWm9fMVjuwejkA59hKF5si+eJNnzoFPePCMXW6A4Oe+hcAMHr4UODIfgDAyv+egc/Xn8TWUxnycfsNGAgcPgwAMAUFARahf844/XS8d2QzUF6GbjGhyC034+YZ/fDZemFxe/qMabI5vxbnnuleFp9Tjg/3bcKTF45Doo+aC5/Hic781pysKz+E9dkZGDZ4IC5SuDD4SnpQGjZkH8FNUxPw0AVC4JqovqW49JMtmDKoBzJ2ZWFQ/wRMGtEV2LIRERERSEycCePKZbA7OKZMngRsEYTW5y8Yjh3pJUhMHCdfm9lTx+Hj/VthdQDXnj0d7+9dI5+7Q8cOgmXNqVMYOXwYEjUitgOe+0MycF+wOQ04dgQ9evREYuJwt3qL+5ehZ1yY8/5Z2bR9d5a7MrppEK/zzCkThBzKm9bqtCcRRgOTn2HDRwt9DAB9BzifYQCQakoDkgVx7IkLxuC8UYJpd2IisEgc9wajCYAdJqMBdpsDX9wwwSfN4NLC/diWm43+AwfhqUEMj/4mbGz06dsPiTP7u9RNL6oGNieJ505EQYUwJ0rvlVx3vtdT+0ZzjWlv5zleAOzZiZioKCQmzsDjW9cAcK51YqMikZg4ExnB6fgn9bDHU/Xr2xeJiQM91glUGhKdmAH4CsBRzvk7io+WAJAiDN8IYLGi/AYxSvEUAOWi2fEKAHMZY3FiJOO5YhkRqJA5MaEDh7apZY/YMNmH6bxR3V0i4Wrl2pTMOe+e1R+hQUY5tLz6cy1iwoIUPqu+36tPnTdMbmOwyYDuCp8aO+cuxwrR8IlVIz2wR/tgltmaYYzVT4DV4fVLR+KLGyYAAB6dJ5gFGw0Mdg82PXYAQ0KdD3Clz5A6gqXVzrHqPzPx3W2Tcc3k3tj1lFOy+faWSfjs+vFux//1rtNw+4y+stlhIJhfSZrilpyOvaWLAZzmrMEmg+z7pTQnDjIytyjRFkWuSr1cma9eMhIvXjgc8+cNkcvqk4t4RI8YHHtxnpxCp60hzVFqU11fuXJib1w6rqeLD//4PnFIf+1cRIcJ/RYebJTnfUmLKd0aSt+8G6cm4KNrnBGuAWck3A7hwegSHYr0187FB1ePBSCYE/9v7mDMGBiP2Rq+1f7gLSbA6F6xHjdAWjvRoUEI1XluDuka5TaWY8KcY9KsyvOqrKrn+y3VeemiEbh2cm/M0khZpoX07LbYHLhiQi/cndhffq/GU2Cntk6Q0XWNI2UpuEnlNywFIZN44zJ3F4HWnDCzIZrYaQCuB3CQMbZPLHsCwGsAfmGM3QogA8AV4mfLAJwDIAVADYCbAYBzXsIYexHATrHeC5xz3xLEEc0D5YklfMTBuV+L6gVnhSMx0T1BvfQwknyTXr1kJOYM7YzP1qfiWF6lpp+Vku4xoUgvrvEpcIZEkNGAecO74u/9p9A1OhT3JPZHv/hIvLv6BM4d2c3lnHKKHQ9CcuLgzjj24rx6LazbMyajAWcO64L0186VywyMefWJjTM6AEgBZ5x9pV7Y9IgN0/U37Rsf4Za2AxAWAiN6xCBLjJIbCPt4/mzQNBW+BA9RLjSlaLgu6aeMBrfrabVzLLh5IralFuPW6X1xsqAaKQWVLnViwoKQqEovVd+x1pbH6LVT+uCvfTk4b5R7eixfCAs24u0rRmt+Jlm5hAUZ0VUURi8bL+Q1FYRGDpPB4BJtWk33mDC8edkol8Bjyk2O3h3D8d2tk+vVdiXSPeZrAK83LxuFYd09R2ZvTUSHmXSfh4+fM9StTBlb4pJxrrlqlRuK6mP+fvdpCDIacPLQHkywdcUl43ricj/S2UnHU0cc19qDCVUHdvIQfbkxaY6519OYAZwbiNL/uxP7465Z/bDsYB4WbkmX81WP6x2Lly8egSf/PAQASBzsvpmgtUHQWqi3EMs53wT9mBJuhhJcCA92r86xvgbwdX3bQjQxJMQSPiKk2PF9gmeMaQbykR5k0oIjOjQIF4/tKac7sXlJ8RQmBqLwJXCGknNGdsXCmydixsBOMBoYHpwzEA/OcTezkRa9emk71PUIfTylNnKp4+FzG2cIVnSF8p5SLrK+vGGCZqAhCW+LIKm/AyGvni9a0KaGMSGHsDJ/pxpl8LPusWHILTe7tN1kNMj93y8+AqlF1egRF4bTB3fG6WJQtM5RoTitv7b7gJJAuCaBRt/4CBdrg8bk9hn9sC+rDOeN6oaY8CAkv3y2vLEhL7KNDIvumOI2xlc/PAuhQQYYDMxNyGmK5cXcYV3x5vLjuE5hFusJfwSv1kBkiMnl2RwVasLkvh2w+mgB6lSaVkDQkP90+xSM6hnjZimhjECtTgEjpa8rSTHgqUT/A5xJac3GidY9t07vi7wKM26ZnuBWVz1f1zddjj/sf2ZuswSI+un2KV7XOYBr4DTGmBw87OEzB8ll107ug8ySGny2PlUzIFp9rTQCgQYHdiLaAZy7qx5IiCU0cHDeKMv7z64fjy82pCJBlYsyTozo603okcwW/RViGWOa0YQl4iNDcOv0vvJwUKcPIPzjwHNzwQCMfG6lx3q+mBMbwNEjNgw5Za4BupRaWW8mo97M0bgfkZibmkAR2PY87VlAcrn+Q7tgd0apS7TTICOTN6suGdcDk/t1dEmxo0bKw6zcnLh+Sh98ty1D7ytEE9GnYwT+uX+G/F4530oCk8nANHO6DujsPRJ7fdOfaNE1JhQHVTl92xPqPtj11By8tUIIOKiOPiyht3Gk1Gb7Y+3kCzMGdsLxl+bJc3FEiAmvXKwd6V0ttEqbjJ7S7DWUmCbM/6wk2GRAsAePTzkavkor3CkqBKmvnOO2wf7YWUMwLjhP8xnXLjWxRDuHhFhCAw40Ss6PQV2i8Obl7iZsb10+Gt9vy3BJ7aFFuLhzbG3kHcZdT80BAHy7NV08Po2DhhAtmqyN7xPn0TSVMQYOcT9N43MHFyIIL39ohksgL8ApRI1U+QZpofafVSNNe425uK4vISYjgo0GPHOee5CaQEJ5re6a1Q/TB8RjZM8YvHjhcLy09CiCDAY5Xc3oXrGY6CWf7VuXj8Y/B3MxrJtTo/7iRSPw4kUjmuYHEPVC6na/8lWKxItB2QZ5STNFeGfNf2chpaBKfv/KxSMxplcsQkxG/O+sIRjTKw7TBni3clAyrJtzLvU2Z9YHX31bTUYDZg7qhGsmObXmX9wwAUO6tv37RlrbaG1malmIGQwMIaLAu+o/M5FWVI07vtsNwGm63RohIZbwDgmshK/4aU7sL52iQvAf0UzGE+GiGa9aoGkspB1gWys2wwkkpByTehiloCyQvF5dsYvlUaFBbnmCGWP4456p6OdDYnpv5mix4i78peN7eqzXHBgNDCdePrulm6HLn/dMxbZU1/AWjDE5/+z1pyXgetGn9azhXbH18TPQLcZ7DuO4iGBc76NJaEvzxz1TUWW2ea/YBmmIpcCYXrH46fYpmJDQeAHj2iv9O0Wifyen1vuayc58wMEmA86th6/09IHxgnWMgze6JtZfvr3FNaaGr7lRWzvKvOT+MrBLFPp3isScoZ2x+mgBaWKJdgZjJNgSmjSWOXFD6d1RCM7jrzmxr0imWTYyJ24WpG50MKYpxAqaWP2+kDR9egSbDLDYHF59nKNCg3DsxXlNon1oa4ztHYexXq67El8E2NaGt/uuLdO/UyR2Z5TWW5j1xQeaaDl6xoUho7imXkIU0XDG9o5DsMmAuxMH1Ov7BgPDlzdOROKb68gnlmgHkE8s4QP+BnZqKh4+cxD6xkfgUE45ftieiZmDOuGcEV0b7fhSdMLGNlcmtJFMUu0c0PJIkjSx9WXNw7Nw+FSFT3UpWBdBeOfLGyZgV0YpYsU4BkTbouWf8u2bDhHBOPFSwy1xesaFu6RTam203pYTzQcJrISP+Jtip6kIDTLi6km9kVtei4ziGnxw1dhGDcgQJJsT09hoDiRtjt6WgZ03LNhSrw7hmql1CIKoH3ERwe3GtLM9khAf4XcaOyLw+P62hqevaklIiCX8JxCkFCIgEVJ5Bs790S0mrEkmacmEypcQ+ETDkX1idfYM7JzB2KpTthMEQbQe3rtqLLaeLELPONr8I1oO2kIhvEOaWMJHeID4xDY1QeLuMw2N5kFOaaSzQWLnDTMnJgiCIHwnJiwI80b4HxSKIBoT0sQS3tFaqdPqndBAK6VwW2T6gHhcP6UP7jm9f0s3pV0gmRPrTTsOCHliCYIgCIJoH5AQS3hHSzIhIZbQgCMwAjs1NUFGA+WlbEake8quoec/Vg2csjAYQpu7VQRBEARBtBRkTkx4hzSxhI8ESmAnom0hpb7RiqN11SHhsyoH3XgEQRAE0V4gIZYgiEZDUNqTMEE0LlJgJ62tszKb58jFBEEQBEG0PUiIJXxDKZgw5pMmNqWgCvN/PwC7XkhRos3haCeBnYjmRUqfozQn5hz4MMtZx0rTDEEQBEG0G0iIJeqHD0LsPT/sxs87s5BcUNkMDSICBVLEEo2NZE78Yk4IOAf+KgCeOMnwVqbzEWbldOMRBEEQRHuBAjsR3mmg/ytrB7o5q90Bm50jLLh9J/pwcN4uAjsRzYtkTvxveRDquAMPJbvvv5ImliAIgiDaD6SJJfzHR3NiqUp7kGmu+3I7hj6zvKWb0eJwjnawZUE0NwbFk+qlNO07zEZCLEEQBEG0G0iIJbxTT02s9K32INRsTytp6SYEBJy3jxQ7RPOivKe+z9O+vyxkTkwQBEEQ7YYGCbGMsa8ZYwWMsUOKsg6MsVWMsWTxf5xYzhhj7zPGUhhjBxhj4xTfuVGsn8wYu7EhbWovmK12ZBbXNM/J6ivEUhqedoeDVLFEC0GaWIIgCIJoPzRUE7sQwDxV2XwAazjnAwGsEd8DwNkABop/dwD4BBCEXgDPApgMYBKAZyXBl9Dn7u93Y+ab65pHUBTypjjf+2pOrKhOtA84nJFkCaKxKK+16n62fIyQXMdGmliCIAiCaDc0SIjlnG8AoLajvBDAN+LrbwBcpCj/lgtsAxDLGOsG4CwAqzjnJZzzUgCr4C4YEyrWHS8EAI/paw7llCNh/lLsTG8CU1dfhGe5Ci0u2wuc83YRyItoXoqrLLqfmcTbTV/MJQiCIAiirdEUPrFdOOe54us8AF3E1z0AKLL6IVss0ysnfMDmQYjdkCwIuquP5jdXczQhs+L2g1ppTxBNwbN9HfLrYPEpRil2CIIgCKL90KQpdjjnnDHWaBIMY+wOCKbI6NKlC5KSkhrr0I1OVVVVs7Rv/foNCDFpL95OnhS0F1mZWUhKaoAgGxQk/HeIC8ewMMBqBbz8vuoawWd3+46dyIlq+RhizdEn69atA/NRinNwjmMlDgzr2HbS8pSV1yLECJ+vc3ONE8I3ArU/hhk4zulmx7JcYax06ugA0oQ5ZSd3ADCgmhkCsu0NJVD7pD1DfRJYUH8EHtQngUdb7JOmEGLzGWPdOOe5orlwgVieA6CXol5PsSwHQKKqPEnrwJzzzwF8DgATJkzgiYmJWtUCgqSkJDRp+5YvBQBMnT4dUaFBmlUO8xQg+Tj69OmNxMQh9T/XokVCjovQUOF9VRUQGwt4+X1hO9cBNTUYN34ChnWPrv/5Gwl1nyTMX4rrp/TBixeNaPjBxf6YMXMWTEZtgb3OZkfS8UKcNbwrAOCjdSl4c+dxfHvLJMwc1KnhbQgA3juyGZEhJiQmTvapfpOPE8IvArk/zir+BcXxQFxUGAzMgPgRDnQKAvqEGvBzFMdD4UWYlnh+Szez0QnkPmmvUJ8EFtQfgQf1SeDRFvukKdRjSwBIEYZvBLBYUX6DGKV4CoBy0ex4BYC5jLE4MaDTXLGs3fLlxlQs2JzmU11PPrGSGW+DjewamGLHEcDmxN9ty8CCzWlweLiO/uDJvPutFcdx53e7seVkEQDgZGEVAKCgsq5Rzh0ICObEZNZJNA0dg5yBw6bEAP3DBZ/YX0dxTAs1t2zjCIIgCIJoNhqaYucnAFsBDGaMZTPGbgXwGoAzGWPJAOaI7wFgGYBUACkAvgBwDwBwzksAvAhgp/j3gljWbnlp6VE8//cRn+p6EmKlj3yVKRLmL8Uziw95r+hrdGIutSNwhVgAeP7vI1h7rMB7RR/wJMRmldQCAMpqhBA00mVpS9F8hcBOBNFE0AYJQRAEQRBooDkx5/xqnY9ma9TlAO7VOc7XAL5uSFvaK56EWAl/osV+uzUDL1yoMq91OACT6lbxKcWOUKeRlJyNijrYlM3h0KnpH3a7/o+V1t9q4d6gWJj/uTcbfTpGYFzvps0ylVFcjR6xYbqmz/WFUuwQTYbDARi9+I9TZDGCIAiCaBe0fLQdwm+Upq92D8Ik91MT21T4Img3N2qNaVAjCXNWP4RhpaY8r9yMSrMV/1m0H5d8vKVR2qJHXrkZs95MwuvLjzX6sR2ckzkxQRAEQRAE0aSQEBsAZJXU+JWG5rc92fJrz+bEvvvE+uUT6qOQIv0k9W/jnMNiaxzNp68UVdXhz2SL/DutdtfzN5YQK/XHycIqLD+U5/KZ+rLJ/cMYpry6Bue+v6lR2uCNCrNgzizlGm5MOKeswEQT4YuWNcBdFwiCIAiCaBxIiG1hdmeUYMYb67BoZ5bm56e9ugYfrk12Kasy2+TXPmk5fRA6PWoQtRaGfvjEqtv4884sDHrqX+SU1Xo9RmPx7OLDWHzSis0nizDy2RV4a8UJl89NRt9Fr++2pmPVEe2URZKGd/bb63HX97s160hm1lw2JxbKM0tqfG5DQ5AEdrPV7vbZr7uyUFBZ/wA5FNiJaDJIQCUIgiAIQoSE2BbmZGE1AGBXRqnm57nlZry10lXgUsoIHqMTS/XdjlmLPZmu57N58OVsKJLJ8wM/7cWL/xzB4n05AICMouomO6dbG8TrVGm2obLOhq99jP6sxdOLD+P2b3dpfmaz+2FOLFY1agh92aU1KKux1Kt9ekhCs108cXZpLX7Z5dw8ySs343+/HcBd32kL30pqLXYUakRVFsyJG6nBBOEPdOMRBEEQRLuBhNgmpqzGggd/3ovSam2BRFp2OTjHttRinzSrlQpNrDryb1ZJDb7aJAhocood1drujLfW45KPt2DF4Ty8IEZB9irEqg/iQStSY7FhW2qxW9Ul+0/hq01pzq82cM25KbkIP+/IdCtPKajEOlW04fBgISBMdZ3NrT5QP7/d9ScK3cyw9aITJ8xfimUHBfNidWAnrbX39NfXIfGtJM1jlddYkVnsXWtbY7HJQvW3W9Mx6vmVKKysg1XR14/+dkB+LWlmi6q8C893fr8bE19erWkGT4GdCIIgCIIgiKaEhNgmosrC8XFSCk5/KwmL953S1PzlV5hRXiv4J25JKcZVn2/Dp+tPyp/r+clWij6NgLvQdMPXO/DiP0dQohCa1dGJa0Vh5c7vdsvtUpoTH8wudz2hn+bE//vtAK76fBtOlQvmwnYHdxESnallnO2y2By4+OPNGP38Svy+Oxufrj/pVbC87qvtmP/HQbfyOe9swM0Ld7qUhYlCbIVZW4j1lBpHjxu/3oHvtmW4lKnbrNWHzvy5rv/VSKl41Ex/fS1mvrlO87MtKUWy4DrsmRW4/6e9AIBnFh9GpdmG/Aqz24ZFrcWOhPlL8bvoa230IoXuSCvBhhOCP+3W1GIkzF+KzSlF4m/hfkXDJgif8cWcmEyOCYIgCKJdQEJsE/HObjPeWH4cpaIgUqkhPE1+ZQ1eWnoUAJBXIfghpilMbPWEuFKFcKOuUySaeHLO/YpOrDzO+R+qAgz5uTA8mlvh8rW8CjOKqpymp1oBp3aklWBvZhnKa63476/78dq/x7Bkf45f5+WcY8n+U87zKH5TRIiQIqhcx0TXbudYeTgPyfmVcllBhXff0NTCKjym0GaqA0ZZ7Vx3M0Iq91eArtTRJu9KL8E1X27Hu6tPyMf+VxVcqs7mcPN/zhU3Gz5YmwJAuAenvLLGJfgW5xxLD+TCZnfgis+2yuU/7RDMkX8UNeKcAwaaVYiWgARYgiAIgmg30HKzicitdhUUfA2Wo/SPNGtE8K00W/Hbbmd0YqU8sjujRBZwbA4uC4vehCTOuZvwNfr5ldiRVuIsUErCjGFfpWAieyyvQi5OOl6Aaa+tRUGFq6/ko78dcPGflNqlbJaW8q9Yx6z1ZGEVEuYvdWk/APxzIBcPiJpHwFXYCwsSNLFltdraTZuD447vduPMdzeIxzqFSa+swXaFWbQW32zNwCKFX6l6U8HmcMCi4ycr1bT7kZanzuYejElC2ig5lFMBs1X7mFa7A0v2nXIp0zIfzlNYCVTX2fDY7wdw74973CwKahTX+LJPtiC5oIo0sUTT4WlHjnxiCYIgCKLdQEJsE6GWIXzxMwRc12E1Ghq3EpVvrU0hAF36iVNDZrE5ZOHVm5Bkc3A3E9PyWis+kKIia3x/eYnQ0DVHnb6na48VIKesFlUa7VYKX9KZPlyXLKd70ZJ7quu0BTa1ECYJbOUqAXXh5nRkiRF/peuqFYwIcPct3npSEF6PKzSzvmC1c3yS5DQJt9q4iw8q4BS6pXNabb5rkOpUGxsOB5fvCUnbXF1nQ41FW1trtTuwcEu6S5lSs6pEumb//WU/ftklbJycKnPdjKlVRDiWg5ORLEE0Bd42ezgnbSxBEARBtBNIiG0i1EpUpfBpszvw5J/uvpxqqi1OAeFobgXeXXVCTktzxYSeAIDUwmp8oxJKAEFYkbSrSk2sVvRcQeB1L9f1jWQMQeJHpdUWfLctA3U2u6zt1KJOIdXvzSwDAGxOKcbL/xwV2+u++KzWEcSCTa63bWWdILwGq3K9vrv6BK76fBsAZ+Cq5IIqzWOqtdVSfZPKNtZbPl+7g+P15cfk9xa7QzcnrnTKR38/oPm5FnWq3ZFP1p/EuBdXIbe8Vr4uuzJKUSPeOyZVH6o17p6QroFSkK8wu24U1FjcNxoMpBEjWgK67wiCIAii3WBq6Qa0B6JDTUgpqMKln2zBR9eMw5cbU/HDdveoumqUkXTPfm+j8GKN8C88WOi6//66HwBwxYReLt+1OZwmwkot65973f1MBYHXXThLOl6IrJIa9HL7BJDSqn4pRkLu3ylCV+gEgJU6eVWrLTY4HBw3fr3D7TMtjS4ABKlyulbX2XGoolwz72xxtaB5lfxAU3SEWLW2Wqqvzh+rZxosod4MsNodqKpzLft0fSouHNPDq0CshTK3K+ccq48K1/VUWS2UKtADYnCu3d2NtQABAABJREFUUNXGgsUPra/0W5Ra6iqVb7dWrlkSJYgmQUhC7L0OQRAEQRBtHhJim4GuMaGoMFdhd0YpFmxJw3oxsqs3vt6kn8s0IsRVOFELfBabQxZelX6af+xxF2ItNoduEKkfd2Tivw7udqMEwbV+Ra3VTcBRojZhlTiYU45UnXyxWSU1eGfVCZw1vAvsDo5RPWOFc6s0rlVmm3swKpHwYBNqLDZ8tj5Vt22Ae4oh6b1au6sl7CvZne6af9dqd+B0VaocKfCV2oTZF5TmxHYHl7WedgfAmPN4pWIAqxCTuv3+aWItNodLO9Xf19bE+nwKgvAdElAJgiAIghAhc+ImQK1h6xwV6vq5j8cprNL23wScmlgJdf5TpXb1ZKGgfdybWYqtYqCib2+ZJNetszl0hZtPkk7ircIIl7KvCoLwZk6QS9mJ/CpdzaknMopr8O3WdM3PNiYX4f01yTj3/U244MPNcrmbEOvhvCXVFvzf6mSv7dAKyAS4K36sOqbBEm+vOuFaX0fodTi4Vxc/ib2ZpbKP67urnce3ObgcCMzBXdMYlYlCrFoT648Q+8HaFAx66l+XzQm10Crfd4qfyciskyAIgiAIgmhCSIhtAtTBd2LCnAIfA/OogVMKIp4EjvBgV+EkX5UOprCyThYwNiYXYeXhPBeBauagTrhrVn8AgomspwjG/1YGY12581Z5/VSwW513Vp1AoY/Bq9SsPKxtaqzGbLVrmuB+ositq8XnGzxrYQF3n1jpWlntHDvSSmQh0ps5cVy4q3Cv14dWh8MnTWx1nQ0Xf7wFd3+/BwCw9ECu/JnF7pDT2Tg4d0kpVCz6YAebDC5tUN+bnpDyxipTOm1XRqyGM5iW8rgkwxIEQRAEQRBNCQmxTUCFKkputFKIZfCoilUKSVqmmhJqIfZKMYCRxB3f7XaJ1nvHd7tlAXDe8K4AgFE9Y4RzetDEAkCG1YSbjwchT18xDADYn1XmuYIOeT7kYwWAIU8vxwdrU9wCJW3w0TzbE8rNg7Pf24hVog/vd9sycMVnWzHsmRUwW+26QZok+neKdHmvd12V0aM9IQmHm1KK3D6z2Z3mxA6HqyBeKgmxRoOL3+rjf3gPKOYP0jmV0ZApxQ7RJPhiTkwmxwRBEATRLiAhtglQaq4AIFalnfO0zFIKHGoTYSVqc2It1DlRX1oqRAK+eVoCAKe/p9J/1hObyr1W8cqep89s0PffWXXCmfqnEXl2yWH5teSzCgCHc8pdyt9ccdzjcdRCq64mVvQ39ca4F1cBcDd3BoBHft0vC7E2hwN2ZQAm8d5hDLo5YxsTZSRt0sQSTQbdXARBEARBgAI7NQlSUB0JpTlxabUFaTqBjABXs0x/NLFaFKt8ag+KApkUcVdKyWKx6wd2UlJm9VrFK6FBBozsESO3pT6oNwmaEqV28+KPt3itrzbX/WlHlmY9q93hkjtXSXxksE95hdcec+botdgcLimRKsySEMs0IwgDQOeoEBTo5M31l5zSGvk1BXYimgTSxBIEQRAEIRIwmljG2DzG2HHGWApjbH5Lt6chlKmELKUQ+/NObaFGQpkH1JMQG+aDEKsnoEi5T2Uh1os5sUSV2BwLr7+UEmw04Pe7p/pcPzq0de2zqH1mf9udrV3P5kCtjnD58sUjNctf+/eYZrl0XuVGhBSM6WhuBSp1okarA2Q1BKXQTebERJPgTUAlAZYgCIIg2g0BIcQyxowAPgJwNoBhAK5mjA1r2VbVnzIPmlhvKLVzNR7yrkaozIkX3DQRF4zu7lbvrln9seCmiS5lksZOEmIP5pS7aY+1KLcxfJ/rXh6hI1C/eOFwtzKT0eCW59UT4/vE+Vw3EEgt1NeyK7HYHajV2aQ4a3hXjOgR7Vb+qYcAVnVW10BRlXXOjZT5fxzwqU3+MmtQJ81yQ0DMKkS7g0yNCYIgCKLdECjLzUkAUjjnqZxzC4CfAVzYwm2qN2pfVH+EWMl/UYgqq69ZUOaJfeXikTh9SGf0iAtzq9cjLgxje8e6lEkaOMkn9rV/j+Gx370H/FmQy/BUqvstE6nQlp7Wr6P8+qwRXTWP408KlvBgE547v3H3M3p1cL9Ozc3st9d7NBn2Nf2OxH9/3Y+9mWXye2VanAPZ2qbbWpGe/UF/M4KECaKJ8DZ3kDaWIAiCINoFgWKr2QOA0s42G8DkFmpLg5k1qBNyM07imyOCMBtTW+nzd4+IQYXCTQySIjbUZIDZ5sCE7pHYdUrI+RpSXiZ/x15RARQUwFRboz4cYiw1iK0qw81ju2DBXiHirrGsBDDUIqSi1q3+5cPj8eth90i4nog0MUhJcobGmrBVfG0sLnavXCD4cd4/uRs+2K6h1lVhstYhzOz+uxpCpxADPBt1tzAFBXBY/ff7/UyRSsgnv2F/JWWRx6b3xOubsmE316FPTAgyyl3N1pm5Vu5nr9hsvtclmp5A7g+bDTCbAaOOK4XFIrQ9NFT789ZKIPdJe4X6JLCg/gg8qE8CD70+CQ8HIiPdy1sBrKHamEZpBGOXAZjHOb9NfH89gMmc8/tU9e4AcIf4djAAz6FiW5BwoHco0AjxfFseg0pjzwDmABzcc6DlgMMMxLSVPmkrUJ8EFoHcH+p5SAsH0PShuJuZQO6T9gr1SWBB/RF4UJ8EHp76pCSw+6oIADjn89QfBIomNgdAL8X7nmKZC5zzzwF83lyNagiMsV3VnE9o6XYQTqhPAg/qk8CC+iPwoD4JPKhPAgvqj8CD+iTwaIt9Eig+sTsBDGSM9WWMBQO4CsCSFm4TQRAEQRAEQRAEEWAEhCaWc25jjN0HYAUAI4CvOeeHW7hZBEEQBEEQBEEQRIAREEIsAHDOlwFY1tLtaERahdlzO4P6JPCgPgksqD8CD+qTwIP6JLCg/gg8qE8CjzbXJwER2IkgCIIgCIIgCIIgfCFQfGIJgiAIgiAIgiAIwiskxDYBjLF5jLHjjLEUxtj8lm5Pe4Ax1osxto4xdoQxdpgx9qBY/hxjLIcxtk/8O0fxncfFPjrOGDur5VrfdmGMpTPGDorXfpdY1oExtooxliz+jxPLGWPsfbFPDjDGxrVs69sejLHBirGwjzFWwRh7iMZJ88IY+5oxVsAYO6Qo83tcMMZuFOsnM8ZubInf0hbQ6Y83GWPHxGv+J2MsVixPYIzVKsbKp4rvjBfnuxSxz1gL/Jw2gU6f+D1P0Xqs8dDpk0WK/khnjO0Ty2mcNDEe1r3t51nCOae/RvyDEJjqJIB+AIIB7AcwrKXb1db/AHQDME58HQXgBIBhAJ4D8IhG/WFi34QA6Cv2mbGlf0db+wOQDiBeVfYGgPni6/kAXhdfnwPgXwAMwBQA21u6/W35T5yr8gD0oXHS7Nd+JoBxAA4pyvwaFwA6AEgV/8eJr+Na+re1xj+d/pgLwCS+fl3RHwnKeqrj7BD7iIl9dnZL/7bW+qfTJ37NU7Qea/o+UX3+NoBnxNc0Tpq+P/TWve3mWUKa2MZnEoAUznkq59wC4GcAF7Zwm9o8nPNczvke8XUlgKMAenj4yoUAfuac13HO0wCkQOg7oum5EMA34utvAFykKP+WC2wDEMsY69YC7WsvzAZwknOe4aEOjZMmgHO+AUCJqtjfcXEWgFWc8xLOeSmAVQDcksET3tHqD875Ss65TXy7DUL+el3EPonmnG/jwsrwWzj7kPATnTGih948ReuxRsRTn4ja1CsA/OTpGDROGg8P69528ywhIbbx6QEgS/E+G56FKaKRYYwlABgLYLtYdJ9oOvG1ZFYB6qfmggNYyRjbzRi7QyzrwjnPFV/nAegivqY+aV6uguuCg8ZJy+LvuKC+aT5ugaDBkOjLGNvLGFvPGJshlvWA0AcS1B9Ngz/zFI2R5mMGgHzOebKijMZJM6Fa97abZwkJsUSbgjEWCeB3AA9xzisAfAKgP4AxAHIhmLsQzcd0zvk4AGcDuJcxNlP5obgTSyHSmxnGWDCACwD8KhbROAkgaFwEDoyxJwHYAPwgFuUC6M05HwvgYQA/MsaiW6p97QyapwKXq+G6KUrjpJnQWPfKtPVnCQmxjU8OgF6K9z3FMqKJYYwFQRjIP3DO/wAAznk+59zOOXcA+AJOU0jqp2aAc54j/i8A8CeE658vmQmL/wvE6tQnzcfZAPZwzvMBGicBgr/jgvqmiWGM3QTgPADXiotBiCarxeLr3RB8LgdBuPZKk2Pqj0amHvMUjZFmgDFmAnAJgEVSGY2T5kFr3Yt29CwhIbbx2QlgIGOsr6jtuArAkhZuU5tH9Mf4CsBRzvk7inKlT+XFAKSoeksAXMUYC2GM9QUwEEKwAaKRYIxFMMaipNcQAqUcgnDtpeh3NwJYLL5eAuAGMYLeFADlCpMYonFx2TWncRIQ+DsuVgCYyxiLE80q54plRCPAGJsH4FEAF3DOaxTlnRhjRvF1PwhjIlXskwrG2BTxeXQDnH1INAL1mKdoPdY8zAFwjHMumwnTOGl69Na9aEfPElNLN6CtwTm3Mcbug3ADGAF8zTk/3MLNag9MA3A9gINMDPEO4AkAVzPGxkAwp0gHcCcAcM4PM8Z+AXAEgqnYvZxzezO3ua3TBcCfwjwLE4AfOefLGWM7AfzCGLsVQAaEYBAAsAxC9LwUADUAbm7+Jrd9xA2FMyGOBZE3aJw0H4yxnwAkAohnjGUDeBbAa/BjXHDOSxhjL0JYqAPAC5xzXwPhEAp0+uNxCNFuV4lz2DbO+V0QIrS+wBizAnAAuEtx3e8BsBBAGAQfWqUfLeEHOn2S6O88ReuxxkOrTzjnX8E9vgJA46Q50Fv3tptnCRMtZAiCIAiCIAiCIAgi4CFzYoIgCIIgCIIgCKLVQEIsQRAEQRAEQRAE0WpotT6x8fHxPCEhoaWboUt1dTUiIiKa8gRASAhgarVd2Ow0eZ8QfkN9ElhQfwQe1CeBB/VJYEH9EXhQnwQerbVP4uPjsWLFihWc83nqz1qtBJSQkIBdu3a1dDN0SUpKQmJiYtOd4MsvgZkzgUGDmu4cbYwm7xPCb6hPAgvqj8CD+iTwoD4JLKg/Ag/qk8CjNfcJYyxeq5zMiQmCIAiCIAiCIIhWAwmxBEEQBEEQBEEQRKuBhNjWCqVGIgiCIAiCIAiiHUJCLEEQBEEQBEEQBNFqICG2tUKaWIIgCIIgCIIg2iEkxLZSHA4SYgmCIAiCIAiCaH+QENsKWX4oF/3SeyKzwtrSTSEIgiAIgiAIgmhWSIhthby+/DgAIK/G1sItIQiCIAiCIAiCaF5IiG2FpBVVAwCCjayFW0IQBEEQBEEQBNG8kBDbinFQcCeCIAiCIAiCINoZJMS2YjgFdyIIgiAIgiAIop1BQmwrxtHSDSAIgiAIgiAIgmhmSIhtxVCaHYIgCIIgCIIg2hskxLZi7CTEEgRBEARBEATRziAhthXDKbATQRAEQRAEQRDtDK9CLGPsa8ZYAWPskKLsOcZYDmNsn/h3juKzxxljKYyx44yxsxTl88SyFMbYfEV5X8bYdrF8EWMsuDF/YFuGFLEEQRAEQRAEQbQ3fNHELgQwT6P8Xc75GPFvGQAwxoYBuArAcPE7HzPGjIwxI4CPAJwNYBiAq8W6APC6eKwBAEoB3NqQH9SeoBQ7BEEQBEEQBEG0N7wKsZzzDQBKfDzehQB+5pzXcc7TAKQAmCT+pXDOUznnFgA/A7iQMcYAnAHgN/H73wC4yL+f0H4hIZYgCIIgCIIgiPZGQ3xi72OMHRDNjePEsh4AshR1ssUyvfKOAMo45zZVOeEDlCeWIAiCIAiCIIj2hqme3/sEwIsAuPj/bQC3NFaj9GCM3QHgDgDo0qULkpKSmvqU9aaqqqrJ27e/sAiGAL4GgUZz9AnhH9QngQX1R+BBfRJ4UJ8EFtQfgQf1SeDRFvukXkIs5zxfes0Y+wLAP+LbHAC9FFV7imXQKS8GEMsYM4naWGV9rfN+DuBzAJgwYQJPTEysT/ObhaSkJDRZ+5YvBQAM79gRiYmTm+YcbZAm7ROiXlCfBBbUH4EH9UngQX0SWFB/BB7UJ4FHW+yTepkTM8a6Kd5eDECKXLwEwFWMsRDGWF8AAwHsALATwEAxEnEwhOBPS7iQI2YdgMvE798IYHF92tQeIZ9YgiAIgiAIgiDaG141sYyxnwAkAohnjGUDeBZAImNsDARz4nQAdwIA5/wwY+wXAEcA2ADcyzm3i8e5D8AKAEYAX3POD4uneAzAz4yxlwDsBfBVY/24tg7liSUIgiAIgiAIor3hVYjlnF+tUawraHLOXwbwskb5MgDLNMpTIUQvJvzE4WjpFhAEQRAEQRAEQTQvDYlOTLQwDpAmliAIgiAIgiCI9gUJsa0YB6XYIQiCIAiCIAiinUFCbCuGXGIJgiAIgiAIgmhvkBDbiiGXWIIgCIIgCIIg2hskxLZiKMUOQRAEQRAEQRDtDRJiWzHkEksQBEEQBEEQRHuDhNhWDOWJJQiCIAiCIAiivUFCbCuGohMTBEEQBEEQBNHeICG2FUMyLEEQBEEQBEEQ7Q0SYlsxFNiJIAiCIAiCIIj2BgmxrRiSYQmCIAiCIAiCaG+QENuKoTyxBEEQBEEQBEG0N0iIbcXYySmWIAiCIAiCIIh2BgmxrRhKsUMQBEEQBEEQRHuDhNhWDCliCYIgCIIgCIJob3gVYhljXzPGChhjhxRlHRhjqxhjyeL/OLGcMcbeZ4ylMMYOMMbGKb5zo1g/mTF2o6J8PGPsoPid9xljrLF/ZFuFohMTBEEQBEEQBNHe8EUTuxDAPFXZfABrOOcDAawR3wPA2QAGin93APgEEIReAM8CmAxgEoBnJcFXrHO74nvqcxE6kCaWIAiCIAiCIIj2hlchlnO+AUCJqvhCAN+Ir78BcJGi/FsusA1ALGOsG4CzAKzinJdwzksBrAIwT/wsmnO+jQsOnt8qjkV4gXxiCYIgCIIgCIJob9TXJ7YL5zxXfJ0HoIv4ugeALEW9bLHMU3m2RjnhA6SJJQiCIAiCIAiivWFq6AE455wx1iziFGPsDghmyujSpQuSkpKa47T1oqqqqknap9S+ptaaA/oaBBpN1SdE/aE+CSyoPwIP6pPAg/oksKD+CDyoTwKPttgn9RVi8xlj3TjnuaJJcIFYngOgl6JeT7EsB0CiqjxJLO+pUV8TzvnnAD4HgAkTJvDExES9qi1OUlISmqJ9DgcHViwDAPQODWmSc7RVmqpPiPpDfRJYUH8EHtQngQf1SWBB/RF4UJ8EHm2xT+prTrwEgBRh+EYAixXlN4hRiqcAKBfNjlcAmMsYixMDOs0FsEL8rIIxNkWMSnyD4liEBsqIxOQSSxAEQRAEQRBEe8OrJpYx9hMELWo8YywbQpTh1wD8whi7FUAGgCvE6ssAnAMgBUANgJsBgHNewhh7EcBOsd4LnHMpWNQ9ECIghwH4V/wjdFD6wVKKHYIgCIIgCIIg2htehVjO+dU6H83WqMsB3KtznK8BfK1RvgvACG/tIASUgisFdiIIgiAIgiAIor1RX3NiooVwFWJJiiUIgiAIgiAIon1BQmwrQ6l9JRmWIAiCIAiCIIj2BgmxrQzSxBIEQRAEQRAE0Z4hIbaVwR3O1+QTSxAEQRAEQRBEe4OE2FYGBXYiCIIgCIIgCMJX8qodsNgc3iu2IkiIbWW45IltwXYQBEEQgY/DwZFSUNXSzSAIgiBaiNzyWszfWIu3Vx5v6aY0KiTENjEOB0eNxYZDOeWoqrPBbLUDAAor63A8rxJFVXVYsDkNuzNKvBxJoLCqTn5dYuHgOn6xFpsDNrv2jkuNxYacslrd7+phsTngqIf612y1w2JzILe8FoWVQvsLK+uw7niBZhtKqy14b3UyrHYHqutsmse0Ozj++8t+7MsqQ0ZxNfo9vhT7ssrw3dZ0/HPglEtdzjmKq+rwT6oFJ/IrkZxfiRqL9nEBwCpeN6lt21KLcbLQ8yJwX1YZKsxWj3XqS43FhtzyWpcdtP1ZZbr9tzujFMWK+6S52JhciDqb3eUeqa6zuVy7qjqbXzuBFpsDh3LKYVcck3OOkmqLW93iqjqU1VjwyrKjOJRT7rWtf+3NAQDY7A4cy6vQrZtb7j5WOOf4OCkFH65NRmFlHfIrzD7/JqmtleL9cjC7XH6dVlTt17istdh1xwggzD/SnKMF5xz/HszV7BO7g2NfVpnPbdGixmLDttRit/I/92ZjxeE83e8dPuXa5974ZWcWXv33KADhNz27+BD2ZpZq1tW6d/QwW+1ex74enHP8sScbv+/OBucceeVmbNe4FlpUmK3gnCOrpAZVFg67g6POpt+Pnvhk/UnMeWc9ftudjT0a18Tu4DiaK9z/pdUW7M0s9XjPSHDOsSm5yKWfUgurkFFc7VKvvMaKQznlcDiEMVNQ6TpWDuWUI69cf/zkV5jx9aY0zXGx6kg+8srN2JhcKI/BqjqbPJ6U5JTV1uv5pYenY1WYrSircb/PfD1/rcWOrJIavLLsKOwO4Tnv7bubU4rw845M7EgrwZcbU+ulcbE7ONafKHTpo6o6G1ILqxqswfF3vaGF+r78aF0K1hzNBwCsPZbv8gyuqrO5nJNzjm2pxT73gdXu8HhfNgYVZitSCioBCGNP2d7HfjuAO77d5dexskpqkDB/KT7fcLLR2woAlWYrXvznCErEtn60LgU70oS1a5EPaw6Hg2veR6uO5MtzkB4l1RZ5LNz+7S5c/PFml3VObnktEuYvdZtjS6otGPHsCmxMLvTlJyK/wiyP3SOnKpCqmv8553jstwPYlFwEAMgqqcEziw+h1uJ9ziyrsfg0t/6yMwsrPTwftcgurXGbW5XsF5/luzK0n4utFa95Ygn/WX0kH5/vM2PqdAcu/Giz2+D8+77peODnvUgrqnb77ksXjUBceDAyS2pw6/S+OFVWi2CTARHBJoQFGzHv/zbKdZfk2TFgbQoemD0QlWYrNqcUY3yfOMRHBmPmG+tgc3D8ePtkHM2twOyhXRAZYkJBhRkXfLgZeeIDP8RkwINzBuKumf3x76E8PPf3Ybx44XA89ddhJA7uhFun98XQbtGw2R0Y/fxKdI0JRW55LRbePAkLNqfhzln9kV9uRlFVHa6b0gecA6uP5uOVZUcxpV9HXDWpN277ZhfKay2w2jkm9e2An26fguf+PoylB3LRJToEw7pF474zBmJ492isO1aAH7ZnYlNKEd5dfQIAcNPUBIzoEYMJfeKQVlSNWYM6IbOkBr/vycbqo/mYmNABDg5c9NFm+dp0iwnD3/tP4cipChzNq0ClWVjo/3ZiAwAgMsSEn++YgogQE6JCTbh14U48NGcQbl64EwDwnzmD8O7qE0h6JBFXfb4NALD7qTk4kV+FUT1jEB5sxKfrU/HB2mREhJhQWFmHjhHB+OmOKRjYORKMMXDOUWOxy3342YZU3DGjHxLiI1z6PKukBj1iw5BeXI1HfzsAO+cY3CUK80Z0ReLgzrjgw81IKajC2N6x+POeaVh3rAA3L9yJS8f1xO97stGrQxhG9ojB3bMGILWoCg/+vA+9OoTh1ml98caK4xjVMwafXDseoUFGhAUb8eHaZOzKKMX8s4cAAJ5ZfBjzzx6Ccb3jAAApBZX4c28OHj5zMP7cm4NjuRW4c1Z/vLXiOLJKazBzUCdcPLYH/m91MgwMeHTeEBw+VY7rv9oBAEjoGI5Fd56GSrMVb604geWH8xBiMuB/Zw3GWyuPo3eHcFw0tgfOHtENAFBQaUad1YGY8CB8tzUDa48VoEdsGMb0ikVBZR0+XS88kJ8+bxhund4X/7c6Ge+tScaCmyZiYt8OsNkdWH4oD/P/OChf0883pOLFC4djf3Y5+sZH4O5Z/bH5ZBGsdgfeX5MiC2eT+nbA5xtSsXBLOt69cjQiQ4IQGx6EiQkd8P22DKQUVGHhlnTcNDUBd8zsh+6xYUg6XoCbFuyUz7VoVxaySmoxtncszh3ZDReN7YH4yBCXPk4pqMIvu7IQExaESrNN/k0je8TgYE45JvftgDOHdcFLS4/ilml90TMuDFmlNbDaHdicUozJfTvgYE45/jt3EM4Y0gUAsPxQLu76fg+iQk346JpxyK8wo2NkMLanluCqSb1x04IdyCiuwcgeMfj1rtOw5WQRTuRX4aIxPVBptiI2PBi/7c7G68uPAQAOPX+W3N7k/EosO5iHd1efwOfXj4fJyAAAX25Mw9T+HTFzUCeU11qRUlCFG09LwLkfbMLgLpEwGBiKqyzo1ykCuzNK0TEiGOuOF+KH2ybjmcWHMKpnLF66aAT+s2g/ACDt1XOw7ngBIkOCMKRbFEqrLXBw4Nz3NwEARveMwbmjuuHMYV1hMjCsOpKPYJMBk/t2wP+tTkaX6FDEhQfh7VXCXJFfbsbyw3kwWx34ZmsGFt0xBYO7RiE2PBhFVXU4kV+Ja77YjsfmDcG/h3Lx5DlD4eBAt5hQhAYZccd3u9A9JgyHc8vx8x2n4ZFf9mNrajH+uGcq5v9+AMO7x+BUWS3Cgo0INRlh5xyvXTISABAbHoyrv9iG0moLSqotGNotGptShIVO747h4jxoxbpHEtFXnAOkzb0T+VWoNFsx//eDeOmiEXj09wNyX3SPZFhbth9/7MnB6odnoVtMKP73235cPLYn5gztDMYYaiw2VNTaYDIyvLXiOIb3iMHKw3nYmFyE6FDhMf/Ir8I1T3n5bKQVVWPd8QJkl9bi260Z0KJ3h3D07hCOd68cg/JaCyrNNjg4x9/7c9EpKgQ/bs9ETlkthnaLxr2n98eu9FIs3JIOAPj1rtPw7dYMnD2iKz5al4LDpyrw/tVj8cby43hj+XE8fd4wmK12vLniOAwMuGB0d9w/eyBOldXCanfAZDBgf1YZTonXZndGKab064jO0SH4ZVcW3lxxHNdP6ePW9p9un4Krv9iGiGAjbpneF3OHdYWDc9yycCeKqy24bkpvnDOiG/Znl6NbTChOFlZhR1oJvr11EkJMRpwqq8WaYwXYk1EKo4HhuQuGIyLYiH1ZZXBwjmUH83D5hJ64Y1U1LMuX4dbpffHkOUPx255s9IwNw8S+HbA9tQQPLdqHoqo6XDK2BzpFheCuWf2x6kg+nvrrELY9MRuxYUGwOhzYl1mGlMIqXDmhF0xGAxbvy8E3W9KxJ7NM/k0XjumOH7dn4oftmbhzZj+U1lhww2kJOFlYhZ5x4RjfJw5fbUrDi/8ccbkWQUYDbpyagK0ni/HUXwdx16z+uHhsD5TXWpFZUoP5vx/EbTP6wubgsNkd6B4bhlu/cQpNr186Egs2p+NYniBkRYWY8H9XjUHi4M7YcrIIp8pqcfHYngg2GfDlxlS8tfI4njt/OIZ1j0ZEiAlP/HEQg7pE4cE5A7HsYC7eX5OMx+YNQb9OkdiXVQaz1Y4QkwE948IxvHs0enUIx5qj+fhlVxZKq604f0x3GBnDJeN6wME5Pkk6iQ/WpmDWoE44lFOOucO74qcdmQCAN2eG4X8Ld6FfpwjMGdoF3WJC8fzfR3D64E545vzhiAo1YeYb61BjsePp84YhPNiIjOIa/HfuIFSabXjw57149vxhsDk4BnWOQoXZiif/PISlB3Px1uWjkTi4E9YeK0D/TpHIKK7GOSO74VBOOT5Ym4KRPWIwbUA8IkKMWHO0APNGdMU3W9KxaFcWHpo9CHfM7IdgkwEOznHxx5tRXmvFM+cNx5nDuuCBn/YiSZwfr/1yO4Z3j8axvEo8d/4wLNqVBQDYm1mKqFATkvOrMLBLFAZ0jsSJ/EqYDAwdI0OwN7MUj/9xEMVVFljEDfjXlx/HNZP74O2VxzF3WFdM7tsBSw/mIqesFt1iQnHkVAWuntQbW1OLEWw0gEPYcJw3oiu+35aJSQkdEBlqQu8O4YgLD0JJtQU1FjtmvLFOmGcrzLh9Rj+8uULQ6n1w9Vjc/9NevHnZKHSNCcWu9FI4SmzY8PcR3DQ1AZ2iQmA0MLz4zxF8ty0Dc4Z2xsgesejbKQLdYkJxuyisr354FgZ0jkRBpRkxYUHi/GjGWf+3AZwD958xAFV1Nqw6ImxczHlnPc4b1R2PzB0sb5Ze+fk2fHztOOxIK8HR3Ar06hCOqjob5v9+EOHBRgzsEol3rxwDBgajQVinfZJ0EtmltZjSv4P8bLppagIWbklHsNGAfx+agfjIEPy6KwsLNqcjp6xW6N85A5FXbsbPO7NgYAy3zeiL2PBgRIYIc+6OtBLklNVgSr+OiAsPxpgXVmFCnzj8dvdUvLLsKLalFuOmqQmYM6wLOAeiQ01wcMjz/6Hnz0J5rRWVZis6R4WioNKM1MJqDOkahW4xYQg2GfC/3/ajtNqCPZmCIuXLGyagU1QIhnePgdHAUF5rxT0/7EZ1nSA8Gw0M21OL8d6aZIQHG9EhIhh94yNxd2J/zedAoMMaY3esJZgwYQLftcv3XarmZNHOTDz2+0HvFf0gKtSEDhHByCiu0fy8R2wYcspq63380CADzFb3HTKTgWH6wHgkHfdtF8sXwoKMqPVhNypQYaxh6Y1umpqAshoLjuRWoFtMGNaf0L+2XaND5Q0HABjQObJBpoENbbsWceFBKK1pGi20mm4xocht4t1xT9w2vS++3JTmsc65I7thaLco/HMgF7HhQdiW6puVha8suGkiKsxWPPjzvkY9LgDM6mnC1jz//Gaa4p5qbPrFRyBVY9OwMYkJC0J5re/jYOagTjiaWyFbp9SHDhHBfmmWAaBnXBiyS+v/rGgp5g7rgpXi4rUpOHdUNyw9kOtSFhVqkjdAJYZ1i8YRL1ojb0SGmFClsqCYNaiTx2dBoNLQtYfEZeN74rfd2ZqfRQQbUe2DpstfOkWF1Gv8je0di4KKugb97u4xoTjVgs8yX7lwTHcs3nfKe0UdhnSNkjdCvDGgcyQAyGucYKMBCfHhOJHvec0THxmMiBCT7vpYzcSEOOxM910jWZ97/JJxPfDHnhzNz7TGPyBsHGaW+PYbGpMbT+uD5y8c0ezn9QfG2G7O+QR1OZkTNwGzh3aBgTnfT+7bAYAgvMSFB8nlMWFBmDWoEwBgVM8YJA7uJH9mMjD06hAmv+8cFYKSKgsemD0QG+8ahzvDilzOWVhZh94dwpE4uBPCg40IDdLv2vBgIwAgVtEWLQEWAGwO3mgCbP9Ogvah1mrH2SO64tyR3RrluBIvXjjcrez+MwZg3vCubuXBxvrd+kO6RmFCH0FjGR8Zgk+vG4dgowE9YsO8fNPJwi3p+GvfKZzIr9JdtEj9l6cyU1ULsON6x6JjRLDuuYKMzhuxa3SoprAxplesy/uwIKOn5ruw5L5p6BId6rWe8vp8et04zToxYUF4+/LRmNq/IwBB8ACEdksoBdgQk2sfnjGkM8aLfaNFsFh/TK9YHHxuLq6b0lv+bMbAeMwc1Anzzx6CgeKDFIDbOFIKsI/NGyK/PntEVzw4eyAACLv3K0/gWF6lpgC79IHpGNotWn5/y7S+CA82YvqAeLx52SiXOWJS3w6ICw/C+aO74/Gzh6BHbBhuXrjTJwG2a3Qokh5J9FoPEO7raQM6Yn22f+begKBNniTOcZ64ZnJvTBsg9O2Zw7p4rT+6Zwx+ufM0DOkaJZcN7ByJs0d0deuXCYp+f/b8Yfj0uvHoEu3UhisF2PtOH4AO4pgZ1MXZ1/7y173TXN6X11oRZGTynO6NDScK/VpAR4WY5B1+CS0BNsRkwBc3TMDN0xIAAFdN7IVZgzphXO9YAJAFWOkelJ4DN57Wx2sbuseEYs7QLjh7hPuc+p85g/DA7IGa88ewbtEuc9HonjGICtU3BJsxMB5T+rneU1oCrKfnnCeePGcoOke5WkuoBdhpAzpiVM8Yt+9qCbBXTOjpVhbt4fdpLWClZ0GHiGB5nHgj2GhAv/gI3DKtr9s8rubSce5t9IdH5w3GjIHxbuV6i/tnzhvmMna9oSfAAqi3APvI3EE4a3gXhAcbERseJI8JCavdodl3APDA7IEuayQlezPLkFNWi/F94nD+6O6ICPbtmTl3WBfcII4ztQD75DlDfTpGc6MWYPt0DJdfn9avI7rFhGJI1yg8d/4w3Dmrn9v39QTYqyf1cnl/8dgesNgcLu4bjAEn8qvQp2O4yxpicBfnfdWvUwSKqiwuAqxyDn5k7iBMG9DRZV7yVYD9+qYJCDEZ5Hv8o2vG4YlzhuCBMwZ4/a6eAAtAlg9evGgEPr7WuR5SCrCXjOuh+V3luXt3CJfXHYBgLfjc+cMwVpzr1SimYHx14wT5Ok4f6NszKxAhTWwTsXTVOnQeOBqdIkPczEfPfm8jjuZW4Kfbp+C0/h2RVVKDnnFhYIzhjLeTkFpYjeMvzYPJYED/J5Zhav+O+PH2KeCcgzEGlJYCX36JU0PHoGbSFHSLCQMH3BY4nHPYHByP/X4A3WPCMHNQJwzpFgWHg+PO73bj5YtHYkDnSHyzJR3PLjkMQDALkXaJwoKMWLL/FIZ3j8bw7jGYPjAeNrsD29NK8N3WDESEmJA4uBPOH90d53+wCQdzyvHFDRNkUxSLzYGDOeUY0SMa4cEmLN6Xgwd/3odNj52OnnHCRFhQaUZsWDD2ZZXhis+2Yli3aAzvHo1fxQfaJeN64D9zBmHRziwM7x4Ni92BtKJq/N/qZIzpFYsH5wzELQt34o1LR+Gy8T1x+FQFBnSOxDOLD6FLdCj+M2cQLHYHaix27Nq2GelBvXHFhF5ILarGfT/sQXxUCA7mlINzVw3FI3MH4a2VJ9AhIhh3zOyHi8b0gNXuQK8OQrtPldWic1QITAphuMZiw7BnVqBrdChG94rBO1eMQUSICVnixFRrtWPuu4I585nDuuC5C4bjr705uGB0d3y/LQOfbUgFAHx4zVicN6o7PlqXgrIaCx6cM0gwxewh9EF1nR39OkUgtbAao3rGwO7g+HT9SXSKCkFpjRWv/XsM/9w/HVtPFuOW6X3xw/YM/LU3B7/dNRV1NgeWHszFJWN7yBNzj9gw3PvjHqw7XoDNj52BjpEhWH4oD2lF1bKJyUv/HJEFuP+eOQhvrzqB66b0xksXjZTNps1WOzgEf66DOeXILTfjlWVH8fVNE3Fav4548Oe96N0hHI+fMxRpRdWw2R148qfNSBwzAHfPEs7DGEOF2Yol+07h8gk9YWSCyU+1xY5NyYUoqrLgqb8O4be7TsOEBGGRe/hUOSKCTfI4czg43l19AquPFmDBTRNRVmtBx4gQdIwIxqcbTuL8Ud3Rq0M4SqotWHowF7FhQTh3ZDcYFDtP608UYnj3aMRHhsi+dKuP5uP5vwWTvbsT++ORuYNhVO5WQfDLumXhLswe0hm3zuiLvZllWH+8EK9cMhK9O4TD5nAgPNgEs9WOE/mVGNUz1m3usNod+HxDKq6d3Bux4a4bFHnlZvy6Kwtmmx3FVRY8fd4whAUZ8cP2DMwb0Q3xkcFgjMHu4HBwjiCjATvSSlBtsaFffAQyS2qw5mgBftyRicvH90THyBDMGdpZbsfCxWvw3FZhcfXiRSNwwejuuPv73XjinKE4fKoc84Z3w90/7EZmSQ2untQbF4/tge7i4uLlpUewLbUE10/pg4l9O+BkQRVu+3YX/rxnKiw2ByYkdIDRwGC1OxBkNOBQTjl+3JGJQznluGpib+xIK0aHiBBcPakXDp0qx8VjnYvLqjqb2/ymZtWRfHSICJY3MsxWOw5kl2Pd8QJMHxCP/AozZg/pgpjwIFTX2RBiMsBkNCCzuAYvLT2ClUfy0b9TBD6+djwGdI7E5pQilFRbcCyvEp+uP4kfbpuM3h3C8euuLBzPr8Rn10/A438cRM+4MHSNFoS7GHHR+8LfR7A/uwzXT+mDsGAjpvTriPdWJ+Przc5NkLnDuqB7bBimDYjH7CGdsS+7DPnlZswc1AkR4m8tqbbg6g/XoHvnjnjs7CEY0jUaB7LLEB5sworDecgrN6N7bBi6RIfg4rE9sGBzOmYMjMfALtrCw4n8Sqw/Xog+HcMxZ2gX5Fea5U0ixgQzs/3ZZbA5OO6e1V+IPfDrfpTVWHF3Yn+M6x0Hk4GBAzieV4lz3hfcW/68ZyrG9IoFYwxVdTbcsmAnOkeH4P4zBuLfQ7m49/QBCDIaUFBhxppjBbhiQi8YmHDOY3kVWLLvFM4f3R1rjubj/NHd0aejMJa/3JiKnLJaZBTXYO2xAgzrFo1JfTsgVZw/Ftw8Ee+tTsbsoV1QWGnGPNFFYemBXMENJ8SIa77YDkDY8Pv0+vEorKzD8O4xyC6tweN/HMTbV4zGG8uPI8RkwIyBnRAbHoTs0lpcNl64/06V1WLqa2sBCIv2+KgQDDAV4/pzZiKlQHAvCQ0yYkdaCVIKqnDN5N6yqWx2aS0e/e0A7krsj9P6dYRVdH04f3R3ZJZUw8Ehb5q9uzoZXaNDcc3k3uCcg3Og3xPLcOawLjh/dHcM6RqFgZ0jUVFrwxN/HcR5I7vhjKGdEWISFudZJTV4aNE+XDWxF0b1jMX6EwWYPqAT4iOD0VnsY+kZBQiWAN/eMglrjubjWF4lbp6WgNNeXYvyWit+vH0yOkaEoFtsKP5vVTIW7czE4RfmARBiCBRVWRAfGYzH/ziIbWnFyCqpRZfoEHxxwwT0jAvHjrQSnDW8C+psDtRa7Mgpq0VokAGrjhRgTK9YxIYHYXCXKHnO3ZxShA/XpqBvpwjU1NlQY7Hj3SvHILe8FjvTS3HB6O4ICzLi9eXHMLpXLBycw2x1wO5w4IoJvbBgyVoMHj4a1365HS9cOBxXTxL6ICpUGI+CiToD58D/fjuAmYPiccHo7rA5hDmytNoCO+cIDTIiu7QGCR0jEBpkFONn2LHlZDEiQ01Yf7wQdyf2x97MUswd1hW9RYHuy42peGnpUdx3+gBEhpoQEWJCTZ0NV03sjcOnyhEfFYJBijG5O6MUnaNCEGQ0YNXRfJTXWHDv6QOQUlCF//yyD/kVdXj14pHYkFyIB2cPxPiXVgMAdjwxG6fKzTBb7RjTKxZXfLYVB7LL8c/90zGkaxRsDo7Xlx/DjrQSmAwM+7OF2BA3TU3A2N6xiAg24fCpCoQHG/HysqPoGh2KX+48Dfuzy9C/UyQ2JBfi0nE9YbE78MbyY7hwTHdsPVmMmYM6ISzIiNxyMyJDTHjxnyP45pZJ6BQVAgNjMDDIa6G0omo8u+QwNpwoxJ2z+uHPPTmYkBCHyX07os5mx6aUYjx5zlAM7hqFshoLPk46ieWH8vDHPVNlN5yfdmQiPNgIm12YfwZ3icJf905DYWUdCqvqMLpnDI7mVqJjZDC6x4bh5x2ZmP/HQXxzyyTMGtQJDgdHvyeW4aqJvfDapaPk615Qacbt3+zC/uxynDOyKzKKa5AQH4GXLxqBvw/k4um/DuGn26dgTK9YhAYZwBjDisN5eOTX/fjsuvGYOsC5ibMzvQS3fbMLs4d2xv/OGow9GWWIDQ/CkK5RMBkNeOLPg4gNC8ILF45AWlE1nv/7MJLzq7D6v7MQGWKC3cHl9UNhZR0iQozYmFyEO7/bDUBw+9iYXIRh3aNhMjD5Hkh95RxsShFco84YIriTbE4pAmPA1P7O9m1JKcJNC3bi0XmDMWtQJ9z53W7cNcyBS+edjtzyWvSMC0d2aQ2OnKrAnKFdXNY/gYieJlacLFvf3/jx43kgs27dOt3P9mWW8lsX7uC1FpvbZ/kVtXxPRon8Pqe0hlfXWV0rlZRw/sYbnK9c2VjN5bUWG199JI87HI56fb+mzsbLqi0e6zgcDm6x2TU/s9js/JVlR3hOaY1ctjezVLd+ldnKzVb36+cJvT4pq7bwvZmlnHPhOlSZhet9qqyGl9d6/k1qjuVW8EqzVffzCS+t4m8sP+pWbrXZeWl1Xb2vv4TD4eCFlWa/v2ex2TXvR4lDOWW8z2P/8F3pxZxzzitqLdxm995Wb9fP0zjRwm538GzFPdKcOBwOfjyvgmeVVOvWsdsd/IdtGfXqg0Bg3bp1PL+ilhdU6Lff4XBwuw99zznndVbt8RuIWG12btWZbyr8nAe0sNsd/JstabzSbOXZ/8/eeYdJUaR//FubYck5s4AgAkoQEVFwQUUMZzxzPj3z3emdPw89c8SsmBDFjKJiJsclL2HJLAu7bGYTm+Pk+v0xXT3VPd0TNs4u7+d5eNjp6emp6aquenOV1Qb8rAf7jDQnB3LLeWphZZN/T0m1lR86XlGvz2YV1wQ8Xs3Ym13Gr/5wszq3N1efuFyuBq8Jeqx2J6+1OgzX1uS8Cn73lzs1a4G/NtgcTv7Urwf4saKqRm1nMIj+8CeDNBXVFjt/acmhRpknjPg5KUdde4Mhp7SG55fXGb7ncrl8rvkNZfGytQ0evxV1Nj74v0v4oh1ZPs8zkgvqbA5DGaXKYq/3XNIQbD7WFxmr3WkoQ56osvCDx8sb1IZQXkv8AWAXN9AFyRPbRCQkJCA+Pr5pLl5aCixYAIwdC8yc2TTf0QZp0j45CeAiEqARoT4JLag/Qg/qk9CD+iS0oP4IPRqrT5pC7jhZac3PCeXEEgTRIGghIQiCIAiiuSC5g/AFKbGtmVbqRScIgiAIgiAIgqgvDVJiGWOZjLEDjLG9jLFdyrFujLHVjLFU5f+uynHGGJvLGEtjjO1njE2QrnOHcn4qY+yOhv0kgiAIgiAIgiAIoq3SGJ7Y6ZzzcVKs8mwAaznnwwGsVV4DwCUAhiv/7gXwMeBWegE8C+BsAJMAPCsUX8IE8sASBEEQBEEQBHGS0hThxFcC+Er5+ysAV0nHv1YKTSUC6MIY6wvgYgCrOeelnPMyAKsBzGqCdrUtOCdlliAIgiAIgiCIk44GVSdmjGUAKAPAAXzCOZ/PGCvnnHdR3mcAyjjnXRhjSwDM4ZxvVt5bC+C/AOIBxHDOX1KOPw2gjnP+psH33Qu3Fxe9e/c+c9GiRfVue1NTXV2NDh06NM3FHQ6gpARo1w7o1KlpvqMN0qR9QtQL6pPQgvoj9KA+CT2oT0IL6o/Qg/ok9GjNfTJ9+nTD6sS+d4/3z3mc8+OMsV4AVjPGUuQ3OeecMdZo7kLO+XwA8wH3FjuhXCq6SUtZFxe7t9g54wwghO9BqNGay4u3VahPQgvqj9CD+iT0oD4JLag/Qg/qk9CjLfZJg8KJOefHlf+LAPwKd05roRImDOX/IuX04wAGSh8foBwzO074gjEKJyYIgiAIgiAI4qSj3kosYyyWMdZR/A1gJoCDAP4AICoM3wHgd+XvPwDcrlQpngyggnOeD2AlgJmMsa5KQaeZyjHCDKG8khJLEARBEARBEMRJRkPCiXsD+FXZiDgCwHec8xWMsZ0AfmSM3Q0gC8D1yvnLAFwKIA1ALYC7AIBzXsoYexHATuW8FzjnpQ1o18kBbQBNEARBEARBEMRJSL2VWM55OoCxBsdLAFxgcJwDeMjkWp8D+Ly+bTkpoerEBEEQBEEQBEGchDTFFjtEc0CeWIIgCIIgCIIgTkJIiW2NcE6FnQiCIAiCIAiCOCkhJZYgCIIgCIIgCIJoNZAS2xqh6sQEQRAEQRAEQZykkBJLEARBEARBEARBtBpIiW2tUE4sQRAEQRAEQRAnIaTEtkYonJggCIIgCIIgiJMUUmIJgiAIgiAIgiCIVgMpsa0Z8sQSBEEQBEEQBHGSQUpsa4aUWIIgCIIgCIIgTjJIiW2NkPJKEARBEARBEMRJCimxrRXGWroFBEEQBEEQBEEQzQ4psa0Rqk5MEARBEARBEMRJCimxBEEQBEEQBEEQRKuBlNjWCmPkiSUIgiAIgiAI4qQjZJRYxtgsxtgRxlgaY2x2S7cnpKFwYoIgCIIgCIIgTlJCQolljIUD+BDAJQBGAbiJMTaqZVtFEARBEARBEARBhBohocQCmAQgjXOezjm3AVgE4MoWblPoQ55YgiAIgiAIgiBOMiJaugEK/QHkSK9zAZytP4kxdi+Ae5WX1YyxI83QtnoRBfTrANQ01fXbAe1sgN15ww2OpvqOtoYF6BwDVLR0OwgP1CehBfVH6EF9EnpQn4QW1B+hB/VJ6GHWJy7AVQ5UtUCTAqXY7I1QUWIDgnM+H8D8lm5HIDDGdpVwPrGl20F4YIztqqE+CSmoT0IL6o/Qg/ok9KA+CS2oP0IP6pPQoy32SaiEEx8HMFB6PUA5RhAEQRAEQRAEQRAqoaLE7gQwnDE2hDEWBeBGAH+0cJsIgiAIgiAIgiCIECMkwok55w7G2MMAVgIIB/A55/xQCzerobSKsOeTDOqT0IP6JLSg/gg9qE9CD+qT0IL6I/SgPgk92lyfME4VbgmCIAiCIAiCIIhWQqiEExMEQRAEQRAEQRCEX0iJJQiCIAiCIAiCIFoNpMQ2AYyxWYyxI4yxNMbY7JZuz8kAY2wgY2w9YyyZMXaIMfYv5fhzjLHjjLG9yr9Lpc88ofTREcbYxS3X+rYLYyyTMXZAufe7lGPdGGOrGWOpyv9dleOMMTZX6ZP9jLEJLdv6tgdj7FTpWdjLGKtkjD1Cz0nzwhj7nDFWxBg7KB0L+rlgjN2hnJ/KGLujJX5LW8CkP95gjKUo9/xXxlgX5XgcY6xOelbmSZ85U5nv0pQ+Yy3wc9oEJn0S9DxF8ljjYdInP0j9kckY26scp+ekifEh9548awnnnP414j+4C1MdAzAUQBSAfQBGtXS72vo/AH0BTFD+7gjgKIBRAJ4D8JjB+aOUvokGMETps/CW/h1t7R+ATAA9dMdeBzBb+Xs2gNeUvy8FsBwAAzAZwPaWbn9b/qfMVQUABtNz0uz3fhqACQAOSseCei4AdAOQrvzfVfm7a0v/ttb4z6Q/ZgKIUP5+TeqPOPk83XV2KH3ElD67pKV/W2v9Z9InQc1TJI81fZ/o3n8LwDPK3/ScNH1/mMm9J81aQp7YxmcSgDTOeTrn3AZgEYArW7hNbR7OeT7nfLfydxWAwwD6+/jIlQAWcc6tnPMMAGlw9x3R9FwJ4Cvl768AXCUd/5q7SQTQhTHWtwXad7JwAYBjnPMsH+fQc9IEcM43AijVHQ72ubgYwGrOeSnnvAzAagCzmrzxbRCj/uCcr+KcO5SXiXDvX2+K0iedOOeJ3C0Zfg1PHxJBYvKMmGE2T5E81oj46hPFm3o9gO99XYOek8bDh9x70qwlpMQ2Pv0B5Eivc+FbmSIaGcZYHIDxALYrhx5WQic+F2EVoH5qLjiAVYyxJMbYvcqx3pzzfOXvAgC9lb+pT5qXG6EVOOg5aVmCfS6ob5qPv8HtwRAMYYztYYxtYIxNVY71h7sPBNQfTUMw8xQ9I83HVACFnPNU6Rg9J82ETu49adYSUmKJNgVjrAOAnwE8wjmvBPAxgGEAxgHIhzvchWg+zuOcTwBwCYCHGGPT5DcVSyzt89XMMMaiAFwB4CflED0nIQQ9F6EDY+x/ABwAFiqH8gEM4pyPB/BvAN8xxjq1VPtOMmieCl1ugtYoSs9JM2Eg96q09bWElNjG5ziAgdLrAcoxoolhjEXC/SAv5Jz/AgCc80LOuZNz7gLwKTyhkNRPzQDn/LjyfxGAX+G+/4UiTFj5v0g5nfqk+bgEwG7OeSFAz0mIEOxzQX3TxDDG7gRwOYBbFGEQSshqifJ3Etw5lyPgvvdyyDH1RyNTj3mKnpFmgDEWAeAaAD+IY/ScNA9Gci9OorWElNjGZyeA4YyxIYq340YAf7Rwm9o8Sj7GAgCHOedvS8flnMqrAYiqen8AuJExFs0YGwJgONzFBohGgjEWyxjrKP6Gu1DKQbjvvah+dweA35W//wBwu1JBbzKACikkhmhcNFZzek5CgmCfi5UAZjLGuiphlTOVY0QjwBibBeBxAFdwzmul4z0ZY+HK30PhfibSlT6pZIxNVtaj2+HpQ6IRqMc8RfJY83AhgBTOuRomTM9J02Mm9+IkWksiWroBbQ3OuYMx9jDcAyAcwOec80Mt3KyTgXMB3AbgAFNKvAN4EsBNjLFxcIdTZAK4DwA454cYYz8CSIY7VOwhzrmzmdvc1ukN4Ff3PIsIAN9xzlcwxnYC+JExdjeALLiLQQDAMrir56UBqAVwV/M3ue2jGBQugvIsKLxOz0nzwRj7HkA8gB6MsVwAzwKYgyCeC855KWPsRbgFdQB4gXMeaCEcQsKkP56Au9rtamUOS+Sc3w93hdYXGGN2AC4A90v3/UEAXwJoB3cOrZxHSwSBSZ/EBztPkTzWeBj1Ced8AbzrKwD0nDQHZnLvSbOWMCVChiAIgiAIgiAIgiBCHgonJgiCIAiCIAiCIFoNpMQSBEEQBEEQBEEQrYZWmxPbo0cPHhcX19LNMKWmpgaxsbEt3QxCgvok9KA+CS2oP0KPVtUnNhtQXQ1069bSLWlSWlWfnARQf4Qe1CehR2vtkx49emDlypUrOeez9O+1WiU2Li4Ou3btaulmmJKQkID4+PiWbgYhQX0SelCfhBbUH6FHq+qT9HRg3TrgnntauiVNSqvqk5MA6o/Qg/ok9GjNfcIY62F0vEnCiRljMYyxHYyxfYyxQ4yx55XjQxhj2xljaYyxH5SS51DKov+gHN/OGItrinYRBEEQBEEQBEEQrZumyom1ApjBOR8LYByAWcqeRK8BeIdzfgqAMgB3K+ffDaBMOf6Och5BEARBEARBEARBaGgSJZa7qVZeRir/OIAZABYrx78CcJXy95XKayjvX6Bs4ksQBEEQRGuBtu0jCIIgmoEmq07MGAtXNt8tArAawDEA5Zxzh3JKLoD+yt/9AeQAgPJ+BYDuTdU2giAIgiCaAM5JkSUIgiCaHMabeLFhjHUB8CuApwF8qYQMgzE2EMByzvkYxthBALM457nKe8cAnM05L9Zd614A9wJA7969z1y0aFGTtr0hVFdXo0OHDi3dDEKC+iT0oD4JLag/Qo9W1SdWK1BVBfQwrMHRZmhVfXISQP0RelCfhB6tuU+mT5+exDmfqD/e5NWJOefljLH1AM4B0IUxFqF4WwcAOK6cdhzAQAC5jLEIAJ0BlBhcaz6A+QAwceJEHspVtlpzFbC2CvVJ6EF9ElpQf4QeralPdm89iPAjOzD22muBNpwR1Jr65GSA+iP0oD4JPdpinzRVdeKeigcWjLF2AC4CcBjAegB/VU67A8Dvyt9/KK+hvL+ON7WLmCAIgiCIRuOaP7JwZV5vCicmCIIgmpym8sT2BfAVYywcbkX5R875EsZYMoBFjLGXAOwBsEA5fwGAbxhjaQBKAdzYRO0iCIIgCIIgCIIgWjFNosRyzvcDGG9wPB3AJIPjFgDXNUVbCIIgCIIgCIIgiLZDk1UnJgiCIAiCIAiCIIjGhpRYgiAIgiAahM3h8rygnFiCIAiiiSElliAIgiCIBlFlsbd0EwiCIIiTCFJiCYIgCIJoEFUWh+cFeWIJgiCIJoaUWIIgCIIgGoTF4WzpJhAEQRAnEaTEEgRBEATRIFwu/+cQBEEQRGNBSixBEARBEA3CJYcQUzgxQRAE0cSQEksQBEEQRINwkeJKEARBNCOkxBIEQRAE0SBcpMMSBEEQzQgpsQRBEARBNAjyxBIEQRDNCSmxBEEQBEE0CJeLcmIJgiCI5oOUWIIgCIIgGgSFExMEQRDNCSmxBEEQBEE0CKpOTBAEQTQnpMQSBEEQBNEgKCeWIAiCaE5IiSUIgiAIokG4XC3dAoIgCOJkgpRYgiAIgiAaBIUTEwRBEM0JKbEEQRAEQTQICicmCIIgmhNSYgmCIAiCaBCyEstJoSUIgiCaGFJiCYIgCIJoEHJOrIv22yEIgiCaGFJiCYIgCIJoELIn1kmeWIIgCKKJaRIlljE2kDG2njGWzBg7xBj7l3K8G2NsNWMsVfm/q3KcMcbmMsbSGGP7GWMTmqJdBEEQBEE0PholljyxBEEQRBPTVJ5YB4D/cM5HAZgM4CHG2CgAswGs5ZwPB7BWeQ0AlwAYrvy7F8DHTdQugiAIgiAaGVlvdTppvx2CIAiiaWkSJZZzns853638XQXgMID+AK4E8JVy2lcArlL+vhLA19xNIoAujLG+TdE2giAIgiAaFwonJgiCIJoT1tRVBBljcQA2AhgDIJtz3kU5zgCUcc67MMaWAJjDOd+svLcWwH8557t017oXbk8tevfufeaiRYuatO0Nobq6Gh06dGjpZhAS1CehB/VJaEH9EXq0lj5JzHdg3j4rAOD9+Bh0jAlv4RY1Ha2lT04WqD9CD+qT0KM198n06dOTOOcT9ccjmvJLGWMdAPwM4BHOeaVbb3XDOeeMsaA0aM75fADzAWDixIk8Pj6+EVvbuCQkJCCU23cyQn0SelCfhBbUH6FHa+mT8j3HgX17AQCTx09Az95dW7ZBTUhr6ZOThebuj1qbAw4XR6eYyGb7ztYGPSOhR1vskyarTswYi4RbgV3IOf9FOVwowoSV/4uU48cBDJQ+PkA5RhAEQRBEE3G0sArjXliFwkpLg64jhxO7KJyYaMOc/0YCznhuVUs3gyBOepqqOjEDsADAYc7529JbfwC4Q/n7DgC/S8dvV6oUTwZQwTnPb4q2EQRBEATh5sutmSivtWN1cmGDriMXdnJQdWKiDXOiytrSTSAIAk0XTnwugNsAHGCM7VWOPQlgDoAfGWN3A8gCcL3y3jIAlwJIA1AL4K4mahdBEARBNDtVFjtKa2wY3D22pZuiQST5SNk+9cIlKa4uqk5MEARBNDFNosQqBZrMlsQLDM7nAB5qirYQBEEQREtzzUdbkVpUjcw5l7V0UzQ0ls9UW524kS4awsTNXor7zx+G2ZeMbOmmEARBnJQ0WU4sQYQKnHM0dRVugiDaLsl5lQ3OGU0tqm6k1oQWn2w4hqs/2tLi4cR55XXIK69rlu8SCvu8Dcea5fsIgiAIb0iJbUNsSStGtdXR0s0IOf61aC+GPLEs6M/d980ufLYpvQlaRBBEU5GUVYZbP9sOeyOGtF46dxOmzFnXaNcLJYR9j5kGT/nm1eUp2JNdrtkb1uVq/nDiKXPWNVsf2Z3N8jUEUW+ySmoQN3spNqcWt3RTCKLJICW2jVBUZcEtn23HI4v2tnRTQo4/9uXV63MrDxXipaWHG7k1BKHlv4v34/TnVjb6dStq7aiznXzS9n9+3IvNacXILWtcr5yTihX5RI52acl7ldYMHm+L8lg1NI/4ZORwfiWySmpauhltnp2ZZQCAX/bktnBLCKLpICW2jWC1uy3fh/MrW7glRFOxJ7uMPO0GTHxpNd5fm6q+nr/xGBLTS1qwRcHxw64cVFkav1/HvrAKl87d1OjXDXWE+hSofpFZXIPbFmxvtmfLFaLKcGMWdpKV2PUpRcguqW3YxYPgwrc3NPl3WJWk35iI8Ea7psXuhM3R8gWxRj+zAm+vOhLUZ44WVmHEU8uRU+q/ny95bxPOfyMBcbOXYmdmaX2b2egsTsrF7Z/vgM3hwhO/7A/ot+g5UlCFDUdPNEHrgkd9nENwunE4XXj6t4P1usehhMXuRGmNrcHX+WV3LrYeI495fSAlthVQbXWgymLXHNuXU45Xlh1Wrd/WEFj8iKbDYnfi6o+24u9f7WqS689dm4pHf9jbJNduaoqrbXhr9VH19SvLUnDj/MQWbFHD+GFnNu77pnH6OaP45PN4CIegLcBw4jdWHsGm1GKsSynyf3IjYHe5sGR/HiwhE5NqLuU+8/tBfLU1M6Cr2J3GSuxdX+7Ehe80vWIp09Q1EKxK18VENp4INfLpFZjZzPdJj8PpQo3Nibnr0oL63K97jsPmcOG3PceD+tzS/aGzk+JjP+3DxqMnsDntBL7fkYPn/0z2+xn9OLv6oy244/MdsDqa9tnmnKPGj9FNGKVCUIfF3pxyfJOYhX//uLelm9Igbv98Bya8uLrB1/n3j/tw86fb1decc/xr0Z5WZYxvKUiJbQGSsspwy2eJmPzKWnybmIX0E77Dn8Y+vwqn6zbWvvLDLZi/MV0VFoRARAWMzHE1471p7GJSQiDf5mNSK6624uDxinpd/+3VR/FrkAJIKNCUXq2fk3IRN3spymu1ltaiKotp37pcvMHKyX9/PoCVhxq2Z2dTUGmxBz2mUwoq8fjiffUKL71s7iZ8utE4J33ehmO4/fMdeP7PQ0grqtK8J57zQEOpoxVFpLmUysT0Ujz83R68tNS/kNycGHXt19uy8OwfhwL6vHz/rvxyL5bsz1PHi5mHMSmrDOubwHjQ1IWlLA7FExvZeJ5YAMisp8fa5WrYeiOKltXXGN49NgoAUBKkVyoqwlsEXZ1ciDNfXI1KneG+uRBRMWJeqLM5ccUHm7Enu8zrXLuuDLe4f/tz67cOB8qXWzMx+tmVKPJRbE5VYkNQJhQtaomglPyKOiw/EJzxxOZwYf7GY15ryo4M35EEh/IqUFwd/J7CdXYnft+bhzs+3xH0ZwUZxTVesktbhJTYZiQ5rxKcc1z78VZsSStBQaUFT/12EJfO3YQl+83zNvUC4K2feSw2u7PL8fyfh1CrPFzNPSekFVXjlCeXmXp8HE5XyHgc/K3PdqcLFbUNWzjXpRSisNKCIU8s01hyFyfl4mhhlY9P+sYRwJ4Vl8/djMvf36y+ttiduPvLnfUOMa+1OXD9vG1Yf6R+QubB4xXYm1Ner88Giix01dmcON6I1UnnrnOHKMsb23+1NROTXl6LlYcKDD/z9O8HMfLpFfUSHBwhsLfm4RKnoWB0vLwOZzy3Cp9vyQTgHltmhZM2pZ7Aoh3ZAIB/fLcHP+7K9Wuo05NXXodDeZV4edlh2J0ulOmE4znLU7Dx6Al8sSUTd+uiE8StD3TeiVZCQq1NOE/JxpbSGvd4Oh5Ezu7x8jqkFAT2HK88VBBUSKO4X0/+eqBBRqE63f37cVcuth7z7Um49uOtuOvLnfX+TjOaOixXDScOQom1OpwY+/wqvzUaJr60Gld/tAWZxTWw2J0BzSVDn1yGh7/f43W8otaOrWm+wxR3ZJTi7FfWYsn+PM186nJxJGWVBWSA6trercQGK7BHhXuLoH//ehdKamxBPR+NiUgr6BDl3oHyYF4F9udW4MUl3kYn/RzYMcb9mWqD9JD/Lt6P5/8MzCDkj11KvuvKZG9jJ+cca5IL0QK11RqdKosd2xvZG3ntR1vxwMLdpuM6o7gGjy/eh3PnrFPDnedvPIZXlqVgcVKO4WfM5s3L5m7GrHeNU3p2ZpYibvZSPLLI+7kV8rwwRPyclGsqc5gx/c0EXPJe208nIiW2CTn92ZV4+LvdAIA1yYW4dO4m/LbX29tlsbvw8Hd7kFsWmBV2s7QoXf/JNnyxJVMVtJvT2wi4Y/kdLo4/TRbmO7/YiZFPr6j39a0Op99tE3JKa3HfN7tQVOV7Cwx/cs3/fj2AsS+sMpyQ/vfrAVz+vu8JweF04W9f7sINn2wD4LaWCh77aR9mvrPRdwP8XNsfBYryIYSetKJqrE0pwt+/rl9o6pJ9+diRWVrvCs2Xv78ZV324pV6fDQSrw4l/SILb377ciXMbsTqpeKbk0bBDyeG6/9vdhsVJFm53K2+BhrLKNGZKQCBFdlILq/D44n2asfXaTguuNOgzsZivPFiApfvzMfLpFbhtwXav8wDgtgU7MPuXAwCA8DD3KlwbRIGpYyeqNVVm//3jPox/cbXmN7WTlAcX5/gmMQtXf7RF4yW3BHg/RUiouP+/7z2uyY9tDG+/XZIohfeG+UlCrbTYkZTlHm/nzllnKgzpue+bpHpb8OVx+8WWjKA+a7G7dK+duEUyuD7wbRI+Tqj/ljTLDuRjU2pgynkwz1J5rc3rGbE7XUgtrDINCxU6SrSBJ/FIQRVKdMpcYaUFl8/djIo6Ox5fvM9ne4qrbdiTXY74NxMw8ukVGPfC6oDmYH1o7prkQtz4aSJu/mw7am3moad7c9wK0b6ccs3v3ZB6Atd+vBXP/3koYINQSbWx56ei1o77vtnltU2VkSdWIPrE5eJ+I4yWZ9ixLqVxolcq6tyG7NjoCHDOVSOwUVv1xmWn8trIwPfDrhx8oRgB/X2/Pw+aMJ7IBlbB6uRC3PP1LnyqjJn6zF6/7TmOzzal4+ekXMxZnlKPK/jGUxHdN4/+sBc3zE/0MmLK2J0uNd0uKavUr+E8r0JEHXjGdEGFBdd+vBXF1Vbc8fkO/LgrF8fL6/DDTrfSuiXNrUh3Vow1eqosDvz7x72GRnQzw84fe90y8297PbLzc38cwuebM1Cr5CuIivH/+Wkf7vsmyefvMiK/wvO8FVdbkVTY9mqqkBLbBOSW1WJXgQNVVgeWKAtLerHbE5GcZ25NFwtvfSqKigfFTIflnDfqlhMCT8iK8fuywp1VUhO0p+w/P+7DlDnrfCpx932ThJWHCrEvx/dC55DauCn1BOJmL9VUshR9VWYg1Czcno2Dx317QkQYUn1CwhxOl09l3W4iSD/920G8ulxbQVkvwNW3SusJaUwVVFgCClXmnGP+xmPNEsaSmF6KNYc9gos+1Lq81qYqAYFQZbFjjWTZFoqXKJq2Pb1EIyhml9bC6eKG3nt9mBkAfJuYhfkbj+GUJ5cZCoX6Yw0JA5OVkdXJhbjzix2aZ2h3dhkuemcjftyVq45XMT/IC5+e8jobHlIMc4np/u9tpOJpue+bJCRleYfjGaEvAiQMZPJvkvU/BobPNqVjT3Y5DuVVqkJboPOoEE6rLA7szy3HvxbtxTO/HVTft+tcGsl5lT63rRAeNBlZ2BX32Z8Ad9/XSbj2422wGYwlu9MFm8OFIwVVuP6TbXjy1wNe58TNXhq09V5eIwLJCZSx6BQ+vWd7+cECvLYixXBcf7Mt02do5Na0Yjy4cDduWxCYcm51OOFycezPLfd5XkWtHeNeWI13pJx6AHh1WQouemcjTn3K2ABbpywm0TpPLOccF7+7EdfN26Y5vmBzhrpPsF7Z90dFnd2wSn6lxY6PEtIM18bM4hrc8/UuVQHbcOSExpMvrzdinmsXGa5pW1qhu71fb8vyawh1KM9IldU9F5bX2vDP7/eoc+PK5AKsPFSIZ3/XeiKNjAACsY4t2JyBy9/f7LMI1A9HbPjbl41TR6BUUcRjIsPwTWIWnlHaHCUiNqRxrjdWim2mGhLOPvb5VRj3gjvP8pxX1+IF3XO44egJ/LzbXXFYXysFAIoUxVas+/Lj9vevd+Gxn4yNKHnlnjDbR37Yi5eWHsbjP+/HvA3HcCivccOjA406EjKXr6J7j/6wF6c/t0qJctwWsOFcHutfbMlAUlYZftyVo1GYwxQjbHmd7wi9Gz9NxC+7j+NFqa/8rd81BoalL7dm4oUlyai1u98LC7LY3okqK2b/vN9QvrhtwQ68v8eKWpsDtTZHyBYYDBZSYpuA3/fm4YO9WutLmCJ1+Xp2bQ4Xjp2oxmnPrAh6Wxgjr5HMgs0ZGP6/5WolNZeLN2gQf7AuFY8s2qP+Lu7H3sc5x/lvJATtKRPFVip9VG8VCpO/SUNWTL9NzALgrmTJOccTvxxQF/P316Xhr/O2Gl6Dc24aqmaUw7M+pQivrfBvybzry52YMmedqdfMbNL/JjELn2xI1yhSqvLlxxtRbXV4KaYWuxO/7z0Op4ur1vuCCgtumL8Nl7+/2dAQUlhpUb3gW9JK8MqyFHURBtwC1WVzN/m0ptYHXwIQ4C66cO3H2/DjrpyAxvr//bQf93y9CzmltRrBwepwYsXBfNygKxYVxhhmvrMB573uPaaLq6yIm70UyxShoLjaiqd+O4hXlqXA4eKG1ll9fzVkmxL5Wvd/m4SEIydUo8SXWzJwzUee8X2iygrOORbtNA6VAjwK19HC4MKCI8PdnyyodFu6/UVLAOYCoCx0hElabHZpLezK780qrlGV8B0ZpV75smU1NqTqwvrtikJSUWdHmfIc/bLnuHr/9d6WS+duwq0mXmibw4X4NxO8iqRplNgAvYTi2TTSxd9adRQjnlqOi9/diB0ZpfhOiQDQCy/LAsj9kqfNhoThWnQNNVPWam1OHDtRjWmvr1ePPf37ITywcLf6erHkAaqy2HHzZ8b32wybw4VPN6Xjig+2YJcP5SdHiX76fEsG7v16F1YcdN8vvcIkUoEE5Vb33z2UXNCdmaXYdqxEHT/puvSaGN1c9faqIw0uuvbGiiN4fcURjSdHoDdEPbBwN2a9u0n1Mn65NRNT5qzD4fxKNQw8Jipco6BVSYrDJj97jQqjXY3iQfpqaxb+2JeHBYo3v3O7SADu0FyZSINwYoEYiyIN55hiBHhpSTL+ZRCCacbve4/jpvmJ+HxzRkCFp4TC4nBx7M0uV49HhYch4UiRxrChXw/FnOEveixQ8iss+FwXESHn5urDlm0Ol2q4EG2To/NWJxdicZLxljs3zN+GBxbu1sgaEYoWlVPq+T3ltTasOOhtHNueXoL9ueV4e/VRzN94DC7OTVMgAo2UEJE8vvKjhfNBdkgEkgIlpz/IM7zctnBlnRHPhdn8KO75ikMFuF2JgtH/xrIaG5789YA6R/sysornyF+0jp6XliZj0c4cfK+k8wjWHylS27g/twKjnlmJt3WGu9YKKbFNwGl9O2pev736KH7c5RYQfU1uNodLFVxWHMxHYaW2gIwvJU0Ih2aniImrQFncJr+6FrPeCzy8NaWgUjNhv7nqKH7bm6cKt+J7v9uebZj3YTZpPffHIcTNXmr6vSJs0Jd1TUxGRt4vGbN5s8bm1Dz0X27NxB5p8ZJ5eelhjHhquWEYT4WBte6uL3cGFEInhAT9olhUZcGPu3JMK38KZv+yX/1bVC2UBZIHvk3CjfO34aOENIx+ZgV2ZpbiwYW7cfn7mzXnfZxwDP9atBff7chGQYX7N6YX1yBL8Y4ZFaw4+5W1mPTyWgDGi81HCWk4lFeJ/1u8368FNrWwCs/+flDJxypFRZ0d1VaH4W/2F+Im2vr44v246dNENRohr7zO0Ht6TMnb3JNTrhEcbA4X7v92t9f51VYHjp2oQZXF4eV5/n6nezx9vS0TgHeYv3gpK9f63yP3+Za0Yny2Kd2vZ8nsWgBQWeceF8/pLPtFVRYkHDmBpyXvo6edHKuTC02f3znLU/DmyiNYtCMbQ55Yqulfl4sjQiek3vaZf0+a0ySZS/bs6dd2ESK25rBHePl8SwYufFs7x102dxMuksL6nS6u9rXd6dJ8x1JFATTLRzcy6JQo+a76qpKyN7dGynfKLqnFtR9vNVS0whUDgFEUhln6hn5eCg9ACJINkL7m0E2pJ3xGWOg9sWZFfr7alonHF+9Htm57jdIaGzjn2HD0BB77aR/mbTiGijq7VySJmGOsDqdpvlxhpRWvKkpwfoUFjyzaoyr6Rm2stTmxKrkQ93/rFuLbRXk8rJtST+DSuZs0Rp4yRYmtsjjw6vLDuG7eNtz0aaKaYhAbFa6Zs/Qe27nr0jD9zQRsSSvGPV/tNFxP/CHmbaPcUbPUJNF/4t4vP1igGh/aRYZrIlGM8jplckpr1b4Qz72IRmoX5X7uNxw9gRqrQ52P9H3py1AnvJztlb6otTlRVGXBZ5sz8LuB4g54z3s5pbX416K92JZegheWJOMRnXGpqNKC11ekaNpRqazj+kiC6IgwL2XeK5xYuc5LSw/j1z25htEnx3zUBwjEQykr/lUWhxqqXVRlwctLk9WUFmEMFC30l68sFFVZuRHzfl55HeZvPAabw4V/fL8H93+bpMqSghvmJ+KKD7Zg7tpUvLIsBb+k2jHr3U1YtCMbRVUWdY77fe9xLNye5fd3Ap55XpatDuVVoFoZUxW1dvTv0g6A1sB61xf+8+yLq6zqMyRkawam8a4LT6hQXgOJZtx49ATKamxeaXRzlqfgu+3ZqmHRl8FQKLjVVoep3J9XXqdRhM95da36XMhRNKU1Ns39EDs3/LK7bewfHNHSDWiLnNa3k+b1XGkPyxU+wrtsTpfqRVt2oADLDhTg6ctHqe8/8sNevHfjeMPP+lsEhUVHCNNFVVY17MTudJlaRH/ZnYuUgirM35iOu88bomkP4JlcxGMmwtomDu6Gy87oq55nlhP3pZ/tG0TuhyzwnKiyoltslGqlExb/zWnFmu8EoMnnMJszrteFfvliuWKB/GV3Lu47fxgAt6cgPIypSoI/LHYnoiPCwBgD5xzvS9sZ/N/i/Zh+ak9cM2EAvk3Mwgt/JsPmdOGKsf3Uc8prbejeIVpzzZQCj3dJhKnIiodotwgBvW7eNnRSilB8uN6jZIu9yowUGsCzENocLticLnSI9kwhsrAiI/I61hwuxLN/HEJURBhumzwYQ3t2UL/zz315ePzikbj7q13ILq3FbefE4dqPt2H8oC7Yk12OB+KH4b+zRgJwCyY9OkSr1spA2J5RitdXHlENCh1jInDguYu17VQWrH/qCqSYKXDywjruhdXInHOZ+vqTDe58pMHdYgF4Kwc5ZbXoGBOhhhgafc+Pu3IwdXgPhDGmyS2Uv0fmq62ZePaPQ3j9r2fgnKHdvd43U0BOVFlxSJfmYHO48OwfB/HbnjzU2Z0Y1jPW8LPzNmgNNHKf1NmdXuFQmQZ5xHrMFCmL3QXOOZLzKzWeWBl/OlueTvCSvRo2h0sjwImxbJbf/MzvB+FwcuzKKsOSf5yH2OgIFFe573EXXe6ULOwKQd/m5Jj2htsb+dd525Dx6qUay7tQQOWpM6WgEiP7dELndpGGqRl6T3e4rgNcLq6GyBm1zeZw4ZnfD6pGK8F/ftyHn3fn4qy4rvjp/ik4WliFdpHhGNitvXqO3vNqJjS/vsJ4D1IG4Jfdx/EfKdxx7POr8Nq1p2vOO1FlRaeYSLy6LEVdP77+2yRERYRhULf2SCuqxm6pXyPCGH7bm4ff9uZhc9oJ9OwQjfvjhyE2OgJfG6w/yfmVquIEeEIaZc9pmcV9z3Zklqp58oBnfNfYnBjz7EocfnEWAPOoEfFcD97g39D5/Y5shIcx9OkUA8Bj4BWGExm9giEorbHhiy2Z+HqbW4nIL69TnxkGt3FaoPcA6pn6+nqM6d8JS/4xVVWYqq2efFLAnWf70He7MXNUH8Nr+KodIJTIdkqBpReWJOMFg+JKspA/++f9eFeRkXZlluKvBms751x9zh7/eT8SjpzA9JG91PdF6Kp+PEdHhHnlxZqFEwPAoz+4x7F+vr7grQ2mc3ihJMfJXmOL3anKQiK6BXCHb9/++Xbsy61A704xGuO7UKidTo63Vx3BpCGeNeG1FSmw2J149i+j1WOR4Qx2J8dHBkb3l5Ymw8WB9lERqiJfa3PgRJUV5bU2DO/d0eszS9LdY2H2LwfQr3MM8iosyJxzGf61aK96zq6sMqQWVhl+HpA8sXUOZBTXYPqbCQCAC0/rjZIaK/Zkl2OQMgdtzwiuANSVH27BpLhu+PH+c0zPOZRXieUH8tW12e504Xh5HRYmZuHRi0aYfs5oaxwxNwuZSV8IT0bOYR/yxDLDc6bMWYdzhnbHE5eOxI6MUtM0ILPvyauwwOZwYd6GY+jVMRo3Thpk2p5QhpTYJqB3x5h6fc7m8M6LlCvi/b43z1yJVQSGCJMgenFYb9T5YWc2/vvzASQ+cQH6dHa3OymrFIt25OCfFwzHv3/0CBS7DKyKqnKpu/BD3+3G4O7nqa8XbPYUpnh5aTIeiD8F3WI9gp6ZIi1bxAG3IH7Wy2vwYPwwPK4oNeIh/X5HNu4/fygGd/cI3LKQLefEMikjLTmI6r2x0e72yMUDTn9uFXp0iMLzV4zx+/m88jpMmbMOL101BrdOHoyDxys1gvOf+/Lw5748nBXXDU9JiqQcXl5S463EykYMoUj4Cw2MjY5ApcWhMbLszPSdt5hRXIORTy9Hu8hwlNXaNYvx8fI6wxDCH3Z5PBi/7D6OOrsTm1KLsebf5wMAPt2YjvVH3HvzCUSuj1iU16cU4b+zRsLmcGHq6+txyZg+mH6qR/AIBNkjXmVx4O3VR7F4Vw76dmmH924cZ6oYmRV3CWQPNzF+9SGk8p5wnu9xaTZOf/aPQ4iJDMPi+6f4/R7AHSUAKJ5ngwVJn9fTPioctTYnCist+HSTVmCdMmctiqUiLcdOBBb6KN+rGpvDK5dJ3OMTVVb8uCsHD5w/DD/vzsX4QV2xP7ccf+7Lw2Vn9IMR327PwtAesWrRKCMC9WjtyizF0gP5OO+UHuoxu9OlMQYJy5zDxDMsj9dNqScwa0xfnKh2CxKdlPBJ+doCIejrt+z4KOEY7j9/GMLDGA7kVqheQpv09bPe3YT9z8003Z+0sFLniQ1juGzuJjicHCsemYqhTy7D7ecMxgtXeuYqWRC3OV2qgiMjcvCOKPdHFKnbMnuGek5Dq9Az5snnk9mu28aitMaGYT219SV+SsqF3elSladaadzJK9OyA25j3lcGv1FQVGnVFA4T3kZh9Ku2OnC0zPi3CsUF0AqP/nIkjXIb9TyhG/cPxLuNqPpiSmlFVZp9s2XKam0aw/Hx8jp1LQmkGF1ieglunJ+IlY9MA+BR8IXhSRia5Ll0Z0YpdppsReKrIrjN6cL29BKsSjY3/P/ty50YP7CL+nr9kRO46O0N+N9lp2nCS2VOVFnh4kCfzjEoVyJyZLFJGJmsDqfmd/yy5zh6dNAap575/SBeuHI0TunlVsKMnGZpRdX4cL12311ZkZaZL8krstd45NMrsOyfUzGqXydEhHme/eNldWpNg8o6u0bBFaxKLsCKQ0Dfzh7Pm1gLZSU2PIyZGhDF8BVpWIC7r6//ZBOKq62mSrlAGA+NZJKL3tlo+nlx/ystdqySHED7c8vVuULcRv285XC6vCKB9OzILMXve4/jiOLFPaILf15xqAArDhWoz77N4cInG47h621Z6BBjrj4dMKgfUqaONeF8MR/7vnKAAc96si29BFd84DsH2Jcc+OmmdCxOysX4QV1arRJL4cRNgN7SHSg2h0udVM2QJxEZsZgUVFoMzwlTrfraB0dUy5PDj679eBt+SsrFVClnCXArkEcKqvDUb57FVAjdRsVH5O1eZG/fp5sy8JFuUpcX/KIqC/79w17U2ZyaEvyZxTVqyIgQqvQ5LjmldSiqsmDKq2u9ct+cyl56Kw4WqJV8A0Hex1AIyXqvWXG1LSBBRBSJ+DYxCyeqrIbJ/YDvYkx55XXIKa3FGys9XmZ50vOEE/sWSvQGgkBYsj8PFrtLnZBlpaWyzu5XkBX9bKR0y+iVkVP7uIWEVCXHcXd2mem9C5S5a1ORV2FBUlYZznttvakl0+w+/rJbO/aMFosvt2biiy0ZAQmIB49XeG2cbrG7vJTozOIavLLssBriJSy8csiyPicGcBdXkisqX35GX0RFhHl5YQFoFNhgkBXlxUm5Xnk/wsj29G8H8cbKI1i8Oxf/t3g//vL+Zvz7x31Yf+SEaSXV+RvTTYVzX+2uqLVji26bkb/O2+a1PY9ZH937tacqJOfcS5AFPKHrwhNbY3VgznJPmKKsxAiPXpUuXPONlUewWhHY5a0crLq59ZttWdhtkO7gdHGv4kjbM0pxKK8SRwqrVEOnEPbKamx44c9kdb4A/Bu+9IK3XOPA33Y6virRimu3N5iT9LmjpSZhypwDHRQjozy/B7vtS43NofFgi/BScW+ySmpQE+RObP6qc/tb940QRl95rnS6OOYsN/Z0A578QUFuWZ0awhpIPvSCzW5jl36XBTkM9qOEY5pQ5BqbUw2h1zN3XRoKKy04UlCFr7dlatJR1h4uwg3zE5FuYkDjnGNdSpFmTqiosyO1qBpP/nLAsBgW4FaaJr/qTn8Rv/lBKR9brKW/7c3DLzr5Qj+/bD1WohaUMqpWD7jrbuj3YNffD/GdvowrwssvG9XkIpLVVoehI0BMPUbrG+dcXT9k5diMHCkirsbmUJ+tQPf0NZORzMKoxWP49qqjWC2FuneWjIRmEVnyum11OPHrnlzD2hj/WrQXG5UtyYzyy+Vr2ZwudZ01iygBgIO6NZVzro6PKqsdv+7JRa3NiQmDuhh+XnYe6dmSVowHvg28UrGvc/fllKO42qpxKLU2yBMbQvzv1wOYOrynz3OeMgnz1J9z86RBePTHvbj9nME4c3A3dTJ4d00qPrplgnqu8DwwxlBcbdVMUnqySmpx8bvaHDPhLaizGectmvHZ5gzcM3Wo+tpic6JTjHtien3FEfyy5zgmD+uu7rsGAPFvJuDFq9weBCGv68MZi6utyDhYjbwKi7qnpcDB3YWi7g9iAgCg2cdQKG9i8ZM9soF4IjYcdSvEKQVVuOCtBLx1/TjD87JLzT1fd36xE707RXt5XQRCCfC372W7IPY4FOjzpMokaa7SYg+4YENFnR0PfJuEram16NXZ2+ij98gIY8bhfPd4PaVXB43w3RgY5TQDxgJmVHiYl9Jz5xfafM/+XdrheHkdnv8zGT/5CFkSmD3beu92vBJSNX+jO7rhlWUpSHzigoC215JzyTrFRCIqPCyoSAR/yLk3r684ooZ6CYSBT9y7xxe7c7llI5aZBwXw72kVQtX0U3ti/RG3YDL2hVUAoHr+zRBeOsHBvAo8Pnu/5pjDxdE9NtpLmD1eXoc/9uWpkTNpRdVIK6rG5Wf0xZj+nTVCmtiuwYj04hrYnS6N9/ClRK3w+cZKY+HpRJUVB3QV1GUF8JDyXj8l4ualpYdVY6BAX5BKD2MwNTL4Y2iPWK2nW39twNDDfFT3GSMlVoz9WCX0VBbY9du6+KPK4tAYX8TzP3ddGqIjwzHZIFTfjLIaG7rGRvldG/xVPzVCzO+ywj71tXWI8WGc1Bve8ivqMFRJFfCnxLpcnqKGwpMXaZC3bTY+zXh3TapqdJMVFb3ip+d2H9tI+SqIo6ZAca7OQ/JaGogxWqbG6sD6lKKg9juustjVsNLFSbl47Kd9uFyXCqUnjDEs3Z+PbSbGojWHizTKXSCI6stL/nEeIgy8uHpk5VuWBTIDLFJ25ktrDI/PWZ6C+84fpkkTAzz9WFBp0Yxz+XeaGalGP7vS3bY5l+HtVUfxycZ0fLU1sFxcPUKu2Xj0REBV+fVz1tUfbVVlx082pKvz4OVn9EVqYbWmiJov/u+nffjJpDCXGb7m3FXK89bNZOug1gB5YpuI20cFPyjyKiwoa6StSYqrrfh9b54qVIrJYFNqMV5a4m2hfODbJNw0PxFXS1VLA6FUKoxhZok0Q65cJwvqYgpzubgm5xIAEpUJXKyZvTppQ7cf+WEvnla8nfrQ6jo7NwyJrg/COyYXnApkX0o5XKfS4jDdusBMWBeTt5kCC7gtk1UWO3KC3FpnQNd2XvlnevTeo31SoaHKOofPPA89yw8WoMLKDQU4/e//KSkXhZUWZCtjrHenGFQHkRMr6Nkx2v9JOowMO+2jvQVF2RPVt3OMGp4PABkBhuMaEYhx5FBeRUD7Acqh653aRSIqIqxeXiAz9Hma+kIYolCXr/BKo3DWYOllkNKh37vTH0btMBP0f9+bh39+v8dLGBH3Vu8JNuP1FUdw4/zEeu33fctniV5KqYwoMtOzUwyOnahGmkGBmSOF5gIP4M6fDabCfBiDKpwPU3LgzUgtqsZ7a1K9juu9VqlKNI6mIr7ypwjxkwvwyFFARgzs1k7zuqLOrnqtAW2UyxsrjwSlxI9/cTVqrA6/2z3tMAm39cUGxXskC/F5FRYvz6UofGOE3cnV/Gern2iRz7dkeI3/jjGR+Dkp1ys0PhjkqBF/VZBlfJ0biEG9zu40LNSjX+P8YXW4cNikCq8ZFXV2NZdXRHrpveR6qq0OPPTdbtU4ZxQ6bGaINUNEhl3+/uag1wH5u4p8yCOB8Pu+PJz18hqvCD2z4mKBKNwCl4sjV1mX/O0h649AFFgAXpF+8vfKUXYxkeFeW7j5Qq/ARvkJlw6UbgbRRa0FUmKbiBmDIjG0h3ExFF8YxdLXh1JFGa60OPBRgnZiyC33FsqLqqyaIjOBIsKkau1O1UsWKLJwcP6b6/Hh+jQcPF6hPqgu7h3KKSaDkhorHE4XympsOCuuq+H19eX830qyBlQpOBCMPI7WIPf/84XYWuixmdriAS9cOdrodA01Ngfu/zZJk+tqhD6M9PFZI3G5ST6iQC+kyxtwV1rsqKuHl+ZElRV3nRunOWaUG/fy0sNqDjbnQMKRIozsY1wQwoxgLdUAvKqoAv77OowxjQHmWHHwz5ZAGHimDu9hes73O7JNK5MDwPBe3gpEn04xhoJQY9GnU4xhjtWYZ1eq4Vv+6BgTgT8ePjfo7+7R0XtR9pdnFAgvLzvsV9GTuXXBdsx4K8GrIrQvkrLKUGcLfi7xl7f8gSIg7sspxwVvbcA+SbCK697e5FNaqq0O1aNw7in+PZK9OsaoisL4QV3w9d8m4Z7zhpiery+8ZYTR9nNCodUbPQOhsEI717yx8oimCrteaRVKYqCRLJtSTwRl3AsU4WHxFar896lDcONZAw3f69LePRcKb70/T2xSVplX9EmN1YH//LQvKOWzOQgkXaik2mb4mwONJhLYHC5TZWKclK8r88C3u9WCPf62ihPI+7t2bheJRy40LyzUmJjl38vRDoFU7fWFMFrL4yg5r1KVY/UEqky6zy1p0J7r/gg0FFekSsjrEANwVlw308/E+kn58peiESjkiSUMmTDYWLnyhVHeQn1SbEulcLfXVxzRWIJ8hbPVl1qrI6DKozKigivgVkreWHlEk0frVPZknaQ85KP7dUK11Z2vxLk7lLms1oZ+JpZms21yGgPjxc8jTNxz3hC8e8M4jOjt2/tgxu7scnSIjsDofp01xwd1a+9VcVTPM78fqlcft48M97ug+hJ0nvn9kFeBoEDp0ykGY/p7qnoXVHh7kSstdjUHqNrqQEpBFWaNMa56aYbZggzAND/FyKOt305ET1iYVshtiCdWjKu+nb29i/+8YDgA7dYyRhjdp56don3u02jG1eP7a153NFEcwsNY0PmIeg48dzHaRwWvmPTu5H2v9jXQCg9A3aZFVvr8WcONcvou8TNufXlU/XH2EHOhyIw+BmMLAG6YOND0mXn+ijHqb59k8p39usSoAmrvTjGYNqIn+nc19wz647xTeqC42orxL6zSVFAWFZbjugdvODbLhRZVgPWeuUOKcTQ2QIX5/m93BxxuqSfIbSK9+N9lo9C5vbHhbtzALhojllDG7ps21PD85QcLvLaMCUbh8yeQB4K8RpjRx+DZN2Lq6+vVfGcAuO98z+/2ZTDUY3O6TPNvzUKEheHg6d8OeuXdBkJkeBjGm6xXjcnNZw/Cx7eeafhevrRGP6yr6F9fusVG4ZvELKQVVePSuZsatG+14ObPthtuddRYXDWuPzLnXOY17v7v4lM1r3t08I4Cq7I48Oo1p+NuE8Neez9zTEPnB4G+UGhrgpTYJuSlq8Zg+qm+c1wD4fZz4jSvjYRZPWZ79Am6x0Yh4bF4/O/S0xrSNJVam1MTAjp5aDevrYb0+PM655bVYkdmKWKiwnHVuH44lFeJSotd9XAXVlpQZ3Nq8mbrw+OzTsVNk4yt1WakFFSpe/8K5BzNu6cOwVXj++Pbe86ud7uqrQ4vS1tkeFi9vImBhNG2jwr3quZ32el9ccHI4KoAB4qsMJ/Sq4PGi2IU6lhaY1M37BZVvAMVWADg3RvG+fSe/PKgscfvuG7PxRG9O/j0egLu7VHkkKdg8/JkhCfW6LcODFAhMBozndtF1iscSf8ZfSVegQgtrmedO5VAC5DJ8+KNZw3Cfy4aoREc5q5LM/qYX4y8/fJzKX5/MF7AW84eXK+2mCGs/N1io3DOMK2H9KJRvf1+vm9n43F0ZlxXpLx4iaG3oXenaPz5j/Nw6el9TNekbrHRqrI5XDHoGRkYAuUUJaKgrNauidYQuV2x0eF46jLtmta/S7ugIzYuGdMHD884BYB3TtmPu9wGhoo69xprtv2UjD6NZcqw7qoByhdmFdONMPO4mhkme3WMxqWne5SshduzYXO61K1cGptR/fwroA3lx/vOwZXjvKOJ3rtxHLbMnuFlPJJD1eVc5wFd2yHj1Usb3J7ufsI0vzEowhnIWOWcY8qwHkh66sImLcozuFt7nN6/s+F7cpqNv/BtWQ6WjQV6VhwqwNO/HcQdUr5zIMaPhfec7TNsXp9+teyfU3H7Odo5+OLRnnly11MX+v1OQbRi5NPLavcrWzAKjOTUKqsdA7q2N40m9LemBBv63iXaeD4JRo4KNUiJbUJiIsMxwmRC8uVN07930ajemhLk6x+Lx6pHp/n87kU7vauTyozp3xlxPWJxy+SGl9WOP7Un6uxOTR7RmH6dcfPZ5tf2NeEIhKf2cH6lKshzDgxRlNhvtmWhxuZQi3nUh+snDsCD8adg/KDgveaiKI1ALvYicvLMwjRm6gTLS0839szoPWWR4WHoYqI0+Aq7vOx0Y4uwjJGyEBMZjrk3GW/rJLPjyQtUj3mgyL9tTP/O6BDt+V1i43WZ/bkVquVfLKC9OgVmQfz09om4anx/LwHN7DmSiwBVKgvF/NvOxB8Pn4sf7/MUaXrRJLw7LIxpcrID3frFCLFfYx8DRUO/H6kZsqJ5zYT+6NI+Eqf27lgvT6yvawPAFWP7aTwmDS3d369zDJ77yyiseGSq6TlbZ8/Aa9eeob6OigjDPy4Y7tMT/OHNE0zfkxlikBYSpTHAuN8f5cdoJ9M1NrLByr3MAMWY0bldpFefms21z0h7fhtVXAY8yrGRMtUxJhKn9umIj245E9dMGGD4+bOHdEOccv/EfdQL3XqPhS/8rRsZxbW4TRJOdz99Edb+53zTrelkwXLpP89TC5H1DiDUXgjuZpFAvjh7SHe1knIg3xEIZu0wqzobHsZw8WjvdaexQhT1dG7n7ndf0TC+uH7iAMy9cTweudBc+e/RIQrnj/AoTCKNYvzArujfpR0emn6K6WfbS2tDh+gIn8WhAqU+BudAQnNF07p3iMamx6cH/D1nDDBWSM0IYww9OkRj+5MXeCmfYqcIf+x66kK8eo1nbp4RwNZ4cm2FjjHev00fbdK5XaSqTAZCt9gor+eiSzvPvGTkNTVDKJp6Y5FejjeK3BBKqJHhKDoiDP+d5ZkbA40O8PV8OE2s74HKUaFIk8xWjLHPGWNFjLGD0rFujLHVjLFU5f+uynHGGJvLGEtjjO1njAUmWbQSzCypL181Bo9eOAKXjOmDf87QTqx6gUK/kEWFh5nuByvwF04qPHP1qVCrR+w3qRfUzRbp8YO6+FxM9JyosmqKQA1RLN8/JeXCYndpwg3NwtpknrrsNOx7Zib2PTMTr/91LADvSeSvZ2qFMn9GAwBqUa5JQ7qpE5jZPmXn6SYks3ASvUAREc5M9ycb0894gVr3n/PxxKUjzRuuYKTERoQxxEZH4LeHzkVXH2FpvTrFBORZkKm2OnBm73B8cPN49O4Ug6iIwIUGoVgaFfARvHTVGHSKicDnd05UvVFyP0eEMVNL5ym9OnjtXTdzdB+cMaCLRnHsFms8+bs9sZ6+O6FTps4MItVAVOs18naZCS8jenfANVLYb3dJcXj7+nHY+8xMxEZHIDKIe26GfluUh2ecgiE9PGH0PWKjgvaEAR7hgDGGO88dgpF9zJXEfl3aGXok9NOkPIaH9Qos9LSTgRAle6NvOGsg5t92Ju6PN/cw6OnaPgp7n52Jpf88D1//bZLPcwd29L9MD+/tvr+R4cxLmDLz1MjPgviNPTtG47eHPMYwYSDUT2N6L8P5I3pi6T/Pw5MjPPfqmctH4a5z4/Dp7RPx64NTEB0Rrn6HzCm9OuAyP5VZBfJnX7v2dK9wzb+e2V/9nklx3dAtNgoxkeFq/qeemaP6qBFDo/t1Vs/r2znGr4FHvF+fSKAw5vEqB4NRbrvAaHsiwF2vwrgNzDDdxV+6ihn+Pibe9/e7Z18yUmNgEbz+17EY2rMDHrlwBGaYRAfFRIZrlJ4Fd5yFf8w4RS3eNapvJ0we2k1jZHto+jB89bdJmvn6bz7ytgGt105e99Y/Fq85rz5KrD59wthz6bnZsdERqqFIj15umTjYIx/5K+IIeJTl3p1i0FOn2OmL+BkxpEcsenSI1hguekjPcCBjzUg5/f7vk9W/n/3LKIzu10l97gOhc7tIr7QGX/u+Auahu2IPWSPjjyzXVUiFs8Q8NkKZt/Xy57d3n43EJy7ArDF91dSV+bdN9Erl0ZPx6qV45MIRXk4SwYyBxuOxqaIvmoOm8sR+CWCW7thsAGs558MBrFVeA8AlAIYr/+4F8HETtSmkiAgPw78uHI6Pbz0Tj16kTdDXG1/1AywsjDVoAQU8oUeMMTw8/RRDAVkfDnzb5MH49PaJWP3oNCRJ4RbtIiOQVlStqbDImPdkLIgIY6ZChRn/d7FHCRvcTTthx0rKslkxLeGpWHTvZNwzdSg6t4/U5ArpFW5ZgGkXGY7BARQ+EdVpZU+dzHd/94QW6xc3M4FJ7w2IDAvzElJHK2FaRvsTTxnWHUN7dvAKAX0wfpjXue0jvftLhMSOG9jF0Do5bURPVegNxhIq6NmOqcWkZoz0H/aop1fHaPzy4BQA3gaZU3p1wP7nLtZcVzxLYQz4+YEpAee1mWEmpITrPLH6AkcL6xFmbmQtlcOAhOA3tGcsVj16Pt6+YZz6nlm4aH08saJokli89fvYto/S5lZHhIdpwq9XB2AQmnfrBOx55qKg2mXUF0v+ofXeykpQbx8GEJmZo73HpVxduV1kOGaO7oOuQRTH6NI+Ep1iIjG6X2evbYj0PH5WjN+Q/rMUo4jN4fLqUzPj0+ShHoFWPLsdoiMwbmAXNc9ZGLbCJQmuT6cYzL7E2yg2ul9nXNff8zzdOSUOEeFh6BYbpYl0GdazA769+2y1v2KjIgL2iv9lbD88cclI/PrgFNxw1iB8cPME1UDy/BWjcUov9987nrwAX0nGAaO5a/m/puKVa8bg1wen4ODzFwPwPKd9OscYGiBl45O6BkcHr6hMjOuGcQODj/4xU1b+fdEI07nMbMuY8DCGQd28rycXrRP3NpDiQwO6tve5ldjd5w3B/y49DQ/F+zZgj+jdwa8SOe/WMw1zv2Miw9EuytPWQd3b4z8zT1W9qmFhDIvuPQdzJM/gmYO74vwRPTVrrdl8CbidDO9Ic6usMOijNuqjxP53lvbZeuIS75QvvUL10S0TDJ9zoSQJZG+e/EzeOSUOo/t1wv7nZuLnB6aox+XdH8zSRmRevHK05lkW8qksw8qRZIFEGow3KI4VFsaQOecyZM65DHedOwSMsYAiGwQxkWG4c0qcxogTGx3h09gq1rAPbh6vkX+F0UQosaP6dsI3d7vnnqclY8yRwiq8c4PbadKnUwx+e+hcvHile8tIvewypGcsuirGx98eOhcJj8WjXZRvOfTcU7qr4zzS5HmNiWB487qxmmOBpJuEMk2ixHLONwLQlw+7EsBXyt9fAbhKOv41d5MIoAtjLDCzbCtAnms6RkeoypQ8YTLG8Mzlo1Srst3pwh1KSNTcm8YbxsuLLRgGdWuP7/8+GWcP6WZamEZPxquXYqIU+vnYxad6WTbfum4sFtwxUWOte/GqMbhoVG8M790R3TtE48H4YXjnhrGa6o2zpPAkozDfbrHuBcAsJFYfmx8ZznDr5EG47Iy+qmdJX15dVpbNtqZ47i+jcceoKNOiJ3ohR76XHWIiTHMHg/E+ysKlvLgt++dUU2VCLzxEhDMvi+OvD56L/c/N9Prsrw9OwRd3nQVAu2/e81eMNgzhM/PECoYbWO3HSHlOgVZZlA0mUVJfXjuhv9pewG3V1ue36Rfv7h2iMWFQV2TOucwr3NTIMtpOEdZfvvp0jB3YxSvfJhBjBQA178os5PD+84f5tDL7snx+cLNx6KORsiNvD3JWXDdcPLo33rvB+/NmhXvqo8T+84LhePWa07Hp8Rn4+9QhuHiUNiSxQ3SE5t5HhDNMlOaw9tER+PmBKVjyj/Nw7BVP3tmr13jmGsaY37bpoxeEUWqolKM4ql8nZM65TBXwRD5mXPf26BobhV8fnIIndApZeBjTPO8XnNbby1sqFxyJVvrSXw0AGVloiesRq/Es6OkYxXCJn3SAGSN74/ZzBuPlq0/3um9y5IB49r7/+2QMlba86d/FPbaunaC19Avv3t+lYj9mHj9A640zMqoJzhveQ21nrIHwOfem8fjizrNw4WlaASs8jOG+84dpBHBxna6Sx7lXpxjNfGb0LJ7W1+29iYkMV73+IpSzT6cYzdwk+Oz2iV7HYtWIAZMfC/c8KsJcdzx5Ac4Z1h3dYqMw96bxhhXn/3rmANxrUGDJbN2U8/um6HKihyuK/aO6arZhjCEqIgzHXrlUk4oiF60TfS1+o6wE6deQ7NJan5VWh/bsgL9PG6r2k5lxJdwk/FkmKiLMcD6MiggLyKskG//PVLyTIrzUn4G9uNqmWYOFYUGfixsexgJS/PTot3wCgLG6MGD9UOvfpR0enuFfFpGV7GE9O+CDm8fjnRvG4rkrRmPpP6eiU0wkzhzcFcdeuRTzbzsTf5EiHUS0Rj8fNVm6tI9SZVzAc59l2cAoPBhwG6iMuHfaMOx+2r9B84azjNNWbjxroGroFjDGEB7GMGWYZzx3jI7A7w+fi+QX3AatH+6djPduHOd1vQ7REejeIVo1Xggvs5iHLh7dB1OHe9fCcRsH3b/dxTnGDeyizlHymB07oLMmbaJL+yh1jPmKnGTSqPBV60IfZRhMVGQo0jA3RHD05pyLjbAKAIjVqT8AuUJOrnLMa9Msxti9cHtr0bt3byQkJDRZYxtKdXU1EhISkJ3tyZOc3AfYW+Qu8HIk5TASyj1boAwFEBbrxBIAdVY7pncuxvRZsUDZUWzYcFRz7YSEBHDOceWwSEwbYIc15wAeOBX4NdWG3dJ5naMZKqxape71ae2wYcMGr/ae15EjfFQUvk52t7d7VRqO7k1Dd8lSpr/fk2IAVADpxz1hJe1tbm9kTk4uUuze+56N6epC2r4dyK70DnEa2jkMN40EXt7uOfbpRe0BlCAhIQGlxe6QzAPJKbhrdBS+OORua9Yxz/3JzHV/59/GROHzg557X5xxCGd1sxr+dgAotXiE0lfOa4ceVWl4ZnIMXki0YEY/bvi5JybF4NTIPDx+Vgxe3+kp3KO/T7GRQI0dOLDXU8EvNfkAAGBIpzAUHd2NvGrjPJjdu7QbqO9I3Aa7knt7w6lROLN3OLZu3qi+f/6ACGzIdRsVyo/txbZ0z8R295goDOwYhsG2TGzYkOn1Xbu2b0U7XXhpft5xJCS4y96fHuPEMt1nJkTlIyGhAABwvMr7N/Ruz1BYqx2Dwzs6kK/U9GJOm+Z+WRyec7MO7oR+eh3WOQxp5Z7v2bRR2y99YhkKatzXOLB3NyrTtZN+SZF7DB1MPoKE2nTNewkJCZg9HrA42hnOLfKxK3pxXHphe+Qd9Wx7cPeYKAzpHI4BHcOAilQU5HvnY14xLBKDO4VprvXlrFhkVDjx/Db3GKrIStF85u+nR6GgliMpcQvuHhOFBcq4/veZ0ZpxeWhfEm4aGIaStD3Q7aqFvTs8+xnL311T6R0S9vnF7VFcx5FT5cL7e7x/w7bNm9AXwJ4d6Tg3FlhyTFtEblfiFpwo8BzLSE/HxXGRWKi8TtqeiE7RDFUANkm7QFnzU3H/2GjM22eFJfcwEk5o74PMhxe0R/uIQizQ/aa7x0RhdA+XV//VWt3eKGdNOQCA2y3qOXpzzrwL24EBuGdVrXrt9ArtfFVe5ckHyz16EAn5bqHh1tOi8O1h/3t9G80nlw2JRPtIoHf7MHywV9qntLoaqXnm9wIADuzejhmdGey5xbBXOtElmqFcmfvTj3q29ymrdo+xzMP7YM3xCDr56cmYd2F7RLNcJCQch8PpnkMO7t2N0rQwDAEwY1AE1mU7YLPUmq69ltoaCNu4v/W5zur+jcn79qAiPQx3jIrCV8r606nMPad3c7pfxw+IwF+GRRpes67GPYazUw8joeyo1/tmGF2rutrd58eS96Ggxns+27dzKxjc29Ja7e57VJTvLvTUKcp7vQWAl89th45RDFHhNZjRIwbJuxMheqST8k/P2bEl6Nk+DPN1xytLCgx/y+7tW5BX5B6jEztVQ+z2npCQgEgAb0xrh54Rx9EthqHU4m5j/vFcJCS4t7qStyBJy/AUG6qrVtJ4nO7np67SU6DKUZzp1Q75nkaGAXYXMKZ7OA6WOLFnx1ZEhTN17XcpY0zcT8GB/fvB87yFdX1/FRZ6npFOURy3jYrBrm2bUWkzl1kE8jl7trvnxmPl7nZ1jnCqn5sztR3WZtsxua9bVH4x0f38yOvOrm2b8fq0dugeU675viGdGPbt3Ob13defGokhncLx2k4LpvaPwKbj7vvQvwPD8WqOjAPaNT8hIQF/H8Gxp4tn7rfZbF6/7Vimt8ddPmf6wAik7PUUTNq0cQM6qOd5F72LArBhg2feSS9x3x+L1YrHJsYgv8aFKf0i8NBaT4GnoynJKG/vmVeirBVe7ZTlFZlpncvwp/x6QAT+NiYaRUd3o4BzjOgahqNlLq/fJegB4PkpMXh2q7uPPr+4PQ4UOzGqawkq00sxsGMYcqq0nz9+3DOGnMUZ2LZZW0vGWuuZA8IZ4OSK7JYfjgJFlk9JPoSY4iOoVKo1F+RmIiHBu+L034bbkHrYnWFZVVWt+Q1F0vdM7WExHbdZBn0sKCsrVT83sb0LvxqcY7Nava59YO9ulB9rveWRmlOJVeGcc8ZY0Bs3cc7nA+55feLEiTw+Pr6xm9ZoJCQkID4+HjutKUD6Mdw7bSj+O2skLngrASfqajHu9DGI1xVVyCiuAbYlwAUGw9+2YikAqO9Nn659e7f9KHDMIxWO6t8N29LdSuULV45Gzw7RPi36lwD4erb2OwAAqwyOSby0ewMAt1A3fNgwIDUFgwcNxNQJA4BE7YR12dmnIf6sQXC6OJ7ZqlWJnrp6AsYP7IqXt68G4N7eIT7eE/aTFp6OhJzDmHjGKFw5rj+WvLwGJ6qsmDB2DLDfvV9pbOduQMEJnDPhDEydyJCYUYIbJg7E0J4d1D4xwuZw4d8JywEAN18+AwAwHcDtf3EhPIy5PZnK/RdccN4knNKrIzpllwE7t6rH9d/Rc+d61JTUYtJZE3F57TEs2Z+PCRMmANu3olPnToiPPxdZJTXA5gSvdk099xxg4zr19eRzpuCQMx3bCzIwKG4IrtdZ0cZNsmHcC+77N103QPS/fOTejZrKm7MuiPf6nXGDByE+3u0NneJw4fVdyzH91F5Yl1KEaycMwIUzPKEpWSU1wBbtbxjapxsKlTF46el9sOxAAcacMhgbc9379XZsF625Xw6nC1izHI9eOALx8YplWWnPezeOQ/ypvTD2+VWe36S716dl7ECBshn8uZMnqeGFgvSIDKzNTsaZZ5yGeFGMZoX5+H4pJgtP/XbQ9H0AiO6fjwcX7sZNMydrvu94uyyszT6IQd3aq3vNvnbHBar1NT5jBxKOnEB8fDxOq7Tg+W1rAQA3XjYd/9vieTYe+et01RMSD2CB8ozee9V0twVXaf/0qVO8K78q782YPh1Y6f07v8rYgUMlJzC4e3u1iuwMady8v2cpxg/qgopaO9KLa/DFXWchXleYY58jFUj1KA8XzpiOndbDQJbbSBA3ZCgunH6KZx45/zxtnqnSxvPOORun9OqA2TcZ3mbNuZddpLRR95viDT4CAFblc+NPHYytecfQrYv7udNfFwAumqFcW5r3eudXAts2qeeMjeuFe+K6YcPRE7jtL57Q8HgA387WzhNGGI0l+dCgYTl4/Gd34bgOHTpgzMARwH7zbSxmnD9N43m84wrgvNfWIbesDhPHj8MsSxYuOb0P/rVoLwDgLxdNc3sfld997tlnaTzJkQkrUedw4PzzzlG9ApYeBVj3bRJyq7nps2BZtQaA1fQ3yrD1KwE4cP55kzGga3t0zSnHV8lbNJ9NYceAoykYPmQgrr3EO08SAD4+sg1p5aUYN3asV60BmTWjqmGxO9Vt3Iza99nwCny2KR3XXzIWKw4VAHvc93zONadj1pg+6NI+Cgmn1+C3ddvw/h4bAI5Thw3BkvSjOGtoT1x+Rj/sz61Qi7EBwC1/meHzPgBQ++GZy0ehqMqK60R0gG7NGTE0Disz3QpHp5gIzL1pPPLKLZhx9iBM5xx/vbAWg7vHYu4e4zktZttawOIWvgdLczsAvBCTiWd+P4SeffoBWW5h/uO/TcMbq46gW3v31idxA/rizgt64tTeHd01MJLcFuf+Xdph5ujeiI8fjVvKDmBM/854bUUKymvt+PjuaUrNA7egfLy8Ds9sXYew8Aj8Y8ZgXDSqN+74fAfKau24ZkJ/3HvVGe5zdb9d/1tWlu4Hct3+j17tw/F/N7pDPGusDmDdSsPPCCx2J7BuheacM2pseDFxNZ679kzNHHej9LkXE6X7arZuKMd//ueF7uiQVZ7fcfSlS9T7cO7Z5RjTrzOGPume61f930w4OXfPjco1PrplAuIVme1yAJdkluKv87YhJjra63stB/PxXcpuPHHJSLy6PMWrnV885PYwYs1STB3eA/HxwaW09Dhegdd3bkZkVBQe/usF6vGH1np+X/zkCe7Ijy1uJf+jv1/omZek+3Vf7WG1dsidX+zEoG7tcd2l0/F/Gz3XOmfMKYiX0p5mTAc+TjiGXh2jEX+mcSG5rJIaYGsCIsIYZkyfDvnJ2xQPzFmegrIamypXbqg6BGRlIjYqHPddPcOrmFdxtRXYuAaA2yNaUmPD1HPOwsg+nTA/NREoLsGZ48di6vCe+ORoIlBagvGjRyJerhSu/O5LLzgfh/Or8NrOzWgfG4v4eE9aTVGlBdjoXv8fu9G8MnJMegmWZiXhq79NwlUfbtG817VrN02fzkla6VW9OFoZN/N7FuDeb9wy83nnnG1YvLC10JxKbCFjrC/nPF8JFxYbGx4HINeGH6AcaxMIF3+H6AiEhzE19NUoVE6EVenz5wJGF0o7sm9HVYnVb9MTDAO6tjMN9QDcMfVpRdXY9dSFWKfsV9mjQ7QmTGzlI9PQPipcDTUJD2OYNqInNh49gYgwBoeLg0GbK/vaX8/QfM9d5w5Bvy7t1DL5904dipeXHVZDVjrGRKDG6rYWxkaHY8qwHpge4PYwYmGJ04WTGuVFDejaDrlldWq1RV/hdQDQuX0UUFILq8OFd28YhznXnoEjSqEqEeVmlBry/BWjNWFwL141Bn06x+C84T3x6aYMw9DXQLcjAYAVj0zDnOUpmLfhGB6f5ckbio0KV7cekMOeoyLCkPGqu9hRlcXuFdpiVFihW4cofHjzBNRYHbA4nFh2oABnDOjiaa9uBooID/MqqCS4cpw21NEolFsupBYV7t2eO6fEoU/nGE3Yuy9unTxY2U/R3FJ56el9kf7KpV7hkzdPGoThvTpif245Xlp6GBMGddH0zxd3ekKnY6R7Fx7G8O4N4/DID3sBmI8vffi2Ud9vmT1DU1BCj8jtvHnSIPTuFIOjR7T7HW57YgY6t4uExe5CRnG1GnqnvYbvapou3eA2Czv39xw1BiJdQd+Gy8/oiyX789HLZCsq+fxF905WqmlH4J6pgRdzeuqy00z3k9Rz/VkDVSUWAOpMivMIjELnRZujIsIw7zb3Xo+H86swb8Mxr4Jm+nsv5oIY6bqBFM0LQ+Brlxg3Iu1E5OUGW1johSvH4IUlhzBhcBef5wVSSGlM/854V6lkLFeJjesRq4ZlD+4ei7E9I+BwuZV1EQrIOXDV+P4N2k7rynH9TPds1Bfteu3aMzTKFmMMg5V9ckf07mC49sm9c1pfrYFvxsheeOb3Q7hh4kDUWh2IjghHXI9YfHjzBMxd6zaOx0SGqTUMKiUB+b+XjMQViozw8tXutIDXV7gVqeiIMM34FGtKnd2J/8x0x0GsfGQaCiotmrXBH2Ku790pGg+M9Vw/kHBicR/vkVISusVGma49gn6dYzRbO5kxtGes4f688n3Q/1ajnOZzT9EaZcRvMwpdv3h0H3x511mYNrynqsQCwMtXj8FaaR/xpKcu9FvEyAghZ/naXq5v53aaPFczeeQJaWvHzDmXqZEA/75oBN5ZcxScG1exfsCgloeMmNccJrm2Rrn8ADR50zLyvNi9g1uJFWHnV43rj63HStRwfREFb3ZvI8LDvFLhBGJcmNV0EUwe2h37nvVOHQO8x4TFx5oxc3Qf9O4UjcJKa5NVI28umlOJ/QPAHQDmKP//Lh1/mDG2CMDZACqksONWj35gPXnpaViclIOxBsnq9SkQIaN/bPt0isGD8cPqtQG8zOb/+rYkPzbzVNw3bSi6tI/CX88cgPAwhivH9VOtQB2iI3CqQcL8y1eNwXtrU5FfUYctaSVwurjPsvbhYUyzr909U4dgyindMapvJ+x++iJEhjPc/eUuAPW7l2v/c77pljgy7yj7jRpVeDbajmbqKT2wL6ccHaIjEBEehg7hYep2CEKZEhWpZ18yEnOWp+Ch6cNwx5Q4teJz99go3DbZnfd0/oieSHgs3lCJDXbfzwtO64V5G44hfoRH4Hn0ohF4aelhPDZzBO6ZalxgwyivRb/ovHjVGFwxtp8qtLhcHKP7ddIoQvrwZSO+/tskwz2FHzUoJS+PH6PJOUw3hgDgzevGorePEvNjTPbJ01/XqC2ThnRDprKx/Uyd4iy3VV8U66rx/bE3pxxfbs30eibeu3EcfttzXD0e1709MktqNVtECPp3aedzW5I6xVjRMSYSV43vj4SKVM37osBJ+yigW6yxEmNkdBO/GfAu6282RuuzVdbofp1wKK8y4POFIqI3uLx7wzi8du0Zmmd5WM9Y5Ja5Q8SipePyfpJGTBzc1WtfUAC4Z+pQ/GVsP698NjNO6dVByaMsQq20B3XHmAhUWRyYNKSbWkzPSPETv1E2wMy+ZKShIKc3SD37l1F4+reDmpw+UeXYV7GaYIpd9+wYjZzSOlXQFeNCHh+B6LOn9umIhfeY5xTXFznv2VeufIzSfjHO2zegWJyZAvbK1afjrLiuSFCiTADf/bDq0fNN3wPc20vpt3Ub0LW9qsS9q9uSqKLObQiTi6HJCrXDYFsYMT/p56/YqHDcNGkQ/nqmxyjZq1OMpoiQHqPfKub3h2cMR3eLx/MdiBGEMVavfWDX6aoPG+2/nvLirKD29934f9NNa3nojW1ijTW6OmNMNWqMH9RFNcjdcvZgzb7UZkYSf4g5wlcBx14do1FS4z+dQo8YI/+8YDhSi6rx5768eu2cEWyhRrE29jAxXsrG5Xm3nonPNmeoXsvrJg7AtYq8C3iMKr7aLZRsveezS/soPPuXUV41APy1Xa4Q/Q9dTvTzV4zBaytSsObf5+O3PcfxzpqjmNjH0zbhYAsPYqyGIk2ixDLGvoc7sqoHYywXwLNwK68/MsbuBpAF4Hrl9GUALgWQBqAWwF1N0aaWRsxR5w3vYRryJCao+lS0k7/jnxcMR7f2kbhl8uCgC7ecMaBz0J7g8DCmCodhYQzXKqEeQjgx87wM7NYeb143Fvd85c4BMdvDygzGGEYr28oIAevN68Zi4fYstWJvMAzr6d9SD7gLUshho7K18QoDj/WjF43ArDF9NIp8387tsPeZi9S+7hgTqQoQ108cqBbw6NEhCndOicN1E7XhM2ZVKhljePWa0zEhwH1vz4rr5mV9vmfq0KA8TAK9YiCUbkFYGPPy5AWixE4b0RPTpL3/nrhkJH5KyjU0eMiHArUw6gsdNDZXT+gPF+fqc2GEENzlwmPPXTEaz13hXfTlynH9NV7pH+47B3tzyk23c/JFrarE1n8pkLcqEAt6rKbYmvZ8M0NVMFEEgt8fOtcwisEMUYjLu2BamNf9W/Xo+aqHQHwukL1gF/79bNgcLpz+nCfsXQi7XuHePhB7FSckFKmREYB7rIhnNs5H6LIQNgOpABqju/fXTBhguPfrxv+bjpgo83EWzAj87p7JSEwvURU3YSiQn9ubJg3CgeOVXlv6NIT1j8W7Q079INpx3ZkDfFarFd5qcZtjGuDZ0CuxIlpJ7LkuIqs6RkfgnGG+jSm+OGNA56D2QRUFwc6S5id5uXYYyAzjB3bB2pQir3lYrFH++Ppvk3AwrwKvrzjiVfARAB65cAScLo7rzhyARCl8O1Dqsw+s3D+JT1yA9gZFyfR9+PmdE/F/P+03Ve4G+TCQ6OU3scb6a/uvD5rvGV9fenZ0F/P0tc1LRHhY0IZ0PeLzwRgCBGJe91fxXaCP7tMjG6eH9uyAV67WFh+UHauivWYGCcAt8y64Y6JhVMtd5xo7DMz49aEpyC2rg9PFMbhbey8j0M1nD1Lnjb9PG4q/TxuqyYf965kD8MH6tAat/aFAk7Sec26W1XSB/gB3SwkPNUU7QgExxnkAYVaMMcy9abxXJTrBkB6xKKk2D2WZObo3PlifhpmjegfkPTLij4fPq9fnjIiJDMeTl47EdD+bW//tvCFYc7gI45WKwH8+fJ7Xth2BMqh7e02oSlPQLkofiuf7MQoPY4b90cXE6yvv68gYM1RkfHHTJOMqfU2NrBgs/Wdg40gfThwI950/DPeZCLWyET7QaslNTWR4GG700ydhYQwrHpmKAV0DW3xleneKwcUBhkfryVA8psFU1tVzy6RBGNi1nVp9FQCevWI0MktqsDu73Hf8mUR9wpoCVdwX338OkvMr1X19A/m9boXcPaB6dYzBi1eOxsUmwo5MdES4xqDzyW1n1ns+Fpx3Sg+8sfIIAN9VcLXtcN+bQObSQL0evgRuAAH3NeAW6AZKwqbwCMjjoGNMJN43iG5pCIHmf10xtj+Kq2y47ZzBPs8T+xdPP9U9/mUl5oaJAw0/Y4bei7jgjomasGbRp7PG9KmXEibwVTnaiDunxCnbAnVRj8kyzSkGlevn3jQeRwur6m2UnzaiJ0b07ojXVxwx7IPO7SLxgrJFSUtgVvFdz4yRvbHrqQuDeTTw+KxT8fqKI/Xes7cpYIzh8VnG4bgAkK5Umjfb3iVQxPNvM/Du+4Mxhh/vOwdxPQJbR/XRfQ1hVL9O2HD0hF9P9wVBeFt90atjDHoFuE2cEf++aAQeiB/W4G0GW5rW3fo2iJEnT7D2375DhM4Y0MVvTkdzc+80/xb0KcN6aNp9uokS39KIXFGvXERFaLnsjMaZDFsrsmAkPOT+iAkm/jAA5EW/teV6CGG4OXnvxnFITC8NKF/QjLAw5lXsqXO7SEw/tRd2Z5f7jbC48LReWCPlbPnij4fPRbXFvxdNz8S4buq2Yt/9/WycPSR4L9Zt9awrUF8Dg8zYgV2w79mZGPv8KowNMG/wjb+OxXtrUzHRII9Z8OuDU7DiUEG9tlpqbISy80Ajel0bQngY02wtZMbw3h2w++mL1C1jhBI7Y2Qvr7oOwRIZHqbpG2EcsTqCF/ABz5wY7KwbER6mUWABYEy/zrh32lDMGtPHMPInNjpCsxVSfejTOQYpL84KKM81lGGMBWx8AoAH40/Bgwb76fbqFI2B3drhub8EZ9huDsT631BPrJCvbPUc44Hk7jcF/75oBM4f0dPrOXnpqjFqOH4oERbGWr0CC5AS2/QoM1eQkbKGBGs9JRqXT2+fiHkb09FV50END2PY/uQFXsdPVu7xs1G9TCDhxMEgeyci6Hnxy8zRfbxydRsLMV+JMMu3rx+LnZneuaIf33pmwEJ5MIVfzJD3BmxNdG4XiV8enIJTe3vSEubdOsE0J1ika/hi/KCuDVY0NHCOp9vl4+xrvIKu/NIuKjzkjLCBEK3bm1SkBfkqrNKQ7wLqL+B/fudZWJyUq9mru76EhTE82cRRT0BghZr0fHb7RNM8x9ZMdEQ4Nj0eQLXrZuTGswZqQlnN9k7f8/RFAZV9E/t8h1L/dY/1L9tFhocZ1ku4dbLvSA6iYZAS28SQGN12mHJKD0w5xVgADibXrS0TqBB69pBu2J5RWq9wYl+IvJT7zh/aoHC7tkqnZsx/OV0JoRXpEWZ5lnpvU1vhlrMH4adduY16Tb3Ha9aYvpg1JrQiQO5uVwr0Cj4svrWin2e6KFXruwUg+Ao+ue1MHJG2OzNj+sheuGpcPzx2sX5348AY1rMD/usjJLStcOGoxgnZJPwz51pttAFjDKf17YQp3bVVursG+DzcevZgDOjazm8aWnOx95mL2uT61FYgJbaJEUnTsQYFAAjiZOXTOybiaEEVqjP3+z85CITzNZACPCcbooJ3czFtRE9smT3DZ3XktszLV5+ubjdyUtEYYUetALMw+NMHdMab143FRUEoUheP7hNQ2HlMZLhX5WCCCDWW/2uqpohQMISFMcwYGTpGCLPaJURoQEpsE3P7OXFwujjunBJc5TGCaMt0ionExLhuSMhs3Ov+77LTEBke1ih5iG2NYDxDjcXJqsCetHDuTqE5CRRZX2HwTV3xnCAIgiAltsmJiggzraRKEETj0qtjjN88QIIgmoiTQHkVtNUweIIgiNYCzcAEQRAEQRAEQRBEq4GUWIIgCIIgGs5J5IklCIIgWhZSYgmCIAiCaDhCiSVlliAIgmhiSIklCIIgCIIgCIIgWg2kxBIEQRAE0XBEdWKCIAiCaGJIiSUIgiAIouFQODFBEATRTJASSxAEQRAEQRAEQbQaSIklCIIgCKJxYIw8sQRBEESTQ0osQRAEQRANh5RXgiAIopkgJZYgCIIgCIIgCIJoNZASSxAEQRBEw6HqxARBEEQzQUosQRAEQRANh6oTEwRBEM0EKbEEQRAEQRAEQRBEq4GUWIIgCIIgGg55YAmCIIhmImSUWMbYLMbYEcZYGmNsdku3hyAIgiCIIKBwYoIgCKKZCAklljEWDuBDAJcAGAXgJsbYqJZtFUEQBEEQBEEQBBFqRLR0AxQmAUjjnKcDAGNsEYArASS3aKsaisvV0i0g9FCfhB7UJ6EF9Ufo0Vr6RLTT5Wo9ba4vbf33tTaoP0IP6pPQw6hPGGu1VeVDRYntDyBHep0L4Gz9SYyxewHcq7ysZowdaYa21Yv2wKAYoKKl20F4sACdqU9CC+qT0IL6I/RoTX3CgLAIINz+2GP2lm5LU9Ka+uRkgPoj9KA+CT189UlpaPdVsdkboaLEBgTnfD6A+S3djkBgjO2q4XxiS7eD8EB9EnpQn4QW1B+hB/VJ6EF9ElpQf4Qe1CehR1vsk5DIiQVwHMBA6fUA5RhBEARBEARBEARBqISKErsTwHDG2BDGWBSAGwH80cJtIgiCIAiCIAiCIEKMkAgn5pw7GGMPA1gJIBzA55zzQy3crIbSKsKeTzKoT0IP6pPQgvoj9KA+CT2oT0IL6o/Qg/ok9GhzfcI47edGEARBEARBEARBtBJCJZyYIAiCIAiCIAiCIPxCSixBEARBEARBEATRaiAltglgjM1ijB1hjKUxxma3dHtOBhhjAxlj6xljyYyxQ4yxfynHn2OMHWeM7VX+XSp95gmlj44wxi5uuda3XRhjmYyxA8q936Uc68YYW80YS1X+76ocZ4yxuUqf7GeMTWjZ1rc9GGOnSs/CXsZYJWPsEXpOmhfG2OeMsSLG2EHpWNDPBWPsDuX8VMbYHS3xW9oCJv3xBmMsRbnnvzLGuijH4xhjddKzMk/6zJnKfJem9BlrgZ/TJjDpk6DnKZLHGg+TPvlB6o9Mxthe5Tg9J02MD7n35FlLOOf0rxH/wV2Y6hiAoQCiAOwDMKql29XW/wHoC2CC8ndHAEcBjALwHIDHDM4fpfRNNIAhSp+Ft/TvaGv/AGQC6KE79jqA2crfswG8pvx9KYDlABiAyQC2t3T72/I/Za4qADCYnpNmv/fTAEwAcFA6FtRzAaAbgHTl/67K311b+re1xn8m/TETQITy92tSf8TJ5+mus0PpI6b02SUt/dta6z+TPglqniJ5rOn7RPf+WwCeUf6m56Tp+8NM7j1p1hLyxDY+kwCkcc7TOec2AIsAXNnCbWrzcM7zOee7lb+rABwG0N/HR64EsIhzbuWcZwBIg7vviKbnSgBfKX9/BeAq6fjX3E0igC6Msb4t0L6ThQsAHOOcZ/k4h56TJoBzvhFAqe5wsM/FxQBWc85LOedlAFYDmNXkjW+DGPUH53wV59yhvEyEe/96U5Q+6cQ5T+RuyfBrePqQCBKTZ8QMs3mK5LFGxFefKN7U6wF87+sa9Jw0Hj7k3pNmLSEltvHpDyBHep0L38oU0cgwxuIAjAewXTn0sBI68bkIqwD1U3PBAaxijCUxxu5VjvXmnOcrfxcA6K38TX3SvNwIrcBBz0nLEuxzQX3TfPwNbg+GYAhjbA9jbANjbKpyrD/cfSCg/mgagpmn6BlpPqYCKOScp0rH6DlpJnRy70mzlpASS7QpGGMdAPwM4BHOeSWAjwEMAzAOQD7c4S5E83Ee53wCgEsAPMQYmya/qVhiaZ+vZoYxFgXgCgA/KYfoOQkh6LkIHRhj/wPgALBQOZQPYBDnfDyAfwP4jjHWqaXad5JB81TochO0RlF6TpoJA7lXpa2vJaTENj7HAQyUXg9QjhFNDGMsEu4HeSHn/BcA4JwXcs6dnHMXgE/hCYWkfmoGOOfHlf+LAPwK9/0vFGHCyv9FyunUJ83HJQB2c84LAXpOQoRgnwvqmyaGMXYngMsB3KIIg1BCVkuUv5PgzrkcAfe9l0OOqT8amXrMU/SMNAOMsQgA1wD4QRyj56R5MJJ7cRKtJaTENj47AQxnjA1RvB03AvijhdvU5lHyMRYAOMw5f1s6LudUXg1AVNX7A8CNjLFoxtgQAMPhLjZANBKMsVjGWEfxN9yFUg7Cfe9F9bs7APyu/P0HgNuVCnqTAVRIITFE46KxmtNzEhIE+1ysBDCTMdZVCaucqRwjGgHG2CwAjwO4gnNeKx3vyRgLV/4eCvczka70SSVjbLKyHt0OTx8SjUA95imSx5qHCwGkcM7VMGF6TpoeM7kXJ9FaEtHSDWhrcM4djLGH4R4A4QA+55wfauFmnQycC+A2AAeYUuIdwJMAbmKMjYM7nCITwH0AwDk/xBj7EUAy3KFiD3HOnc3c5rZObwC/uudZRAD4jnO+gjG2E8CPjLG7AWTBXQwCAJbBXT0vDUAtgLuav8ltH8WgcBGUZ0HhdXpOmg/G2PcA4gH0YIzlAngWwBwE8VxwzksZYy/CLagDwAuc80AL4RASJv3xBNzVblcrc1gi5/x+uCu0vsAYswNwAbhfuu8PAvgSQDu4c2jlPFoiCEz6JD7YeYrkscbDqE845wvgXV8BoOekOTCTe0+atYQpETIEQRAEQRAEQRAEEfJQODFBEARBEARBEATRami14cQ9evTgcXFxLd0MU2pqahAbG9vSzSAkqE9CD+qT0IL6I/SgPgk9qE9CC+qP0IP6pAVxuQCLxfM6OhoID2+1fdKjRw+sXLlyJefca+/aVqvExsXFYdeuXS3dDFMSEhIQHx/f0s0gJKhPQg/qk9CC+iP0oD4JPahPQgvqj9CD+qQFyc0FFi4EuncHioqA668HTjmlVfcJY6yH0fFWq8QSBEEQBEEQBEEQCpwDnTsDvXsDDkdLt6ZJoZxYgiAIgiAIgiCItkYbLuBLSixBEARBEARBEATRaiAlliAIgiAIgiAIorUje17bsBcWaKASyxjrwhhbzBhLYYwdZoydwxjrxhhbzRhLVf7vqpzLGGNzGWNpjLH9jLEJ0nXuUM5PZYzd0dAfRRAEQRAEQRAEQbRNGuqJfQ/ACs75SABjARwGMBvAWs75cABrldcAcAmA4cq/ewF8DACMsW4AngVwNoBJAJ4Vii9BEARBEARBEARRD9qwN7beSixjrDOAaQAWAADn3MY5LwdwJYCvlNO+AnCV8veVAL7mbhIBdGGM9QVwMYDVnPNSznkZgNUAvPYCIgiCIIhgWZNciLjZS1Flsbd0UwiCIAiCaCQa4okdAuAEgC8YY3sYY58xxmIB9Oac5yvnFADorfzdH0CO9Plc5ZjZcYIgCIJoEHPXpQIA0oqqW7glBEEQBNHEcH7S5MU2ZJ/YCAATAPyDc76dMfYePKHDAADOOWeMNdrdY4zdC3coMnr37o2EhITGunSjU11dHdLtOxmhPgk9qE9Ci7bYH9VVdQCApN27UZEe3sKtCZ622CetHeqT0IL6I/SgPmlBbDagRw/A5XL/n5kJ5Oe3yT5piBKbCyCXc75deb0YbiW2kDHWl3Oer4QLFynvHwcwUPr8AOXYcQDxuuMJRl/IOZ8PYD4ATJw4kcfHxxudFhIkJCQglNt3MkJ9EnpQn4QWbbE/3kveAlSUY/z4CThzcOsrt9AW+6S1Q30SWlB/hB7UJy1IZiawYgXQvz9QUgKcfjowcmSb7JN6hxNzzgsA5DDGTlUOXQAgGcAfAESF4TsA/K78/QeA25UqxZMBVChhxysBzGSMdVUKOs1UjhEEQRBtjHdWH8WFb29otu9jyv+8DYdUtSVcLo7/+2kf9uWUt3RTCIIgWicUThwQ/wCwkDEWBSAdwF1wK8Y/MsbuBpAF4Hrl3GUALgWQBqBWORec81LG2IsAdirnvcA5L21guwiCIIgQ5L21qc36fYy51di2u4y3LYprrPgpKRfrjxRh11MXtXRzCIIgWh+M+T+nDdAgJZZzvhfARIO3LjA4lwN4yOQ6nwP4vCFtIYhQYV9OOU7v3xlhYaE7iWSX1KJ/13YID+E2EkRjIIZ4GzZGhxRxs5filrMH4eWrT2/pphAnGQdyK/D1tky8du0ZIb3+EkSTIi92jLXpxa+h+8QSrRCrw4mKOtpuoinYnl6CKz/cgs82p7d0U7x4aUky4mYvRUGFBdPeWI/XVqS0dJOINkRqYRXiZi/FgdyKlm6KBqYEFLva8ELeknyTmKVWfna53Pd44fbs+l9Q7SZSQojguOvLHfgpKRclNbaWbgpBtCwnyXpHSuxJyE3zEzH2+VUt3Yw2wftrU5FaWKW+zqtwV0I9lFfZUk0y5bPNGQCg7pe59nBhSzanTTDxpdV4c+WRlm5GSLAj050F8sWWjBZuiQ7yxDYZnHM8/dtBXPHBZgCA1eFq8DUdiiLc3NFw6SeqYbE7m/dLTwKqrY5my0enZ5wgFOQJtA0/GKTEnoTszi5X/151qADrjxShoMKCp347ALuz4ULIyUKN1YG3Vh/FDfMT1WNhysThdDX9pLHiYEG9vKkR4e7H3mKnvm4oxdU2fLA+raWbgeS8SsTNXoqc0toWa0O/zu0AAEcko05LsPxAPranl6ivRVRhczyTJxvintbanMr/jgZf0+Fs/n6qstgx460NmP3z/mb/7tZIWY0NLy5Jhs2P0SK1sApjnl2Jp3472CztEiOnLaUDFldb8cC3SarxuS1TZ3Mirahl1482QRtWWvWQEnuSc+83Sbjri514+veD+DYxGxuPnmjpJrUahMfALi3kIse0OUIX7/82CR8nHAv6c0LwqJO8Dk4X11jLy2ttOF5e1/BGEs3CDzvd4ZtrWtC7/lNSDgC356UleWDhbo1hSYQT212hYbQ5UWVF3Oyl2Jxa3NJNaTAOnWGgzsCT6XC6ghoTop+aUw8R7dumGD8KKy0oo5BUU15dfhgLNmdg+cF8n+fllrnXkLWHi3ye11iINawtyfAfrEvD8oMF+GlXbks3pcn5x/e7ceHbG2F11D8iYuzzq+olF7VpQmTtawpIiW0Bam2OgAWYv325Ez/tymniFnm8Ff4sqyc7x8vrcN5r65BTWqt6reUCEuH19MRWWuzYk13WeA31gVggROhcpcWOYU8uw7wNnjzeqa+tx7lz1qmvLXYnKoO0BB8trMKhvJbPj0xML0FWSU29PnukoApL9uc1SjuWHchvssVVjMHm9jY+tHA3vt6WifyKOiw7UAAgcAHS1UxtFV4ZZwt4+IxIynI/519ty2zQdcprbfh973EAQEGFxUvwK6q0NFoYZ3mtDasOFXgd14+3Opu38Pnoj/sw5tnAd81r7jG8L6ccVRa3EhsR5haJzn5lLc5+ZW2ztqM+/LkvT5PO0lwIOcFfXwmjRkR487pGG9OI/OOuHMS/sb7RrhcsYv5qazn9ieklWH9Ea9zYkuY2IgUSjfH73uOGhvaKOjvV+ziJICW2mflkwzGMemYlbl2wHbll/kP/1qUU4f8WN32IU6QSYmqjcGKfLN6Vi9yyOvyUlKsqsXKF33BVmQjuun/7Yieu/mgrHM1w/606T+yJKisA92ItqNJ5Tq79eCvOeG4VjvoQmOpsTvy6J1cVnGe+sxGXzd3cqG13uTjyK4LzEN84PxHnv5EAAMgsrsH+3HIAwLlz1uH5Pw/5/OzF727Ew9/tqU9TvXhw4e4mW1yF8UQWdKa9vh7//nGv17lrDxdiV2bj7GK29EA+nvn9kMb4xQPczEbvxWsqRIi/I0Ss0WLeiGygYP/wd3vwr0V7kV1Si8mvrsWjP+xV39uTXYZJr6zFb4qSGwi7MksRN3spMoq9DT5vrDyCe79Jwm6doU0vbKpKizQn/rnPbQQKVDkV90cfEmp3ugznn9yy2nor6+W1Nlz54RY88G0SAG2ftIa18B/f78FF72zEs78fbHEDtMvF8fLSZM34EWHmEWEMX2zJwPIDvj23DUWMgsY0hDy+eD8yS+o/xhqKmL/amA6LG+cn4q4vduK/i/fj2IlqzXv+FHaH04V/LdqL6z7eiid+2Y9EJYKiuQyjIQ9VJyaaileXe4TYxioicaSgKuDwC7MiNFER7qHQGIU52jJORRCOCGOq0BDGjJTY4O7jLsU70xyCvVXJhRXzmvjfl0gtClXNfGej6TmvLj+MR3/Yh23HSkzPaSgfbziGc15d59OzmlFcg4paY69x/JsJuOKDLThRZcXx8jp8sSWz3m1pDqGmymLHd9uz/X6XkfEku7QWv+z2VmLu/moX/jpvW73b5NKFngO+91V/4c9kjVdf0BQeN6NrisfTHiKeWI8S67382p0uLNmfF9DYEkZQEQorPOEA1EifIwXV3h804dvELAAwNHCI9UH/bOsNA0JpMdq6yyjU2AihGIsw8OwS9+98aUkyZr6zUeN9SSmoxHmvra/3cyzadOxEjWm7AWBHRimmvr6uUXJ+m4KvtmX5LNR37EQ13ll9tEnnrNSiany6KQMPf7dbPVan3K/wMIbn/0zGAwt3m308YJwujk2pvtOemmJuqbQ4EDd7qWqUaS7UuV3pu4PHKzSyY2ZxDeJmL0WyskZXWx2456tdKKiwNGs768sPu3Lwr0VaQ7G//hNyal6FBd/vyFHl2mBSRjjnbbtOgq9FuQ1BSmwLUlxtw7wNxxq0sBRWWnDxuxvx/J/JAZ0vF6GRrVbRipBiVtjJ6nAGpXSX1dhw3bytyKtnXiXnHKuTC5s1v85M8ZERSma4pMTKsmiY6hGrXxvE/T/9uZV46LuGL/hGeBs8AtBiA6C42u3RLa3V5pIFEsq79nAhZryZ4Lew2JY0t3CeU2o+rqa/mYBL527yeZ1UpXhEu8hwv20TlNXY8NKSZBw87g6RNurjshobiqosKFHuhRm7s8tw24LtPn/vd9uzcfpzq/DkrwewPcO35zSsmXKxT1RZMfTJZfhWp1jL36pvwudbMgzDvoqrrUEX8TicX4lhTy4zjWIxmi9YgCH+NocLKw1CZhsbMW9EGSixH6xLw8Pf7cGqZI9C4nBxXPLeJq96BeLnGHmYs5QCXwO7tQu4XWJbkjDGvObtDtHuLeX1nleznNiIMIYTVVYkZXnGrVGosRHy79l49ASmvbEef+zLU58BeZ4WUSRrUwLLBT9RZUWNNEaYbtIzMiwAwCvLDiOntA6H8xs3dNdid+LLLRnYEGQtiuySWq+x3l7pIyNu/jQR761NbdDWessO5CNd8ZgZFVASc5n8/IvxIN/X/Io6v/OjLz7blI7bFuzAOh99Hqxycji/0q8Xr6jSrRQ2d6iqHE5cWmPD5e9vxmM/7VPfX5XsnrN+2e3Omf1jbx7WHC7Eu2uONms7G4JYBtXUjwDmapl+XdzzXDBF4eYsT8GwJ5e1XUW2LVU38wEpsS3Igwt3Y87yFKQUGC+M8qT6xC/GIcWliuCRlFmGGqsjqGIUsgAiBKqiSuPF5fzXEzDy6RUBX/vXPcexM7MM8zfWb7/UZQcK8Pevd+GLzcFv1+FycfywMzuo4gB/7svD2BdWqQqKGWLCiwhjarhZuDRZNFSZEN6iKosDS/c3TeiVfgEQC0iYyaSXmB6YZ1UNSdddX4Ty+uK/Px9AenGN3/ErvsOfsmukNMnCq+jHYOb59UeK8NnmDCxQxqSR8jD+xdWY9PJanPnSGp/X+s+P+7AptVgtfGLEk78eUP+utvg25tQnF3v5gfygiwtlK8rR4qRcTdSGRqE1Gft6I9isdzfiwrfNPftGLNyeBaeLY12KcaGYGiMlVvnf35h5e/VR3PdNkmooAdxGifpGFqxPKcLbq7wjX1RPbIT38pupGHzk31Fq4TicX4n//XZAc66YY4yiZ4oU5c5IUTajpNr97P3np32YovOci3nJyf0osZIn9tqPt+Laj7d5vecP8V2MAcn5bu/SweMVnogR6ZntGBMJACirCUw5O+vlNbjywy3qa/08HR7GDNeNphJzr/xgC577Mxl3fL4jqM9Ne2M9rtNFU7SPMjfIlSmKf0Pk9QcX7saMtzaYvm8zGNdGnvlzXl3nd370Rabimc8rt8DmcOGitzdg/wn38yK6Uz9OfbE/txyXvLcJ8zb6rlcgrlnZAENAMGxKPYHlB/I14cTCKCDy6gFpRwQuDOzu482VrgG467wIg1J90BsQ/CqxJnN5MLtrfLk1E4CRUb8NQOHERGNhdTgNBSvAo4CajS95Iv5+h3FxJ2F5Cg9jiH8zAeNfXG3alnkbtJO0PFGIcLH31qYafragMrjQFCFo1NfLLCbpMJPwLoHF7oTN4cKGoydw3mvrYLE7sfRAPv778wF8uC7wrU+E4Lo/17cSa+SJldsofq8vi+D29BKNoKy5fhPkYTldHG+s9FiP9QuAmoNm8Nl3Vh/FjVKlV8AzbvX4UjCdLo7PN2eYWrGFMOmvv0XOWiCL1eebMzSLo0VXjRkIbqFXc4kVwcxf5JKvhdiz7Utg/e2vnUJIDOb3PLBwN25dsN3nOfd8tQu/7pGrYir9xICvpcJELhOvrEyJbtzUBKjUyDil588II0+sONXfvRFeJnkri1sXbMdNnybWy1p/15c7MddgDrL68MSKMSpHCAgdVRQdEohbbvSbxXXkdh/Or/RZaK281tyA5CnkozOA6eY5sdZFRYSpBg9BrT2wqBoxd+ZXWDBHSb9hTJojmPd866vtetKKPCHW+n6NCA9DjdVgXPLgjV6B0JDtqA7na/ci9+VJFP1nlje7ObXYK985WCzK8xwpPZtirjR6furrAROPjYtzlNRYkVpUjU/2uxUoMR7096K42oqF27MMrycMiWuSCxE3eylWJxt7eMVvqfRjUGwsbluwAw8s3O2pd+DihsZKdUcEl/b5CDY/NK2oGl8pil2g2J0uzNtwDBe/uxFnvbwGdTYn/vn9HhT6kRd/3KmVZ/0ZxwQWuxNWh9NrHIu5QZZt/G1JFNnWtxpsw4qrDCmxTczVH27F6GdXoqjKgqskC7CMmUAWSGiE8AZFhDOflrBam0MVCPSfBbThPqGwV6xQVvzl6I58egWu+GAzXlqSjNyyOmSW1KgCTXEQXmmPF9G3YC2UzIgwpnoM5P6784udAHxbgm+Yn4hbPjNWHuz1WNj9LVZbjxXjw/UeA4be2y7usZGAZmTUuE1SfN5efVQVfoQhxEhQsjlceGFJsml1XjOBZsPRE5jw4mrszSlHZnGNKsiLRe5IQRWOmEQyvLAkGX9I+Utyn7hMhB1feKpRQ2mD3qOtvZYc8lqkW9SDLQDmryiRXpBpLNYcLsSjP3hC18TljxVV45VlnvlEFjrkoS8bZUqrjZ/H6z/ZFnioqdMTCWGEr3Dir7Zm+sxnE79BngtFLrgvgbuw0mI6Bo0Q80aUgSe2ThGoYiQl1mYwzwCeMVxroHRZFSVW7pdL3tukKbTGlfDEnUoOrK85y+ZUrqdbk/Q5aMJQITykMrUGfbwzsxRrJKWBc46tx7wNfOGMGYawintQFkAqiBF6YXlfTrlhyK04yyxaJRQIxIBltrbfumA7rvloq+nnAjFGi2dPrkQsPIdGnrOndJEFgSL6wGp34fvt7q3FhCNetFI/lv/z4z7879eDWJNc6KVgiVPFMyxyw/U0hrKTXVLrN59Xj2rw5FwtmicbDfUpTGKesDpceP7PQ4bRTZxztQCXzeFCcbUVV36wGc/+ccjnGnLsRDUW7chWx9HX27IwZ3mKmt5z2fub8Me+PJz9ylo8tLbG1Cj/uG4/ZjUySvdazwVvbcC5c9Z5eU/F7ZDrHsh7E/+6J9drbRDjtLFq04Qc8lzVhhVaUmKbGBEOtTAxG3tzyg3PMZLHNqcW48Wl3nmuf+7LwzUfeZRhoTCYCXUCo4W5SrIoyoJbsOEyVocTcbOXaiZ/0Zr6PjpiEqvVTTycczz3xyF8vyNbPZZSUIXoSI8CpQo7umvW2LlqhS+o0G4/EaXmBPtuseqJDQ+TcmIVL5g0YdudLry96ojPPNuc0lqvqnz2ehTW8hc6pRfwXl52WPudqic2MAFNhL87XRxz16aqwo/wLFkdLq+F0F+lT9Hf+s+9uuwwSmtsuOrDLYh/M0FdeOxOFzjnuPjdjbj4XfOQVNlDI8vbojm+7p0s8LlcXO1vplq6tefrF0nZ8yiMGwKjirlP/XYA201Ct/15LfTFPz7Z4Ds0LhDkvnC5OKwOp7oW6hUSWbmRqxPLhexKa23YYZDbuyOjFPuUitEAkJxXiQveSjCcLz2eWOOly2KgKIlRnVJQhX98v8fwc4Dvgku+jAhTX1/vcwzqFQCH+j3ez5sQqGT5w6L8pLSiasTNXqoKcOKyRpE+QuD2NW4ueW8TJry4GtfN26bsE216qjr2P9mYrhmj+uuLXMfIcOaldOv7prTGhuvmbcM9X+9Sj/229zg+MjB0hYcxVXCXv1OMu0CLRukxErI/Wu/tPRf3ZkdG0xWt05NRXKNWXraZhO7LiLWp1uYw9UI99dtBPPHL/qAjpPTrovi4/FiIOUF+fsQxI+X5+x05+Dkp+L1Pxdw5b8MxTaSDr3Ep5uZ7vt6Fs19Zq5nbxHwVES4MpMbPekOVHYvdiRlvJeC2BdrQ8f255Tjn1bWm0QSeFCXPeJcNFmG6uV88d0sP5OOLLZl4faV39NOCzRmY/mYCDh6vwEPf7cbEl9aokTG+iiM98fMBzP7lgBopd1RnvEs/4al/UWMHtgaYiqG/52YGmePldSiutqnpEgIxN8jyk4gE2ZtTjkd/2IdnfvcotdkltShX5KL6zh0hTRtWWvWQEttM+NpjMymrDJe+twl1Nic451iclItf9xzHd9uzvc79x/d7sDu7HGsPFyKtqBoWocT6yX0yUmLlvCfZshdo8Yfn/zyEX3bnqpOB7LVjUh5HfRCTWI2uGmRpjQ1fbs3EE79orbjREW7PhcXuUr9TbzV/YVsdLnx7A9KKqjH51bWY+vp6dW9W/RZDlRY7Xl+R4mXxky2G6hY7TChWnh+7J7scc9el4TXdAiILD1NfX48LdDlG8W8mGN0OL+Qqmf4UHH9GCZsPT6wRYpGU++aVZYdVobza6vDqH3/bP4jfYHO6MOPNBCw/kI8tacVeocuinxxO7vUdgLcSXCdZz+WFUnyfr/EpCy0OF1f712zLFr0SKyt2euu/bC0H3GPp28Rs3KAL3Ta6lhH6ELJXl9ev+MjsTbVq2J0cBfHkrwdw6lMr1H7UCxlmQoccmmexO3H9J8ZVkWXB98OENBw7UaNW2zT6HjOjnVHkBvMxsPMr6lTPiGoQVMbxMmk7EP3ve39tqvq+v7Etf3Z9SpG6N6I+PBiQPKhSf1sc2u8W+Z9izpafwznLU+B0cVgc3p5YPXIthmqLw6fBUb6va6V8ZP24LFa87XYnR4zO06w3fNxmEMqeVWJcsCuMMfVZveS9TWoF5WBCUo0UVqP7k+djCy85+iBQam0OjHl2pcbjbMS+nHK1EjPgLlB33mvrMfb5VRjx1HK12JbZTxa/79w563D6c6sMz9lw9AS+35ETdIEnWQl95veD6mt5DhTzn3iWP9uUrkY+mD0j//lpn8+qykaIubNMp/TdMD9RtZrr9TB9vnBRlRVFVe69lcX99KSqGN/gV3TG32BIzqvEyKdXqONtcZJnK7p3Vh9FfoUFOzPLDD8r5vaiSovqPdWEE+vmfr3cYzQnCiU0u7TWK3za11qTo0QXCfkjx882kRV1dqQVVeG2BdtRUm3F1rRiw3oV+v7yl2ajlwtUJVYap8KBIAw6cqTiNGnf3zbriaXqxERj4quAyzN/HEJyfiWS8yuw4egJPPbTPvy827eF8u6vduHCtzeoYXh+PbF+wq3kxTzQBe6LLZn494/7VK+o3AI1J1YSjUqqrV55iubtcU9G+vwkWRCSwzWFF7DW5pByp9zvVVnsyC6pRWGt+7hYCHLL6nC14kUUMrSY0F5ddhgfJRzDmmS3wJaUVYYVB/PV++RwutTFQSyqRgu1PmessfJpRj2zUv1b7rul+/PVCqsOpwu1NodPA0rc7KX4QdkfljGGGqvDb/+IsSYXG5q/MV1d/Mtr7eo1BbInVn+fjhRUqdbQ0hob0otr8Pji/bjls+1eFlfx3bV2JxZJeTXiN+qtyLKyL78VSOGtOl0OrT532Mvar+tbM4u+08U9SqyiZPuzBvsS1vfllKvWdqPzAvW6WB1OFNRw/O/Xg15tEvfaKFw3KjxMoyBo1k7p+feVGiAbi8Qz43S58L9fDyC7pBZ/7stDlcVumBPrcLow850NWHmoQHMdMY5lma53p2jN9z720z7ctmAH8srrvLxFD0rbgeif47dWH9W8L9ph/Nvcx8tqbLjry53YnV0OwLhfhAdVfqb1U4bwuIhTZE/svA3HsCe7TMqJDSyyw2iO+D+pAqqZEqIf46JCuc3h0oREA+5nVuaQgZHCLFzXrcR67sl3O7KRUVyDf+q25vCFUTSIkcBudEwex8Fus5NRXINqqwNvKkW+vtqaqRoyZK78cAumvbHea60Wa4aI2jGbV8SYCSS0Otg9ZeXzv96WhYQjbsOPrPCJcSjm6JeWHpaMdOZz0N1f7TJ9zwjx6BsZ7oXxxuZ04YFvk5BwpAgJR4q8xqLd6cKkl9fioYV71HHlMZAa35tUKZc6o7gGk15eE/Ce5Tt121Y99tM+VZEU9yjaIL0A8Kw3i3bm4HalAJjLxfHaihSkFlapsovTj4FPxlcBSnke3Hj0hGb/eHFlMR6OFvrewsvp4lhxsACbUovx3tpU3PzZdkx/M8Er+tBTaDGw2g7lujEuTpef8fwKC25bsF2dZ8zmljabE3uSQEpsM5FTam6xkieNYpO8MTOE0ObPE1vuRzF11kOJFby7JlX9nLCqCm+BPEe+vy4NLyxJ1mwfYYYQJPShcnLhpfNe81jTRDhwtdUhVbF0T1q3Ldihsbzpt6oAPBOZsO4eUKoUt492L37XfrwV93+7W1MQSEyYjDHMWZ6CpGzvUMmYSG2/GIUMPffHIc1rI0VkxcF8jHpmhaHVUD7/oe92475vkgAA/1q0F6OeWakJGzdCVEGuszkw+tmVqrBlhlAg9Nddo/S9kaVVFoKm67zNciimMFqYKZlinD8t5bsAnjxf/b2TjR5y6HAgHhyrzourbiFhcL2Ugkq8t1a7pcGe7HLD6r92p0vyxLrbd4aJ50T9jA9l5MoPt/isyinCu7/bnu2zGrFeMDAaa0bjNyoiTCOkyrdWbrbVh6Iu53WKvt+eUYqF27Nx3Sdb8Y/v9+DxxftVAT6MMXy/Ixtb0opRaXHgaGE1/vn9Ho2iLELZZNGlsNKKWz5LRFZJDTjnqKxzKN9Vov4GQ8UmgPFi9pyJ3633Whhds07NZfX8DouuPR4jk/DEau/rtmMlqnEz0EJfVRaHl7H+JynU01yJ1X5IjCG701uJDcTjYVYfIjxMO67sTo5tx0o06+WDC5N8XttqIKwaKYTGhiDP32YV/A8er1CVeBmbTkl59o9DuEuXXiBTUmN8fdX7aaIQBrO9iL9aE9uOlSApy52vbHO4vAw8In1HVviE8syYOwdV0/YAleac0lrNdkPpJ6rx2x7tXtdCATNS1sQz/MC3SVh+sAB3frETd36x0ysaScg4ayQvsGyctDqc+GOf+X7N32zLQlGVVbODwG97jmPIE0sNx7mR8U+0Qd1yKyIMi5Ny8U1ilsbIYdSCGpsTHycc0xTmE8PWK/LE4AJqRWODsS4rgrd/vgOPL97vpWSKNcVovMs4XBxdY6MAeDyhNofL6zkX61YghTEBbxlVzIkrDnq2SKuzO7EptVitBWNWN8LXutRqOYmqE5tvLEY0Kr6UWDG+SqptPst9G02oRp5Y4elJzqvEpXM3YfWj0/wqpvJWOIF4C42EGqvDhbu/2oUf7zsH7yh7lK1OLsS/LhyOXh1j0E2ZzLZnlGDWmD4A3EJxXrkFo/p10lzLKJzY7nSZ7p0qBIRqi8NLAdLn1n1jULhBCI8inE0o4foJTrTL7uTqwuxycczbcAzztJHBAGBoAdbzpa4ioNE5r604glqbE7lldTilVwfNe2YK2VIl3FGfV2xGtaJI+IsCEItBtVU7pkS0gdFYl3/T8fI6OJwuQ8OLWOzNZG+jPEL3+RyVFrtXgR2NEivneBo8Sy4Xx6VzN+GRC4dj1pi+GmHE5fIs7g4DYXLWu9770r6hbMCeOecyzfGjhVXqZ/0Jk4JAhUAjL3qtzYlfDh7XbNljRKm6T6j7tZF32MjLEx0RphuD7k3k9eF+vuYg+TkXfSPmIaHgZpXUol+XGABu5UOEk297YgYA972UQ4DfX5eK84b38KqKvCWtBBtTixEVzlRjVa3NqY5Rp4t77UMr/z4zha6izq4KbDKij/VKrsXuQkGFBZ3aRaB9lHspFn0gj6063eMrrieapH++31rtMaboPchmuD2x5uea5bTnl3vC5HdmlqpGx0qLHV3ba++FuL/nzlmH0br5XmAW+c0Y0zyzNofTa61cdqAAnHOsSi7ErsxSzBzdB2fFdQPgVqBlT/Cryw/j0QtHGFfN1W0XpVcK9NEhgsvf34x+nWOw9YkLkF9Rh6d/O4R3bxynjherw6XJCTebt83WX5vDY0A1wkghtztduOVT77BtfzUKbvrUk9Zwz3lDcOe5cZr3PcYKT1tEykRyfqXXPt6BznMz39mIOrsTmXMuwyvLDqtyyVXj+6PO5oSLc1UB8+Vx1PeRfp9teU4Q3S2v7a+vOIIFmzPQtb13gTL3ud7583OWp4Bz97X7K/uW5pbVokeHaMO8dbVitNQX8v6v6nf56KuyGrvabrVYoW5t4wC+2ZaJ6IhwXH/WQACeOd5It3E4OUqqrZp2pRVV49Q+HdWihjaHy+8YEr9n8tBuXt/l7kNpPdaNaX9GZv1aItryvo8dKcRv1ivevqIk2wykxBL1QRZ2AtlO4t5vkvD05aPMr2cwaQhBU7Zs2RwutIsKV/ez3JhaHNReWHPXpqJ/l3Y4c3BXvLXqiGFOpa/y5XLeW1GVFTd8koj1j8WreSlytbxrPt6K9BM1GkG/tMaGxYoXQBb89pkUxgKgenerrQ7NfQq0wI0oOrIptRhrDxeq10gtrMbrKxPU846qRY1c+I+y4PjykulzN/wVjgKAc15d63VMKOlGVl4j4UUW5gOteKzuLxdA/uV7a1INC5IB/j2xgFtgiAgH6nT5fmKsmXpiTQr6JOdV4qWlh7287HUmucNGi+RrK9x7Ns/+5QBmjemrUeIcLpcmH7SsxhZULo0sB1/xgacwm9E1vtuejSX7tVV0AxUCjQTcWpvDb+4S4HkuRX65UcVgvWIKuIU2eQsuzt33cv7GdMRKuWi+tl2QjQ3iJ+Qr46hKEQAdLpeqdMr9J4eDrTzk8azsz63Ay0uT1bC9807pgc3K1la5pbU4Km1vUicpsbU2p5pmIDhnzlpkvHqZz99hpqTf/GkiMktqccc5gzXHP9+Sgc+3ZCCMAenKtYURRzb6ZFVq+8GmKrFc+Yz5OPQI5trxox93d36xwzCsTihxRl5MURRGcN28bejZMVq5vgv5Fdr7VG1xgHOO4+V1XnOEMLyGm2ix4WFMI4fZndywvVaHC8/9cQj5FRZ8uikD794wDl9vy8Tu7HLEdW+vnvfJhnT069wOI3p39LqGLFBblbBo+bsfX7wPNw1zIV55zTnHD0q4fZ7ym99adRRrDhdi2f589FUMLykFVZq10SyFwKyGgU0yshhhNG8XVlqwQxfKCmjn43fXHPV6X+ZIYZXpuiWvfQXKb9crsIB/pVmMM3FP8srrNIZ1l4tj0itrUGVx4KHpwwA0LDWnVPJ26++rw+VSDbFm2yOK50muxCx7Eznn2JxWjNsW7MClp/dBr44xXtd4YOFuZM65TH22zCpH+4qmsDldar+LlJcU3dZLnHM8/bs72sujxJp7YktrbLjj8x0oqbGhXWQ46uxOpWBbR7X4o83pCjjKIzG9VPkdnt8XEcYgq5Li3gmDkb9ilfqQ+0B21BC/uVS3hj3+8371vhCtD1Jim4CkrFL8mmrD+LODD1N4cYl3RWKBkSArJv0IAyW2qMq9qLy8NBmn9+8ccBvSiqpx7cdbkTnnMi/LVo3Vge+2Z2P6yF4BXy+juAbF1VZ1IZQFVlHNzuXiapjQq1IBhcJKC+xOFyLCmM/cTkGVVKBkdXKhoUJlhNwmOUdH9moAnn395EXdl9Xwp6RcdIiJwGMzT0V5nT2gXCQjb1c7RRnIKa318mI4XRzLDuRrQpflfD0jAdQIvUXaDJvDpXrajTBa+PVjV4QbfrhXaxUVfWzWAjPl9pEf9hoeN/PEyn+vPVyIX/YcV0PDymvtiJu9FPNvO1Nzvl3yxI5/cTUGS0JxfbE6XF4RFkYe00Dzdspr7V5bKtTanD63sCmptuLzLRmqVyEqIgwZxTVeHkzAfI9g2YPAATWtQDbeFZqEYQLaMSP6WG8hz6+wqEYtWWA3EvrDmHtu/HRThnqsdyePIJlTVqvxsFnsTvWZNor2kLvosrker7tsHDSbnzKV6I6vthlv3eHibkFTFvTl8ZlRoe17cZ6v6sSCnNJazNtwDJef0VdzXH/PzMZXrc2J2OgIWKW2pZ+owfb0EkMlwldbXl2eYjim3N/v/h4zT2wY00Yi2RwuQwNQWa1Nk1sozwuZuqJRHyccw8Bu7byuIc9/NqcLaw8XqbsMiOu8WgLcd4379b7cCszWFZmTc7fNnr03TPbMrrTYDaOuaq0OzTyk56ekHFw0urfmmJnRT943VqQDmSFHKeixK0bIA7kV2GZSWT0QhLFAcFS3f67N6VKffSNDxwWDIrA2O3CltkQKQxf3QoxNh4tLBeSM759IexFzZrXVoYbLWuzuMSOqbq86VIirxvc3vM7x8jpVpjCTDTJLagyPC9QIEs7x/J+H8G2id0FQmRf+TMavSoi20Xp6+fuebbiEfLkzswxTTumhPp+l1baAozwEvtYw/bX0MpXD6cIp/1uuvtbX3HA4uV9HjVoQrMZ7nj7t6RX46NYJmH5q4HJtSEPhxERDSMoqw+/H7HgsyNxSfxgt2sKDGCYpsVanE0Ckqti6uHuh9Uf7qHDDvfxkXvgzGT/syjEsTOGLiS+tUUNsjCzQVkXxBqBWXAbcOcLD/7ccL101Bj06eIfq6ZHvUTDeZ30VZH/IVuIoP/nIX2zJxL6ccuzOLses0X2C+h5BjOIde2Dhbrxzw1jNe04X9yoyI2MJ8D4YbWFhhFF+j/Y63sf0xVCsDhf+uzAJB4u1bROCilkuUjDVSAHtWJMXbPk6ZoVF5MIzTs5VgU0feu6PN1amwHvDJzevLDusVsj2RXJ+hcbQY8bSA/lqGLmg1ub0qVysPVyk2Ue4a/tIr7xlgdGeg3o452p4rEyBD09sjdWJilo7OrePVMePfp6QozJkRcPIO9ylfZSXwh0V4bl3yw4UaN7LKK5Vt2TwxccJxzTK26lPrVD/XpyUixG9O2qU5UAZ8sQy/HPGKeprOXpCH60gogDEePZ1X39RhNUsnSAcqGff5nAhNlorYK85XIg1hwvx5V1neZ1fa3MiMpyZeu7keVNGKLG+IlXkR98mFdaTOefVdegYE5hYU1BpMbx38hpyMLfCNIVFYDQnifG5N6fcNGrJzKhRWecw9FxWWx0Y9uQyTB3ew/BziemlmPTyGs0xM+VTXD+QkNBam9NvYa+/fLDZ8P1AselyqL/W3Ru5r42qjceYpJmYIc8NXlFCTo8SG25yXbH/uEhvufgdT10Hi92pyWtmDGplaT3ylk1m66p+rtKjhhO7OFYc9K43oh+dn2/xGPYC1W3eWXMU90wdoq5ib60+ikt1hjF/yL9PH5moemKV1w4nR35FHXp2iEZEeJjf+crudJnmqguWHyxA3OyluHfaUK/36uxOPPfHIUz/vzaixOppw0psgws7McbCGWN7GGNLlNdDGGPbGWNpjLEfGGNRyvFo5XWa8n6cdI0nlONHGGMXN7RNLU33WHdIla/wufrw0hLvEu9in7Qi6bsmvbwWdTZnQCHMMnrB02hxFhawQPf/khFeUSMLvkbZMPjeJfvzYJMEHBG2ZnQdIYQEUyTLzMNkhtxef4o/ALUi6ZY088I6voiWvKyP/qDNm/Gn2O1VvtsfauXlACuaBoN+f8688jrDxVkodGY/KdiiY5ukQkZOnYfFH/J37c+tUMd+sMXXZAVRT3mtHd/v0FqVjbxRKw8VYuiTy/D8n4dQXG1F3OylAe+xWGt1eFWGlbHq7oUvZc5IYdTD4b2lBaCdo/R8uz0LY19Yhc83ZwRUaOMXKW/baEzERnt/vy9jk788cMC9n+1rJt4zAPh9bx4uetsgMT5A5D0vFyZm4R0lCkQ/vdz15U6MfHqFqtTvzSnHmP7GOaYCeYwdyK0IOBTe6nDhtRUpOKwLUQTMc8nE+hcMy5SCLGZ973BxjRHK7jT2xALmBbYCRa6If/Nn3vmkXm3TPT/ltTZ1z9JvErPw2948o4+ZklFcbei1Et7zTT6Ks8mfyy6pxdTX1xueJxQ3o1x7vQGxzmasVAOBzaOBVMvVK5LrUopM3zcq/tUuSHeM7InVK0gOp0ut6u2v7cITK0d8uQ3yngbZndxwz2sAOJwvbXPlxzh86+RBhsfF+DtRZTUstOQr1NZf2K5Mrc2pMSBknPDtIdbjK5JOrM0idaS0xoZzXl2HM19ag93ZZX7baXPygCL1AHNDWpvS8zj3CBKB7p3YSmmM6sT/AiBrV68BeIdzfgqAMgB3K8fvBlCmHH9HOQ+MsVEAbgQwGsAsAB8xxrwlkFZEN8Vj6Ct8rj4I658R+j3GTntmhU/vixHtorTD4Ylf9gf1+UCpMBCE/e172rNjjGYh625QQMV9neCVd8C9qPUyUYz94W/xkanSndsuMrChLjyxRvgL/w00pFoYD4L1ds4c5Qlhu8zEOmtWEl/PemXrBjNPrK9nwB/yfdplsiefjGyEEhWfAe/CEIEQzDriazH9YksmUhTB5+vELK9CVkbU2pw+t9jSC+G+uj8QYw/nQGy0t1Tpaz4UoXgvLEn2KsJixK4sT/8tNlDmow2eFyGAdTBoWyCY7XEr01hbaKUUVOG9tangnMNHyqvK4O6xAV/7Lx9sDnjPy+92ZOPjBGMjzFO6CuGC7gFEzABA384ej/XTvx1EtdVh6nFxOrnWE+twBRVpEwyBzudVFjuun7dNnbMEV364xbT4UyAsO1BgqKCfCNJ4Jlfk16Mqsbpnn3Pu1Qe1NqdpYTmjPNxuurXZ17oqPJlWh3s7LdP2Su000itjIoIT1OWwdn2UkN3l2RPc33ZFRqHNVrsTUToPrpmhe39uufq3fos2PZeMMV5bRX+ZrQW+PLnBbLUkCmsJAqmzIOPLuOTiXLNfrVhjK+rseOLnA363iLQ7XUH9FiO4z52yWxl6IaJNaehaGqTEMsYGALgMwGfKawZgBoDFyilfAbhK+ftK5TWU9y9Qzr8SwCLOuZVzngEgDcCkhrSrpemhWKKf1W2d0lAuPT24UNRglVimC3n8cVdgnp5gMdrux2J3IqO4Bk6dxV3QuV2EuuDef/4w9DIJ2auzO4P2qm5PL0FJjRVxPQIXBGWC3TdQJsJPGFTc7KXYl1Ouhlob8crS+m/CLiOExECKTwk6REcgUslBGz+oS8A5Jb5yNAHPlkmNiTyuAlGG8yqMPYd6hVzmzilxQbcrWI6Xu4WHtMIqzfZEZtTanT4V72C25gjEC+10ccPx6m8v3Ppi5JnSb20FeIS9YT3r95wHSnG11TSE1KzaqRlWhwscwPRTe/o8z2yPSTN2BGAoANxF/oLFLEpGj17ZrayzmyqxdhfXGLZqbU6fuf71NVQAgSuxRwqqsCOzFPN0xQMDTTMwo9bmMJwfT1Q1XmSXuM96T6rV4fJSuOqkfHE9eiX4nzNOwe6nL9Ic6+kjvF4YcW0OFxZu1+ZynhXX1dMuae4wmkeC9cTKW+vo+/tElVVVuF7yUaMEcKf3JGVpnyWLwxlwuL5cBOsTEw+hwCxMXoTR6g3kgRCM4ldrd2iMGRnFQXpifURROV0cm1M9xiA5vetIYZVpRIHA0RhKbFvS82RPrHjdRmloTuy7AB4HIEr8dQdQzjkXIzAXgMho7w8gBwA45w7GWIVyfn8Annru2s9oYIzdC+BeAOjduzcSEhIa2PymoaTO/TDVx2Pji4JC7/1NfVFaFVzpcH0YYUQY0MB5wZDyWjs++WUtTu3mEXS/X5WIBQdtuH5EJIrKvL80IzsPqHBbFEeF52NnhfG9zc0vQpUtuAf2vq+2uxfpOv95w0YEo/Tpsdn9LzwfL92OvBrz71ibElx+shl19VDGI+BEyQn399dWVSL9qHm45f+zd9VhUhx5+62xdYPFbXF3AgQILBCD6MX14nLxixK5XPTCRU5yl1ySL+7uJBAILCG4u8PiLrvL+sz090d39VRXV8vMzrKzS73Pw8NsT093dZf99P2xYEs4iFAbBcgXL1nqfBKDLfuORn2P6sNi5biqKjrDih1+W6K+Y7cRB0tXrMauw9b3X78pEsY6IFfBkoPWhhU3An5VdRAlh6Nbq+KNitJjpmPbd6p946kyfxdPvPDFb/hsvfh9N08Owc6B4SUAu5zc+oaa41hZYh85cHi/c+1tFm5SIGJFTuioq/OUCmM//DprLrZur0Z2EkGjZIItDKHV4rVbcag0MvYOFZdi+25rpS6JhBBtL3dv5MHaw+7XnRnz7HNlY0GbDA8OlFVj1lxzGPPm3bGlooiwbMUqJB9ch72lxud94J1fTf6oquogFi9bBgB48KRkPL8w8t4Ld+zC5GmRub5zxzYUFBhz8v1V1tEiXkUdh78Lnlcpj4SwfzQlEgWxdrMglzhYCSveASdsKjQb6zfvU+/txqN+4f+MERqLl61ERdBeJri6RwAfrKnCrqPloMVmnIzva5aLxxtPcmQHXmZetd66JA2P3+cuRGlF5H0s2RCdk8NOsQ8rwM5dkXrAq9ZbK/QiubSktBwLlyxz3ZaMAFDCve6dR8rxy68zTF70eomKCqBxY7U2YFYWcOgQUFCAY8eOJazeFCtiVmIJIWcD2K8oymJCSH7cWmQDRVHeAPAGAAwaNEjJzz8ut40aobCC+2b+FPfrpmc3Ava7Fw4rQsZaXNHC6/HUSn4kADy3oALf3T4cgFpupCipKYCd+HpTUAs/MgpZqdmNkde+EbB2LfJHjsCMI6uxeN8u03W3FBOUcPF3b1w9EDcz4aAA8MeT22HB1sPwez162Y7LRvbCAq5IO4+LB7bGFy5zEd0gDIJOTdOw7VCppTI8udCsOHRskoYbRnRwrP0ZDWLRxbPSU9CieQ6wZxea5jbCwH55wHIxUVJd4+8Lo/Nk8JucGwzo3R0frTOPoaRAAKi0FoiaZiS5DkHMbNIC2GrPQMmiRbsOOLbG2rjQtl17YIOaf9k0PQAcrBkhnUIIWrdqCex038Z4Iyc7CzhqVPyyc5sAu/egS9uWWLrfveAXLZYdTQIgHjx9O7bC2sPW985JSzIYPwt2qHO/W/s2mLN7q9XPkNe2NVbc2AV9nvjFVRtr0y5/xtA++GbTYsfzhvfMQ6+yal0I/8ts1ejaNCMJPz8wGvuLK3UPzKFwCoCIMlQR8iAzpzGwT2zAa5KdjkOC8MrOTdOxcb9Yve3WrgWOhg6ZSgNZIbdNR2BZxFN3/fD2BtKcaPH1bcMwdc0+vDlrC7r37gfMNipHFQgAiM0be9fYzkjxe3G0rAqv/7YFr62oRP7Q/uifGgBmRaI5fthinvsK8aBbj17A4sUYMWQgnl8YKRE2b08Yv+2MWGW6de6I/JEdgcmT9GMDu7bDon1ipSQnIxVHKkvRt/8AYPZsw3fd27fGon2qwvrWqsh8ymjUFNhuNBbmpKcg1neTnNUY2GU0AlXVQOzp2KWbamBcJQ63f+fakzCySxN88tjPCIYVZCT7XKUhnDpqODBrmuN5dtiV0h5ApF3fbXa/1nft1Qdk5VIA6m+KlACA+NVYbdmyFbBd7e/M3ObAVvE62b9tjil9zuMPoHvPXsAid7JHz9aN9NI/LHYk5eGGEe2jbHkCYvVq4PffgZYtgaIi9f+TT0ZBQQESVW+KFTWJ2RsO4FxCSCGAT6GGEf8bQDYhhCrHrQFQTWMXgDYAoH2fBeAQe1zwm3oJr4fg0q7u8oIo3IQ/VURpPXdDumAHqxDWLs3SDaE+PFzwOABQc4coKHtmMKwIwzh3HC7Tw1ECXo9l20QhNYO0gvf8scn3jES35pE6gX3bZOPywWLyBAo2zDUz2YdRXezD/JxQHVKwaf8x9GiZFdXv2uemo3lWbDm8ImS6ZPTswIViBrwevf5aks9jYJg83miemawzYItwPCJqMlPE4aJ2ObFeD8G0+0bhz6d2sb3261rJn2jTBNbsLoaiwFSnlILNFXbTfT1a2JMIBcOKZQ6dG5KX2gINP82xyKePFzYdiChJ5/RtafiuRVYKZj6Qj9Y56jhN49axzGSfkLgm2yEMOcnvQWZydKHKLPgQ61jD+V++vL/rcwkBrhSQ1fRomYkkn9fQTzyhWFUobEtAlsXMQ5b0yi4vLy3JG9Vz8znefVpHt4ab7h/wIeD1oDqkCMnKapJne3KHxvhTfkdcNzwioH88f7ur+prhsKKHarIcDulJPpOMISJPo2NdBLqPi0JBc9PF+5soLDW1BjGFbC6mG/A5vzwqg2FbcrrR3ZrC6yForuWEuw19Z8OJ6bpCa+a6xaPfiBVrEfi5cPVbCwypNKJ6wDXBB/MiHnY7Q1J2qvn9qzny7uVdq7FlxcVR79FQnws1UGIVRXlYUZTWiqLkQSVmmq4oypUAZgC4SDvtGgDfaZ+/1/6G9v10RR0x3wO4TGMvbg+gM4AFsbYrUZAZpZzkRvivrZwyK+RZkIX4vR58ceswS4Wha3N7IVcEp/yKdXtLdPbOgNeDVO19uVG+RPliNGSEEtAEvB7L5zX8jrlWo7SAUOCMBS2zkjGsY2PX56cEvPBa1LBzQrfmGVjK5S21tFH+WAxpb2yj3+sBlVsCPo8wF9EO53eKXfDmMXvCGCErbW2jPZNL7dYYQDH34TFY8MhYZCb7cfkQ64LrhRPPwohOammNaIjEAOjMmO0FOd8pfq+B2MmNHJDpkICmKNZMlE7KWG3h1SsH6ERAjdLEbWjbqOZ1f1P8XgMx2pVDjEpabkYA7Rqn6UoWT4CVnuwTKvqOSqwN8RvFraOsBd7WOeqz6zWoo5B5WjIETdHk5h4sqRIS2/3vStVYk8xc65AgF3uThUcVMCqxrJJAS+r845K+GN7JuJalJfkcy6Wx4Nm2uzsYd5zg9RB9fxGRlbkl3BssMNpSAiV2/1pYeNgVS3VIidSm9TPvJ0tgsBOVAKNjSwTKYi5S0K3W8lIB01lG4PgYx3LTkyxrlVNUVEdyYt++dpDlec21XOF0l3tGki9iZLlrTCcUTjwL7XPTbX/D15SPBs0y42ckjxYzN1hHHGYLxl1ReTVe/GW96+uLxi5Qt0bWuKIBK6084s+eAjwE4F5CyCaoOa9vacffAtBYO34vgAkAoCjKagCfA1gDYDKA2xVFOb7aWi3AaVE9q3cLfH/HcP1vN3H48VZih7Q3b3YsjpZVYbDgHLu99K/n9MD710fPy+W2bInPQ+DxEH3za98ksoj3b5utf2Y9CyLBim7GVMBplpXkSiEN+Dw61X11SImbEhtWFPRrk+36/FS/N+YF1+clJm+UlWWSh58bp36fR38HAa/HlTDNIiVKVkk7eD3ENdtzrDi/X0vTsRcvVuv2+r0EvVtnCY07VqHiLbJS0Fh7906eNDqOo1ViCzWimSYZYoKVoKH0kII3rh6It64ZhOcv7GM4jxoo0gI+tMpOwc0jO1gasqasFns3RFb0aIw3bsGT1A1sF4kcaWRRAiaasWMlBPHETTwZC+1jOnd5L0x6ks+gKFCI3tsXt56sf3ajPIq8jLfld8Sv943SvfuDtPfEMnU61V29+uS8qNpBsb+kwmS8TQ14de+cz+tB4cSz0Cgt4MjAziPToMRGPl89VI1GOKtPC5zTxziXU/xe+LR3LyoRBQB/6N8K//dHVTHZW1yBJJ8H/7q0H8b3bl5jA42HRDyZP6+KMMo+fnYP13vD17cNwzmCNYo+F2tk3FMkrpPLQ1EiBE7sGLKaAzzsPLG0/0V1zn0egvtOM0eniGq6e4nYSGcHds8T1Q4V4dd7RwlLABrax7Bsj+7a1LL8FR3nfGlDu3JZ1EhK91x+P+YxYVw3jO0WW+3T5haEXKd0zrWsVSzCdcPz0CFG0kwRkiwM5VuiKPljqcRGYcRKaLBKrCyx4wxFUQoURTlb+7xFUZTBiqJ0UhTlYkVRKrXjFdrfnbTvtzC/f1ZRlI6KonRVFOXneLSprpHpoMTmpPnRrlFkYlOGV7tFqbwqZClo8WFpFKyVnMXzF/bBGIfF7VBpleXvrXDV0Hau2SljARVmUjXhrzljLWyibUp+LzEoU6KFiQqK1BPSSCAkihDwevSQrGA4LKTYjwVhJbIxubGApgS8ehhvtBD9zm1ZDD58OuAlzIZqDPN2oxjbOU7H9WoetYJjx+IcDU7t3sx07L3rBwu93x4CfHLTUEy/Lx+pAR9mTxhjOscNY7aTAkDHsVtmWR4iZaS8OmSom1cdBk7v2RxjuzfDJSdFPMM+D9EFztQk9RkfGd896vArXslL8XtxSueaheTzSPF7kZthHM8+D8HEC/vg+uHtMdJCAItm7FiVDeHXvsxkP+4c00n/mwradM7wXpi0JJ+QsZz1PrRppCoFrCBGx847155k2Wa+lBIAnNqjGTo2SdcZ49to3mi2W1vY7AEvXNTHoBj5PB5DioYdTu/Z3CCQTrprBGbcn286T2QodFKg2PZPGNdV//zn07pg63PjkeTzmryGHkJ040LA5zEZYxc/dqrheXcfLUduehLO798Kr145MCovrgiEEKGhoVerLOQ7sFNTNEoNCA3iVK5IDfjwz0v76sqhHdM6C1qjnTWw0G3k4XHdLGuYAvaexs5NrceKz+vBWME6vHq3uWax10Mw6a4RltcS4brhefpnN6zyKX4vslL9lk6uly7ui8ZpAew4XI7KYAhJPo+hrioPKqPw676Idfvxs3sAADJ0I5j6G6cxlxrwYgBjwIsGtAJEp6ZGb+/gvEbo1cp96PxlJ7XFef2EXK0xQWTks8PXtw0zrRdWBicno0C9wgnCTtxAzA6Jh8wk+8kQ8HoNwgqdmKw3hrW0A2q9z/LqEB47q7tBmR3bralh87t4YGsAEa8lxVVD2+oeyiS/x7R48jU+SyqChqLdFFRwFQmwsXgHoy0PAUQEclYhowt8wOvBhHHdbH8f8cRqYckurcpXDmmne0+CIQVerQ8zkn2YI1Be3EJRIs+SFnC+VrLf61iexwqijbWxhXeKxbqnzzQJFX6vR1fkAz6PwRhA3y3r1Xh0fHfj7226/q6xnfHEuT0d28WCN/I8eGZXizPNOKt3ZPyLhORRXZoIN7nKYBgnd2ysKwBu8PcLe+Pjm4YYjtkJPLEig/H08cKkSDBukSbukNVPnaHXKk5l3nGUDjJkpRiVy5CiWHq9AERl8ad4/eqBaNvIaPn3eT1olZ2Cx8/poa8TPKIJhW9qYWji33GjtADuO70rNj47Dt/cNkwX/qgQyntiCcRrKGtkostuks+DXO04NTCMtjFMiryZfq0dVJkRhVS3yDJ70nprzxHweQxzzkOAvNw0LHz0VP3YCxcZPfojOuVi/TNn4qohbQ2/7dkyC80E3h/6Plivv9OeUc6wvrMhl6kBrz7P+NxyRYmUPPN7PRjZpYnumT6jZzM0Tk+CzxvJ+99xpBy5jNGCVcjvGtvZcG07b/ZdmpGjaUaSUIn1EOD20Z3w3e3DHZWtgM+jjy0WrOD/h/6t0UUzNBwV1Gx/59qT8NpVAwzHaM4qqzTRMkCtbDyt/dpko6lFBAigGrVeu2qg8Dufh1h63Xh4iaqgUy+5G7CGfzf7P137QxYKwbjezdGhSRqW7jiCrxbvMo3Ry05qgzeZ9tFnS2LmQL822Ti1h3GPffzsHrheIxui48jLjFM7+DwefQxTUG4FJ1CnQGdOifVzc57FSXk5pnD2gM9j24/RbnvRKLGEAAPa5phkVetw4gaiErGErNITKxEL7MKJOzdNx91jOxsszHSjZi35g9rl4A3BgtM6J0VfUNc9fSbevGaQHvz13e3D8cLFffHOtSfh29uHG5S8Vtmp6KCF3yb7vQhwoZ8TzuyG2RPG4P7TIyE8IgGThk+KlvJYBPFYCDGoss+GWNMFPuBTBRAWuZynkb4/WvTcTT7shzcMQfOsZP0+o7o20RW47s0zXeeVisGEJhPnHNXUgNdkXOvZMhMdctPQ1+F9iuwMbjyxorztgM+jG0oCPo/BwknPp+28//QuGNAu2/D7VL/6W1HtziQmVNkteG/aLSM7uo4mOK9fSzx2VneM7tpE3+R4oVLUHqeatyxaZiVjy9/G49KT2mJYx+gVtGgxilFURQoTi69vG4Yz8sTCdpLPq8+1to0jio5TfhigkoFdPlj16vIW8LCgpuyWv43XPzuFslKwZFMjuzTBtcPyDDmKrPGBVVYzknx44AzV0MGHINvByujDC0E00sPv9aB/24gw6eNy8inSk316P7EeTVboul6LBGmcnqQrxU5K3e8PjRaS+NDx3L2Feq8uzdT/ezC5dKLIGhpu7PN4cC4bvqq9QrbfLh4U8eg/fnYPvHx5fyT5VGXSDRcEbTcbOeREwMTmTXo9BJ/cNBQXDGhleE/HOJInBYq+D9Pz2mn7AhvNQ78LhRVDDjyr4LHr2eC8RrahrlcMaYfCiWfZ5uT6vR70bZPtaNQL+DzCfuYFfzrGjgg8sQPzcnBmL6NBmyr8fib9g+bT2kXcvHXNIHg9BB/eMERXwDOSfDhbM5h7PMQyAsLrcTc+AFWJBYC+bez3vin3jNQ/s3MvmnB80Zq35W/jkRrwoU2jVGzYdwwHj1XqjMN0XblgQGuDgkrvyd77jasHmtbpIR0iSiGdV3Sc+m3afcvIDujdKgtDOjQ2rIVWChy/t1l5K/O7NrFUYkX7Y1rAq+e3j+/d3PS9P0rF0a2j5G9/6I1p944CYJZV2RQDw7UbkieWhfTESkQLv81Ee/HivshK9RsmI2VNZAUGQohQKWzbKA2f3XIy7j+9C5L9XsM51OI1ultT9GqVhVevjFhU/V6ibzxJPrMnNuBTvRWs5Zo/5+nze+mCk5t58cz5vWy/v2tMJ5PXRAQ+fI9aTtl6h1SgoO/j69uG4W9/6A1AJf3588DINShJxrheLdAiK9lVTgxV9FIDPsx6cDSeu6A31uxRQ5tOdgh7feWKAbbfs+HEbsKEG6cHTHWIe7bMxPT783HzSHvGwstPMod+5TAe1MfO6m763gq8J9Y4FjXmSU2oSk/ymYT8rADBz3efohtGWAR8HkO49l1jOuElwXksHjyjmyGP2+shJsu2FXxeghtP6YB3rhusb/Q8UZPICuzWiw+oQoeI/MT2NzFsrKf3aIYFj441sOOmJ/kMygXP5jigbY5p7NEcQgA6Yypr2adLADtmeG/R+f1a6V5qv9eje/EA1avBC0Ts+3EKl3v+wj5Y89QZ+Pb24YbjzbOS8fPdp+h/s+OOEKJ7FzKSfXofU+InO5zavSleu2qAyejzl7N74D+X93ctYNE8OF5gvXhgGz2Mj82DzGCErutHtEfhxLOQnuRDM83LVWHDyHVB/1ZonZNqodyo7X3lygH47vbhyMtNwyc3DcU/Lumnn0P75y9n98BnNw/F1D+PNPw+NeDTvS90/Fj12/Uj2hvYXd14VShfwuk91Xk8rGNjkxL7/IV9DGOAj8A4uWNj/OOSfob1aaDGsM+uF3RPo+kEengx005WsZq9KVK71WdxTkhRELSpX8YqcSKlhN8OeIMsi4DPI1RM+XFJjdNv/W4uCZQhYMuljMB+rwdf3noy/pTfUc/NZ5VYXiag72FE51zd+AJE9jqfDY+Bz0uQLogEE4G+eqf0nhbZEYMmO/fczFs6Vm86xSgrXDmkrb5mNbZhLubHLA0nZo8nB7wGRfCnu05BT6ZyATXeewXjEgC+uW2Y/vnh8d31drFGFXY/YdM7kn0eA08LlQn4Pu3aLMMyakXkyUxN8umygKhiY28Lo/vdXDQDhVt17Lx+LdGxiZj4KtUij6nBeGIVRYYTS8QP/7ikL25hlCS6aLGLVVfN6n4Lp4Dwa2uTjCT0aJmJ7i0ycceYyCSPhJgZJ2evVlm4ZJAaXuz3evR8i2S/F2f1aWHYQKjCyi6q7PVy05NwDhNyrMRQbZAVigGgU7MMVFgIj6z1mrd+UmGc9YLRMEGqoA5om4MrNHbQJJ8XScziTUPrujbPwNyHx+pCNvVIiMBaJts0SkWSz4sSjYX1eq62WOHEswx/UwHMCmFF0QVAfjs9t6+ZqKNxWhLyuzbBuX1b6p5zGi1o570snHiWIdeRgmWCjCanOeCNeEuTtA11eKfG8HuJThx2/+ld0a5xKsb3aWFqm9ejsnry5BaA2mfs+fee3hUXDmyNrs2s+ygvNw2f32IMw3ebO8yel6Ux8PLziY9M+PTmoQbSICfY5SwCwMJHT8WixyKhmJ/dPBRLOCZpJzxwRlf876qBaJqRbFAYs1L8mH5fvv5O3TCTPn1+L9NY7sK8fxqmxRpxHmFCxieM64abR3bQQwqDoTB+uHME8/vIO81rnIqPbnQOsWYFxQsHtkZqwIeAz4P/XN4fn908VPgcvCHgyfNUj1ZKwKsbIcq5XLR7T+ui559SNM9KNnmpAOCGEe1xTt+WrjzTQCTUnjUSLnz0VJzcsbEeUst6TKyYWmlY8wEBQU/73DR0aJKGFzTDj0iRomMhM9mPvprSfHLHxkbhVhNYg6EwhnRojM5M/1Ol66Fx6hyn44031Hx7+3BTeky0GNK+MRY8OhYf3DDENC8vOamNgYm1p4uSZcM65mLtU2fi9tFqOO/Adjl6qCglI6KeGVbJYfvshYvERjX2nFBY0fcknrvi0fHdDf3sRBoEQC/NQvExM2cCXo8wRJg3FvARACxEc+5NTdn1eQgG5TXCQ2dqtVCh7heULI2PnGDfA+vlosqC6m21VoislA0WH904RO8fp8gd1uvHhv67iSCj7/C+07ti/TNn6sdZAzhLmMh7qPk7iDyxyT4juzn/bnhPbIAjRrTyXIcMZdQi12RDuZP9XvRpnW26V5DTPO0iKETvP8Xv1Z9DgWJIL1j95Bn46zk9hNca1bWJkDjQTf6yqS3ctLLq7YbC63QioQbVtSTcokuzDFwwoDVe1whUqJJICMEz5/fCY9+uQrPMJJOwCJgF8E4WliUK0YYQuZ+Wv1KoCoLJfi/WPn0m8iZMMpxnWFSZ6/1w53ADS6YbeY3fG+49rYuhHlhGsg9n9W6BSSv26MeuHZaHywe3RYvsZHw0bzt6tMzE3Z8uNVwnTVN6yhimQrroWgkC7GGr+nhXD20HRQH++v1qw/HRXZsIc3vev34Ith8ucyQa4S29hRPPwkfzt+l12xQlsoDSd+b3ElSHFLx8eX88fV4vvDunEP+ctgGAmmuXGvDh5cv7Y/mOo3jxlw167d5YPHdpjBKZ5mD9nn7fKMzccABP/rAGTTIiJQfo+Hn72pP0sdG1WQYuGNAKf8pXjTNHSo1eAmo5F20eSX5xaJxbRYHCrXeMtcJSgwify8OTXAzt4J54qnlmsh7ObwXegNAkI8kyh5NHTqofR8qq0TonRd/AW2anYNOz47DtcBnSknxIS/Lh6z8Nw0tTN+iKVLRgjTm0K1jBiDWC0bIu5/ZtifV7i4UEH1ThadMoFcM7GUOsRT33nyv644r/m4+OTdIMggpfk9VwHW4hoh6MtCSfLmwWccJ/86xkvPnHk3DGv37Tj9ExYuVZY9eYm05pLzyH3hcwviva9820/w1Cv4V0dU7flvjP9E2GXPXPbzkZAZ/HxGgrYsi28oRmpvjRtVkGbhjRXq/Hynru9X7X3sfAdo0w84HRpuvQVJFomNd5NM9MRnqyaqiga7BojYuFjyEl4MWoLk2w5C+noVFaAC/+skG7vsfwv5WX1SrKg1Wy2fUqPdmnK38AcCM3RtywMF8xuB0e+Wal/nc185uA14PLB7fFT6v24ItbhmHoc79qz2F8NyIl9uFx3XRDhhXYefTgGV3x3M/rkJnsw+2jO6JJRhLO5+Y3+97oeFaY9niIjSfWQ1x56od3ykWBVpGIrgedmqYLSzCxcyo7xR2Z4b8v64e7P11meIfsXsH2NcsJ8dktYoOa/juaE8v83u8lhrWFf/4MzhPLf281B9hx5fN48NWfToaiGMcBHdendm+GLs3S9b+jWTdESqzXEyHaVBSjwTMtyYc+rbOx4onTsfVAKQ4eq0TL7BS0zklBRrLflMv62c1DhXnzIrDvgl6lT+ssrNhZZKPsu7p04oOXkRqwJ1YqsccBfJw9GwJClVSrMUb3DJ+HIMhYdHnQyS4qcUKPVQXDePr8Xhjfu4XBms63K8ngiY185hcuN9NidFcj0QivFGQm+zC6a1NsenYcOj2qElNfOKC17pmmyg99burJot4b1hNLw7KslBz2uBVjHyFEZ8Qd1aUJJozrhqLyaktlpWvzDL2tPN697iRc+85C/boUlDSjjMnbUgDGE6v+P+/hsXq4dFaqHymByLvrwIQH9W2TjTkTxugsorGU/WEt6E55SB2apCOvcRoUBbhscBu8OEUV/CJGkMjvL9RIxij4uUD/FHlLA16Po2A6umsTzFhvXVMOcP8+vIJNr3FawEDdT3MFLxjQylYwb5KRhANM7cOWWcn4mcnHcsJ5/Vpi1a4i17VLX71yAMb1ao59xZWm0Huf12MIq+rbJhvvXz8YN763yHV7WLBjmb4np3cc8Hnw6Flmi3uSz6MLbW5DtaNlpxSBEtWk+L26Z+sQxyDdr022ab2lY5yGVvNg15j7TrcmFaOhjFSAZ3kBqDIrYinl0aVZhsn4KSqLBpg9KoB1v/m9HkzRwoapgbFdY/NYtDOYzXpwtKmUlxV4DgMWvz802tVeUxNiND3EWTGOxUjYptgTa+VFZI+f27clflmjlpxSDYTqutCxSZqpzSIGaX5Pv2JIW2Sn+vWyNMFQGP+7cgC+XLwTHg9BXm4aZj04xvAb3gjCe4Qn33MKunH13S8a2BpfLt6JO0Z3wn9nbDK165ZRHXGLZqRK8nlNUVY8qHyhKBH+B7u8V35sPjq+O579aa3tPTKS/fj3Zf0wvFMuBj0zzfQ9u590bmY0KN4ysgPenVNoSrOghku/QW6LfM+OB3a8W4WyRn6nhRN7Cd66ZhCmrtkHQojBcMu/A53YyUKJ5b30FOw6FvAR9GiprhG7jpZH2qON2TevUcmnpq9Tx6xo3bCK4rFaT+h7VyBONWAjQVjw897HzUO+rzxEHJFGP//5tC4IeD2W8ly0BvJ6g4b6XJBK7HEBncAZST6UVAYN1nc6z6yVWPWEAW1zkJPmx/02ghEgXkTo/SqDYaQn+XCahfWYbnQsWx77mU/AZ9v80Y1DsPNImf7317cNw7ZDpWiZnYLVT56Bnn+dorbFyyuxfsO9AXGpizATIgyoZR/GdGuKP+V3xMWvzVV/p7XVij2QGhRHdWliW5Ozc7MMPPuHXjijZ3PX9VNFyO/aVPemsqCbG1vvjt3YqVzTOD0J7FJLH+vywW1N7WKJoPiN7eObhuCK/5tv29YmFiybjdMCJuEeUL1nNIQ6pG1ybpQLPmdJz2USjNski/xR+jafPr8Xzu3bEn2f/MX2nm5zUI2bnvp/XuM0LCw8oh/v1jwTBffno13jVFuh+b+X98elb8zT/87NSHJdVxEA/nVpPwDuBfMULTfeSogRwU04MYs5E8aYlDq66fs08pZ9LupOsvjhzhG6oaYvE8pG8cAZXfHunELDsXgUpKf3TEvy6fUQK4NhPH9RH/RokYluzTPgY0IzUwNelFWFdOX3iCBkEzAKQXbzgZ6XkxbAwkdPNeTnUYXqMHePH+8cEdUY4iHyHrt5l2f1aYE2jYYbQtN1T6wNsYxbtu4tfxtvS6Ap8kLbyWQ0hSQW0MtS5VwPJ7bwxFrl/ib5vCiceBYqqtVSK4u0NeTcfi3xr2kbAYiZvXlP7PMX9hGWM2FZu6tDYYzr3QLjepvD3On+wxsb2PGW37WJSYEFVO6OFy/ui8XbDguV2GjBrq90boTCiqUSy8+fm0Z2cFRiAZiiPeY+PAYnPzcdjdMCRs4Gn8rcS9mVHx7fHXeM6YTeTxj3E9o+1ljNXoeV53IEpfqeu6A3Jv68Dt24VCVqGPFrpYRoNAWrxPLz89TuzXC0rFqXdeg7Cng92PDsOADqfr9+b4nhd0GLcGKW84E3llA2epEnluUiGdmlCX7bcEBvryjNjDDOmmiMkGf2ao53ZhfC6yEIhRW9xN2ix06F3+PBsaogfly+G8/9vA5n9WmBZ8/vhX5PTTXcE1CV/6LyaiT5PDqh4nvXD0ar7BSc+o+Z+nkNVoltwJBK7HEADT25bkR7vPzrRkNe3ehuTZHi9+Lqk8VWzL6ts+D1ENxzamcM40LtWLxz3Un4YO42ISkDXTSqbMg/WLDLpsET6+MljciE58MAB7TN0RVOdtHiBRJRqKRIib1rbGc89/M6PTfM5/XgbS6/kOZVWkVk0eNuBLcrh9hbld1ixv352MwV4aZCKlviQVHcewydwkD56zix4N44or2hVAQNJ26dk4JJd56Cvk/9YkuwQzdIN4XC+U2C98QSEhFQCSFCog4adZAW8Lqqzchf4a4xnfDydLNQxr638b1bYPWuYtwxphO+WLzTcF6ei8Lt/LsQCQJ2sFJeh3VsjDmbD5mOZ1kwSdqBDcV3AxFjdpjp+xGMYP39HcNdKVw0v/bb241K0o9UNLoAAQAASURBVPT7RiGsKMKwx3iQb4zonIuz+rTAhDO76fc4o2czXDLImC+enRpA4cSz8PnCHXjwqxUo1nLgreprsk4Lu/lMQ0rTAl5TCDldH46UVuGfl/bFnKVrACCq2owi3HBKe0xauQfvXz8Yf3x7AQB3cxaAIVcOYJS9OPRFtERnQGQdeeCMroZoH1FKTizXpYqJT+DxYtccq3mak6aOfaoA0dzl5pnJmHF/Pka/WCD0cI3g9lERfwGg7pv/98dBuOn9Rbb5v9/fMQI/LN9tCtn1eT1Y9eQZ+HLRDlzuoPTblciJBvQd9miZqb/X6lDY0psdS0SRCC2yUrD88dNNUUCEEHz5p2GGY7yCdW5flRzonetO0jkeeLDvVsSm3qtVFj7kcv2ByBrAswCzewX/Dnq1yjKsA3QsssNwWMdc057PyjzsnGdTh/j69NRAJYoOOKNXczz1o7ouXTG4ja7EWvUZPaooiq3hi8djZ/XAHaM7YcxLM1FUXq0/BzXiZ6X60Vj7HPB6DOluLFSnRbmhf/ma90ADUmLZ52CFqgYIqcQeB+ihDKd2xi0jOxgEs2aZyVj79JmG88d2a6pv7NmpAWxmSk5YYWC7RhjYTrzIJjGeWBHeufYk/LYxEpLJemhY6xwvPLqdF9QKLGJVFC36ohwZNnTJCnQzsPKyNklR229nDIg3WuekonWO0SNBrbVsbpQChtjJwfvm9H20nqo7x3Q2GD+aZCThtasG4KS8RshK9WP2hDG2JQiod86JGRIQKLGcJ9ZLCILMOV5BuCL91ud1V4JnX7GRxfna4e0dldgknxePnS0mnHCDCNO0ajwJiWgZY8DHNw3Vc9gpvrz1ZN1gFA3uHNMZ1727sEbt0fuC6wde6XECH5ptlzscjzIIyX6vgTF8xROnW+bmAZGwZsoib8Vk7FYIogYsEaEZDUksrgjiD/1bI6eo5l4wQDUs8kpeTRWFuipBSF9zi6xkQzmgeF1Xz4X1GJVZwJ3S3YgLo77vtK5QFNVLSFnlRUtCXm4atj43HmNfmonbNMIpK5zWo5mj0t69RaahvAqL9CQfrmUYg60QDfu6HZL9Xnx281B0a56JV2eqYzpo44kV7WNWBkgRxvdujl/X7gfg3sjHKjmFE8/SDaZ8WhQLdjy4LQkGRFISsjjFy+iJtVf4RCShIjx3QW8M+Zs5P5ptO8tIrt5b/U6Up90qO0XnYGDL1VjJHnSdYPOh3cDrIWicnqRHLIrSjk7r3gx922SbajOzyNSIGp0cOQ0mJxY4YdiJpRJ7HECFLkKILSsgxVsODKbRghattvLgje7WFKOZGnxsvqjfS3RBnF983E4LQgj+cUlfDBIo2aI6tKJjbtCzZSbuHNNJmO8LAK0zPJg9YYzruqG1BbpxXDG4LT6evx2AKtCwio8deLIDHuyGduEANSe1VXaKZQik12ss5eTzEAMDq4ghkIXuiXUh3LXMTkHA59E3E59O7KQ9O5vUArFiTMMi3eTMAub3ZaVsW13rggGthGFidqD38HvVvB03hC2xwion2wnsnI8ZgvwjN3jv+sF67cBoEY2R5rWrBmLlrqOO59mlF6jfq+s2LTXyyhUD8NWSXXht5mbDeW6V2BGdcvHdst1C72qfVlm4dFAbE+lPbSAWErhEAH3PbuuIugWvxFKFwk0dURZ8aGZWqh9Pa+XmmmYmISPZh4fHdxP+lhCC6ffnR3W/2oQoussJU/88EkcFeeNDtFxE6kEMhhT9XV83PA/vzC7Uz6V70jUnt0OFlh9+7+ldXSuxr145UHi8ZVYydheJ0x74dSzaPOsMi/qjIhRp0RzZnJGA9dCLjLgsWIIsO7BkSHz0xJR7RmoM08Y9LjIHxGsaVaBZ5nSvx2Oot02Z5Om1knyemKI36POJDJhZqX58x5TXEqVw0fW92ILLgMINO3i9AGshqytL43GCVGJrEZSMKV5hMbHiwoGtURkK66V2nOD3enBaj2aYumYfwgrw452nYMb6/aYFnSoHbG0xK1wwQHxv0SYRrcDAXsuOTAVwVsiOJ3q1ytLzVcOKois+VmsODWPlGXJ5UM9ovzbZePFilc7+twdHWyq/pjzVKAVbej83HorUgA8bnhmHbn/5GRXVYd0TSzcpc86s+Zo0Hycz2efqno+d3QMXDmyNP769QM2rYZ6vX5tsLNtx1PJegNlC7Qb0MZL9XlQGw2iZFb9xN6pLE8zcEImciAfRUaygykS0gokolMstotmTz+zVHGf2ah7zvSioN6pY88R2bpaBCeO6CZRYd9e7aGBrnNajmTD8zef14O9MGYraRKx7E11L6ko+Wqfl/NmthX8+tQvKo8z71seztkYc1b1l8fFGAqqCu/KJM+J2vdpGLOHeVoZkCp3lWxO2qdfz+uHtcfvHS7BiZ5GeW/nkecZa81PuGYmK6hDOe2V21O0CgJ/vHomj5WKDbk2RHoUn9voReZixfr9OJEmR4ndfv9YnCCd2Ah/Oa2UEpQqjKJwYiBhq2P3H64mUXnzwpGTceN5oAGq62a2jOuLGU9rHNJ4IZ+y2w6/35mPjfmNO8GNn9UAwrGBUV/t9p8GEE59AkEpsLcLv9SAYDsUlb6gm8HqII3MgjwjhlIIeLTOFIVt0uoty5dzAKhSqJiyTdY2nz+uJX9ftF373/vWDTaRTOjs1IsICsahidkbP5vjmtmGO5Sqokpee5OMWf+N1qdOTDs/mmcnYW1wRdThyKApPbOTeYmXV6yGYcs9I7C4qNxxnQcPd3ZaeaZQWwPBOuTo5BHvJb28fjpOenYYDJZVxNTbRazXPTMbT5/cy5brVBK9fPRDF5dUYrIWHxYPoKDMK4YuFzk5cTz16btG5WTr6t8021MAVgc4F3qvBgxBimb91PFHXe1OsuHFEe7z5+1Z0tlFi7z7VOrzQCdRTqId8ugyp7dAkDQe49AUJM3QFibH6EELQplGqnqdppU/EGnlCkZXqdzRKxFoSKpo9ZGC7Rljz1Jmm4/ed3gVvz97q6nrU4H96D/eGOrf7BS0XNLBdDjYKyhVNvKA3nv1praFSwgUDWuOlX9YDUPku2HDnCePEkQduwFbpcELbxqloyzGpt22cauJQoWCDv6xIQesdFEWGE0vUHAGfJ2pLcKKAKhluJrVTKEttY9q9o7C/JDpW1NrC1Sfn4eqT84TficpI6G9OMdeJFaG/i9xHSiLCk23xuHtsF/xz2gZdkP3m9mGYuf6AME/PDnSMRLOBf3zTUHyxaAeSvQcBgMl5MZYtopvWgLbZ+m8pIVE0Vm8AOLNnc3y/fLc5ZEz7P55KLM3P7tsmC+fa1C+NBcl+L5L9XrRplIIdh8vj0u75j5wa0++o5bqOg01qHUk+L765zTnihL6Pd+KcElJbiMUrAgB3jOmEOz5e6roEVLzx2Nk98Mj47nE3ePKsy8VRKrFT/zzKMd1Dgsm3FHj5qF3FySv29rWDLAnWaoJ5D4+tEQt4TcGmnDnxTCT7vZj78Bg0TnNfRcFt5E7TzGRMuWck8nJT8enCHabvh3XKxaS7TgGgpof0aJFpIqmLF+gyVRtRjT6PB1XaOGww4cQn0BokldhaxG35HfHcz+uEbLuJjuGdcvHzqr1ob8PESudJXQuwnZqmO4bYJiqoEBlWGGKnGl6zW/NMTL9vlG3fAaqngvVWtMhKwWWDoy9PEQpF74nt1yYb/dpko6CgQL1GWKwIE0Lwwx0j0C43IizTfYYl0XATJv7ixX3x0LhuSPJ5MaR9I8zfeli7B6JuvxNaZKXgxztH1Oq4/OrWYVizpzgugnysa9Q5fVrii8U7azWk+f/+OAgfz9+m1wOm+U2D24tr/dUlwjEYdOoC394+HL+u3Rfz78/u0xJn94mvcSZaxKqA2yESTqyOZ6rMuGXoFUW8SJjhs8m31KOTHOTwMd3EpQJrimjKlNUW7hrbGS//utHVGG8RZapKNGsT7/V+9g+9hOdFmx4yolMuzujpvv9odFptOEwGt2+E3zepxvSGosOGFAW/lQaQr2irUQNWaqUSW4tww6ibqLhySFuM7d7UdoHs3zYbBesP1GlOXn0HXZLDTJ1Yt2Uv7GDH7hpvBC0U0GhAvar3nNrF9F3v1uISErTW4fd3DHelxAZ8Hv28z245WT9ON8Z4b5A1LYnihKaZyWiaWbcC198u6I2Hx3ev1TXgtB7NcFqPZjorc9PMZPzy55HIa+xc6qi2MemuEQZSKOpYSvSMCGpEkjCCrxP77Pm9cVqPZnFlQK6PWP746cL6n7GCkjeKDIfUKFdf8xN/vHOEoQ5vLLj3tC649zTzXljXiFfpQVHJITvo6W1xubsRr109EEu2HdE5MxoCXllXhn/sboQPcsI4BZBKrMSJB0KIo4XvlSsGYPOBY64Yl1l8dOMQqfhqYKnnqbUxJ44kIscDtHxMTZTYJJ836hqPlJlUVM5leKfG2O8yNy3B9Y1axQc3DMaKnUUx/97v9Tjmf9YGujgQxxwv8DU6LxzQCs9MKo7aOyKRGDB5YlP9OK9fK9N5L45Kwcknn2w63lART2IrQGXN3364DLflm438Vw5pi982HLAsDZQoePvaQWieaZ7ntW28jBUpfm+9TW/TDRu1oGSmJ/nQT0tXqq+GEx6rjqopV6UhAA1c1JZKrETMSEvyRV0PErDO1Xzm/F6GGrUnAggTOlVSoeb3RFvOpa5BI8KOVwjlXWM64f1522zP+ejGoa6vV5+JxGqKUzo3wSmdY2cKljDihhHt8ceT83RCE4l6Bj1Fxn5NyE3xJBTTfX1DwOfBQ2eKiX7O6Nk8aoNmXaC2wplrC1PvHYktB0pr/T4Pj++OB75YjrzM+CmED4/vhns/W16LObexe/8pR0e0XCK1iWKtJFW6FwCI9MRKSBwPXBUlg3JDQCT/R8ERjaQipw48WzXBdcPy8NuGA8fNAn3v6V1xr0MppWhA5dWGYoWVqDsQQhDwnbhGkfoOugIkeEqzhETUaJ2TitY5tU/ENqBtDn69L1/nu4gHajsHnxJoWVQTskWPx6cg2e/BuqfHxblV0eFYZRD7iivQsUk6Sqq1Emj0ywYs28RsLiaEtCGEzCCErCGErCaE3K0db0QImUoI2aj9n6MdJ4SQlwkhmwghKwghA5hrXaOdv5EQck3NH0tCon6AWvPP69dKZ2psWkvWxtrC6G5NUTjxLOSm1692U1yo1TBOhJInEvZomQCkKxINF9SQdSJHZ0hInGhgGbHfm1OIvAmTXEUFztqokg1WVMeg/WoIhZW4MJpf8/YCjH1pJgBgyzG17dUKVCt9A1Zia+KJDQK4T1GUJYSQDACLCSFTAVwL4FdFUSYSQiYAmADgIQDjAHTW/g0B8D8AQwghjQD8FcAgqIbQxYSQ7xVFOVKDtklI1As0yUjChmfGwe8lKK8OoSoUxtUnn3ge6brEPad2xq2jOtZLFvETCb8/NNp1bWAJiVgwolMuth3aHnPdZAkJifoHD5Nz+98ZmwAAR8qqbLkNFm87gqvfWqD//eQPq/Gn/I6umcwBNRS5x+NTcP/pXXDHmNjrWtP2AMD+kgqUa/p3sOHqrjpi9sQqirJHUZQl2ucSAGsBtAJwHoD3tNPeA3C+9vk8AO8rKuYByCaEtABwBoCpiqIc1hTXqQDMFaAlJBooAj4PCCFIDfhw3+ldkeSTytTxBCFEKrD1AK1zUuu0fqNEw8cT5/bEzAfy0bieRpVISNQGujVPDCK92oIeTqxEvKK/bzyIG99bhGqLGOML/zfH8Pc7swvxyNerMGP9fkxetQellUG8P7fQloyK1jn+wIHjIxqwhJZv7W74ESVxMTcSQvIA9AcwH0AzRVH2aF/tBUCz31sBYCsm79SOWR2XkJCQkJCQkDgu8Hs9aJcApZskJBIJP9w5osGUnxGB1uMNK5HI2we+XAEA2H64DB25koWHjokrHxwpq8J17ywEAAxql4NF246gV6ssDGibYzjvi0U70D43Ta9JHM9o3yNlVfrnuUUEla2AhmySq7ESSwhJB/AVgHsURSlmc0kURVEIIXHrHkLIzQBuBoBmzZrFNXE83jh27FhCt+9EhOyTxIPsk8SC7I/Eg+yTxIPsk8SC7I/EQ33rEwJg69ZCVFVVG47/Pnc+dmQaI7XuLSgTXmPfoaP650VaeO+MuYuxZbUHuSmRwNcHJqss0RNPUcOVKyqrhO/qYHkYBTuCuKCz38CYvvtYGARAi3RzMO3sRcsNf3ddk4N3syuBggJDn6w/HMKkrdW4u3/ScassURuokRJLCPFDVWA/UhTla+3wPkJIC0VR9mjhwvu147sAtGF+3lo7tgtAPne8QHQ/RVHeAPAGAAwaNEjJz88XnZYQKCgoQCK370SE7JPEg+yTxILsj8SD7JPEg+yTxILsj8RDfesT39Sf0KZtW/j2bgeqI4ps5x59MYwpCzl51R4crlgivIbiS0ZueggHj0W8of9ZqnptadmoqmAYmPwzAKDvgEHArFkIBPzIz8/H5FV7MeHrFZj38Fgk+70497+/Y8XOctxz/jB0ahrxBudNmGS4ptow9VirvE7A8tWGduX7/UB+vqFPHnh2Gg6UhNBz4Mm6R7g+oibsxATAWwDWKoryD+ar7wFQhuFrAHzHHP+jxlI8FECRFnY8BcDphJAcjcn4dO2YhISEhISEhISEhIRErYEQgpCigI+aPlpu9My+MGW95TWKK6pRxJ1PEQyFMWnFHhxkQpErg2q+bUV1GKt2FeHZn9bgaFk19hRVAAB2HikHEKlF6wa0VKMTaHh4ZdCZhTmRURNP7HAAVwNYSQhZph17BMBEAJ8TQm4AsA3AJdp3PwEYD2ATgDIA1wGAoiiHCSFPA1ionfeUoiiHa9AuCQkJCQkJCQkJCQkJR3gJQTismGpEszmmAFBUbq1QllRYf/f6b1vwwpT1CPgivsPzX5kNQK3xevZ/fkdOqkpceKCkEp8t3IHDpVVaGyKKqR1RFBAhi2JRGQyb8mIpYVVp5QmqxCqK8juYWrocxgrOVwDcbnGttwG8HWtbJCQkJCQkJCQkJCQkooXXQxAKqwoli0e/WQWfhyCsADmpfhRXOHs6c9OTDB5XIOLBrQpa15SlXt9LXp9rOH6kNKJIH2I+K4qCnUfK0aZRauQanNINALsqgJxS4/FgSFWGS6Pw8iYiZDE0CQkJCQkJCQkJCYkTEscqg3h79lYAgIfAEFb80Fcro7pW65wUkxLrBlYsxS9NXY/9JRW46ZQOuPi1SGmft37fimcmrcXUP4/UlHDFFP4MAGMWA1g8FRd09iM/X60pW16temB5pb2+IeacWAkJCQkJCQkJCQkJiYaCDlxJnWjROiclTi1RseNwOf720zp8u2wXCg9FmJGnrN4LANhdVKGHQc/fcsjyOl9vrMbkVXsMNW5LpRIrISEhISEhISEhISFRv9E+t2a1olvFWYmlePnXTYa/FxaqZXyueXsBqvXwYPsc11s/NDIr3/HxUmzYVxLHVh5fSCVWQkJCQkJCQkJCQuKER0eBJ3ZwXiPTscxkNSOzWWYS2jSKKK4tMo0la3xR1GH992X9LL/berDU9XWiwXtzCmvluscDUomVkJCQkJCQkJCQkDjhceWQtqZjL1zcx3Rs5gOjMeWekfjtwdGYcV++fjw3w8gF/MAZXW3v99nNQ/XPXZplRNlaM65sY6Y7unZYnuX5Ikbj+gKpxEpISEhISEhISEhInPBo0ygVcx8eYzjWrnEa7j+9i+FYTloAXZtnIMnnhc/rQYcmahhyepJRiRzeKVd4nzHdmgIA+rbJ1o/xv3WLjk0iIdDP9giYvqdeYxEOl5oZjesLpBIrISEhISEhISEhISEBoEVWJDz4kfHdAADZqWblkMWXtw7Dd7cPR9MMYzhxsl9VtXLTjR7ax87qjo3PjkOy38ucG/mckeRDB4v83K/+NMyg8P7KeIJFyEzxW37njSLcOdEglVgJCQkJCQkJCQkJiRMaWQJl7+aRHQEAFw1sjSsEocYUjdIC6NsmGz1aZuLjm4bgz6d2wcc3DUHrnFT0apWJl7l81/QkH/xeoxqWEogosR/dNARn9Gpuus+KJ07HwHY5mPfIWMPxv57TQw1dVhT8IctY4iczxY9Luvjxh/6tTNd75YoBls+U6JB1YiUkJCQkJCQkJCQkTkhs+dt4PPrtSlw5pJ1+LDXgRRnD9pvs9+LZ83vh4/nbccvIDrbXG9YxF8M6RsKIf7zzFNM5SYzXVb+HL6LUJvu9uHtsZ6QFvOjSLAM3f7AYbRulIjNZVbRTuN9fN7y9+uHXbbgoqwLfFEU8v5nJfozvEEB+fj98s3SX4Xes4lzfIJVYCQkJCQkJCQkJCYkTEh4PwXMXGMmbZj4wGkXlRtIjQggKJ55V4/tdOqiNME/Vx3hmk3weJPu9uGNMZwDAgkfGwsOE/lqGASsKvNxXmSk+WGW+Bnz1NyhXKrESEhISEhISEhISEhIammQkoQnHNBwv/P0iM9sxRaO0AA6XVpmU1KZc6R4AePHivujdKst03Mcrscl+HIytqQmN+qt+S0hISEhISEhISEhINBC8ec0gnNq9KZoLlFYeFw1sja7NubI8imJSYtlc3+GdGoPUXy4nA6QnVkJCQkJCQkJCQkJCog4wumsTzNxwAAAwoG0O3rzmpNgvJgwnjiixH92o1qV9c9YWrNpVFPt9EgBSiZWQkJCQkJCQkJCQkKhFfPWnYSgqN2envnPd4Ljeh9Vhkz0KMgT1Z288xZ6cqj5AKrESEhISEhISEhISEhK1iIHtcmr/JooCGi/cMyWEH3tWg9TjWrB2kDmxEhISEhISEhISEhISDQwESl03odYglVgJCQkJCQkJCQkJCYkGAIPaqkglVkJCQkJCQkJCQkJCQiJRwYQTN3RIJVZCQkJCQkJCQkJCQqK+Q1GQFwgBAO5oXi09sccDhJAzCSHrCSGbCCET6ro9EhISEhISEhISEhIS9QkZXqBweBjjckJ13ZRaRUIosYQQL4BXAIwD0APA5YSQHnXbKgkJCQkJCQkJCQkJiXqCBux55ZEQSiyAwQA2KYqyRVGUKgCfAjivjtskISEhISEhISEhISFRP8AqsQ08NzZR6sS2ArCD+XsngCF11Jb4oLISmDq1rlshwaKiQvZJokH2SWJB9kfiQfZJ4kH2SWJB9kfiQfZJ3eHoUWDfPqC0VO2HjAy1L6z6pFEjYODA497MeCBRlFhXIITcDOBm7c9jhJD1ddkeOwSAlulAaV23QyKCCiArGSiq63ZIRCD7JLEg+yPxIPsk8SD7JLEg+yPxIPukblEFVCtapZ0kIABY90kICBcBJce7jVHgoNUXiaLE7gLQhvm7tXbMAEVR3gDwxvFqVE1ACFl0SFEG1XU7JCIghCwqlX2SUJB9kliQ/ZF4kH2SeJB9kliQ/ZF4kH2SeGiIfZIoObELAXQmhLQnhAQAXAbg+zpuk4SEhISEhISEhISEhESCISE8sYqiBAkhdwCYAsAL4G1FUVbXcbMkJCQkJCQkJCQkJCQkEgwJocQCgKIoPwH4qa7bEUfUi7DnEwyyTxIPsk8SC7I/Eg+yTxIPsk8SC7I/Eg+yTxIPDa5PiHIC1ROSkJCQkJCQkJCQkJCQqN9IlJxYCQkJCQkJCQkJCQkJCQlHSCW2FkAIOZMQsp4QsokQMqGu23MigBDShhAygxCyhhCymhByt3b8CULILkLIMu3feOY3D2t9tJ4Qckbdtb7hghBSSAhZqb37RdqxRoSQqYSQjdr/OdpxQgh5WeuTFYSQAXXb+oYHQkhXZi4sI4QUE0LukfPk+IIQ8jYhZD8hZBVzLOp5QQi5Rjt/IyHkmrp4loYAi/54gRCyTnvn3xBCsrXjeYSQcmauvMb8ZqC23m3S+ozUweM0CFj0SdTrlJTH4geLPvmM6Y9CQsgy7bicJ7UMG7n3xNlLFEWR/+L4Dyox1WYAHaDWZloOoEddt6uh/wPQAsAA7XMGgA0AegB4AsD9gvN7aH2TBKC91mfeun6OhvYPQCGAXO7Y8wAmaJ8nAPi79nk8gJ8BEABDAcyv6/Y35H/aWrUXQDs5T477ux8JYACAVcyxqOYFgEYAtmj/52ifc+r62erjP4v+OB2AT/v8d6Y/8tjzuOss0PqIaH02rq6frb7+s+iTqNYpKY/Vfp9w378E4HHts5wntd8fVnLvCbOXSE9s/DEYwCZFUbYoilIF4FMA59Vxmxo8FEXZoyjKEu1zCYC1AFrZ/OQ8AJ8qilKpKMpWAJug9p1E7eM8AO9pn98DcD5z/H1FxTwA2YSQFnXQvhMFYwFsVhRlm805cp7UAhRF+Q3AYe5wtPPiDABTFUU5rCjKEQBTAZxZ641vgBD1h6IovyiKEtT+nAe1fr0ltD7JVBRlnqJKhu8j0ocSUcJijljBap2S8lgcYdcnmjf1EgCf2F1DzpP4wUbuPWH2EqnExh+tAOxg/t4Je2VKIs4ghOQB6A9gvnboDi104m0aVgHZT8cLCoBfCCGLCSE3a8eaKYqyR/u8F0Az7bPsk+OLy2AUOOQ8qVtEOy9k3xw/XA/Vg0HRnhCylBAykxByinasFdQ+oJD9UTuIZp2Sc+T44RQA+xRF2cgck/PkOIGTe0+YvUQqsRINCoSQdABfAbhHUZRiAP8D0BFAPwB7oIa7SBw/jFAUZQCAcQBuJ4SMZL/ULLGSIv04gxASAHAugC+0Q3KeJBDkvEgcEEIeBRAE8JF2aA+Atoqi9AdwL4CPCSGZddW+EwxynUpcXA6jUVTOk+MEgdyro6HvJVKJjT92AWjD/N1aOyZRyyCE+KFO5I8URfkaABRF2acoSkhRlDCA/0MkFFL203GAoii7tP/3A/gG6vvfR8OEtf/3a6fLPjl+GAdgiaIo+wA5TxIE0c4L2Te1DELItQDOBnClJgxCC1k9pH1eDDXnsgvUd8+GHMv+iDNiWKfkHDkOIIT4AFwA4DN6TM6T4wOR3IsTaC+RSmz8sRBAZ0JIe83bcRmA7+u4TQ0eWj7GWwDWKoryD+Y4m1P5BwCUVe97AJcRQpIIIe0BdIZKNiARJxBC0gghGfQzVKKUVVDfPWW/uwbAd9rn7wH8UWPQGwqgiAmJkYgvDFZzOU8SAtHOiykATieE5GhhladrxyTiAELImQAeBHCuoihlzPEmhBCv9rkD1DmxReuTYkLIUG0/+iMifSgRB8SwTkl57PjgVADrFEXRw4TlPKl9WMm9OIH2El9dN6ChQVGUICHkDqgDwAvgbUVRVtdxs04EDAdwNYCVRKN4B/AIgMsJIf2ghlMUArgFABRFWU0I+RzAGqihYrcrihI6zm1u6GgG4Bt1nYUPwMeKokwmhCwE8Dkh5AYA26CSQQDAT1DZ8zYBKANw3fFvcsOHZlA4Ddpc0PC8nCfHD4SQTwDkA8glhOwE8FcAExHFvFAU5TAh5GmogjoAPKUoilsiHAkGFv3xMFS226naGjZPUZRboTK0PkUIqQYQBnAr895vA/AugBSoObRsHq1EFLDok/xo1ykpj8UPoj5RFOUtmPkVADlPjges5N4TZi8hWoSMhISEhISEhISEhISEhETCQ4YTS0hISEhISEhISEhISNQb1FiJJYR4NQrtH7W/2xNC5hNCNhFCPtPyEKDlKnymHZ+v0UHTazysHV9PCDmjpm2SkJCQkJCQkJCQkJCQaJiIR07s3VAL7FLq7L8D+KeiKJ8SQl4DcANUWvQbABxRFKUTIeQy7bxLCSE9oMbT9wTQEsA0QkgXp7yr3NxcJS8vLw7Nrx2UlpYiLS2trpshwUD2SeJB9kliQfZH4kH2SeJB9kli4bj1R1ERkJoK+P21f696DjlHEg/1tU9yc3MxZcqUKYqinMl/VyMllhDSGsBZAJ4FcK/GlDUGwBXaKe8BeAKqEnue9hkAvgTwX+388wB8qihKJYCthJBNUGnT59rdOy8vD4sWLapJ82sVBQUFyM/Pr+tmSDCQfZJ4kH2SWJD9kXiQfZJ4kH2SWDhu/fH990CXLkC3brV/r3oOOUcSD/W5TwghucLjNSF2IoR8CeA5ABkA7gdwLVQGv07a920A/KwoSi9CyCoAZ1IKbkLIZgBDoCq28xRF+VA7/pb2my8F97sZwM0A0KxZs4GffvppzG2vbRw7dgzp6el13QwJBrJPEg+yTxILsj8SD7JPEg+yTxILx60/ioqApCQgObn271XPIedI4qE+98no0aMXK4oyiD8esyeWEHI2gP2KoiwmhOTXoG2uoSjKGwDeAIBBgwYpiWxRqM8Wj4YK2SeJB9kniQXZH4kH2SeJB9kniYXj1h/ffQfk5UlPrAvIOZJ4aIh9UpNw4uEAziWEjAeQDDUn9t8AsgkhPkVRggBaA9ilnb8LQBsAOwkhPgBZAA4xxynY30hISEhISEhISEjULWRJSgmJhELM7MSKojysKEprRVHyoBIzTVcU5UoAMwBcpJ12DYDvtM/fa39D+366osYyfw/gMo29uD2AzgAWxNouCQkJCQkJCQkJCQkJiYaLeLAT83gIwKeEkGcALAXwlnb8LQAfaMRNh6EqvlAUZTUh5HMAawAEAdzuxEwsISEhISEhISEhISEhcWIiLkqsoigFAAq0z1ugsgvz51QAuNji989CZTiWkJCQkJCQkJCQqFXM3nQQQ9o3gs/rMihRhhNLSCQUYg4nlpCQkJCQkJCQkKhvmLPpIK58cz7+O2NTXTdFQkIiRkglVkJCQkJCQkJCImp8vmgHhv7tV9SkXGNdYG9xBQCg8GCp+x/Vs2fkMWnFHuRNmITdR8vruikSEnGBVGIlJCQkJCQkJCSixoNfrsDe4gqE66l+Rwip6yYcN3yxeAcAYN3e4jpuiYREfCCVWAkJCQkJCQkJiahBdcBQfdViTyDQLiI4cRR3iYYNqcRKuMLOI2Vyk5KQkDDgSGkVZm86WNfNkJCQqCNQdShcz0JtY2puPXtGHjTk+wRyPks0cEglVsIRO4+UYcTfZ+AfU9fXdVMkjjM27T+GvAmTsHzH0bpuikQC4tp3FuDKN+ejMiiroklInMiob0Zu2tqo9Ll6r8Sq/3ukFivRQCCVWAlH7C+pBADM3nSojlsicbwxY91+AMD3y3fXcUskEhFr95YAqPeynYSERIygOaWherYI6ERUJ5A+p0B6YiUaFqQSKyEhYQm62dUz+UTieEGOCwmJExp6OHE988RSnEj5oYrMiZVoYJBKrISEhISERJxReLAUZVXBum6GhEStor4SO8XU2npuzdWVWKnDSjQQSCVWQkLCEjRUTJEuNwkB6Liob6QuxwP5Lxbg5vcX13UzJCRqFdSrV9+UWJyACp0MJ5ZoaJBKrISEhCXoXid1FAkR6LiQ48MImm/3u2RulmjooJ7YerYI6ApdVD+qX8/IQ5bYkWhokEqshISEJSI5sfV785aoHdBRIT2xRtQ3p5SERKyg6lB988SekKG1J+IzSzRoSCVWQkLCErontk5bIZHokOPDCKnUNwz8tHIP8iZMQklFdV03Ja7o88QUXP3W/LhciypE4XBcLnfccSJ5JWPyPktIJDCkEishIWEJIk22EjagHnqlngqwtQWpxDYM/Hf6JgDAtkNlddyS+KK4IohZG+MT6q7nxNazMX9iEzvJfV2iYUAqsRKOiHbdLq6oxq9r99VOY+oBFEVBVbBhSPUNocTON0t3YvjE6fW2BER9gCT+MqI+zxcJiWhQX9mJKaLS5+r5xK7frZeQMEMqsRJxx58/XYYb3luEnUcalvXaLT6avx1dHvsZe4rK67opNUYknLj+bn8PfrkCu46WI1hPhaxERiQntk6bkXCQnliJEw31bczH1Nx69ow8aB9JjguJhgKpxEq4hluL5ZaDpQCAimrVG7l425ETatH8YfluAMBW7T00BNTn7pMKVu3jRJrfbiDHnMSJgnpL7HQClpuhy3Q96yoJCUtIJVYi7mD3hJkbDuDC/83BO7ML66o5xx0+r/oG6ivRhQF6ndj6C6pg1TdPQX2AFIrEkGOtYeBEUnBiBc2vrG9KbAQnTifTHpJGx/qJsqogflq5p66bkVCQSqxE/EHZChUFOw6rIcUb9x+rwwYdX3g96rQKNgAttiHUia23slU9Qn0ON68NyPxrCRZVwTA+mr+tHit61qB7RH0z3ETb3H5P/YLHdibVTmOOF3SDbh23QyImPPbtKtz20RKs2lVU101JGEglth5j1a4i5E2YhO21zpwY24rHkhudSBZtbz0numAR6bf6/yz1TciqT7B7tWv3FKO0Mnj8GpMAaABTXyKOeOO3zXj0m1X4avHOum5KraG+7Xe0tW5lk6Nl1fjwUP1SYu/8ZCke+3al/res612/sfOIyrNSUnFi7ad2kEpsPcYXi3YAAKavq10m4FjXu8oGwtAbLbye+h5eFQEtn9AQ9jz6DJXBELr/ZTK+W7arbhvUgGA1PiqqQxj371m47aMlx7dBdQwpJB5/FJVXo6g8Meu5HilT25Wo7asRmMirusahY5XuT1Yafs3UH5bvxofztut/68ROddUgiRqhIY/VWCGV2HqM47UQxaqLVQXDtdrGyav24HBpVS3eITY0KCW2Aa2adAM/UlqN8uoQnp20to5b1HBgJcBSRuhFhYePZ3PqHIkg0J9o6PvkLxj87LS6boYQDYHl3QoRYqfjf++i8mos1NaW6ev2YeAz0zBr4wFXv43WE9sQEOEwMI/D2ZsO4r7Plx/nFknEgoa4jsQKqcQmOLYeLEVxhb31VlS4+rWZm5E3YVJcwvjCMVosq0LhWrN2Hi6twq0fLsFN7y+K85VrDqrENqSSLg1BJqePQPtHKhrxg9ObrG9vWlGUGpGfnAhD69/TNmLN7uK6bgaACFFNbUX/1LQ/a1pv+6EvV2DGuv01a4QA8SgDV5fETte/uxAXvzYXwbCCRYVHAADLdxyN6hrEQjrp+fhkPPdTwzJ00vEnWtuufHM+vlqyU/jdkdIq7D5a/0sG1neQiDVMQoNUYhMco18swCWvzY36d+9qbMBuw5eCoTCWWSz+sQr7tZkTS6+diLVoKbHT8VKS/jt9Y60l+uubXgNYNRVtONKxmOhGhsKDpcibMAk/1wM2woZGZNT+4Z9wx8dLY/59QzeQVIfC+Oe0Dbjwf3PquikAgIPHah6REwor+Hj+dgRD8d+3SA1Z3j9btAPXvbsw5vt/MG8bZm44gL1FFfhw3jb9+MnPTY/5mhTEZThxMBRG3oRJeH3m5hrfk2LFzqPavVnPqrtOc5qipVUhvP7bltgbl4DQc2JtbD2ipfzkib9i2MSajxUJiXhDKrH1AOv2lkT9m5C2QlOvkxP+MXUDzn9ltlAZciLZVRQFj3+3ymSVr6rFnFi6YXoSMBbIRz2xIeNuUBkM1cr9XvxlA87+z++1cu1IcfT4X7um3q6o76dt4VThSvRw7xXaXPyxHiixVoj1Hc/fcgh5EyZhX3FFnFvkHpNq8N4TfGjVGHRtS5Q5VFRecyX2kwXb8cg3K/H27K1xaJERNWF5j8ca+ZdvV+GatxfghvcW4rFvV9X4eiI4jYUKTR74968b435PRYn+3dL3moAiRK3BTbk50XcV1Scmv0miQecoqeN2JBKkEpvAcLt5hcIKisqrMXfzIf0YFdTdKnmrNAX0gIAYQQ8ntrjWuf+djffnbsMf316gnqcdrwqFam2y1ZUSe8fHS3CSQ96VRxBeteNwGbo+NhmfLdxu9bOYUNseMCciiGOVQeyKMczo/Ffn4Lopx8+Tztc0dfPuxv17Vp0xitL2eeuBlGUlFMUqgL8/V/UWzd9aP3NpG5pnmke1Ztn0JIgEEY98TBq1dLTMHL1U00iUiCc2+uvE01BQGxwSek6sw1yvjVVMX8sRebfRLpei0xtqHdVIZJU1EsUwJWHEV4t3YvvhxIs8rGskyBYkIYLbxeSpH9eg75O/4PL/m4eKatXb57Sh8NCtkoLvnMKEVmoeI/68qmBYXzSt8k5ihX7d4yzf/7hiDw6U2DMgUk8s2webtDq53yzdhavfmo8N+6L3rovAvvPa2HipMP7l4p34ZIFZAb/ktbkYHmOYUbS5SzUFfVe0X5zCiRVFwdo9xbjvC/dkF5NW7MEFr86OS1/Q+e82mqIuYfW49BVH/TqI4b/jimAcNKIGKgPrqNa8aoliYKmt8G3e8BUrapITG8+0hz1F8Y9s0I22IYf1lP6vfbj706V4dtKauLQhrERu4FbWsGtttcOzRItN+4/h17W1W0XCDaiiz+5PVGbUz6lna9eR0ipU1wWr2HGEoii474vlusOgvvVRbUIqsQmMKoeJKRrIVPANh82LlRuIvK1uL8Er3Q0tnNitUcHrtSZ2WrLtKGZtPIi/frc6pjZUVIf0PCDAqCh/IfAYHjxW6ah0izBl9V4cLq0yCG+iNq/ZkxjELm4QyQdyDqlSv4/+Hrd/vARLth91nLtuEImAiO33FdUh5E2YhE8Fxod4w+pd1sfc0Ioo1q0pq/fipGen6akCWw4cw+6j5bXy3O/M3oq8CZNMQmddIJhgBpZ4eI/s9sqa9mdN3lKi5+7T9cnJcM6/3++W7cb/zYpP6LZiyImN7rcimSfeStGp/5iJG96rexJK3ijz3bJd6PaXydi0P2JUj9YBUtfo//RU3PPpsph/P3zidEMt3USE9I5bQyqxCYzqYAyhR3rOAwz/u0Usnlj9PO5mlbVI7EQn9fF0BEz82R1ToVe3TFtvhHO3HMK9ny+Lug2PfbsK5/53ts4qyXbNvC2HTOcPemYaTnp2GvImTELBenfslkfLqnDLB4tx0/uLDH1fHxUSFron1mVObNApGdwG8cghoq87VkMNDR3817T45aBZwepNRsLRa3/shMMKyqtqruBFoyQ++f1qHCiJGIrGvDQTwyZOr5W58sqMTQDiU+g+HFbwwpR1es5xtN5naqBMFCU2nq9bNN1qGh4e8cRGf514RAbULjS2d4d3pEdl1MJaEFbso8lEsOsK3gC/o4GEceqGXO3hp6zeC8DIu0K/W7unGC9MWZfQodW0bTXhL9h1tNxQSzcRwRuyGgLRZrwgldgERmUoeoEsxBFuuBWm7MJz3e7fpnDiUDiuC2A4rGDamn1QFKVOPLHfLdvt6jy3JXa+XrILALB0+xHM3nTQ1bWpF7a4XBVko7HQicKBRaBexG2HylwrsYmy0Z39n1nIf2GG+EvdsGM09FihJtbPyjh4y3RyNmaMK4qih6Y7gbb+eOgZVv0fsx0ghlf/z2kb0P3xySixKUn23E9rsXibMc/2aFkV/vHLer2/o1FiI+/Y+JJrQ4ml7XPqz+U7jmKtQ4TE0h1H8cqMzfjzZ8swfd0+dHr056gYzoPh47/+2qGm3qPSyqCwPE+EebdGl9dDXGO5zvH2xO46Wo68CZMMHBtuEK0nNp4IK0rUKUb24cSRsXDoWCVOed5iT6lnULi9j4ZN+5jkdmqMuOS1uXhlxmaU12LkR1F5NfImTML3y3fHxK2RIGKHASUV1Y5lMaMFHxmQiM9dV5BKbILh3s+WYdIK1arklJchssbQjSTikXWpxNos6W6vQe9Jz2bZeeMh6rw/txA3vr8I3y3brW/sx1OGcnsvmhPLhpQqkYQdE/7w6hxc+eZ8V9emQiOf3+kGjdOT3J3IXJJdO+1kqUQJd1m1qxiFh8RW80h0gru21kR4jNYTu25vMQoPlhqO6UoLo7W8M7sQp/5jpqEcVlFZRBBgEdbniHHQ7Thchud+XltjoZJVFkWXOlxahUvfUMuDxTsnXgRqFBIR8wCqAPf6b1tw4f+MJcse/241Xp6+Cb9tOAAgur6zCvmmQyee65POxOpw3nmvzMa4f89yda2qYBjTtfqjS7cfcd0WKlQliie2pkaDnn+dgv9MVz3dorEa6/VnrN+P0spgzXJio8jP3HqwFEdqSN60YKuqvH4qICE8/5XZOPNfvxmO6eHEbj2xtbBVhAH8rhmCXefE2qRrsAaNeVvqJ7mcCDqxE+WF0Oaxj5nH+tqgfVebazcNY77rk6UYPnF61FEHiRgd1vuJX9DniV/iek1+DUi8p647SCU2gaAoCr5eugu3f7wEQIQ8IxqYc2Ld3lv9X7RguRV2da+LjbKwqPAw3pwVW+01aqnbV1yhT+rj6Qlwu5hTwU4UDl7T1vKF5RVmiBRZCO8UuWkBV/eoZgwEbjeJaIgwSiuDpjFVGVTzNz+av83iVzUHNSS43Sd5opJVu4pw5r9+w7FK53DOCpfllIKhMHYeKcOZ/5qF/BcLDN9Rj6uXWaWpJ37rwYg3dqMmCLyrlQY5UlqFgvX7I+HI3Cp/0/uL8PrMLdh8wKg0W+Gxb1fivs/N5FaDn/1V/yzq/U8Xbsc2zaBwPMKfnBQFKyGbr6UdlSfWQjCvDeEqGlZtJ8RSXiQUVnTlNZ5KbDisoKyqZiHS8WSDFkcjRX/9zQeO4bp31JI2eomdGOYBm9bArpvfLt2FLxbtMJw7+sUCnPGv39DpkZ9w1ydLo76Xeg/1f9HeumzHUVPJP3qWM8dA7a0BRysUvV3RsxPb58TGi3wqEUB7gHYFNdT6vJF38PmincZzmTHL1hiuCXYcLsMPy3ebDIZuDcf/99sWfLpge73L340V1TVIbWrokEpsAoGfwLGQw+j5ftF6Ym08B27lA/6e4bB5y77otbl4ZpK73FLbe1FFq8ZXcg/Xm6N2Xm3UhaUKDe0vdhH/dd1+29ydJL9X+61ia/GkxhMC98Kh20X2SGmVwetBQRWJf07d4Oo6saCmntgXpqzHur0lWOii7ItbRei5n9dhxN/FoWrvzikEYAwn9mkDgDUalGp5oKkBHwDgxvcX4dp3FuohTbwwWqadH/C6W/4/nLcdXy0xk4axYWaJYBHXlVgLRcFKQKJKAhXkopm39IpVwTD2l0SYX2tD5uDX9niAFeCdrnrp63PR+dGfAUTGn50RcX9JBfImTMK0NfasrE/9uAY9Hp9SIyLAeEaCiEuuqIJ33oRJmOMy9ePQMdUjuuNwmT441+0psRxfVh5U1gvDegjv+WwZHvhyhen8/SWVCIYVU2SGW0QM2u4Q8cTan+dUrq0mqORe6ZYDx/D8ZHf5nKIhzK6vVqUF6yP4OrFBQTjx3yevM/yGnVuPfbsqJqJIHuP/PQt3frIUh7gx71aJffantZjw9UqD8XDN7uI6K4dX2zB5YhNgv00USCU2gcBv4rFs6iHOAxsPYie3AgIvZIUMeSruN4LKYAiKomDboVKc/Z9Zws29LnKy3N6LKn4rBTlmNW2uXs7Awkixdk8xfrYgOaDjaeLkdej06M+WCiq1QqueWHftchs1cKhU3QC/W7bL3YXjCLrwux3PPLGTz2WuM+A+JHXGOjHZFts3bDixnzJfM5tameYZTg2oRgoallyqHeeHHB0H8Zw6oj3VoCAdhz2X96jM2XwQK3dG5qBVv/F5YU599/DXKzFG85rTMfX3yesMnulayYmNcvzaQb8CcR9hsmjbEf1z0IUndo1We/y9uYWm73YdLcflb8xDUVm17k10MtqWVFRbrm21nc0QVhQsLFSNV59z3k8rUENWkt+j5zFPXr0XDwkUz0WFh9H/6amYvGqv4fiyHUf1NZO9plu45VpgEeurdDJ4Hi+5mxCCmz9YjFcLNtvW1YyG2MkKVFapL6AtpV0VEnhi+ZP5bv1g3jbkTZgUU/TEvuIKzNp4ACXa3nSQU4idyjTxYNfZ8S/Psi2HFw4rmPjzOp0Usz4hmpSCEw1SiU0QLN9x1GDh+nLxzhp5YimizomtYSjV5FV7dC9ELKSK+4or0PWxyXh/7jb8r2AzVu0qxj+nbTDWnCV1w07sFrQLREqsHfjN8ItFO/CfX43MstQYwHq7WTz5wxr86aMlWFRo9hbS8fTJfDXXibeCUlCh/lhFENPXuatt5zacONJ+yzNcXScW0NfrtkYvv3FQgT3kws1GvS0fzNuGno9PtlQ8rLxq7NxnjSd+3RMb+Z56YtOTfIZzaKkY3vhCfxtPRYu9VllVEE98v7rGIaIs3ptTiDs+XmIrxPPhxFf833yc89/f9e+tog94hYxlOM6bMElP76D4ZMF2bDlYCoUx0v3KGSOi9Wa5gV4aKg5eXj2XlzkWzXCoYt7ZP6ZuMBgLKOi4E133v9M3Ye6WQ/hhxW4TY6oV7v9iOf700RJsPmAmNour0UCwqZRWhjBro6oQur0T9Zom+7wGQ8FPK/eazl2tKfxzNx/UfhvCX75dhfNfmY1LXp+nnxctyc6TP0Rfyk3hBm84rOB/BZtNYfcU9NmcIgT0PqoFeZy9JGHuZVcqh8o8ojnqRvY6VhlE18cm49+/1j77O48N+0qwN4aavxFSQ+392CwmopqyQIQlnUYaRINz//s7rn5rgf73Uz8aQ7WjDZuNxni1bOdRvDZzM+62KMejKApe/nUjth1yl2bDY9P+Y8K1KR7g3wv/2LuOljcYBu1oIZXYBMF5r8zGH16drf99/xfLo2YHBMwbiVsroSgnVlHUzeugtlgRqKFR67Xck39M3YDJq4yW8a0Hy6JmRmax84hqJft22S799+/P3YanfjRuxiHOEztl9V7dUl5bcKsw03ZXMh4dq1fBepk/mLfN8PcDX67AS1x4rZcRLNR7Ga9H84ZFRe2pdZkSPNHyGjzoxl9aFcJygXBq9xsneDklXEccBBu3noB7BfmdIvACo8+m/i8P6s37y7erUFoVsrTsW1lY2bBB1ttFvYXs+6bKYmqS6on1+6gypnliuXFLBbR4hmCy3fn271vx7pxCvPX7VtvflFUFLdsQyV9WsG5vMf76/Wr8uGKPMKyZwik3jzW0zNl80HScet55Dzwl2uOh1lFWf5vEhWZHu/Y9/eMaPGDjRQDMpH01AnOJWMq/0HFLBT9276LgSehYUEMQO7ad5u/2w+raJiqjVFvh7HQ/fPSblfhmqRo94vZW1JCV7Pca5qBIQaJrS5X2Xr9bthsfaPmH7ByJljDOQ4hjv/Lf07/os8/bcgh/n7wOf/l2lcU91P/ZdXH7oTIT23Vtesv5NZmmSogYpynsUqjceGKLNaX+0wVGz/yHmqdSxJJO33XehEm459Olwr6pDIYcPe6n//M3DH3uV7w/txB5Eya5Li2m347zxNrNHyvHSCwOhH3F9qHI0Xocy1zwU/CwGhN7iirwj6kbcN27C6O+JqDWAh770syYfusE/r3wa+XwidN1Bm1FUeLKEZDoiFmJJYS0IYTMIISsIYSsJoTcrR1vRAiZSgjZqP2fox0nhJCXCSGbCCErCCEDmGtdo52/kRByTc0fq36BLmRHOGKeYs7y+cT3qw0EK6J1x7zguGyD4NjibUfw98nr8DRjLbv+3YU441+/IW/CJLz860bc+qHRS5GW5K1R2JseshlSDJ7cpduPGs6LMLeqf9/ywWJc/JqRdTTecK3Ehq2twHzoXv+np+qfH/9utcnrw4Mv38MLtPT9iciH6MbcSCN4ssptcVJIFUUxnbP7aLmrUDcrJst4sLk6eSmi9WKc/k8jC6dXG2xuxjX/LqxqzloJD6wQZfDEagoqq5DRvk7TcmKpAHdMSxSz8sSKnmNKYTXO+c/vpuNOYB+Dtt1Jsejx+BRHxS0YVvSwaMD+3fNRCuZrRd7pFf8XYQPn34fbZavwUJm+bgZ8NVNi3/p9K75wyOfS8+CjyD+3vJb2v4fExj1K3xlVqugYe/v3rcibMAlfLNqhKzcb9pXgaJmxLXT5YPO9o2UD/3zRDj3vkx0XNQ3v3HG4DP+ethGjXpihK6JWUSt2oIrFpJV78A+HXH8+wsJKCI02nNjrIa5Zg3VwazH92irHlnItVDCK1MgXZuBsbh3RySZraLEUhfCyMj4hkfkYTUrWvZ8v043yboyykfQS47lva8a7/dr+OnzidP07tp7tt8t2481ZZkPf8InT0e0vk121+d9aDfCSSnclXSJpZgoqqkO6sVu0pFilpMWSIuYWbo3hFLzMzKK0Mohz/vO7ntbg1SNDxOOPrtkVAoPAw1+vxEBGVnODeBqJ+fdid+knvl+NDo/8FLd7Jzpq4okNArhPUZQeAIYCuJ0Q0gPABAC/KorSGcCv2t8AMA5AZ+3fzQD+B6hKL4C/AhgCYDCAv1LFtyHhtZmbcesHi4XfWQ12flN/d06hrSdCdK1ohSl2XSoVTGancIkUv5fxEka2K9flaTSL9MpdRQZPoddDDFsf3Tjc5KmWVgZx/bsLcbC8ZnF4VuIezwpMuyAYNlvEnJpbeLAUwVDYkqCAbhzUMsdfnyq5IiswXQipEmvtibUfMx/N347Oj/6M/czvL31jHm56f5Ht7wDrMgvx8C6VOoSvnsGVhogWrIHFCbywaaV3WM19lvyFdfL5NUWaDY0t54idqEBcZuWJDVKPo/nen6yrijoMHjAKpqyCxB/T/9b6++ul9rnRwVDYsGHbvXt6Nys5yOq39D3ohiGLPjl4rBLXv7sQGcnqe16zu0gfx2Yl1rKZNYZbOe+S152NeuzYiKbJdI2gLNxJfvX5aXjgA1+u0Neqg8eqcMGrcwy/p/uS10MY5Ty6l/bglytw1ydLDWHdQM3rqn6zdBf+OW0Dth0qw4Z95v3O7dXLXHrHgIjhic5rq3tEq8R6CMFPq8zhyyz4986H2Sb57MVE2nYnI2E8nOX7S9R0o/fmFBrazTqoCdx5YiloSbavl+zSjfKs0mC1Z/PrBg/6vGz901BYMXjiFzN55hQHowjTpWOMlU2WbD9iytvmy2eFFeDmDxbrhmyRnKgTcR3HnN9Tnp+B2z+yNuTv5mrJ2im9CwsPY+WuIkzUiKpEkSHss9H1andRBfo/9Ys+1/YVV+CTBdujNmTVtL5uZTCky3f8GLNbK9+bG4ngqAlZXn1BzEqsoih7FEVZon0uAbAWQCsA5wF4TzvtPQDna5/PA/C+omIegGxCSAsAZwCYqijKYUVRjgCYCuDMWNuVqJj48zpMXi3eTKwWwVgsOSYl1u0YptY15hBP1kNIRFC2Qkog4okNh5VIKQdOAbz706VClkb2vNlMyJ+HGC3KkZxY8Q7DXnvK6r2Yvm4/vtpQs/p5Ig6TRYWH0fepXwwEPewiyYeOORkVyqpDeLVgsyVBAW0DzZHgr0c377/9ZGQYBCLKCxXCrXKcnKyhP2gWeVoChoLmjNkhZKEoxCP8JZYcIRHmbzlkCoUDIkqsZQgs0xe88HSwtFKYI+rGE0styAu2HsZ/tXykaqYNfM1kqlBRDy1v6OFJPezgtuTR3yevw8FjqkBEH8nOwCQylCwqPIz/Tjfml/GGINs262GN4vFrNa7pcd0wZNEnb/y2BdPX7UdJhfpe5205rM8hXomNVfCrDoXx3bJd2H20HFssDIahsII1u4uRN2GSMPedYuN+a4MjG0pp51EpKqsWhirSd0ZTJpJ8XtM57Hq5xaIGsmqctFYGDpRU4qyXZxkUAR6PfrtKuDfUFhRFwRfrq/CPX9bbnuemFBeFXpZND9MWn2cnGIvGnIfAsdQOP975MFsnowA9z0lpjyhFsc8PWrLrhxV78DGzNrHL7cJtR/Txafu+tP+nrtln2svY31lNDzrO6LqxeneR+lw2hmrVA2q9v+ZNmKR/rg6FUVRejWU7jlqOadpOtg8veHUOHvxyBT5fGFFk/6AZkVh2YloXG7A3Ilt9Z7dnK4qC33dVR210AdTIBRFmrNuPYROn4/WZm/VjorHJ10fny4mx2wP7c3ZMHimrxtaDpZiz6SCG/C1C2GcFWt6OhdsQbxbr95Zg55EyBENhdH1sMp79Sa3kwe9dbubPY9+uRJfHfq5XxGOxwF4jcQlCSB6A/gDmA2imKAodhXsBNNM+twLAmod2asesjovuczNULy6aNWuGgoKCeDS/VrBi9zEs+WwaBjQzvmK+zbuOhbGjWLyobdsR8caxv3vh02koDyrYXWT+3Z3vzcFDg5P1vxcuWoj9mWYBg8dRjbFt2bJlKN+unr90r3ETLioqAnHQilevXoPKKlWw27FzF6qOqMLdzp07UFAQUfS+W7YbPQKH0bWRsW2FRYwHCqq7H1BZGpftOAoA2Lx5C0r2aGGzxcWGd1NQUIBtxSH8dU4F7h6QhP5NfVixQ1PWwsEajZny8ogg1eXRSbimRwB7SjWP0qxlIHtVD+fOXZEw3Rkzf0OKj2DFfvVJgg6WsWMV1fh12WbDMbbNRZowt2z5CpA9PuwtNV6vMhgU/g4Adu7Zi4KCAhzar7Zv5frNKFDMTJvL9lsLXwUFBSg/piqL85csE35vh10lWhhiZeQdPfnBVH0cVFdVWV5jb2kYE2aV46ruATRLJejdxIfiKgWTt1bjoi5+TN9u/exWx0XnXTvZTOxQUFCAffvUNq9Ztw4FpZtN57CCxLr1G1BQEdnYxr40E42TCV7KTzX8przSaFih7dlREunXbdu2oaBgj6FdW7YWoqBgt/Z9lXZsKwoKdqHsmDpG1mzYAgAoLS0VPueCRYtwcKN4baDnP8rc065vZ286hCtfmY6Hh6SgUGtPKBTpj3A4bPh9BVNDmR6nz9fLswv796tjbN36DSjZFVEQN2zahILwdmEbystUAXfhwkU4kBV5Lnr9XSXGuUKPHytV39fyFSvh378Wq3ebx39BQQF27DD2FStsVVcalazFS1TFIawAk6bOQJqfoDqs4O1VlbiocwCNU8T24wffmYZvNkWMS++emYZjx44Z3t2ChQux5rC6Tr45eSGOdUsSXot9Rh6rDqq/P3rkCHZWqQabjRs3oaDaaLS4dnIp2mR48PTwFMM1V2rvSBdSQ+Z5u3z5Msu27N2n9e+6tQhrAtqcOXPRJNX4Xn7aUoXVu6vx9KezcOyYeq/Fi43j9uP525FbFSGgo2tubWH//v1YsDcEbN2EAQGxwA0A6zZaG035d0Xf5+59+1FQUIANO8QGxoVLlqFqhw+3/2qelyJF51iJM4ndzJm/IYl5X+u0e+/duxcFBUew8oB4Puj3OKbOu41bt6GgYK/pPEVR8OWGanTIVvs2rCiYPqPAcA7F9uIQthWHcUprv7Ctaw+pY+BYcRGWrYkongt2VYBqj2wO+6Kl6j4pwqYtkf6Z8lskvaCgoACTGYN3RbnROFpQWAjs3avvvZXVQUz8ZBpeW16JS7r6seWA+v4WLFiAHWnGcfjo+79i1q7I+zxw8IDlHD3171OwTZMNb+odwPBW4ncCAL/PnmNaUx78ysiC/fO0GSivUPewDRuM4e3LlxvPVftN/TxnjjiiY/bceWieJl7Hlh8I4s2VVdhRPA2Xd0/C2kMhrDzoXqkTvZP3V6ttf+7niIF+/kJzdOP0ggL4PERf4w4dPoyCggJsL1b/Li4p0a/PKsH/+daY1z/19wXYabFn8HhCIDPMmDUbTVOj8xPSPfB/p6pywkdzt+KU9P36uKdYuWo1Ug6ZjWhs+z7RcrWnTi9AQItw5PeS8qCCyqCC7OT6S49UYyWWEJIO4CsA9yiKUsxadRVFUQghcTMDKIryBoA3AGDQoEFKfn5+vC4dd1w7YRKAShROPFU9MFm1sPFtZi1vPHKaNAN27Ir8TrvGK8vUyXzFkLbADqNAt7U4jK2+tgDUiT5gwCD0bp0FQPXu/HPaBtyW3xEZycYF8b9r5wBHjqBP3344uWNjAEDRsl3AsmX6ORuOmBWwjCSfTpcOAF27dYdn7UoAITRr0RIdm6QB69aides2yM/voT8DAJw0aAAGtDVGji/bcRSYqy4mfp8XQYElr1PHjmiVkwIsXYLs7Czk5w8zvF+1IPcq7Pc1Q35+b2ybUwisXo2UJL/+/hcVHkZYAY6WVaEqFMbZfVqa7sMjdVEBUKYuMlUhYNJ2D0Z1bQJs2YEuHdojP78zAODngyuAneoCMnjoMDROT0JwzT5gySLVHGhjGQuGgXJPCoDIBs2Ombc2zwcOH0SrDl2RP6iNakGeFSETYI1/o0aNAiZHciOyGuUiP38QJh1YDuzciZymLZGf38vUhopVe4El4tD3/Px8fLFrCVYc2IOOXXsAS5aavrfD2j3FwOxZ8Pn9gKbAvbO6CtPuHQXMmolAIGB5jS8X7wSwHB+uVX9XOPFU3PLBIkzZug+Xje6P1PKDwNotaJaZhE3etvhD/1YqiRUz5th5ZNneyeY5mZ+fj6lHVgI7t6Njp87IPznPdE5FdQiYouYydezUCfnD2xuudahCMd3PM2MKIqYa9T7DnvsVIzrnQrXnAR3aa2OLuVaLVq3V+QRgbtlaYOsWtG3bDvn5XfH6hnnYdPQQcpu3ArYUIjMjHfn5p5ier2+/ARjYjsvc4Ncpu3fFvaewPxX5+aMwv2IdsGUz/D4fyjWjisfjMfy+qKwamPaL8F75+fn4fNdiYN9e5HXoiB4tMoGFqpDZLi8yz3ikL5kJlB5D3/4D0K9Ntj726fXbP2xsLz3unT0NqKhE1+49kN+3JQ4t3gmsWG46d265+p5FyMnMwO5jxfrfffr2AxaorLKzj+Xib3/ojcmr9mLu7sXIyM7EG38cZLyA9uxpuS2ATZE1PT8/HwUFBYZx23/AQFRtPQSsXxdZVwXXYp+RB9lwAFi0ADk5jdC6aTqwvVAdsyPa6+eEwwow+SfsKAkb7p+fn4/9C3cAK1bo3qzsjDTk548y3HvggP7A/IgAzLbls52Lgb170aNHD3jWLAfCYQwaPAQeAvzlu9X4xyV98e3SXfh8g+qJaJ/XFtsqDwAlxZE9jblXj549gaVqGOLiimZ47GzunThBMOet0KRJU2DvHtMz8fj92Bpgi9lDAwAVuV1xZq8W+t/7F6nvMyunEfLzB2PX/G3AajORUuduPTG8RzOUTv5ZP0bbcON7iwAYGUpzsrOAInPIKothI0YY5IHd87cDq1eiZYsWyM/vg+o1+4DFxlQR9rlTlswEjh1D46bNkZ/fVz3IjpXiClw3JeLNIoSg24ChwC/TTdei8tBfrjpN2FbvxgPAwgXIbZyDwX1a4quNKwEAyw6JjRavLKvExQOb4IWL+5q+W61sAjaoikDP3r2BRQu19zESb29ZBED1VKakpADlkfean5cHdOuGTftLgFm/IQyCirQWAArx+fqI8WHw4MFolpkETPlFP/bVRqNxommTJsjPHwgAGpFnhIl6G+PcaJWn7ScU3Hg9afBQtG2cKvyOonOfQQgsmA9UVqJT587AmghZZs9evVX5hD5jfj4U7TqDhwwFZs4wXW/QSYPRqWm64Vh1KIzKYBhH1+wDFi9DUnZT5Of31+Rh9xDNq3e2LADtE4peffoCC+Ybjg0fMRIpAS/8mw4Ci+ZjT7kXfU4ahhYllcCc35CSqq1V0PbsX9Q9+7P1RqNTk3Zd4Cur0scI367/+20Lkv0eXH1ynvCd9xkwCN2aZ0bx1NCvM3joMGDaNKQmq/KQZ4M67im69VD3Kv53vHwDAENOHoGsVHV+/zxtBkaOHKWX7Tvp2Wk4UFKJwolnRdfOBEKN1G9CiB+qAvuRoihfa4f3aWHC0P6n7rddANowP2+tHbM63iDgFHJhh1hCMQAj8ybrHfpm6U78r2CzkGSCnmUXEikEt3dUh8KGcGI7iMItWNISYe0yDZE6sc5NpKHFfubci16bi0ten4ubP1iMOz62D7ei4EM6cjOS9GegoZSA8Z1XcyGKbnKUi8utPaE0RPNBrdag3fX4/qMhqtRiX6zlzb6lkbHQ57MLJ56xbj9StHqk5S5KqHy3bJequGqwIs9xw3goelb6rrwewuSwVOKZSWvxZ5csxG4QCiv4SCtNRJ/hhSnrkDdhEl6com5yQS6kUTS/f+DIUUShWruLKvD5okgUhmiMs+G4PMmXXwtt1evEOoTDucUH87aZ8r9Z0JBIN2PcbfmwUFgx5sTaEjtFfiM6z6pZfC6sVfvtwqPtwon50j7s1X9eucewDrrJ8Q8pip524fSmv1++GyOfn2FmimVC0K1uua/EOjyfL/kgypu0GwZ6PiHzbkLhMG75YDF+23AAK3YexScLIsq8j5kEojnDvuI3HVixaworYqKFhYcxkfES2e2ft364xEB2RUNSgw7hxNWhsGVpk2lrzeXQPC42SKspRceFKK9u7Z5ive/ofJm/9TCe/GG1ad0rrjDuE6GwYiA7igZ03Hg9HtfEQlaEaVZpCv+dvhGVLmQvdt04UmbuE0VRLFN2eOwpKsfl/zfP8nt2PRPtK1YpFCw2HyjVxxWf+mNXVsZqPRTtH/d8tgy9/joFS7QcXJdd5Ao7j5hLyIhkFfou6L2PlFUbSBo37j+mpx7Z7SdHyqpsZdhnf1qLv3y3WpgWB8QWTkxBy+MdLq3CJa/NNfUvbdeqXUXC1CfjtdR2FJVX40/TygwloazIPesTasJOTAC8BWCtoij/YL76HsA12udrAHzHHP+jxlI8FECRFnY8BcDphJAcjdDpdO1YvcUSJom+wyM/Yb+FMOCkJLKTgLLQsbBaH9gFypifqej3VRQFG/aVIG/CJMzbckhfGNkp64Ypjp/kobCi5xwEwwqemaRa0kWLmShnyEC+YrO5UmV3YeERx+R1+r3fRil2A15QU5QIOydLHc8KWRGmVhj+twP/rqq0/gLMCo2dIsIvojyhD2W//pdm1KD5NXb9ft27C5GqKbElFc5K7N2fLsO4f8/S/6bjkW/36t32CzEg3rzpBpLk8xhKGgFmdu+aYOqaiIBI398rM9SQYpqnyhZqVxRx3uedXH6am9xgUQ9XG4T/iGFg8bbD+nuiRFdWipGTEst//5dvV+EhLkSNhV4uRTTWuVu5EbrU8xTDGmbLTkzrVUZJaEFz/+k7tVIg7FYPL/eO2WZaEcKt3FmEP320BI9/F/G4uVFiw2HFVBPXCnd9shTbD5fhZa6WpRsDxi6t3JlXoAjxa0uy3xyWbncPnbCEmSN7iyqxTivf5vd6DHm2tLSUel1z3/KCNpvvd7xw8Wtz8drMzQxzs70QWxUKY/6WQzhWGdR/42TcqQ4pBoOpE9wYefk1h6Fj1Npkfo5x/56Fh75aifKqkD7Wtx0qwzuzCw1K69n/mYXvl7nzSbAKnyXZpTZeNu0r0cvxxQr2FuxafeBYpeH+VlOSHbsiltyQotgapFmUVtqPFVbZEu0rbubz10t2GvKAWbw20xhhwhJDWl06FFaweNsRAwklDeV+XyMXoq+O8nDUBKL+Fq3zL/+6EUu3HzGsuwePVeLdOYX637M2quuD3XurCoaFzz551V78zsjYVszjmw+U4ub3FznWS/9xxW7T+syuHQsKD5v6nK53Z//ndxMLOA96LWo0o6XCWNb/mijcdY2aeGKHA7gawBhCyDLt33gAEwGcRgjZCOBU7W8A+AnAFgCbAPwfgNsAQFGUwwCeBrBQ+/eUdqzeYt4WY33XH5dHcjRYQdxpk2PJBf45zdp7agfRJFQU1ftGrVMsAYDBi+hCEOSt4sGwoh87XGq/2ZYKlFh2UbHa0NfuKcGsDZFF5G0uqV7fgjlLsgPJIgBg8qo9JuW6vCqEdXuLEeDISw6XVulK1FaGuMRQboSzVrsBv2d2eexn/FNbKM0kPTZKLDe+aFvpO6ZCQ4TwwCxYikDJo44KNu7KYAh3frLUksVaV7i4gfnnz8xe06NlVbjsjbk6I6FoLFNDkNdDdIsjRXR+Rnuw1lYr6y3rnQopimtvIwvRb0R9HDR4YtXf7D5ajgv/N1c3YtESO1YeCyfBR2TMsBOgvR6Ckopq/b3bGUPY9q/bW2z6nj5yMGT0e7n1xLLCTSis4M1Z5jDgUFjBjyt26+kQOumYxZyy0y/NJRDM1+AVT7rOTGbYY914Luz6zWpP4X8RIQMjWL2rWGuX8SzavhSBgsqT+CT7zYsr/x5ZLz79rioU1t/HNe9EwuXKqkJYw0RwsFE5ovWJf99/fHsB5m85hE8WbEf+CzNM59cEVksuVfZpaaMKh/2zpCKIS9+Yh+veWaCPH/qUVj1cVhXEDe+5r2MpMkDwCHEyyfwtqvhFxyI1DmalGFOQvlqyE5e+Mdf07tn9c9WuYrw8fZOrtrKl/HjvVjAUxrHKoG7A2F1UYRL87fDINytNx9h2s0a13PQkA3Ge1Rtk1yK+hBRgZiIWgb5jJ6OegYlZcM09RRX4YG6h7TWKy4OWYzcrxahkDmXIjKxkjLCi4ML/zTGQUPZrk204h8or/NhxwueLdhhkhHBYETp9RAr9/83aij+8OsdkwJnCEKvqTMU2a2llMGxaa8e+VIBbP1yMq96KhDDvPip2Uj3+3Sr8smYfpq3dL/ye4o6Pl5oUYV6p5Ne8aKKoqKOFvqvth8tQGQzh7k+X6efc+/kywS/rB2rCTvy7oihEUZQ+iqL00/79pCjKIUVRxiqK0llRlFOpQqqxEt+uKEpHRVF6K4qyiLnW24qidNL+vROPB6tL+LjZU2EhAL89u9D2OtEWNhfBQCHOHGfDGn3eSPkadm6UaQKRnQeTn0zBUGTi72dCFURXECmxQRdK7FdLdhpKc5jKyTDPfPBYJfZqpWB2H7N/n5v2l+DWD5fgwS+NCtV/pm/Emf+aZQiLBVQllvbRloPHTOFVgDmE1w1EZ9KQKD48zG7v45VYau2lm+AOztNC372zN0D9XhQqtfVgKX5YvhsX/W+O6TsgMr5KXDB3frN0F+ZtOYw3ftui/VbkiY14l00CvAvDgVtWZINhQrCZFldUY+XOiDc5FFZchaTxSgvvTQbU93D2f2YZjlWHwth1tByTVuyJhIdz/VGmsxNHjrHj0ElwEglLdkaTFTuL0PuJX/R0BlsrN3PtM/81C9MYz4CiKLqXvzIYMjB/h8IK/j55HX6yYLAEzAaEiuqQHhHCoqI6ZEglePKHNXhhyjrLZ7SrqFplYSkHxIppKKxg6Y4jAIxzQeSJLQ8qOqkd/S0FVfGp4n6pRVkdRVGZL8/8128orqjW27fzcBkWWDAcU6FHjXwxPh9fzkrETsy/xid+iOTgRZhdzREFQKTWJgWrjInGlajP9pdU4uGvV+olVABx9E+07J1Wp6cnqYrA3yer6QVO85+O8YWFR/Tx6nFwsc9cf8AQ9eMEN579Qc9Mw3eat/TVgs16PdjK6jBu+WCRbpCkz8dixc4ik4Ada6gwKw/w6+CfP1+OXn+d4lj+zQofzzeTwRlD/iOfUwJe21rMn29U5QD2HJHxKBRWHPd9uqY4GY6DIQVHy6qwv7hCuP/c+P4i/OW71dhx2Bxyy7bHaqzzVSfY8or7LcabyKDYoUma8YA2/KJVYh/8coVBxiuzmEt2hlK7N0qIGp78xWIzsSXFt0t3mfbIzQfMYde8AYCCGvr8bsIhAEPEpsmIw7UjmiWLjk3WI/z5op2GMGSft0aZpXWKuLATSxjh9RgHBCso3/PZMrxyxQAAcLQk2nlq3YZnGMLa9LmkGIQun9ejTwqDp9hQg0w8a/hFmt1knDbbY0wITWllEBe9NhfjezXXj7mdqHY616BnpumfF+wNYeXOIp3oigdddLZzG4FVqYTy6hAOad7m6pCCMS/NRO/WWcYyRTF4Yo8JwnRpzh2/Htpd95slxjAumgNL++xASSX2FlVElFit75zCyOnY+VKQa0SvYVWE3Ok9sIoCbYdPz7UUtIUJBXWTw81v4tXhMJI8EQGcr6cnavfmA8dMhGx9nvjFeL4LK7wIopIQ2w6ZBZOKYAhn/vM3lFQGceGA1lobxdeiguzibUfwJKNIOPWFSGB0o/Ov0jx7dl5TXmi7kakxvKeoAr9vUhXhVws2m35HjRo8GQX1OP+0co8h18dqHeW9ieXVIbwyYzOePt9MdqZe3/JxzHmvgnU38nMF/562QeihEsk7ry6rxMppEebMkKIw5SPU+Tz2pQKDsibCS7+sx7q9JZiz6ZDeN6JcPgo6tzyEmISqskoXnliu/1nvAh17wbA4w5RXkn0eos9d0bgSTTW+HuQva/bhlg8W49vbhxs8RtHmhlvlxKYn+VBUXo2vluzES5f0dfTEsus8nQ8eB1nSbR4ohVUtcB53f7oM5/VrZVAkf99kVJhpGgkPu/JHbjFzwwH8zEQk8FE11OgeK0+ICFa59hXVYVul8sHZB3DJOXw0jPn8oAsldtLKPbhq8yHh/DFeK4zBf/sVVcEwFjwy1vS9m/SJYDhsqdiJHAoUVrm6ZtkvjHV7jGzYdO/xx6AksWuOVb/bySqHbeq6egjBrR8u1vcqEfYUVeAtF/n12SkB2+/psxceLEXrnBRLhfGUv0ciRngHFr8X25VE4hFRYpmyUaY2xjF5+Tij/qrfCQzeE8sOQJb+3Ql2Nc6CIcWVkmfwCAgUBEC1FNGzjKGwmlJjY5Xk12hWcGdDD0V7L7twLtp2BGv3FOMli/wCO/ACpB1W2eRe6mQp3DPZGQxYhXf74TJMWrGnxuHEIi8lXQh5j4TdYkZzNQF1TFJPHbvhbj9cpgtGboidgMiGyY9PQowbj2gDd7RMM+OEzpvSqhC2Hiy1zYkNCTyxCswGCP72/OZA6+nZtfu7ZbuF5xjOV9zlZfLePaf8GYrK6rA+To5Vqv3Kvx36PhZvO4JHv1mJ2z5ajBWMt9jZ+m9uf6w153jB326M2SlWViQaOw6X6ZESnyzYgXsZUi8rZbqoXHwfK++83TbP12Q1emLNRpg1nLBHwUdaKIqCLUXGZw6FFUNbnpm0xlGBBSICtddDdC8SqxQ9M2kt5mw+qEe20FzIovJqfLqASTkJKyYlU6Rc8WteGuPJo542K0MPL1y69cSyygCfS0333mWaoeqbpTvxasGmqARCwNq4yoY8h8OKbQ1fwLg28fnYVi3iZQsnbNhnXStYBDZ0PI3zvFopsTXFS7+sxzVvLzAcE0WkAM4h2nY4VhlEaWVQD983hBNzkRvsmiEa20Xl1fjr94xBUDQmXSixgKokOtXiDTIpErEYRwEgpFiv3zz5lqvrhY3vb+LP6wwpAEBkzYxy2AIwev6tDNR27+K2j5YY/jZEJRLn/Q9wFw2Z4jAv/D4Pdh0tR/6LBXhhirEsDqtos8/IyzL8XhxWFMsQdh50zrCyRVlVUI9QBAC/k/UsgVF/W57A4PNQ9hSZLZWFB63Z4CjsrI7l1SEDe6MVRMqTosBQ3Nvr8ei7J3s+W5zcLey8YTwTGruJuw3rFIEnuaFXEoUQ7bGwGoc4spSLX5uD3k+o/GI8aQsL0SInyiuOcd/RQZVYdkOtDoVdv7fs1ABKq0J6uDfNay0ur9afrzqkEkj9vumQ3aUsNw4vIQbhg1dUQmEFM9bb54ewoL//ZMF2jH6xQLhA6+HEIXHOzDucJdVkPQ6q7/DS1+caCCp4bNofnTAYVpyt4xXVIZNxh3ogncAyx1LyEF5AYcfmR/O3myIjJk5eJ8wVpdeqFioLrprnCNswMJt7iKzre4rKccrzMwRnq7ASEK2IyURrZudHf3Kd26deI/KZdjENCVNshEk+/HP5ziLwnC9hJbJWFZdX4x2HtBR6T6qs+TxEX4/4le2K/5uP8S+roevs+H2KyVcMK4rJExsSeu2Nx1hjIF373QiStM0Uov6k45gNa560IuLZ23W0XA+Tpb//82fL8fzk9bYpGSJYtbhDbprWBg8+Wbjd5OnnwRpx/6ONLSdlJhpjaLQIhsIGwycfPiwKGY8H/iOYV+xazjLnumHEt8LJz/2KG95biFs/XIz9xRVGYieDJzbkqHxuP1Smk5ABYs8YT0pnByfDsTEn1vqadtcJ2XhiTSlZLsC2qSIYFhpt9CiUGGiK2VxSq9B8N7wtkbZE2vDf6Zti8g4L2+DQd34vwX5NYaR8OaGwgid/WI3RLxYIf8PLlbwuUBUMo99TU121ReSJ/dtP6wzn2FUCSXRIJbYWwFtL2XIZgBrulm8xeFnEgzFMtIbO5Jgbp6zei+Wah4Y9P9owK8DaUwIAz/1szEtjN3GnzdsO7AbkpDjsKRKHV7GLhAI1T0kXch0WYP5r9r1VxuCJFYGGE7Njq9KCPU+EbK1OGGXCbJSmhsAUV1QbcmK/X77bkdnTKkRN9cRaK7Hvzy3E6zPFSpMIZrIc8zm036pDYdPCryhmbwI/PqtDYZRWBTF/62EDQQWP139z327AmoiCbXe3v0w2Cbo8a6QVWE8VDRPn35ddJAcAbDlQKswVBYDL3piHf/xijoqIlxBtJ4hFYwgDgJOfs8/Bm2NhGLBKExCNs2hz8UQ5sWz/WF2N91ic/8ps8K+D7eZF2464bhNdlzwGT6z5vB2Hyw3/m66jmD2xIcVsoOLlKdaTR9fWYCjsioGNFUBF+YrU48iWOmJLzqzZbSzzZTB8xmlM0z2saWaSK+Zc0XpDjZJWxknR3KiJAZgFT0DDvvOA1xPXcilOoOv6lgPHMOqFAv24E4uvHUoqgpinkVZVhxVDdEiIGQ/lVSFDDqLosSdONq6bIkNIMKTgyjfnm78QwEnWYo09dkqT3Tq1alexkIwRcFlOkUOIU/xFj/D5op0Groho8MPy3Xo0n5VHNFa5ceP+Y1jpUJrGLf4lqBzCwufxGKJgAGD+lkN4Z3ahZQkmXmnlIxCs3qnIwaArsTZzJ9oIj0SCVGJrAU6MgFaKFI94EDuJhSnjxGdzWtyUsxDVBKSwCgMihJhYLkurgiirCuLWDxZj68HoPF0sWMXVTokGrDeAD+dtYzyxxud2EhLSOFIEg4WXlthxudi2yEoWHk/SrIZs06pDZvY8QBz2la0RKxSXBxEKK8jRlNii8mr9uZ/+cY3jggwAC7aKw+QUhWPx5cZZtDXJ+N+LvFd0joiIlBQoaJqZZDhmqp0bcm8IiAYV1SHL/FpAXC4AABYVuldKKOhGyM/rmuSPzd96GF8tMXum4/Wu7FIA6Bxt0yjF9J2hHrPLxjzwpbgskFUeWDyUgiks47AmBlcHzVEuPFzViWXCiUXMwSIoiKznrCfWKkj6o/nbDF45w7UU87sLhxVc946RNfcmJs8ZUEmAKMs6DRnnvf1DOzQS3jPM5AHbCa4BC+8KSzIYDCuuyrlYge26Q8cq9XVJD/cMhtE4zT5Pzgp6/VxBmzzEgkAoTkq4iW+BaYPdnh8PpHF7Fl2n93N7htt0CyeEw8Z0LENObJDLiRVMkdlctJJoDNE0DzdwTO1gtOSHvzYzLVO4KYsYL7DjrrwqZJkrfs5/f48pnBiIRN5YyXWxhlYfTyhKpG45zYdd4aBAfzh/m+Fvft5v2C9OR1m/13ycyuR2cycWT3miQCqxtQAn17zbGobxmKBv/LbFtADYlclg12IrQStgs6FZtZkAaJZpVNCOVYYwZfVeTF6915QrEA3YhVutgWt9rtVe8dzP64S/W7L9iGGxFglJfE6Eoij6O6KKhVtBIzNZzOLn9xHTdWj4Lw9RDi/1xBZXVCMYVtAoTf27qDziiZ218aChVFAsYA0vfC51hsWzsWBnDj+W+PHIPnu1heeTDwW/73Oj96M65C5vKVq8O6cQf/lutfA7RVGEKQaAs/dUhOLy2DyxsSDWnFgeolBlCro+Ns0wG3QOHYuEE7/2W4RJVYRB7XJs23DMwjIdD28zy6z5wbxt+GrxTn08K7A2Brgh4mEVumj2CCpIXfnmfN2babUXPPrNKuFxQBXY+QgCJ49IepIPv286iH//uhHlVSH993w4IF/GjL0n+9nK0GBFMsS+11BYMSgN0c//yPkDn5mGD+apAmclo8RareM3j+xge2W9zBPXJp9HNQKLckLjtX7x6yc7DzKSfa4MLLGCfwLKPs7LGtHUf7ZDkBtDrAFQ9cRG905F+3s0eaZOyifbnsU20Rc1UWKjJffh2Zntlk07Znc70PXJylPMGgYTFSGF4SPQ5pDII87KbUu3HzV8xzsXrKI0L37NzE5PSdJK63EtWDtIJbYWwLMT84jXQuwGszYexIfztmN/cYWrZURx4Ym1snYD1s92pKzKVKKmtDKoe6UbpyWJfoYx3ZrathcwEu1UBcWKHYWdgEqflz3lglfnGLxmIgMFb0UOKQqStc23KhTCrqPltkIhi0wLuvaA7ok1hk6LNk+RAJWpe2KrEQorSPZ5kRbworg8aJvzGw2CYcWQh8x7Bt0warMWQbMn1nguOzxX7DhqEmDZPEAKPpS+OhSOihjMLeyEoFBY0WvfshB5O9xYsKmwxM+92kifW7e3BP8S1Kx2At8Wu1wmKojxoeCAkfTs+cnrcdcnSy2v40S4cb9F+Lgb+TVD0DY73PfFcmM4sUXn8KknIgSZ/H23e4miGIX2mig+YcXMvO10PXZs7zoaIaHi50nAQpA2ksjYE9qJwOaDB7lwYjtmVhH4W/+yWg1bjjClK5bzn4/aAYzedL30EP9efB74vB5hbmAwrGCvy+guOxRzeZHsc2am+Gs1nJgfP+/OKcSS7UdMsgZfyqom92NvGTQYwo05sW4iM0TnWOXci+CkNItyzkWoSfSeGyMzi+vfjURaOBlMrby0TqDRW7GwE9clctMj8ixlkAci8qNo/Wd/44Ro+pm+O7v0xHrsiJVKbG3AKb6csj4eLywqPIzBf/sVk2xqK1IooPl8odg8sRZC1eeLdhoo9AFNidUKRTeyCL+KNla/Mhiy9LYCsMy/Gtutqb6R8M89k8n1ErWHr7EWVoBkTTCpDiqYu9meKImFqBYfECF24ouei/a+TEFNNkoDTz2xXg9BVorfEE7shJ4tM/XPVmHPbM3Jq7h8oGg9XPwGxW/0bJ7bmwIqfEVxVkiqgmFbr+CQ9uLwxpogGFaElljRvLKbazxqsqEHQ2E91NMJ/5q2EQ9ZhOg6oai8Gh/P344Sm1A7uoZEqyjyiJVN9e+T1zmek+6yxBlFks+j98/0dfuxRVBv0C3C3BrgBgqM86cmHAThsHmdd/IIs+P4QEnEm14dChsEXKvxzntio1XC9xZHjEahcNjw3h75xjo8U4Rf1xlzR6kATyOeqoKR6/N1M0X2Xxolo7ZNfS4+FSHJ54Hf6xF6pEIhBUOf+zWqZxCBV7rYd+y2pJ8d7MrIiPrzglfnmPIW46W0hBUj6ZKxxE4I1aEw+mil+NzMFZFRxSrfUQSn57KrEMHCKs9fhLEuHARu8fH87bZG01jXm8KDZbjsjbmYvk5MCBnNeIhXFJEbsEa7NbuL8UeNfZtGM4hkISdjGusscUqbY0HDiXkeAxaxesoTAVKJrQU45cSWV8XfejTj/nzL76i3002+XVhRcN8Xy9H1scnWnli7nNgoJtexyqAe5mW1vFiFZp/SOdfi/mHbQuVWz+T3eiyVLDYsSMRo14zLu1QURVdiK0PhqN6JlffI5yV48ofVhoT+d2YXCi3AonwsPZy4PIhgKAyflyAzxW8gdnICuzC7EWrY0OT9xRV43CK81gq8J5cX4M757++O13CyopdWBm2Vt5qy9t09trPpWDCsCEN7RMMvGgbFWK3w1aEwflyxB/92qFvN4rNF1kXiRaCP9v2yXXjkm5VCRlIKGoadllQzNlTeuBRPuK2/SVEZDBtqJ9ektiZvyHKDgvUHOO6A2PegsGIO3XfyCLN7Bq2tDais2ew8t4ryCXEKR7RC8S4mmubTBTsMv5+10R0juBWoh4Mq8lWhiBLLPw9fQgkAshij46HSSlQFwyaSpSSfFwEvEXqk4lGnFdCY6pn2sYpTRnLNPbFWgnJqwGu59/L5n/x4f+KcHjG1ZX9xpaGUF61DG/B6UK6xEw/Oa4TsVL8rBm2RXFEchRLrdA/R9ZtmmD130UQVXDMsz/B3TZS8TxfuwPp94jxNwD0LOY9/TtuAeVsO4/2524TfR5NOcTwjINnQ7Gd/ipCA2dW8dyJyZSOTotnry6tDKK9S/1nZdaUnVsIAJ+9hNBY6t7AT+KgA4SYE646Pl+IbLZ/Lan0QCdbn9G2J3PRAVAtFaWVQ90hZJZ37LEKzrYgmKoNhW4Y+q82yKhQhc7B7SyKlpl1jo7U9FFZ0q3N10Myaa4dkC6KWQ8eq8M7sQuxmwsY+mr/dQPNPIfTEMjmxobACr8eDTM0T6zbXiS2xEK2CYJdr2yrbTOBTVFZtIhZyM7bYcaHA2fv76cId+NKmtE5N8sCS/R6c2r2Z6XgopKCMETZoOKFIIaFz7cyezfGXs+0FtliF2ZKKIO75bFlMv3WLUFjBwsLDOKjltNp5ImkelCicOBrUVl1LIDaCq/8VbI7LvUNKhNgpmvWWreFYE9IvUQ1kp3aw85LNa+Zh6Yk15LBGnwKw+2hk3TxUWmXJ0hoL6LtkSQ1pzm8St56LUjfY9frgsSrc+/ky0zlJfjWcmN6LvQyfphMrSiqCBuMkq3hkJvscSwY5QbSUdm2WgYDP43o+8Wsk/37d4qq35hvSkLZo+1N6sg9bD5SirCoEn9eDo2XVhnqaVqhpOHGFg6GbrUdPIXqf0XhieTm1pqnVdtERNYn8sINbI16y31OjGsPRwmodo/Kj0BPrQFrG7mfRrN+vFmxGv6d+wfyth5Hqq8faqgWkElsLcPJssVZ8t14wx3vaCNtWZBFOsFIARErsqd2bwush+C0Kq3ZFdRiHNWuolQXRyiBg9d6qeGZBDlavoCoY1p/XTvERPXv7XKMSG2Y8sVVRemKtlNgjgsLWgLhunshLmpHsAyHA3qIKVIfD8HsIMpP9Juu7HZKYcLBoFQS7zfXcfi1Nx3hmU8Cdl58Px3Ya806W3C7NMhzvaQUvIRDZYKrDYYMnluZBixlJ1b5JS/JhVJcmpu9FBoBowdZhrE1c/NpcLLFhbOZRV+HEbtCBm/PHE+Gwokuw0Zb+oaiJJ/b/fttiUlrthMnrh7c3emJtiAWthL+5WyIpGbF4Yvl5fsnrZgKUWEHDidl7UIGUN7aK1toszuj44wpz2o8aTkx0gyjr4T1g8z6jQXFFtSFnl+3TjGS/ZcklN/jrOT2Efthkv8eyooEIVRyRj12IcixIT/Lpa3M0qUyilBQRu7sVnIwqPNFPRpJPaDgScS1YgY8KqA2CQ4ra4J0A3Ndv79s6u1afj4dVBJXXQ6AoipBF2Kl57DWjXf8qg2FsPViKNIu05/qs2kolthbgpBTsPBKxqkXLCGcFK48lEBnw0U5iq4kiEjQ8hBjqYblBVSiMo5pydtDCOm8Vzmn1vE7hxFYhM1XBcOR5bR6BLiRsF/MJ+QdKKnXhJVpPrFXJjMOl4k1ORHQhEv69Hg8URc0d3XG4XM+JLY7KExt551bKthXslFjR3RcICqe78Tqxb0NRFEdyI7/DXB3QNgd922Q73lcEj4cIx6nK7hp5H5SISzR3aPOS/B5h9EHrnJorsfGql+cG0YRu2nli3YSzp9RiOPGLl/SttWs7weCJjVE4rIkn9vXftpjua6fE3nBKe0MUx5o91mGHVsLfnM2HdI9jLDmxtQnqoSyrDOnrd1llCISY93fRWssrsSIk+bzwez26x45VYksq4uNVLqkIGgw/rIEkNeBFlY0R0UmOuWhga2EZjyS/NyojLz/Oki3YrGMFu+ZEQ0ZU01DVoxZGaisk+b3Ce74aRbQH3xvPXdA7qjZYwechePe6kwzH4uGJFcnVtO6vE6Lhlhjfuzk2PTtOaDQGgLP6tHC8hrUS68HXS3ZhThQ8KZHf1lxXSPOLryHDiSUMcFZiI9YyO6bfaJCV6sf3dwwXfmen1NnBikE0SdBmr4dEnT8YCiuWymvkuuL3I8otAlTPpB2DocjLmhrwojIUUX5tw4m1+wYMCp2xjZsPlOqL2EtTN0SVp2JlWT7M5JGx40tk4RSRzvCvS82J9aG4Imj5Lnmwgmi0FnBRuQGq/LOC3a6j5ZizWazouPEedW6arn/efrgMnyzcbnO2c8iXz0vQvnGq6Xh6kg/jeze3/62HCIlc/jXNOCZE4d8U9N0EvB4h63T3FpmmY9EilnDEs3rbb+Q8oY0ITrU07ciTRCyvPKLxxDr1JY8mUTBJxhuPfrPKVOz+3tO6RHWNmiixgNngUngoYpjt3SrL8J2HGPe5aWv3WV7XjbAZiye2NlFUXo3th8pQFQojR0vbKK0Mwu/1mJRWkWxgRebHIqARO9Hty+9jldj41E4tqahGKtMWVmn1eQk+vmkoHjuru/C3Tsqkz+MRGiuTogglBkThxPEVYTMMz1974acsSSIAQ768G6QEPDUuwci/dj6irCbI72okjYpHCl2/Ntn44IbBUf9u0l0jDLKLE567oA98Xo+lJ75Njlke4NE6JwX3nGrmwzhYUokXf4mtnGQ8arkerRRPNlknVsIAKy8hFarYDZjftO0UYPqV1Tl9WmcLj6/aFVvOjJV1XeyJjV9oNAu/l+A/l/c3HbdaYG79cAlem2ltjRRtmBnJamgOfVw7ggNarJoVokULJPsu2NwbJ1h5Ytl2swKhqI/Sk8zKDk+fT5UiKw/pJYNam46xnsBoc0XfnW1mD6aviBCjJfCK/5tvOhdwVmIvH9wWHZpElNiyqpApDIvHUYfNNcXvFRpS2Pd24QDzuwLUMSD67ScLdhhynMZ2Vzf80V3Nll/WEytS6vq2yTIdixYsW6wb5KT60URAKsJCRGjFw6kEjp1w70Z4jUaJvW54e1w8UNyPIrhRPGoTvCJotW5YodSiRm480Lu1cUx6CTEoXXYQGUh5qHVeE6u0xsgXZgAAcjTDTGlVEH4PMa2TIoOhm7FEw4kp2M/REAjZYX9JJVL9Xp15nvXEej0e9GqVhRtPEde5pfPRKr3B6yHCkBs+omdwnj0bPO/BircnNpXhFuGV2H9cFB9PJQC0bWRUhOx4GURI8XtjTiWobYhadbg0uj1GhNY5KTilcxN0jTLFp3V2qiWHighOcvb43s1N1RkapwUMnBWKAowXGHrnbjmkE626xdVD2wGIT9Tm/rLEHDM1gVRiawFWg18UHseHHfC5rezAHddLnRTRCiyxgrX0jevVHPmakC2aTB5C4pqDRhU1r4fgnL7mnMlYFeb1e0twLsdqm57kQ1Uw5MoTS5+9cXrEi+QkUB+MImfJTZgua0QQeZ3Tk32GMdKndRZGcmzOKQGf3m7eU5/s9xiUQQqWGCFay91mAZEPFfAIIa7yj5zY+1TFKrpFmg/j+lN+R9x/esSrlRLwOrZtUF6O4W/qpfYQYpmrzirkPVpkonDiWRjeycy4Td9zks8rHPPNM2seTmznGRPB6yHIdAjntUtvoHASLOxCht0IJdGskz6BwgEAbRqJ329qDZmTawq+qclRrr1WOfY83IS68miWYRTwCCGgW4aTkuLGE1sdCtfIE/v+9dF7c9wiJ1XdF8qqQvD7PKYIGNF64KZck8/rQUdmTWbn17cWRtJohf1th8pwrDKIn+46BQAQZPYFp7QLasi12pd9HjE3MbvfPX1+L7wfpafNLoolFrBt5D2d0TDFu0FN+AyiTefh8frVA02pNvGqQFNbpWyoTBit09DrJa72i5cu7osPbxiiG/ztUtlO7tDYcCwtyWdYu0JhxVWNdzegpJzxiNrMDFiEE9f4ynUHqcTWAqyEXtFhp8HDLlZU6ajpAuYWrCVyeKdcPXTRKifWTYifW9AFhH+XVKi0I7Li8cbVA/XPe4srsIILxctM8RsK1NutwTSMrnFaxBMl6u9YFxw3fctuEp8sMIfLZiT78MqVEe/1ZSe1NSmdKX6v3kbeqeG3CKVhD8Vj0aM5RwRmpUc0V5yUrWS/B24j52lpBl65btso1dAHKX4vvA4WUN54Q5Unn4dY/nbbITYv3qOfz4MKklabcCxKRk3hIcQQdiiCm+HvNNbtGLDdKDvRrJM+j8ckHBVOPAt/GtVJeH404Wm1AX6N4j2YTuH+bnOyYhHceeMDG5HQMltcXzqa+5VXhTDxZ+davlawqkn+wkV9DH/HIoTqnljLcGLzb9JcGCC8BBjM1Kx2Y8Q920XuHmBUCnYeKUNOWgBtG6UaPbEOayBdn6za5fEQoReaXdf8HhL1eIv3+sdG5vCRP6Jnu310x5juQwgwpgZ1WmsiA946qiPO6NnclPMbTQ6wHWrL10fX/GgN6F7ibly1zE7BCMbYbxdtxhtP0pJ8Bpk0rCg1qmzAgkYsxSN0/qGT7Nff+gipxNYCrBbyUDg6xjvAuFjRz/Fm5LMCa4lsnpmsW2NFC4LXQ+IWYvfFrSfr79DH3auHpki7zeMEgNN72ue7ZST7tXBiWmLHehku1kg0GjGeWJHXKVarrRvvkVMuTEaSD2O6NdO9HqKmpAQ8lopAkpZ/xeOWkR1x+eA2AGIT8HjQxyDEPC9iqfGZ7LOuN2g61+I9J/uNCrwbTyzf//TaHg9x9Z7oWPcK3jkVJK2UWGqlPZ7wepwt2242cCdBzM4o5sZIFE34ldWazYeNJQr4cc6/7poKUBcOaI3CiWfh7WsHITfdPneZxYhOuSYPhppqon52Uv759V6EwkOlmLpGbNBic+Kt7yF+N7xC5FYYZ+uEN9JzYkPwe4hJ4Bb1ixuDDC2JFvnbuX/dvEvAOJeo4drEoeDkiaVrns1pVjmxFKqxI7pxa7fP9oiBL6Bb84j3mg8nFg2baIzpPB4/pwf+fVm/mH5bEyVWjzirJW2TXtdtsIpbmVhXYqNsj8fjznvLy69WVS4UKKZxmpHkMzxHWKn5GkxBZcJ4eGItxYV67IqVSmwtwGqTHNA2O2ryI1Zhpfkf0cT31wQ037J1Tgr6tsnWNwyRJczjITWu60hxUl4jfUHgF7h+bdTQzWgYDZ2QkexDVYhRYm0W9+JyNReSJaURRU46RVPyxA4U7OZ080hx/pET4QQNT6PdJFpMUwI+SwEg4PUIx2my34NB7Rpp17Yex27XbupRJjB7LGPJ/0j2e10Lnlb5mFXBsCF/LzXgtdyMaEgRT4jBemLdsKj6LaIOgMgcjNUTWxt8DR5CHAVvN8KokzHOLmfWjeAfjSHJary1aeRM4lEX4IcVP8pqKkAdq1SNdX1aZ+N/Vw10ODuCCwa0MvW9h1FOnPrNjUC7bMdRy+++uPVkx99bhbrH+s7uHhtJP8jWwonX7ysRhhOL7uGUXw6oRgDWwOlmfrldQ4cwoZHUQMqPL6f0ACdPLCDeM9j9LhbDr90zRmvsv3ZYniFlxaTEiqKTYrTmEqjeQVHeJIu2jVKF5H3JNZABqWGUJ99ryYU31zRtzSp0lYfbfqdrh4tMFQN8Ho8r43Yap3VbpSwoinmdSkvy6g4OQDUyxosjhjadXzt7tszEuqfPFP7GaimzSgsQB/vXD0glthYg2ohPysvBvy7r57hR8l7AgDeyEdJF+XiFslUFwxjQNhu/PzQGTTKSdKFSVNjbQ+xLYvCg74i3fvXRSEEiIZbGIUoXGrekBqxl1QqZnCfWTvG4cEBrDGibjVtHRcKIRIuV06KQZ8EEmBJQn3dUlyboZ1HaxUkvou+UDjVR+1L8Xv0d8+RQfl/EG5mbHtCVNAURYZm9Ii9IpLrc/OjG4iHmfg6GFFw3PM/VdShSAh7X1mWrOVQVUgxjMsVv7Ym9amg7zHt4LHq0zMTT5/XUj+vviBBX4c001FLUTxElVm3vk+f2xF/P6YH3rh+MN64e6JiHPryjOc+2plA9sfb3dSPcOZGy2D2bmzWwWaZ7L6pav898vFPTdHx84xBHNubjDZNQxv1ZU5GEJX6yCr+lYLva6zHngXtJJJzY5yVoqXm3RUPEjeC3r9iaY4AqkXawUnxE9+bLp4nA5rSy70qUZ83vLXeO6WTZ5sfO6o5TtPBGDyEGo44bD6CdQeAdrQSKhwDnM3W6qeLCEs8B1oZ5CqrE2sk3om9YRdOu70VEg4CRpXnho6eiI6OYRVNWBVDf1yWD2uh/8xFPXZumo7XXSKJVE08s4KzAdW2eISyjxo4Fq7x9K9Ax2CIrBZueHacfz01PwsZnx+FMLXLN6p1/d3ukCsZLF1uXGstKMr4bK6O8qJ8uHtjaVKaHpkzYyVZ/PLkdxvUyRt55iDuvMx/9ZVXVo2lmkml/u2xwWwPZY7LfnJ4Sq1GA9leA2/OS/V5Lj7y1gwK4ZVQHg7wCAH/o3yqmtiUCpBJbCxAt5H1aZyM14NNryrmlM/cyeSJ0wMaLVn7lE6fbfl8dMlqTaMiQKNzWS4ght0dUqxSITGSqxHVkwr/+dWk/fH/HCO1eEaGHBX0HVuV/KFpkJeO3B0Zj8j0jbc8DgEydnVh9rgMl1kJSk4wkfH3bcIPVUriR2ext7XPTdKFzCJPnBESE8+pQWB9HVKlyuwhmaOzEtHyRyNKfGvDqmwdfMDzg9ehKZVgxPoruPWWeedWTZxgYpN2GOtH3TQjw4sXGfLRgWIk69D47NeCaVEJkpb9+eHtcOqiNIWwvJWCdE0sIQXNNIL/65Dz9+NaDpfr/rVzUcaXPKVo3aEgTnQ/XDMvDdcPbY1SXJji9Z3Nbj/j0+0Y53jsWlFeHnD2xLoQ7p3XMbrw73f/ly/sbyNcorMaUnTA5rFMuMlOijzKpSaj34wzTpQhmHVY9QMNp+7XNjvqe/7m8v06ixwpkToocO25FIaEehtjJ5yH46rZheO2qgUKlJZ4M912aiUOL2TBb9hxeMFUUYNFjpzqGfLLjlCXr8XqI7jUa16s5njinB6o5wZgQ69D8Md2a4qQ8GvkSvSfWLpw4v0sT3DW2MybfM9Jwrc8tPNlO96OygagMGIVoSWCNUXbr/eD2RiIdei0/Y/xskpGEX+/L1/+Odiz5vB4M65SLBY+MBQBcdlIbw/dJPg++arbXcCxWT6wdbjqlvf65KhgWvhfWAHhYUKbQbu1hPYz8GPF7PTqTcPMs8971xtUD0YspoXVq92aWOd239ImsG2f1boGrhrQTnidae8/p2xL92+YYjkVyYoWXAaDuj69eOQB3jolwGRBCbCO06PV4sj6RJ/aMns3QNCPZ0CfXDc/DGT2b46ZTOuD5C/vgrrGd8fR5vUzjL1qjCgU1WPLrhF14sdV3Pg/w8LjuBnmlcVoAXV04exIVUomtBYgES14ZE1nXRPB6PAh4PVrhdOqJjU+3OYUIbT1YimOMRT7JJpyYkEg48aguTXBKl1z9M4uRXXLxn8v749Hxar25APNeDLVXfZGQTBZ0I7cq/0MxoF0O2grqe4rg93oQDEcYL+2YL2P1HrDCzYz783Whk1/YWO8ovW5TLefq5I7GjdwK1FtdqClTXQQslSqxk7jdAV8knDisRLRYRYkIz4QAvz80GvMeHoskn9cQ1uo2pDesX4sgv2tTgwW1vDrkOqeLonFaIKacWMq0e/XJ7RDwGeuxBmzqxbmB10MMQonVOYDY7kHHot2GNe3eUUK2YBHDdDxwoKTScuxQiObEXWM6YfaEMfrf/DM15zynVmVZPMQ5PygjyWdqw2tXDcCdY8Slf7weYpsLz16Lrl0inMnk3/96b2xGhN6tsnD9iPaYMK6b5Tl8aSw67Pu3zcZvD4zGFYPbRn3fc/q21IU/1mNoxURNjxuUKyJQYj0RYd/r8aBFVgrO7NVc6B2JVYl96MxuKJx4luEYTf0AVKPduX1bYlC7HMN8/vTmiNLmJQSvXDHAdG2nlAA2YqBpplHhp3vl+N4tcO3w9qY8Oy+xjmpI8hsZyVnvm5u0JLtQW0II7j2tC7o0yzDIAd2ai9NcnNZAWlM2N8PaEy6SG1hZxm6952UevV6ul+DTm4fi9n5mQ0u04eH0fTXNTEbhxLNwZi9j9IWHAIQbtDGH7dv8rDVTh7QqGJED2BQmNuptQDujsrf5b+Nt+UmsPIwU+0vUEjB8GaDuLTJxes/mhjHp9RKsfupM3DLK7GVtkhrpsxcv7mvLwcHD7/WYxi+dJ3Zv3O/xgBCCa4blGY7biQVzJ4zFvy7tZzLAiOY9lXNov9+W31E3OKYl+XDJSW1w72ld0Dg9yTQ2YuVJObdfS5zbtyUePKOr4bhduo3V3I9Xnm4iQSqxtQB2mFCGQL8F+Qs/TfhQCa9HFeb8Xo9OjsGHFYhgJ2hFrh25F8/MSLHrSCSsyC6x3uclOitlZopfzy05tbuRgY9ALZlDJzQ7sVnBlHppeKGGCkxO5EZ2FmGKO0Z3wvvXD4aHqArVY9+ucvyNW+8BAQwhiKMENUAB88JGhZOqkKL3d5emqhI6rldz/Puyfnj1SrOgZbyG+sNrtYW8qeaJZcODkplwYlGb6HehsIJcjYnZxwj6BOpmSz2Rp3TO1a/vVAqHQrema8/Mr69OZR145KQGXIUTAsbyEzw7cBbjdSNMKCQ/lt1CJLyx1mv6/Haisp3XslPTdJ0V9XjBLpy3ZVaycLP0eT0GYw4v1PBhcVaCc2rArKCa70VMRroze7WwFKTckndlJvtwExcW99hZkbWWVS4auwhF5THt3lH44U41GuXWUR0xkBNQRchO9TNh/gRtG6fGzBDaqUk6bh7ZweB9tBq/1Dt2BmN8YvNf9WNMCS2n9xxreCabz3bjiPa4dlieIUfNSwhevrw/vvzTMEMb2P7yeMx5goBz+oahggAzLwgi4cTUuMYbXz3E2ijt9xrDkaP2xLpMHozHtQ7RqB+bMS+6C/vu7MYGP28/u3koLhnUGl4PwdAOjXFS85rzcTgpGR5CwLMuxKPqTlMuUort58pgSG9XVooffi/B0A6N9HF7y6gO6Ns6m2uTfX86lVimv+eVWFGUE+0zJ6Nist9MJElTvUQKV8BnXr/p7+1IH6kMyo8lOwNl86xknC8IpxU5M6h8rpMxCsjbKMxKrLu17YyezQx/ZyT78fLl/dGUM/JaRSp1aZau51rbMZ+veeoMAKo3vT5DKrG1iLaNUvXJzVtOrTYuPgTOSwgCXg+SGLp+N55Y0WbMg53oVgOZXbfofUWsbck+r54PdKyiWhfgTEq6dku6mfsFiqt6L6/h+w9vGIJp947SNz0nciM31PutclIwskuTqEKChKRWFovYK1cO0PNaTcyXjCWZIq9xZLxUByPhxGf1aYEf7hiBiwa2xnn9Whlo4HncPTbiaXrs7B7Y8rfxepufuyBiqEgNWCuxASYnVlHU53j6/F7Iy00zeGJZEELwwBmq56i82p0Se8vIDjitnQ9/1EJbeANx1J7Y9AAeOtPae8WCVfrYDQkwG0AiArgHA2II03QaXV4XwqZTDqgbAik2D8ZNrp8drJTBgNeDqfeOEgpSFdy4MBlwuPdgJYy5ZYwWGpcsfubz2udT82OExaVM2KFThIgdCieehU4cu64bBePTm4dazksKt3lzHg/BI+O7m7z4r145AJcy+YIf3jgEL1/eDwseGWswCIk8sewxq+eh4yla4kMKlsn6sbN74IlzexoUJDYlgF1XWOOyyspuvr+IA4IFK0yyvyckErkTUWI5T56HWBqo1Pcmvo+rnFiX79JNpInTtUoqVK83L2izEDWZTeuwuwe/3gzp0BjPX9TXNp3Cyes0jItscpprHhgZin+4Y4TQyPCnfHPZnWaZSZZ1Yd+8ZpD++dZRHXF234jx+/Fzehrmzoq/noH3rx+iG4obpQYM0WF0Lto9e1DgiWWjYN665iQ8c34vV+kQdOw4GQCIgAwwkutp/m3Aa17j6XmiNBEKuq+bZIcYrHp2eyptmV3klxtSNx5NM5IE+6L4d1aX++pPw/T9fVzvFlj15BnC81IDPsx7eCye+UMvx3YlMqQSWwtgB5fHYpLzVhQa/nHxoDZ47/rBeijZ4bIq+H1EYzoUW734kF3AnQLAKm9WE4y1RtFFRMQMnOT36BOnuCKIXhr7rhVNuUiJZZ8rmfPEjuici05N0/UN30lY5GsVikAFAdGzXz1UnL8h2mdFmy/dXOmGwSuxVAmnVsUuzdLx412n6O+YDSdOS/Kid+ss/ZpWi9qsB0fjz6d1MRxj+5gPTbNTROgzhcIKmmQk6e+jXWPVONKbs/4CRlKTFTb51tRDnBLw4cruSUxUAm/ldieE0TIoKX6vbYiNFej7pBsSXwOOFSI+vHEI3r9+MKbd65xrTWEVfs/f3y6f18lw5SRoA0Ajprbx1D+PxIz78x1/YwWrsdMkI0mtmad9nZ3qxz8v7avd3yh88GsiHz5sJainBbyOY8PvJcJ5YvUzN55d9ff2Riy63l0/vL3t9dzCjfVeZJHnhxIfCRQtxvdugf6aAeeSQa3Rv20OUgM+NM1MxhVDIqHLXsF7Z9cgq7WLcijEGu4mMlp+fstQnejHK5hvgHFepfh9Qo+j015Cv798cFvTvNA9sdp2FTR5YomlF8vLEEMRcMROUXpP2XFEa2Tr13Ixxpzud+Mp7XHJoNb448nifROIeLHY+7NrgN09YkmhclLO+ZQuJ5mCEMCjRM7p3TrL8D3NmxetW/MfORXn948QaLFnsM89YVw3Q75rvzbZ+nN4PUTftym3SnqyT99L7hrbGVP+PFJvqxV4D+Mvfx6Jn+4+Rf87LzcNVw1tZ7qGXfi/lRI77d6ReFnjy+D7kCqJot/6fea6wvT+IgPs8E6NDesQ3/du04xYCD2x2mU9+p5t/XuTMc/FnFVgfh+xlJ2iMlUwFLYNLW+elRxzmHOioH63PkFBQxrP7tNCF5r4SUUHGZ1cwzo2xnvXD8ZdYzphVJcmGKSFke0tqoDf6zGwFLODevWTZ5hY3ET3o7CyBhKLkcBao+hgF4XyJvu8+uJSUlGNq4a2w9Pn98KVQ425WXQRGNE5F6d0zsUj4yOesyRGGCvSio7zC5buqWSU4zVPnYElfznNcJ4bEiQ77wBPN08h8tqKNi16hFpMs1L8mPvwGMx9WM0JPFKmhl/RGoy56UlIT/LpjKoXDmyNxprS0YIjWODbO+vB0fj4xiFRlQNJsQkn9noioTz84n9yx8aYcs9IXDXEnHPn9RDcPbYzPr15qG04t5WgyguQbsNv3r1uMH5/aHTURdApTtLItXTiNJ8HFw5ojQ9uGKy1SxMkiWp0GNmlCTo1dU+EcOuoDrbhVm48Jo6lSSyuzxoGWK9HTlrAQC53LZdD5GSFtxIqdxeVAzD28fn9WuHly/ub7sH3Lx8+bhUhce2wPMd35vMaPbH02a3HnpNnl1i2ib1mtbZejuwSH1ZoN156tbSUcZ7yf4ve14z78zHlnpE4q08LV2HLIW0t4NuUluTTQwO9xMzIC0SEPZHCNKZbU719seaf87moANCpaQaev6iv1mbWE8sYb5njqQGv8D2d2as5nrdItwHUMkzf3zEcz5zfyzRP6augvVHNCcaEWBPheTzGd8nXVBWhPxMpwj7LW9ecpLU1BddyBhbRO3/+wj7cOfbjMCvFj+cv6msrMNPbnNojEvXFDhU7YToWJZbtWxE5F89eXlFtr8R6PQR2UgXd86zWLavoMf7d8r/X5wbTn+XVquc7PckXGSMxFn7t0ixDyEBuRR7Hgu65Vnt1p6YZOFcji+PHWdDGEysaCzSSh+YGn8yUhnr2/N742x96W/4+ljdjZximr9zOdsz3o50y+uS5kSgpnnTSyphrdWufJ0IWV98VVDdo+E9YB8hK8ePVsam4//SulooSHahUH/QQglFdmujCaP+2ObhkUGvcNaYzAl41n0Bk9fJ7PQbh3UpppmCJVVhYTS829IQuNqLFONnv0QXf4vIgfF4Prh7azhQGSa2xqQEfPrhhiCFsjRX0tx1Uc3H5eqqisjCpAZ9pEXYqPQJEyBFEa4TV74WeGJvFiW6MWSl+tMhK0RXSo2Wqkq6HXWsrUlaKHxufHYdbRnZAj5aZmPfwWFOdOHbT+9sfeqNNo1QM6xSd0JwS8FoqVoRENkzRvti1eYalwvjn07pgaIfGwu8o7hrbCRcNbG1if+Q3QlZY/uelffF/fxwEEdKTfQYyDCvQ6/PP/fcL++DHO0foBhNCCF66pC9O6dxEa4e1scMNslMDeMUmj5le1zYn1iGc2Cp8no7X/K5N0DTDOtTviXONlPtNM5KQY6PI9myZJTyuKyvMuyKE4Ny+LYVMmCzc2CC2Pjce1wzLcxSqWU9s04wkLHrsNNvznZRiOhZFQ4Btd1AQYVITuLHjpAa8el5cvpZ7z89bXvG86ZT2aJ+bhq7NM/DKFQPw1Z+GOd6HGjTtHs3rIcJ3Sdsj2pf+dVk//X2J1lLKFmsHq3JKorlr5ZW2SrEgxFh6RYQ+rbPh9Ri9qoRR6KlATOcpq+wl+72Ydu8oU0qPz0NM84h/Lh6s0ZddT6nBSsTpI7rWJdza7LT2sWXFWFw1tC2m6t5Be++VvSfWfYTNpLtG4N3rTjKMNa+HmAxzPMkbn+7AwwOzwMw+C5UnrGQvKyXWMQpEL8EWuTs1jqcFfEzIeuQ3Vlcc0r4R/nqOPfM5hUmJtdmg3DDv8mPDzhMrkk0qtfd36eA26NUqEy9c3Ecf405eT1GItxPsPLFUjrXLteVlRbv97XQtD1ZR1IgQw3UcxsctHEeD10N0+ZhGld05phPOY0ppNSRIJbaWkOpXwyEilirjqz6rT0sk+z24YrC6WfAD3OsheP6ivrhzbOcIUxsNJ2YZ/Tz8RDFb7ewwqksTnNmzuaWHgp3Hdkpskt/7/+yddXgbR/rHvyPJzI5jJw45zMxYp4EmZeY27bW/9sq9u7aXMl6bwt0Vr5wyQ0rhJnGYmckQM7Mtnt8f2l2vVrsik6y8n+fxY2m1uxrt7MzOy0iJDcfcISl46/rR2l/oplny2KDXrx2FCWmJLi4/oQbHCTwldnLnVqrXMfTtHIWZgwQhReW3az1Y1K6TqiVW2NRgdmhMlUJGhWSJFWOHnS3eYj+KiZOc29D0+noVi6g3RIRouxPb7NzrBFru2Pn4bCy+xVXwjI8MxWtXjXSpK6wcI3JN6GWju2POEPW4beUY6KWRlVrsO2VR8/AQvVPZACXSQtiDlPX1/03ExwvUBW2Xcer0mfC73SwSPClltErAiN87Z0iKV0JiU/sYdjw+G89fqh4vo9cx3DNTe2HgjVuosr/li4YLRqjXZWWMCcKB62ehCuWeQa/DJ7eMx9L7p0tCgzsvAHdKBHcWQidLrJdC7KxB3iUJcyqHodGG6DADhnWLw5HnzpMyqip/i1JB5G3suBxJiHXjUq3TsMSKqFmWQ3Q6KaZV7TeGacScyumkkdhMzXtJa1EY4cFNXSyHtvLBGZiXpq7gkc+pTPb9okfLgsm98PIVw3HdBGchsV9yNN68bhRek9Xd1DFXl0oRrXbane6XprY0uT+qJefxQgCRvZZbNcU6tlqDp0tsOPqrZMcXkTfH3X3jS3mSoalxSB+Y7Gx91zGs+fs5+P7OpmzUynOaPOTZ0DFAB+d95M9tcY7W6hv5s/ReWQkYj8nOhM/l+4nuxJFheqlv5V5TcoHxvRvHYOfjs/Hz3VPw3Z2T3Soz5Si9sNzNj/L5Tp7ozh2igUTNa05t/hTD2JJjwvHHfdPRPSHS60SOWlm33eEui7PUFe7ciRX3s7v1g152QnfP+i9vm+gS6vbo+YORvegCWQkiJiW1E9ed/5g7EG9c62Zd3oFpfko3wi1a8W49EyNx7Pn5+ONAAQD3WpoQPUOoQQ+btEBiuGBEV3SLj3B5yInv1CxlP6rUgPvsLw6XSW8yyoqZBwd1icX+vGqnz8JDHJbiDzSsZd4gX4TOGpyCWSrJpmIEl51eiZH416XDkV/VKH128chU/LbfcT3dZbC7aVIvJ8uT1sPz1StHoGtcBG78eLtsX9f91FzkxC0NMndiOeJ20Z3YF08gf91m5USEqLvOAY6FuLcPB3d0jglzcYV2hzIm0l2pIznKRcMPf52M/bnVyCmvxwtLj0rbDToGEyDVXnzlihHoGu/5gS6e35NGdEpfbWu4u8Wx2mf/mDMA8VGheFLImK0VBiCiZYkVhQa1hDuAw2pxurTeZTtjjoVEpBu3fLXuERe43litlYtIUQAc0zNetdSJJwZ3jZHmJXHenakQFrWa5am9YjmZOqPV5TP5cBTDHDwpEdMHJWPNsRK3+yhxlAJznafF+UA+5ymfN8qFsq9J04AmIVZtHIjXQK1OLNC02Je3IzU+AmcqGmDQM0kJo3ZuueAaHqKHxebaB1q/R5zbvXFTjgw1wGqzaH7+xW0TYRZizKak6rEi23Vf5eJb/H6xNwx6Ha4Z3xMvLXfMS/Juigw1NAmFEGNihTdKJbfiGRAZqkeD2Sa5fDu+q2mfztFh6BIbjqcucva4EL/HE/Kvu2RUNzzw7T4ATQmBtCxSIU6Wacd/+W+WzyHucgL4EyvtpLhgDJ2iw9z+VpMHSyxjru7E8varCZtO5xeE5NeuGukkVGm1STqfirVRTJ4oH/Naj8sxPRPQOSZMtV68O1yEWDf9I/bzRSNTcfv0Ppr77XtqDh764QD+PFoseSFGq8ScqymrJqt4eCVGhqK01oR6s+ucAHiXG0UL9fVHk7IOcB9rq2aY0kIU5Kf1S3JrgJnWPwmVDWZ8sS3H5bMVD0zH3jNVAJoSrWmVRwsmgv8XtjPiza7MbyQu4JqySmrf4CF6HWx2Li2QQvQ6zUWe4/u4qsFznLB4V8ObZ0SPxEj8fPcUDOkai+925Tp95inFuje4KyMikhIbjk9uHY8xPRNcFu5vXjca5fUmbD5V7jYmVvlb5QunnomROFPhcGW+alwPj1mQAS1LrGOb+OBStvX7OyfjzyPFTUmN/Atn8Rudjml+p83O3bqS+vQ9Piw+lDGR3iZjUF7/5JhwzBniWFzJhdhO0WH45KqRGNbNsYBQusxpUVprAuAoHeMv7hbRTSV2HL/3qrHdcZ+QZbqm0YJ6k9WjAN0/OQZAEd64dpS0wJR/r5aFbGhqnKZrMKBdqxVQ7x9x3HklxCrmDJPgeu+v27bckqJlCXU3z7q73cSsq/Uqyj6nxE6C9t5TIiVvy0fJs+6GGnReZ/6e3r8z9DrWJHi2gOJLzAqaqqKYkguxoqvdsG6xTpZF8XORb++YhJ3ZFQjRN9VmtljteP2aUegSF45rP9gGwPk+iQjRSws0kW/+b5Jmm71VQIn7yq/T1/830enzUENTmRBvYqsZa7rftDKdKoU/+Xn1jGlab+TKWwB45coRuPfrvU7fo7x3tmm4ZXuTe8DT7aM2dm6f1tupXmeTQN+0s1wwUrtCXePCUVht9CtWWi0O2t3c4kk5rAN3EWLVqjdoldYS5ydlfK+awuu7Oyahm+CFplaeSlSCR4Tom66r3BIrb7ef86noBXZ3el/8L+O0W0usOEQ9fVV8ZKj0+0VLZ7SKwUHpHXDgmbmqeTbev2ks3lt/Gv1UaqJ/ffvEZtVKd5udWPKw0D5erdSYGv+7YQxiwkOw7qF0pMaH4+vtZ9y2Syx9NFKRWKxP52jp994xow+OF9Wqlg4KNsiduJVRm2CApgeHuBB0N/Yn9E7EhN6JsNi9cFUTThQfGYpH5ze5jMmDxTc+MhPf3uH84Pd2jTOmZ4JqIgpvrYPu9grTexf3MnNgsqblyWIVBX3tb1IKpuJcM6hLDKb2c9b2uWa5cz2fN4tuZcbbUT3i8dB5A6Xr4S62orXQ0qxabNyrOrveoMz42CdJu/ST0ppitXH895qRqi7JcrzJrgk47vEJvRPdWunVyBQslc15IPpiiZUPpXtm9sMjXrh+3ntuP7xx7SgpiYby3I76nd63tykTum9Cn6hF9s6d2HkfUUDTjLee3ZR5W20f+b2mZQn1cz3n1oohP6dYhkYMg3j9mlGqx3gbMyu3UoQadPhc8JzxRGJUqFMsaUvMLpeO6oa3rx+Nv0zr7fKZvH6i+ExLiAyVLE5qMbGp8RG4ZJRjkSXOjzVGKy4d3c0prt6g1+GhuY6+9ybXgRxfLLGOdhhw+ehu+PGvk916VmidTn5fMta0n3KuVdaDF1G6PWsJIHfP7IfBXWPx6PxB+OmuyUgQPGfk1QD6p3g3XzVnrlcmrpLzxIVDnNYKolVM67eLl0isXwkAv947Fd/eMckvxZZzTKwYV6p9Hk9usDrGXDP2Cr/8r+f0lZQrnWPC8ONfJ+NVRTIwcd2h9EBRa9PEPp2kPA9qbRc95yJD9ZjYx2GccCq9Jzulv7WXI0MNyF50AS4fI9SXdzOJiH3ni7JMtHQqw4oAR81mOVr3aFpSFBZdMULVE2NKvyTVcCxveeHSYU7lwwDXdbL7EjvOO2vde2KYQu+kKIQZ9B7nuJE94rHiwem4fZq2xbt7QiS+u3Nyi3jUBTpkiW1lxLGl1OoorRDuBv8/5g4EALzx50nhWO19pRggxnDnOX1x8ahUhBv0TnUxeyRGumSybQlNfXPxxhLrCVHQd+cup4x9kcoYMIYhqXEAcpEmlJJRLiLUJi3VepSK9zEaWRs9JbtoTfpqCGUWm91v7a3auUTeuHaUtGhVQ7mwt3GOy0Z39/gd3i5Q/f1F957bD3lVjTh3sHdxjNP7J2HjyTKnbe4WT6LW+fzhXfHHgUI8MHuA5r5ahOh1qtdWEmKZ94omoOlh7S4WTR5/Fx1mQJ3J6pMlVjlGRSFWvuja9M+ZmPbyOgDAA7OdE7GIjOoRj325VU4Zy7Xi/JTX4OmLhkj3qDtFUrIbIVZ+zpsmp+Emoe4xAFw6uhse/G6fbF/HWPc2Z4FcWXfB8K6YMaAzVv1tBub+d4PHY+VzujtXQG9hjOHCEerJQeSXVVLMyr9fpU1yRLe3mkZ1d15RyFVXoGq32VdLNGMM/9FQPMjxdnq8dnxPfLX9DNIHqs8dLgm4vIyju3hkqpPCaltmOQDH7501KBl7c6ucSrW4I8GLha6W4CkKIN54Yn148zj8tr8APRIj8PB5A7H+RKnTiBPvUbmSMTkmHMkx4ZI3jC/I46/lHilaJGjEVYuo9bm8/2oEITYhMgQjusdjXFoidudU4o8DhQC0hVh/vDaevmgInv39CFJiw9EjMRInXpivOVc391nuTlEhIj4KfFlGitdOrqhbdv90/La/wG2W67Ziev/OWPm3zkhbuNTlM50X6zblZdfqBuVzMMILJbs/Mb7BSvvfKUGOOIHYlJpYhU+9N4Pfm6Qh4sNGPJ+3MYm+CrE7Hp8Fo9mOGa+u8+k4dwvplnBJFjXR7s7lIsTKZpcbJ/bEmJ7xbrKvNvXjpn/ORJhBr7rQGCJkVb5iTHf8tCdP80HizQOitdDpHCVx3lhzEqF6nZR4Qqu2rz8MlyVM8rSOVlrm3CVWkOOv+6m3DO4ai1/vmer1/p//ZQJ6P7rMaZtLG5nrZzHhIfjiNmcXxuYiZT7mvo1xcV9RmXPZ6G5IjArFx5uypH3EhcsTFwzGj7vzcKyoVhIyvNH+K5UPRsG6IF/Teco6ffW47rhnZj+c82qGolyHliXWefvE3p2kseoOrZJbvmLQMVhs3Ou+uO/cfjiRlYvnr5smKR7l7oi7npiteaxORYhsLSSPEs5lVhk3Oyq485y+OFxQo5lBUzyn6NIsp1+ytsVRFGLdKQ0uGpmKnVkVmp+r4c2Uw8AwvHscshdd4PqZxvFKeUZ87+nr9LJ1xse3jPdJaeFV3KBGAx6aOxBxESFeZT5NjY/AX89xJIO7Z2Y/3DOzH77f2RSWJNYgBxy5IsrqzNJ7f4Qa+fziq0VeDXdH6pjD++JoYY1ThuhFV4zAIqFckZiYKExZB9RTZnSVz+cO7YK5Q7tI711KO8mPb64QK/yX31Oim7eIuI71al4Tdnn4vIE4WliDa8f3wJtrHAaaIamxTvPx69eM0sw83h6Iv07Lw8JpX8W10FoDKp9V7vJQEK6QO3Er40ljI8XEenEuyZ3YjXVEHpvkC75Oc8kx4eipkQVWyf6n5+Jflw3z+D0tYf2bN8wxsbtL2DOht3NssPxrGWNuYwTl3dg9IRKdY8Kg0zGs/cc5UozC4+cPxm2Cy91rV43A6RfP1zyfN5NhayI+1GcPSZZczMX7bOn907Dh4ZnNO79eh8uEuAx3MSaA+2y17vDWXaolEmL5+z3eZABtDeSLW1/cysT7sk/naGx7dBb+fdVI3KFI5S9fuIgKEFGI9ebniuNdvAdF5ZIvwvagLrHomRiJu9P7SrUwAW1PDOWpnWryubndQvQ6rPrbDK9K0XiDt78xPjIUtw0PQ1pSlNSX8gWrso6203fIf1orTy9NSln1Ba2n70+Nj8CPd01xiifsHBMmlZ0R58e+naPxi0yhdOjZ89xeA6m2rcr1Fl3E37putGa8qBbuHlVfCooof6Yb5X2hfH+7iis34AiFCQ/R4X4hll7M4u3Vd2r8mLX/OMfjsVFhBjw4e4BficLkXD2uu5PL/rIHpuOnu5oSUSprZ3qDrzGx7nj/prGOF4obWfRGYcyRsOmTW8drKrxumeLou0EuJfPct8kfwdupHFMzn3uSt5hs26q/zcCOx2XhCtKY9/68CVGhWHTFCM3QMMDhyTK5r/uSfW2JeCnl8523nClvUN2uXPfUmpq8UebJFBWEOmSJbWXECUQzsYMXiZ1ERHcUd5ZYeakDX/B3nvvitgkokmnk1IiLCJGSTLS2HHF3el/cPLmXlMVYydZHz5UyKor4MslrFcDu0zlaKgUxrFuc1J+MMQ+1Hn2fDJvDT3dNdirqLmp5OW/KNClaYt0J874gCVIefuR1E3riP6tPSO89uVkpz++JthFh1XGJe23l7xOznBpk196nsSfbWYwrUv4GMe6zS1y4NDeJVkKvMp4K/8UstT0SI1Feb/Zp7uJwjDFl3LDWwk+5Vc09VYsBbkqFeIvDU4b7HZsLeF8zs00tsbLfIw5ztd/oy8/e+birlZnB4T4u4q0AoIxp3rLwXNVYPG9x97XKEl5qaB3uGh/v/P6JC4fgiQtd63zGhIfg2PPzPX6vL/TpHI0ZAzpjw4nSFj2vnItHpWJ3TiUemTfQabvoRizijwJSfi3F14wxjOuVgFunqisDlOx4fBbsdmEObGx0+VzuJh8XEYKZGm7jgEPBrmaV97ZOrL+KqObqT5sssU3bYsJDnNZYTWPe+3lfxJc5OFCQjA8+zKzl9WbV7co5bELvTggz6PDTXVPclv4jHJAQ28roPCzgxa2+uRNr76x0d/AWf61U0/t39mq/tkpcxBjTFGABdfdqKSbWi/N7I2z6cinb2p14bC9nK7Q4gdo5l4rBq6Wybw73zuyHE8W1UkFvLTrHhOHbOyZJWUm9LVDu9b3bjlJsa7s8y8l66Xzpmojzj9XOPbYhzKCTrKFqeyqVCrdO7Y2+naORPrAznvntsHQOwDvFkDjuxvVKwMtXjIDRYsOtn+70yuoijRuNlZ2Wok+5yJIvoMQzTe3XqdU14M3xCvC2ZqZT/Vovsqw3B7m4rB4T27wZ7rLR3bHycDH+qpgTPN3TQ1Nj8cKlw3Chou5wc93DvekBf3pYeX+2lYfOK1eOQLyKRUz8/taavcJD9HhZkQCppXBK7CS7rj+qeFM8c5GrYgCAc01Vlb7wxZNOC09eOt7Gz8uRH9F8S6zjv7sxLFYz8KWknkhbPhtbCn8ssZ7OJdItPgLHX2hZhVQwQ0JsK3PN+B5YsjcPV41zJKiZ1CcR2zKb4m+ashN7HshWWYkdLcTx0FKJeYZ0bdkA8kCcrny5Vm7LvvjxQJP2bTd34qZ7KT4yVErz3pKkJUXht3unebWvuEBPjQtvlqUk0GjLB7X8oSgpKeye4zAPPXse3vlpLV7fY/KqHrJex6Q6rLERISipNUlWQm/GlHjrcQCT+3aCzc5x54w+LnUGv7p9InooYmM9zZda19utO7HAFWO6N2XkbGHEhWBzbodwL4VY+W+tMWrXP20J5Iu6CWmJiIsIwd1ygdMHjyM14iJD8M0drqV0PFliGWO4cVIvv77THe7GkjSTe/FblUKq9n3buvPH1ePUy439bc4AHC+qxeieCa36/a2Bsk6sO27x0jKrfE63hHLe01wg5TXw4bvkP7f5MbFN3lpanDe0C968bjTmD/Ne+ddeIVTNQZlzpiP+hmAjYFaJjLF5AN4AoAfwEed8UTs3qUXoFh+BjY+cK73/6vZJzlZZd0kwFPTp7Eh80DNROxZVssC0wEOvV6dIfP/XyZ539IJAHuvitffmkrmXYV0tEJ4QrcZpbkrPtCailjdUED56t1M7RMSEXFoazl1PzMbaYyV45McDPp+7LRUo987s5+QK1F7aZr3MEuupCSF6HUT5SD2uV/sEn946HutPlCJO0Mi7m38GdYnBsaJanD+8K7ZnVkjZ1/U6hkfPdy1zMbWfdqkTX3GxxMpcc9tyQdKc+dnb+EP5PaeV9belSIl1uOuGGXRIiArF/qfnqu7X0qOgreLclTR3OGsmdgowLe+YngnYoeLW7Y7Ft4zzyyLX0sjv/9a6TXwJB9PC07GiB4w3hg5/zu/5eO++Q1nezdf2DOrS/HCN1kYyEnmRnVjOw+cNxKsrj0vv75zRB+9vyGzp5p2VBIQQyxjTA3gHwBwAeQB2MsZ+45wfad+WtTx6HXOaXGcMcBSlv1lWlkGL26f1weieCRiflqi5T0skCrp+Yk98vf0MusVHtHiq8/ZadLjDFwHDnTbUn0veLzkan9w6XqoV1tZIyWJaIDN0SyC6o2pZvJOiw7wqCdHePHSec4xXey1Om2LyvSubJGmaVT5zJ8R2T4jEDRObLF7uvunnu6egzmhFmEEvZe5sK1yzv7q21N8pKs1DorvBXWMRE2bAjuwKp3YwBtw4sXWthbUma4ufX86iK0YgfUAyRnSPV/08gHWYfuHuHvHFxVQ5zQXi89FXzh3kPmykrfDFEusVqu7E3leX8Bfxd3gTay3ir8DrjpbS8f19zgDkVzZIXjwAsPuJ2T7Xb29PxFvLrWeejItHpjoJsY+eP5iE2BYiUO6aCQBOcc4zAYAx9i2ASwAEnRCrpEtcuNvstXJ0OuZWgAWaJuvm+Oo/c9FQ1Jus+Psc3+tVdkR8WTjYvAgt8/WB5i4ZRFsRagiMxZPojurNw2H24GR8JMtI64n2XCCqLaJEi2RrIroAW71wJwbk2RdVzuWHJK7WjZGhhmYvWPztSm+ugT+LtWPPz/N47uUPTMctn+xw2Z71kmuyl5ZA3l2tbWSODQ/B1ePVXVKDEXdhimJ84LBu2qE4kotmi7YquFn54Ayc97rn+sgihjawxErnb0U/H/FZ6Et4TUv+3i5x4RjRPQ6PnDfI885e0DspCj/f7VyyrpObDOOBxBQhU7KvMbEtFd5HuMICwaebMXYlgHmc89uF9zcBmMg5v1ex3x0A7hDeDgRwHAFKJNAzHKhu73YQTRiBOOqTwIL6JLCg/gg8qE8CD+qTwKKt+sMAGGyAjZP+wSM0RgIPd31SEdh9VQYAnPN5yg8CxRLrFZzzDwB80N7t8AbG2K56zse1dzuIJqhPAg/qk8CC+iPwoD4JPKhPAgvqj8CD+iTwCMY+CYxAOCAfgNwXqbuwjSAIgiAIgiAIgiAkAkWI3QmgP2OsN2MsFMC1AH5r5zYRBEEQBEEQBEEQAUZAuBNzzq2MsXsBrISjxM5izvnhdm5Wc+kQbs9nGdQngQf1SWBB/RF4UJ8EHtQngQX1R+BBfRJ4BF2fBERiJ4IgCIIgCIIgCILwhkBxJyYIgiAIgiAIgiAIj5AQSxAEQRAEQRAEQXQYSIhtBRhj8xhjxxljpxhjC9u7PWcDjLEejLF1jLEjjLHDjLEHhO3PMMbyGWP7hL/zZcc8KvTRccbYee3X+uCFMZbNGDsoXPtdwrZExthqxthJ4X+CsJ0xxt4U+uQAY2xM+7Y++GCMDZSNhX2MsRrG2IM0TtoWxthixlgJY+yQbJvP44IxtkDY/yRjbEF7/JZgQKM/XmWMHROu+RLGWLywPY0x1igbK+/JjhkrzHenhD5j7fBzggKNPvF5nqL1WMuh0SffyfojmzG2T9hO46SVcbPuPXueJZxz+mvBPzgSU50G0AdAKID9AIa0d7uC/Q9AVwBjhNcxAE4AGALgGQAPqew/ROibMAC9hT7Tt/fvCLY/ANkAkhTbXgGwUHi9EMDLwuvzASwHwABMArC9vdsfzH/CXFUEoBeNkza/9jMAjAFwSLbNp3EBIBFApvA/QXid0N6/rSP+afTHXAAG4fXLsv5Ik++nOM8OoY+Y0Gfz2/u3ddQ/jT7xaZ6i9Vjr94ni838DeEp4TeOk9ftDa9171jxLyBLb8kwAcIpznsk5NwP4FsAl7dymoIdzXsg53yO8rgVwFEA3N4dcAuBbzrmJc54F4BQcfUe0PpcA+Ex4/RmAS2XbP+cOtgGIZ4x1bYf2nS3MAnCac57jZh8aJ60A53wDgArFZl/HxXkAVnPOKzjnlQBWA5jX6o0PQtT6g3O+inNuFd5ug6N+vSZCn8Ryzrdxx8rwczT1IeEjGmNEC615itZjLYi7PhGsqVcD+MbdOWictBxu1r1nzbOEhNiWpxuAXNn7PLgXpogWhjGWBmA0gO3CpnsF14nFolsFqJ/aCg5gFWNsN2PsDmFbCue8UHhdBCBFeE190rZcC+cFB42T9sXXcUF903b8BQ4Lhkhvxthexth6xth0YVs3OPpAhPqjdfBlnqIx0nZMB1DMOT8p20bjpI1QrHvPmmcJCbFEUMEYiwbwE4AHOec1AN4F0BfAKACFcLi7EG3HNM75GADzAdzDGJsh/1DQxFKdrzaGMRYK4GIAPwibaJwEEDQuAgfG2OMArAC+EjYVAujJOR8N4O8AvmaMxbZX+84yaJ4KXK6Ds1KUxkkbobLulQj2ZwkJsS1PPoAesvfdhW1EK8MYC4FjIH/FOf8ZADjnxZxzG+fcDuBDNLlCUj+1AZzzfOF/CYAlcFz/YtFNWPhfIuxOfdJ2zAewh3NeDNA4CRB8HRfUN60MY+wWABcCuEFYDEJwWS0XXu+GI+ZyABzXXu5yTP3RwvgxT9EYaQMYYwYAlwP4TtxG46RtUFv34ix6lpAQ2/LsBNCfMdZbsHZcC+C3dm5T0CPEY3wM4Cjn/D+y7fKYyssAiFn1fgNwLWMsjDHWG0B/OJINEC0EYyyKMRYjvoYjUcohOK69mP1uAYBfhde/AbhZyKA3CUC1zCWGaFmctOY0TgICX8fFSgBzGWMJglvlXGEb0QIwxuYBeATAxZzzBtn2zowxvfC6DxxjIlPokxrG2CTheXQzmvqQaAH8mKdoPdY2zAZwjHMuuQnTOGl9tNa9OIueJYb2bkCwwTm3MsbuheMG0ANYzDk/3M7NOhuYCuAmAAeZkOIdwGMArmOMjYLDnSIbwJ0AwDk/zBj7HsAROFzF7uGc29q4zcFOCoAljnkWBgBfc85XMMZ2AvieMXYbgBw4kkEAwDI4suedAtAA4Na2b3LwIygU5kAYCwKv0DhpOxhj3wBIB5DEGMsD8DSARfBhXHDOKxhjz8OxUAeA5zjn3ibCIWRo9MejcGS7XS3MYds453+FI0Prc4wxCwA7gL/KrvvdAD4FEAFHDK08jpbwAY0+Sfd1nqL1WMuh1iec84/hml8BoHHSFmite8+aZwkTPGQIgiAIgiAIgiAIIuAhd2KCIAiCIAiCIAiiw0BCLEEQBEEQBEEQBNFh6LAxsUlJSTwtLa29m6FJfX09oqKi2rsZhIyg7xOrFSgvB3Q6oHPn9m6NVwR9n3QwqD8CD+qTwIP6JLCg/gg8qE8Cj47aJ0lJSVi5cuVKzvk85WcdVohNS0vDrl272rsZmmRkZCA9Pb29m0HICPo+qagAvv/e8fqvf23ftnhJ0PdJB4P6I/CgPgk8qE8CC+qPwIP6JPDoyH3CGEtS207uxAQRTDiyaBIEQRAEQRBE0EJCLEEEC2Kmcco4ThAEQRAEQQQxJMQSRDBBAixBEARBEAQR5JAQSxDBhOhOTMIsQRAEQRAEEaSQEEsQwQIJrgRBEARBEMRZAAmxBBEkVButuLEwCftMoe3dFIIgCIIgCIJoNTpsiR2CIJwZ+fZuAOE4U9YJGzinTMUEQRAEQRBEUEKWWIIIMlL09vZuAkEQBEEQBEG0GiTEEkQQwGXxsBQZSxAEQRAEQQQzJMQSRBBgszeJrjaAkjwRBEEQBEEQQQsJsQQRBFjlQizJrwRBEARBEEQQQ0IsQQQBckusFZTQiSAIgiAIggheSIgliCDAxRJL7sQEQRAEQRBEkEJCLEEEAU6WWE6WWIIgCIIgCCJ4ISGWIIIAq72prI6tHdtBEARBEARBEK0NCbEEEQS4xMSSOzFBEARBEAQRpJAQSxBBgFVISawDp+zEBEEQBEEQRFBDQixBBAGiJTaMccpOTBAEQRAEQQQ1JMQSRBBglQmxlJ2YIAiCIAiCCGZIiCWIIKDJEkt1YgmCIAiCIIjghoRYgggCxOzEkiWWIAiCIAiCIIIUEmIJIghwjokFuRMTBEEQBEEQQYtHIZYxtpgxVsIYOyTblsgYW80YOyn8TxC2M8bYm4yxU4yxA4yxMbJjFgj7n2SMLZBtH8sYOygc8yZjjHwhCcJHnGNiaQgRBEEQBEEQwYs3lthPAcxTbFsIYA3nvD+ANcJ7AJgPoL/wdweAdwGH0AvgaQATAUwA8LQo+Ar7/J/sOOV3EQThAWV2Yk6WWIIgCIIgCCJI8SjEcs43AKhQbL4EwGfC688AXCrb/jl3sA1APGOsK4DzAKzmnFdwzisBrAYwT/gslnO+jTtW3Z/LzkUQhJeIdWJDmeO/3U5CLEEQBEEQBBGc+BsTm8I5LxReFwFIEV53A5Ar2y9P2OZue57KdoIgfMDOmyyxQJN7MUEQBEEQBEEEG4bmnoBzzhljbbJiZozdAYebMlJSUpCRkdEWX+sXdXV1Ad2+s5Fg7pODpVYAQE1YCNAIZGzbhjBD4OdtC+Y+6YhQfwQe1CeBB/VJYEH9EXhQnwQewdgn/gqxxYyxrpzzQsEluETYng+gh2y/7sK2fADpiu0ZwvbuKvurwjn/AMAHADBu3Dienp6utWu7k5GRgUBu39lIMPeJ/VgxsHsXullM2AMDpowbj5j4mPZulkeCuU86ItQfgQf1SeBBfRJYUH8EHtQngUcw9om/pprfAIgZhhcA+FW2/WYhS/EkANWC2/FKAHMZYwlCQqe5AFYKn9UwxiYJWYlvlp2LIAgvEWNiw4TExDZyJyYIgiAIgiCCFG9K7HwDYCuAgYyxPMbYbQAWAZjDGDsJYLbwHgCWAcgEcArAhwDuBgDOeQWA5wHsFP6eE7ZB2Ocj4ZjTAJa3zE8LLirqzdiZrcyvFfjY7Rxmq729mxH0yLMTAxQTSxCENnY7xzvrTqG01uTzsVabHYs3ZcFosbVCywiCIAjCO7zJTnwd57wr5zyEc96dc/4x57yccz6Lc96fcz5bFEiFrMT3cM77cs6Hc853yc6zmHPeT/j7RLZ9F+d8mHDMvTwIa4NUNZjRaNZ+4FfWm1FQ1QjOOV5adhTbM8td9rny3S246r2tqG60oKzO94VHa6DWVXUmK0pqjdL7x5YcxLgXVmtaBo8W1qCy3uzX91fWm5FX2aD5udVm17zuNUYLvtiWIy3EDuZVw2JzFbY558gsrUNuRYPq538cKMCJ4lrpvclqwysrjrn8ppzyeqw4VKg83KVNLy0/6tLmWqMFT/16CNWNFpdjxH2tCiHWptJWJSarb4vQjSdL8eC3e3GqpBaF1Y3SteOco6TGqHncllNlSFu4FNsyy/0u/WO3c8x7fQPu/GKXk1LEbudO13/DiVK3i+tPN2fhud+PuGwvqjbiSEENiqqNqv3cEnDOsfFkqXQN8qsanb6rzmRFYXWjT+esajCjrM7klaJod04lTpU4rpXRYkOFn+POX8TfarNzpz7KKa/HmqPFzTq30WLz696y2zl+2p2HWqPr2NJif26VNO445/h0cxbOlGvPQ57IKqvHkr15Tttsdi6Nz3oLx4YTpVh3vASHC6pd9hN/t8lq81phuC+vCq+uPI7HlhyUzlPd4HoN8iobUNXgfJ/8vDcfz/1xBI/9fBBpC5di62nX55WcwwXV+GRzltO2epMVBVWNmPCvP7H+RKlXbW4LjhfVqj5TrDY7TpXU+Xy+zNI6WIX73m53PN9PlzrOY7TYkLZwKf754wEUVRulbdll9dJ7OdUNFtU+AoDcigZp3ZBX2QC7cF/syKoA566KZIvNLmWwN1vt4Jw7jR+Lze5yr4nY7RyNZhtqjRYcKagBAJTVmVBQ5dvcZbdzv9cy8nkzt6IBz21tlJ5Bvs4F2zPLndpRWW/Gwbym315UbcTqI9rzU53Jig0nSvHe+tNoMFul7buyK3C0sAbbM8udzifHZLWh2M2z0xtsdu7yzPJVwVReZ3L7DG8LOOfILqv3+bhf9ubjgW/3tmhb1h0vwWdbst3uk1lahzPlDaioN3u9huWc4731p31+zhPaNDuxE6GOVXiIcA5Me3kd6kxWTO+fBJPFjgfn9MeUvkkAHA+QC9/ahPyqRtw4qSe+3HYG3+3Kxb6n5mLDiVIsO1iI6kYLMoXBPfLZVYgJN2B8WiK2Z5bjlqlpGJASg5pGCxKjwjCqZzy6xUcAcEyuv+zNR1qnKIzuGY+oMANKao1YeqAQl4/pjj05lZg5KBnldSbERYTAoFfXaeRXNWLvmUrMHJiMiBA9TFY79udV4bZPd+KB2f1RZ7SisNqIfsnReGn5MQDA6r/NAGPAtzsdSakf+fEABqREo95kxWVjuuNYYQ3iIkJw/UfbEaJnePGy4Xhz7UmM6pGABZN7YVxaIgBg6+lyWGx2LFp+DO/dOBbJsWGw2OyICQ/BVe9vxamSOpx+8XzodQ4/2uIaI44V1aK01oRnfz+MWqMVr1w5AqW1JuRkmRHTuwJ3frEbF45IxadbsnGyuBaXjOqGK97dgjE94xFm0AMAPrl1PDadLMOqI0X4fpdjgTmoSwwWXTECA1NiUFjdCINOh3u/dkyeH908DucOSsbSA4X4X8Zp1Jus+PucgVh/shQXjeiKK9/bitJaE7YsPBdWG0fPTpEAHJPadztzYeMcx4tq8fnWHLy/PhPv3jAG3RMiUVRjRFZZHT7fmoMvtuXg5AvzcayoFvd/uxe3T+uDx5YcxIUjuqJbgqPPQ+F4eO8vqMGPK0+jS1w4AOCcAZ0RZtCjS1wY+iXHYMOJUty8eAeeuGAw3l53CrdMScP+3Cq8ePlwpMSEo9ZkxSsrjuHvcwagot6MfblVePjHAwCAX/YVAABmD07G3CFd8PGmLBwvrsW7N4xBv+RoxEWGYNGyYyiuNeLR+YPxw27H9bv2g224Y0YfPHb+YADAsaIa3LKiHssG1KDWaEGn6FD0S46B2WpHvcmK+MgQ1JqsiA41YNWRIhwrqsWxolqMeX41kqJDcVd6X+zJqcJ3u3Lxw18n45e9+fhq+xlcPqYb0jpF4fIx3bD6SDGGdYvDttPluHxsdzwjCLBXj++OQV1icayoBl1iwzHppTVO9/ykPomY2jcJY3slIC0pCl9vP4P7Z/VHdnk9Xl5+DOPSEnH+8C7YmV2JdcdKsCunAmEGPf4yNQ0LpqSBMYaiaiMeW3IQswenQCeMhX25VbhkVCrunNEX57+5EX07R+HTWyegR2Ikblm8A7tyKpH54vk4XVqHkloTxvZKQHiIHkaLDYfyqxEVZsDgrrFYsjcP+ZWN+Hr7GRRUGxERosfIHnH4aMF46BnDplNlKKk1In1gsjQfXPHuFgDAsxcPxQcbMpFf1Yj7Z/VHXEQIrDY7+qdE46GMBryaUow1x0rQPzka10/siVC9DtWNFkSHGcABcA78vr8AcREhmD3EkZjeYrPjaGENyupMmNi7E7LL65EaF4GEqFDH+NiYiReWHsXuJ2bj2d+P4Lf9BTj4zFxU1ltw0VubUGO04o/7puFkSS0uHJGKnPIG/P37fRjUJQbPXTIM4SF6fLfzDPolx6B7QgQ2nCjFnCEpeHnFMezIqsDp0npcN6EnXrp8OHZmV2DjiVLcP6u/NKd9s+MMxvZKwFtrT2FPTiV+vGsykqLD8MqKY/hwYxbOPZiMnomRuGVKGuIjQ1DVYEGoQYdO0aF4f32mQ+DqnYgNJ0ql+39Uj3jsy60CAPy4Jw8vXjYcFhvHmJ7xYIyhst6MmHADLnp7MwZ3jcHPe/IxvX8SHj5vIA7l16CywYy+naPx1y93AwDK68wY3TMeseEhuP/bfTBZbXjqwiF4eH0DGqw7pHtzxYPTUVDViL1nqvC/jNPo1zkaF43sitdWncDAlBis/NsMHMqvRte4cBRUGREXEYI1x4qREBmK73bm4i/TeuOlZUcd80RuFYwWG15beRwfbcrC+ofTUVZnRkW9GXOGpGDay+tg0DFcN6EnzlQ0oLjGiHJhwbZKWNhf9+E2/HHfNAzrFgfAoUj6ZHMWOIC3rx+DC97cBAC4cmx3nCiuRY/ESJz/xiZJcFiweAcyXzwfuZUN+GhjFnomRmJsWgKMFhtS4yKw9lgJusSF43RJHRotNswanIxvduQiLiIESdFhGN4tDocLqlFYbcRPu/Pw891T8NX2M5jUJxHnDe2CRosNNjtHdJgBjDEczKvGqiNF+GVfPlb/7RzsyKrAsaIa6BjDC0sd1+XVK0fgh115ePaSoRjcNRZvrzuF1/88iUFdYnDr1DREmjm+2JaDAcnRWHWkGKdL67BgShpKa01oNNtw7YQeWH2kWHo+3Dy5F1YdLkZRjRHvb8jE/bP6472M0wCA73bl4rtdubhpUi98sS1H6ucbJvZEdnk9+naOxunSOmw+5RBS+ydHY2q/JMRFhGBw11ikD+yM6a+sAwDEhhtQY7TiopGpKK4xYkdWBe6f1R9vrz2Jh84biNun9UGoQYebPt6Og3nVuHtmP7yXcRq1Jis6RYXi3RvHondSFMb/608AwJK7p+BAXjWm9ktCYlQo6k1WfLYlGx9tysK8oV2w4nARVj44Azd8tB1ldSZkvXQ+rHaO//t8F3IrGvD+TePw6M8H0CfJMZdc8s5mJEWH4q3rxuCXvfn4blcuMh5KR69OkXh/QybCDDrcMLEXiqqNMFlt6Ns5Gjrh2b5kbx4azDYMS43DJe9sRo/ECPz7qlH4bX8+Mqvt+GF3Hm6c1Asjn13luC8n9MA9M/uBcyA5NgxhBj3qTVZsPV2OTtGh+GF3HkJ0DJ9tdVzzB2f3R63Rio83ORQuJ16Yj1CDDvd/sxc7siswuGss7HaOX++dCp0wv9cYLXh15XFJEbNo+TFM75+EWYOSpWeNSPrAzujXORoDusSga1w4IkMN0pz82lUjkVvRgOTYMEzsnYhaoxXJseGICTfAZuN4d/1pXDO+B7rEhiM8RA+9jsFu57Bzjls/3YkDedW4Ykx3fL0jB89dMgyP/HgAD80dgOn9OyPUoMOgLjFgjMFosWHzqTKM7pkAs9WOvMoG9OrU1N9/3DcN/ZKjUWO0IDEyFCW1JnSJDceLy47is63ZePqioZjQOxH9OkfjUEE1/rP6BGYNSsbUfkmICNWja1wEbvt0J0INOlzTHfh6+xlsOuW4Nk9fNBRldSakxkUgPjIEJ4rrsPxQIeYMScHTvx7GlWO7Y+HPBzG4ayzumdkX3+3MRYheh39dNgydosIQatBh5eEibDhRintm9kNWWT16Jkbiwe/2AQC6xIWje0IkOkWFYv3xUtSbrZg1OBn9k2PQPyUaBp0O760/jYtHpmLl4SJcPDIVSdFhuExY+83o3xk/7cnD69eMwq2f7BTuoZ4IlSXIzCqrx9trT6FTdCg+2JDp1L/nDU3B3en9MLBLDMJD9NidU4n7v9mLCb0TEaJneOXKkThZUodFy48h43gJJvdJwsrDRbhuQg9cNqY77vpyN/5veh/MGNBZOudjSw6iwWTFq1eNRK3RinqTFWEGHa79YBu6xIXj0lHdcPX4Hk7tMFps+G5nLn7ak4cDedUY1CUGw7rFITJUj2nRDrkk40QpFm/KQq3RiqGpsXjh0mFwRHR2PFhHNXyOGzeO79q1y/OO7cCSvXlY9PsBhIVH4EyFuoa+f3I0KurNuHBEV2kSlTOoSwyOFdWqHOkdYQYdTArta7f4CORraEvDDDpM6J2IvWeqUGdyaBOjwwzS69ZGr2Me4zjH9krA7pxKhIfoMGdIF/y+37GYnDe0CyLD9NAzJglMgU6/5Ggkx4RhiwcrhhJ3fQgAD8dX4dWqeLfnSIoORVld21rh5Kx7KB0bTpTi6d8Ou3x2/cSe+Hr7GQBN/d1a/H3OAPxn9YlWO78vXD66G37eq5nTzmvmDElxsRr0SYrCpaO7+f1bB3WJwcmSOqTGh6Oizox6madAiJ7h+gk9ER8ZijfWnHQ59h9zBmD9iVLsEvqxZ2Kk5pyoRWpcODiAQsE6FarXwWyzY1i3WBzKr3F7bGJUKKLC9MitcB0z/rTFG9I6RWJotzgsPeDe86K1iAkzoLYF5u20TpHI9tLCHKrX4e9zB+C8oV0w87WMZn93S9EpKlQSugEgJtyAWmPTtREVFu7onRSFLD8sRIFIqEGHy0d3k5TLLUGvTpHIEe6TUIMOITrmNEc0l6ToMCRGOYQeT8gVS3LE9XkHXe460TUuHP+7YQw+3ZKNXwWFmjfMHpyCgqpGHCl0P2cq8eU5fMmoVKlNvWJ1yKlx9QwJD9EhITJUms+9ISpUjwtGdJUMCv5w4Yiu+EMxJ3dPiEBepfZ6akLvRPRPjsbJ4jqU1ZkkY5InBneNxVHFdZ7YOxHbs9yHBPbqFImUmHD0SIzE3txKZJY6vi8pOkzTa6FfcjR6Jkbi4pGpWHqwEPmVvvfxDRN74l+XDffpmLaGMbabcz7OZTsJsS3P5lNluP/LHdCHODRZAPD29aNRXGPC83+4ujJ2T4hAalwEwBwLB08DlTHHZHzuoGSsPVbi8nliVKhbV0GtRY7ygT66Zzz2nqnSPM995/ZDrdGKGyf1xOojJfhwYyZ0DLhgeFc0WmxYcagIg7vGSgN3Wr8kbDpVBsAhIN84qRe2ni7Dfg1Xm5YmOgSo01ivXDIqFecM6Iy/f7/fafvkPp0wf3gXPPWrq8DlSaD0FXFR/ezFQ/HNjjM4VlSLcwZ0lrS80WEG1Jutbh/E+3vk4YvaaLzmQZAFgDtn9IFex/A/wSLQUnSLj0CInnm9AFZDTakxNDUW5w5KxltrTzW3ia3CFWO6o85kwcrDrq5nooVEyZS+nXC8qNZpoa1F55gwjE9LwLKDRdAxQH55kqLDkBofjgNejKWoUL3DslXacRfmE3onYkdWBUL0DBab64BQW0RM65cEk9WGndnOCzLxXMrXasSGGzChdyecKqlFdnkDLh6ZivOGdsE/fzrgt8Lv8fMH41+CZVTkh79ORkFVI15ZcRxGoxHlRuffOLZXAiJD9dh4ssyv7/QFuTJz9uAUlNaZsF9FUOjoDOoSg+cvHYaHftgvCWVKIkP1aHAjoD0wq7+kzOkWH4F5w7pIlr2WQv6cNugYusaH444ZfTGxdyKufn+rR6FczvT+SZjUpxNeXXncafvUfp2wK7vSRREuJyk6DIO7xni8B4d0jUVlgxmF1UYkRoWiZ2Kkk6AZFar3Wei9fEw3jOwer6oI9Yerx3X3SkBSWsvljOwep7mWuXJsd/yoomCfNSgZT144BFe8u8WrZ8CcISnYl1vlNpZdzYAhx9O6TiQ8RAejpek8d57TB++vz3RzRPNQm7OVjOkZjwazzaOBZ0LvRAxLjcPqo0WqCkxP3DuzHzadKnNRiIxPS8B95/bHY0sOuhV+lYQZdOgcE+bTMSJDU2NxuMA3ofSKMd1x8ahU3P/NXtUwNAB45YoReOQnh3fdwvmD8Ndz+vrctraEhNg2Zt26dUhPT8fSg4XILK3H/bP6AwAe+XE/vt+Vh+cvHYZFy46i3mzDjsdnITkmXDr2u51n8M+fHLFKh549D4fzq2G22XHLJzvRKzESi28Zjx1ZFbhybHcwBvyyLx8juscjNS4C4SE6MMZQWN2INUdL0C0hAkcLHbF+w7vFYe7QLogNN2BfbhV6JkYi1KBDdJgBZpsdITod1h4rQVxkCDpFhaJP52ikLVwKAFh2/3TUmaz482gxeiRGIqu0Hk9cMFhy9VGDcw7GGN7NOI2IEB1umdobS/bmYeWhYrxzwxjodQyNZhse/nE/LhjeFQ9+tw8mqx3JMWH4z9Wj0KdzFOIjQ/DEL4dwMK8a+VWNuGpsdzxx4RBkltZDrwN6J0VjxaEi3PP1HgCOidZi5eieEAEOx8N4w4lSvLjsGB4ZH46hw0cgRM8QExYCo9WGP/YX4IIRqZjQO1Fq8+GCGuRWNGBbZjkWzh+MiFA9ftydh4d+2I9H5g3E1eN6IEy4bhYbx9bMcixYvEMSVAZ3jcV/rxmJea9vBOB4aBRWGTGmVzxKakzolxwtacL/e81IjOvl+O4eiZGq19Fm57Da7Qgz6JFdVo+wEB26xkUgq6wejWaHq9xrq47j5n6RmHXE4bpnuu4GnDECP+7Ow/sbMvH5XyZAxxjGpSUIEyLHWOF7rTY7nvvjCG6Y2AvdEyIQGapHaZ0JuRUNWHW4GKW1JkwfkIRRPRLw6eYsPHnhENg4x86sSgzvHodHfz6AASkxeHD2AKd21xotyCytx6mSOlw8KhU/7MqTYvDki4HTL56Po4U12JZZjhWHivDqVSORGh+OgU+skM719zkDcOc5fRCq1wmugp1QUmvE9R9uxx0z+mDOkBRc9d5WDOkai6cvGoJRPeNxuqQeRwtr8I8f9rssPv85bxAYc7h/ibx9/Wj07RyNzafKcPHIVJisdry0/CguH90didGhOJRfjRPFtZjSNwlbT5fji205mNYvCbdOTcPUfkkID9GjutGCea9vwIuXDYfZZkduRQMGpMRgev8kPPv7EXy9/QyWPTANMeEhWHW4CDdO6uUYXweLsGRvHvblVqGszozEqFD8fNcUxEaE4NJ3NkvvdTqG0loTYiMcrmiH8mtw4Jm5CDfosS+3Cp9szsKNk3phar8k7DlTiUXLjmFsWgJ2ZlXAxjmeuGAIBneNQWSoAXmVDvfQoalxqDFa8Mxvh9GdVWLB+VORGheO0loT/r3qBDLL6vDkhUPQaLZh0YpjDjfTfkkYlhqHI4U1eOa3w9iVU4kPbhqLuUO74ERxLeb+dwP+OW8QuiVE4I/9BQgx6PDiZcPx3c4zOH94VxwrrEVidCjG9EyA1WaX3H5PldTCzoEXlx0F50BKbBi+35WHW6ak4ZF5AzH2+T8RG2HAuofS8fHGLEzq2wkLfzqA3MpGrHhgOkL0OtjsHGlJUaioN8POOb7ZfgZj0xKkEI5+jy0DB/DV7RPRp3MUkmPCYbLaYLLaERseApudQ69jqDFa8MSSQxjfOxEXDu+KyDC9FG7AOUe92YbosKaInEP51YgJNyCvshE7sysc4SNWOyb36QQAOFxQg8d/OYT9uVWY3j8JE3sn4p6Z/cAYw8978iQF2vOXDMVNk9Ok82ZkZKD7kHGobjQjJjwEvTpFIsygR6PZhv15VRjRPQ51RisWrTiGyX06YVxaInonRcFoseHBb/fBxjlmDOiMsT0TwMHx674C9EiMxE2TemHJ3jz06+wIj/hlXz6OFdZi8S3jsWRvPt5YcxJ3pffFfef2w9fbz+D6iT0RGer4vadL6/D8H0dwprwB79wwBtd9uA2DusSgrM4sxY7eP6s/LhjeFUnRoWCMYfy//pQUU/++aiS+2JaDSX06oXtCBDKOl+LPo8X4eME4DOwSg6+FsIDqRgtG90hAZlkd7vh8N0b3TMC64yXokRCBxy8Ygt/3F6CgqhF/mzMAiVGhKK4xYntWBf56Tl/kVjQgLjIEJ4pqER6ix+8HCqRF+Df/NwnRYQbUmiwY2jUORTVG9OkchRC9DmarHdd/uA27cirx+V8mIKe8Hk8KSsxjz8/D5f/bggh7PR67fCI2iG55JivSB3bGp7dOQFG1EXodQ1iIDtGhBrz+5wmcLq3HwvmDAABrj5Xg+125eOrCISirM2NcWgIueHMjyurMmDUoGWsExfQ3/zcJw7vH4ar3tkqL+8FdY/HZrePx8I8HMHtwMm6c1MvJDbDBbMWZigb8eaQYg7rE4rOt2diXW4UnLxiC5/84gucuHYp3M05Dxxg+WjAO3RMiUVFvxj1f7cG/LhuGGqMVcREh6J0UhZzyesSGh2D10WKM7B6PLnHhKKhqxJ9HivGXab0RZtChqMaIy/+3BfOGdcFj5w9GjdGCfy09iv7J0bh2Qk/EhBsQZtCjqsGM9zdk4pYpaegcHYZaoxULfz6Af8wdiL6dHWM1p6IBJosdvZOicLy4FgsWO1zoNz4yE1ll9diRVYF7z+2HMINO+s0rDxchOSYM5af24cf8WAzoEoNrx/eAxWZHRIgeKw8XSX1327Te+HRLNjY8MhOpceH423f7UFJrwsge8fjHnAG4+v2t2HOmCnfO6IOKejN2ZFdIyoyf7pqMtE5R6BQdhu2Z5VhzrAT/nDcIZqsdFrsdFqsjxGlfbhXyqxpQ1WDBs78fQXJMGF67aiRmDOiMO7/YhUP5NXjvxrF4c+1J/GVqb4xPS5Dmvovf3oQDedXoEhuO+2b1w59HivHURUOx7GAhDuRVYVKfTrhlShqyyuqx8KeDSIkLx4DkaEzonYiucRFIjQ93Cgl74Nu9+HVfAY6/MA+fbM5GTnk9zhnQGecOcoS3bM0sx/i0RMz693rMH9YFRTVGDO4ai76dozG8exy6xobjo02ZWHawCHfO6IN5w7rg9T9PIiU2HF9uy8ErV45AdJgB6a9l4I1rR2FMzwTUmaxYfqgI3eLD8evWowiPTcSkPomYO6QLKhrM6BwdhuTYMKw6XOyIqz9/EGx2h5APOOKkf92fj799tx/3z+qP4d3ikBIbhm7xEThVUoeJfTqhtNaER38+iHMHJaNrfDjWHSvBxSNTERMeAqPFhriIEKQlRUnz9NCnV2J0z3jY7UBCVAiWHSzC69eMQr/kaISH6HEovxpfbsvBN3dMwsaTpRjbKxFxESGw2zkO5FcjJTYMN3y4HfOGdcEj8wZJ7dybW4nIUANCDTq8tvI4nr14KNafKEVCZCgO5lfjnXWn8MqVIzChdyK6JzjWdkXVRizZm49aoyNc5ZYpafjX0qO4dkJPDOoSg6d/O4weCZE4Z2Bn7MquwI2TesGgY1hzrAQTeyeCMYbYcMd6PVTvWK8PSY3F3jNVKKkxokdiJF5bdQIf3DRWWk82mm3IKqtHSmwYNm7ajH3mFPzfjD7oFh+Bn/fkYWq/JKTENskfgYqWECsF9He0v7Fjx/JAZt26darb7XY7t9nsnHPO8ysbeEmNUXW/H3bl8uNFNU7bao0WXtVgbtF2euJ4UQ0/mFfVJt9VUWfiZbXq18MbGs1WbrfbVT+z2+2afdISbDpZysvrTHzzqVLpN9Q0mnlVvZmbrTaX/S1WGy+vM7VsI3JyOH/3XcdfXR3nnHOjxcqXHijQvC5tid1u5yeKarjdbucWq40/8sN+/sHPf2ruf6Sgmq84VMhPFtdq7rPmaBE3WRzXN6u0jlc3uo6P4upGXme08HqThTearXzV4SJpDNabLLzCj36w2ez88y1ZvLK+Zfuwos7EP9+S5VV/ldYa+aaTpS36/f6MEavNzg/lt94cIb8W9SYLr1H0cYPJyouqG70+X2W9iVfVt+08KmK321XvUZF6k8Wl71tz3tLCZrPz4hrvr6k3ZJXW8U83Z/k13jhvug+MFqvqnOoNu3Mq+NO/HvI4vmw2Oy+W3VMbTpTw3TkV0nt5n5gsNv7EkoM8r7LBrzZxznl5nYlnlTrm7OLqRv6/daec2miy2Pii5Ud9fmbYbHZeZ7T43S5vsNrsrfJ8ySyt46dLtOd+Oe7GSJ3R4tW9XFDV4DSfmq02XlFn4vnN6Fc54jNHi6oGM3/zzxN+39tKzFZbq/e9O5ozbzVnLCmx25vuT5vNzveeqfTrHMFAezxLWgoAu7iKLEiW2FYiGIsKd3SCvk/OnAGWLXO8vvFGIDq6fdvjBUHfJx0M6o/Ag/ok8KA+CSyoPwIP6pPAoyP3iZYl1mOJHYIgOggdVCFFEARBEARBEL5AQixBBBsdNFU6QRAEQRAEQXgDCbEEESzILbFklSUIgiAIgiCCFBJiCSKYIOGVIAiCIAiCCHJIiCWIYCKYqroTBEEQBEEQhAokxBJEsCAKriTAEgRBEARBEEEMCbEEEUxwTomdCIIgCIIgiKCGhFiCCCZIgCUIgiAIgiCCHBJiCSJYoOzEBEEQBEEQxFkACbEEEWyQAEsQBEEQBEEEMSTEEkSwQS7FBEEQBEEQRBBDQixBBAvkTkwQBEEQBEGcBZAQSxDBBAmvBEEQBEEQRJBDQixBBBOiKzEJswRBEARBEESQQkIsQQQLouBKAixBEARBEAQRxJAQSxDBBiV2IgiCIAiCIIIYEmIJIligxE4EQRAEQRDEWUCzhFjGWDZj7CBjbB9jbJewLZExtpoxdlL4nyBsZ4yxNxljpxhjBxhjY2TnWSDsf5IxtqB5P4kgCIIgCIIgCIIIVlrCEjuTcz6Kcz5OeL8QwBrOeX8Aa4T3ADAfQH/h7w4A7wIOoRfA0wAmApgA4GlR8CUIwkfIAksQBEEQBEEEOa3hTnwJgM+E158BuFS2/XPuYBuAeMZYVwDnAVjNOa/gnFcCWA1gXiu0iyAIgiAIgiAIgujgNFeI5QBWMcZ2M8buELalcM4LhddFAFKE190A5MqOzRO2aW0nCMIXKCaWIAiCIAiCOAswNPP4aZzzfMZYMoDVjLFj8g8555wx1mKraUFQvgMAUlJSkJGR0VKnbnHq6uoCun1nI0HfJyYTkJTkyE68bx+g17d3izwS9H3SwaD+CDyoTwIP6pPAgvoj8KA+CTyCsU+aJcRyzvOF/yWMsSVwxLQWM8a6cs4LBXfhEmH3fAA9ZId3F7blA0hXbM/Q+L4PAHwAAOPGjePp6elquwUEGRkZCOT2nY0EfZ+cOAGsWQPodEB6ukOgDXCCvk86GNQfgQf1SeBBfRJYUH8EHtQngUcw9onf7sSMsSjGWIz4GsBcAIcA/AZAzDC8AMCvwuvfANwsZCmeBKBacDteCWAuYyxBSOg0V9hGEIQviC7E5EpMEARBEARBBDHNscSmAFjCGBPP8zXnfAVjbCeA7xljtwHIAXC1sP8yAOcDOAWgAcCtAMA5r2CMPQ9gp7Dfc5zzima0iyDOTjh3uBI7xiRBEARBEARBBCV+C7Gc80wAI1W2lwOYpbKdA7hH41yLASz2ty0EQYASOxEEQRAEQRBnBa1RYocgCIIgCIIgCIIgWgUSYgkiWBDdiQmCIAiCIAgiiCEhliAIgiAIgiAIgugwkBBLEMECxcQSBEEQBEEQZwEkxBIEQRAEQRAEQRAdBhJiCSJYIEssQRAEQRAEcRZAQixBBAui4EoCLEEQBEEQBBHE+F0nliCIAIOyExMEQRAEQRBnAWSJJYhggdyJCYIgCIIgiLMAEmIJItggAZYgCIIgCIIIYkiIJYhgQXQnJpdigiAIgiAIIoghIZYgCIIgCIIgCILoMJAQSxDBgjw7MbkUEwRBEARBEEEKCbEEEWyQOzFBEARBEAQRxJAQSxDBAmUnJgiCIAiCIM4CSIgliGCDBFiCIAiCIAgiiCEhliCCBcpOTBAEQRAEQZwFkBBLEMECuRMTBEEQBEEQZwEkxBJEsEECLEEQBEEQBBHEkBBLEMGC6E5MEARBEARBEEEMCbEEESyQBZYgCIIgCII4CyAhliCCCdESSwItQRAEQRAEEaSQEEsQwQIJrgRBEARBEMRZQMAIsYyxeYyx44yxU4yxhe3dHoLocFB2YoIgCIIgCOIsICCEWMaYHsA7AOYDGALgOsbYkPZtFUEQBEEQBEEQBBFoBIQQC2ACgFOc80zOuRnAtwAuaec2EUTHgqyvBEEQBEEQxFmAob0bINANQK7sfR6Aie3UlpbBagX27GnvVhByGhqCu0/y84HKSsBoBPbtA0pL27tFngn2PuloUH8EHtQngQf1SWBB/RF4UJ8EHlp9Eh8P9OnT5s1pCQJFiPUKxtgdAO4Q3tYxxo63Z3vcEQZ0jwJq27sdRBNGIC4cqG7vdrQmHIAO0HHA3t5t8YazoU86EtQfgQf1SeBBfRJYUH8EHtQngYe7PqkI7L4q0/ogUITYfAA9ZO+7C9uc4Jx/AOCDtmpUc2CM7TJyPq6920E0wRjbVU99ElBQnwQW1B+BB/VJ4EF9ElhQfwQe1CeBRzD2SaDExO4E0J8x1psxFgrgWgC/tXObCIIgCIIgCIIgiAAjICyxnHMrY+xeACsB6AEs5pwfbudmEQRBEARBEARBEAFGQAixAMA5XwZgWXu3owXpEG7PZxnUJ4EH9UlgQf0ReFCfBB7UJ4EF9UfgQX0SeARdnzBOZTkIgiAIgiAIgiCIDkKgxMQSBEEQBEEQBEEQhEdIiG0FGGPzGGPHGWOnGGML27s9ZwOMsR6MsXWMsSOMscOMsQeE7c8wxvIZY/uEv/Nlxzwq9NFxxth57df64IUxls0YOyhc+13CtkTG2GrG2Enhf4KwnTHG3hT65ABjbEz7tj74YIwNlI2FfYyxGsbYgzRO2hbG2GLGWAlj7JBsm8/jgjG2QNj/JGNsQXv8lmBAoz9eZYwdE675EsZYvLA9jTHWKBsr78mOGSvMd6eEPmPt8HOCAo0+8XmeovVYy6HRJ9/J+iObMbZP2E7jpJVxs+49e54lnHP6a8E/OBJTnQbQB0AogP0AhrR3u4L9D0BXAGOE1zEATgAYAuAZAA+p7D9E6JswAL2FPtO39+8Itj8A2QCSFNteAbBQeL0QwMvC6/MBLAfAAEwCsL292x/Mf8JcVQSgF42TNr/2MwCMAXBIts2ncQEgEUCm8D9BeJ3Q3r+tI/5p9MdcAAbh9cuy/kiT76c4zw6hj5jQZ/Pb+7d11D+NPvFpnqL1WOv3ieLzfwN4SnhN46T1+0Nr3XvWPEvIEtvyTABwinOeyTk3A/gWwCXt3Kagh3NeyDnfI7yuBXAUQDc3h1wC4FvOuYlzngXgFBx9R7Q+lwD4THj9GYBLZds/5w62AYhnjHVth/adLcwCcJpznuNmHxonrQDnfAOACsVmX8fFeQBWc84rOOeVAFYDmNfqjQ9C1PqDc76Kc24V3m6Do369JkKfxHLOt3HHyvBzNPUh4SMaY0QLrXmK1mMtiLs+EaypVwP4xt05aJy0HG7WvWfNs4SE2JanG4Bc2fs8uBemiBaGMZYGYDSA7cKmewXXicWiWwWon9oKDmAVY2w3Y+wOYVsK57xQeF0EIEV4TX3StlwL5wUHjZP2xddxQX3TdvwFDguGSG/G2F7G2HrG2HRhWzc4+kCE+qN18GWeojHSdkwHUMw5PynbRuOkjVCse8+aZwkJsURQwRiLBvATgAc55zUA3gXQF8AoAIVwuLsQbcc0zvkYAPMB3MMYmyH/UNDEUor0NoYxFgrgYgA/CJtonAQQNC4CB8bY4wCsAL4SNhUC6Mk5Hw3g7wC+ZozFtlf7zjJongpcroOzUpTGSRuhsu6VCPZnCQmxLU8+gB6y992FbUQrwxgLgWMgf8U5/xkAOOfFnHMb59wO4EM0uUJSP7UBnPN84X8JgCVwXP9i0U1Y+F8i7E590nbMB7CHc14M0DgJEHwdF9Q3rQxj7BYAFwK4QVgMQnBZLRde74Yj5nIAHNde7nJM/dHC+DFP0RhpAxhjBgCXA/hO3EbjpG1QW/fiLHqWkBDb8uwE0J8x1luwdlwL4Ld2blPQI8RjfAzgKOf8P7Lt8pjKywCIWfV+A3AtYyyMMdYbQH84kg0QLQRjLIoxFiO+hiNRyiE4rr2Y/W4BgF+F178BuFnIoDcJQLXMJYZoWZy05jROAgJfx8VKAHMZYwmCW+VcYRvRAjDG5gF4BMDFnPMG2fbOjDG98LoPHGMiU+iTGsbYJOF5dDOa+pBoAfyYp2g91jbMBnCMcy65CdM4aX201r04i54lhvZuQLDBObcyxu6F4wbQA1jMOT/czs06G5gK4CYAB5mQ4h3AYwCuY4yNgsOdIhvAnQDAOT/MGPsewBE4XMXu4Zzb2rjNwU4KgCWOeRYGAF9zzlcwxnYC+J4xdhuAHDiSQQDAMjiy550C0ADg1rZvcvAjKBTmQBgLAq/QOGk7GGPfAEgHkMQYywPwNIBF8GFccM4rGGPPw7FQB4DnOOfeJsIhZGj0x6NwZLtdLcxh2zjnf4UjQ+tzjDELADuAv8qu+90APgUQAUcMrTyOlvABjT5J93WeovVYy6HWJ5zzj+GaXwGgcdIWaK17z5pnCRM8ZAiCIAiCIAiCIAgi4CF3YoIgCIIgCIIgCKLDQEIsQRAEQRAEQRAE0WHosDGxSUlJPC0trb2boUl9fT2ioqLauxmEDOqTwIP6JLCg/gg8qE8CD+qTwEKzP8xmoKYG0DXDXsM5EBsLhIT4f46zEBojgUdH7ZOkpCSsXLlyJed8nvKzDivEpqWlYdeuXe3dDE0yMjKQnp7e3s0gZFCfBB7UJ4EF9UfgQX0SeFCfBBaa/XHiBLByJZCa6v/JCwqACy4A+vTx/xxnITRGAo+O3CeMsSS17R1WiCUIgiAIgiAITQwGIDTU/+PJAksQAQvFxBIEQRAEQRCEGlTFgyACEhJiCYIgCIIgiOCiJYRPEmAJImAhIZYgCIIgCIIIPhhr3+MJgmg1SIglCIIgCIIgggu7vfnn4JyssQQRoJAQS3hFVlk9rLYWeCAQBEEQBEF0BMgSSxABCwmxQcbeM5XIKa/X/HxXdgXsdt+0ijnl9Zj5WgbeXHuquc0jCIIgCIJofThvGSGULLEEEZBQiZ1W4ERxLdaesSAdgMVmx+/7C5AcE44aowVd4sLx5bYcDEiJwbR+SdiRVYE5Q1LQIzES76w7he1ZFbjrnL6oN1lhsdkxZ0gKDHp1XUNhdSNeWHoUc4ekYNbgFBh0DJf9bwsA4OHzBuKemf1wqqQW0WEh6BIXjg0nSnHz4h14+qIhuHVqb9QYLfh+Zy4GpMRgUp9OCDWof09WmUMo3p5ZjrzKBjz0w34M7hqLMIMeC+cPao1LSBAEQRAEQRAEoQoJsa3AumMl+PyIGStf/BMNZhtqjVa3+z/3xxE8Mm8gXl15HACw4USp9FlMuAGx4SFIiArB+zeNw8YTpRiXloB9udX4ZW8+Np0qw9IDhS7nfHXlcezIqsD6E6UY3DUWv907FTcv3gEAePb3I7DaOD7elIWiGiMAQK9jsAkW2vSBnfHxgvEorG5EZKgBeZWNAIDtWRWY+VoGLDaObZkVAEBCLEEQBEEQgQdlJyaIoIaE2FZgXFoiAKC4xuT1Ma+sOO6yLUTPUGu0otZoRX5VI6YuWutTO9YLwvDRwhqc++8Mp8/+teyo03ubzMU443gp+j62TPWcFlvTfgYdxYoQBEEQBEEQBNG2UExsKzC8WxxGJ+sxf1gXfHLreKz62wynz1c+OANzh6QAAH7862TcMLGn9NmsQcl4/ZpRABwKwF/vmYrnLhnqdPx1E5r2f/bioegcE4Zh3WIBABEherx/01jp8/duHAMAyK1odGnnzIGdER3m0GO8eNlwXDIqVfpsSNdYXDC8Ky4b3U31N/ZIjEDPxEj3F4IgCIIgCKI9aCkrKlljCSIgaZYlljG2GMCFAEo458OEbYkAvgOQBiAbwNWc80rGGAPwBoDzATQAuIVzvkc4ZgGAJ4TTvsA5/6w57WpvQg06PDAmHOnpDmHSZLUhzKCDyWpHr06RGNglBh/cPA5Wmx0GvQ7j0hLx+AWD8exvR/D3uQMQGx4CABiSGouRPeIxskc8bp6chgN5VQjR6zC4ayyevmgI8qsa0bdzNBZMSQMA/Lg7DzMGJCE5JhwA0KtTJCb3TZLa9fo1o3Dp6G6oMVpQVW9Bz06ROFFci5eXH8Mlo1Jx/cSeWDh/ELrEhoPJkiH07RyFbgkR6Nc5Bhe9vQm3TElDRb0ZB/Kq2uaCEgRBEARB+AIJnwQR1DTXnfhTAG8D+Fy2bSGANZzzRYyxhcL7fwKYD6C/8DcRwLsAJgpC79MAxgHgAHYzxn7jnFc2s20BQ5hBj+MvzEdJrRFher20XZ6wKTLUgJevHCG9/+muKS6WzhHd46XX4SF69O0c7fT5lWO7S693PTEbYQYdYsJDsPGRmagzWTGoSwwAIDY8RBKUB6TE4ONbxkvHdY2LcGn/vef2l17veHwWOkeH4W/f7QM9HgiCIAiCCFioRA5BBC3NEmI55xsYY2mKzZcASBdefwYgAw4h9hIAn3POOYBtjLF4xlhXYd/VnPMKAGCMrQYwD8A3zWlbICJaSL1hbK+EZn1XUnSY9LpHC7r9ir9BxxjspOUkCIIgCCIQsbdQbXta6xBEQMJ4MwenIMT+IXMnruKcxwuvGYBKznk8Y+wPAIs455uEz9bAIdymAwjnnL8gbH8SQCPn/DWV77oDwB0AkJKSMvbbb79tVttbk7q6OkRHR3vesYPy4QETjlXY8O/0jhMXG+x90hGhPgksqD8CD+qTwIP6JLDQ7I/GRqC+HggJ8f/kZjMQEwOEe2+EIGiMBCIduU9mzpy5m3M+Trm9VbMTc845Y6zFVFic8w8AfAAA48aN4+np6S116hYnIyMDgdy+5rK0dD+y6ss61G8M9j7piFCfBBbUH4EH9UngQX0SWGj2x759wM6dQJcu/p+8vBwYNgwYPNj/c5yF0BgJPIKxT1ojO3Gx4CYM4X+JsD0fQA/Zft2FbVrbiQDG4U7c3q0gCIIgCIIgCOJsozWE2N8ALBBeLwDwq2z7zczBJADVnPNCACsBzGWMJTDGEgDMFbYRAYxOB4qJJQiCIAgiMGmJNQpjFBNLEAFKc0vsfANHTGsSYywPjizDiwB8zxi7DUAOgKuF3ZfBUV7nFBwldm4FAM55BWPseQA7hf2eE5M8EYELI0ssQRAEQRAEQRDtQHOzE1+n8dEslX05gHs0zrMYwOLmtIVoW3QMaG5SMIIgCIIgiICG1joEEZC0hjsxcRZAJXYIgiAIgghYaI1CEEENCbGEX1BiJ4IgCIIgAhbOHTGtzaWl6s0SBNGikBBL+AVjlNiJIAiCIIgAhdYoBBHUkBBL+IWOMXo+EARBEAQRvFB2YoIIWEiIJfxCR5ZYgiAIgiAClZZyJ6a1DkEEJCTEEn7BKLETQRAEQRCBCq1RCCKoISGW8AvysCEIgiAIIqihxQ5BBCwkxBJ+QTGxBEEQBEEENIyhxAxUWtq7IQRBtDSG9m4A0TGhmFiCIAiCIAIWYY0yYacODBxZU/1cs9BahyACErLEEn6ho5hYgiAIgiACFdkahcNzgqciE/DwSQYTlYUliA4BCbGEXzgSO7V3KwiCIAiCIFTwUdH+ZCbDDyUM6yqbdx6CINoGEmIJv9AJSk1OkztBEARBEIGGj+sTcW9aGBNEx4DGKuEXOqH2GlljCYIgCILo6Igyr5PjMWUnJoiAhYRYwi9ESyzFxRIEQRAEEZAwz7GwIuJqxuUQWucQREBCQizhF0yyxNLkThAEQRBEgKFYn3xXDKRt1mmW25GE2NZtFUEQLQQJsYRfiO7EJMMSBEEQBBHofFHoWLfkGtU/V42JJXdigghYSIgl/ILciQmCIAiCCGhkvsHiK61VC9cyxdI6hyACEhJiCb+gxE4EQRAEQQQqdrsd1TaZECtWVVDst7zM4WZcZBb2k3/oQ0wtQRBtCwmxhF8wssSeFXDOqYwSQRAE0eH473EjRp5Mkt5rWWK/KnJ8cryBOe0nQc9AgghISIgl/EJM7MTt7dwQotUwW+3o/egy/HvVCZistvZuDkEQHsgpr8emk2Xt3QyCCAh+K9DI4KRAfLoxQbwlIZYgOgYkxBJ+QTGxwY8ouL697hQGPrEC5XWmdm4RQZzdnCqpQ9rCpThWVKP6+czXMnDjx9vbuFUEEZgolyeicKoMg7IJ7/XCDuRBTBAdAxJiCb+QshO3czsIV/IqG5C2cCmWHSz0av+fdudh1HOrYJM92becKsN3O3Od9jtWVNui7STaB7Kqd1xWHi4CAPy2r0D1c3EIUwhAcDDuhT/x6eYsr/e3UZIKt4jCqYUDRhtQJsTAikKs5oKYxhNBBCQkxBJ+QZbYwOVEsUPY/HF3nlf7/+OH/ahqsKDBbJW2Xf/Rdryw9KjTftnl9dLrwupG7MquaIHWEm3JvtwqDHxiBTKOl7R3Uwg/CBFMRZ6EFZOV4jw6OnY7R1mdCc/8fsSr/f88Uoy+jy3TtNKfjWiNEisHrjnEMG6nTnoPNAm5NuWBtM4hiICEhFjCL5iUnZgm90DDoHMMa7MXC9lf9uZLry0uT25ncsobUFlvRmZpHSa/tBZXvre1eQ0lWoSCqkb8vt9hmSuvM+Hur3ajxqgeCyYqHj7elIV1JMgGDAVVjThT3uBxP70wtq0ehNg6kxV2O0duhedzEs0jp7wedSar5x19xGzzTRGx6ojDSr8/t6rF29IRsds5chudx4noJWyxA/vrmnyGmzwYnP+3JI1mG825BNHCkBBL+IXkTkwybMARoheEWC8WQftkCx5PbqYfbMjE6OdX49x/r29W+wj33P/NXqw7XoJHfz6IjSdLPe5/1Xtbcd83e2G12fFuxmksO1iEb3eccXvMxpNluPWTnS3VZKKZTFm0FjNeXYeSWqPb/QyCC4zZandrja03WfHu+tOY/so6nC6tc/rsl735qG8Foets5ZxXM3CVG4Veo9mGUyV1mp8rsdk5CqoaPVrTt5wqQ9rCpR7vmbOVJTIFrYgkxCqGjjgaRIus05OwhQJkn/7tEG79ZCdZygmiBSEhlvCLlnYn/l/GKaQtXIqL3trUIuc7mxFdDq1eCLHyhbDJ4r8L4qebs3C4oNrv4wkHnHP8tr8At36yE9/sOIObPt7h8Zj8qkYADqWFVAeRlEsdkgvfdJ7//jhQgJXZTVZ1vTDxfrEtBwOfWK55nlqjVcpSXFTdJOTsy63Cg9/tw5O/HGrJZp/1HC3UFkzu/XoPZv9nPSxeWlb/veo4pixaq2mZN1vtWH+iFG+vOwUAOE65ClSRh8eIiD1gVcyP4mPQDub0XqIFJtTsMkd/VtZ7lzGZIAjPkBBL+IWOaUz2fvLf1ScAAAfzSRBqLqJgarFxbMssd7t4kishmhNH98zvR3DBm6SAaC6e3ETd4Y8Swp01b/2JUq9c0gnvqDFaMOnFNdiWWQ4AqDVaXCx0JbUmp8X3vV/vxTfHzNJ7UYgF3N8rJ4prsVX4HrkhSbTAFlQ3+v9DCK95cdlRrDnmcCH1dn7dIHhf5FWqC7H/XnUcCxbvwJbTjv6NjwgFoC1nZZXVn5UuxhGhBpdtYsSM3BJbZ3UVatdVMhjF7mohS6w4dikEiyBaDhJiCb8Q53V7C0mxSdFhLXIeokkwOZhfjWs/2IaXlx/T3FfefXJ34k5RoV59lz/9X2O0oKLe7HnHsxBvrTVqmKz2pvrNGvswxYKs72PLnEonfX7EhLSFS7H3TCUWLN6BRSr3TkmNUXOBTWhzuqQORTVGLPzpAADgpo93YPZ/XF3zH1+ibSVVrn/l94uYuRgAvt3RlFmcyapeiq9oHd02fLAhU3pttHiXFVwvjNFGjf2V7uHcQ42Ama9l4JJ3Nnv13cFEZKjeZZtVRYgdtl3nooz/ppjhhSzZXNkCA8bgZVI2giC8h4RYwi9aOiZ2VI/4ljkR4WKh2Z9XpSlscg1LbP+UaK++y2J3H5unxuQX12DM86sx/OmV9EBX4Cm5FgAMeWoFnv7VVdAxW+2qQorRYnPrWl4oczdde8ZhqXv054MAgJMlrq6KE15cg2kvr/PYTsIZ0RKTLbiJivHoylj0rLJ6aKFUchRUNVlU3157Snq9Q5Y5XLT8HMqvdvJ0KaszObkaE77jixLPkxBrs3OkLVyK/XmOPtISYpXPXJpDvUeyxCqmQ6UlFgCyGh3X+qhR3yILHXHNRP1FEC1HqwmxjLFsxthBxtg+xtguYVsiY2w1Y+yk8D9B2M4YY28yxk4xxg4wxsa0VruIlkFIktkirjFWm90pwdDfvtvX7HOezSgfksU1Jgx7ZiX+s+q4y75O7sSyJ7vVC2EKcAhdvloP682OxVmtyQoKDwIyS+uQtnAptntw/RZpMNvw2dYcl+0mqw1Q8Xwb9OQKXPT2Zjz7+2FUN3hnARdrArtbcOVVNviUsOZsR8s1u97kLKzoZcmblCjvj3NezUB5nQlfbsvRDMUQheQL39qElwTLOoejBumkl9ZI+x0trCH3cQDZZfVIW7jUqxh/m8bzL7fCdWyYrHZYbXb8sCtXdVwpMxw3mp3vC84d2aaVR5JQpI7aXCpaYF1iYlWOt3Lg4wJgfnYidlc2PxGaOK6pvwii5WhtS+xMzvkozvk44f1CAGs45/0BrBHeA8B8AP2FvzsAvNvK7SKaiahVXH2kGF9szdbc71RJLdYdc00rn1fZID2k31xz0skatGRvvpOFEHA8wO12jg83ZGLN0eIW+AUdi0azzesFpvLhfaaiAQ1mG94ULDVHCmrw9tqTAAD5rnKLkLexmRarvVlxnA1qKvCzjO1ZDqvZz3vyvVYeiFQ3NmkB5JZ00cVQHEdHC2vwyeZs6R6Qc6GbZGpi39rs3MWSNO3ldarusMHOc78fwdUq2Wgr6s245O1N2gl5NBQUfx5xns/EsNdDMiFq6+ly1Jmsque46r2teMJNoibx/nJCcZsVVjdi/hsb8fRvh7DpZFmrlIzpKPwpPF9+3uOa3VZkZbYFV7y7BXVG5+tkttqx+kgxpr/iOjaMFhs+3ZKNh388gM+2ZDuVwTJabC59WKM49ysrj2P6K+ucrO+Aq1AkfysP2/DWnTlYUPNqEfW0ZsVH+SZX7d/2Goavix3bS43NV+5IQiz58jthttpd1nsE4S1t7U58CYDPhNefAbhUtv1z7mAbgHjGWNc2bhvhA2Js3b+WHcWTvx7W3O/8Nzfh1k934o0/T2L+Gxul7dNeXoe/fLoT3+08o7qwVj6AXll5HH0eW4Z/LTuK2z7b1UK/ouMw+KkVmP/GBpftnDtc0K7/cBv6PbYMRdVGt5reynozzn9zI15bdQJ2O3d6eBTXmLD+hCOpiLfaYovd7lUWZC3qZcFJJqvNp9IfVps9KEqFhIc4puEd2RUok8WnipisNjz8w37kVTY4XevcigaMfHaV035i/KPYrc2NPRa/75EfD2DQkyuada5AxVfr4+LNWU7uuoCj3Mlrq45jf1413lnnOp+5+55HhBhZEVFBKCaAAoDrPtyGh77fr3qOTDfuxwDw/vpMl23KOEpRGbL0QCFu/Hg7/vH9PpdjaoyWs8qK5M7L6JtjZuzOqURepbNA+eQvh/B/n6s/n4wWO0qF8f3cH0dw00fbpc++35Ur1XoWqWl0dlN5N+M0AKCoxtkFXNknciXmmOdXS69rjR1/rvQFNUusKLx6O+QzGx1jMco1vNZnxFjn5uQ9CDZKa00Y8MRyfLolu72bQnRQXNO3tRwcwCrGGAfwPuf8AwApnPNC4fMiACnC624AcmXH5gnbCmXbwBi7Aw5LLVJSUpCRkdF6rW8mdXV1Ad2+5nKs0PmBKP7WkgY79pfYkN7TgBAdkxZd//3zhLSfWRBQt2aWSxk0lQx4YjmmphrwfyMcCZ8+3OC8UMvIyEBRvR21Zo7+Cd49YTpin1jtXLLMnC6tR0ZGBqx2DpsdCDMw7BD6QcxUueiHDegapa2bGi1b1KzNyMCJM01C02NLHHGQ78yKRFWNd7Fyv6/ZjE4RTVrstIVL8e9zItApoqkNoqCsTCoEAOW1jVKfPLGpAXl1HJ/Oi/Lqu9/cY8SeEpvX+wcqp4ocfZhVVo/r33dOwKJjwOyXVyG31o7D2QV4YHS49NlXK7c47bt9117kljmsLa+uPI6vN5/AbcO9S5i2as06hOoZGDi4zCe5sqoGz3+5Gj8dcgjD69a5xsL+uXadVL+0o1HaYMfDGxpx+/BQTOsW4tOx8rnklhVN81NmXgEyMhxCLucc7+wzYXKqAW/tNakeq2R7VgV+WbkWr6xzFpAOZBfD0Kg+X3pizVrnfquubrLyZmRkIL/WMU+LSqF9WSVSG/eWWJEWq8PfMhoxp5cBNwwOvCR8L21vxPTuBp/7EADO1Njw1BYjnpkcjrQ4PTKFkka5uXlYtaYEoXrte3vrziaBNSMjA8v2aysUduzag5zSJmvo/rxqrF23DruKbShrcBVsTmTnSa/XrVsHBseiqqrBWbjds28/zHl6FBU57q+jx08iw5Ttcr41GzYjJZLhy6NmDEzUI7PKhmsGhqrOyx0NtWf7kTOusSriZT7hozLmUGMjbM1cO5SXO56p+w8eRnTFiWadqyPgzXrrVJVjPHyx4Rh6W1xDZNqLGjOH0cqRHBlcaYM64hrYE60pxE7jnOczxpIBrGaMOaW55JxzQcD1GkEQ/gAAxo0bx9PT01ussS1NRkYGArl9zaXhYCGwf4/0Pje8N0prjHhzg8MKMWHUEFwyqhuSNv3pZF1KT09Haa0JWP2nx+/YXGDFx3fNxqXvbHbRnKanpyNt4VIAQPaiC7xqs1qf3PDRNtQarfjt3mlenaOtSVu4FGN6xgNwuCimp6fjqve2YGd2JbIXXYBbhGsgYgrvhG69k4D9nutA9hw6DodXu1p3R4ydiIhDO4Faz/GOz28zYuH8QQCahndcr6FIH5IivZ//xkYUVTdi71NzHRtWNLXZpg+X+iRP2O7tuLnFx/3bkszSOqw7XorbpvWWtnHOXRaMGcdLoDdXAnCMmxqFn5tBp0OuIGCYdBGYOGUK8KdDEcESugM4Le07eOhw1GZXAFmObfl1HM9t9U4ZccfqBhx4Zi5CVq+CPBSvzKTDx4earLnTZpwDrHSuTzp07CR0jYvw6nsCjbXHioENu3DaHIcn0id4d5Bw302fcQ70OiaUL2lSPoTHJCA9fSIAh+fDrpWrsatY4Yo9fQawQrvO64PrXEvgJCXEIrV7JyAzE/ed2w9vqXiwaDFm4lRgVZMC60Rl04Sanp6Ok8W1wOYNjrTznCMsPALp6emoqDfjludXY2BKDABgZynDh3ele/29bcUtK5bieKUZT9wwx+dj/5dxCsBxFIak4pb0wcjenAUcO4IKROOO1VX4eME4zBqc4nyQcA8MHjYC2O6o5Zyeno7EnetQq+FO/vJOI/okRQFoEq7KYvrhfysPoHtChNN2ANhS0KQoPoIe4HDNaQAAw4YPR/rAZCwt3Q/k56FnWh+kp/d1KA9XLJP2GzxiDLolRGDNyj+xRkjgtvDKaUhL6thKQED92X56UxZw5IjTNtG43t1HJ8Rh4RGY3sznzM+Fe4GiAvTtPxDpE3o261wdAW/WwFHZFcC2rUiIj0N6+hQAjuz3DWZbu96XA55YDrPVrrm23HKqDHtzq3DPzH6qn58pb0BCVAhiwn1XqrUmwSiXtJqagXOeL/wvAbAEwAQAxaKbsPBfDJbMB9BDdnh3YRsRoCh1t0/+csjJLViMw+qf7Jrl1pd4q9OldVKSmdZg86lyHMgL7Nq0e85USa9v+ng7dmZXau67/FCR2/g4OcsOFqomXaxutLjEuYa4sUaolWF5ZcUxSclwtLAGlQ3qGZzk7sT+0lJlnlqSq97biuf/OCLFGVtsdkxZtFaqh2y3c9QYLbjlk52xeyzKAADDuklEQVSq7vRqVDdanOJe1RLHNMemkl1Wj1DFE6FWMVbVYnaLa1xdoLUwWmzYma0So9kBqTNZ0Wi2uZQvkc9v2eXqlrl6s+/xieEhepitdsSGG3Dz5DSfjvXkSirG6YmuqaK7sWiZFTMmB4rFvbTWhOHPrMQhD3XFbXaOp389hNwK7ZJQ0WEOXX6dyQrOOXTCbxTn3Q1CiIUaRlkyPM655AquhdL1u7DKoWRSuiUreXWlugALuLoTi95Pyrq0NUaLi4t04M2cLYea226DMOxMPnr0Nifvg4g4dppTjz3YEO9dvWzcTHhxDdJfy2inFjlQhm2YrDa8tPyoNLdf/9F2t2NyxqvrcMW7WzQ/J1qOVhFiGWNRjLEY8TWAuQAOAfgNwAJhtwUAfhVe/wbgZiFL8SQA1TK3YyIA8eSCVFJjwu/7C9CgSCZht3PUGr1PSWvXmO9/2Xt26jg2niyTXjc3UceKQ0UYoFJKp7rR4iKsGHTOU4U7ofb2z3fhf0L8lqcYOlGI9ZTYobzOhI82ZuLbHWdcfrdWwpy2wGixqf7GKiGeTfysptGCwmoj3lhzEtsyy/HcH0cw4plVLscpscoGAGPM6cFZWO288DVZbfAwLN1i0Ok8CinPLz3isi1HQ1DbnVOB3/cX4EhBDS58ayO+35mLZ38/jKve2+q2jIxIZb0ZaQuXYpWs/mkgUWu0oN7sKhzuPVMl1dE9oyE8+TIHiuzIqsCnW7IRatAhQqUGJgDMGZKiur2qUTs2+mRxLfbKFGVAk8VKKvMi3BaehLS2YuPJUtQarfh4U5bbOeZwQTU+25qDB77dq/p5YXWjNNeV15kxZdFavLrCeXHaYLY19Wd5A/75Y1MM84niJgWr2Wb3Oe60JeIjbXaOsjqTdC+uPlqEBrPVRVlca7S6zOs2xQO2oKoRjy05iGNFNc1uV3ujlqtBVPN9pZhS7uzm/vljaYkSO5IQ2zESbH21PQd9Hl3qUxz8mfIGl6za7hAV0Lo28Nr9YVeuR6WXFj/uzsP76zPx5pqTXh9zopgy97cFreVOnAJgiSDoGAB8zTlfwRjbCeB7xthtAHIAXC3svwzA+XD41DUAuLWV2kW0EJ5K6/x5tFjK8ihnb26lk/ba3+9ZvDnL63N0BD7YcBovLjuGzBfPlx52nvBGEHDHsaJaXDu+B565eCh+31+Ib3acAeCIuVI+uAx6BliAhMgQVDZYEG7Qw2LzvGDTqnUo0iAIsVMWrXW73yM/HsAaIcv18eJaPH3RUOkzk8WO8JAWyLzhIwfzqnHR25vwjzkDcN+s/k6fifetxcqBUMAo0+xe+8E2r79D3g0MjoepiDIL7sG8atXr8NZ1o3HfN+qLeDkmqw2ebr2vt59x2aZ1H17xrnMG30d+OoCxvRIAOJQSvT24ix0VFtIfb8rC3KFd3DesHag1WjWVbHd8vhvLHpiOSo3EWi8uO+r395bVmRFuUF/16TWEzM9VSjKJzPmvWsI4x39JEBLe61vQEltSY0RybLjnHT3gThAUhe49Z6pQUNWI1Pgmt3e7nWPyS03zztbMcqds3yI/7M7DD7vzkL3oAjzw3V4ngV+uVHrhj6OqidncoaYE8RU75xj3QlN4zqH8Gjz0w37ER4Y67VdrtLhYAZXP4nXHS/D19jOwWO149aqRzW5be2J2k+m91uZ8H8caOFTrkwm0hPFUHJvNLWNlt3Mw5tmQ0Fxe+OMo7NyhqI0K805UmPHqOkzvn4Qvbpvo1f6iB0hLzitaPCwon7wNP5Mjlh9U9p3dzr1ar20+VYbuCRHo1anju+4HGq2i/+CcZ3LORwp/Qznn/xK2l3POZ3HO+3POZ3POK4TtnHN+D+e8L+d8OOf87Es/28Fo8MMdDnAsbH2xQvyyT93i2qUFFj8tzZnyBr9Txb+4zOGS64tVUS7Q+EtkqAFT+iZhVI84ads9X+9xWYyF6B1ThSjchnkpNJbWNp2Hc45iRcKoOuFWkJdYAhy/LW3hUjQIizz54lJZYqK9NNuZZQ5Nq9w6LiLeBhZByvHXai63jJbUOveJsgTH2uMlquUbOkWFumxTY2d2BSqMvt+/atZGLW28aMH35j4X7zWDG6t/c3E3XEtqjHhp+VHN+2vZwUJNIcRoseHv3+3DM7+7Wq4dx7pal9W8IrQw6NUf3VoWDX/nCtGdWHQv9nexmXG8xMmi/uu+fEx4cQ12+elaLu83d66e8uzlM15xTm51pNDZ2qgmwCoprdUWUr/Y5ntiGl+zh3eOcU2qpSasLTtY5KJwqmm0uizClfOSuFhvtNjQaLa5zNcdCYvNjhAvb1c3uRAd52rBkBVPil131Jms6PPYMry/wTXjeGvh7S8X52u156GnY/RtYYpVoc5kxUvLtOd4TxhVjlNbA97w0Xac82qGX99BuCe4Um8RbUZDMzTIORqJL9T4ZHO26vaUFhZim1unbHtmOWa8ug4/+LBYfGnZUTz0w36nbXKrgqc2fbzJszU6TMNiIxIhBEHWmxSLGcVix6Ao1O7pvCIzZbEt3+zIxeX/c44T0aoTu2i5w1IlZuKUuzEqrQe+WPZbEmlB6GahZLVxVNabvXaxClVcV1GA8ySIhofokFlaL5XhkKO0yADAZaO7uWwTFSm+omZtrDWpCwSiMsQba4To+qh0ZXd8Zm+2RcNoseE3RVkTOdd+uA3vr8/EtztykbZwKbIVcaFvrT3lVDZMTqfoUPzsY8jDsG5xnncCMDQ1VvMzpXXmwDNzfWqDiDj3KOugehJi8yqbFHlF1UZsPuVY0N7yyU7c8cVuKU5+h5Az4aif+Q7EWYNB3W1URK5stdq5U9kiX62m/h7jjuWHfHOVV5sHtKz9Sv617KhLaSjl3CnO+1Ybx4LFOzDxxTWa59t0skwzlMAdZ8obUNIGwrHVByE23MPjzJdy5rVGi+p8LypbxDhobymvM+H+b/aizmSVlApqbq1LDxTi1ZX+zeFqiFOJ+My/+6vdeOrXQzhVoj5m/XGNF0sptqKe0i1vrTmJ9zdkOin5fCkZqLb2aIn46eZQXmfSVJofLfetjGFHgIRYwi+UQo8vqLkZ+4rSzbjeZMWWU+41gDY7x3O/H1HVLjc32YIYG+XIVOodyskTaFrc2+0c//h+v9phPpEU7b4cRoRgUR3ZI97tfqLwIQqTsRG+Z917bMlB5CusqPUWjg8VWuXf9hegrM6xMJMWq7KHnFJr2l6WWKmWsZtnVnm9CaOfX41nf9eupSwSE2aQ+v+nuybjguFdpYekJ8+HfioJ1ETiI137aq5G7KSvTOydiMoGCxrMVqQtXIofdjkqpTXI5oc+gttw/+RoSfmxNbMcB90kVKtqMEtWL7U43flvbMSAJ7Sz+3rD838cwa/7tIVY0V1btGhd9NYmmK12rxYpPRO13ca0hNDnLxnm8bwA8H/T+2h+pnQnjg0PwTXjemjsrY34C0V3YnG61XJXBhzu7NNeXoc315zCvtwqXPz2Jtwgq4UqnVs+dzc31pC51hSXo4wLvfaDbcg47ghL8LXmbW5Fg18Ksx2Pz8LV47qrfuZJEROqsLirzbvlPgjWTyqS/rlYYoW51GyzSwKvlnBy48f+WZdmvLoOE9wIx3K2nC5z8byR888fD+C7na4hDoDjvvBS14oID45Fvggmw59Z5aS8FRHjjz3VdVby5pqT+G1/AX7clSv1RYPZhnXHS5z2u+frPXhnnasSU4tGsw3Xf7gNxzUUSeJIF8fJsoNF+HxrDmb/xzX8APBPeBPvfzXlWHMNCyK5FQ2ayUSV3kyAuqVcqyVqwmJ71wEe+8KfuOb9rS7bS2qNeHmnEQ9+t6/tG9WKkBBL+EVzLLE7sytxy5Q06b24sJ09ONnrc1Q2OGufH/5xP67/aLvbB15urR2LN2dJxehfWt4Ul9Yc7dQXW7Px+wFHHjJvE5/0ebSpzIz8YSQuyPKrGr225LizzHSJc2+xFmMox/ZKwKl/zceLlw1X3U90A71wZCrumNEHD80d4FXbPJFfZ8e/FPGB98viN81WO6oazE4POaXCoT2yPZ4urZMWj+7iw2saHfeVu4zSIvJMwOEheifBvVuCcwmbi0emOr1Xc68PNejw011TkCBYYtMHdpY+a4kYpKToMKTEhqOywYx8Ibvqu+sdiyi5m22RoDQyWm2SMuT99Zm46O1Nmuce9dxqPPKTI4ZJzZ34ZEnzk2ZoeYR8u+MMPthwWhrL4sK+1mTVtMTJ+yo+MsRJsRIe4vyYndK3EwC4CDZRYQZ8ePM4/OfqkZgxwNFXESpu+8rzyVHr1tgI9Xi2S0alqm4HmmRL5byovG8457jwrY34bucZKYb5v3+ewKXvbJbc35WLupa2VFi1ApOhPq+Lzw5f23G4wL9kR8kx4YgMdR9TuPfJOdj4yEzsfHy20/YwRV+recB8uNH//BBKd0hxLpU/3+V1aeWW9rbg+g+344I31b0dAOC7Xbn4508HVT8z2+wIbSFLrK+6iyKFojyvsgFbBS8AeabsnPJ6l3v0k81ZeOPPJkurPG5UrvRwpwT0hl05FdhyutyjgtUbZc/760/jaKHv40OcJ9XWTS2VsHH6K+tw+f82q34mXk+5skiuFBPvdfF/WZ0JR2TzgJrA606pJmdfbpVPSbB8Yb/KvSH+1tVHittd0G5JSIgl/GL+sK7NOn5glxjp9b6n5uLY8/Pw4mXD0bezd4Hv8vil1UeKseW04wGhtFjJH8biPCmW1Hl/fZMFML+qEc/8dhhGiw1F1UafygA9+ethyT3OG+HAarM7Jey59ZOd0utTJXX4dHOWRwOFuBAGgPvOVa9VBgBJ0e7dUOWxrQa9DheOVO9XsQ5or06ReOz8weieEOm+gV7S6OEyv/7nCYx6bjXK65qUFmrp79uaWf9ej38L5XJ25VRq3i/+PohD9Tqn2KKHzxvo9Pn5w537SS1BzmWjumFsrwREhOpx5Lnz8OSFQ6TPQjRiKrW4YITrffHURUOQGBWKnPIGfLvTYYGNFLLmvrOuqWyQOCYbzXYXd+mf93h2v1dzJxbxxfNBiVz4Kak1Yaswhyz8+aDDtVoYynLrm1Y/XzW2SSCNCTdgd06T0iJakRQlQXAJVVu4zRmSgsvHdMfnf5mA7EUX4Js7JgEA3r1hjLSPOGYHyeZQEZ2OYfPCc522xWrUKhzuxn1ZjIGV3EvtTQtpOSarHYfya/DPnw7CpOHCppyTm7OAOpRfjUXLjzmFYaiVfRJR6y9RoHR3nBr+JNI7f7jnhGQpsWFIiApFj8RIl5hXpRKjR2KkVHta9HBoToxlbkUjqmQKYTEmVn7dRKE/p7we015eJ2Web23EzLVq5dku/99mvL3WfaZYX9yJp3jw5Jc/ck4W10rfveFEKb4XvE/ccd5/N0ilyMrrzej32DIU1xhxzqsZuPI9Z6vZs78fwX//PCG9F9cKjDEnoSe7vF712bfnTCUmvvinRyFXPK8nxbuaEFtaa0JmqUORmFfZgJeWH8NV77la/zzhzhLbksppZabg9SdK8fv+Aun5LH8uyd2JlYquPw4U4nyZUsVfS2xBVSMufWcznvz1EJ757TC+2XEGD3y7F19tz8G6YyUej/cHeaiJmMQzGCAhlvCLIamxyHgo3at9X71yhMu2UTL31YhQPcJD9EiODccb14726pzyUgb/9/kuSVsst4qdKK7FkKdW4nch7k05t8jn7peWHcOnW7Lx6758THppDS5+S9tK5C9fbsvB51uzcf2Hri52Ird9thPP/H4EM15dp7kPAKcsm+60/J08uBMr3QOjNM510chUvHvDGMmVcWCXGCy7f7rbc4s8ccFgzc88KXlFd8/y+iYLmFYykuZyIK/KpfZqQVWjS11TNevO/RrZfxv99Fgw6HWIkpVRiQ0PwbBuTRb3oamxuFdWaF0pKAHOD+bIUIMkYALwOgO2yEUjnK125wzojItHpkquymJ8trjoVktc1Gi2ugjPRwpqYLXZ3Xp2LD1YKC2YOOdOwoRYo9VsteO99aedFnUbTpRixDMrncqgyJHXhz5cUIPrPnTOGi1eIrm1Siv5j1xQjAkLcUpUpvzNMcK+3mjsR/WIx6fzojB/eFfJ2h5ucFzjFQ/OcNlfxxi6xUdgw8Mz8emt4x1t03D9d6fIEMelMlGYcrEpF3a0XG2VfWuxcWnu1boC2WX16PfYMpfxeOFbm/Deemchyt2iUU2IFX+BOwuuVpt8Yf3D6Xj7Oofyob+bpF3KOXDB5F5SffVIRSklzjmevHAI9j45B5/9ZYJP7VHj5RXHMFaW2VgcP/Umm+R9I8bcikmoVhwqUrXGrjtWgpOysVZnsvqduAtQT5ojsudMFV5bdUL1M7PVjkazDWarHW6cFiQuTOII8xgT2/R7r3xvK15bdQKNZhtuXrwDj8hKLjm1X/acUtaFttq5tC7xZMG0yxRI8pKFP+/Jx6M/H8QTvxxEumy98PmWbBTXmKSkmFUNZtz08Xa8tvK45IUGNK2VtJ4FotCjNk7m/nc9zv33emw6WYZpL7tfq7hDFCJVhdhmPtd/2ZuP6xVzusiCxTtw3zd7YRbuMflcKFc8e1J0XfDmJhzIq3La5o1yTPQY3JXtKJv26M8H8eu+Ajy+5BBu/XSnh6P9Qy6ct5YFuD0gIZbwG29dZ/uqxOsNTInB9P5JmClzcQS8TxhUo7GYPFxQjSd+OQiz1Y7zXnfEbiw76HD1Vc4tITILj6jNFoVjX+NWRNxdkyd+OYSnfj3sklxDjrfaR7kQGxWmHdDTKSoUqW5cijlcF6lRKjUobZxj/vCuTg8bTyVSRC4Z5ZpEyFfKZJZYrWQkvvDqymO48wvnJOgXv70Zs/+z3mlb+msZLhpmNZfStcdK8OeRYvy8J8/JsuGvlcSgY/ji9qYyBWEhOsnl6b5z+6FHYiQeklln1caNUkgRBUwd8z1bcky4s5AsLoCUi2zGmNNCSU6jxebSpnqzDXd/tQdDnlrp9vv3CRbXn/bkq8abfbU9B4uWH8OnskRwu3IqUWO04vudrpaSg3nVqnHGcqsDE8Qd+WKqSsUqlBwThtE9E6T3SmuzvKZr5ovnS+PLVyFKHKtaNWKBJsG7Z6dIpA90hGfE+SHEGoVrY1dIWIcLavD9zlzY7RxpC5fiX0ubQgGUYQEiyvwJ3iRO+W1/Aax27lU9cHduwUoFFOCcvMgXTpfWISk6FI+fr62UkxMXESIJCNdP6Km5n/IaP3vJMPzfDIeyUFkyS2x7QlSo02e9OkVi/1P+JfGy2Tl2ZFVgzn/WS/Wta41W6fzlisRRVY1m1Wt+66c7nco1/fPHA7jyva1+J8NSy7tRUNWoqpg4XtG078Vvb8Lgp1ag3mxDpM5zH+sAGDwsZeTZiUVFlqc5dNCTK/DVdu2M1Z5qlr63/jRKao3SXMvgKnz8sjcfX247g2xZaISYuVyMdf1hVx42nizD2+tOYfWRYikvhVSj1cNvV7PEitbxGz/WVsh7gzi3qltiPT+jimTKQqPF5pTt+8Hv9kkeelqIikT5b5TPCxYv5uiL33Z2VVYq1ZTjG2i6fmGGli0N6M7VX640Fa93W4YGtBYkxBJ+kxwbppo0Rolyobt54bnQ6Ri+uG0iPrnVWZusXABqoVVU/rWVJ/DltjP4ZV++5JJbUW/GouXHUG1yHrDyWDvxk+ZqqHz00vSbbvFNgqk7S2xCZCh+uXcq7pfVMX3j2lHSa7U5LFLFqqeWgMQbhcNlo7t5XeLFW0TBUHzu+eNO/M6601h52HOCMbXfrZUI4/bPd+Hv3+/HqOdWS9v8zfgbHqJH387R6NXJ4bYdqtdJChL54lV0F1cmgAFcx1K4LImXr/e58lziwkq5yN6RVYHVR9Svq527Xs8GsxWrNPaXI+qG5G66csT5oEqm3BIXD2oLbq3SIX+TJb0QLUGeLLHv3DAG49OahFjluZOimrwhdDomCY++ClEi7mJih6a6+kX27KTu+h/iJiVorcmKrafLXbxXAEe9X/E6LPFCyHxJIdxabFxSEGghWYk8LLAZmFtLrJpLpSh8+JrYaVdOJXomRuLq8T3QL965Dz5XsYrKa2syxjSVfnee45qoa5jQjxcr4pbl40ee8Oya8T0Q58WzWItnfz+MkyV1UrxfncmCZMG1WfR8EOfd6gaLVy6TohU9V6UElzeIFnz5PTBl0VpcohJL/8nhJkH5mDA/N5itiPJCRpgWzz3eZ2p6UrmCMrO0Dk/+cshFwH58ySHlYRJZMsGzxmjBlJfWOM1vi5YfwxNLDklj0Gyzu3gBqd3C4n0tKg+yFBmkM46XYH9ulbSfluJdmdjJW7wtX1tUbZQUX2oJ44wWO2x2jrxK1/vnVEkd5vxnPSa9tEZSdN340XaMed7x7HVXCkuOOJ7k97P89X9WnYDdzn3KP6ccG7/ud50jRRf9cDcKSU+YrXbUKMpVuusrudJUr2PYkVWB3o8uc/Fs6WiQEEv4TXiIHvvcaH8vHZWKn+6a7BTXc9HIVHSLj9A8Rs0tUg3l4BURF/U7s5o08NuzKvDe+tP48WSTlq7BbHVaBIgaKbnbj8Vmx9Xvb1XV5mvhjXVaKdT7Q5c4mSXWrTtxKJJjwnHOgCaLt7w8kdqUF+OlEOvJJfX2ab3x32tGQadjqtagGQM6qxzlmZpGC04W10oPcNE6YbdzvLnmpJPm32S1+ZyE7I8D6hlrt5wuQ9rCpbjji91en8vbhyngXANSHAeJggKg0WKT+kquPNjwyEwcevY8lwQwgLoQ+9XtE/HJLeNdLPDnuOmLpy8a4pIhWHyoh/uoSVYmZJNbW8SHv+q9xsQST+qLZ1HokWu9xQWlmuUmREMBIy+5I/5G+QKmqsG1nElCZIhT3ylrHifFOCtxROHR19hQT9e8X3I0bp7cy2V7387qrqxalljRUnzdh9tc+kukQmO7GmsUMV7y351ZWq8qaErxesJ999PuPJfM5iLulAFGlXtJGefrC6dL6xEXEYJ/jHP2bpFbkr68bSJumZLmcn0/WjDOKbb973MG4JNbxuOOGX1dvmdIaiwOP3serhrblFn6nAGd8ch5g6T38vn3rnNcz+ELYtIqUWCVe7uILsKi8N9gtsGiqDkjt0ra7RwNZis6Cc9ieR1pb6zwZqujfJY4NyitVadLVbykVLpy86lyRKoMlUmxTTvP68RxlRf5JC0qUoxciD333+vxxbYc/E+WC0COmuIpq7TJVf6LrTkoqDbi9T+dXaStdi6tTWoaLVisUXJQTpMQ6xijyhJMjy85hEve2SyNA39iYt0hnu3NPUbc/ZX2s/LlFU0K3qpGCzafKnOaG0xWGx78bh+mvbzORek6+z/rpeR+u3IqYLNz7JIpAJ76VVt5IEdUgB8vrsWgJ5fjdGmdk8Xy0y3Z2Jtb5fK8VPL8H0ek8mHKMJG/fdcUvz/lJUdWbtFi7K3noRr/9/kujHhmldM2d3OafJ406BiuFjIYL1p+rENbZEmIJVqMP+6b5vT+3nP7YWyvRCf3N7VyGXISvbDaxYYbNOPJxAWr2uJL/s1DnlrplF5d3L9WJhznlDdgR1YF/qkR86KGGEditNjw3O9HVF2p3GWz9Ra5dTNS4U583YSe+OK2CZg9OAWzBztKqcgfovI+UJtEu8a7uh9rlYLIXnQBdj0xW7WUT6IsqdQWWbKZPklROPmv+ZjeL0n1nJ6w2jlekLkxGi02cM6xM7sC/1l9Agtl2SovfHOTR1dVJfd+vVcqwyH/DnexzC3B7/c2jR+xv565aCgGdYnBkK6x0oNGnowrMtSA6DCDtNALD9FJmvBQFUvb1H5JiI8MxYUjUvGAYJ2/cERXt/F1aZ2iXBbkUr1gN1bBf8xpymAtKpfWygSahMgQp+v82srjyCmvVy2d0xSfpT52xMRfcncyUdFVZ7TirTUnkbZwKZYeKITRYtMUhj2hZomNjwx1qc8q56kLhzq9F2NUO8nGx9cy13FPyK+5mNxn9xOzsfyB6art8NWdOEKmFPt0S7bqPmVeKGe0Lom8Dz/dkq2apdousxI1mm34xw/7cYNGfJuWW7bdzlXnrSYh1vd7QHQlVg4tvY7hAiHZ2rT+SXjm4qHKQ9G3czTumdlPUi7dMjUNMwdpS1BRYQYnN/7P/jLByaouF5y17r+UWPc5EdwhCou5lY34dscZSSjS6ZhLwjp5eE+fx5ZhyFMrJbdWucunN4nupr28FqOfW4VdOQ7lsbs5xhNqltgbunA82ktwyzZ4ZzlUtcSqeLOoPe83nixVTa4mz0b/6srjAFwFyv25VZKw9v76TK8yAIuCYEW9CTY711Q2L96cJXynxomE7Tnl/mWk3lNiw7KDRThdWqf6udyDau2xEtzw0Xb0f3y57HO7FDesTOQp58ttZ9D3sWVO27x1YRc9eH7dWwCjxY7vdua6KBf35FRiT06V2/OIOSEazTan45VlHwuqjbjzi11YtNwhwKu5GnvL+hOlAIDbP2uKoXUnxMrHnvKe+HmPbzXNAwkSYolmIwpKyolaXCTJLbHKrKpK3C0GRZQujHLERawyxT0ARKgEvogLvLJax3HOVhvHhJBZVq9aXLzBbHWJixHnhm92nMHizVnS5CafrPypNahEbmVTWq/1OmB6/874aME4yaVNrs02yBavl412jVetU4lFMtu03U+TosPwiCJ7LuAsaEeFGSR3OoPe4VLZHFca+QLunz8dRO9Hl0lWF3mfiAuAfblVSFu4FCeLaz3WZgSA5YrERIOeXOF3W+WoZfkVkZdCEcfByB7xWPHgDESFGVQtsSLi/TBrUAouFWKQ3bnmh+h1+NucAdj9xGz85+pRTp/tfXKO03udjrksriSroJuxeOc5fXHjJEcsYGp8hIvLc1J0mNND9/0NmZruwocLqvHozwc0H7Zq415coNSaLFIm6Xu+3oORz67CXz5Vj9v1hKoQqxAS5QqBN68bjS5x4Th3ULIk5Ezu0wmLLh+Oxy9oyhY9xQuFjnil5H3x+33TsOuJ2egUHeZTxulXrxyh6ZZ8+RjPMeze5AzQmslfXanuYm+zczz8w34cyq92KisizskF1eou4GolMQBtgUmcH/xx5756vMMyquaJ/fq1o7yKS1163zTcM7OvqseLEneWGk8KYcARTrL7idmqeQ7UQhDU2J1TiYU/H8TjSxzKQR1zvrZXvLtF1TqaVeaYe52sa148+0pqTag32/DUr47SL+I1cCdIFTVwVcFFLSY2Qg8pkZPVy1tAbT+1kCZ5Fn2RJXvy0TPR1aVf7eeIgol0vnozDgqxs7VeVkyQas1zh+eI1l2y90wVAM+W2Ns/34WM46Vu95Fj58CgJ5uE0Vn/Xo93M067CGxmDxdf/hyvMzXNu4cL3McSnyqpdVvS7mpZjgtxbokWlEVltSYX5VZWeT1WHHZNVChHXOMWVDc63e/Xq9TJlocx+VIFQ478uD+PNimC3Xk6yOc7ZV9oKRo6AiTEEs3m7etHY9n90520xk9fNAS9OjmEFjFmMybcgDlDUpr9fe4e3mLAfJHGgkeJGNMrugbVacTa/md1k5vP9FfW4q4vd2PIUysx57/OiYDE58GhfIfGNEVwM6xrRl1dALhSVsIDgNNDUbnQUUtYI99HvH79kqNVF76Pnz8YswcnSzFRgPu4W6BJqIwJN2BIV0cW3cQoZyuAuGgSS6a4W6ApEwkpUcsQLE7gaprnjzY6yimtPlrsZG3XoqVq1Cl55/oxmp95Ks8kWjvUyiaJD864yBDJhVl5/dXoFB3mIuwmKLwh7Jy7XA+tmFiRwV1jEWrQ4b5z+wvtcz2HWq3Xv3+/32Ub4LBCfLNDu5SF6DJeVG2ExWZHZmmd1M/KMd2c0g1qiZ0MijF0zoDOUvka8R5ffMt4vCOUyWGM4doJPREdZsCI7nFeJ0j7eME4XD6mGzrLvB6iwgyqXhBK/rhvGp67pMk6eMWY7k7J4eT0S472aMFzV49bRMsooJa52mixIa+yAT/szsPdX+1pSmbDmhZsWqNDvjiTL7a1Eu/kCTWNfXWTlKMcqnbOEaLXeRWX2j8lBg+fN8grha27fbwJXeHcMcbV5kQ1jxt3iMoCHWOwyMbQ7pxKLFrhqpjIrXBcZ7nSUG3sldQa8fbak7DbuaplKtSgQ2mtCb0fXebymZyfdruW64pWmZ4idE11Yb3VY6jJ3mrClNJ1HnBc57Z01pRf43qTzWM8Z73ZimNFNcgsrVMNlwCAvWe0hUI1lIr6l1ccwyaFVdLTM1b+Oz7fmiM932s81OU7Uqies0JEnlhTnFvEZ2tuZYOThx7gsKR7QgwZKahq9LpOrPx7PbHhRCnSFi6V4oMXLXfOM3AovxrXf7hN9fkkYrVpj0Nvk7QGIiTEEs0mPESPIamxktvwrVPTcOvU3tLneh3D85cMxZK7p3p1vrevbyqzc5VCeAOcE2ZoUaaiEW1Q0fwprcf1MmFTOfnPe30DCqoakVvRiOWHHAsx8UEtYrVxHC+qxU+K+pfKhbQyIZY7Cx3g7BK45O4pTsKDcqFzxRjXaybfXxSWtGSmCb0T8dGC8fjg5nGYPTgFT1wwGLdP762+s4CYJKtLbLiTm6Qc0S1MjAnUqiuZPrAzfvzrFLffpxZr2uQ+anGpHypqyF9ZcRxvrW2KW1p/ohTVDRYXDaY31lp/+eWeqXhknqvlWi25hRzxN3eLd9Xqiw+v+IgQybreEgojAACHS3IuUchQ1rEUWf6Ao/xSckwYHj9/MN6RjemWZtnBQqwThJeiGiOe/u0wzv33euQIiVO0ksD5g2iJ7aeScV0NT4nqfrt3GtZ5WapsRPd4/OfqUT6XRwKAYd3icPPkNOm9TsfQLaFJiO0uex2q13lc+MrjU8VSPs2hpMYkKRLDQ5q+X8eYNHeqCUBHCmvw9Y6mDLB5VY3Yerocn2zO0swM/s2OMzheVOtV5lGRJy8c4hQuo5xz/fRObxbeWGJF1PbsolJbGnDMv+7QM9dkWgcVZUbkmGx2PPf7EXy0MVNVsXDv13vx2qoTOF5ci7J613k9NS5Cs0yWnEMFNS5J/iJVhl+4DpidCIyP5ZjXyTuBQ4yJlZd8WnPUVWBV4511p7E7pxLpAzs7KZL8YWyvBI/7yIVFo9XmNG7Uco5sPFmGea9vxLn/Xo87Pm+KYZXfM8oSQf6g7Huzh4SMcqv951tz8NbaU7j9s104WeL+Xvhyq3ZGaCXic1PMwH24oAa3fuJc4ka5xlND3OdkcZ1POTi8fTaJFTa+3n4GO7Mr8OU25zqvV7+/FVtOl+OIG3dzudJA6VnYgWVYEmKJliM8RI+Dz8zFEzI3OZGbJqd5vfC7cESq5Or24uXDXT4Xa5X6ipqSSulSty2zSUunjC84VlSLtzUSN4hYbBzP/n5Yev/z3nx8tDHTKYvnhN6JGJgS43ScPH4QcMSQ7n96rpS5Ut5Od2nZsxddgKkqrolqcUWeMoSO6hGPjxaMw+3T+3hMBS8Kxnodwz/nDUKfpCinjK1AU13OQ0ISEaXGUyQqzOCUOVqNMyoZL0VBdc+ZKlzyzmanhZbcRUge57dg8Q7c+eUuF63w0oOF2CFLDuYOd3Vw1RjVI1617JBHS6xwveTCh4gohHeOCcMVY7sj66XzNWMhtXjj2lG4b7SrBc5m5+iRGInNsrhmcWi4y5QLCCV3ZvRBH5XkQvOGdvGpfVo8tqQpBrrWaMXSA44Hfokg9HvrhucNorvfV7dPxMtXDMeOx2ZJny1/YDo+vHmc0/7NSdzR2ogKvNhwA366q0lpZNAzj/WbxUUVoB1z6w7loqms3iQt6MIMeqfyH7UmbevC0cIaJ8tuTaMFC38+gGd/PyKNX/G7/i6bY897fQMOC94y8ZEhuGVKmvTZqr+51t+dOyQFw7o5Z36+elyTsrAl8hz4ii/KDDWLrpa3i1z5pVZ9gDFXK5q7+6Ws1ozFm7PwwtKj+FwhYBgtNqmfqhosOOeVDJfjQw06r0qC/b6/AI/+fNBpW5SO4989GrGga1MDI/RAUijww3COuZ08nhbxeju+LHDUpJaXYPO1dFCoXid5IfmLr0khjRabU1+plTuUIxcQ5ffMD7vUvWCuHNvdbZuuHd+UmKzebMUPu3Ilt3BPimKlq+0ba07iz6PF2HiyTOMIB+5KGGohemWoebH5wnN/HMEtCiHYHVrPpk+FeGUR8Tmy5XS5S8k/oKndd3+1x2n7x5uy8NrK4/h1Xz4+2JApbVeuvbzxCglUvEsFSxBeEqOSwMAffr5rKtYeK3Zxd42PDEFnDVe3K8Z0d7GAymlUscS6iyOb/8ZGl22eygVYbHYnbeeBvGpJeBO5d2Y/PCMTdNXquIqufqI2Ui5E+pPoQr6YlrvqtRSiVYAxhmHd4rDWjXVJfGCM6O5YFHaLj3Cy7ESF6j3Ga6klMJArIAA4JYlwl/DgeFGtaqyWmnuaSI/ECORWNKJnYiRunpzmlGhKjTvP6SPFjgNAiHC9Qg066WHu6UHyypUj8OnmbFVt+v/N6AOTzY7rhHqU/jyULhnVDRlVrrHf4qnkWcVfv2YUgObVuXv7+tHoJ+sjf1G6UInWUvE+M7ZwYfdOUaFIiQ3HNeOda38O7hqLwYIrvUhL1wFsLj/8dbJTMq1l909H55gwdI4JwwXDu2LpwULYuef6gXJ3Qb+EWJfz2dBgarLE2lUssd7w6srjUqzpHiG+OiJEjwazDV0U86zo2bD3yTlgjEnKrQEpMegaF47CaiNSYsNgtXFV1+tXrhyJohoTNpwolWJ4W4N/zhvkd0Z7MavqgJRolzhBrXtzYu8mya53UpQUOylis3OfXCblAmi2otzLpe801dgsqTWqWs9tdq4aa6rGykPOruqReuCKBCuuiOL4rNBx10X4+PjsFmJHlU3n4t2jVSFBixCDzifruRruKhGoYbTYnVy/rxzTzeV3yJFnWZejpnD+y9TeeOqiIRjXKwELFcoDEbknyuNLDqHBbENqfAQ+25KNPYr7SslDP6iHlpwNPPP7EVjtHLdN6w3GmKSQ3e/G40GJ2WrH838c8WrfjivCkiWWCFCGpMbi3nP7u2w36HROMWEid6X3xTMXu1qAAWBMz3gA6nEtxTVG3DPT+/IEnrSAVrtds0xQiJ7h2PPzMGNAZ7x13Wg8fN5A/Pn3c7D0/umaMQn9Uxya0/NkVitRIH3n+jG4c4Z3Vmm5UCiut1pS+yZqmH2pkzu9f2e8MysSswc7Z+j0ZInVsiD8eVS73qi7+DcOdVdFNWtvbLgBq/42A3cI3gAWm92r2sZXjOmO8WmJ0nsxjlL5K7+7YxJ+vUfd7f7qcT2wTHDTVRITHoJH5w92m2jJF8R77PZpvV3K70SHGZAmxHE2Z02mjCVtLRq8sOJoobboVApDvh7fnoxPS8TDsjItQ1JjpYWrOOasNrtPMXzxkb7XgVYOx1qjVVI+hIfoJS+KF5Ye9amkFdBk3RAT4kgu7xxOJW52ZFdAr2PSPLjpnzOlDOHifPzZXyZgx+OzNb0kxM2tWaLirvS+WCCzFPvDhzePw8cLmrwEhqbGanoJ9EuOlhRuynJ4naJCYRJK4ADAtH5JHhNUyS1q8lwGnHOppiugncfCaud4fql3i3Gl22sUc53Xwz1MOx8MsmPj2KbjuoWqWwyLa3yzxIbpdR49jETmDe2CQV1iXLYrKxFoId6vSkvsONkzSA07dzwrvbmfRS+cayf0xEUjU1X3eUBWn160Fv60O8+r2uBtjZZ7fXvxwtKj0vgoqTUhKlTvU73aqkbvy6B1YEMsCbFExyJEz5zqnIr8c94gTSvwRwvGayZPqW60oGuceoITfzBbuWbW3UFdYiUhY2hqHO6Z2Q/9kqOREBWKtKQoPKtSluG68T2x/6m5GCh7oIka9AtGdMWj53vnyioXWEWhK1lD6+oPeuHh7C6uU62MS1QIQ4pCKLhmfA+3FnJRSTBEYfVyhzt3NLudu8RSAeoZ+5bcMxUDUmKkbIbexs4qf4+4mFEqLyb26YSRPeK9Omdr8uffz8HiW8bhiQuHOAmbv94zFWv+cY703p/4TAD46a7JzW6jN0SHGXxK4KOMJ//nvEEu+wTaYqelEO9Ri82OrhqCeh+VedRTEjYRuSCozAB65xe7peR5G0+W4Ytt3se1aSF6d4hzLgd38oYAnJVb3RMiMVzwDhHbGm7Qu3Xznz/MoVzsk+RdqExbIy564yNDMUv225feP92tR4/YP8qSd9dN6AmrnUvz6X3n9sNzl7qP8zwuE1RLnWp4O98DLy3Xzlrtb1y7Wp1YT5bYOYlAD9nt3y20ZRQUIXqdx5ARETvnquUGvbXIi/sZLTanZ1Sqh7WOnXP0fWwZ7vtmr0fBRq4wVXpORYTo8cl5keikYnD4ea96hnktRnaP08y90JL4muisLRBr/JbUGnHu4BSvSlCK3P3lHs87CfhaszyQICGW6FDodcwlyYyc6f2TcNOkXtj5+Gxpm0HPXLTOTZO83W9XLTWsdrumwKSMqVJy06ReLtt0OuaS8bI5dfOiwwwYkBKDly4fLrmEtgQGWUysFoO7umqWAeD2aX3w2PmDcOKF+chedAEGdYlFiJvYIbG/fOk3tdIoIhxAocIKMH9YF9WYJ9HqIGZrFhUCf5s9AP+9ZqS0X/aiC3D42fOk66G0yInvfXkotSU9EiNx7iDXxFAje8Q7KZHkQs2MAe4TwogZtq8d3wNjezksAk9fpO490VL4oqiJDNXjX5cNk1yygaYkZHK8yQbcETXb4m+12DgW3zIeExRWm1unpuHDBeNUjvNuPpJ7GKi5o+Z7kfHYF0RL2cgeYthCpNd1U8Vx68lN+JrxPXHkufMkz4T2xlOMuhxRGXr/LFePJ1HwUZaPEpV3okU1xKBzscQ/ONv5fPKyV6Uy66W3ZVusdu53bHmUDi6DMVzjsfH+IDuuSOYuY3d4RNPzXHzmdFfJS6BkxYPOXjNiaTlvsHP1Z4PX7sTCbbvsYKHkkdAvOdqpjBsA9FfEyIphNX8cKPToYipPsNk7yTnZoKNe+f+3d9bxURz9H//MSVyIkABBAiS4Q3EJDqUtVUrdXWhpn5a6UKFuT+WhLfWW+q8CRYsXKO4OwT0Qt7ub3x+7sze7t7u3l1ySS5j368WLy97e3tzOjnw9OJPgfUMy0SHNusK6omg96O4fmomxXSQLc1Wu02YC+tnictz25WoczClGg7hwXSWiEasNytXpEYyyjzWFEGIFtYquTRNMrT9f3dILky/uoIrtcNpsPrE2rERNSbnbb/kYhhXLX7nbg8JSlypxU3850ZJ2otdi1apV0QX957v6Yt5EyYp2Vc+mPqVUKoPdghBr5GYd5rDh9oEtVW65Tq6mrzZbJuuvuABi8cyE2FKXB+OnrlAda54crZushG3i2GaCZeSeMCwTo9qrM0xHhzuU+6HdvESFOTB5bHtMv7235d8QihBCcHeW5I7P3PaNeP2KzsieMgZTLuukHOMFRn/Ehjuw5slhuoIloL+BT5GFlmZJ0tjTUxQxXB6KCKcdL3PJ5PRcniMtKE9GyMlx9LxGQhXmyWIjkrfLtX3U98pOSKXc1fk9rVk9w4pilGDtrkEZ+PXuvuifmYx6UWFY9J8sv9e6XQ7TsKIEsbp+VBVX9/KOoV/v7oeHR3gTWJnJEUwZqreePD+2PYa0ScGg1upQD2ZxYy7CYXYbEjVCrFbw5eET2dz5tTU3cbfHU2FLUbTddxIPN7gnI5OANzK5BFByjdkx8d61IzrcgTGdGuLdq/xnW9d62ZzMLw3IEqvnBWL5WZO/5v/WHwEAXNCpIeY+OBCEEEzh5rdrNfNhIIqkxGhvP4/UJOnj461fvKSD5WvqERVur5YxphUmr+7ZVNnz5ZeU+1XSWuGRUa3xvWbNN8qiDkgxsHNl1+uqXEvM2hDqCCFWEPKM7dIIHdLi8OvdffHa5Z38f0CD0058Jqh0uYaty0MtW/ScFoTHMpcHs7ccV1lLB7eRNgL+4lGsYrVIvZbuzRICiuerCGb1xgJxCeKzOGpdlFl/Gbk86sE0jdrssYC+S3CCQZwf+w2RYVL7eM243maQtVwvFuq6Pulokmiu2KgNsG2fVSsDjz+FzEVcrNXN/ZsjKSbcMBPquB5NfI6xUIHCUjd6t0hUFDc90xNxM1cGDPAtAA/oPwdGQjTP3VkZWPvU8Cofb8FkwtBM3J3VUrGYx2ji7+yaefSlSzr6LQ3Gw7vuss11MLmiu2//A5LiqWtTb6b0epH+lXdX9WyK7CljgpaosKrInjIGL13iFUraNlTnkjAzJEfIgkapy4M+LdRpejNSYjHtxvN8LFBsXctTMknbfMaIPyVPdICeT2Uuj99s2YbfZfP9oFUD4Z+dKV7N8CDcBrySIa0RpwtKEW63WVqDtfLq7pMFunPHx9f3wGc3qstUeaiUEV4rOEVbjInVti/M4bWM8hmn7TaClVyG9UDgLfDaeY7f/1zTy1hxaIXMlNigessZof0Oh50ooT3lborHz1crFawqJBjX9GqKu7My0Esz1sxYvNObg6V+bLjhs5uREmPZ64jPvs6eLyvZv0MVIcQKQp53xnfFn/cNQNemCRWyBNhtRNmYMZhlBoD1a1qIqp8n147zUIr+GckY0iYFN/ZNx+wHBqIbt5GqDKGYDp2v62hEIO0Oc9jQWROfBkixmuzvQIRYQErKNLxdqqVNTIxBnB/7DSyei1/49Czp7H5URMCrLVQm2zUhBMkGdYUBtYuyEttoMA6fvsDXNZkpkPJKyuGw2RShuVuzBJ9avXoZrPXcT60kpLLZSMi6ihsRHe7AI6PaKB4RkU71GOjQKF6xdjvtBFf3aor3r+5m+fqBZLStCEaxudrjlQnHqC3MeXAg4iOdeNrEXZ/dh9JyN766xTdfAeArcDIL258bJSVEhNOueDtozzGib0ayqjSVFm0t1UDLnkwYmqm4XQaaiZinZRQwLhUAIYiVf5KHSvfNTPnGkmFp9xWN4iN1S+w4bASD26SovLfYFMcyaLO51WomcO16w7eXf89pJ4oyQ8sZvZqEHLzFXetlZUXI1yZ0NKJ+bLhfS2yj+Ah8eI3xXMS8hczQzk8eSlVrk/a5fnNcZ5XXgz96Njc2YhglF93G1X3l87q8fkVnJRxsSJsUzJs4SKU8mmxSj7hBfIQSFjW4dX20rB+tW52htlD3Z3PBOQ8hBLf0V1tdGnMWMKubb3/xUbw2+6HhrfH1rb0w7cbzYLcRVWKmugizsljRTnb0ExvMuEXOAMxbMTNSYhTX4AbxkZg4vBUeHOZdSK7vY6z1ZdaDyzXJe/TQLsrnd2yABVzZoO7NEnBh50Z41Y9nALsdZrfFSgH7UMaKAsOM1U8OV9xvtfBXZAKUkTJET7hkro5lLo8qNr7U5bakWNBz4XJWMJlVbSOMc+mf/cBAXNi5ESKddozr0Rjf3ha4GzxTSvEsf2yIzpkVg1ci8TWIfYTYEK7dGyxapcZiwzMjMCBTbcnrl5GE2wZIa+FFnRshJtyBK3o0hsNuw/1DM5XszIworXAi3ztWdifCafcR1vzd3+SYMNO4cq2gZtVKxEKICPEqpJxcnu1pbT2Y2LRim/XOMVRZ28LsNtOM9B9d2x0fXdsdjRO8e4x3r+qK967qqrs+smN8yR6mGDyZL8UTs5rOVj07+HAcQC248vOk3WarsFKHj4nVzsnaa7KQID5p4ZsWcnL8cEcf+frm51F4f5c2/AgAerdIwryJvvWfefgs2vcPzUT9mHBVyJI2XKVhfCTuHZKJv7lEhww9rzN++/jmuM6q927t77/KBL+HTI0L99mj8EnrUkxcj502m3I/HXYbJg5vHVBYT6hR92dzQZ1klCYGwx/aSba+rGFrlhRluUyIv7CcLlxMIG/pDYT7h2bio2utWzcYH1zTDdNu9HWVrS6YgO8vrnfD0yPw453WMtMyi5tWOGLZLts1jMP9QzMxgUskoudSquWlSzv6XdD4jdi9gzPw/tXdVJrQcIcd713VFc2S1IkWmiVF4c5BXq3qx9f3wNA2KaYJOb67rTe2Pj/Sb7tDFbaJDYbL15RLO6o2enzXs+vrPWFNEiXrR4v66v7gtdPHckuUtpaUe0zHPbteSlw43hnfRfVedZUGqmn4jS/bQBFC8OrlnVXlonjeHNdZKbeh3fQ57DbFQtCjWQIW/SfLMNPzT5o5IiHKiUu7pvltM7PGeLgdo9aCEoqeLNXFN7f2xhNjJOts44QobH5uJDJSpL6dOLyVkp2ZwW/GL+zcyKecjp7rsD+hKDkm3HSdiNO4cJ+Sa8T6i7kf10NSThIQDJE9MOrZvYv2kETgfv/Lgy5p4d4kdmEOm7puu7xWMOtjvSgnRnVQ7096N5dCGfS8PZiSlk8uyB7f8XItatYPDeIiLLmNmikUeSWcw0YCDk9iMdhaT6hnOau/dsx9dG13rHx8qCq5G5+8Uc/FvH9GsmK9PFtkXi7G7aHKuqD32x02goyUWHx3W2+fmFRGYakLX97cE69e1gkTh7cCIUSlUNH+JnYbtbk5bh/YAr/f28+nZjg/J12qUaT7C1V76ZKOqu932GyKeob92kmj26BvS8mQ4jLweokLk+ZlNv6cNoIxnRqif2ay6feHMufGaiyoc7w9vgtev6Kz/xM5buvodQ1JjA7HzPsH4Ne7+6FLkwTcaKEOn17MHE86J7hW1JVw4vBWGNVBP84s3UQwPr9jQ91sstWFW540/YULxkc5Lbtvs0nfbiOIDrMrmRQvkTezenX09Cxn2r5w2m3ISIlF9pQxuH9Ihs/5z1zYTuXC1iEtzvLGd9F/BmPSaG/sTN+MZHx643mmm7Ywh63Gk8NUhrsGtcSDw1ph/HlNMaRNiqo2YKDYbcSwJE5StLR54zcpj45qgxn398f02yWh55e7+qrK9/CCdX6JS2WJNevTH+7og4+u7YZwhx1ju6iFJ6sufbWdirjAX9qtsSJsZqb4jk/WtW0axqJZUrRhH2jzB0SHO/CcLAA77QR3GbgHsnHmqcK6recSTKGUVi8S713V1ScZYIQ8nv68z2vB9edOzKoLGE2JRsqwcT2aYPWT3qoD/DxrI1CEhjYNY/HkmLZY8dhQxDsQnFThHo8SSxrusKsssWw9u6y79NxrqwkAXsUXS2gWx3kH6LkYs+f3oRGtsPvF0UiOle5ZSmwEFjychfVPD1edv/TRwWjECZUeSlXKQF5Q5QUmh51YTijJbuM9gzOw7+XzfeLFb+zXHFfKSmStYBzhtPuszbyH1XcawXLXi6NVLu6n5VIzb47rrLtme6j3ntkIcMegFrgrqyV6t1DPI31aJqGlvI+4QBPPX1DqwsBW9THuPK+mg3+WtUo5dj94hffzY9vjsdFtkJkai4EawdBs++gvTpwpDohJzmin3aaErGmzUDPaJdlBiPcqgcb1hiJCiBXUSiKcdpyXbu6G2b6RWhPWL82Jj67tDkDSIrZrFIfE6DDYbQTPamq0dtJxfeM3RnqZA1s38H6fVpscDGZOGIC1Tw33f2INwGqsBdM1lmkT7TaCTc+OVBISTLmsE7Y+P1J38dXbAF3UuRGu7d0UI9v7CvnhGoH621t74aZ+zdGDe7bqcjxrMIgMs2PCsEyEOWyYduN5eHC49TghBhtZDjtRuZvz+88k2XsiNV5tiWjfKF6JQ6sXFaaq2ck/Dw47waBW9RHusOH6Pumm7WkYH6mrTJo0uo0qG2xdJpDnPtJpV/qAjUt+fE6UnwkWCqCnCJh5/wBsnzwKG58d4fOew+bNjOz26GduBbwKDquJgKwk6TrXWfyfwUpt6ASNgMaEsw5p8UrGf3/uxKx2qJGwG+awqQQyhtNuQ3JMOC6Wy56kxIYr3/Xh0Chc0KkR5jw4ECPbN4DDbpNcb4OozGDus2EOtTvxa5d3QkZKDJ67qAM2PjtCd+13cOWrAKiS+7BhdgnnaeDNM0DgsNvw8fU98PaVXRAf5UR0uMOnrFHjhCjcNdgr3Hk8XiVBi+Ro3McpFh0aS6yWpgbJBn++qy9u6NMMDeMiTEI6pONWMrir26F+Zpx2dYkeNrecl56IiSNaq5ITAZLXlmKZJASPjW6LR0e10S2VlRwTjt0vjlYykLNrX8glEdTD93klPsev75OutJvthZhyRatYa5XqXaesKsknX9wBWa3ro6uBV8KEYZn4+PoeSkUMLZGym3ldytVR+3+B4JzFX+bIn+7sq9LcAlIygV/u7muaFfatKzvrJmFyU4pBrerraq+yWtdHlyb1FJcnq9rNQIgKc4Rsspj2jeIx58GBuDvLV0taUZQ4WyJpi9lEb7cRQ8ul3gbK5fHghYs74n/X+bpbX6eJoWVuk40TolTuY4Kqha3vDpsNX9/SS0lywmueWRzdN7f0NtVcs/6yEbU7JIEUK7TjhdHoIsdmvTO+C36+q6/ldt45qGWdWPitEIiAt/HZEUrpGpZNnP84q0V6Vk4Wo5chuF2jOEQ47bpCgM1G4LAR3DagudJf027sgW9u7YU3x3XG1Osk5STbRPubfj+/6Tz8NWEAdkwebfk3nqs0TYpSFAhmZdnYfM1v6r+5tZfPeWwcG7kdhzvseJErA8NgFkS2DlAKXCG7ELMh2Sq1CnJPEAJQqswl4Q51duIR7Rtg3sRBCHPYDJXX7HxWKshpJ0odZham9NaVXfCdHGvu0YQuNYyPxMUad/o5Dw6E3ebN98F7irk9VLlPD41orVIaqeJjdazA2hjPBnERWPyfwejWNAHPje1g7gouf49ZmaX3ruqK16/orBLcTMrCAwBevrQjvrqlp7Jv087BHkq58CPvcbt8Ya13j8NuUwS5uEgntj0/yjT5k41I+46vb+mFDNmS6y2fp38/RrRvgO2TRykW3/oaN/A/7uuv9zFkTxlj2I7WDWLx+U09Db3ZnHabnLxSv00RshDL3termlDbqL0+bIJzHqNslIzIMLuPRtDBuVxo+fbWXvhpzSFc0rUxdh0v8HmfUuCLmyUXlw8X7lG9x8o7fHtbb6UQ/LlGsDcQLH7IykQ79brucHmobryiXgkdRlyEE2n1IpX6eLzAytaBc0VoCQUcNoL4KCdaN4jFjuP5qveYJbZpUhSu7d0M/1u8V9dTkC3wj5/fVjX+9eLRxnZJq9XlBaqSQJ57/ly+ZvSmZ0eAv+sdG0tWiW7N6inHWqXGoG9L85gsO5GUWCyeE4Bu+ET/jGRc17sZ7h7cEo+d7zaMDctqbS0zqkCNNiaWxyVLXuFOGz66tjuO5hajX0YykwEVWMZXI4ttuNMG6HRbmJ1twKW/KYDnLuqASaPbYvXypcaNDoY7MaXKvBLmsAVswWdWx4Gt6qN1aiweGNYKT/+2GYBawGKx+EMsZO5tlRqLPS+dr/zdIc3rCeamVFn3tBnW+XAMu+Z37HhhFBx2Gy7u0kgpg3X34JZoajHHB0ukZ7Zm+7N46hEb4VQlKdOW3ZPciaXXvOKT3Xe9EBXlOaLU1HK8bNIQ5Vntn5mML27uiS+XZ6OT7DHEBEKt5x8grUV3DmqJDmnxGKQplxTusGPm/QMUN/WPr++B7FOFhu3QQhVrveWPIEL+mUzQ17PE1zaEECuotQRbuOibkYy+shvGvUMykFNYhumrDirvG8XqAd6Nm162RkHFYLFTfJZHI0aYJPryV9rj6l5N8drsHQDUVgSvplUIsVWPOru11zVMUi79tv6Iyvpu1qN2G1G02fyYNRJoKlp3ua5T2efeRoiPt8zFXdLQq3kSGskufAAw50Hf7J5arGZQddptmHxxh8AaKrAMIQTnpSdgVfYZn/eYRTHcYVMlNooOc6Cg1IU+LZKwfO9ppMquwmyubZ4cjX3c5j3CaQfVGeHseWRCCov71GZpVUFpcIRYSK6sv647jG5NEwJODsbmtfhIJ2bLrrDsGO9m2jghCmufGu7jtm2F7s0SMf323hg/dYXKKqsVQPmma4UY1idvjOuiCLH+Qi94mMt1VYeka4VvD6XemFhuqmACu54C0yy+lCeNm6vY34+Nbqs6NufBgbr5OACpn7UCLKMdJ/gON8jQX1lu6peOz5ZlAwB6NpD6h90XPUt8baP2/wKBoAqICnNgymXq8in8YqNdw0RsVfAZ1aEBPrq2G+4Y6D/9vBllftJK825EfD9640ZE31Y1bGh5XQW9Y61vRjJe0ZQyYoKnP0GLd/13aX30ZKrC9b8uUFHhnk/IpoUQohJgrWKW3VtQvfx4p777vZtZYjWxgyyr+ztXdcHCh7MUl1tm3WJ5KhhJ0WE+7rSAOkwAgLkmixEMaUqek67q2QS7XxytKhNj/RK+Y4GtL1rleGJ0WIUzaLNs33wMaH1NOSM+a66REFPRhD/sY1Zj0iuKVvimVKpjDQAXdvJaei/sLLny6nmJeS2xlW9Pq9TYak/4xzLxGwnIjEdGtkH2lDHInjIGDWPUY6guuBMLIVZQ6+FLn1QlRsHygH5WXEHlIIRgVIeGAZc0+fXuvriiuzeFvZk7Mfsevddsk2FVYyuoPNr9qdFm7q6slrhjYAtcE0CSJT1tPI+2PM+5jrbWpFXYpryidYMZV/Vsih5ycpRoM2ubICRg40ubxfXTG3vg1cs7ISU2AuncWj1attbWi3Iq/Sx93q5Y03pyWaoVS6wiKFVvBmqWZClYnN9RErAqWo5PDxY37PZQzH5gIN6/upvuHMpcX4MtxDCvKT5pkT/G9WiMzJRYpUSSFbRCtodSpCdHI3vKGIzu6E3IN7ZLGna9OFp3j9iyfgwGZPoqSEOBZy5sh/eu6mp6TkZKLNY8OQzX9m6m+37L+sY5PZh1vrC09ofShMzKQAgZBeAdAHYAn1BKp9RwkwS1gE3PjqhSd8/f7umHM0VlaJYUrXIrYfEQw9ulIjbCoRsPIagZujZNQPtG8ShxefDHhiN+hVgj9Ny9BFWD9g6PbN8AMzYeRbuG+uMqOtyBx85vq/ueEUbuxAAw98GBPok3eCaPbY+W9a1vzOoCFZ1XrdaM9sfLl3bE/607jNX7zwghNsSYcX9/nzANprzQPjcpsRG69bsfGNYK1/ZphpTYCHx9ay+0eWqW8t6AzPq4oU8z3DM4A7d9uRobDuUq1re+LZPxw+pDShI+U4LlTlwFa8D485rgos6NgvpsM+8Jj4eidYNYw3vEBBuzO5NWLxLDLMTm8vTPTMb023vjvPRELFl80O/5fBKjVy/vjB9WH7L0PVpLrNkabTSPhTls+OoW38RjocBN/aRkXfd9t870vKQY4zVr+u19sOVIrq5VfeLw1hj3v+Vo3aD2r2khsTIQQuwA3gcwHMAhAKsIIb9TSrfWbMsEoY6/DMWVxch1qG9GMlY+PlRYYEOUMIcN489rUikhlm3C3UKIrTbYfvOizo0wsn2q35qTgVBu4lae6Scp2XUBxIXVFSqa9MOjZBWvfBsKy6QkeTHhIs9AKNG+kW8JulsHtMC783f5LbHDsNkIUmKl9VObR8Jpt+G5sVJsM1vjWe3ui7umoV9GsqnSSaEK5+6Pru3uEy8ZCISQoCtnmBDrb81ifcTWxv4ZyUotVsaySUMq1IbeXPmgQJl2Yw9L4Qa+ltgKf2VI88MdfQzrJvujfmy4YQK7ns0TTbMg1yZCQogF0BPAbkrpXgAghEwHMBaAEGIFIYsQYEMbpm32FxMLANf1boZFO0+qjr1xRSe8M3+3qm6poPoIpgAL+HcnFqipaFweu80VjavjYe6JXQ0yygtCh4nDWyn1gCvCm+M661rN2jWKw9Ldp1TCsSUBNpjoBOnyyauMaJEcjb0BZJytLGzNMwj/V2Bza6ksxH6tUwqpJtDLOK6HNpbXU0fn9p7NE/2fdI5DaAhYGQghlwMYRSm9Vf77OgC9KKX3as67HcDt8p+tAeyo1oYGQCTQJBLIq+l2CLyUAPERQG5Nt0PgRfRJaCH6I/QQfRJ6iD4JLYz6ww7Y7YCDAhVzxwFgA2zlgMsD1P4AwmpEjJHQw6xPckK7r04BAKV0lPaNULHEWoJSOhXA1JpuhxUIIauLKO1R0+0QeCGErC4UfRJSiD4JLUR/hB6iT0IP0SehheiP0EP0SehRF/skVLITHwbAR/43lo8JBAKBQCAQCAQCgUCgECpC7CoAmYSQ5oSQMADjAfxew20SCAQCgUAgEAgEAkGIERLuxJRSFyHkXgCzIZXYmUYp3VLDzaostcLt+RxD9EnoIfoktBD9EXqIPgk9RJ+EFqI/Qg/RJ6FHneuTkEjsJBAIBAKBQCAQCAQCgRVCxZ1YIBAIBAKBQCAQCAQCvwghViAQCAQCgUAgEAgEtQYhxFYBhJBRhJAdhJDdhJBJNd2ecwFCSBNCyAJCyFZCyBZCyAT5+LOEkMOEkPXyv/O5zzwm99EOQsjImmt93YUQkk0I2STf+9XysURCyFxCyC75/wT5OCGEvCv3yUZCSLeabX3dgxDSmhsL6wkheYSQB8Q4qV4IIdMIIScIIZu5YwGPC0LIDfL5uwghN9TEb6kLGPTHa4SQ7fI9/5UQUk8+nk4IKebGykfcZ7rL891uuc9IDfycOoFBnwQ8T4n9WPAw6JPvuf7IJoSsl4+LcVLFmOx7z521hFIq/gXxH6TEVHsAtAAQBmADgHY13a66/g9AQwDd5NexAHYCaAfgWQAP65zfTu6bcADN5T6z1/TvqGv/AGQDSNYcexXAJPn1JACvyK/PB/AXAAKgN4CVNd3+uvxPnquOAWgmxkm13/uBALoB2MwdC2hcAEgEsFf+P0F+nVDTv602/jPojxEAHPLrV7j+SOfP01znX7mPiNxno2v6t9XWfwZ9EtA8JfZjVd8nmvffAPC0/FqMk6rvD6N97zmzlghLbPDpCWA3pXQvpbQMwHQAY2u4TXUeSulRSula+XU+gG0A0kw+MhbAdEppKaV0H4DdkPpOUPWMBfCF/PoLABdzx7+kEisA1COENKyB9p0rDAWwh1K63+QcMU6qAErpYgA5msOBjouRAOZSSnMopWcAzAUwqsobXwfR6w9K6RxKqUv+cwWk+vWGyH0SRyldQaWd4Zfw9qEgQAzGiBFG85TYjwURsz6RranjAHxndg0xToKHyb73nFlLhBAbfNIAHOT+PgRzYUoQZAgh6QC6AlgpH7pXdp2YxtwqIPqpuqAA5hBC1hBCbpePpVJKj8qvjwFIlV+LPqlexkO94RDjpGYJdFyIvqk+boZkwWA0J4SsI4QsIoQMkI+lQeoDhuiPqiGQeUqMkepjAIDjlNJd3DExTqoJzb73nFlLhBArqFMQQmIA/AzgAUppHoAPAbQE0AXAUUjuLoLqoz+ltBuA0QDuIYQM5N+UNbGizlc1QwgJA3ARgB/lQ2KchBBiXIQOhJAnALgAfCMfOgqgKaW0K4CJAL4lhMTVVPvOMcQ8FbpcBbVSVIyTakJn36tQ19cSIcQGn8MAmnB/N5aPCaoYQogT0kD+hlL6CwBQSo9TSt2UUg+Aj+F1hRT9VA1QSg/L/58A8Cuk+3+cuQnL/5+QTxd9Un2MBrCWUnocEOMkRAh0XIi+qWIIITcCuADANfJmELLL6mn59RpIMZetIN173uVY9EeQqcA8JcZINUAIcQC4FMD37JgYJ9WD3r4X59BaIoTY4LMKQCYhpLls7RgP4PcablOdR47H+BTANkrpm9xxPqbyEgAsq97vAMYTQsIJIc0BZEJKNiAIEoSQaEJILHsNKVHKZkj3nmW/uwHAb/Lr3wFcL2fQ6w0gl3OJEQQXldZcjJOQINBxMRvACEJIguxWOUI+JggChJBRAB4BcBGltIg7Xp8QYpdft4A0JvbKfZJHCOktr0fXw9uHgiBQgXlK7Meqh2EAtlNKFTdhMU6qHqN9L86htcRR0w2oa1BKXYSQeyE9AHYA0yilW2q4WecC/QBcB2ATkVO8A3gcwFWEkC6Q3CmyAdwBAJTSLYSQHwBsheQqdg+l1F3Nba7rpAL4VZpn4QDwLaV0FiFkFYAfCCG3ANgPKRkEAMyElD1vN4AiADdVf5PrPrJCYTjksSDzqhgn1Qch5DsAWQCSCSGHADwDYAoCGBeU0hxCyGRIG3UAeJ5SajURjoDDoD8eg5Ttdq48h62glN4JKUPr84SQcgAeAHdy9/1uAJ8DiIQUQ8vH0QoCwKBPsgKdp8R+LHjo9Qml9FP45lcAxDipDoz2vefMWkJkDxmBQCAQCAQCgUAgEAhCHuFOLBAIBAKBQCAQCASCWoMQYgUCgUAgEAgEAoFAUGuotTGxycnJND09vaabYUhhYSGio6NruhkCjjrVJzk5gMsFSLFaxrjdQGwsEKK/u071SR1A9EfoIfok9BB9ElqEZH9QCpw6Ze1ctxtITATCwqq2TdVIjfZJWZm0R7Lbfd+jFHA6gYQE3/fqOCE5TiyQnJyM2bNnz6aUjtK+V2uF2PT0dKxevbqmm2HIwoULkZWVVdPNEHDUqT757jtpIg4PNz/v5EmgfXugV6/qaVeA1Kk+qQOI/gg9RJ+EHqJPQouQ7I/ycuDTT4G0NP/nHj4MjBoFhLBhJlBqtE+ys4FZs/TvfXGx9P+4cb7v1XFCcpxYhBCSrHdcuBMLBLWRQBKyieRtAoFAIBBUH5SKdbqmMLuX/rzXBLUKIcQKBHUdsTgKBAKBQFC9WBWYxBodfMzuqbjfdQYhxAoEtRGh4RUIBAKBIDQJZN0V1sHgY3ZPxZ6oziCEWIFAIBAIBAKBIJgIZXPNIO7lOYMQYgWC2ooV7a3Q8AoEAoFAUP2I9Tf0IEQIuXUIIcQKBLURk0l4TR7wv0PWzhUIBAKBQBBkxLobuoi+qTPU2hI7AsE5jckkfNkmSTd1R2NPdbVGIBAIBAIBjxCWBIIqpVKWWEJIPULIT4SQ7YSQbYSQPoSQRELIXELILvn/BPlcQgh5lxCymxCykRDSjbvODfL5uwghN1T2RwkEAhnhziQQCAQCQfUTyPorBN7gIe7lOUNl3YnfATCLUtoGQGcA2wBMAjCfUpoJYL78NwCMBpAp/7sdwIcAQAhJBPAMgF4AegJ4hgm+AoHAAEpF+n6BQCAQCASCQBB7ojpDhYVYQkg8gIEAPgUASmkZpfQsgLEAvpBP+wLAxfLrsQC+pBIrANQjhDQEMBLAXEppDqX0DIC5AEZVtF0CwTmBhUlYOUVM2AKBQCAQVB8m6+7BEiB9mQ2zTls7XxAYW08VY/jhBshz6bwpvNPqFIRWcOAQQroAmApgKyQr7BoAEwAcppTWk88hAM5QSusRQv4EMIVSulR+bz6ARwFkAYiglL4gH38KQDGl9HWd77wdkhUXqamp3adPn16htlcHBQUFiImJqelmCDjqVJ+cPg3Y7boT8o3LpVD3ab1dsLldQHg4EKK/u071SR1A9EfoIfok9BB9ElqEZH9QCpw6BYSF+bz17ymCD3bZ0SPRg3tbe4CyMiAuTlqr6wg12SfvrC7CulMU97d2o1uiRsahFPB4gMTEGmlbTRKS48QigwcPXkMp7aE9XpnETg4A3QDcRyldSQh5B17XYQAApZQSQoKmXqKUToUkOKNHjx40KysrWJcOOgsXLkQot+9cpE71yeefS4ue02l4Sj9iQ3h+PpCcDAwaVH1tC4A61Sd1ANEfoYfok9BD9EloEZL9UVQEfPklkJbm81aerHtOJQRZNpuklO7aFcjIqOZGVh012Sffb18EnCpAGxBk2TSK/rIyqW8uvbRG2laThOQ4qSSViYk9BOAQpXSl/PdPkITa47KbMOT/T8jvHwbQhPt8Y/mY0XGBQFAJXMI7SSAQCASCkMIjr812Xr4S7sRBwyELruXiltZ5KizEUkqPAThICGktHxoKybX4dwAsw/ANAH6TX/8O4Ho5S3FvALmU0qMAZgMYQQhJkBM6jZCPCQQCIwwSO5VwVXXKPUA5RGFvgUAgEAhqGjeV1mW2TGuNhILg4DQTYonYE9UlKlsn9j4A3xBCwgDsBXATJMH4B0LILQD2AxgnnzsTwPkAdgMoks8FpTSHEDIZwCr5vOcppTmVbJdAcM7wwSEgKwFoFw10WuFdFSfsJFh0NhnZzcSELRAIBAJBtaEjKN21nWBODsHrmZIYazM5V1BxnPKNdXkMThD3u85QKSGWUroegE+gLSSrrPZcCuAeg+tMAzCtMm0RCM4p5Em41AO8ut+G/x6k2NqHoox6hdhFZ4WaVyAQCASCUGBOjrQmM3diYYmtGpg7cZGRECuoM1TWEisQCGqAP/LDkWC3ISNa+rtETNYCgUAgEIQ8ihDLHxTWwaDBLLGFboMTxL2uMwghViCoZXg8FPcdrQccBWZ0lqTXMJvxvEw9HgiFr0AgEAgE1YSJoMRkK7tYmKsEpiQocBMAQmCty1QmO7FAIKgB9p4qVF6P2SAN4TBirHUURlqBQCAQCEIDJmSpZFhhHQwapXJphjK9zY9I7FSnEEKsQFDLyC0u9zkWZgPOuPTPd3nEhC0QCAQCQbXCVRDg5SYmWwlLbNVQ6pbusFDg132EECsQ1DLcBkJpgYEl1uh8gUAgEAgEVYDG2scLVD51YoV1MKiUuaV76Ta6peJe1xmEECsQ1DL0hNIyj5SpWA+XmK8FAoFAIKheOGGJF6jcwp24Sin1J8QK6gxCiBUIahkencWulBrEf0BYYgUCgUAgqHYIAaVAsdtrfQWAMs4Se6IMePJ0AsrFOh00TIVYIny46xJCiBUIahlGMa5lBmugiIkVCAQCgaAakZXNnxwB2q6w4ViZ9y3mHWUD8NQegq/zY7DwUKHvNQQVokyOiTWqsCOs3nUHUWJHIKhleHSEUgJjS6yQYQUCgUAgqD7eWJSNlNxo/F4qWf4OlXrfc3mkY4R4a7w7hIUwaJTL99Rw7yOE2DqDEGIFglqGnnswBXDzNn3HCmGJFQgEAoGg+nhv2UEACegQLa2//DJczlli2Wun8IsMGsw1W+tOfKwUSLEDNiHE1hnEsKklTPxhPX5bf7immyEIAdw6E7CLs8LekaZ+XyQ3EAgEAoGg+mHLL+8o9eFhyepqJ17XYocwxAYNPSH2YAnQe7UN7x0WYk9dQvRmFUEphcttrUrVkbPFOJFfYnrOL2sPY8L09apjmw/nYuXe0xVtoqCWomeJdXN5DjvGqN8X2YkFAoFAIKh+8uXAzFO+5d1hI94wIKcQYoNGOUvsxB07KrtzL8m1CXfiOoQQYquITzaVodWTf4FaGCx9p/yNni/OD/g7LnhvKa6cusLSuWZC9Ym8EqzZnxPw9/tj6a5T2HDwbNCve67jL9twlGZUi+zEAoFAIBBUPwdKJOn04V2+220bqNcSK3bjQaOc+lpi2Utxm+sWoj+riGVHXPBQYOvRPJ/31uw/gx3H8i1fi0/k8/CPG1BSbphzzZDPlmUj44m/kFNY5vPeyLcX47IPl6uOnSooxauztqNcFnyLylyGAvknS/Zi3tbjPsev/XQlxr6/LOC2CszRK7HDE2lX/y2EWIFAIBAIQgsKosTEUrFOBw22ReZvqTW/SEFtQwixVUSELEiczC/1ee+yD//ByLcX+xw/W1SGT5bsVQmLBaUu3PDZv8rfP605hK9X7MexXK/78YcL9+i2Ia+kHBOmr0NOYRl+WXcIANBt8lzVOXO2HMOZIsnPhReWb/9yNT5YuAd/bT6G1dk5aPf0bHy6dJ/u97wwYxtu/XK16liZS0wZVYU/N/VozagW7sQCgUAgEIQWv57kM+mKhTpYsJhYfu/Dbq9IAl23ENmJqwi7DYAbKCw1tpoWl7kRGeY1m3V5XhIwOzWuh57NEwEAMzcexZJdp1Sfe2HGNrwwY5vy9yuztmPF3tMY3i4V1/Zuphz/Zc0h/Lb+CBKiwhDh0JjnZG7/ao23PeVuRIdLj8SGQ7kAgPu/W6e8//Paw7h1QAvT3824ftpKS+cJAsefZTVOM6r1EkEJBAKBQCCoOZirMSBK4QUTJsTqqfsJAHiEkaWuIITYKsJhIwAoCktdhue0fXoWxvVo7HO8sMyFWZuPYvqqg4gJt9ZFi3aexKKdJ7EqOwfX9W6GHumJiIlwAgA+/ycbKbHhyrmUUhzNLcE0jWW1sMyF6HAHylweXUFp29E8HMwpQpPEKADAvlOF+HPDEdV1S10eRDjtWLE3+DG2Agl/i12MRl8hjOICgUAgEIQuevXfBRWDWbfdOu7ENmGJrVNU2p2YEGInhKwjhPwp/92cELKSELKbEPI9ISRMPh4u/71bfj+du8Zj8vEdhJCRlW1TKGCXB0pOURneX7BbiWPVxrP+sPqQz2fv+WYt7vx6LRbuOIk/Nx4N6Ht/W38El3+0HAWlLlWyphOcW3NxuRsP/bABn2iE2O1HpTjdCdPXwYgBry7AJR8sw5JdJzH49YV4Y+5O5b1Pl+5Dm6dm4WyRb9ytIHj4cyeO0sbEirVRIBAIBIKQReiag4deiR2mIyj1eN8X1H6CERM7AcA27u9XALxFKc0AcAbALfLxWwCckY+/JZ8HQkg7AOMBtAcwCsAHhBB939daws7j+cgpkQbJW3N34rXZO/DTGklYzSvWybOuoags8MRNWh6Yvh7f/XtQ970ZG4/ieJ43prZRfAQA4Ppp/+Klmdvw1+Zjptded+Asrvv0X5/jX63YDwCG3ysIDv40thHamFgxYQsEAoFAELIIS2xwoNSb8ZkXYtmuek0+wfXHU6q9XYKqoVJCLCGkMYAxAD6R/yYAhgD4ST7lCwAXy6/Hyn9Dfn+ofP5YANMppaWU0n0AdgPoWZl21TTzt51QXpfKvpwO2Ychr8S/EBsMVpuUzPnPTxux91Sh8nd9ztV46uK9qnPHdGpo+Tv3ny4CIMXoMto1jLP8eYE1zGJcP27j8XGXEQkjBAKBQCAIXcQqHRzKOcmVNwfxYVXLSyNErdg6QmUtsW8DeAReT4gkAGcppSwQ9BCANPl1GoCDACC/nyufrxzX+UytJC7SN471uT+24uL3l+FkfvW42p4tsi4shzv1Dd8Xd2mE98Z39Tneon605Wu7RAB90HGbuBMnOH2PiezEAoFAIBCELsISGxzKuf0Rf0vFPqhuUuHEToSQCwCcoJSuIYRkBa1F5t95O4DbASA1NRULFy6sjq8NmENHfZM5FZe7sf7gWfy+ZC0AoEeqHauPG7sNN4m14WB+9QiAxfm5qr+vbB0GAqB/4lksXrzI5/xIT7HPscQIorhQ8+TlF4ZMPxUUFIRMWyrDzn3GipBN8KDAA/D6qfUeCoTo764rfVJXEP0Reog+CT1En4QWdaE/1ufkwF3LfwNPTfVJYbl3H7q3BPi52IOkcGCDR+2itnCR7962rlMXxomWymQn7gfgIkLI+QAiAMQBeAdAPUKIQ7a2NgZwWD7/MIAmAA4RQhwA4gGc5o4z+M+ooJROBTAVAHr06EGzsrIq0fwqZMcJfLhhle5b320vQ0y4A73bpWP18d2653x1S09Ehdlx2YfLfd5768rOePD7DQCAq3s1RXJMON6dv6tSze2ckYZrBsZj0i+bAABZPTpgdEfOjXjWDNX5zRqlYMtpb9xsQpQTb4zrgps+9/3NYRGRCJV+WrhwYci0pTJs9ewCduzUfa+P3YY2Gv+KthQh+7vrSp/UFUR/hB6iT0IP0SehRUj2h2bf5I8O9RKQldW3ihpT/dRUn5zMLwXmzwMA5LsIHlrrwM4+Hnx9Si3EZg0cCNiCkRao9hCS46SSVLgHKaWPUUobU0rTISVm+ptSeg2ABQAul0+7AcBv8uvf5b8hv/83pZTKx8fL2YubA8gE4Js1qBYRK5e2CXfYcMegFqgXpfbxJARKPVY9BmTWR/dmifjo2u5Y//RwDGubCgAY2iYFjROilPMSopyYOLwVbh/YApd283pgN082dvftkOaNUb2lf3OpPSAY2Kq+cjwtIdL09+WXqC3N9wzOQFbr+nh0VBu0So1Rvecvk64gcHh34mebezCxqffvMJ0RLbITCwQCgUBQPdAKxFtW5DMCX8p19pxvHCCYd0bU1qmLVIUa4lEAEwkhuyHFvH4qH/8UQJJ8fCKASQBAKd0C4AcAWwHMAnAPpbTy6XlrkEg5xjQ9KRqPjW4Lt1aKoEDHtHi/1xnVoQHqRYUh3CF106XdGquS9jjt0vHHz2+LN8d1UY6P6yEZtlvoCLNNE71C8H9GtsbdWS3x8IjWSI2LUI43qqcWYoe0UWdy23tSSgr12Y3nYeOzI3DrgBYghOCurJYY1UGdCEqkMg8+LLHTuBSK6xoCnTm9Qbg8op9r4cGNDX3TzAuCx8n8Ujzz22aU1YJCvLnF5TiWW+L/RIFAIBBUCncF9j1mCRsF1tETYvcU1UBDBNVCZdyJFSilCwEslF/vhU52YUppCYArDD7/IoAXg9GWUCAyTBJi7bLE6ZCLxr52eSf856eNoAD6ZyYjJtyBglLJqjlxeCtkny5EVJhvkqVnLmyHqDA7hrZNQS5XoifMoa+DYIN4ZIcGiHLaVbVcX760E7bJ9WAjnHY8MqqN8l5ClBNnisqRFB2mut4H13TDqYJSbD+aj6ZJUdh7sgAvzdyO/pnJiiDN6NcySeXeLCyxwYclgHg1U/rfySk2YuTH54aGwL5iis+PkqAujg//uAG/bziCnS+MBgAczytBfKQTEQbJweoyL83chl/XHUaP9ERc2LmRpc889X+b0bJ+NG7s17yKW6dmyOsLcbqwDNlTxlTr9woE5yqUUny8ZC8u7pqGpOhwzNt2HCPapUIqyiCoy1RkzRU5MIMDy05MQEEhjTVdK6xQGtQJgiLECtSkJ0XhopZOPHRpNwDAI6Pa4LFfNqFn80QA3pInbRvGYlX2Gdw5qCXuymrpIxAyUuIi8NoVnQFIgue4Ho3xw+pDCDM4f1yPJpi1+Riu7d0MjeIjcOuAFmj79CwAQHykEwseztL93N8PZeHQmWKfRTbCaUfjhCjFlblVaqyPxZXRq0USNj47AjM2HsXf209gxZ7TRrdJUEHcHgoHl5DfznVXNCdLOuTj/gyF787fJfdpA7/fzeodM3q9NB+DWtXHFzfX6qpYlSIQSyyrpVzdQuzpwurJii4QCCS2H8vHSzO3Y8H2kxjWLhWT/9yKd8Z3wdguVVd8YXV2DhrER6jCjgTVT0UEUuFOHByYESeCUBRToTCq65xbUc3VBCEEl2aGoVmS5M57Vc+myJ4yBo0TotA0MQpTLusEAHhzXBfcNqA5HhnZ2lCA1cMhnxuuscT+eV9/fHlzTzSIj8DMCQOQVi8ShBDFMuyPhOgwdGzs383ZH3ERTlzVsymaJ0ejXKgXg47LQ1UD10H0XzPh1p9W+M25O3Hn12sCbgezCC/aeTLgz9YFWO1nUUZKYMaGg2cV5UUwoZTips/+xZJd5+b4q2pO5pfquiZahbmU5haX43ie5Mp/tIpd+i//aDn6v7LA73kutwfpk2bg82X7qrQ95yr+1gSbTlVYsYoEB68QG/hnKaVYsfe0UCjUIoQQW43YbQSLHxmMi2TXwyaJUXhiTDvYbIGNtvuGZGBQq/q4SKPR7ZAWr0rQVNM4bAQuEZAZdDyUwk6899Vh8Pgw1QVfH83joVi5V9863uapv3DHV6stt6PsHHcVd8pKpDLxjFuipNyNvBLr9atrip3H87H5cK7/Ey0y9v1leOr/Ngftei63BwNe/Rs/rTmEBTtO4o6v/CugVmfn4ESeuQC1KjsHc7ceD1YzazUutwfnvTgPk37eVOFrMIcmD6WwyX9UJFayKiiRvUdem72jhltijZ/XHMLY/y6t6WZYxp9eM0bHriDqxAYH5k4cbvNzP3UE1V/WHsb4qSvw6zrdAimCEEQIsbWQhvGR+OLmnoiPdPo/WWbm/QOw0MCNuKpw2G1weaihVuuZ3zbj+T+2VmubaprDZ4srvVGU3Im96GUkBnhLrPfYp0v34cqpK3StpyXlHszeYr1tpeX6K/VPaw7hu38PWL6OlgnT16HjM7Mr/Pnqwikrn8qrObHTjI1Hset4fpVdf8Xe02j1xF84w7kgz9lyDHtPFlTqulf+bzk6PTunss2rcka8tRgXvBf8DTObB/NLytHn5fl4+reKCbZ5JS4czCnGoz9vBODNvWDG5R8tx9j3l5mec8VHy3Hbl9aVWHWZonIpt+SfG49Y/szb83Zi2e5Tyt82LiyHOVqFiqASKsK0VR76cQM2HAqeYqmq8ef9FKsTyOcR1r+gwCyxFcnSsT9HygC1/7T/TFDlbk9QlZ2CiiGE2HOEdo3ikG5Seqcq8LpbeifnknK3VMcLwBfL92PaOebONPrtxZXeKLo9FDbOEts4XP88hyLEejdT+05LmaUPypN1Rd1misvcKHX5JhFv//QsPPzjBjz2S8UtGL+tP4L8Upf/E2sYFgJQGZfDinDPt2sx/K3FVXb99xfsRpnbgw2HzirHbv9qDYa8UfHi8CfyS2rVJjQYlLs9eHnmNuXvUlnZcTCnGEdzS/Dl8sBcjFl2aeaqyKbV/BKX6Thm71l1Zc0+VRhQu+oiRaXS3GYLIAnT2/N24ZpPVvocV1liKzDfHswpwtHcYgDAxe8vw/RKKAgZTIitbWJTqCgB/LEqO8f0/TgdIVbIsMGhMutxID6Rr83egQveW4rdJ6pOoSzwjxBiBVUGy8rMa31v/nwVzntxXk01qcbJk2vsVibmwu2hKi2jnlYX0I+JVayH8kRfGoAVkW9z75fn+3zW46EoLHMbfibYrNmfgw8W7q6y6/uDuRO7qmBjVe72YM1+340Qfz8LS13Yo2Md3XU8H2/O3Vnpe6+XRfXOr9YEZGUvKXdj8c6T6Pni/Eq1JdSglOLteTtNrdNzthzH/xbvVf4ulsdGPudSfcO0f5E+aYYipBjx9/bj6P3yfPy9/bjiLsfzoybhGk8gYxwAsl5fGND5dZGiMmmetirD6lk2mWWNUq+13OOhmLPlWEAWnAGvLkCfl/8GAKw/eBaTOAXhL2sP4bIP/7F8LUZtrRpQG3JslLrcfl384/TciWtYij2aW6xUy6jNsBA2v3ezkvd7/cGzAIBTBZVLmrj+4FllvgGAWZuP4i2uoojAHCHECqoMp83XUvWPnK24sA5MlpWhMoKP20NVGYkB4JFmHrzQQr3AK9mJua/SWg9LyvVLMh84XYQN8iTNfy8jt7hcZYk9nleiuOIwfl13CM0fm4kjZ70b9DKXJ2iubJd9uByvzqq5mC7maRCokGCFyX9uxWUfLvcRkngBZsL0dRj6xiKf7MjXT/sX787fhZwKZiRmmyk9L9VZW44FZGVv89QsXD/t34DbcLaoDFP+2h6ym+2TBaV4e94u3PjZKsNzHJpBWlTuxm/rD6syRTO3/j4v/+2T+Ztn8+E8AMDa/WdRqjNmN3JWcy16Y3zPyYKgWPTqKkWywoHvwQU7TuC12dtV5x3LLcFjv2xSlb5j8NZOuywN55W4cPtXa3DFR8tV5747fxeu+9TXisujt7Gd+MMGrNl/JmCFVW2t314bcmzotVEbn6mneK5OF29KqUqZBkhzUDDjjo8XehSPr+qE5erI84R+ZuIzhWW4+P1lePD79cqxO79ei3e4MpVmUEpr5B6HEkKIFVQZbBPnclMUlblwIr9E0UgfPmtueagqNh/ODYl4oMpmvbRr9Ix3Nwau1VQ90ouJZdZDJgyVGMS1DntrEca+v0y1OdIK3vxne700H4M1FpyHf5Ri9nghttWTf+HGzwIXakIRdj+KqkAhM3/bCQCSqyggbZYppYo1DwBW7pUstdqxxITQEgPh2uOhSJ80A2/M0VcAsC4n8ha+OjI1Hs0txuO/blLGxfN/bsVHi/aEbKIhNocUGyiBACA6TL1TXbTjJCZMX6/Esmr52USIZcqnMrdHV2liNp3ojfGL/7sMk37ZBEopNh/ORasn/jK+QB1m8p9b8cOqgz7HmZKV90a46bNVeH/BHtV5T/+2Gd/9ewCztxzzuQabHyilSvLGdQfO6Lbjzbk7sWTXKd33GGYb27xiF3q8MNf086q2+Vl/Zmw8inkhOPZCWYgtdbmx+0S+roI6WrPTfqhpzWYn/mnNIXR8do6PK+yek8ELJXh0STEGvOo/U7YZHo+vsO0Ptob4yxhDqXG+FktPmeYkl9uDf/eZu5FrYbH3GwMMtWGeWh8v2YsBry7AjmPnrkuzEGIFVUaYLDC9MGMbRr69GD1fnI/kmDAAwOEzvkLsoTNFuO3L1SrXCka521PpeJjsXDcueG8p3l+wG6cLSvHijK01ZunRcwm0isvjMcxIzMOEWH5RZe7EzHqnF9eaV1KuvM/H0WkFb3/ZidlGX5t9299mzQqHztS89rFcuYcVe4ZKyt04W6S2lhaXufH39uNKSY78Ehe2H8tD75fn44t/slVCU6I8li7671KVG1iEU/JVKyx14bpPVyJ90gzVd7B++2ChekPO0FpirSp9/tp0VJUMykgA5a9HKUVBqQtP/LoZ3648gKVyYhxmPQw0htDtoQHV7a0o5bJ7w8n8UsONkNYV9Yzc10wxoSXMYbwcs/fKXPpCrNHcuGTXSew/7d2YPvl/m1Dm8igx5yXlHnyyZO85m2n806X78IhGqfDSzG24cuoKAPoxckPfWIiFB6WNNVMUaT2LKKXYekSynlN43YlZOEl0uEEMSAXZcjQ3ILdGtv4YDa97vl2LWzW5G0pdbpwqKK1wG4NBKLsTX/DuUgx7czHydKzyaVzeiux+HrTVSU9iNtUFW5G4UPYA2XY0tIWfV2ZtR8dn5+juCY1gio73G+ViWlsPrmsg/d0tliLZ6b2PzZ+ei9HvLAmaAPj6nJ0Y97/lKg+29EkzMJGzsmph/Rqozfj12Ttw2YfLMXWxlFPmSA0ZhUIBIcQKqowYeaH+ee0hHMyRBhlbvM8WexfcknI3SsrdeHnmdszdehx/bz/hc63MJ/7yWVQDJadEmjA2HsrF839uxcdL9ul+V3VgZoktKnPhlVnbDV19y1wehFnQFbLBzcvL7GWJLLzqWWn4DLL7uCQvWmHmjEV31WBqz3cdzwelFI//6s3sWlPJPlgfVtSqfukH/6DL82rryRO/bsLNn69WFA/XfroSo95eAkByxecX83pydvL8EpfKNTTCYZePl/soDPafLvQrsCi3U0cJYsTxvBLc9c1a3P3NWuWYUQIz/n59vWI/OjwzGweYS5T8VVprsFXGT12OVk8GblU8kVeCf/b4V650fGY27v12rTJ+AOCblQcwd+txuDWZ2LXPhb+NqKkQK2ukytweXXdiI2H/uk//VQQyAPh6xQHs4qwvRWUuXVfYLUdya3WtxE2HcvGhgZJGj7UHzihz3VQujlnv8dtzshCfbynDVVNXwC0LVbzgcjS3GF8u348n5bJKlHpDD5gCI4Cy8LrsPlGATSbWG3/llFhysOJyt64lWo+HftiAHi/MC4on04m8EmS9tgC/rQ+slEl1J9Ezw+OheO6PLUqm+F0npNAPPSXVfU2kezawnvG9M4qJXbLrJJo/NhNbjphb63IKyywr5cPsLJ9D6NxPPVisf3GZG+sOnDGM2fVwcy9b35qGuTEkEegT7xUUtXd4+7F8jHx7MV6dtb1S893zf0ieQwB85tNfNOV6/thwRFFeK+ucTvC9WXu2HpUUZEypZCVDfV1FCLGCKiNGR9vM4mSPnPUusr1fno/Oz81RJh+HTf1YssH89/YT2H2i4mU+2DxBKVUWw6pIymMFs8X4f4v24sOFe/D1Ct/spQWlLszfeQphxH+7CQEcoCohlgnG/1u0F5N+3mgoKDN4q5bWenzLF9aUCjmFpZjyl7FQzvPtSv04vVXZOVh/8CyGv7UYny7dp4rXrO4+XLrrFMpcHqU+bEWtWGwh4tlpkunQabcZuq/ym+gIpzR+9DZTg15baFoSqKCMKi5RbLNq9Pse+2UjrpWzsbK+PXTWWmkCxhzZWssy4lKoLURWEuswTXr2qUKsyla7az7600a0tiDUjvvfclz98Uq/G5n8Uhf+3HhU9Sw//+dW3PblarR8fCaaPzZTOa4dL2auxwAQLguxhaUupE+age9XeccCE3DLjSyxlOJ4Xglu/WI1PlmyFx4PNRQ2ijiX9KIyt64QO+bdpfh4yV6f46HGmv1n8OlS3wz3F/53KV6Ztd3nOC/c8X196Qf/+IRDAOYWkuV7TysKumPcdfu8/DfW7Pc+hyXlbhySPY+YxTaQrMd6XPPJClzIxS9qFYU9X5pvOt/y5z/y80ZLlq6FOyTrXTBi8PbnFCH7dBEe+mFDQJ9zuSk8Hmroll2d7DlZgM+WZeO+79apjmvHedtoqjxHTpNuN1rGZm2WXNXX7jf+zeVuD7pNnovHf7WWr8ChlIfzuryHInwCyks++Ae3Gew5uk6eixFyxn72mTD5N7J7bjbiPli4B3nFLsuJ3LTwVTbMlJFr9p/Bfd+t052btATi4SWEWIGgCtATYplrKV9k/WxROUpdHkWL6JStDrM2H8P/rTuMvGLvAjvsTd8yHzuP52OxTt1TLWyYeyhVNF/BzAiYX1Ju2e0lt7hcZeXkKTVxU33w+/UoLvfglNtaFTQ7AVyQXIRfnbVdtbmavuqgfyGWEzgqqrX93+K9+GjRHnxjIKDy6C3Cmw/n4oqPluOhH9YDkDZT/Cbwvb93odOzFasr+9GiPbj7G3Umye3H8lRlRhbsOKFY6dbsP4NrP12Jt+btVJ5XPdfw3Sfy8f6C3ZY2B6q4YxOrtcNOVP3FW99yVUIss8TqP4tmQve9f3s3qKwtem3yeCi++/eg4v7LmsL6xcwiwN8vbekRdh0mzPpbmv9v3WGMfHsxnv19i25W3e9XH7S0GciW6wLyc40W3uLPX1Prvlzu9qCk3O2jqDpbZB7b9efGo1iy66SSkOulmdJGp8xNset4gfxaX4j9a9MxXPPJSszbdhwvzNiGJbtPGY7twlLvZq24XF+IBYAv/vEq0U7ml+KH1dYsdofPFuPL5dk4lltSKaWjFS778B9M/nOrocDOj60/NhxBz5fmK+VP9LxQtGEKhBBQSg0thux7teWL+GfiaG4JPv8nG4BXwKmsEHs8T+3Wq7fuTP/3gG64CADcrxG82j1tPH9+sHA3+r48Hy3rSz6wO4JQo9qKQlOPcrcHXy7PxiUf/ON3zaeUYsH2E349dUrK3bj/u3UB5enILSpXPE3YfMtfj8fl8SZXNAsDMtqLsPnXqTHfr9l/Bn9skOoYs7nm9w3W6hqz3BhlOsp8l9uDp3/bXOm64Hp8vHgvuk22HrutTUC5fO9p3fNyi8sVSzhT0jrkNYSXKc1GnRVl9MQf1qP5YzOk+Fd5HrGyhXx/gVRFYeU+qf2sL70ZzCkGv75QFfpTapCvRI+azmxdkwghVlBlxET4CrFmFkg2kdptBKUuN+78eg0e+H49ThaYu0aNeGuxpQyobN/godzmOYhWvI7PzkHfKX9bOvfaT/7V1fwD3ljEgzlFPi5EzIXMquLNQaQ6sUt3ncIHC/dg7YGzqveNkv8wjp4txqUfLMPR3GK/bsH/u647GidE+hyPjZDcXrdrLI9FZS4UlvvfYDBBiSWdOFVQqvr97/29G3klLvz3711YYbDIAcCGg2fx5P9tUm1sp/y1HTM3qZOyjHp7CbJeX4iZm44CkBK6XP2xZHFktTr3ny70uhPr3MO35u3Ca7N3KNYLwFjb/cHCPYpCw+x5tNuIyorGL3In8r2bWqYJPpmvH7/GtO9uD8XLM7fB45GsG9rNFxPGbtJJxMXHxv24+qCyiLJu0ZZa0l6X/00AJ7xq3Yl1nvPV2TmY+MN6FJe58c1KSdDS9vu2o3k+scBmsHt2PN8712jH3tj3lymvzTbh1326Em2emuUz1+UZKBXUn/1X+VxucTmO5Zbgg/Wl+ES2Npa7PbqCSXG5WyUw/rbuMF7iatTy3PjZKuX+SpZY/XadLvT28V1fr8EjP21UNvobD501rI/Yb8rfePq3Lej98nyV0vFsURnSJ81QxpVV1uw/4zduzShWkx9Oq+VNJytvo+ea2P8VdSKa3OJydHpuDiZMX29wfekLTmiESiPhkXH4bLEigPCcLijFhe8txYHTXmE6zILv8Z1fr/U59uwfW/Hs71t0z98bQC3gV2ftwJHcEsTJ4Qt5xeVYuONEwILob+sPY5k8l7MEdYTANHHPe/N3qZLluDxUEVbW7D9jKqA+/+dW3PT5Knyl49EESMLaq7O247f1h/H7hiN4/g/9e6XHBwt3K4ovdl8YRZq5z0WBcgtCrJEcwuYDh+Y5uOzDf3Dfd+vwxT/ZPkoJI/adKsTNn6+CW1FQ+obEbDyciy+X769UrXceJsABwIszt/nNmv/vvhxFKcMUnoFYJdk+kllgw5gllgCRJkOppNztN3zll7WHQSkwc7N3z6Cd51lb+bWcGW2YwjA5JlzV1pyiMh+jxt3frrHkRQRI60YoJmKrDoQQK6gy9CyxekkPGHx9Lz5JhXaDYJWjucVInzRDcT1i05PbQxXBo6IKrF/WHsKUv3xdQrTWlqO5xcpizwsxbNOlZ7FiG/fpqw5izLvqlPeBJDgAJGHXRanPwso45qc+5Zcr9mPtgbP44p/9ft12o8McSI2L8DnOXJd2ajT4g19fiHvmezdrazUuYh4PxRO/bva5zzmFZboxJK/P2YnxU1dg+zFfN10AGD91Bb5eccBUwOLjIvn4ToaS+dBuUxbYcrcHx/NKkD5pBpbskoRWFq+61ySmmPHa7B2KVp8/JzMlRnWe02ZTZSfmNwOszMbUxXuUONjn/9yq+328u9v/Fu/FliN5mPD9erR5apbqPLeHYs/JAmzQib3jrRb/+WmjtySJ3C9mG9wylwc/rTmEvzYd9bFIUc3/errzG6b9i1/WHsatX65S3IfTk9SZUhZZ8MzgiQ6TrCm8RU079jZxtT3XmLj2rZCzRmst9HpCix68hbD3y/Ox/qT3Xpa5PJY09L+sO2zJ86GozGUocPHtYPMVi8e96L/LMOzNxT6fMVPCsE3/079twYyN1gXZyz78ByPfXqx77Si53yb9vFE1/hjv/b0L6ZNmqDIEs+tYLfNm5NEAePMNnNZszK1Yde77bh32nSpUhGsA+HXdYWw6nKty5abWcqXqsk5WWvLrjNEa4s9rhI3thTtO4sbPVmGywfxixITp63GNHH7A5qByN0XHZ+cYWrrfmCsly2GUuz2KFeud+bvw7t/6GZsHvroAny3LBgA88/sWVQkTxszNx/DBwj2KgBGQPpublhbvPKm6p9r7W84JsU6THTf//V8tz1bqhLNnyUi8eub3LZgnZ7P3t5959vct+Hv7Cazer56jyrk6fKdk5We4047TBaWVriTBe90xpi7eg5aPz/R55k7kl2Dc/5bj4R8lN3M2VgMRYtn9csohVyzBJQEQZeLAFohSpoRbh7Xu48wLQ89gw+Zudg7b8+rNbct2n1b97od/3GCqmP1wkf8cAO+ulfYp7Z+WlKy7T+RX2CsiVBBCrKDK0BViTbSu7L1yl0dl3dqjcWvxp+VmLJU382wzxxaBpbtPYZZcEkFvg1BU5lJNQB4P9VmYJv6wQQnkN6PPy3+jz8vzseOYfup9vc2OmasZ21haXXAdAL486cQqg9Tve/2k1GdKh+gwu9+kEZFhdt2NEEuetZ2zpuw9WeDjEnfpB/+o/nZ5KLbpxI0C5pboUW8vwVfLs/EZF6cCeBcVt45FOa+kHE/932bF4srQ9jsft81el7k9+D85ecPv64/I7fMV5swy7bJFjM++ObBVfdU5FFS1YPIb5xP5pWj+2EzFBdUMbTIzN6W6Ala5hxrG2tz7rVrz//NaKQEHe3TNFsa5W4/j4R834K5v1ioKDgbVuBXrLe7MFW7Zbq/1VTtktAKKv2eXJZw7qrNh23+6EOe/s0R17O15/uv4WZ2neNLqRZp+rtxNg1qXuLjMbephwfrDrhEAGdrxoSeMsGswi+KpglLc8+1aS0lo+HMO5BQpCYHYmtAwXlKaLZA9Hj5duk9lnWP9dDK/VHnW2DxcGKBCUA+WiVRrCbbqCjj49YW4nKsZy+aUvacKMH/bcXg8tFKZ7D2UoueL85DxxF9Yufc0PB6K8VyiLx4jRSeD9eMM2ZJ+UKfCgFW088OE6euV2E+GXuyty01VcwYrRablgE/Nct/nsljuf/ZMm1l1f1t/GF8tz1b+1q7RTGAGfBMeuinQSdZHnp9ksgZw68NTv23BZR8uxwou7polk5u1+SjeMZh//D0p7LdGysof9rzx6w7r18QoJ7q/MA/9LHqXAcCtX6zStQhq542XZm6H20MVhXL6pBm499u1yrjZcFCtODUKedC7NhPI9WJhzSyxKmHUjzaAeYcBvs8ym7/19nZsXWLnsBAtK2PcrI44YO7RwFh7QvrewjI3jp4twbA3FwfN4l5TCCFWUGXouRMb1SUFvO6PZW6PSojUavI6PDM7YDfggzlF0Jsn2ORRWOrC/xbtgdtD0e7p2UrCGkBK897u6dkBa6xYfMqZonKMfHuxrmZOrxyI1sq4+XAuZm85BkppwEmE7ATwgOB7g3g2f1pWtngQ4l8bGh1uNz2Hf2/IG143w9zicjyhEwsrxS77XsftoZi9xdx15qnftuC5P7bit/WHld/ANq9693Dqor26bme9Xpqv+pttKMIcROnPMpcH/+yRBKqkmHCUlLsV5chrs3cgfdIM/Lj6IDpyWZ+11I8Jx5tzdypZvAGgRX21dfGH1YcM3RoDQZtU4mLOTZbH5faoNPQ82ueGbeIO5RTjo0V7TJMY8RZiu93XEnsstwTztkn9qzdm9NwrtcoxrfVs36lC0/EbpWOJBSSX00GvLdRNwuWPH1ebbzr0iI1wmI4hD/V1+64Mv60/YhrrzlxuWbI9rSLuNOcxk1NYhok6iXrYHOuraPD/O3iB69CZIvyy7jCyTxfhmxWSYrJRPXX4wsIdJ3HBe14LerzsEZF9ukhxx/RaYqvOArHaxFJvBlsPlu0+jVu+WF3pkjIHcoqUUINv/z2A04VlhjUp2Qb7E4OEXtqxaObm7HJ78MOqgziRX6JyjWbXL9YRmO/8eg3enrdT8cjRqzHq8nhUbrVMubL0cLkS62yVcmUul643f/sJn7YyJkxfj6d+87oba5clPmP4s3+oLdQuCmRGAXv7ejAiybg9egrg8VNXKOPziV83Y+GOE7jz67V4a95O4wuZwNzfw+UM9i7Om4jB7r/dZty/f28/rvIEOnJW8nqbt+2EbhUJ7XrAFBFHzhYriqo/Oe8M7Zx0Axculj5phkqoLdDM9S6PBzZ4LbDsrhIAkSaW2Iv+u0xRJPjbXvKxx+s0IVpMENeGGeWVlCuKIj2XY6sYheSZeYwAvuETLHQm0Nq2oYYQYgVVBpsorcImxYISl8oVThtLVu62tpFj08P2Y3kY8OoCzM721VQ98tNGzNp8FK/P2YGX/9qOlo9L2UVXcgObCYB62YL1eF0WurVxKnraNr0Nq3aBvOC9pbjjqzX4ea1Xm2x16rObWCwB9cIBAG9f2UX1N2vz63N2GrqnMqLDHIZxmGY8/usmXddHI/dlreueGROmr8d1n6qtq3qLwIl8/bhr7cLAnrvjeaVeIdbtUVzWP1q0B+OnrvAR/v7z00bT+qVR4Xa8O1+tXde6yFY3LjdFmVs9zqLD7LhtQHPDz5S5PZjy13YcPWsex86wa92JKVQJRfQUDtoEJ4BvQiZtvw1/azHu0XEPZ7CNLB8HChjHFVthPVcv0CqEENO5bfuxfEXADwa/bzhiagVgQioTFrRt46132af1vTq81gZ1XxYYWEJLXW6kT5qBz5btUwmDB3OKlTUiSa6RrDd/8gqHxGjpvAM5Rcq8Om/bcRSWupS6vaGE9veMfnuJwZnW4JXGB3OKTBUWpwrK8OT/bcILM7yx1LyHhtZiv++UceKfL5bvxyM/b0TPF+dj4GsL8B1XAuyFGdsMrbhvz9vl45HD8+qsHSoPKPZcfrKpDFdwFm09Xpu9XWVt5UNDGNrEkacLSvH0b5uhRauQeffv3T7nMNhS4C+PhYdK4SxaQZqfy278bJX5RfxsDJjQxDKhe/M6eD/IXP2NLHv5JeW4+fPV6DZ5riJMLthhXqpQ67HBLMEj3lqsqnKgWIb9WCb5e6RVYP6z5zQ8gNJJ/JWi/Eg8bA0u93hwMKcI787f5dfNniVtYxj9hovfX6Z4fzBB10plhU+W7FXlpTiZX6rk5uAxE2KP5hbjrq/VCSzZNQ6fLTZUXNUGhBArCBnYgP7vgt0+E4MWI9fM2VuOofNzc1SaXjbhbcvRX8A/WbLPtFA8W3temLEN05buw4TpXuH0yf/bhI7PzFZt0P67YLeuptm6JVa/HXx2UKv6+UD1+Cmx4Ybv+dPYxUU4Fa2/2XW0GMXHuT36lthA0Voe9O55TqF/VxzAa634e/sJxZ31ZH6pStGy/uBZvxZzbWyLnitfvCZhSHVT7vGgTCOMR4Y5lKQUZlgVELTuxG/M2aFyYdZunD0eqmQv59FuuApKfftz/vYTuhuz+79bh82HJcHn6xVqZQq/+a4Oth3NM3WdO5lfqlj9gwFzxzUi6/WF2HDwLCfEqp/rwjKpHNBbc3cqtQ+1sM2cdtwVlrqw52SBj1sxU0hoXbZPFZQqQix7BvRq5vKwR+lAThE+kOvGrjtwFtd9ulJRNgaT+4ZkVOrz2nUjkARMVjBzGf7u3wM+zz9fPka7fu05WWi4Jmjdq7Uui3plkaywUvN9gZQWeX/BHpWCg80tvGuwdt5++a/t+HK5V3nNSjQFkl3awJkF0zt4cFsj75tuD8XVH69E1utqC3Qg2aDL3B5TZSkTYtn2qVzHnZihFYoopXj5r22q+sQfyEmb/CVE0j7X0WFeLz0+f4HV2usPfL8OuXL+Ed7CSCn1yVdAOSWCmSWWx+WmuO3L1Xhz7k7F62jz4Vw/n5IoVeK91b9h78lCFJUyS6z0vxVL7AsztinhEgAw8q3FSnIzHr1EdZRSzN92HH1e/tunZvxRLh+KkXdGbaDCQiwhpAkhZAEhZCshZAshZIJ8PJEQMpcQskv+P0E+Tggh7xJCdhNCNhJCunHXukE+fxch5IbK/yxBqDCsbUrAnzHKNMnD4hq1cSyP/7IJucXlKm2tv6ygZW6PUrSe58UZW/HmnB0qbdnzf27Fb+u92umvVxxAfqlLVZIFALbpJBfq8cI8n2OlLg+2Hc1DxuMz8dXybPy05pDhxMZvGKwKpwFkaQcApOgkZjLjut7NlNcxEQ6MbJ8KAOiRnhDYF+sQzMzRPGU6GV61pTWM0BMwDulYFcw2EnroJTzjhdhpN/bALf2NLaB6sL6oKG4P9VkYo8LsqG9BQXHaRCnEY9NsQnedKEARJ5iUuz2glOKXtYewYu9ptHh8ppIgiEe74dJb0AGg+2RpDLJEXEt3nTItSzF1cfVrqP/z08Zq+y4rm/FDZ4qVfipxuVXjkm3q31+w27CEEO+xwLP/dBGGvrEIz/y+RSXIMmuvT6yb26NsSAtK1W55RjDlpNbLYe2Bs7obwcpS2XqNZgqMYGCWkMyfhV/vXvPW2P2nCzHg1b/xxK+bKpwwMVCKylw+3gFGWbMBtdWOCW5mibO0sfU9X5qv1Ie1ipEQ2zseuKaB981cl74rq7/SXFqu+J+xRZop/5mSkfWpntJdm509p7AM/1u0F1dzoVZsb6SdRrTWS63yJNwgwxWzCPurhLDnZKHiUs2vtaxOd/8k7/WjZcG1YRhwQbK1B9Pl9qjWlAOni1RhCmawe6obEytbYv9v/RGcKij1+zv1yPeTkK7M5VE8iD5ctEdl6ebh82ewcJraSGUssS4AD1FK2wHoDeAeQkg7AJMAzKeUZgKYL/8NAKMBZMr/bgfwISAJvQCeAdALQE8AzzDBV1D7mXpdD7RpEBvQZ8ziZhls8ryDc5H4ZuV+xdX0nfm7DC0DWjYeylUlHWJ8vGQf3v17t99YA0DKJMyjJ9joUeby4MfVh+DyUDz12xY8/OMGS4lbPNTaZslPBRsf6luwsvG05vrWbiN496quWP3kMDRJiArsi/k2yEKS20P9anitwi+qr87agdZPzlIt3Hr9r+XPjUeU2nB68BvYGQGWEdH7/rgIJyZf3AEvX9oRQ9qk4qkL2vmc88MdfTBv4iBkTxnjY/1msWND2lhTJGmF07fn7VKyJjOiwuxonuzfzflUoTU3XL3evY9LGlXu9mDBjhOY+MMGw4Q0gK+LuZEQzTYWbDNvNURAj/ev7lbhxd9M2AlUAeKPaTf2MHzPSljG0t0nlQRGj/28CZ8u9Qr2rLRLTITDcLPtclMcOF3kkwzsiGzh+GblAWQ88RdW7D2NO75arcRCal1feWVj9qlC9Hhhnt9xW1mh8M1xnf2eM7ydV1lkZa0wY90BYyGzsqw9cBaPmChItPHgWvTi3HmXyfFTV+BgTrGlrNj+sDoGNh/Ow+Ufed2Pi8vculmzGWv3n1EUzko1BM0aqedyzHPZh/8YKsn0iPNNDaKQHgms6yl9x9ES/cU6Vie3iBkbDp5Fh2dm6yZFZL+NjZviMjd2Hs/XFdC0yn+9jO+5xeW486s1SkZjhtZNVivEGimoWfiKP0ss4FX86p07OtWuSNadY4G3Mz2Y3JJiVBLwURv/1y73UFWSwU0WrbCAV4jVtis+0qlSivyw+mDQFfVbj+Thhmn/4rwX54FSqiSc9EfkuSjEUkqPUkrXyq/zAWwDkAZgLIAv5NO+AHCx/HosgC+pxAoA9QghDQGMBDCXUppDKT0DYC6AURVtlyC0sNmIj7Zfr5ZooGw5kotpS/dhLpcJ74lf1bErS3dbd7vzl6XXH1r3KD6ToRn/+WkDpmmy6Jot4IFa4wIVYiPCApsSWMwZI9xhR3JMeKUmRadBJtTKsJxzwWQWhyN+ygtpuffbdYZuN31aJKFBgFZsxnkGVuuYCAeu690MV/VsavjZdo3ikCGX4vn1nn6YfHEHn3N6NU/E5LHtdT/PK5gaya6ld2e1BADden5xEU50alzPsD0Mq5ZYvT7mN4jlborV2YFv7M2Em32nCpV49cqUL+mYFo/+GckV+uxFnRtV+HsDpWuTBHx1S09c38frNXF3VksMalXfNAEX47t/vQq6Y3kluhmwS8s9hkrD/JJyDHxtgc/zpBWaxk9doUrYplVmutwU5fLzMmfrMUseO5UhPSkKl3ZrjG9u7YWHR7QyPI93iXf4S0IAoH2jOMP39LwMAOCaXk3xz6QhunPMQ8ON2xZM9FyRXXI+gOf/2KoKIajMuAKAVhbrYwJQQgEAIF8njIDn9Tk7kfX6QhzPK1Gs/1ohlq+5XaZjKbNqGe1QPxIvJObg+w7m9yJWllGNhNh3xnfBrQGu+wWlLjz+6yb8sladXE4bhlVc7saIt4yFfh69pG0/rTmEWVuOKa76DK0Ap7X0GlkgWfiKy0P9KjJ+WXcYpwtKdc+L0xTkvTjFa5GNsbA1cbk9yhPs8lDsz5H2h1ZCfJQSOxoTfKvUGNUYKin3mMaoV4Tz312C5XLN9IJSF3YeN/c2YaXlarMlNjAVjwGEkHQAXQGsBJBKKWVmiGMAmJoyDQBvrjokHzM6rvc9t0Oy4iI1NRULFy4MRvOrhIKCgpBuX3VSWKgWFmJJxTcfV7Ry4sed5f4THADYfsgbA9A6wYYdZ4I7YZixyuLGe8sRX23pvgPqhWdYUwfmHZA29rknpPfKCcFCj/8NaBn1P8Qj7ECJfKl/llhb0Bj7d3qTPfHP+5EDFU+aUloqPR9Llv2DsxWsEayFd4FizFhobNkLlIK8sygtDfz5ahJrQ0O7/kKzZPEi3eM8q/5ZospmncZtUg4ckZJtnDq0F0aJWNPCisFEkmtblCHGRdHZYWxFdpblWWrXzgPWLNG/+NEU79y9B0VG/ngV5N7PFiuWguW7zBOSmLF29QqczdF/ziMdQLGJsebkCf/Jma5qE4bDBR4sPlRx615KFMGGVZKlakg88KV8vGH5ERx0uXTdCCtCcbkbUxfpJ7cZbrBJtlKijCf7wEGckTf6Vrx1KkN8OMHj3bxzWkqJ8fedPuW1UHVxHkPXFDvWnTC+r42dRdhi+K7Bdxw/ip3rT2NSd4LXVxEcKqAY2NiBC1o4seNots/5DhsQZIM+8ot85+L3523DyWLf8bl/v342/Kpm0RLfpFBNYm04mK++Gb1emo/zm0sCSUmJWplyzQcLcFGGE53rO3DiVMXLCF3RvByN3RHIDvMg26QvpKnIhkMlbmh9U/o1csB2bBv6xwCf6Hy2T0M7lh/Vf9bWHTiLdQfOIjFPGpfLDpdj+xH1fLV2j/48bSdQVXPwt5elmr1IvxfVmfj/XbseS7gtW1GJvtV/zTqvt0bWlFm65/AMfW0+LsnwFSz3u0qwMDoa0BESJSdkc2X9wSNHUSyP+X+Wr8TK/eWIDQMubUHwmZ/Bu31PNhYuPIrlR9Tz9omcXBQUe9uzffc+2M5YFx4bRBEcK7K+Fn4/y/9eLiHMg8Iy4NihA1i48Jjf80ORSguxhJAYAD8DeIBSmsdvqCillBAStB0IpXQqgKkA0KNHD5qVlRWsSwedhQsXIpTbV53EbloC5HmFtYYpydiWE9jm8cNruuGblQfQq3Maftzp1Qim1Ys0LBNzghvwrZs2wI4zxrFvocQizaa1ZXpTzDsgufD17NQWP+3cCBulyDJJgR8I71/bQ4mbGDx4MOa0y0dshAN9XvZfH+6aMQPxyippweKf933OfcBO82zGRkRHReJ0SRHe2QQcyq+6zWpCk0xgjW/myYrQICUZZ4/lAcXFyEiJwW6L8XbUEY5ObdLx+55tPu/pzh+z1AmhBg8e7HvObOkce2QsgLMY1LMr9p4qALb6rr4922dg/gFJjL3i/CGoH7UQAwcOAubN1G1vq+aNkZXVXtWOMLvNJ/5n48ngCEdNmjaTXIWzg5dgKTkpCTgtCR55ZRVfnoYOGoBFZ7cAx3wFcYfDAbiMhc9rB3fGUk22SC3PXTsUz/+5BThU8d/+xlXnYUAmV29Y7re+vXsib/Mx/LFXndxo9ZPDdGP3rVDilrKejj+vCb5YXnE3bSNSGjQEzSsFTlRc8fDwiFZ4fY7/8iQxkREYMdQ7tk7klQCL58NhIz6ukvXrpwDHJGFg9LDBaNj6rGHZqglDM3FZt8bosumoT6krM16/aYhSd31p3gb8tOYQhvdog3G9m0kZhDerXbVnThioWNiWPDIYb87dqVsrNRDKKYE2/a2eAAsACSkNgGxzQbZBXASO5VnLYm6VLt3PAxarN+/X9G+FKX/53uv6DRoB+/aDOMIAeAX0PbkevLWmFNlThuG9bf8AORVz8e6T0RKt/pkHpOnaZBSY3tEJG7T3t3OrZsjKagMASFwyFzmFZRjbpRF+W38EqXHh6Nq6MZYfNVcGDRo0CKUuD258ylcoPFSg339hDrvKS+OnI3EAjL3VHA4H4PbOd2dK1ddNbNxSVXqI2J0AfC3a20oTAUhj6YhB23jOllJ8tsVXkdg3JhLdCs4ACb5eTkk6Uo+NqGORo+KSUHTiFACKzt26Y8axbcho4EaHds2ALb4WaUZshGRwYEYHHkd4JNxFxWAZTaISUtC2fUNgre86kBoXjgeGtVIlREurXw9pMI9r53lllX8DQHxcLA4V5KF960xkBWjtDxUqtQsmhDghCbDfUEp/kQ8fl92EIf/PVpzDAJpwH28sHzM6LqgjaOMamavJUIuxegAwsn0DfH1rL5/MpMmx4ciU3SnNCCRbbqBYSXRTGfjkN8lyaYlARbuR7VMN4/CGtlUnAGqVGouG8V6X717NEw1/Y2y4Ay9c3AGvX6GOHbNSXmlMx4a6x1kz9eKKY8ON9W7NkqLwhqYdjD4tfAv0HcyRXPeig+BKE+awKb/5hr7plj9XXOZWyrsA/rPFBgJLYlI/NtwnARqjlU68ujbZEs/g1uox+9G13bD4ER1B2oALOun3uRHv/r07KDF2PHqxXYC5m6ceEU67bqZkf3x9Sy+M6tDA73lhDluFY8Kv690M397WSy3A8te22xDh9H3urWSeNqNNwzg8N9bXpT0YlLupaaxchEGyGJ7zOzZE35beuaB1qn6+Bu33RMhzhF5JDI/GRTPGZI56cHgrNE2KMnW31eaQGNY2VXVN5gbL5q12Os9ty/reNbFxQiQyU33XyCfHtDWcL/UIJLzDistto3rBm+sYehZ6o/mdKVqM4sJPGbiqWsXq1EAIQEBRonN/eZf5bk0lgYzV53W5KWIsxMs+/+dW7DkZWBKzi7uqBW9tKT4t/sIStLVzjWLVA80loYXNAXEO42c1Qmea0M6F87ef8LoFuz3Yf7oIzRKjTMMFvri5J24b0MLw/T0nC1X5TorK3D5jaumjg3Fj33R8cv15Ppn7w+w2v2WaePyVKQK8CpTa7E5cmezEBMCnALZRSt/k3vodAMswfAOA37jj18tZinsDyJXdjmcDGEEISZATOo2QjwnqCJNGt0FqnHdzxGL4jDLUaXlkVGtlY+3QWB/LXR5c08s4ZpCREhfY5uyaXk2V2EAtkZoJL9A41UDhJy62yTw/OjA3p7uzMvDA0MwKff/3d/TBqieG6b5HCMG1vZvh8u6NVcd5wQwA/nt1V9XfV3RvjK5N6+le00iIumNgC3Q3yXrcKD4SWa29m/ZPb+iBeRMHYkBmMkpcvovs7C2S+0xqBWNZAW88XLjDhjh5QxGIwmTajecprzs1jsenN5xncjYw9bru+OCabqbnKNdLi1fao7f/XPBwFrJa6Qs5Wnq3SMS250dhoOb8bs0S0MCC4P3IqNbInjLGUGjQI9CFNVAhVMsgi/eC4bTbdGvWxoY7FKXJY6MlK0rbht629c9Ux9GaPS/+kgc/Oaat7vHJF3dA35bG8boOO6mQAM4Ic9jw9S29fI4nRFVdWahV2TmmQsUwjTJOj6gwh9JnHdLi8PWtvbDy8aGq9QnwFWK1cz6PVojNSInBZzd5x/Hel873+YxZ9t4vbu6pUgpq+4ltTlniNl5gBYCrezVVKSwJIRjbJQ09myeqrnXrgBa6ioxgYKXEVmJ08JW/s7b4CkGRYeaCHqth+sio1iqBd86W46qSXIHGpToDkDjsAFg0ypJHBis5DI5w9bZfvrQjLuvWWFlrB7Wqj8SoMO2lfPhsWTZ2WEhcyNOpcTw6yuuHFaqqkkCgPDGmHX6/tx8yoozvvT8htpVG4TPxhw04fLYYzZKiFQWCHk4bQT8LORIeGdUaXZvWQ3G520cp1jghCs9e1B4dG8f77KEcdmIpH0UgsLnrnEzsBKAfgOsADCGErJf/nQ9gCoDhhJBdAIbJfwPATAB7AewG8DGAuwGAUpoDYDKAVfK/5+VjgjpCv4xkrHx8GN6/uhum3dgDk0a3wde39EI9zQTMa8h5eI2U1pro8nhg10wscREOn2ulxFoXVN6+sgtevKQjHhnVBvMmDsLKx4di0X+ylPe1G8tArWdmGyKGjQDt5I0vnxgrISoMqyb0xivJgbk4RYfbUU9OwtQ/I9lS1s3KoN14XdDJm8jmsxvPw+SLO6gsltf1bqZk0TUq+zFpdBvTzV9magyc3MQ/tG0qMlJiERVm180aul9OohKoEPvnff2VjK+tZKEszG5Tkj7Yufa3a6gvWF3evTH+fmgQOjepp9jaOjWOR1KM+aZkRPsGOL9jQ7wzvgumXNrR8LzMlBi8fGknzLx/ABKiw3w22gDQPDlaFU+r5aZ+6crrT244T3eh09sE62XDZZYkewCCk9FzYCQIV3YjFW1iQTNK2sUEIn5zs/qpYXj18k6YcmlH3DGoJf64tz++u60XmidH67Z9yaPGlmx/JXBuHdACO18Yjb8mDDA9T6/deom7eIwSjgHAq5d1Qoc032e7XhXWNt5/usinTijg9c6wIpBFhduVZ/Hmfs1RPzYcqXERPvdZKxCzfr5tgK8go/fY8cohPaUcny39zkEt8TI3llPjInxKlPAwAdtISGLJxniFQlq9SPxwRx/smDxadS6zXJmtYfdXoPatWT1aRlK0fwEsUN5f4Ota68/TxkOlNf2uQS2RwLVpz8kCnOEsygkG7TXyBAuk3JKNQMlbEBfhxGXdG+O89ARMkpVggORR88a4zujVIgkLH87CMxe1R5rFJJksKZPemNWDUuCj67pbqixh1RNtbJeqT2YX4bB5BT2DuTNSR+rh92RaT4p9cjbrXs0TFcWRHg67Dc2S/FdlCHfYERVmx5Jdp5QEg3poFaRhdhseHdUGdw7SN65UBL4SRG2lMtmJl1JKCaW0E6W0i/xvJqX0NKV0KKU0k1I6jAmkclbieyilLSmlHSmlq7lrTaOUZsj/PgvGDxOEHmM6NcSQNqkId9jRPzNZpUEe3i4Vn910Hr65tRfuGKR2yeA3GFoXC5eb+izmG58diQc1GRub+plcWtb3lg3hz81IiUFqXASSODc77YaHd70FoNLC62HFBah+bDiGyaUbbIQoVsv4KCfqRzvhtLg+JspuNS2SY5QNZmyEA5d2k7S5TOt4U790XUtUWj39RXJQq/r4/d5+ht/LL+DvjO+iei+rdX3ZFdOGhtHSeZd3b4wuTeoBgKHLDCHENJvfE2Pa6mpKo8MdpjGqRtmy/7i3v+K+zVMvyokhbVKx5slhysLs8lA0ku8VHx869fruutfu2zIJLeTnv4Os8e7XMtnyxmdslzSMN8havOHpEfjjvv6IDLMrroZ6QqwZ2VPG4JkLvRmNtUoJ1s4IHbdxPZdUVtyelbe4qmcTZKTEGGZ7zJ4yxrCMRafGXgvB/bJ3QVSYvdILsZly6Z9JQ3QtMUxbfnWvpnjt8k5Y+uhghDvsqBcVpvRPx8bxqBcVhvkTB2HWA77Cppl2X8t/r+6KfS+rLXthDpvK0msFp93mt4zFj3f2NRyLYQ59K7RWMcm4d7C+IFTR7M48rASJXnsAdZmcKKdXiOUFLX54fHhNN7ykoyDKnjIGT4zxLXOlVwtdqxz6Z9IQzJs4SPmbf1THdmmkKtOjbY+25Nodg1oiNtyBXjohEoDX5XnRI4Ox5km1B41WoGYhEFqrDyM+0onBAYT9MIyyuPMkcnMrHyYypmND1XpcWaI0Qsljo9v4eHmE2W0ghKiO7zpRoKorm2DwbM96YCB+vqsPosLsqvFidY0GpHROzBLrdBBEhTnw4519lbVBS3pyNOIjnQEr0F+73JrymoIirV6kaWZ87zU7WbpmZTyerKLMASb7hASdJSece/6N3HC7pyeYeq/YbdayF0c4bYh0+t8Dave6DjtBmMMWlDkTkMYcc3+2UjYvVAlOZhiBoALc1Ddd2YRGOO0Id9jRLyMZj41Wu8jxQqPWklPu8ehu/HkXvV/v7qua7C/r1hifXK+2Fn1za2/ldbNEX4E3gpvktN+WFBOGoW1SMO3GHtjwzAg0TzKfEDrIgsV9JhpuOyFoIgtXzZKiMP323vjzvv6Ii5AnSYtCycwOZfgnIwc2G1HK4bAYoNVPDsP/3SMJos9c2B5f3NxT9dlNz47A/Ie8Gy9ey5gSG27q2sIm4BHtUjG2izq+ht/gsX1kvSincl/NrE/K79ch3GHX3chG+3Enu6FvOt6/2tdFlxD92F62UCXFhCvWO5fbg0mj22DC0EyMaJeKn+7sgyWPDFY2PlqX8yiuTV2bJmDdU8MxumNDOIOQrCs+yuljlQpQhvVBK2j93939cM/glsqizi+4egs5u0+3D2yBS7ul4ZkL22PexEHY8MwIn3PnTRxo2I7mydGqMkIPDsvE0kcHY9mjQ3zKRzBu1MQoG7m8Oh02w5hdm43oKvbZ73faCa7o0QSNTeojS9fwXoS56+lZw5nLID8Wwh02XNCpEQgh6NHM2EpqhTC7DXcOaokHhmVi83MjDc8zim0PM3ClZgqhEe1SVffZyNW7m8nv+ObWXujcWH8Tr2qj/KwbWdwu7dYYyyYNwbtXdYXDbsM1vaWNudFmsElilKFADABf3twTQ5p4x++4Hk0Mz2U0qhephNEA6vHYKjVWUfzoxfWeyFcnP+reLAGbnhvpU96MwWrpxkU4VcpXPdj3udwUn+soX8tcHtN7wa8PRsRFOHRrnfKWWH5M39y/OX68sy/+vK+/32tbIVwjoPdqkYS1Tw3HjhdGKUIrO4c973YbwZbDuap+SozWnzfsNoLuzRKx9flRqjU0LACvEwpvnguz+61Fb77R60eGVffxXs0lBYm/klFOO0GSRbdwrVBWFVi5d3o/iVfi6IUsNIyPMNxfMNwe3+9/ZFRrAOqcHMwS6w/tvWfXthL7b4UXLumAga3qY/vkUejatHLrSU0SlBI7AkFFsNmI4m5ZapIYgN/j6Vli9SZa5ibhsBF0bZqgcp17Q+NKu/ap4UiMDsO3t/bCr+sO624OeDcS7Z4zzG7Dp1xsozZRRHpSlKr+311ZGbi5f3P0bpGE9/72lqX49rZeuPpjqRSMzUZweffGSKsXiT4tk0AIUWtl/QXLyTQIA+CQ2tOreSJu7JuuCFT+krjEagTGvyYMwNO/bcFPaw75/Xq7LIzxFsCp13X3SfjRIJrgdAlFXIRTuaaZEPvSJR3RvVkCNhzKxdJdJ1XuXtL3+n7WzE0UkGrddkiLxz3f+r6nt2Dw7kbR4dJiVO6hiI1wKh4APdITlXOyp4zBsdwSVS1h7SLGXNUCcbcNhCFtUvAyl6Ez0Jq2WkGrY+N4dOQEDDuXtVVP8GGuyBkpsXhzXBfD70mrF4mMFGMXtqFtUlQbMUKIspEzSl717EXt8cyF7TBtWTYm/7kVl3dvjI+X7PM5z2kjeOvKLkiOCcfn/2Qrx5vKSq2R7Rvg4yX7MHF4K9STBTQWo2+vgPLhm9t64ViufnZWFhPJ3/YmnHJt+u29DYV2KzjtBJFhTjwwrJWpRdZo4xnutOlaJVjM9NTre2DDwbMYK2fpNYq5MrMk9ctIxsgODbDBj1WvULbYJ8eG46kL2mHyn75Z0dPqRSpeJZ0a10P2lDGq9/n77G+jP7BVfbgPh+Hvgy4Mb5dq6pJvBJsX7x+aqcxZ8x8apHgD8ImfplxqzdLFMKrByfjzvv7Kc8fGqttDkdU6Be0axmHrUW8lgTK3x9BKK33e/3M/b+IgDHtzkc9x3mofzyk8wh02JEaHGQrpgaK1oEaF2ZU+ZveeCfvs92SmxPjUmraS9Iz35ogPoOZ6GTX2NjMjwmnH7hdHI+MJb11dM0udFQFoz0vnK/fFn1C46olhKLRYpsvIsyaYKHtBSi3vkQD1nkNvPpwre1Hw9+Pnu/ogOSYcg15bCEDfJbdFsqS4Us8vNkv9oBWm2XdbSZppRFIEweU9m+OhEa2VcV1VcfHVhbDECmqUwW3q47JujfH0hb5uWnpohZRrezfT3UBGhTnw4LBW+PVuydJottiyzVjfjGS8dkVnv5sS/v0wh021uQR8J4VbuYx1b1/ZBeelJ2BAZn2fBaJvy2SVBYYQgr4ZyRXaJOnhsNvw7EXtfdprlagwh2IB8pc1lf003jVnRPsGGHee2mpxd5cIfHVLTyREhym/0+znJkSH4dYBLfDeVV0x+wFjix1PXKRaiNVq+M0mcT2Bmu8P5k7r8uOaqb2M0XdWlbY6MzVWtXFfyMV4m/HzXX0wwUJCML7depveCAubXQD4zcRFHYCpa6OeUMdiGwkhuKV/cyx/bAgeGtFa9/MO2br4xJi2invuiseGYqYcb9ojPRHZU8bg/qGZuL5POgBfN+tAiItwKjHVRlZEdvWU2HB8yVl5HHZbpTYz/DxqNxlw+QYbT+Z+yTP99t7K7wHUG77ocIeuwHoep+zRw0p2ZrY5TooOwy39m+PpC6ytJTyf3+S9t1YEM0II1jw5zCdhnVWYZTKOs1C2rB+jhCQMaZOKhvERmP3AQEOXUp4Z9/dXrD3+rCod0uKVUBXFEitvwH++qy8u6+ZN0uf2UFN3dyvPYIqBwoz/7XZiPn9YUbrxoS+85bd1g1j8ca93zucFTTZv1WdCrHw/mDcJr2zUE6q/vU2d3Kw1F0Na0XU70M9p4zTN4jb1wj8YA1vVx6Oj2qjmBu389uIlHfDvE0OVv+tFhVlKLgVAyUthFKKkh1mmbz0CnY+ZQp+/5dpycXw7eINJ92aJaJYUjd4tpDlMG8e+7flRylzCvxXusPso3/Vg4Q7M1Z7t25jinDGqfQPs0UkeBwCL/6POtzC4qQOPnd/WVDFV26g7v0RQKwl32PHGuM4+bjHvXeXdHPDTEp+d+JXLOuLurJaGCS4mDMtUrEVmG5NABzT/dePP83Ul08bW1eO0zBd3TTNdpCbL5SkmamJ6VQRigSGk8r6kHCyOs1MT840VUyz4i1OMdhKlDMiV5zVB16b1cKXOPdUjJS4CS02S4jAyOcve61d0Roe0eCX+9vUrOvtsTljynbgIJ169vBOeubCdj/s5g20Y/Fk/tBlojTSx1eFyJX2/NQGoe7NEn/hyPW7hFDVhDhvG9WiMR0d5k5JY/T7e2qGN01n8n8FK9ke9jXXPdHWM4MKHs/DJDep+axgfiQinHT/f1Vc5xoaj1zXYhr8mDED2lDFoEB9hupFiMYZmJVOs8C+X/Zu/Byym+aVLOioCTmVokihdg5+DzEoqGaE3Z/bWxGjyG8pIpx1/3NdfUdK9eEkHzJs4SDU3MgZkJmP67b3ldvpvS7ocvtEyxRvfbzWDN4MXPqxmzU+KCfcrxBnF29/QNx3PXNjOsBxX/dhwLH9sqKpdZrRvFI/vbu+N7CljVG7L/mDjkrkgR4bZ8cLFHTCqvbcElFnmUqv3Sg9+XPXgkojpuXNamef5Z3L5Y0NV7/FeI7xnDlunmOcWc41lz/JXXAZuvTlMmwE8NsKJEe1SlTApq/zSIs//SQHw7xNDse6p4aps/YD5XqdTWjzu0lRk0Cra68eEIyU2An8/NEgZo0bPR71w9eBloRraNjHY2ndRZ28CqKnX6eeUMMKqAuDnhifw5VUdlJAOXrDu0Mh4bxOn4xbPcruwXCexEQ4p7jXMruslGOG04QDnmWcEUyxd0i0N71/dTQk/064DFNQwl4Y2F0zPBnXP+bbu/SJBneDCzo2wKjsHX8q13Bj8YC0odYMQYikZjpl2MpA4xI5p8Thy1lveRi9GU6sN1LrlmhEZZvdxddMliIJpIPRsnoj5Dw1CCz+JAJhlyUqiA0ZyTDh+vbsffl5zyPJn9BblHs0SMJLbhPEZFtlm7cc7+8DtoaqNidNOUO6meO2KTih1edA0KQpNk6JMLRts4S33I6wTQnDv4Az8d4HkPm4k1AWS0bIivDO+C7YcCe6GCZBiU9+dvwuAJGC+KicQ+WXtIew6UVAhl6Xvb++N7cfycefXazCuRxPVgrzi8aEo1ZRNevGSDrhjUAtc88lKnMwvVWWq1tK9WQLS6kXi8NlixEc6cbao3Kd8lxUGtaqPjxbuQfdKxhRFhztgI1LCn5n3e61Gl3RNQ8GhHYrlzAp6NZEZv97dT8m2aYUxnRpihk6NSCsWON5dND05GjHhDrx2eSfcPrCFYrEt1nFFnDS6DdqbbCS1PDSiFaLDHUodTUKIT9mZQKiMhZtn2aQhurGggCQc3NTPN1FYdcOUu3ypj8gwOz66rju6T56LuwdnqISUqdd1R/PkaAx/a7Hq8/7QEy54j6CoMAf+mTQEUxfv1U1Spl2/4yIcyNNknOfbYpaRmLeusssyIfb5se3RPDka9w/NxAPDMtVeNxbnsKlM4XnAen3rLpHWXHKtwqoxaJXIeutLt6b1sPbAWV1PFjYnxkc68dUtPRWhr0X9GEWhDQCdm9TDhoNncduA5kqoxtCmDvy8y2txHNo2FdlTxuCrFeo9HSM5JhzH8krQLyMJv284AsBXSfL7vf1w0X+XGf5uf9ncGd0jyoDmCfhqq1TloXuzBMzZehyAFG5227HmyCksx21frlZ9jrkH8zx1QTsMbp2i5AjhyxEyDwNeyRnusOO85gnYcdy87NHYLo2w41g+JgzLVO0zreS7+OXuvj5hbdueH4WV/ywx/c7aiBBiBSEPv5DwliqWIInXdplZsgakOXDNYN/4IquWiO2TR8FuI+jz8nwAUnzePTpZNwkhmPXAAJzKL8OT/7cJ3ZrWw4WdG2FMxwY+52ZPGYP0STMsfb/mS6yfG2SB18oGsXuzBDx7YTtc0rWx33O1FJb5ujD+do++m6nehvMnzsoGSJul3i0SsWJvjuLeLNX4VH8uOtyBs0XliItwIl1HSH9gWKaPeyN79twm2RAZfKZjI7cuQggeGJaJwa0DzwhqhbFd0nwSbQUDfozySpzbB7bAf37aaLkUBE9KXARS4iKw9flRPu/pufZFOO1olRqLq3s2xTvzd/l1ReuXkYQfVh/CDX3S8c78Xaqsx1Zp3ygeG581TowUCGyUOlXx9wRN4wITqj7VKXHESI4J9xvb98E13ZSYyffGd8WTY9rilb+24//WH1HO0VoYeuq4BdePDcfm50aq+oEQonI51nokhDtsAQugYQ6bjxW4Msogq4IZz8BW9X3yOgTiNllThCuWWN81Ys1TwwGoQyX6ZyarktJZzazNrvHypR0xtksj5BW7lNq8F8qWt0b1IvHsRe1Vn3t+bHt8tizb53rJMeGIi3Ti0BmvQrl5cjS2H8tHmMPX1Z2H79+T+aUAgBZyNuR6UWGGnicBJ9QJYN2tiDdERZqgHRfZU8bgi3+ysfbAWVVNXAafuM8skeOPd/RBuduD71cdVI5FOrzfteDhLOW1kYLhyvOa4J35u1RK40b1IlXKX97L7de7++LZP7Ziw8GzyjHlG/3FxMo35orujeF2e3Bt72bo1Lge6sdKyRq7N0vEGZ0SZDYbwQfXdFMppyKcdpWSUSVkciG6jPhIJ56+oD3uzspA3yl/K8d/uVu9bwl32PGUhdAIPf15N+4e3j8kA1+t2F+hea02IIRYQciitwbwkzArMcDHxD4/toPPZxi3dAxHVgdv9tE/7+uP5XtOW24Pm5zYAvmfUa0NXWnaNIgDGgAL5ZgE3j1ay3+v7uqT8MiUQN2JawBCCG6soKVhbOc0PP3bFtWxzrL7rxarE3Or1FhZiDUWNqPDJCHW6JY9MMx3c8Nce7o28W+Ju65POvaeKkRecbmpUKf3PVWNnltnReE3kFf0aIIrLGRvBRCwC6gRDwzLxG0DW/gVYp8f2wGDWqVgTKeGllymqxo2rM0syGYMalUfKbHhKiGjIpzf0TtH2mwEDeMj8fb4riohVjtEfrizj+61/PUB/6zUi3Ji/dPqbNVWZi8960tl3PIrstn7UpPZvbbAfquZmylvBWXKt9kPDES522MeGnNxByUpGkv+M6hVfUSFOZRndO1Tww2t1QBwfZ90Jf6cZ8plndCpcTwe/3UTfll7GC3ibbikaxr+2nzMJ3RDC99mJgBYsfwHy0JflWizRftYYgnBludGov0zs5VjbIwW6NRSZ0KjnmKZJ8xhk8tuee8tH7rJh4YYeWf1aZmkzMNhdhvK3B5EOOx4eGRrfLE8G/klLtX+r2vTBHx5c090fm6OckyZC/ztkeTzIpx2ZZ/Sp6VaEcYUdVpFDT8/+oMpvSmAh0e0wvqDuWiVGgNCCBrVi8Tkse3xlLzX6RaAN8+W50Ziya5TuPPrNX693SaOaI0Hh7cKWm6VUEMIsYKQR5WdWGdiYTGxyTFhuLqX/7pmjA5p8ZaSZvi0h31vAKnwzbigUxUXAa8h1+OKEh/lxIPDWuGteTvx6Kg2aJ5snIjKqiVgbJc0fLl8v2nmxsfPb4v7p6+zXLwdkKzScx4c6Ne9GpAUMGZKlppi6/MjLbthVQUt6kdj78nCgDYHZhBCLCUEiXDaMcagpE5NUtFkUdoSWbWNqApmydR7dI1qelq7Xt3c7OkR4bTjPyNb+9SpNYJZDK3E6l7Xu5nPMW1yr4pkIH7xkg7o2Vyy/LOkN11S7GjdIBYN4iLw6mWSt9WSRwbjNGdNiwqzq2oD8zQzqSP/8119MHPTMdhtBP0zkrHvVCHqRTn9h2VU47obH+lEbnG5z7yndRG22Qiiwx1Y+fhQpXkslrOg1PfesBJYTS0mg+QNCuEG81gzPyUIAWBE+1T8ufGoTxZpbchHfKQTF3RqiD/lkAdFxg3CvWfffa9JKUR/KFMJBe4d4hsnfV2fdEWIDYTocAdGtEvFE+e3xZU9/SuJ6/KcJoRYQciilyyFadj5uYwVJG/TQL8WYbBhG/5g1PSsELVMKK0I9w3JwE39003rwgLW3bC6N0vwG2s8plPDCgk1vHtkbaSylrvK8utd/XCyQL/UzLkEi4mtsXnFD2EOG8pcHnRuHO+TMKQysLI4r2tKn1mltc74i49yYmyXRpUSZs8V9EJiAiUpOkwlMGr57KbzsPdkYVA209f08grHzNDosEnC0YrHvQmdmiRGqeJuFzycpbgPa6lnYs3q3iwR3ZtJQvPXt0qJnvwlLFSoprX6+bHt8fCPG3yscr2aJ+LffTk+56dy2Z6ZIkHPAyHCacdfEwZYHkd8LV2jsGReIL6qZxN89+9Bpa2MN8Z1xsMjvJ5uLLbUZpOSac7eckw5979Xd8PJ/OVYuS/H+3xZue9+znHabdbyk5jglWGD/xzYbAS3DWzh/8Q6jhBiBSEPv+wxTR+vkWOuQA8MCywjYIXbIzeoRveagSyOtVDotdmIXwGWZ1Ar/YyHgtAnPsqpqhN5rvL7vf0xd+vxKouPqyzLHh2C3OLygLLfWuGW/s2VUhda2Fx724DmeGx0W7R4fCb6tkzCP3tOo1F8BP7RZKHleWd8xcrfCAJj3sRBSIhyovsL8xRFjJbBrVMwWL+yVaVgmYyNKhTwpMZFqIQ3HrPEj3pYjrmuJguYUa6DB4a1woWdG2GEnIhLjx7NEvDkmLa4pKt+rgS9RFtG8AkVjSyxYQ4bHhiWiR7NEuGwE3z370G0bRinUnCEO+yqvBRsTrTbCKZc1glTLlPnNmFbnFAzOLLfVB1bsP9e3RX3fruu6r8oxBBCrCBk0Rv4Dm4yYzRJjKq0xiwQbNU4MRlSg4mdQo0NT48wLQMhENQGKhreUF3Ujw3XdbW3UsMzGNhsBLtfHI3c4nJ0f2EecoqMLX+C6oMpNX6/tx+SY8JVyWqCycz7B/jU8GTW35b1QtB7IQRyV9htBBl+EqURQlS17CsDIQTLJg3Bp0v2oXXMccPzWN6HjYfOSp/zc11/OoMR7VPxb3aO1/LuL7ETO6cOcUGnRkKIFQhCCWWK4SYju44QW90Mal0f3648EHAh7qBRxybfyiKseKHBi5d0wL6T1su3CEKHN8d1VpXMsMr2yaOqJZ6aTXkOu01xfwx2iZqvb+mFAzn+6zcK9GHZay/pmqaUYgkmrGYyz1MXtMWAzGQ0Ld0X9O8LCgGs1YkOigIEXxlb3Z4dafUi8fSF7bBw4Qmc37EBLupsnA2fedQlRJuv4cyd2MiL+5b+zTHuvCbWvbeqaQ/F6kSblUgb2Ko+VgSQYFSgRgixgpBFcRHhjoWCEPvcRe1x58CWSKhAUopqhxAh9AqqBT5WTVC7uLRb4KWwAOu1MysKy9jJZw4lhGDfy+cHPVlJ/0zjpG/nOgu5Ein+eOvKLlXWDi3NkqJxQ99oLFyYXaHPv3hJh6AlaNQlgGd0xXkUdMwI/yfWIj64prvp+20bxuKRUa1xuZ/5Z1i7VHy5fL9heR5CNOFHFrMTVzWN6kVi/dPDTTMIBzOz+e0DW6Cg1DyTdF1DCLGCkIefb1hCBXsNBj847bagJjYRCAQCgS890hOx8dkRPhaWupxtMxTRq5tdF6hSxVuAyuMwG4BaUMYnmBBCcHeW/8RiT1/QDndltUS9YCZqqyblflDb7IfHz29bbd8VKoRgIIFAIMGy1bXh0vmzDHpdDOqGCgQCgaDuEEiCN4GgViKUMqY47DY0jDeura6L2T0V3ml1BmGJFYQsF3dNQ9+WSUjhEockxYTj57v6om3D2l3WpFKEQMIIgUAgEAgEQUIIVsEjRNyJBVWPEGIFIU2KTubL7nIBboFFPB7/5wgEAoFAIAgOgQqlQogNHkGoEyuoHYSMOzEhZBQhZAchZDchZFJNt0cgCFnE5CsQCAQCQWhTx+u5hyziXp4zhIQQSwixA3gfwGgA7QBcRQhpV7OtEghCGKuTtMhOLBAIBAJB9SPcVgWCKiUkhFgAPQHsppTupZSWAZgOYGwNt0kgCF3E4igQCAQCQWgSaO4KoWwOHpT63yOJ+10nCJWY2DQAB7m/DwHoVUNtCQ4eD7B/f023QsBTVlY3+uTUKSAvD4gPoKB8qP7uutIndQXRH6GH6JPQQ/RJaBGK/XHgAFBQABQW+j+3qKh6fkN13qOa7JP8fMBlUi81L09qW0FB9bUpFDDqk9hYIDGx+tsTBEJFiLUEIeR2ALfLfxYQQnbUZHvMiASaRAJ5Nd0OgZcSID4CyK3pdgQDG2D3AJYyNhGAUIvnVjd1qU/qAqI/Qg/RJ6GH6JPQIlT7ww7Y3RbWXgIQSLbBKjUPJr1SlVdXU5N9QiQ7LPEY3E8bYPMA7upuV01j1ic5ITh+OE4ZvREqQuxhAE24vxvLx1RQSqcCmFpdjaoMhJDVRZT2qOl2CLwQQlYXij4JKUSfhBaiP0IP0Sehh+iT0EL0R+gh+iT0qIt9EioxsasAZBJCmhNCwgCMB/B7DbdJIBAIBAKBQCAQCAQhRkhYYimlLkLIvQBmA7ADmEYp3VLDzRIIBAKBQCAQCAQCQYgREkIsAFBKZwKYWdPtCCK1wu35HEP0Segh+iS0EP0Reog+CT1En4QWoj9CD9EnoUed6xNCRZppgUAgEAgEAoFAIBDUEkIlJlYgEAgEAoFAIBAIBAK/CCG2CiCEjCKE7CCE7CaETKrp9pwLEEKaEEIWEEK2EkK2EEImyMefJYQcJoSsl/+dz33mMbmPdhBCRtZc6+suhJBsQsgm+d6vlo8lEkLmEkJ2yf8nyMcJIeRduU82EkK61Wzr6x6EkNbcWFhPCMkjhDwgxkn1QgiZRgg5QQjZzB0LeFwQQm6Qz99FCLmhJn5LXcCgP14jhGyX7/mvhJB68vF0QkgxN1Y+4j7TXZ7vdst9Rmrg59QJDPok4HlK7MeCh0GffM/1RzYhZL18XIyTKsZk33vurCWUUvEviP8gJabaA6AFgDAAGwC0q+l21fV/ABoC6Ca/jgWwE0A7AM8CeFjn/HZy34QDaC73mb2mf0dd+wcgG0Cy5tirACbJrycBeEV+fT6AvyDVzOsNYGVNt78u/5PnqmMAmolxUu33fiCAbgA2c8cCGhcAEgHslf9PkF8n1PRvq43/DPpjBACH/PoVrj/S+fM01/lX7iMi99nomv5ttfWfQZ8ENE+J/VjV94nm/TcAPC2/FuOk6vvDaN97zqwlwhIbfHoC2E0p3UspLQMwHcDYGm5TnYdSepRSulZ+nQ9gG4A0k4+MBTCdUlpKKd0HYDekvhNUPWMBfCG//gLAxdzxL6nECgD1CCENa6B95wpDAeyhlO43OUeMkyqAUroYQI7mcKDjYiSAuZTSHErpGQBzAYyq8sbXQfT6g1I6h1Lqkv9cAal+vSFyn8RRSldQaWf4Jbx9KAgQgzFihNE8JfZjQcSsT2Rr6jgA35ldQ4yT4GGy7z1n1hIhxAafNAAHub8PwVyYEgQZQkg6gK4AVsqH7pVdJ6YxtwqIfqouKIA5hJA1hJDb5WOplNKj8utjAFLl16JPqpfxUG84xDipWQIdF6Jvqo+bIVkwGM0JIesIIYsIIQPkY2mQ+oAh+qNqCGSeEmOk+hgA4DildBd3TIyTakKz7z1n1hIhxArqFISQGAA/A3iAUpoH4EMALQF0AXAUkruLoProTyntBmA0gHsIIQP5N2VNrEiRXs0QQsIAXATgR/mQGCchhBgXoQMh5AkALgDfyIeOAmhKKe0KYCKAbwkhcTXVvnMMMU+FLldBrRQV46Sa0Nn3KtT1tUQIscHnMIAm3N+N5WOCKoYQ4oQ0kL+hlP4CAJTS45RSN6XUA+BjeF0hRT9VA5TSw/L/JwD8Cun+H2duwvL/J+TTRZ9UH6MBrKWUHgfEOAkRAh0Xom+qGELIjQAuAHCNvBmE7LJ6Wn69BlLMZStI9553ORb9EWQqME+JMVINEEIcAC4F8D07JsZJ9aC378U5tJYIITb4rAKQSQhpLls7xgP4vYbbVOeR4zE+BbCNUvomd5yPqbwEAMuq9zuA8YSQcEJIcwCZkJINCIIEISSaEBLLXkNKlLIZ0r1n2e9uAPCb/Pp3ANfLGfR6A8jlXGIEwUWlNRfjJCQIdFzMBjCCEJIgu1WOkI8JggAhZBSARwBcRCkt4o7XJ4TY5dctII2JvXKf5BFCesvr0fXw9qEgCFRgnhL7sephGIDtlFLFTViMk6rHaN+Lc2gtcdR0A+oalFIXIeReSA+AHcA0SumWGm7WuUA/ANcB2ETkFO8AHgdwFSGkCyR3imwAdwAApXQLIeQHAFshuYrdQyl1V3Ob6zqpAH6V5lk4AHxLKZ1FCFkF4AdCyC0A9kNKBgEAMyFlz9sNoAjATdXf5LqPrFAYDnksyLwqxkn1QQj5DkAWgGRCyCEAzwCYggDGBaU0hxAyGdJGHQCep5RaTYQj4DDoj8cgZbudK89hKyild0LK0Po8IaQcgAfAndx9vxvA5wAiIcXQ8nG0ggAw6JOsQOcpsR8LHnp9Qin9FL75FQAxTqoDo33vObOWENlDRiAQCAQCgUAgEAgEgpBHuBMLBAKBQCAQCAQCgaDWIIRYgUAgEAgEAoFAIBDUGoQQKxAIBAKBQCAQCASCWoMQYgUCgUAgEAgEAoFAUGsQQqxAIBAIBAKBQCAQCGoNQogVCAQCgUAgEAgEAkGtQQixAoFAIBAIBAKBQCCoNQghViAQCAQCgUAgEAgEtYb/B6OepWImSGXjAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_examples(target, 288*7, 10, anomaly_indicator)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generating several time series" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:02.518670Z", - "iopub.status.busy": "2022-06-13T08:52:02.517657Z", - "iopub.status.idle": "2022-06-13T08:52:02.521708Z", - "shell.execute_reply": "2022-06-13T08:52:02.522279Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'daily_smooth_seasonality': array([0. , 0.00011899, 0.00047589, 0.00107054, 0.00190265,\n", - " 0.00297183, 0.00427757, 0.00581924, 0.00759612, 0.00960736]),\n", - " 'weekday_scale': array([5.53325369]),\n", - " 'weekly_pattern': array([1. , 1. , 1. , 1. , 1. ,\n", - " 0.18072549, 0.18072549]),\n", - " 'day_of_week': array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),\n", - " 'level': array([7.15189366]),\n", - " 'noise_level': array([0.60673574]),\n", - " 'noise': array([-1.37627579, 0.80910965, -0.5113108 , 1.19522357, 0.76819937,\n", - " -0.30693338, 1.54426428, 0.65576722, 0.29384949, 0.35138523]),\n", - " 'signal': array([0. , 0.00011899, 0.00047589, 0.00107054, 0.00190265,\n", - " 0.00297183, 0.00427757, 0.00581924, 0.00759612, 0.00960736]),\n", - " 'unscaled': array([5.77561787, 7.9611223 , 6.64105875, 8.34818777, 7.92199568,\n", - " 6.84793212, 8.70043552, 7.81348013, 7.45333928, 7.51288625]),\n", - " 'item_id': '0',\n", - " 'start': '2018-01-01'},\n", - " {'daily_smooth_seasonality': array([0. , 0.00011899, 0.00047589, 0.00107054, 0.00190265,\n", - " 0.00297183, 0.00427757, 0.00581924, 0.00759612, 0.00960736]),\n", - " 'weekday_scale': array([8.71312027]),\n", - " 'weekly_pattern': array([1. , 1. , 1. , 1. , 1. ,\n", - " 0.11476945, 0.11476945]),\n", - " 'day_of_week': array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),\n", - " 'level': array([9.78618342]),\n", - " 'noise_level': array([0.80116698]),\n", - " 'noise': array([ 1.19700682, -0.16436603, 0.2508195 , -0.6842733 , -2.04537114,\n", - " 0.52365764, 0.69255774, -0.59459811, 1.81845245, -1.16518975]),\n", - " 'signal': array([0. , 0.00011899, 0.00047589, 0.00107054, 0.00190265,\n", - " 0.00297183, 0.00427757, 0.00581924, 0.00759612, 0.00960736]),\n", - " 'unscaled': array([10.98319024, 9.62193638, 10.03747882, 9.10298066, 7.74271494,\n", - " 10.31281289, 10.48301873, 9.19740456, 11.612232 , 8.63060103]),\n", - " 'item_id': '1',\n", - " 'start': '2018-01-01'}]" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "rcp.take_as_list(rcp.generate(10, weekly_seasonal_unscaled(), \"2018-01-01\", {}), 2)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Saving to a file" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:52:02.531143Z", - "iopub.status.busy": "2022-06-13T08:52:02.530189Z", - "iopub.status.idle": "2022-06-13T08:52:02.532856Z", - "shell.execute_reply": "2022-06-13T08:52:02.533430Z" - } - }, - "outputs": [], - "source": [ - "def write_to_file(recipe, length, num_ts, fields, fn):\n", - " with open(fn, 'w') as f, open(fn+\"-all\", 'w') as g:\n", - " for x in islice(rcp.generate(length, recipe, \"2019-01-07 00:00\"), num_ts):\n", - " z = {}\n", - " for k in x:\n", - " if type(x[k]) == np.ndarray:\n", - " z[k] = x[k].tolist()\n", - " else:\n", - " z[k] = x[k]\n", - " xx = {}\n", - " for fi in fields:\n", - " xx[fi] = z[fi]\n", - " try:\n", - " f.write(json.dumps(xx))\n", - " except Exception as e:\n", - " print(xx)\n", - " print(z)\n", - " raise e\n", - " f.write('\\n')\n", - " g.write(json.dumps(z))\n", - " g.write('\\n')" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/docs/tutorials/forecasting.zip b/docs/tutorials/forecasting.zip deleted file mode 100644 index f044c2380a..0000000000 Binary files a/docs/tutorials/forecasting.zip and /dev/null differ diff --git a/docs/tutorials/forecasting/extended_tutorial.ipynb b/docs/tutorials/forecasting/extended_tutorial.ipynb deleted file mode 100644 index 056dc28f40..0000000000 --- a/docs/tutorials/forecasting/extended_tutorial.ipynb +++ /dev/null @@ -1,4388 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Extended Forecasting Tutorial" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:37.112241Z", - "iopub.status.busy": "2022-06-13T08:55:37.111179Z", - "iopub.status.idle": "2022-06-13T08:55:39.186635Z", - "shell.execute_reply": "2022-06-13T08:55:39.187259Z" - } - }, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import mxnet as mx\n", - "from mxnet import gluon\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import json\n", - "import os\n", - "from itertools import islice\n", - "from pathlib import Path" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:39.192619Z", - "iopub.status.busy": "2022-06-13T08:55:39.191804Z", - "iopub.status.idle": "2022-06-13T08:55:39.195258Z", - "shell.execute_reply": "2022-06-13T08:55:39.194613Z" - } - }, - "outputs": [], - "source": [ - "mx.random.seed(0)\n", - "np.random.seed(0)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Datasets\n", - "\n", - "The first requirement to use GluonTS is to have an appropriate dataset. GluonTS offers three different options to practitioners that want to experiment with the various modules: \n", - "\n", - "- Use an available dataset provided by GluonTS\n", - "- Create an artificial dataset using GluonTS\n", - "- Convert your dataset to a GluonTS friendly format\n", - "\n", - "In general, a dataset should satisfy some minimum format requirements to be compatible with GluonTS. In particular, it should be an iterable collection of data entries (time series), and each entry should have at least a `target` field, which contains the actual values of the time series, and a `start` field, which denotes the starting date of the time series. There are many more optional fields that we will go through in this tutorial.\n", - "\n", - "The datasets provided by GluonTS come in the appropriate format and they can be used without any post processing. However, a custom dataset needs to be converted. Fortunately this is an easy task.\n", - "\n", - "### Available datasets in GluonTS\n", - "\n", - "GluonTS comes with a number of available datasets." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:39.200325Z", - "iopub.status.busy": "2022-06-13T08:55:39.199239Z", - "iopub.status.idle": "2022-06-13T08:55:39.537806Z", - "shell.execute_reply": "2022-06-13T08:55:39.538317Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.repository.datasets import get_dataset, dataset_recipes\n", - "from gluonts.dataset.util import to_pandas" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:39.543498Z", - "iopub.status.busy": "2022-06-13T08:55:39.542572Z", - "iopub.status.idle": "2022-06-13T08:55:39.546247Z", - "shell.execute_reply": "2022-06-13T08:55:39.546799Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Available datasets: ['constant', 'exchange_rate', 'solar-energy', 'electricity', 'traffic', 'exchange_rate_nips', 'electricity_nips', 'traffic_nips', 'solar_nips', 'wiki-rolling_nips', 'taxi_30min', 'kaggle_web_traffic_with_missing', 'kaggle_web_traffic_without_missing', 'kaggle_web_traffic_weekly', 'm1_yearly', 'm1_quarterly', 'm1_monthly', 'nn5_daily_with_missing', 'nn5_daily_without_missing', 'nn5_weekly', 'tourism_monthly', 'tourism_quarterly', 'tourism_yearly', 'cif_2016', 'london_smart_meters_without_missing', 'wind_farms_without_missing', 'car_parts_without_missing', 'dominick', 'fred_md', 'pedestrian_counts', 'hospital', 'covid_deaths', 'kdd_cup_2018_without_missing', 'weather', 'm3_monthly', 'm3_quarterly', 'm3_yearly', 'm3_other', 'm4_hourly', 'm4_daily', 'm4_weekly', 'm4_monthly', 'm4_quarterly', 'm4_yearly', 'm5', 'uber_tlc_daily', 'uber_tlc_hourly']\n" - ] - } - ], - "source": [ - "print(f\"Available datasets: {list(dataset_recipes.keys())}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To download one of the built-in datasets, simply call `get_dataset` with one of the above names. GluonTS can re-use the saved dataset so that it does not need to be downloaded again the next time around." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:39.551793Z", - "iopub.status.busy": "2022-06-13T08:55:39.550837Z", - "iopub.status.idle": "2022-06-13T08:55:39.555096Z", - "shell.execute_reply": "2022-06-13T08:55:39.555714Z" - } - }, - "outputs": [], - "source": [ - "dataset = get_dataset(\"m4_hourly\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### What is in a dataset?\n", - "\n", - "In general, the datasets provided by GluonTS are objects that consists of three main members:\n", - "\n", - "- `dataset.train` is an iterable collection of data entries used for training. Each entry corresponds to one time series.\n", - "- `dataset.test` is an iterable collection of data entries used for inference. The test dataset is an extended version of the train dataset that contains a window in the end of each time series that was not seen during training. This window has length equal to the recommended prediction length.\n", - "- `dataset.metadata` contains metadata of the dataset such as the frequency of the time series, a recommended prediction horizon, associated features, etc.\n", - "\n", - "First, let's see what the first entry of the train dataset contains. We should expect at least a `target` and a `start` field in each entry, and the target of the test entry to have an additional window equal to `prediction_length`." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:39.560412Z", - "iopub.status.busy": "2022-06-13T08:55:39.559578Z", - "iopub.status.idle": "2022-06-13T08:55:39.568471Z", - "shell.execute_reply": "2022-06-13T08:55:39.569044Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['start', 'target', 'feat_static_cat', 'item_id', 'source'])" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# get the first time series in the training set\n", - "train_entry = next(iter(dataset.train))\n", - "train_entry.keys()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We observe that apart from the required fields there is one more `feat_static_cat` field (we can safely ignore the `source` field). This shows that the dataset has some features apart from the values of the time series. For now, we will ignore this field too. We will explain it in detail later with all the other optional fields.\n", - "\n", - "We can similarly examine the first entry of the test dataset. We should expect exactly the same fields as in the train dataset." - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:39.574065Z", - "iopub.status.busy": "2022-06-13T08:55:39.573155Z", - "iopub.status.idle": "2022-06-13T08:55:39.579896Z", - "shell.execute_reply": "2022-06-13T08:55:39.580448Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['start', 'target', 'feat_static_cat', 'item_id', 'source'])" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# get the first time series in the test set\n", - "test_entry = next(iter(dataset.test))\n", - "test_entry.keys()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Moreover, we should expect that the target will have an additional window in the end with length equal to `prediction_length`. To better understand what this means we can visualize both the train and test time series." - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:39.591681Z", - "iopub.status.busy": "2022-06-13T08:55:39.589563Z", - "iopub.status.idle": "2022-06-13T08:55:40.015033Z", - "shell.execute_reply": "2022-06-13T08:55:40.015451Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAG+CAYAAABGeNqkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5hcx3UlfqpznJ6IQR4ABAmCBAEGEIwiRyStSIWVVlpn2dJK+1t717K9lkE5yau1tJIlh9V6FU3ZlG3JkizJksAEBgwzAQIkACKHATCYHHs65/r9Ua9epxeq3sxwBmCd78MHoKe7pvqFerfOPfdcQimFgoKCgoKCgoLCwsG12BNQUFBQUFBQULjcoQIuBQUFBQUFBYUFhgq4FBQUFBQUFBQWGCrgUlBQUFBQUFBYYKiAS0FBQUFBQUFhgeFZ7AkAQGtrK924ceOcx0mn0wiHw2qcN9E4S2kuahw1jhpn4cZZSnNR46hxDhw4MEkp7ZL6MKV00f9cddVVdD6wZ88eNc6bbJylNBc1jhpHjbNw4yyluahx1DgA9lPJWEelFBUUFBQUFBQUFhgq4FJQUFBQUFBQWGCogEtBQUFBQUFBYYGxJETzRigWixgcHEQulxP+TCwWw/Hjx+f8u99s4wQCAaxevRper3fOv0NBQUFBQUGhGUs24BocHEQ0GsW6detACBH6TDKZRDQanfPvfjONQynF1NQUBgcHsX79+jn/DgUFBQUFBYVmLNmUYi6XQ0dHh3CwpeAMhBB0dHRIMYkKCgoKCgqNqFQonjg2hmK5sthTWZJYsgEXABVsvUFQx1lBQUFBYa7Y9foIPv6d/fju3oHFnsqSxJIOuBQUFBQUFBSWPiil+OazZwEA39s3AGZVpVALFXCZIB6P46tf/aqjz77rXe9CPB6f3wlZ4Pbbb3/DfpeCwmIhkSviz392FIlccbGnoqCg0ICXzk7hyFACVy+P4sRoEml1mzZBBVwmsAq4SqWS5WcfeeQRtLa2LsCsjOfx4osvLvjvUlBYbPzrvgH844vn8ffPnVvsqSgoKDTgX/YNoCPsw8fuZMVXiYJiuBohFHARQj5JCDlCCDlKCPld7bV2QsgThJDT2t9t2uuEEPIVQsgZQshhQsiNCzj/BcMDDzyAs2fP4vrrr8enPvUp9PX14S1veQve+9734pprrgEAvP/978dNN92Ea6+9Ft/85jf1z65btw6Tk5O4cOECNm/ejI9//OO49tpr8ba3vQ3ZbLbpd/3whz/Eli1bsG3bNtx1110AgHK5jE996lO4+eabcdttt+Eb3/gGABjOIxKJ6GN96Utfws0334ytW7fiM5/5DADW++nd7343br/9dmzZsgXf//73F+agKSgsIKbSBQDA+cn0Is9k/lCuUHxv3wByxfJiT0XHI6+P4EuPn1jsaShcYjg2nMCO9e1Y1RoEoAIuI9jaQhBCtgD4OIAdAAoAHiOE7ALwCQBPUUq/QAh5AMADAHYCeCeAK7U/twD4mva3Y/zPnx/FseGE7fvK5TLcbrfQmNesbMFn3nOt6c+/8IUv4MiRIzh48CAAFui8+uqrOHLkiG6f8O1vfxvt7e3IZrO4+eab8cEPfhAdHR1145w+fRrf+9738K1vfQsf/vCH8aMf/Qi/+qu/Wveez372s3j88cexatUqPRX54IMPIhaL4ZVXXsHk5CTe8Y534G1vexsANM2DY/fu3Th9+jT27dsHSine+9734tlnn8XExARWrlyJf/3Xf0U0GsXs7KzQMVJQWEo4MZIEABy4MIMPrLg8yPlnTo3j0z9+HQcH4vjif9y62NMBAPzWv7wKAPiN25VNjIIYcsUyzk+l8d5tK9ER8QNQAZcRRFatzQD2UkozlNISgGcAfADA+wA8pL3nIQDv1/79PgDf0fo8vgyglRCyYn6nvTjYsWNHXZDzla98Bdu2bcOtt96Kixcv4vTp002fWb9+Pa6//noAwE033YTz5883veeOO+7Ab/zGb+Bb3/oWymW20929eze+853v4Prrr8c999yDqakpffzGeXDs3r0bu3fvxg033IAbb7wRJ06cwOnTp3HdddfhiSeewJ/92Z/hueeeQywWm4ejoaDwxuLEKNt0DcWzKJQvj8X8/GQGAPCDAxdRKC1+Kf1QvMrA7zkxvogzUbiUcGY8BUqBTcuj6Ij4AACJ/OVxj84nRIxPjwD4HCGkA0AWwLsA7AfQTSkd0d4zCqBb+/cqABdrPj+ovTZS8xoIIZ8AY8nQ1dWFvr6+ul8ai8WQTLId7e/3rhX6MjIMFwB9fKNxUqkUKpWK/p5MJgO/36///7nnnsPjjz+O3bt3IxQK4V3vehemp6eRTCZBKdU/7/V69c+USiWk0+mm3/ulL30Jr7zyCh5//HHceOONeOaZZ1AsFvHFL34R9913X933eu655+rmUftd8vk8fu/3fg8f/ehHm77TM888g8ceewyf/vSncffdd+OBBx6o+3kul2s6B2ZIpVLC713ocZbSXNQ4CzdOskAxlshjeZhgNE0xFk9fFt/r2aN5AAClwP/5t6exOSJ+Hy7EfJ4brCqdf/LiUfzKFaUlc5wX+1xdzuOkChR/8kIWW7vc+FBPUXqcF4bYdRO/cByHJwkIgKlUftG/11IbxzbgopQeJ4R8EcBuAGkABwGUG95DCSFS4Syl9JsAvgkAmzZtor29vXU/P378uLS7+nw6sq9YsQLpdFofLxQKwePx6P8vFovo7OxEd3c3Tpw4gVdeeQWhUAjRaBSEEEQiEaRSKbhcLv0zfr8fxWKxaY5nz57FPffcg3vuuQdPP/004vE43v3ud+Ohhx7C/fffj1wuh5GREaxatappHhzRaBTvec978Kd/+qf42Mc+hkgkgqGhIXi9XpRKJXR3d+OXf/mXsWrVKvz93/990+cDgQBuuOEGoePT19eHxvPlBPMxzlKaixpn4cZ54cwk8PRevG3rWnznpQuoeIOXxff66smXcMPaCsZmcziZb8HNyz2LOp+XHz0Br7sfW1e3ouwiiETyS+Y4L/a5upzHee70BOJP78OzgyW8c10I75Ec58jTp4HXT+EDb78bAa8b7c8/gRwqi/69lto4Qq19KKUPAngQAAghnwdjrcYIISsopSNaypDzz0MA1tR8fLX22iWFjo4O3HHHHdiyZQve+c534t3vfnfdz9/xjnfg61//OjZv3oxNmzbh1ltvdfy7PvWpT+H06dOglOLee+/Ftm3bsHXrVpw/fx433ngjyuUyuru78e///u+W47ztbW/D8ePHcdtttwFgYvp//ud/xpkzZ/CpT30KAAv6vva1rzmeq8LSx8OHRxANeHDXVV2LPZV5w/ERlk68/YpOfOelC0heJvqQM+MpvO2abixvCeDMeAroWdz5nJtMoacjjFWtQRy8GAcgb4p8ZjyJZS0BtARUb9ZLBSdHqxmTGQepwOl0EWGfGwEvy8R0RHxIFJoLxOxwZjyFl/qn8Gu3LvKNsEAQCrgIIcsopeOEkLVg+q1bAawH8BEAX9D+/qn29p8B+G+EkH8FE8vP1qQeLyl897vfrft/bVTr9/vx6KOPGn6O67T8fj+OHDmiv/4Hf/AHhu//8Y9/3PQaIQSf//zn8fnPf76Ouevt7W2KrlOplP7vT37yk/jkJz9Z9/MrrrgCb3/72+eNAVRYujgyNIvf/i4TPZ//wrtt3n3p4PhIEsuifmxcxipyk4VFntA8YDpdwHS6gI3LIuifTGMmUwCwuEHKuck01neGsaI1gMeO5EBpQHqM+/76WbSHfXj1T39hAWaosBA4NVYTcOXktYQzmQLawj79/x1hPyanM9LjfOTb+zAUz+IXNndjeUz+2lvqEC31+REh5BiAnwP4bUppHCzQ+gVCyGkA92n/B4BHAPQDOAPgWwB+a15nrKBwmSJXLOOxI6OYSOYdj/HD/VX5ZPIyMgjtn0xh47IIOrRF/XJguM6Ms43SxmURtId8mMkUUVlEd+5yheL8VAYbOsNY0RJAoVxBUvISSuWZN+B0ujAv9h1/tfsk3vd3zyvX8gXGybEUbljbCgCYyTlhuAr6vQkAXVE/Zh3co7xoY++5KenPXgoQTSm+xeC1KQD3GrxOAfz23KemoPDmwh/95HX8+NUh/OLNa/CODvv3G+H8VHVX+dpAfH4mtgQwkcxje08bYkEvXOTyCLhOjzNWYeOyCM5OpFGuUGStPZUXFMPxLAqlCtZ3htEaYg9PWbZjdDan//uFs5NY1xl2PJ+fHxrG/336DAAgsZgH5jJHrljG8ZEEPnJbD86OpxylFGcyBbTXBFwrYgFM5ygopcK9euOZKm39cv8U3nf9Kul5LHUsaTMbtat5Y6CO89LA3v5pAMAzpyYcn5OB6QzuuqoLhFw+ARelFJOpPLqifrhcBG0hH5LFS/+aPTOeQtDrxspYcEkwd+c0RmpdZxgrtHTOtCTbMZaoBlynanRBsqhUKD7zs6PVcZM5i3crzAWvDcRRKFVw64YOLI8FHDNc7aFqwLU8FkCpAsxkxCnSYyNVr82Tc7h2ljKWbMAVCAQwNTWlgoEFBqUUU1NTCAQuv3z5pYRkroiheBar24IYmc1hJC1/3ZcrFIMzGVyzogU97SHdt+pSR7pQRq5YQadmqNge9jkOTMoVis/+/Nicj022UEaxPDffrP6JNDZ0hVkQuYQCrg2dYSxrYcd6VpLt4AxXW8iLk2POH5rxbBHT6QLeuWU5gPpATmF+8XL/FFwE2L6uHd0tAWcMV7pew8UD9pFZceF8XAvONnVH9a4SlxuEUoqLgdWrV2NwcBATExPCn8nlcvMSOLzZxgkEAli9evWcx1dwjtOanufD29fgr584haGU/MN8OJ5FsUzR0xHC5hUtrLJvtXyV2VID17TxgKst7MNsXF6QCwD7z0/j2y+cwz/vvYCT/+sdjue0+c8ew1s3deEffnOH4zHGEjmsaQ8BgM4OpBwwd4MzGXhcrjmLjM9NphH2udEV9SNTYM4/spm8US0wesuVXXj+zKTjuUyl2Dm/dmULHj0yirFEHp2OR1OwwvGRBNZ3hhELerEsGsDRi3LXYK5YRrpQrkspLo+x9j4j8RyuXSlmtD2bZQHXhq4wnj/t/NpZyliyAZfX6zV0U7dCX1+fsJeUGkdhKYGnX+7Y2IG/fsIZ03FRqwrqaWcB12NHR5ErheZ1nouBSe3h2xVlAVdLwINRh5KeJ4+PAQAKpQpOOExbZArsl+85Kb4ZNMJYIoft69oAAG1hVp0oe94rFYo7v7gHsaAXhz7ztjnN59xkGuu7wiCEIORzw+0iyEgGgOOJHKIBD7aujuFnh4abmA9RTOgBF3tYjyVy6Lz09w5LEhdnsujpYFq7tpAXaclzzpmptpABwyXBTPJxNnSF8eiRUeSKZd1m4nLBkk0pKii8mXByLImg143rVrUCcBZwjWtMUHcsgKu6o6AUGEkvfruYsUQO7/jbZ/HwYWfuMJMNDFfE70G25Cz19sKZKcSCLLgZcFC2DrBUIEetSFwG+VIZM5kiuqPswcTZgZTkeX/xLKvmms0W5yy/GJjO6A9eQgiiAQ8yksd5PJlHd0sA3S0B/f9OMJliKaXVbUG0BDwYVynFBQGlFBenM1irMa2xoBf5MqTaTE1r6b+2UNXSpDPih5sAoxIpxdlsEV43weq2UN24lxNUwKWgsARwaiyJq7oj8HlcaA15HTV+5UxQZ9iPbocaHIDpMf7fnjMozVGjxLH72BhOjCbx2999FVNZ+TEbGa5owOs44BpL5HD7FawEdHBG3pgRAPpr7A6edthvcDzBvhPXSgW9bvg8LmkbhudOV1m20TkGJbPZYt1DsyXglQ64ZrNFLTXFvte4Q7E7Tyl2RPzobglgLOHcKkXBHPFMEal8CavbWAqwVTv/PL0nAm4FEq0xunW7CKI+gkkJwzx+7fCN1VRKBVwKCgoLgJOjKVzVzUxpO8I+hwFXAV43QUvQg44wW7ScMGV/+fhJfOnxk+ibY8oMYL5gf/rvzPzX7SLYfV7eG2w0kYPbRXQWKBLwIFuSr64tVyimMwVcuSyCsM+NwRmnDFcKhABXdIXx7RfOoVJxwkayQGSZxgQRQtAS8CIrmc6ZqSmlPz7ivBCAUopkrlj30IwGPJAoMgMAJHMltAQ8+vdy6ik3mcrD7SJoDXqxPBaQEl8riIOzvJzhagnygEs82ElrAVfYX5/+i/qIlPg9kS2iJejVm19Ppi+/IFsFXApvKP7XrmP4zw+9stjTmHckc0XHVWtTqTwmU3lsWq4FXBE/Eg6YqclUHh1hPwgh+qLlJODiO9b+yZTNO61RrlD8sRZsfeS2Htx1ZSdenyzbfKoZ56cyWNMWhNvFRDzRgAdlCuQl0h4AS1FQCnRG/VjdFnLMcJ2fTGNlLIjfuH0dzoyndLNGGXCGi6cUAaZNk2WU4pkiVmp6mVNjzs9XrlhBsUzr2vG0OGASedDWpTNcDgOuJDPSdLnInM7VmwF9J8cxKxsZa+DHlRdvcP+1uMR4SZ3hqpeER33AtETQpDNcYcVwKSjMCx58/hyePD6OsgNWYKnin146j+v+fDe++OgJR5/n5fhXdLG2NR0ObQ+mUnl0RtmCGfK54fe4kHCwZnEDwkODs/IfrsEr56dRKFXwx+/ajAfeuRnLYwGkHDwXzk+m6ww0o362sCcknfR5arIj7MfqtqDjh/jIbA4rWwNYpaVhnJSwc5sDnlIEgGjQi4xkMcBstojV7SEEvW5d6+YEvCtB7UOzJeiRFs0nciVEAx5E/B6EfG49sJTFVDqPDi21tLotiKl0AXmHaeTLGWOJHH7jH17BB7/+oqPPT6Xr0/WtQfmUYpXhqg+4WiQZLh5w6QxXSjFcCgqOwau7AODC1NzbfiwV/MOL5wEAL/U7a0fB9Sm8rJ81fnWWUuT6B0KI48CNi8JfuzAzJyH2vnPMyPWXblmLoM+N1pAP6SKVGpNSygKujpqAS2NhUjm56ITvmDsjPqxqCzpOKY4lcuhuCehp2ykHD4Z4trmyqyUgH+DMZoto1R5Sc/EuSuSaWYpoQC4AbExLLov69WpDWcxkimjXKje5vmjSgSHn5Q7WYJyZ6I5nHPRATLPrkAdavKBEhuHi92HE38hwEUxLsFTxbAGtQS9CPvecNxBLFSrgUnjDUKsxOT7i3BRxJl3Ai3Pw+JlPDM5k0D+RhtdNcHoshZID5o6zHbyyqyPsR6oIadE6TylytEfkA65csYzh2Sw6I34Mz+bqWgXJon8ihVWtQX0hbg16UabMyFQUE6k80oUy1tcyXFpQkJQMuPSigigTYidzJWnWhFKK0UQOy1sC+k7cSeojmSshrFkvcDhJ4cUznBXwzyng4gwX1/A4mU++pKUlg+z8dEX9jqsLU7kSov6GgMtBwcV84qnjY8iX5FPiZnjm1ITjogKOQ1rABQCTWfm1J54tIOr3wONmocBcRPNhX3PAlcyXhI/ZrHYtE0KwrMXvOB29lKECLoU3DLWtZuYi8P3IP+zDL//9XqlFYaHwstaO57/cdQUK5Yojw9KxZA5eN9ErxPiiJxNQUEoxlSroKUWABW6yAdfobA6UAr+8Yw0AYM+Jcbw6MCM1Bkf/JHNS52jT9SHigQH3FlvbUfUT4wGc44Ar7MdyLbiVddVOZEvIFStYHqsyXE7EvalcCZEGzUtL0OMopdga8qIz7HPEtHFwhquljuFixQmi6f9ElqclOcMVcCyaT+Wrx4fbBDgJKOYLhwfj+NhD+/H5h4/PeSxKKb71bD8+8u19+MvHTs5prNcG4vB72GNc1lIE0AL2UG2hhMZwSQZcYZ8bLle9UVqLj/2fs2hWoJQimS/pAX9XxO/42lnKUAGXwhuGPSfHsXFZBGvbQ7jg0AMJAA5r2qJjw4vfuubsRAoeF8F7r18JABhMygdcE4k8lkUDepPXmAMdRSJXQqFcQVekynA5qXac1oKhG9a2YX1nGJ/ddQwf+OqLGJX086KUstY1NcwUX9hl0hX8GNT2adNTinlZDVcBPrcLLUGPnr6V7RvHrReWxwII+twI+9xSaROOVL7UnIKRrFLMl8rIFsu67mUuIuOqhquG4Qry4ywWBTYGbV1R5w/NZK6oH5+uiB9eN8HUIgZcvHn2wRpGySm+89IFfO4RFridn3QurZhOF7Dv/DTes42tPU76i8Yzhbq0tttFEPJUg2cRpPOlJv0WwBguQEyLlS9VQCkQ9LFKR8ZwXX7eayrgUnhDkMgVsbd/Gvdt7saq1iCGHVR2AajT3Rwdnpuou1yhuuDTKc5PprG2PaSXVU850JmMJXO6bxYAvVJMRhSuC8Ij1cWzLSzf5JkHD+1hH3711h79dVkD1YlkHql8CRu0QgCgluGSqIDi+pAG5gWoPuBFMZnKoyPiAyFET9/KMlx6wKV9vt2hdirRYMEAsEClUIF4CkZ7KMZCPi2lmHesuUsaaLh44D8j+P0ahfddUT+S+RKyEilkgAXrqXxJH8flIlgWDWAmv3gpRS4ul73mGkEpxUMvnceNa1vxSzvW4tRY0vE5e+zIKMoVil+/jd2njhgujSGtRYufSPWurGUja8EDLhED01yRXSN+Dwu4FMOloDAHnBln+qab17VhZWsQQw4rxB47Mqr/+8iQ84BrNlPE2/7mGdz7V8/oN7sTnNMq6AJeNzrCPkw72IWPJfJ6AABUmYWERCO7qiC8GrhF/B4UyuIpIaC6OLaHffjFm9dgx/p2NkfJZto8MFnZGtRf4wv7jERKUTdV9DcHXLKieR5wAdUChXhO7iFupLdzUk1VG1Bw8ABMNFXKrQBiQS86wj4Uy9RxQMAZjVpbCL6JOCdY4FJluKqieUDe/DRbLKNC60XYy2MBxB1sZgamMjjpsIVTLfjDPylZGduI4yNJ9E+k8Ys3r8U1K1uQyJUw7bAY4PBgHB1hH65bFUPU73HUhzOeKepWEBzdIVddNwU7GLG1ABD0EP3nduAWLwEvC0mWtQSQyJXmtDYvRaiAa55x4MI0vrdvYM5tNi436L5DLaycfiyZcyQw//nhEWxZ1YK3burCyTn4Dj11YgxnJ9IYTeSw+9iYozEopbgwldEr6Fa0BhwtnmOJnP5wApylFHV9Uk3AFdLo+azEosVTiu1hH8J+D37wX25DLOjFmGQFFA8WYzUibB5wSelDDBiuiN8DIjkOwILS2vZAEb9HmuGaqQlIAVbx6CSVl8o1P6S42Fw04OLfv7WmlN6pjiuZK7F0kq9qXnmFpr8Tffg2piW51YAsU2F0zpe3BKTPFQD8f/98AG//22fxL3svSH+2FrzV0EzGud8eAJ3Z37Q8ik2a0bET3ScADMWzWN0WBCEEbWGfQw1XQa9Q5FgRJjg3lRbeqKVNAq6AdillBBhOHlgFOMPl8NpZ6lAB1zzi/GQaH/zaS/j0j1/HWYkdwpsBE8mq79Cq1gAoldfPlMoVHLoYR+9Vy7CuM4wLU2nHge2I1gOvPezDw4eHHY0xnswjWyxjXSdjAlbEgpiWZEwqFYpkroRYrT1AUN5nyiilGNIWwVo7DjtMpwvwe1x1D951nWFpDZee7qoNuIJaSlEiBZfKl+AirPUNh8ftYmkPyT6Gk6l8XUDa3eKXvgZnMkX43NXj0xH26+kmGRgyXH7ObIqd99oUHk/XyrCHjWNF/B5dRwhoQbeXVZuKjVGfllwWddZPkRtp1j7Eu1ucMVxntbl/+fGTwlo0I/AHf7lCHffPBKoMckfEpzd4jjsIJAEWcHEvuLaQV7otVKVC9aKLWiwPu1AoVYRlH8mcsYbLrzFcIutPrsgZrvqA63KrVFQB1zzi+RqrgnNzEENejhhL5OEi7AG1qtVZ1RFPWXREfFjfGUamUHa8WA3Hs2gLeXHL+nbHDt2cteN6nlWtQWkNV7rQnDLTNVxSDFcBhNSLy8NaUJDJizNcU6kC2sO+ugfv+o4QxjPy/lBAfcDl87gQcMsZGiY1Jqh2PgDQHiAYkdCZ8CrO2oC0MyJfxRnPFNAa8urz4WJ12cCffa/6B11MsiQ/rZ3XiN9TTbNKnOtapPLlJpaCEILlEumlRgNMbuoqaw2RMtCTLY/5kSvLpfTKFYpCuYJtq2OYyRTrLBRkUXvNzqWpMq9o7Qj79aDCyRpGKcVwPIuVMd4DUZ7hSuZKqFA0pRRXhFlYcFYw0E4XSnXrFwfv9JMWuCarGi4tpagzXJeXcF4o4CKE/B4h5Cgh5Agh5HuEkAAhZD0hZC8h5Awh5PuEEJ/2Xr/2/zPaz9ct6DcAO1kyIr+Fwsv9U/pOfC7VJ5cjxpM51kHeRbA85qyxcu1DnKfxxiQDAY7heBYrYkFcuSyCC1NpFB2kNzmzwR/iK2IBZEtyDwW+665Nn4R8briJfEqxPeTT/XTYOGzMtATDNZMp6Okyjq6ofGDC587ZOo7VUReOSlSXMibI2/R6e4BgVKK/nlEVZ2fEL1/Fma6v6uqI+FGqUCk7h0qFGgqNeeAuyqBw5iDk9+hBjtMikEyhVMdqciwLEb3fnh24OJ6P0x7ywe0i0iyFfk/UBKRcMyezzsczrJXTnVd2AsCctFwTybx+X8wl4JpOFZixp8+NgNeNloDHUYP56XQBuWJFZ7jawz5pDZd+jzZchx1BtpkQ7RKQMmG4fC6AEDGGq6rhepOnFAkhqwD8DoDtlNItANwAfhHAFwH8DaV0I4AZAB/TPvIxADPa63+jvW/BEM8UsPnPHsNt//upRW8X89pAHPdd043WkFdYaPpmwXgyr+94+Y5KdoGoFfZyI8wxyVQXB2/PcsWyCCpUXhQOVIXq7ZofE29FIuI7w2FUHUaIVpotEbhN1QjCOXQNl0SV2FS6OeBqD/tRqMilJhO5IrxuUpcKBIArYi4cGZ4V1sEYaZ0AoM1PMBIXf/gaadycOPo3+hZ1asdcpvclD4AbH3TdLQEQAIOCqRzOHIR9bv0YyRYScGQKZT0FXYuQlwin4rLFMjwuAq8W9Lu0huOyGje9MrVmPk5STDwwuqo7ivawD6fGnAdcU+k8rlwW0f7tPOBqvL+WtQQcMVzD8fqilNaQV5rhShhYgQCA3y2eCgTYeQ8aBOuEEIR9HjkNlyaa7wj74SJv3pSiB0CQEOIBEAIwAuAeAP+m/fwhAO/X/v0+7f/Qfn4vacwHzCOeOj4OSoEKdeZDMl+oVJgD9dr2INZ1hBXD1YBxzWsKqLaRcLoji4W8WNnKmhlPOPTmGY5nsbI1iI3aIjrsQLhaq8cAqg9QmUDJ6OECsAedbJVircs8AIQ1Tl/G2X02U2hKMfAWKzI7e94XrfHWX9/qRq5YEWYbzErO2wPMxVqUTeRtQmqD0vawD+kipETQM5mCblALQD/mMoFbykCjBLCUa6ufCGtndIbL56kGXHNhuLzND82AmyCdLwmlTDOFclOA3RGWt83QK1MNLCpk7onJmsrdq7ojcwq4EtmSbuIr05C5eU7VHpEAS505Ybh4FTDXgUUDXuTK7DkkCn6cGwN/ngrMCBTbUEqRK1Z0ZqoRQZ9bUMPFAy42jttF0BHxO+7FuVRhG3BRSocAfBnAAFigNQvgAIA4pZQfyUEAq7R/rwJwUftsSXt/x/xOu4oDNS7YyUVsLj6VLqBcoehuCWBdR0iYhn+zYDyZ1/PyHrcL0YBHekdWm1J0a7tnJz0HU/kSErkSVsSCempywkHbkKl0AV430fULUQf+WUYPF0ALuCTGSeSKdXopoJpSzEg8hNOFMiL++sWTM3iyAVdLsDkVuCrClhzR+yNpUgHVFmDjiKaYphuqC4FaRlL8e81kig0pRY3hkrgOjbzF9PGCRNgyJV0ow+sm8HlcekrHecBV1gP0WgQ8QKlC9ZSPFXIGTEdHxCcdoKS06z5ipGuUuCdqz/nmFS04PpJ0ZDNQLFeQLZaxIhaEz+2aE8M1nS6go5bhivodMVyN1bIRfXMlfv6r7Hr9ferVUoEizHijnUMjwj63kIaLj8M1XMDcenEuVTTf8Q0ghLSBsVbrAcQB/BDAO+b6iwkhnwDwCQDo6upCX1+fo3GePZqBzw0UysDYbMbxOLVIpVLS41xIsItqYuAMcvEyxmdLSCbpos1nKY1ToRTT6TxSU6Po62OtcAKkjHi2IjXO/gG22B597RUMB1wIoIjpTFn6O/Ey7PjwObzy0kX43Iwhkh3n6Jk8wh7gmWeeAVC9Bl7afxCFi7a3FgBg3yhb9I4fPojkuepi4ydlDIxOCc9pcjaDZZ5c3ft5M9sDh48gOCXWQiSZyWN6bEQ/TwBwYYZ9r76X9mO6S+x7XRjKAaXm67+SzwAgOHDoCEICcxqfzsAfdTWN46vkABA88dw+DHYY765r8cogu3aOHTyAiVPsOI9qx/6xvhewtsV+DEopZtJ5JCar13FcM+OcTOaEz9WZODue/SePoW/6VN3PYp4yzo5OC411qj8PL6keY68LOH7mHPrcQ9L36GQ8g0gl3fQZUi4AINi951m9VYsZzg/mgHL9PV1K5TCYqCCVEr/XD59lwcSBvS/Ao7WL4U29XztyAstSZ4XGeVlbL04e3o+2HAuavvnve7AhKH6ugKqh6NjF8wh7KI6dGUBf35ij9XR4KoN2Un1O5eIFxHMV7Nmzp4kNtsL+fnaMjhzYizMeguGL7Ls+0fcc2gNiiat9Q9p6eugAps5UP5NOp+F3EZw6ex59fSOWY6S18zJ4/hz6+gbrfpZKpVApuDEwPGZ7nA5q9+fBA69gKMTm4i7mcHY4hVSn/BpvhKXwHBVZPe8DcI5SOgEAhJAfA7gDQCshxKOxWKsBDGnvHwKwBsCgloKMAZhqHJRS+k0A3wSATZs20d7eXunJZwolDD3+OO7fuhI/PzSMkisAJ+M0oq+vT3qcp0+MAS/uxz233YTIuWk8dv4EvMHwos1nKY0zky6g8vgTuOGaK9F753oAwMojzyOXS0mNc6zvDHDsJN5xz90I+txYd3Yvhsanpb/TM6cmgOf34d7bbsSO9e3o3vc0srQgPc4/nX8FKys59Pa+BQDr+/eZF/dg7RWb0Lt9jdAYY68MAAdfx1vfchtW1ZiEPvj64ziVdAvPqbjncVy5bjV6e6/VX5tI5oFnn0TPhivRe9s62zEqFYrcY49g0xXr0Nu7SX+9ZzKNv9jbh9VXXI3eG1cLzedvjjyPNSEfent31L2+a/ceABmsXr8RvXest5/Ti09iw5pl6O3dWvd6/0+fApDDpmu3oPfqbttxzj5/DjhyDG/rfYuuwQqdm8b/O/gSNmzepgurrZDMFVF+fDe2XX0Feu++AgBjP353z6PIE5/wufKdnQRe3oubb7wBt11RT/7/4ORuvD5Txl133d3Um64RD08cQmx2Uv+9seefQNuy5ejtvU7+Xn/xSaxb3Xycnxt8AkAB1990S10/SyN8d2A/2mkGvb136a/1JY7i2IFBRCIh4fnsy52At78f993zVv21SoWCPPUIulaurbs2rfDaE6eAY6fx7vt6UaEU33j9CYx7u7E1MiV1bC5MpYGn+3DDdZvx2uw5+KIB9PbeLH2MKaVIP/EYrt3Yg97eqwEAJ8lZPHb+BHbc/hZD4bkZXsoeh6//PN5+by8IIUgcGsY/Hn0NW2+8GRuXRYXGGHjpPPD6Udx39x112sa+vj5EgiW0d3ejt/c6yzFGZ3PAU09hy+ZN6L1lbd3P+vr60N3hg9ftQm/vrZbjXHz5AnDkCO5+y+269OSRyUN45tQEIpHgJf38q4VIKDwA4FZCSEjTYt0L4BiAPQD+o/aejwD4qfbvn2n/h/bzp+kCuYCeGU+xKpSNbNFykl6aL4zVGHvyVMVizmcpgVPwnTX6mdaQD2kHKUWf26XT150RZ/qHEU0js7K16hbu5FxNpettBnhaUKapspFoHmAapfFkXkhfVKlQpArN1XyyGi5ukNoonnZSncU1XI3gX1O0ms5MNM+FvSLpCqBaOVqbxtPNQgVTXrwlUa1vkdftQmvIK3X95IvmaZiIDyhoKSw7ZArlusrCsN8zhyrFMkKGKUVxt3Aj8XRH2IdkviRVBZwtlps0QS4XQdAj11pnJlNAS8ADr9sFv8eNratbcWRIvv9qMlfVOnU4bOUEsPR4oVypSynKdhfgmEkzLSFnxbiswcnaY3R/hXxuZKW0V8ahRNDnEVp/8g2tfQBgTVsI48k8phzIPZYqRDRce8HE768CeF37zDcB7ATw+4SQM2AarQe1jzwIoEN7/fcBPLAA8wZQLfPdvq4dHhdZ5ICLaUm6on5HlUtLHcVyBafHnGkgjPQzbSGvgypF1k2eLzKdER+SBSrtgTQ8mwMh1VJzZg8gNQQA9r1qv1NkDote2NcQ5AQJKBWzCEgXSqAUTV44AY8bBOIaLq7/aNxptwQ8cBO56qxErtRkCQEAHhfTHIn4RZUrlGnKDLROVRdrse+WzDHbA3cNa8R39aLCXN0zrakHoldPeYmA90o0EhoHeCAp8L3Shfpy/Ijf46hKkVLaFLxx8FMoMp+sgWi+XVsLZfSauWLzOAAQ9hIpb7pUrn4TcmV3RNukO6/mawv5HNtC8GrN2k2aE5NjoFlLGNF92OQqidkGtvlYh3xusepC7Vo2Ol8A03CJrD9GWrAP3rQabkKw+8Lc2iktJQhxmJTSzwD4TMPL/QB2GLw3B+BDc5+aPU6NJeH3uLCuI6wJqBev79JYIo/OCKNP+UI+exkxXF949AQefP4c3rttJT6wQu6zvN1IbXDSGpL3jUlki3UP8Y4IsytgQm9xOn44nsWyqF8vX++M+LDPQXDcyOJ43C743fKi+XBDIAAAHQH2/5HZHNa0W6dyzFgyl4vA7xZrrQFUDVLDDQ9eQggiPqI3thYaq1BqCiI5In4PUnn7Y2RWzQfUlq6LfTf28G0OJP3uatcBO3D2qDEwiQY8yBbFxb2Nrtq14CSTiGA5k29muJIOGK5CuYJyhepFFrXgAaAow9XIanI2R2YznC0Y2wyEvETKmy7Z4Oa/cVkEqXwJ8Xwz82o5Ts391R52HnDx4oF2Q4ZLMuBq2Ozxe00m4Da6JziCPrcQy2p1LQOscEfUFoIQwFfjI7iyNYjt69pwdjpu+/lLBZe00/ypsRSu6IroJaSy5ozzifFETs8984DrcmK4jg6zRtGPHhmR/l7VlGJVJ9AW8iFbkivJbwxw+HiTkl4tI7PM9LR2nGSBSpVUU8rMK1sa2I6Qh8gZn+bMbA9c+lxtxzAwT+XwuYlwSjFdYzPQiI4AwWBcrLKwUmGl4kYPTYClOkVSgWYVnADAYzDRgCuZLxo6qbcFCEYTcr5XjeNEAx5kS3IMDmCchuEpPJHjk24IaqMOU4o80DZiuKrzEQu4Ak1ViuwelVmbsyYMl6w3XWM6emMXt4Bx7v/XEfYhlS/pLKUMJg0azOtWMhJ2FwC3J2mWM8gwXEmTtQcQZ7j4xsBvklIMSdhCBDzupsKBrmhgUZ/r841LOuAanMmgRxNytoW8i3pixpI5dGvGnu0OdnVLHecnM9i8ogXFMsWhCbnFge8IjcrpZUwRG60PeOpWplUMwMTktc2iOyM+UMj1ocsUyihXaFMwEPTKpRRTJrYH7RrDNSxg7tnYNLgWAY942o0vsEb2AN0hgvOTgo7jRbs0g0fowaA3MfY3fy8PYelJ0QAjmTN3rBdluDImAWnE74XM87KxUW8t/BKp0kaz0rBf7Lg2jVO0CrjY30IBV6Hc5OVVXQvF55M18XWSZbgaPdw2aAGXbCN2XcMV9OgpUicsl5G0womVDKClFMPV69mJD1syVzRnuLxyKUVThsvvFtNwlSqGQVuHQ+ufpYpLNuCilLLmnVplV9jvQU5ilznfGEvkdU2Qz+NCLCgnpF3KyBbKGE3kcNdVrJIrJZlSn04XEA144KvxWOHnbUjQ5BFoZrj4wsXFzKJI5kp14/Bd+KRk8Ac0Bzkhj5x/VjJfQsQwUCII+dxCHkYJk5QiwFJvokFJNWXWPE532IXh2ayQho8v1EYPcEBca8TTjka7cEKIZqooKpo3Tp+0B1zCrXR0Z/eGgLRFluEqWaUUuYZLgOHS0tEcTkXzWQtms5pSFGA7TETzgBzDZabhCnnkzIAbNzN8vZCVMtSKy/n3kXXPZ59pTilWNVzi36tSoYg3MFy6D5vkZi9qsJkBmNhdRDSfF9hcFUoVlGwyGZzhakRnhGVCnGiHlyIu2YCL95LirQ2ifg9yi3ROSuUKJlN5LNMCLoCZc8oIaZcyzmttiq5dGYOLQPp7NZr9AdB7gMkGXLUpvNYgG1OGmQJYiqA2UOIU/5RkU2WguVdg0EMkRfPFJqdnjojfIzSW3uzXgCnrChL0C3Y9sGa4XKCUWV/YgacZgmYaroBHSIRtVUUFQGsbIspwGe/m27RqULsHAmCecnWaUqw1eeTgKTwRoTETutekFAMeqQc3R9oypcjf40w03xJgJsWyAZdRujXkZWuAqOi9Mcj2eVwI+dzS1dHJXBEhnxset8uRCTDHZKqAiN9TF2g7aVSfzLOm042N4b2ueUwpijJcNhoufj3YudYzt3oDhivi/HgvRVyyARdPtfAH92IyXJMp1iSVpxT1+VweQTnzoQGwoTOMaMCLjORxZg+7+p0UD5RF25hQSpFoYLhaNUpdJs3AK99qF+KuKAvcZFyNzdJ4Ya/c4mBme8DGFhNBmzlGA0BPiwvnJtNCCzF/qBqJ3btDLBA4JxC8ZYrG4nIO0dSXlYYLEE9X8LGMdvPtfoJyhQqdezMNVyTgQbYE4UAgV6zA53YZ+mxVU4rW34tVFtY3nI4FvSiUKtJsQJWRNK8qtQu4ypobfSPD5XLQEcJMNN8dciFbLOPClFhqO2Wg22sNepGWjElrA7e5NLCebrCRAVig4iHyMgSg+b4IeOQCLjM5A6CJ5kU0XDa2EFzTZ3dN5kvNViAA5sQoLkVcsgHXkCbgrU8pLs5cuCUEF80DjG2Q2fUuZXCNy8rWIKIBj3TAlcqXmliTiN+DsBfCbUxSBru6qN8DF5FjuFIG6TfeD08upWi86C0LuTAczwqLaq0WvUjAK5V6MwpMeloYM3V8xN5/yCoVyDVlIs1kMzrDZZJS9ImlvlI2DFdI8KEAmKcUW/zse4ks6JlCCYQ0P1yiAS8qFEJVXQB7+JiJjAOCjYPzpQoqtP4Yc38w2RR7VZtmkQK2OV85i9RSR9gnLZo3evhe3c5ee7m/yUe7CcVyBblipUn/1xL06u7ooqi9R/UAwEHAFc8W9T6ytQh55YsBgOYNVtAj3mgcMG7FpM/J50amWLbdRFjpEdnr7Drn3nPm41QMGV/OcIl65S11XMIBl8ZwaQFXxO9GicJR9chcwQOueobLvWgB4HxjLJGH103QFvKiJeCFBKEEgOk/jIXhLmGGi7NYtSk8QgjCHrkHDF/Yavv8xYJe5jPlJKXY8BBfHnahQoEB0V24Ba0f9XuEKh6TORYIGD0we1rYLX5s2D7gMvPhAiSr1XjgZqbrENZwmVdfAoyREZlPqVxBxsTPK6R9L5EHHrPw8DRVUkUk9TNmu3mgynDZMXdZg+CYp9jjWblgwE5zx6pKrb+bXihhFKxLBlxmGq4VYYLOiF8o4EqbXDutIfmAK12oBly8j6tM/02OnAlz50SGABg0vPfIFRUYpYD1sXxulCsUBVvtlXVKkb9ux3CxTYhiuJYsJlN5eFxE39Xxi0/UeXo+YWR7sNgi/vkEt7wghKAlKM9wpS0q8UQrxLhYttHnJ+wjiEssMnrAVbMQu1wEUR+RqnasLRWvxYowexifnbBPvekO8RYpRbFUYNkwEACAmMbgiLCAmXwZLmKsLfK7WUNbkflYpagAtjlKF8q2NhxmprAcYUHRPF8TjFKu3DRe5IGXyRs3eObMmah+ykyvAgBe7TjbabiMKkH5vTHrlOEySy953fqD1XQ+BfNqNVnLHrNAgBCCjcvCgpW7xrrGmAOGK50v6deyy0XQEfZhVLBpei1yJoF2SNLQNWkSTMb8RNjEl1Jqar8BVPWXdgyylR4RqF4PduxvrmRcmcpTsCLM+qWASzbg4hVr/CET1gOuN55WShqwJpHLSMNVa3kRDciVwANaNZVR+wiPeHf7KsNV/9CMeAniEilFM71Ti49IpRTNxlkeZrdU/2TKdgxG2ZszOKLVfNliyTQ14CKs2lHkvuDO5UaBGzM/FQsA+QPc3IeLfV87Ia2ZKSxHSFA0r1eUGlyDQc5wCTzwGn2vOFokzSvNKrIA7Xx57bVpRoySnlKUpKAzNoxk0Gtvgqm3hTI45zKl/XogYJre9M5J/9ca9CEtydCnGwLtTcujQoxxI8zOe8xHMDgjxogDVSa1kV1v8xOMJ8UCwUK5OSVdC34e7TY0uWIZfo+xHhGobgjsAvZ8saynH2sRDXjRHiA4MSp/vJciLt2AK1PUm9ACznxI5gvJXAkuUu/QHbmMNFxjiTyWx5g+TbaNCWCuU/J7xC0LeMDVxHB5iVRKsZoKbAi4/EQypViEx0WamIqgh+2AL07bp0qt/LMAFogJMS8mbVk4REXqVikGPh+plKLNYm63e7ZKt/JxRBguK/E9TykKH2cDhku2rUreZDevz8lv785txCg5Z7h4D03ztJBtwFVoZtw42sOstL9Qsq8E5YGA2fGJ+N1SAdd8pBQzDS2UtqyK4dRYUqo/JMC1ac2P3CvbXDg7kRZm2KsdGOrXjdYA2zSKmElbnS+gqlO0O2c5E71d4zj2ovmKYUoRANbHXDh0MW75+UsFl27A1SBADC9ywBVpYAbCfg/yZUi5l3NcmErjls8/iWdPTcznNB1jrMZFXzalWCpXkC9VjHVBbvEUsFkKLyIZcPFxmtq8OGC4ogGTNF7QK6YJshGFRwNepAol22soYxMoRf0eIR8lu8VTNHCz0wSJ6jqsCgr4+CIBoFUVJ5cEymi4GsGvyRnB69DM9oAjLODObSRSrzJcshquEtwuUtdWpRZBn9v2XFmZ3S7X7HLGBNJwuULFdBxAPOg3u7dagl4UK3K+Tql8vf3GlpUxlCoUQ0k5A9WciaErLwbY2z8tNI5RI3YAaNXkAyKBm5XmDqg2kc7ZaKKt0uOARErRhOECgA0xF85PZaQyGUsVl2zAFc8W6tgOJ8075wuNvk5AjaZMMGVWi387MIixRB4f/cdXhPyBFhKZQgnJXEk3dY0GvMiVxAPJqlmksSlntsgc2+3AH4i1rCbAbBjkUorGAVd7gGA0kRPahQPNLta1iAbEUoFmWgx9HL8HlNqn3rIiDJdAQGG3eEYEAze7xVw04EraBVwCTBBg/oACALeLIOxzCxlqNjIdHOs6Q/C5gVcvzNiOAdgHtkGfx3YjYnSMI34P3C454TSgMXfe5rYq+ny89tWguj2AwTlfrVn3XBRIm9k5l4v2izTzTONBqcwxYn1Bq/O5ZmULAOCidMBlfN7XtbjgdhEcG5kVGifFi2QaxuIB15iAjsuO4fKLVheWrDd7ove6Feu7JsrmcmbcXqax1HHJBlyz2SJaa7ulL6KGK2FQcs4Xdyci/odfHwEAlAT9gRYSk0leEMCOdUvAAwoIN8lNFfhO07xPm0g5PRckRxoXUD/rFSi6gJqxHSvCzI9pQMDYE+Au3+bMlIiex8qwFKheQ3ZjMT8m88BEtHdhvlTWd7aG8xEM3GwZE8Fdb8ZE+1c7TqlCbVModn5eLUGx89XYLJrD73Hj6nY3nj0txkizEniLAFmA4TJ6YBJCEAt65W0h8sapUg4hDZcFq7m6jbVfE7GAqZrmGl87UT9zLrfbGJnNh1vAiFZHVyoUmUK57jpc0xaEx0UwlpHLXuSLxu1r3C6usxTtC8o2Io26qbYAD7jsmcSqf5b1pigvcJxFUor2thBlU+G9nvZfhGf7fOOSDbjimXoTzMUWzTemuqopTvku8P0TaexY1w5AbLeykJjU/E86td6DLZI6ER5UmKUUAUFX7TwzeWxcZLhIXcSQE2A3rd/jqmszVDtO/4TYLspa2CvoEG/HcHHW1masjM2iF/F7hRYrEYZL5KFgy5gIarjsUqVBwd1zwiawZQ7tYqJ5MyZxc7sb/RNpIUNMVq1mfpxDfo8j0TzAjD2lRfPFsmXAHhBJKVowJstjARAAgyIBl12rGMF13qx90rY1MQDAawNx27kAVXa5VjTvcbuwpj2E0bQ4w8UtFsyKJeS6JhhXNvOK5HGR1K1tSlELlOxSihbaK6CG4bIYh1JqyfpWuy9c+lVol2TAVa7Qpn54nPmQ8TOZLxiZKnJGRyQFU4vjWjXG3Zu6AIjtVhYS3P+kU9sZbugMAwBOjyeFPs+DCsOUIvd2EkgLmT0UZAMlM4uKanWheBscs4evqJ2DmZ8OB3/dLljKFq1TihEBHyXAvGydQ0p8bzEfXUgrIMgVGsdm92xXnNAS8AqlFHPFimkgwB92IuntvImWhyPsc9v2sTMzGo2FvPKi+bx5IMl/h2hK0ej4+DwutAWIVMBlLpoXk47kTMx3V8SC6AgQHBgQS//yzWDj2rOuIyTFcOXtmjxL9AU1KyapesqJ3KMV/fcaQddwCTBTZtoroEbDZfHdShWqFUqYWEtItJda6rgkA66EQcUa34HI+JnMF5L55j5tPN0ke5EcH2GBTK8WcInsVhYSvHKP+6FsXtECAuDIkFiZrm5AaMFwiRyjjIFbPQAsCxG4XQT9Ar5XgHkwEPYSdEZ8woEbY1/MU4EigX/VK8g4EJBhuCwDLsEAMG/i9lw7H1HRvNV8RBZhmXFsxfe5kmFFKUdL0IukABNttQsPaZeCyHm3Sp8A3NDVGaPUGvQ603DZBVw2ruNZkwCHozMoZn2Qs9EWiQZceuBmcJw3trpwUJDh4pvBxvVrXWcY45mKVDsnAAiaXIMhv0TAlS8Zbh68LpaeFGHKdOsWmypFO4Yrb1el6LHfFOXs0pt6A3UVcC0K+ILSWiOg9rhd6A4RnBp744V1jOFqEM07FPEfH0mgM+LD1ctb4HaRRU8pclNX3kMs7PdgeZjgyLCYwNMy4OJUsYh5ZcGY4fK4CNa2h4R8r/jvMltklscCwpWK2YJxAAho1YX5km0xgL7QmOhVeEAnYhFgxQSJMlO5krHbc3UcVpJv95DJFMqmjasB8VRgplCyTiny1KSd+F5jBMxSnNGAx5bhqmi9As2OD/fzEjrONg+pkIiGiz/AG857LOiVr1Is2pwvnxsVCkvXcTtmqsVHhMx37QouRNfVbLEMn9sFj4GOcHnYheHZrFCBTFpnuOrns64jjHxZvP+qXVAh6ikHMMbWaD0lmueeyHpqd744wyXSksfqHvW4XfC6iWVKkQdjpuapiuFaXMRNPJl6Wlx4fUgsEJgvUEoNU4pc0C/b5PTVgRlctyoGt4ugK+Jf9JTiZCqPaEOH+zVRl7ARXcoi4Kq2MRGsEDNZhFfEAsIOyxmL9FvULyaeZvMxH4cbEtp9r3ypAkJgWY4PMGNTMxg1MW4EFxrb71bNNSYA04LxJsVWyBat5yPe7qNiGQgEPGLjMEbAfBwR5o5/Z1Nnbp3hEmDKStZaOZGm3PyB2fiQag35HIjmze8toOZ8FawDLq+bwGtyLfvdREj/J6rhsg24CuY6ufYAAaVicg29oXvD+rVM07ROCDqg2wdc4gwXN/02QtjnEdI62Wq4dIbL7l631iMC7D61YrN1t3qTY+PRCnBSDir+lxouyYDLrHnnuhYXhuJZR32unILbGjQ5jrcE4CYQrnoDWPqwfyKN267oAMB6M44tckuDqVRzh/uIT7z3l9mCBdQ06hVYINL5smnrEVEGBzDvZwaIMR0clilFrr2yOUbcedqMeRFxe+ZNjK2rFMUqZvMl86bKQFWXaPe9RFJUgDUzVSpXUChXrMcRFN8zRsD4AQWIsQvVB6ZJcCyonymWKyhXqGVgG/axANnKEob3G2y8dmJBL5K5EiqCqS6AM5JzO1+21WoeMfbPqkUQUC18sEuzW+n/OoLsmIm0FavaS9SPxYuIRBnxas9B4+snLNgXFNCaYIeMr+eQzy20gRW1hRDpgWh13gFWdGG12cubFDjUIux3vzlE84SQTYSQgzV/EoSQ3yWEtBNCniCEnNb+btPeTwghXyGEnCGEHCaE3Djfk+aVf42sCffrODUmJuieD+jO5cH6ubhdBJ1BItzEGAB+dmgYAHDrBhZwdUT8mF7kLunT6YLesZ0j4CbCuzG+UzdKv/HTN1eGKyoRcGWK5hYKonYOdqxSVLDVi11VoEhAYbdwAuKWKTkbhku0QszOsV4kFWjHdADipopGti2N4+SKFUtvObsUjJ5SFAgErMYBagJtmwDHKKDgD2IZkitj0rKIg1s02AVclsGx1lXCLh1td3yEr0GLPoHtAfZ9RmbtRfx8k9L4rOnS1sRJUYarZM3iBH32hQkAS20nLBguUS2YnpKeoy2EUMDldYlpuGx1jW8ChotSepJSej2l9HoANwHIAPgJgAcAPEUpvRLAU9r/AeCdAK7U/nwCwNfme9Ipk5sg6hOv0pgvWFVALQu5cGFaTMx9YSqNv3j4OLb3tOGaFcxYL+Rb/Kh+MpXX9Vscfjdr+SBiWJrMleB1E0PfoSrDJWBkmDcvXQ/7xW9Gq918S1BM7M5ZJSumDBB7+Fr5MenMgsUCyh/K1lWKEoybVQAoUOIN2DNcfgEhrZ0Iu24+NjqTlEkZPQefq7XOxDoArKYU7YNawJzpAGp6TVrc+2YBBQ+4UhLta4QZSavA3yLAAViBTEkgHZ0z0aZxyKUUzQIutu6INME26wvKGS5hDRdn7kxtIezTyACrWK7QZjkNh6gWLGvD2HKZg4gthG3A5bG2FcnbBKMAN11+EwRcDbgXwFlK6QUA7wPwkPb6QwDer/37fQC+QxleBtBKCFkxH5PlqKap6k9QQBeuvnGVirNZc1PFZSGCC1MZoUoWbgr4B2/fpAs9wz6PI6f6+cRstoi2BvraxwMlgbmZNa4GahkuEW8nc0ZJtAoPsGZfRFvp2PUKrBqW2uuCrB68Xk1was10GD8QaiHCKJXKFZQq1DIADAim8OxE84QQbddrEUjaHGNAvE+bnb0Evx6smAG7QImbV9qtPSIPF/6dre59M+0MfxCL9gvkmjxr+w0xRtI6pShWIGNVXQjIVSmadjrwMINYEYaLX+uNDGDY54bPLc9wmV0/rGuC/RpmVKFfN46gFswsJc3h0nRTVgFyuUJRsFnDAPtenFyYb8Vwhf1iqdKlDvNV0Ri/COB72r+7KaUj2r9HAXRr/14F4GLNZwa110ZqXgMh5BNgDBi6urrQ19cnPInDZ1ne/NV9L8JbY4RZyWcAELz6+nG0zZ4RHq8RqVRKeD6HJ9hFcObY6yAjDRVD7iKSOYKHn+hDxGd8YXPsH2XjnDpyELkBNs70RB6JTAmpVE7q+JhB5ntxTKdySEyOoq+vxremlAdA8FTfc2gNWN9sZwfycFfKhr83l07DTQiOn+5HHxm0HCeZK2JqbBh9fZN1r6dSKYyPDaBYpnji6T1114MREpkcZiYavg8fZ+ICKAUefaoPYa/5OFNZtkAMnDuDvuKFpnGGD78GANj76mGQUfNbbHAkh1K+Ynhs+LnyEorT/RfQ1zdqOMa5WbaQ9Z86jr74acNxBo++zuaz/1Ukzxk/hHJaf8yhi+fQ1zdkOc7Lr7yK2X7zh2sqm8f02DD6+qZMv5cHFZw5P4C+vjHDMXjblLOnTqAv0Xwvp1IpHDywDwBw8MgxtM42f3eOeCqD2am86XEe0I7bnmdfQFfI+Ho+M8OO86njRxGYPGk4jo+4cPLcRfT1jZvOZTjFvlf/6ZPoS501HKd//DgA4LkX9+JizPg4s2uHNn2nfm2ek4ms0L2e1c77yMUL6OsbNpzPkMD1MzyWRbEE89/J14xnnjc9xgBw8kwBHgI8/9yzhnN57tln4HEBJ8+eR5+neb4cY5NZuInxfFKpFCJuF472DzatJ4042s+eNa+8/IK+0eSIeiiOnh2wPN8cB7T1/cih1zDbX//9U6kUxrQ17Mmn98BjsYad1+73wf7m6yeVSiE9m8NE0nhNqcWZc3l4YLwu83vUTSo4c8587clr187wwHnTa6evrw/5TBajWfNr4+A4OzZHXz+I7EDz9ZVKpVBIexCfbb7eZeDk+Tff4wgHXIQQH4D3Avh0488opZQQItXngFL6TQDfBIBNmzbR3t5e4c/uzZ2At78fv3DPW+te3/3UHgAZLF+zHr29G2WmU4e+vj6Izid5aBg48Bruvn0HruqO1v3sxeEnAeRxzQ03Y0NXxHKc8VcuAgcP4967bseqVtZ7bH/+JJ4aOINwOCw8HyvIfC+ACXzzjz2Ka6/cgN7eK/XXXxh6AkAB12+/Bes0I1QzfHdgPzrLGfT23mU4n7A/j87lq9Dbe63lPEqPPYqrN66vmwcfY2v7Ovzo9FHcuOP2Jr1Z01hPPoqN69eit3dz0zg3dl+Bfz15GNu236K3IzHCmfEk8MyzuPG6a9G7bWXTODdcfwvw/NNYt/Eq9O5YazrOt/v3oewvorf3jqaf8XPV8uJT6FjWhd7erYZjBPqngJdexo4br8cdGzsNx7ntiuuBfS9g0zVb0Lu5u3kQaH5rTz6Jazddhd7b11mPc+0W9F5tPA6lFPnHH8GVG9aht3eT+fd66Sl0dHWit3eb4TgHLswAL7yIm2/Yit5NywzHuX7H7UDfE+jZsBG9d6w3HAcAKs/uxvq1K9Hbu8VwnBvWXgUceQ3bbrq56R7m8J2ZBPbuxY6bbtA1lo3jdLQA0bYW9Paay1aPDM0Czz+PG7duQe+1yw3HueXqLcCre7H5uutxi8HvAoBvnn4ZvnIFvb23172+ZiKFv9j7DCqegNC9Pp7IAU8+hes2X4XeW3sM53PbxuuBfS/gqs1b0HuN8Xn/v8dfRKvXhd7eWw1/vn+UrYVbbtiOzZpkwgh9iaMIjQwazp1fO5Fnd6Oz2/h8cnz59eewLBpAb+/NhuOs7PTB4zKfL8erxVPAqdP4hXt6m9igtpcfhSvcajsGAEy/OggcPIQ7b7sF6xvWzL6+Plzb2oMfnz6Gm2+9s6lfbC2eOz0BvLQPd9x8I3asb28aZ92qNgyembQ997smDiGSMH4fP87h559E1/Ju9PZeZ/yd0gXgySdwzaYrDe8/Ps6DZ/cimSsZrnMAkHl9BHj1Vdxxyw5sWt58//X19WH18ijOTqTQ23u35feyguzzbyHGkUkpvhPAq5RSviUd46lC7W8e5g8BWFPzudXaa/OGVM44TeV1AV43mVOud3Q2h1RBPHas9uYzcv6tf48VuLdYS804IT/zv7GRqCwYqgUB9QuA380d4gVSihZ+VQCjm+10AnbpJVFdB6fAQybVhVHBVKDdfEICKSrA3gATYOlAq5SiXfUc+5m91om7vlsbcvKUovk4+VIF1ELfVjsnOxE2+53WYnfAXjRv2yxaJKVo4xQOAJGAfQslO8dxAHo1rtV8zFJ4rUE5DVc1VSqg4bIT8dtUKQIihRvW6V+A3V9C3nQW84kJtkDKal5wRqm3mJ9gVKDSEag1PjXXcAGsqMcKRh6UtRBNKVo1i+bwe1yWPlwiBSD851Zpf90WwjKl+CYRzdfgl1BNJwLAzwB8RPv3RwD8tOb1X9eqFW8FMFuTepwXmLVnIYQwHY5D0fxkKo9b//dT+H8Hxb2vrETzIS8X8dvf2IlcES5SrxXg/84tkm5eDwIbKjB5/CRSVZPKlxExaakCVCvErMC1DWZaMFFdR8akxJujWl1oPQ6vXDJ7MIgactq5NAO8rYr5fAp6oGSvdbLWUdgvngE9MDGfj4j2io9ltQiLVCnq4nuL67BSoVo1qIDGzbIa1F7s3hLwCFWmsnHM5xMW0HDlTRpgt4Z8cBEgIbhp1DVlIu1ZbB6alteOoFu4nfge0Cr6bAITu3PeEvQKdSWx0oKtjbrQP5kWWt9tbUX4ObcpkuIea62mVYpiWrC8wGbP73VZbobtTGo5gjb3uogtREQzXb7UIRRwEULCAH4BwI9rXv4CgF8ghJwGcJ/2fwB4BEA/gDMAvgXgt+ZtthpSJgEXwBsHOxPNf+MZlhPvnxWnlJK5khYoNV8sepdzgQAwkS0iGvDWNWfmDy2eK3+jYSbQlHKIz5d0/yYjBLwu28CNL0KmInVBbx7d48emutDu+uGLvRn74ve44CL2AWm+VLEUirLfYSM4FWCmRJzdRarn+MJqLXa3Dmprx7IKtM2qw2pBCGGLuYWw186wlM2VnUerh7hdlSLArh+RSlDA5nxxtsPi4WvWANvtIuiI+DGbFw247K8fERNM2zZMvG+qQMsiu01I2O8REt8HTTo4AEBr0CfUAilbMHdSv7LNDUrFGmHbMaR8c20XLFU3wWbGp24Uy9TWRd+qawIHqy60Z7isNnuAhC2ETeVuumDdXupSgJCGi1KaBtDR8NoUWNVi43spgN+el9mZwC7gchoJ8xvHSjDdCN5mwYhy5sSQyE4q0dCMG6gyOovOcAUaqxTZ36IBl5XHT8DrFrAZ0Bguk3Eigs7uOvti1n5EO/52O1Y7Foe12LB/KIh42AR91js7EYbLLxJwlewXT9HUEgDLKkVAC7QF0gz2qUnrgL0aKNkHpHNNKYZ8HtsgW4zhsr+ezRgugLmgx/NidjQiKU7dk8mGkZyPlKJdtSPAztd8pBRT+RJK5Yph+x8OK6uU9TG2sTpwYQZ3X9VlOR/OwpoFtiImxwB7lvg8LssWQQD7/j6LIDpfmjvDJbJJYz+3XuOrrX3Mz9fv3HslPnnflaZVlZcKLkmneSurAZFdphHKFYpjI6xdTTxPba0BOIz6KHLIpBRns8Wm1N2iM1w5490U13DZ0fqAud6Ow86jBaguQqb91QQd0PkDfq5MmT4fmzSVSNrDVsPltTZE5KyD1eIqYp/AtRpWTvPVptPWTAdgHtRy2H0vqXEEUpMiRqPWgRsvXbdOBdoF/SK7+ZDf/uHLGArjMZZFxRkuuz52tT+zSwGbMceAeEoxJ5BStOs1SSm1DQBj2lpr59lolVIMegi6WwIYidvbS/B2TqZdJfxiDFe6IOYpJ9JWzDbg8ljbQojIEPjPhVr72KS17Zi0SwGXZMBlxXA5DbjOTaaQKZSxbXUMFVpt2mwHKxfrgBtwEfGUYiOTtNgMF29z08i88Qyh3W6MUop0wfxcASy9Z6fhsm1oq7VtsUtX2AVu+oPXJgC08+HiP7NluEr2u3m7cUQ0OD4324lbi+btF0+3i8DnsWampDRcFrteu3Olj+MT1ILN0Weq2u/NKlCy72Mncpx9bhc8LmL58M1rbaGMsCwaQFw4pci/l/V8CDFPKfJilPkRzVt7ggGwZY91TZDFOLwS0C6taMeUtQS8Qhtqu3F03Z7N9cNanIkUXIhs9uzvUauAS0RnWTuOWTqQp8ddNpY+lwMuu4DLaUrx1FgKAHRqWLRpdDLXHChxcBG/WEqxuV0DTy3ky4vDcJmlFP2CPRCzxTIq1FzsDjCzO1vjShtGiVdB2plO2lW+iTA4QG1QYdEORSDtkbdp7QNwpsx8nIIAw8WMRm2EqwK7TMBeAMtZPZEqRSuxe65YBiH287FjSO168wGiDJf9fMI+NwrliqV+RoQpYylpt+XD14rh6m7xI5GnQp0g8gIMFyHE8jjbMceA1oDY4xJqyi0kmp9juyu+1toGXDYpTtENvm2lrKCpcMpGosEZ4bn2TQV4laJIStE+7c9+p/F9kbMJRi8nXJIBVzpftkgpeh0FXJNai4brVrcC0PxyBJDIlZpSgbUQbRcza8hwadqbRUwpet2kKSgQZbj4ebAWzdunFO0WdL4ApWwZLi0YMLm53Zq7sp2mLFsogRB7gbnV4kkpFWK4gl5rXZCI6BkQcHsWqBRi87F72LFxrIJRfRwbpixk4YStj2NbVGAfcIk5zVs3Ggfq9TNW4wDWTBkfy4ylKFcoCmXzlFBXSwAUmreaDUTPu99C+CwS4ABsMyzSh3OurK8I88IDrnjGOpNhl+JsCQoyXDbjiOj2AK3vpcUGVqSwBdA2ezYMl99jzXCJpMeB6ubC7L4QCbIvF1xyAVelQjWGyyS9JFCabYTJVAGEAFdrxmsP/Ph1XJy2bzydyhctU2ZRv9gNmTRITYZ0hsv24wsCnuZsfMjwwMTOM4bvsiwZLpsKFsBeM+Vy2beKAUTTSwJVkwLBgJ3OpFBmflViDxfzpr+FUgUuAkvhL8CZqbl76tgFOPNXpWjdHkgfx+Z78QDQakF3uQj8NqlSs1Y6teAbJEuxe6kixNyF/Oa99Qo2QdLylgAA4ILA+iWinwHYQ9NMQC167TDWTsSHS4D1FQm4rFKKEgyX1TjiDJd1VaCIbg9gm0rr9VRMFmHFkHL4PC5rtlZgMwPUBIEm10+2WLFM/15OuOQCLm4CGTHRTYW8rCy2WJZzC51O59Ea9GJ1WxA3dbOTf2HKfsHKFsp63twILUGProUyQ7lCkSmUm76TznAtUkoxlS+ZH2e/fXd7UfNKO0ZJX9Bt+uGJz8eacRMxYrULBoJea52JiFgZYItVhZrT8azayH6x8nutmTvR+dgalgpXF7JxTHUdAg9efZw5sh2AZr9hc77sx7DXz3D/IzvmLmxR8Win27t5XRtcBOg7ad9yRpwhtWC4BM+5iNxDhO0IeT0olCsomazxImnkakWyPeNmtV5EAx4hyQhjyqx1lm4b3R4AZPIlQwsiDtGG7iJVil63CwWL56h+nAVsIazmZKdvu5xwyQVc1cbV1jocO7ajEVOpAjoifhBC8KGrfACAiZRIN3nriyUqIKqspt7qvxNLYQCL5fdmZekg5PYs6IJuy0wJpCxEbBhEBN12u2c2H/NG2tX52DVstRcrA/YeWgWBnSofx0ozJZJ6Y+NYM4DionlrXUemUDLtCNA4jphoXiSFZ5NStPWHstfPiIzD5mPOBtlpZ1pDPlzV5sKTx0QCLrHr0G+h4RI958xLyb66UPQ4m3VgEPFMC+vp37nZVLQEvEjmzBno2jnZecrZ6fYA6wp9QCKlWLIXzfvcxJK4qBYniKUUzTWAJRVwLVVw+tYsjRfwiUX4jZhKFdARZoFWzM92nxM2neD5AmG10PAb0go84GpMKbpcBCGve3EZLpPjLBKYiCx83GneasHKFsvwuAi8FmmzeUspeqwDJcDe5BEQqS7k4ml741P+O83G8dmkEwFxLxy7+dinFMV2vXaBZFagWo2PI9Y2xD4AtBvHLigJCehwcgLaGcDa3FOkMvWKmBtnJ1K2gUBe8LwHvOYWASKMEsC+k5XOkreFEk1RWWmCat9nOIaguNxOwxUNeFHSuhlYIWtRVcphxWpypAtlS4ZLpKtERasqFWG4ijYaLkJgu/7YpTmzBft2TpcLLrmAK23CBnEEBDxjjDCZzqNTa3wccLML1y7gElkgWoIeW4ar+p0M2gP5PYvGcFmmFC1EvRxVE0z7BcKu/FgknWNLxxdYVwCrBULUpsK2nYVtikpO/2D28BVluETcnt0uIqAFs34o8N5zdiXediaqfBw72AWA4gaqdoFbxTIlBNS4hTtwiG9E0MLTS8QoMuwDShVqWxWYK4mdd7/F8RHZWAGseMZKwyU6ju41ZTKWCCPuchGtkth8PsVyBcUytRHNcz8vgWpHgU2aHQNoy3B5rYNRAHqa0G7t8XlcKFps9kUKSWp/j9XmSoT1vRxwyQZcZhedKKXaCJZSZAwXIQRdUb9twCWiCeJVk1ZGqpwBM2ryHPYtHsNlVQ3KHgj2izlgw3DZ0M38ZyL9uuz9syoI+Yy7AlTHsRZPAzIMl3mqQVjDZbNYiTJcIgaqdiwHwMXu1gyX3bEBai04zNNUouMIOd+LmDPaXIO2onAB0TxrWC7AcPncpoFbNf1rYVGhmS7bicLzAua7ALtOzVooidikACwgtQq4xHvzWTf3FjG7Bdh6K1TtaLO+A/btwESqAu10sflSBaUKnbNoXsQKBKhquKzWMJHNg76pNtnwiZjdXi645AKupC3DJZ5SLGkXU6FUwWy2iI6wX//ZsmgA4zYBF9cQWKcUPaC0Om8jmKUU2dieRatStKoGtRMZA2Kphurux65izeaBKTKfYkmI6bDynuHzsXu4hHweS7G7aIVPVYhtHnCJiebtUopi2iK7gFQ0PWB33kVYRD6OVUpa9OFr7y8moC2yOVeA+EPKirGtCt0tGC6td6Gd7YGI4zhgfV+IFiaEbWwh+LUgynCZXYeirKatbk9g/eJr9qxNYZRdb0eAFQNYBet8rlYpRVaQYdNVQtft2VcpAowpNYKonYNQSlEFXEsTtilFvpAL9Ofb+MeP4mvPnMWE5lfTFa0GXF0RcYbLTlQJWO+AUjnzlGLY7140Hy5L0byN7QEgljYTaTsjckOGBBguEdZEhCnLCIjm7aj9vI3wWR9HTymaPXyte6ZxBDxu0x0mINZmCBD0zxLRXtk8NEUXYf4e08C2WNErwKwgknK1vQZ10bwNwyXwvTj7YhRIinh5CTNcAl5wgLXruB7U2gQUEZsGxKJaMDtdoyiraWdTIRJIiqzvQDX9ZjkfG8aNz9WqKp43dBfz7rOej1czuDazhhDfpNmlFJWGa8kiZZtS1ESDNmzHsNb/6sHnzmFohv17VVtQ/3ln1KeboZpBxPZAz/Fb7IC4Q7qRXmqxGC4zqwoOkUa9Mm1VrAJkoYa2NloewL6ilM9nPgI3viEw1+HYp4UA+8BNRPwKsPvCziBU6MFrwyRmimL+WXZaS7tiFH0cr/X9ninYs5qACANor5XjLt/WTbDF9CohnwclzeC0EVWhuwXDpe3dZjN2gYBEStGMURINcPxulCvUNnAT0UcC5hWGWQmmbK4WJy0B+56Mem9HuypOG8aNryVWvo+AxtZaXMsiRRcA9CIls0pFO28xDhE2W2m4liis0m9ANWq303ANxZnlQ4VSPfha1RrQfx7xe20rWOZrB8QrdyIGD6qwf3E0XHY3d8jnNi3L5hCpfBPxjRFhF0SrJsXE0zai+UJZ15GYgQeqZr5D4ilFayYoX6oIM1x2PlMii2dQYzrMNInZQsm24TRgr7WUMT4FzAN2I0NhIwQ89rYZdufK43bB73FZG58Wy0JaOZ3FMViDdIZinhgukZS0VZWiSDN3oKY5vKndhSgzJabhsgso7FKcIkwZ9/OyWt9FTY6DPjcyFvOx0y9zMG86gfZSNvPhAZeZF1desADEKosh0ofzcsIlF3Cl8yW4NWdoI1QZE+uHJme1KhQY0gKula1VhkukL5reKkZAVGm1A0pZiOZDvsWpUhQpThDx4fK5XZYVUH4bhoKPIySaF/DhEkkFWj14KaVCKUX94WJy3kVF8yK2ECIPTL6bNwuURIwQAfsARzilaKHrkFmE7SwCkrmifg9aj2MuCufjC9s5zIMPl1WrFxF3+IgWcMVtAy7BKlebXop29zlQ851sqgttHf1t7gl2jO2bIdv1OxXR//Fg3iqDkSuIBThhm0IkTgCIeNwJabhs7nefznCZp4BF7gkrDVdVb3fJhSKOcMl9y1SOOe2aVZrpO2fBlGKxXMFQPIu2kLcuNcgDDSudksiOrJpStGK4igh63YYL1mJVKdoFXCGvB4WSudszwG5Iu8VcKKUoIMTmjJuV71BGgJkK2Diy50sVVKiAq7a2EJsVS8jaQpinFO2PMVDVfZh9N5FG2rXzsdLPyIjmjb6XSDNkDh5smjGAiVxJT/tYzsemCXauVBF6KNiV9udLgqJ5v/nxEel/6HMzDY5IlaLIQ9OvPcTNNGUi3ylsw3CJiu/t7gnRqjcrrzM+Tu3vM5yL1w23i1gyXMLdDvw2lisSx2c+qhQ5c27mxZUrid3r/PcYFV2IfqfLBZdewJUvW+5YdW2IjWies1qZQhnHRxJ1+i3Anv7mnwXsbSEAu5SiVQudxWG4eJozapFSBMzdngGxhY8v9laVgSIC6oDXDWpRFcjGERO7W7WGErECAaraDjOGq2p8Kia+t2S4BGwh7JgykUbagJidg0zlkhGrxDc5Iv3VqqlJ4/OVyIoxXNyHyyigKJYrKFeoGMPlm2+Gy5wVsHpgEkIQC/oQt9Fw5QUD9oCHtZgyqljLClTtAjW6RpPjI1pRamcwK1pwYVf4I9KHkxCCFpt+iqJ6zZCXZVXMNVOCmzRR0fwcU4qiFbdcyG+09ogWSlwuuAQDrqJh6o3D7oHAwQMuAHhtII4NnZG6n4s0ExULuOxFlcmcuaN72OdGiZpXiiwUqmlOa78zO3NPe82UdZ8tQNT41H4+QilFO22R9rpZ9SYHrzi106vYPew8bhd8bnPBu0xrH8CaFRAJKOwqjkTSrYA1E60HtfNQAZUUZLh4z0qj9IloIADwptM2TvOCwQAAQ02PaJVZLOjBbNbaFkJYNG+hw8kIM1xsvuYti8RE824Xgc9j3mJKxGSUzcdjqdMVZVrt2rfJMFyAdaoUEO9TagZx0bxAlaLAmgGwc2+1eVBVijUghLQSQv6NEHKCEHKcEHIbIaSdEPIEIeS09neb9l5CCPkKIeQMIeQwIeTG+ZxwpiDWLd1O+DydLqB3U5f+/1/asbbu53b0N/sd2kJscbF43S6EfG5LhssqEOC7ObsAcr5RrQY1m5d9QCoSKIn0vhTVcPH3Wo1j97Dz21w//AEomlI0ZbgEhb38d5lVZIkanwr5eckEbpYl3uJVikbjyKQU7aoUmYbLfj5+i/mI3OccVpVmlFLGJAqJ5s0ZLtEHZlSgrZi4aN78vmDMsf0xthW7C4rv2Vjm+ivRlCK3ODEtABEMtFuCogyXvYYLMJexCLffsvGUE9WPenlK0YJxEym0AcwLFFRK0Rj/B8BjlNKrAWwDcBzAAwCeopReCeAp7f8A8E4AV2p/PgHga3aDj6TF2Zu0RX8/QNv9uK11OACr3lneEsCDH9mO37xjHW7d0F738yr9bZ9SFKnOsRRVWiwQYQH36oWAnd9ZdfG08rGx383bPcArWp+yubbAAXjqQ2w+c23UG/KyxuOmGi7NzsGuLQafk3VrH3HGxMqmQojhsmASeSsUkUDJ43bB6ybGjElBPMCxEvFTSpHKl4RTioBxalu03yBg7e3Eq9WEzpff/OGbL1XgdRNbUXjEpgoPENfcVVPbzeOxjhQSrJ1dQCFyfCzuCVFDTj5nq/ZSgP3mKur3Wmp0hc139ZZF1ilXobZiAnYXdkGynWietbsSDLhMjHz1e10FXAyEkBiAuwA8CACU0gKlNA7gfQAe0t72EID3a/9+H4DvUIaXAbQSQlZY/Q6ZPtMiaSG/15xu5khki2gJenHv5m585j3XNj34QjYXP8AuXK/buqkywA3/rA32zC44kcBmIcDnayqaF0wp2qUa7BhJnj6xFYraBEoFrS2GaMBltpjrQbbNOC4XQcTnsWS4RBcZK7+gfKks1trHVmgsJ5o3mo9oMMoR9hszAzxIMNMP1sJKQpAulFGh5hYyRuMYMjgSKUUrIbZMQGHlWp8virGaYb/b1trGqkF9LdrDrO3ZjIEmLCPMcNmzoz6PvUktwIMKCw2XwDVorwUTC7SjNhquqsmxWBWnVdqfzcd+DbNrvwXYr2H2PlxiqWSAPQONskV2G/vLDSLfcj2ACQD/QAjZBuAAgE8C6KaUjmjvGQXQrf17FYCLNZ8f1F4bqXkNhJBPgDFg8C3fiF279yDis7/RpmYzaHdl0dfX1/SzVCqFvr4+uGkZ5wYG0dc3YThGoczM96ZGLqKvb8xwnPGDBwAABw69jsDkCcNxTvfn4SXUcC6186kUshgYyZm+b3ImCwSJ4c/PjrML8tmX9mEwNrddAJ+PCA73M+3Hq3tfhM9df15SqRRGjh4GALy8/1WkzhtfRhNTWUT9xt+Lj/PSC88CAE6cPou+usuGIVlgu6vBC/3o62v+Of9OpyfZIvLC3v2YbG8+TukiG2do4Dz6+oZMxzk7wY738y/vw0hr8zgHtfNx4vVDKFxs/nntMfaSMk6fv4i+vvGm9527mAeplG2vHQAoF7K4aHD9lCsUFQoMD15AX99I8yA145yfZcdn36sHURxsPl/ZfBFjI8Po65u0HOdiki2++187DIzUjzOTYz+7eO4s+soDtt/LjxJOnR9s+p2vjLJjfPz1g0idN17Q+TiJPDuvh4+dQFfqbN17prX5jAwYXzu14/Rrv/O5F1/Gqmj97zynHbszJ4+hb+aU5TjxyTziqZLheY1r87nQfwZ9pQuW42SK/HudxIpMf917zg/kQaj5tcPHSc3kMTlr/j7eDHlydMh0reTzORdnx+DZl/cjfrb+vE/MZOAtumzns3/viwCAI8dPoS9/vuk9Z87l4SUVsXsin8WgyZo6MZMFNVlPa8e5MMSCxz3PvojucPN1dvJsAR4CPP/cs5bjZGbzmLA4zvu1a+vIodcw29/8e/g4p6a0NWzffkydaV5bTp0twOMCnn32Gcv5TI3nkcwYX4MAcPQsW9tfeel5eAyCW30t1M75gdea14xShaJUoRgZHEBf36jlfAAgl84hkW9+Vu4bZsfm2KFXMXPW+l6fK5bEOJRSyz8AtgMoAbhF+///AfC/AMQb3jej/b0LwJ01rz8FYLvV7/At30gPXJimIrjxs7vpH//ksOHP9uzZQyml9C1ffJr+7r++ZjrGWCJLe3buot958ZzpOBPJHO3ZuYs+ZPIeSin9wx8eojs+94Tpz/l8/tM3XqQf+tqLpu9765f20N/+lwOGP3vp7CTt2bmLvnBmwvTzouDzEcFfPnacbvj0w7RSqRiOc2QoTnt27qKPvj5sOsZ9f9VH/+s/77edz5V//Aj9/CPHDN8zOJOhPTt30e/vG7AcY//5KdqzcxftOzlu+L7hOBvnu3svWI6zt5+N8/xp4+P980NDtGfnLnpyNGE5DqXW3/93vvcqvesvnzb8WeM4H/zqC/QXv/FS03tSuSLt2bmLfr3vjO04p8eStGfnLvrvrw02vadSqdCenbvoXz1+wnaccxMp2rNzF/3xqxeb3nN2PGn6s8ZxKKX0fX/3PP3Vv3+56T3/uu8C7dm5iw7OZGzHSWrH4JvPnG16z8nRBO3ZuYv+7OCQ7ThPHhulPTt30YMDM03v4dfEc6fM70E+zucePkav/pNHDd9zYTJNe3buoj/cb398iqUy7dm5i/6fJ081vedTPzxoue7wcf7kJ6/Tbf/zcdP35Iol2rNzF/27p0/bzqdfO+8/OtA899s+/yT9Hz84aDufSqVC1z2wi/7V7pOG7xFdTyml9MNff5F+6OvGa+qdX3yKfvJ7r9qO8/iREdqzcxd9fTBu+L7P/PQIve4zj9mO8+c/O0Kv/TPz9/3owEXas3MXPTeRshzntYEZ2rNzF33q+Oic5vO/HzlOr/yjR0zf95ePHadXfPph23H4Gv/YkZGm9ySyBdqzcxf9xjP2aw+llP7Wvxygb/3Snqb3/NNL52nPzl10dDYrNM5cMN/jANhPbeKnxj8ifOAggEFK6V7t//8G4EYAYzxVqP3Nt/FDANbUfH619polzk+mBabC6F+7CrGATUqR66m4S7ARqiZ9FtRsUawcOuyzTymapcy4U71defd8I50vW/qd2QlgAfGWDQGPy7TPX1bQIoD7a5m2+5DorwaYa/dEdXsAE86bpRpyRTGjUUATnBp8r0JJTPwKWKeARcvEgdrUpJGdg1gFJ0dbyGt4XSdz4mkGXStnUJTCX5NLKZqL+MWaTrP0b9lAiF3tLmA/jsftgs/Etb5YpkLdBexMWDOCRpoA0B5iKcXpdHPVo2haUrcHsPDhEtUEhSw6SzBNmf18qqbUxmuraGqyJeBFKl8yPOeAuPZKzNBVTG9XKJt7JIpat/gsUooy6XGAdVExupbfbClF27uWUjoK4CIhZJP20r0AjgH4GYCPaK99BMBPtX//DMCva9WKtwKYpdXUoyl+/weHMDiTsXxPWRNQ2wU5dr2k+A1mFXAFvC64iLVoXtTvxa6FhNWNxBtq2/V1nG/YLaJ2egxAfIEIWPjGiHjhAPbNkEV1C3yhtvL4qX2fFcx0C4C4PQBgrhGRCZSsqkrzEoFbQNe4Nc9HD5QEAhwAaAv5MJNpfoDLBFwuF0FLwGto8MmtWMRE89y/z+jhIqHhstBcimpwqmMZ3xcFwcrUiN+6W4adTrMW0YAHbhdpOl+UUuHuAoB1SzCZnnohi02saAAYtakkFg0AbccRFIbrhT8WonmhAgef+bXM5yMyjpWGS+aeAMwtOFL5EggR131e6hCtUvzvAP6FEHIYwPUAPg/gCwB+gRByGsB92v8B4BEA/QDOAPgWgN+yG5z3/Xrp7JTl+zL6AmEnmrc2fuOLc4vFQkwIQdjigQkA2aJYY1w2jh0TZHwq2sM+EAATyTc24ErnS3O238gUyvquzQpBn3mALOxhY8G81I5jd2NXvYLmVqUIWItp8yVxDxtW3t8cUPAHqZRo3sr2YI6+V7K71ZgJw8UfmCLiaQBoDXkNW9jwYy/kNG/xvWSOj5V/nywrEPIZP6RY/0yxdQcw3zTysUUYSZeLoC3kxXS6/jgXyqwYRSRoA6x7nopu0KzGKWoBpmgQCcD0HhUNAFtsmLJqZwAx0bx5FaecV56VT5nI+qXbQpSambu8YC9YjojmT0cbjIW5B6VItfblAKG7hFJ6EEzL1Yh7Dd5LAfy2zCQ6gwQFAOM2QUX1YWc97bDPjSkD6puDl/DGgnbjGJeycmRtPME4In7zUnFKqWV5rdtFEPOTNzzgStkGXOZGiACzc8gIOlDb9WkD7HttWTEv7HXBgMtm0csU2I5MrO+geauOXLEilOoCWMBgZJyr+zEJpKh8bhc8LmJZmi1S2u91E7hdxDBwS0kGXG0hH1L5EmNsao5nMleUSjG0Bs1Sk/ZMNodYwCWQxrPoFygzDsDOh9H5KpTFGpbXegm2aVWGteAMUUjgvANAa8iHeAPDJZOWBFhLMLN7i23yJJgyo8pUwQbPgH0XEBHjZjaOTeBWKMNF7DdGId0CyGwtrAhZpdh5G2YKYoGkbnxqwHBVg3VxhovSZh9NUTbycsGScJonYA+V8UTO8n3Vm8mO7bBO4fGHl91CbFdWLXrhhnweU12HSFoo5ie2weh8w87vzOdmKVfTgKIkvhCzZqvWrXTs231YLzJVDZd9OhqwZriYbsh+R2Zl58A0XGKLVUvQi0Kp0vTd8hIMFyEEQZ/x9czvFZHgmOtwjJhE+YCL3X+N6cBkriQcjAJALOQzZLi4VnOuGi5+zIQ0ZQKpW7m0mVFKsSzUzilikx7PSDBcANNxNWq49LSk4BhWTe8ZIy42TkjbDDcyJtVrUEBj6bcPlES1mmwc88AtILBm+NzMEsOa4Zobmw2I+RHy+QDGTvOy93rI5Fq0e85cblgSARcAdLcEMJaYH4bLSlAJVBkuq5QiYK3BAdgNIHLh8gvKUtdhFXD55sZwnRlP4cKUWFECh52Zof7gNbmp9c72AjeT38I3JlcUO+dencEx2x2KmRi6XMSyx1qmIOakDlj3ahNtYgyY76BlNFx8Pkb3hazY3ax1iL4ICwZLMU2I3ciaWPUWNUJr0ItZQy1YEW4XEXtoWjx8ZQJSqzSeLMMV8hkLzBsZQSdzAWoYLkGWoi3sbdJw6WuyBDNltjbLsB0tQQ+Kmr1PLXTmRWAcn8cFv8dl2UxbTMNl3cZLdBxCiClzBzDvPhmTWqusgci17LNwmk9JMIlANQBu3PDJ3uuXOpZWwJUUZLjsXL59xn2bOBLZInwel1CTVKuUomi1R3XhM9d1WI0z15TifX/9DO7+Up/UZ+xSioCmvbLoqQeI9cMLeN2mAk+ZqkArh2UZ7VXIZ665E2mAzcEaIlcMW4fIGJ9GTXbQPKUownAB2vVsaFgqFoxyRPxuUxNDFxFv08EZrkYzzUROzB2ew0rDFQ2I6UNaNFG4oaasUIJPqxq0gxXDVW06Lc5wGY0jmlLkDzmza5mfd9Egpz3sa9JwVddkGWbKgj0WDNx03VTDeZcNBFgfRItAaR5SijIFMizItigqmAcNl3hK0SLg0gtSxI6zWardqo/w5YglE3Ata/FjXJThsjlBIb+5dgZg4saYgK7DVuwuWO0R1hc+Z7vemJ9gMpU37fllhYEp68pPM6QL9jeCVZNUGV1QwOMybGIMyPXaClpWO4pVKQLsQWXFcMlUZAEmQnUZhsvPtSb1c9JtIebImMicK4ClOI1tGFiQLiqAbQtx9/J61iSZKwq5zHO0BlmVYuP9IdpHEWDsQizYzOAALPUmemyserDmJFOKphou2f6ZJsxLSmehRQNkpuGqTePJdhewSrOLbPI4uBykUaguW7jREvCYpgIzebkqReuUoqBuz2RTxMapCK1fnPG2alkk1H7LxTVczc8dmQpXoHo+Gu8LpeFaJHS3BDCezFkGFVW9gA0zpfmQmLUkmM0WhSqXrMTugHi1h5UQW6RtSNRHUKpQy470ZnjuTNVBOm/SE8sIdlWKAGdwbBguEdG8hY1HtXGwuAeS8Xy0B4Og5s6qn5lswGXGdohWKZo9XGQ0XABb9Ix6O8qyFC0B495xsnoMvumZbWCVUg40XJQ2B6TJXEkPVkVgxpSl82Kta4DqA8iwB6J0StFMwyXKcJkHf0A1EBP3TfOhVKF115CMSB0w7zWpVxcKX4PsfbMNPWplr2WrSmIWsNtfP9UqxbkxZQALfq18yoTabwmkFEVTnD63y/A5KmPdAtQWKDQEXIrhWhx0Rfwolqmhnw5HRlAXZNfIOJEtCVUuhfzmKUXem08mpWjFcFmNE9VaHhn1MbPD8ZGE/u/xjFjAlS+VUSxT2xvBilGS2fla9f4SrfABWOBm1dDW53bBI9iDzprhEhUIs/c1fjdWmVoWZqbMUhYFwXLz6jheQ68gUY8yjpag8UNKdrfaFjZjuOTGadXu5Xi2eRyZwK3NoAoPEGN7OSI+8/SSbEoxvOAaLnH2GKg5XzXCeVmGy8zOISOhvQLMNyGyYu6ICcNVrlCkC2Wh68fvYfpRc8898c0VkzNYmSWLSSsAa09C0Xvd6yYoGsg90vkSPC4ibN7cFtbkA41FF0rDtTiwy4MD4gwXv2nNggHRlKKVaL5qVyBmgAlYa7isHr4RbapGLs92GJ2t6uKOT5Wx50RzX79GiJb8BjWNktUYYgyXRZWithsTrQq0CtykmAVT7yIx7zXAvBF2SeuBKO7DZabh4oal4uMk80bNh+VE81G/15BtlUkJsd/nhtdN6jYSuWIZ2WLZ0MbADK0h424MCUGGQh8n6MVM2ojhEtcWWfm45YoVuEi13N4OIT9LLzWy/uK2ENY2A5k8Sy25BP3O2rWHZu06JKuZ4sanjdWFoms7h5mGS7SSnSPq9xqu8TIaJUKIxpSZONZLMFxRS7NkOdG8qSehhCzC63EZ2kJwsbuofIA3P6+1a6pUKFISm5nLAUso4NIoR4MHAodMlSJgXg7NUooCGi6fB7lixdDOQbRVDGBdNixSpcibehvtvu0wMpvDjnXtAIDvnijgN//xlabFrhGiaYKAZQpPvALKKjXJFqv5KDmXSQuZF104SynWX4eyLs1mdLxufCq4yzRLn3BvMdGAtCXo0S0XapHKyzFKTDdVzyrxBbkz4iDgMrCXEJEOVMfxGTLsMgyXx+1CwOtCymAdE7UH4GgJeAxTpXlBDZffwwJaswd4WtBHkKNNryqtfjfOWIhsYAG2dpcrRtWFcoFbi+ah2JjGSxfkmDKze0KkG0n9OF5L0byMBYzRZqZcoSiWqZxo3mBNLZbFMzMAyywYseKpvH2LvVqEfB4EvC5Mp6s67WS+BErFr53LAUso4BJguPIleN3E9gHDH6ymDFe2qN+wVqjuEM21VyIPX57yMFrMRVKKEc2J3ynDdcWyCLasatFfM3pY1kKUlg96XZbmeoCYINfvdSNfMq7mY4UJYpepldGonNjdY6qjkBmn2newfk5Vx3FR0bwHhDRfP7rxqWDAFfF7kMo1exel8+LeYgBjF7LFcpM/T1pyEQaa+ylOaS2sOsJ+4TFiQWN7CRnRPJ+LkWg+nRevTAWAiN9rWGyTK4lXprL5GKdcRVOKgHVbMXa+5OdTuw5NpQuI+D0OKm6NAyVxsbt5laJMqsssUNIDLsHrx0oLJspMWY2jPycE1kKudzVam2XlA7du6MDuY2PNqVvJdD3Afdyq4+j2TCrgeuNh148KENfPWDUgppQikSsJVymajcNZC6HWD0EvCDFuQJ0TaJEQ1RkuOQ1XrljGVLqAFbEA1ndG9NcnbPoyCjNcllWKMqJ5dhk27noBcfNBwNoWQmbRi/iNxcrV+YinT4DmlKKslsflYhV0jedfnuHyoqT1I61FtlgS8kvj4AtkI2ObysnrMRr7KU6l2L/bHTBctQEppRSpvJhWs3acTKGsB7Icos2QOcxsM3LFipBxJYeue6k5PpRSllIULJQIW2iCZFhfNp/mAHA6XdDTRSKImWw+q15n4pYrPo+rKRBI5opSqa5IwGPYeDqppxRFGS6P6bNL1LAUYIFk0mBTJFJcxcFNqQ0bsUsGXB+5fR1S+RL6Tk7UvZ4uyMkHAHZP1zJcs3rHFxVwveEQSSmK7sh00byRa3SBOb4LpRQttVfiDJfbosEuz7NbsR0BNyvRnZZMKXKbjeWxAD5253r9dbtG2KK6DCuxu4x/lu7RYsIkCnvY2Ij4ZVKB6Xzzosca9YqzHWa2EDIteTjaQ76m8y9bpaizC/nGh51Yz0sOs3SOaKq+Fq0NDBe/NjulGK5mDVcyX0KF2psb18+FBQ6NVZPpghxzFwkYs0oyvQJr51P7vUoVCkrFg+yw39zXyc7cuBHcq6yW4ZpOF9AhERybBVyyWjA2H28TWx/PFHUmTmwM47UnKaHhAhiraVZFLqXhCrCUq9kmTeT6qXaDsDAnFjzOGzrDAIDphmeGk+rCtoZOBaIG5JcTlkzAZddmAeDGeAKpQIuUogyNGbZgymSrc1pN0hX6jWTBdhBC0BY2rqCywshsFgCwIhbA9Wta8Rd3BAHYB1yirUwCNgFO0OsWakBsxW5mJB52dsanMp3tSxXaJBbNlyqoUPHdYUAXr5qlFCXSOWFfU4VPoVSB20WEKi8B83ROplAS1skBxumcfKmMdKGsC6tF0XhfcA2XzEPc63Yh4vfUBSa8TdiyFvHArZrCq39wZiQZrrDPmO3IlyrCXQHq51M9PrKsZtjvMW/tI8lSEEKaGcl0AR0OGK7GVGBG0tcJ4NWy9ePEM0Wd8RSB2T2h9+EUDAZaLFKKWYm1x6z6Ulb3aZZ9kLaACRrrI504xHeE6zeNiuFaRIhWKYrsxK1SigmJG8kqpSja44/DrMFutdrRepy2kFdaw3VmIgUAWNfBdiktWmqSp23MIFrpw5zmzaoUxZkg67Yq4rtws5JzQE7QracCG5gBPrYoG6QbTzY88PICaeRGNO4O+TiiWhXAKuCSZbiaHwr82m6VYBcAzYohW9TZxKlUHgGvS0ozBbBFu9YWYjjOAq4VsaDwGK2h5hReoVRBoVyROj7RgHEaT8YAEzB24i848F6zFM1Lau46wr669WMqlZ+XlGJKt4UQP85GafZ4tqBrZkVg1sCaB4Sia4ZZlSIvEBCVRbSYFMjomzTB+9004JIMbFl2xtN0nFP5km6BIor2sB/TKYOASyJAvtSxZAIuv8cFr5tYM1x5OQ2X0QXH0wWithCAcVm1aKDEYdZgN1Ng7VDsHpxtIZ9hyboVjo8kEA14sLqNPXQiPsBFxFOKtgyXhxnMmlVxipbSmy16gJzOJOL3oFCuNGlw+Niiu1WzFGdaQpfG3mec2pZdPAFWkj8X8TTA0h5AM5OYFmSOOYweCnxuMg9f/v5CqaKbaU6lCugI+4U1OBytIW9dKpDboayIBaTGAOrF906Yl7BJkJMvVoStQAB2XzDtZ3U+3IRSmOGysDjJSGyKODoiPp2FpJRiJlNAu4P0b2PAJWvCCgCdEX/TWiabUjTb7MlruJi9hJn2SvQ48wCvkQHMST5vzDafaQeBbauBP10iKy+a74j4kC6U9e/CN2yK4VoEMC8T45YhHEyoJ+YUDhhrr2Ry81ZMmWjajcOswS4vBLB7wKyIBTAUzwr9Lo7jI0lsXt6ij+0iBO3h5kWqEaLNeoMW1TDpQgkhQXF5VVtkVH4sns6xYkllFoiqW7gxwyW66Pk9LhBilFLkGi7xRa897MdMuli3oOdLFYcMV/PDTsSBn4MzL1MNWh4AUukcAFivaUTOjDM2djyZl7KE4Gh0iR+ZdZ5SrN3NpwTZ3lpETCoDWZWi+Plyu5rbDeWdpBRNNFyyvmkA0BHx65WkiVwJxTKVOl8tJgFXMsc2njIBYFfU39RjNp4pSjEmZnKGZL6EgFesfybAdHsV2rxmyNjjAOYpRRnRPKCZ5hoGXPIbiMZ7y4lXHsC6yQDVzdBsljWXl2GPL3UsmYALMKfiOUSrFANe/qAzCJQkdqxWrTFkbyRWcm4kmhcTVK5pD2FkNmvarqgRlQrFiZEENq+I1r3eGfFh0ialKNqs18rvRaYRrVWglBFMI1uNUyxXkC2WhRmukEnvS1ndnpl4NS/pEA8whqtQrtSxrSzgkgsEgObjM5sVMwKuzsUHQlD3sONBigy7AACblrPr89RoEgBwciyJK5ZFrD5iiNYGP6/RRBadEZ/U8Wk1SOHFdUZcjjUx2jzIiuYBXsVZk1Isc7Nb0ZSiccUkKwARLyThqE0p8sBLhtX0ul0I+9xNAVc8W0BryCfFbHZF/JjOFPQ1sViuIJUvSV2DnMEyqnaUMc01W3uqm7S5bRo5Ky6amjRjWWVF80Bz6jbhUHvF2eaRmoCrRaKi9HLAkgq4In5z4SHA+/uJVWmEvMbmlTIXnNluo3Yc0fRSLORDIldsSr+JLnpr2kOoUGAknrN9LwAMzmSRLpSxeUVL3euxoHG1ZC1Ej7OZKByQqwo0SylWtGod0XRXtclz8+6Z/R5Bhktv+tu4W5VjuPjvNBXASgQDuoA6Xa8vkkkpml3Ps1k5obHH7UJH2FcXcHGGSzaluKYthIDXhZNjSUym8phI5nFNwzUrglio/roemc1huUQ6EWAPM5/HVRe4VQNJ8eMT8XuY9qvB5oQZYMotuayK00A0L2oLobFtjamugmaAKctwdUZ8SOZLyBXLuDCVAQCsbQ9JjWGovcoUpbRXAGO4KK1ee1Udofg4LSYBzkxabj5ma5jsJs3MX6zKcM3Nf81JirzREJizXbJsNr8fRxMsU5PIitkzXU5YUgGXVXsEQL6PnTWlKhZQ+D2upjJxPhfRKjyApRSZa3TzDSmya1nTxha1gemM0O87pvVQvLrh4dUSNG48XAtR3yGdjjep4pTRXgHNtD5fZCJzZMpkDfbMOhVki3JBNmCc9nBSpWjUGkNaNO9nZf21KapcsYx8qSJtPtgVDTQwXM5Sii4XwVXdUZwcTeLECGO5GjcJImjXmKCSxnYMzmSlBPMAr8KrDwb4sZJJn0RM7gsnDNeyqF+3dwGcVSkaVdxmBNt3NaIjwlK00+kCzmpFORu65BjJmIGj/2xWLhUIsHsLqDKts1l+Dcqfq8Y1YyqdR2dEPB1tJouQ3aTpGq4mhksupWhWLMGLE2QkBKzgq3kT0irB+gLA8pZ6hmsylVcBlxEIIecJIa8TQg4SQvZrr7UTQp4ghJzW/m7TXieEkK8QQs4QQg4TQm4UnUzEb94egVIqXKUIsIDKMKWoLzSCzJQJIySrfzDr95YtiglX13awgOvijFjAdXwkARcBNnXXpxRbLFpQcIg2IdZF2CY7KdFz5fO44Pe4mhYrUS0Zh9kuk39fYdG8ruGaW0oRAJZFAxhvCrjkHOKBmoCrRn+Xl2S4XC7SVO0463C32hX11xnoTqeLCPvcUik8jmtXtuDI0CyOjcwCAK5eHrX5RDNWtwVRrlCMzOZQKFVwfjKNKx2mJmfqHi7ygaSR+B5wFnCtiAXr+qEWpEXzXIfaYObKJRGyGi79OiygfzKN1pBXmtWMBT1Nmz4nDNeyhoBrRg8ExMfhm+bGVkxTKTl/MTOmjLP/ogFOwOtGwOtqunbyshouv9tEeyzXPxPQClKyRb0TiNPNVdjvQUvAg9HZHI4Oz+Kl/incvrFTaoxLHTIM11sppddTSrdr/38AwFOU0isBPKX9HwDeCeBK7c8nAHxN9BdYNR/OFSugVHyBCJqkFGUvuEZjxtpxZIS0Zm06RJmg5S0BuF0EgxIB17rOcNPOqsVgsWtEWjCYtOoRmc6L90AEjFtaVPuizW13yFNo4ilFruEyTinKBVx+jCUaAi4HthDLtN1hbfAm2lOvFh3h+oArLlG1W4uuiB8TiWogEM8UpC0hOLatbkUiV8JjR0axLOrXWRQZ8LTWxZkMzk+lUapQXNUtH7g13u8zDnbzrSZ+XrlSRcrsFmBpmGS+pN9jTlKKQHPhj+zGk4Ofm8l0Hv0TKd0YUwbtYR8m0w1i96z89dPIcPG/ZQLAauPp+uMzmcpL+YtFTOQMMh03ONpCPoONuWzAZVwsIbq21yIW9KJS09NzLv5ZK1uDGJnN4eHDI3ATgv/v7iukx7iUMZeU4vsAPKT9+yEA7695/TuU4WUArYSQFSIDBi1axch2kw/7jfvqpSXbWTT6++jj5OU8bDhd3mgNISqad7uIqZdXIyileO1iHFtXxZp+1hLwImnQyqIWojelldg9K8FwsbGaK1SlTfpMPGxkU4o6w9WYHpBk3AAWcE2l83qqC2D2AIAcw9WlPehq00s5iUbaHG1hrzHDJZke4AwX1wZNpPLojMoHSgCwbU0rAODVgbijdCLANI4AcHE6g9NjLNW10QHD1WjsOZNhvQJlmMR2A71dpUJRKMnZQgBVofGYFtxWg/65ibCrDJd8ihMAhmayODmaxBWS6UQ2RgATCYPqQgcaLkKAYc3g+fWhWXhcRPq8RwP1m9BCqYJEriQV+JuK5iXtHAAWsDcF65JWMhEfs8hp6ndaKEs7xOuBbaoqdmfzdBZwXZzOYGA6g1VtwTddSlH0yFMAuwkhFMA3KKXfBNBNKR3Rfj4KoFv79yoAF2s+O6i9NlLzGgghnwBjwNDV1YW+vj5MT+SRyJTQ19fXNIHxDLtwBvpPoy9/3nCSqVRK/2wulUW8hKax+gdycFcqhr/DaJxSJofRLG16/9BYFmXaPL7ZOKNpNv+XDhwGGake9qnZDFpJRmgcL4o4fWEIfX1Tpu8FgJFUBRPJPFqLk3XjplIpjE9eAAA89lQfwl5jlm9sJgNv0WU6Jz6feI59p1cPH0Msflr/Oa+AGh8ZRF/fuO33AgAUsrgwnKv7nSen2WJ15sRR+CZO2I7Bg8jXT5xGX+mC/p5XBtkCcfTgfoydNF6wasepaEHEsVNn0Uerl/KRfvYA3f/yC/C5jY9d3XcCEB8tglLg50/0oS3Afvfp/gI8LuDZZ58xHMNoHACIeIGDJ/vR5xkCAEzMZBAomZ8no3HKmRwuJqvX/6tj7AFx5tghlIbMHwqN48yOFVEsUzz8RB8iPoJzIxl0haznYva9yhUKnwsoVIBwMW47huH3qlC4CPDcayfgJgABMHziVUyetmayG8fJzuYxFq+uQSfO5RBwWa8XjePwteqlVw/DM84eKPkyu6aGL55HX9+w8HxGtXvgsWf3YUunG68Ms/N19NABTJ0xf/jycc5Nsc8/89IrGO+ont+jk+z108deBxkRP+8VSuF1Ad96+hhmMhV0lSakz1dqooBkvoTHn9oDv5ugXKFI5kqIjw+hr29CaAyOdj/B3mP96PMMo+9wFqsjBC+/8JzwXADAW87j9MVR/bUZbV2bGjqPvr4hoXGyJXZ+Dx49iRWZfv09r11ka8+hA/swGLRfewAA+SwujNS/dvJMAW4CPP/cs0LzGdF+7+6nn0HEV70HBoZzqBSan2dW8xmfYdfKI8/sxdYuDw6dKsBFgP0vPW9ZYWh0voL5Ak6PFZFJpxH1WT8/rcZxgiUxDqXU9g+AVdrfywAcAnAXgHjDe2a0v3cBuLPm9acAbLca/6qrrqKUUvqFR4/TjX/0MDXCseFZ2rNzF3309WHDn1NK6Z49e/R/f/yhV+jb/+aZpvd89B/20Xf9n2dNx2gc5/e/f5De9vknm97z3v/7HP3It/cKjzOVytOenbvoPzzfX/ee7X/xBH3gR4eExvkP/+95+ivfetnyvZRS+k8vnac9O3fR/olU0zg/eGWA9uzcRQem0qaft5sTn086X6Q9O3fRr/Wdqft5Jl8yfN1sHEop/aVvvkQ/8NUX6n7+9PEx2rNzF331wrTQGJRSuvlPH6Wf/fnRute+9exZ2rNzF53NFqTG+V8N43z58RN03QO7aKVSER7nsSMjtGfnLnr4Ylx/7TM/PUKv+8xjpmMYjUMppW/762fof37oFf3/t37+SfqpHx6UGudPfvI6vf5/Pq7/X+R6MBpn16Fh2rNzFz02PEsppfT6//k4/aMfH7Ycw2gcjj/999dpz85d9Pv7BmzHMBvnzi8+Rf/bd1+l//Wf99O7/vJpR+N8+fETdP0Du2ipzM7xR769l97/leekxklkC7Rn5y76jWeq1/+0dv9/u+H+t5vPwFSaHZdX2HHh9/bYbFZonBMjCdqzcxfddah+3eTX5ZGhuMGnzedDKaXv/Ntnac/OXXTznz5K0/mi5eeNxuHX3PlJtj6ZrY0ic/mlb75E3/d3z9NyuUK3/Nlj9I9/In8NfvyhV+jb/rr6rHh9MK49a0aExymXK3TdA7voXz1+ou49Dz7XT3t27qIz6bzwfH7rnw/Qe75c/9qf/+wI3SKxZnx/n/F9/aGvv0g/9PUXhcehlNLR2Szt2bmL/tNL5ymllP7xTw7TGz+723IMo3EopfSnB4doz85dtGfnLvrAj+zPldk4TjDf4wDYTwXip9o/QvwkpXRI+3scwE8A7AAwxlOF2t+cyhgCsKbm46u112wR9LpRLFNDrylZGwazHmJOxO6monnJ1CRgklIUNAhtDfkM05uN2HV4GD0dIazraC7XtrK64EgINiHWBadm6QoJGj3WUAlTO44MBW5U6ZrIFkEIpFpRhHzN10+mUEbI65byjeEpmPFkVe+UK5alTE/1sVr8dRoupkeUbCAbZh0POBs4K5lu5VjZylJdQzNZ5EtlzGSKurGhE/zRuzbjT969Ge/ZttLxGFtXt+KFM5M4OpzAlcvk9VsAcy+v1FgNzEj25gPY9epxkbq0UNV7TTKFpxm3cjsYWePKNq23ZWPjc/28O2gczFN2923ulr7+gGY9YlWELa8BXNcZxvmpNIZns0jmS45S0o0FILwSWMbQ1eUiiPg9TfpRZynFZulIrliRunZ07V5jtwzBgqhadEX88LldGJxhqdsz4ylp01OOzTUFMWva5aqILwfYBlyEkDAhJMr/DeBtAI4A+BmAj2hv+wiAn2r//hmAX9eqFW8FMEurqUdLWLXkmZH0+TFtbVCQu+BiQS/ShXJTEJgpiPf4A4x7UlFKtdY1YuPYeWhVKhQf/85+vNw/jQ9vX2MYGFR9XowrFWVsAgghhuXHvORcSigabhaK6lWKUgFXcxVmQutsL1OZE/a7DUXzMoUAgLnYXcb0lKMrWhWqUy1tK3MNAkw0T2m1eGM2W4SLMMsIGazS2kUNz2Z1sfIyhxougAUi//ktG6QeTI348PY1mE4XcGEqg6u65bVFQFWvwrsxxDMFaTNX3my+VsOVk/RR4vB73FjeEtDtYNL5EoiEI7uRf1vt/2UrDAHo1Z/3bxWS5jZB34QkeHUhm4uTnnrrO8KIZ4o4PMgqXHnfWBl0Rf2YTlcNVCe161m2eKMr0mwBkymU4HYRqeKWxv6iALt+RE1PgWqhUXOxhLxo3uUiWNUWxOBMBvvOTePl/ml86KbVUmNwrK8psuBWR28miBz5bgA/0R7eHgDfpZQ+Rgh5BcAPCCEfA3ABwIe19z8C4F0AzgDIAPhN0cnwCD5XaHYFlzW1C/vcJlUaZYQ65HYbAHsw1fqypBywC409qfKlCipUoh+jjWj++TOTeOLYGDYui+AXb15j+J6WIK/kMx6naqEg7qHVOFamKFfgAHAfpQIqFaoHRmkHXkEtBkajCYk+ivp8wj5MN1RSsXHkd4dAs9hdVjwNsNYYE6k8KhWKYoUZV8peg/wBO50uoDPix1SaVYfJBKMA0Bn2w+dxYWgmqweTMm10FgJ31pSYr3dQPQdAv8cnteM8Es/hHVvkmTvWWaIm4OKVqQ7O+9qOEC5MpQFora4EWoFxeN0utAQ8TY3Pp9MF+DzyTcIB4N1bV2AsmcPdm7qkPws0s74nR7UiBwcC/A1d7Dw/dZwlWGRNWNl82PmdTOWxIhbEwHQGhMj14QRY4FbLZAPOWPHWkBflCkUiVzUGlW18Xu2SUv8MZF0l5FnJ1W1BXJzJ4uV+ph/+tdt6pMcAmGnyw79zJ/7ppQu460pn18+lDNszSCntp5Ru0/5cSyn9nPb6FKX0XkrplZTS+yil09rrlFL625TSKyil11FK94tOxorh4pS46G4z6PMgWyzr3iEcspSqngqsWTw5uyBLzTb2pMpK2gy0hhh7UzJp7/PDA4NoC3nx8O/cabo7M3My5uDBimiKKRrwNKcU8/I0elvYhwqtDwR58CfritwYlCZz8o1WOyN+TCbrH1LM+kAucPN5XGgLeesW4lS+JO1/BLAKn2KZYiKVd2xcubyhvcbF6QzWtMlT+y4XwUqtvycPJvmDa7HgdhH83S/fAAC4eV27ozFqrQbGkjkUyhVHD/HGZvOcaXDC4PW0h3ChhuGSZTXbG6xAAJY26wjLtdLh2NAVwV+8/zpHnmsAOzZeN9HtUl4fmkUs6MVqB9fh1tWtAICfHhyC102wslV+jEZ7ifNTaayMBR2kf5s990Sr0GtR7elZPWdZSQ83IzuQSoWyrhKSFckAYw77x1O4MJXBsqjfUSqZ49qVMXzhg1sdMZqXOpaU0zynTI0c4mcyBfjc4jsy/iDiO0sOWUqV73gnkvXMVLlCpUuqG4OBjGQn+VZdf2WcDjw1msT2de2WCyEPuMxSkwlJbYdR/8us7p8lfpzbudakriEycyL2ytLxmWYNl7yTenOT75l0UTq9BDSbnyYkexdy8MBoYDpTvXYkAzf+QBrWGqGfn0qjx0EaBmBpxaF4Fq8PxUEIHD3s5hv3b12J0597J9Y5ZrjY+Z1M5TGgta5xkvrojNSzHTyF7+S893SEMJHMI1MoIVWQTwm1hX1N/n/T6YKjdOJ8wOVigRH3FDw6PIstq1ocBX9dUT96OkIoVShWt4WEO380jgHUBFyTaUcMKe8KUJsKzDgJuMLNPT1lTXON+gCnCiVUqLNrcMuqFiTzJbxwZtLRBkSBYUkFXAELhiueZuJV0ZtSb89SQ6lWKhTpgljbGg7dzThVL1YG5MTcANAe8tY9xLkTvqguKBayDpYmUnlbHQ03KzVKtwLVYK5FkHY26n/JhZoymgMjY9jJtJzbMxvH27SbT+RK0qnATq0xbi2b6NTcs1HsLtssmqPWa6rqCSa3mHdH/XC7CIbjWRRKFQzNZA2LK0SwoTOCU6NJ/MveAdy3uXvRHuCNkAnQGxHxexDwujCRzOOiJhJ28oC5YlkEA9MZXbs1F7PItVpAPDCdcSR6bg81M1yLGXAB7JhenM6gXKE4MZrEtSubPQNFcVNPGwDgii5nQXa3lgofns2BUopzk2ms63SSmvQjWyzXBTmirdtq0RHW0to1a0ZWUjRv5AvGW9Q5YZb4+RlN5PR1SEEeSyrgCtVouBoxk5FbIHgQUyucT2mBgIxAuHH3A1QXT9k01cpW1qaDV4jxm0G0VyCnghur+QCgWK5gOl3Q52sGt4sg5HM3tbLgkGW4IgaGpU4apPJFZromDTOVyqMzLKcLagv7kC2W6zoWJB1ouBob4wJsxynTxLh2rFpXdqc6ilWtQRCiPXg5iyhJ7XvcLixvCWBoJovBmQwqFI4Zrrde3YV0oYx4poj/ctcGR2MsNRBC0BX1YzSR17U8Tpi7Td1RVCir6ALmFnDxgPjCVEbvlCGDRgE/sPgB1+q2EC5q12ChVHGk3+L4b2/diD+9/xr87w9sdfT55S0BRP0enBpNYiZTRCJXciS+5xrGxkpi2ecEr/Ydq2FIM/mS8HMCYNeZz+2qY1nncg3Wdm1QAZdzLKmAi1OvRinFuGR5tt5DrKYslu8YOqPiCw2/cGsDLs7CtEsGA6vagihVqH4TyN4AZm71QLWqSkRHEzZpbArIa7iYOLh+PildeyWj4dJo9JoHg2w/MzafZqYskS1KL3pd2u/lzGauWEa2WHZUDr0sGtBd2SllYlgnOoqA143uKKtYc8pwAczSYSiexQUtZeZkNw8At1/RiaDXjZt62rDdoWZqKeLq5S34+aFhPPTieWzsiki5zHPwKsnT40kAzu03AKCnXWO4pjJI5eW1ox0RHybThbpU12IHXGvbQ5hOF/Tqwg0O2Sn22Qg+dud6282mGQghuHpFFMdHEjg3yYoTnKUUtYrkmgKZZL4ofb46Iz4QgrqWYBkJ+yCAfafumL+uD2fcQa9JDp/HhfdfzyxbVi8B6cCliqUVcHmtRfMy+hmubaltQMyDpq6IuLiX73hrA66pFHuYy/TaAqo75SEtVcHTd6IBF79RZg0qFfXvJrDoRP2epuoVDq41EWWEOiN+zGaLdS0kxpN5uEiVtRKBXj1XEyhNOUgptuuBGztGlQpFKl9ypOECqsfVac9BAFje4kexTDGZKiCltVVy2tKipyOEsxPpmj6TzpiyoXgW57XKN6cMV8Drxj/+5s34mw9f7+jzSxXXa62GZrNFfOvXt1u/2QTrOsPwuolegZfIFhHyuR2lO2MhL2JBL85PpR2V9XdHAyiUKnrQly+xtFe7w96X8wHuwdR3kjnLb5gDwzUf2LyiBSdGk3rA5UQDyJmp0URWfy2VKyEqya573C6mAaxhxTMF+WKJFS31jc+rLXmcnfcvf2gbvvJLN+D+bc7sQBSWWsBlpeGS1M/wYKg2UJrUAiUZhou9v94Yj6eZZNkOvjMY0gTLsrteo4pJDpmAKxLwIGViC5HIFeF1E+ESZB4QTdVYKIwlcujStEKiCHrd8HtcmNKOc6lcwUymIBW0Ac0MV1oTisqmFKvFEvVeQU5E8+u1h8nZidScaH0A2L6uDUeGZvXeek4Yro3LIhiKZ3HoYhwRv0d641CLWzZ0YK1DDdhSxXVaD9K2kNex+N7rdmFFLKgXJzjV7XH0dITwL3sHMDCdkQ+4eIpKY0w4A+OUEZoPXLsyBhcBfvTqIFpD3kXX/12zogWpfAl7To7DRZwVSvAqy4vTNQFXvqTrZmXQ3eLX73GA9UCUrQzsjgUwWttgXjPNdnodetwuvHfbyjlVKL7ZsbQCLs5wNaQUKaWIZ4o6eyGCFQ3l70A17dbpwNCudrfBWRjHDJe2CMvqpfiNMmtgWioTcIV95inFeIbpnUSLE/ix5KwfwBZ2WddxQojOvABML0WpnNszUA2CeVDMWUTZlOLyWAAuAl04XQ245BcrbhR5Zjw1p9QSANxxRSfKFYq+k8x3yAnDdeuGDlAK/PvBYaxtDzmqDruccVNPG27qaXPMbnHUPjTnGnDVniEr82OzeQDVBtj9c2Bx5gvrO8P4l/98K7pb/LhBYxQXE3doHm4PHx7B6raQozRywOtGd4sfFzULD4CtP7KmwgBjJXmAXNKaUMturlbEAhjVCgGAuTWdVpgfLK2Ay4ThSuZLKFWoFLvQHvbB73HVBVwTyTzcLiLNUqxsDeDCVEbXF02nCgj53NI+LWG/B20hr35DJrJF+D0u4XE8bheifo9hex8ecIkEKJFAc2VhdZyc1M5XZ4JS9QyXE0+mNe0h3VGbM2ayOrlGD5ukpCaNw+9xY3VbCOe1h1PVeFd+J74iFkDY564LuJw+fG/saYPf48KTmtGjE4Zr6+pWncF0qt+6nBH2e/Cj/3r7nHVpy1oC+n3pxHy3FtfXBCWyflXVVJcWcE2wNOdcdFPzgduu6MBzf3gPvvarNy3qPAC29lyttZ2ZSyC6pq26huVLZRRKFWkNF8A9vdj5krUP4uhuCSBfquhr12ymCJ/E80Zh/rGkAi7uwtzIcPFAR+ZhRwjBilhAp/QBxnC1h33SXi2/cksP8qUyvvUc6wI/nZZv98GxcVkEp8eqlUuyD95YyGuo4Ypniwj73EJmhFGTPpOAPDul+xbVpG7Hk3l9Vy2DNe1BnY7ngbLsOMw6BJjQGDeuSZNluAC28HJNx4SDggsOQgiuWBZhAdcctGAA20VvX9em/98Jve/zuHDf5u45zUPBHoyl4AyXvI6wFp9+12Y894dvxXN/+Fb83n1XSX22S2+lwwOuNKJ+j94FYTGxlAKAT9y1AdeubNHF4U6wtj2k9xzk1jtO1p7VbUFMpgqYzRarJseSgRvP8vBAeyKVn5N8QGHuWFIBl8vFtEONDBevgpNN5yzXKFWOyVTe0SKzaXkU29a04uDFODKFEo6PJqXF3BxXdUdxaiwJSqmjgKvRrZ4jmSsKizMjBu7wHOPJnFSQo6cUtaA4XypjOl1w1Mh4bXsIs9kiZrNFnQWULUH21tgeANXdvGwaGQA2aAEXpRTDs1l43UTapoJj2+pW7L8wrS/Gc6H1t/cw5uXKZRFHRo8A8OfvvRbbe9rw3m2rHM9DwRrLY36kC0yg7tTsliPgdWNNewhr2kPSAUrA60ZryKunqPonU9jQFVap5AZ84MbVePh33oIP3OisTyAArG4PYXiWedzxNTbigNnkjOZrAzP65tgJwwVAfwb2T6Qd2V0ozB+WVMAFsMq2xgagMw67ya+MBetSiuPJPDodCkXXtLGdy2d/fgzHRxLSOgqOTcujSORKGEvkWZpBluEyaWCdyJaEzUq5LURtmTgAlCsUE8m8VDow7Pcg6HXrDFe1zYsDhqutaux5cToDv8flKEBe3VZ1sf7hgUFs6Arr6QIZrO8MI5UvYSKVx0g8hxWxoHTPQY4PbV+NXLGCzz1yHEGve04i4fdsW4EVsQC+/KFtjsfojPjxb//1dtx2RYfjMRSswR945ybSjF1wuEmbDyxvCWBklm9C0oteFXi5YkNnGJSyDg7cYsdJSnHbmla4CPDqhRmd4ZJls2sZLkop+idSi55GfrNjyQVcq9uCdaJDoKrHkX1IrWhlVRrcaPTidMZRvy4+r+F4Fo8fHQUAvP3a5Y7G4QZyx0ZmEc84YLiCPsMqxWReguHye1AsU+RL9T0Zp9J5VKh8Go8ZRbLAlqdwVzk4zpzNGpzJ4OJ0FqvbnAU4q7XgOJ4p4MCFGfyH61c52s1zL55zE2kMx7PSzWxrcd2qGG7dwJipD29fPac0ysZlUbz06XuxbQmIjRXMwTcu33yuH4VSBW+/tnvR5tLTEcK5yTQyhRJGZnPYsIiC+csZfH0/OZrUC5Nku1wAbI2+enkLXh2IV42kJRmurqgfhDB5xlS6gESupALtRcaSC7jWtodwcaY+4OLu4/IpxSDKFYrJVB7JXBEzmaLjPlCr21i/rplMEf/l7g349DuvdjTOttWtiPg9+Og/7sfR4YQeDIoiFrJguARv7Kje3qc+raizU5LpQN6mA4CeMlvtoKyaB1wD0xlcnMk4djRe1RrEaCKHs1o68SoH7BZQE3BNpjEym5tTr0BCCL7xa9vxu/ddiU9KanAULk1sWh5F2OfGzw8N4+rlUdy4ts3+QwuEDV2s1RB3vlcP3oXBhq4w3C6CU2NJHBlipq5ObCEA1r/w2Eii2ipNMuDyulmGYGw2h/6JtD4/hcXDkgu41rSHMJbI17VmiWcKcBF5L6WVGiMxHM/qYmwn/ipAfWXQ9atbHesfgj43ejd16f+/QnLhaw16Ec8Um9KBCRkNl0FjU6BaNi6bDlzbEcKFhoBrZas8GxQLetES8ODcZBoXpjJzOlflCsXec9MA4Fi3sLI1CJ/HhTPjKYwmcnNiuAD2/X73vqsW3XNI4Y1Be9iH73xsB37x5jX4x9/csaiaqQ2dYRTLFM+e4kaj6sG7EAh43VjXEcKDz5/DXzx8HICzlCLAzFin0wWcm2RrqxMLmOWxAEYSOV3LekWnCrQXE0vOwWytnlbKYqPmXzSTKSAW9Eqnl1bEWJA0OpvTP+uc4aoGXDf2zG2n+mf3X4NbNnSg96ouR61rShWKZL5UF4Amc+IaLr4AJBr8vHgPMFnBe097CPEME7sPzmTQ3eIXqpY0wtqOEH786hDypQru3bzM0RjcOf1pzTrB6Tl3uwjWdYSw5+Q4yhXqKE2q8ObGTT3tuKln8dsecUbrCe2eUOLphcONa9vwwwOD+v9lneY5Nq9oAQB8re8MAGcWMMtbmKVR/2QaPo9LrWGLjCUXcPGWDxdnMjUBV9FRDzvOSAzXmL/x8WWxvjOMP3rX1bh1Q4ejCrxaLGsJ4Ndu7XH0WR6gTacKesBFKUUiK+7zY9RGB6gyXLIO1D2a0/jAVAaDM1lH6USONW0hHBlK4OrlUdx9VZf9BwywdXUMbhfB/gszWBb1S1PxtVjfGcbjR8cAAPdc7SwAVFBYbPDm0IcuxtHTEZrTPaFgjT+5/xpMpvII+tyIO2x4DwCbl7OAi3dIcWIBs6otiOdOT+L0WBLrO8KOq5oV5gdLLqW4XGOlxmrtHJLO/ENaQ14EvC6MxLM4N5lGS8DjuDSbEIJP3HUFtq5udfT5+UKHbsNQreTMFSsoVajwTopbJEw2VIOOJdhxlu33xhmlc1NpXJzJYNUctE6cjfr4WzY4TsGE/R6s04LAnjm2nfnw9jUAgF+4pltnTBUULjXEQl6948FNi6glezMgFvTiH35zB776Kzfhux+/FR4H/TMBds4e/Ei124EThmt7TzuyxTL2nJxQaeQlgCXHcHEbgNpO6UPxLLY7SOMx81NmDTGezGHT8ugl7z3DA8/JmlY6Cd1NXex0cmuMyVR9wDWRzEkL5gGmQ/N5XHju1AQGZ7L45VvWSo/B8bZrl2M0kcN7tjk3HwSAHevbcXYijY/duWFO49y7uRv7/uhevRm6gsKlihWtQZweT6nq1ksI927uxnrND9DvoN3QLRuq6WwVcC0+hJ8ihBA3gP0Ahiil9xNC1gP4VwAdAA4A+DVKaYEQ4gfwHQA3AZgC8J8opedFf4/P40JH2Icxra1BuUIxOocKsWtWtuD505PIFEo6W3Epw6h3IW9fI8pwMUd6l25WysFc5uV9r3weF7atjum6hevnwALyPnZzxQPv2Ixf3tGD61bH5jyWkyBUQWGp4YM3rsKzpybqHsIKSx8//+93YmAq44gs6Iz4sW11DIcGZ/EL1zizMlKYP8iEzJ8EcLzm/18E8DeU0o0AZgB8THv9YwBmtNf/RnufFJa1BPQ2FOPJHEpzECz/5u3rMJstolim2OTQHmApoU1r4D1Vw07xZtaithCEEHRG/AYpxZwjw1KgvpBgyzwEOXNFLOSdl2BLQeFywfuuX4VDf/Y2XK1pgxQuDUT8Hlyz0vk5+94nbsXxz76jrh+nwuJAKOAihKwG8G4Af6/9nwC4B8C/aW95CMD7tX+/T/s/tJ/fSyRD8+4Wv55S5EaaThmu7evadfE1r/q4lOH3uBENeOrYKW6EKqNP64z66xpOc78ypwUB//HG1eiM+LC9p21OTXoVFBQWDrE5tJRSuDQR8nlUkcQSgWhK8W8B/CEAThF1AIhTSrmvwCAA3pRtFYCLAEApLRFCZrX3T4pOqjsawLHhBBuYG2nOQYj94Ee2Y/+FGUc6sKWIzoi/Tn/Fgy+ZfoGdYV9d26OpFHOZd5o+u7I7ilf++D5Hn1VQUFBQULjcQRoNNJveQMj9AN5FKf0tQkgvgD8A8BsAXtbShiCErAHwKKV0CyHkCIB3UEoHtZ+dBXALpXSyYdxPAPgEAHR1dd30gx/8QP/Zj08X8POzRfz920J4+FwRPz5dxNfvCyHgsSbKUqkUIpG5G7st9XE+93IWLgJ8+hYWhD7SX8APTtkfo9pxvn0kj8MTZfztW1kV3/nZMv78pRz++w1+3NRtHYcvpeOzlOaixlHjqHEWbpylNBc1jhrnrW996wFK6Xb7T9SAUmr5B8D/BmOwzgMYBZAB8C9gjJVHe89tAB7X/v04gNu0f3u09xGr33HVVVfRWvzb/ou0Z+cuemIkQT/xnVdo75f2UBHs2SP2vkt9nD/84SF6w2d300qlQiml9HMPH6Ob/uQR/f8i43z58RN0w6cfpsVSmVJK6ZPHRmnPzl30tYEZ6fk4xXyMs5TmosZR46hxFm6cpTQXNY4aB8B+ahM/Nf6x1XBRSj9NKV1NKV0H4BcBPE0p/RUAewD8R+1tHwHwU+3fP9P+D+3nT2uTE8YNa1sBAK8NzOD1wVlct0qJn2uxZRVr+cBTgpOpPDrCfqkqluWxgKbbYulIrplzUqWooKCgoKCgYI25GJ/uBPD7hJAzYBqtB7XXHwTQob3++wAekB14fWcYrSEvnjg2huHZHLaqarM6XKsFoLw56nS6IN2fj7vwj8wyjdxYIgdC5HRgCgoKCgoKCmKQcnOklPYB6NP+3Q9gh8F7cgA+NJdJEUJww5pWPH2S9f1SDFc9rlnRAreL4PDgLN527XJMpwvSPRmXtzD918hsDjeA9VF04jKvoKCgoKCgYI8l+3S9YW0bKAUIqTI6CgwBrxtbVsWw79w0AGaC6pzh0vzOEjksiyqDTwUFBQUFhYXAEg64WgGwtjER1ValCbduaMe+89PY/hdPYCiele412Rrywu9xYVRLKY7M5rBM6bcUFBQUFBQWBEs24Nq2phWEAFsVu2WIOzd2AmA9FTvCPvRuWib1edZnMoDh2RzypTLOjKewqfvSd+JXUFBQUFBYiliy1FFLwIvP/4frVDsCE7zlyi7s+u93YvOKFrgIHPXZ2rgsihMjCRwdTqBQruCGtZeHMayCgoKCgsJSw5INuADgl3asXewpLGlsmSP7d/2aGJ48PoZnT00AqKZxFRQUFBQUFOYXSzalqLDw2Kaxhw+9eB6rWoOO+ygqKCgoKCgoWEMFXG9ibF3dChcBZjJFXK/YLQUFBQUFhQWDCrjexIgFvdi4jPWWukFp5RQUFBQUFBYMKuB6k+O921YCqKYXFRQUFBQUFOYfS1o0r7Dw+K3ejbh9YyduVBWKCgoKCgoKCwbFcL3J4XIRFWwpKCgoKCgsMFTApaCgoKCgoKCwwFABl4KCgoKCgoLCAkMFXAoKCgoKCgoKCwwVcCkoKCgoKCgoLDBUwKWgoKCgoKCgsMAglNLFngMIIUkAJ+dhqBiAWTXOm2qcpTQXNY4aR42zcOMspbmocd6843QCmASwiVIalfokpXTR/wDYP0/jfFON8+YaZynNRY2jxlHjLNw4S2kuapw39Tj7a/+W+XO5pRR/rsZ5042zlOaixlHjqHEWbpylNBc1zpt3HMdYKinF/ZTS7Ys9DwUFBQUFBQUFM/B4xUncslQYrm8u9gQUFBQUFBQUFGzwzYa/hbEkGC4FBQUFBQUFhcsZS4XhUlBQUFBQUFC4bKECLgUFBQUFBQWFBYYKuBQUFBQUFBQUFhgq4FJQUFBQUFBQWGCogEtBQUFBQUFBYYGhAi4FBQUFBQUFhQWGCrgUFBQUFBQUFBYYKuBSUFBQUFBQUFhgqIBLQUFBQUFBQWGBoQIuBQUFBQUFBYUFhgq4FBQUFBQUFBQWGCrgUlBQUFBQUFBYYKiAS0FBQUFBQUFhgaECLgUFBQUFBQWFBYYKuBQUFBQUFBQUFhgq4FJQUFBQUFBQWGCogEtBQUFBQUFBYYGhAi4FBQUFBQUFhQWGCrgUFBQUFBQUFBYYKuBSUFBQUFBQUFhgqIBLQUFBQUFBQWGBoQIuBQUFBQUFBYUFhgq4FBQUFBQUFBQWGCrgUlBQUFBQUFBYYKiAS0FBQUFBQUFhgaECLgUFBQUFBQWFBYYKuBQUFBQUFBQUFhgq4FJQUFBQUFBQWGCogEtBQUFBQUFBYYHhWewJAEBrayvduHHjnMdJp9MIh8NqnDfROEtpLmocNY4aZ+HGWUpzUeO8weMMDrL/bNq0NOYTDuPAgQOTlNIuqQ9TShf9z1VXXUXnA3v27FHjvMnGWUpzUeOocdQ4CzfOUpqLGucNHufuu9mfuY4zD+DjANhPJWMdlVJUUFBQUFBQUFhgqIBLQUFBQUFBQWGBoQIuBQUFBQUFBYUFxpIQzRuhWCxicHAQuVxO+DOxWAzHjx+f8+9W4yzeOIFAAKtXr4bX653z+AoKCgoKCksFSzbgGhwcRDQaxbp160AIEfpMMplENBqd8+9W4yzOOJRSTE1NYXBwEOvXr5/z+AoKCgoKCksFSzalmMvl0NHRIRxsKVz6IISgo6NDitVUUFBQUFgaGEvk8J++8RLOjCcXeypLEks24AKggq03IdQ5V1BQULg08ffP9WPvuWk8+Pz5xZ7KksSSDrgUFBQUapEtlBd7CgoKCgZI5Ir43r6LcBHgZweHUKrQxZ7SkoMKuEwQj8fx1a9+1fHn//Zv/xaZTGYeZ8Swf/9+/M7v/M68j6ugsNSx//w0Nv/ZY3i5f2qxp6KgoNCA7+4dQCpfwq/c0oN0oYzZvAq4GqECLhPMR8CVzWbncUZAqVTC9u3b8ZWvfGVex1VQuBTw/JlJAMDDh0cWeSaXN7KFMqbThcWehsIlhqePj2Pb6hjuuop1u0kWVMDVCKGAixDySULIEULIUULI72qvtRNCniCEnNb+btNeJ4SQrxBCzhBCDhNCblzA+S8YHnjgAZw9exbXX389PvWpTwEAvvSlL+Hmm2/G1q1b8ZnPfAYA66v07ne/G9u2bcOWLVvw/e9/H1/5ylcwPDyMd7/73XjrW99qOPY111yDrVu34g/+4A8AABMTE/jgBz+Im2++GTfffDNeeOEFAMCf//mf4+Mf/zjuuOMO/Nqv/Rr6+vpw//3367/7ox/9KHbs2IEbbrgBP/3pTwEAR48exY4dO3D99ddj69atOH369IIfLwWFhcZwnG1gzk6kFnkm84eR2Szu+XIfDl2ML/ZUdPzGP+zDjf/rCVRUSkhBEJRSnBpP4tpVMXREfACAhAq4mmBrC0EI2QLg4wB2ACgAeIwQsgvAJwA8RSn9AiHkAQAPANgJ4J0ArtT+3ALga9rfjvE/f34Ux4YTtu8rl8twu91CY16zsgWfec+1pj//whe+gCNHjuDgwYMAgN27d+P06dPYt28fKKV473vfi2effRYTExNYuXIlHn74YQDA7OwsYrEY/vqv/xoPP/ww1q1bVzfu1NQUfvKTn+DEiRMghCAejwMAPvnJT+L3fu/3cOedd2JgYABvf/vbdY+qkydP4sUXX0QwGERfX58+1uc+9zncc889+Pa3v414PI4dO3bgvvvuw9e//nV88pOfxK/8yq+gUCigXFa6F4VLH8dHWOXTqwMzqGwMLPJs5gcvnJlC/2Qav/v9g9jzB72LPR0UyxXsPTcNADg0GF/cyShcMphI5hHPFLGpO4rOsB+ACriMIOLDtRnAXkppBgAIIc8A+ACA9wHo1d7zEIA+sIDrfQC+ozV3fJkQ0koIWUEpvaTzALt378bu3btxww03AABSqRROnz6Nt7zlLfgf/+N/YOfOnbj//vvxlre8xXKcWCyGQCCAj33sY7j//vt1turJJ5/EsWPH9PclEgmkUmwn/853vhPBYNBwTj/72c/w5S9/GQCz0hgYGMBtt92Gz33ucxgcHMQHPvABXHnllfNyDBQUFgulcgWnxpIgBMgVK8iWFntG84OBaabzPDeZxuDM/Gs+ZXHgwoz+7yePj+Fm/yJORuENA6UUuw6PYPu6NkefPznGNkNXdkcUw2UBwuIiizcQshnATwHcBiAL4CkA+wH8GqW0VXsPATBDKW3V2K8vUEqf1372FICdlNL9DeN+AowlQ1dX100/+MEP6n5vLBbDxo0bpb6MDMNlN87g4CA+/OEPY+/evQCAP/qjP8LGjRvx0Y9+tOn909PT2L17Nx566CHcfffdeOCBB7BlyxY8/fTTWLZsWdP78/k8+vr6/n/23jxMrqM8F3+r93X2RaNttFheZFnyvmAbjwFDnDiQBOdHEgLkhoTkkhAIWWQuS8i9gVzu5bIFEowDgSQQDAazCO+2xvsiydp3aTQazb5P73v9/qhTp093n3Oq6vSIGdn9Po8eST091afPUvXV+73f++GnP/0phoaGsGPHDqxbtw7Hjh1DIFC5c//sZz+LUCiEj3zkIwCAZ599Fl/5ylfwwx/+EG984xvxzW9+0zSgGhgYwKOPPop7770XX/7yl3Hbbbct6vk5n+OcOnUKCwsLUmMkEglEIpG6j6UxzvIeZzRRwv94Lo3L2104PFPCJ6+h2Nh54X+vr+3L4NWJIkoUePtGL+7oyS3p8Tx8Jo/7j+fQ6idY1+zC+y8uLJv7Z6mv1Wt5nOF4CZ94nqXsP38jRUeL2jiPD+bx3WM5fPn2EJp8wJ88nsKtPRTvuWJxvtctn/gEAGDfl74k/XuZAsVPTuVx22oPeiKuRT/Pt99++x5K6bUqvytkuCilRwkhnwPwGIAkgH0AilXvoYQQpXCWUvoNAN8AgEsuuYT29fVV/Pzo0aPKbuaL6YDe09ODZDKpj/frv/7r+OQnP4n3v//9iEQiGBkZgdfrRaFQQHd3N/74j/8YPT09+Nd//VdEo1E0NTUhlUrVHE8ikUCpVMLdd9+NO+64Axs2bEA0GsXb3vY2fPvb39b1Yvv27cOVV14Jv98Pl8uljxMKheDxeBCNRnHnnXfiW9/6Fv7pn/4JhBDs3bsXV111FQYGBrB161Zs27YNk5OTOHXqFO66665l7zTPEQgEdCZRhP7+flTfO07wWhqHUqr7mS2H41mMcX62fxTAXvz69Rfj8MPHUPIEXxPf67N7n8btl4YQSxcwmCshEvEt6fE8OnsQbeFxbFvdjKlEFpFIcdmc56W+Vq/lcX66bwRsaQfiJIi7FcfZ/ehxuI6fwq/f0QeXi6Dz5aeQoflF+14tLS0AoDTen3/vVTwyOIaxYhg/+eAb8PTTTy/5eZYSzVNKv0kpvYZS+kYAcwBOAJgghPQAgPb3pPb2EQBrDL++WnvtgkJ7eztuvvlmbNmyBX/zN3+Dt771rfi93/s93HTTTbjiiitw9913Ix6P4+DBg7pA/e///u/xCS0S/8AHPoDf+q3fqhHNx+Nx3HXXXdi6dStuueUWfOELXwAAfOUrX8Hu3buxdetWbN68GV//+teFx/jJT34S+XweW7duxeWXX45PfvKTAIAf/OAH2LJlC6688kocOnQI733vexf57DSwXFEolvCOrz2P7Q8cWOpDWVQcG4vB4yK4bl0bgNdGBVShWMKZ6SQ2dkWwqjWI2WR2qQ8JZ6YTWN8RxormIMYXnHV8+MeHj+KJIxOLfGQNnE+cmCg7w89l1J+t2VQOrSEfXC620WuP+BylFO97ZgAXf/xh5Isl5d81Il8s4XHtHtx/bh4D08m6xlssSPVSJIR0UUonCSFrwfRbNwJYD+B9AP639vdPtbf/DMCfE0K+DyaWX7hQ9Vvf+973Kv7/4Q9/GB/+8IcrXtu4cSPe9ra31fzuhz70IfzBH/xBDYPT09ODV155peb9HR0duP/++2te//SnP414vPww9PX16dF1MBjEvffeW/M799xzD+655x7rL9bAaxbfe2UIB4YXcGB4Af/7nVcs9eEsGo6Nx3FRVwTdTUxUFM9f+AHX0GwK+SLFpq4o8gWKuWQewNKKps5MJ3Hrpk70NAcwncghX1Jrt1ssUdz79ADuxQBOfeZOeNz1OQ9NJ7I4MRHHGzZ21DVOA/Y4MZFAc9CLhXQecw78s+aSObSGffr/OyJ+nI6pt/f5zEOsUOzQyAKuWutMTwYAx8fjyBZKeNe1a3D/7nOYji/9ZgaQ9+H6ESHkCICfA/gzSuk8WKB1ByHkJIC3aP8HgIcADAA4BeA+AB9c1CNuoIHXKF44PY3f/voLeOSQ8/3J3qF5/d+DM0svwl4sjM6nsbo1hHatAuq1wHCdnGRFMRd1RdAW9iKRLSC/hFYMyWwBE7GsxnAxLem8ItsxkygvbM+enK7reBZSeVz7D0/g9+57uW7GowF7HB2L4Q0b2+F2EWcMVzKHtlA54OpuCmAuo3bNjDYkvFLWKXiFbd8lzBNsLpWva7zFgmxK8VZK6WZK6TZK6ZPaazOU0jdTSjdRSt9CKZ3VXqeU0j+jlG6klF5RLZZvoIEGzPF/HjmOXYNz+M+XhhyPcXYmiY4IC0p2D9Y3aS0nTCey6Iz6EfS5EfS6XxMB1ykt4NrYGdbZgcQSfq8zWtplfUcYPVrANau4+I7HymnIw6NyhS9W+LufHdL/PZ1YHgzFaxEj82kMz6Vx3bo2dEX9jgKuuVQObQaGq6c5gFgOyBbkLYmM/nq76gy4jo/HEfV7sHVNCwBgPrU8jHwbTvMNNLAMUCpRnNR0FK8MziJbdLbwDs2m8OZLuxD2uXFYwrvuQkCxRDGbzKFTKzdvC/uQqGP+jGfyEFVn/zJwejKBnuYAogGvzg4klnAjPjhTG3CpLr5G3dfxCecGtdlCET/ZN4r1HWEAwESsEXCdL7ystcq6cUM7upsCmM+qs4mzyXxFSpEzpJMK1+2cZovSEfFhzKF+kCOWZsfTGvICuMAYrgYaaOD8YmQ+jWSuiLdu7kauUMLAvPqkl8gWMJ3IobcjhEtWRHFk7LURcM0ksyhRoCPKmLu2sM8xwzWTyOKKTz+GLz5RX/eFn+0fxYE6jUHPzaWwti0EADo7sJTM3ZkpFnCtaw+jVQ8A1Y5nQmO4tqxq0jcQTjCtRdS3XNRRMW4Di49dg3NoCnhw6YooVjQFlINsSqnGcHn113jArhI4LaRZULShI4KZOgtIEtkCIn4Pgl43fB5Xg+FqoIEGyuBVQm+9fAUAOBKuntUYit62MC7racLRsdiyYHLqxXScTZadWqq0OehF0qFo/sljrJj6K0+e1Cd4VVBK8Rf/tRdv/+rzjn6fYyKW1ZmAegKubzxzGt9/xXkamuPMdBIrmwMI+tyIBtjimSqoBlxZuF0Eb9jYgdNTCcfaK64F27yyCQAw2Qi4zhsGtUpZl4ugPaK+mYllCiiWqB6kA8aAS76f8ILGQm3oDGMmkatr7opnCogEPCCEoDXkxVwj4GqggQY4uFPzTRvbAQAxBwHX6DxblFa3BnFpTxPimQJmHOgxFhuUUjx/ahrpnLMWU1y/wxmuaMCDtMOUq9Gu4JhDBtCoU3IaUFBKMRHLoLuJLUytDgOu2WQOn33oGO758UFHx2HEwHQS6ztZCs/ncSHgdUE1EzMey6Az4seGjjDyRYpJh9Vh/Jpf3B2F20UaKcXzCCPT2hz0IlmAUrAzpzU6b6tIKbLOKCrWIgta+4j1HWEUShSxOtpJJLIFRP2swrY15GukFF8P6OnpUXr/V77yFVx22WV497vfXfH6gQMH8NBDDyl//ujoKO6++27l33OK3bt34y/+4i9+aZ/3WsLJiQRWNgewsjkAn9vlyMOGL1KdUbbgAcBUaukDrpcGZvHuf30Zd3/9BZQc7FqntEWbM1zRgAcOySkcG4/jilXNAIDhOfndtxEDU2VPn4MjzoThsXQB2UIJXVoQ2RJkjJJqwPWzfWWLQxWBshkmYhn0NJdbiDUFvEgrMlyzyRzaIz50at/LKTPFWc2uqB9dUX8jpXiekC+WMDqfxppWFnC1hLwoURawyIIzxc3Bckox4vcg4K7cnMiME/F7dNZ3uo60YiLLGC6AfadGSrGBGvzzP/8zHn/8cXz3u9+teP3gwYOWAVehYP1grFy5Eg888MCiHqMVCoUCrr32WnzlK1/5pXzeaw3Hx+O4eEUUhDij9QHoXjNtYV85ReUg9bbz+CTW3fMLjMw7C0iMSGQLmos1cHg0hgNT6kFBNcMV8asHAsaxtq2pN+Aqi8F//OqwozEm4mwh4gyXx+1C1O9RTuGdMRg6nqxDpA6wNExToLxoNgW9yscTS+fRFPCiK6qJpp0yXNpi2xHxo6spoLRwNyCPsfkMShQ6w9USZPOGSrqdB2cRf6VnW9RHMJuUD3Tm0zk0B7269ctMHZUxiUxBP54Gw3WB4D//8z91F/k/+ZM/QbHIFotIJIKPf/zj2LZtG2688UZMTLA0xZkzZ3Qneu44b4YvfOEL2LJlC7Zs2YIvab2h/vRP/xQDAwO488478cUvflF/by6Xw2c+8xncf//9uPLKK3H//ffj05/+NN7znvfg5ptvxnve8x4MDg7i1ltvxdVXX42rr74aL7zwAgBgcHAQW7ZsAQB8+9vfxrvf/W78yq/8CjZt2oS//du/NT22e+65B5s3b8bWrVvx13/91wCAqakpvPOd78R1112H6667Di+99BIA1BxHf3+/3ow7mUziD//wD3H99dfjqquuwk9/ynxx9+4/gGuvuw5XXnklbrrpJpw8WZ94+bWAQrGEU1MJXNzNTHLbws5cmmeSOUQDHgS8br2BrJPA7b9eZnqgF07V56MEAH95/z58f9c5XNbThFUtQTxxVj1NMDyXRjTgQdjH+m5GAx5kiqx6UQWpXAGpXBErW4LobvI7bhZ9eiqJkM+Nd127Bj/cPazEBnBwxoYHXIAW4CiuC/OGhfFoHUUSxRJlaZhAedGMBjxIKQbs8Qwbo0szqJ1yGnDFcwj73Aj63FjVEliU4L+BWvDKwDVawNWksVTzCjciv//DVQFXk2LAFUvn0RT06nPXTB1WIPFsQdchMoZreQRcajbCS4WPfATYt0/4tmCxCMg2Vb7ySsCmEebRo0dx//334/nnn4fX68UHP/hBfPe738V73/teJJNJ3HjjjfjMZz6Dv/3bv8V9992HT3ziE/jwhz+M//7f/zve+9734mtf+5rpuHv27MG//du/4eWXXwalFDfccANuu+02fP3rX8cjjzyCnTt3oqOj7Krs8/nw8Y9/HIcOHcJXv/pVACzQOXLkCJ577jkEg0GkUik8/vjjCAQCOHnyJH73d38Xu3fX2p8dPHgQ+/btg9/vxyWXXIIPfehDWLOm3IVpZmYGDz74II4dOwZCCObn5wEwh/2//Mu/xC233IKhoSHccccdOH78OABUHEd/f78+1mc+8xm86U1vwre+9S3Mz8/j+uuvx1ve8hb8ny99Fe987x/jYx/6AGZmZhAKheSu1zLGTCKL/3plCLdu6nT0+2dnU8gVStjUxRqrtkf8OOeArZhKZPW0GxewOgm4fB62D+PGnE4xm8zp7TU+8pZNePjgGJ4/rm7qOjiTxPqOsN4fkgcFiWyhIo0hAt8xd0T8WN0aYgyXg0s2PJfG2rYQbtnUgft3n8OYg2CAa5K4cz6gpUoLarv6+VQel69swpGxGM45ZOyA8qJpDLiaAl6cU8yYxjPaohn2gZA6GK5EVmc0V7eG8OTRSVAaEPzW6w/5Ygl/+O1d+MOb14M4+H0eyK5qYankFs1GIabCcGVq7x2AMVzTCizVQjqP5qBHD7imFYI1I7KFInKFkn480YAXiWweyyHcWfojWKZ48sknsWfPHlx33XUAgHQ6ja6uLgAsCOJMzjXXXIPHH38cAPD888/jRz/6EQDgPe95D7Zv314z7nPPPYff/M3fRDjMNDa/9Vu/hWeffVa6WTPH29/+dgSD7CHJ5/P48z//c+zbtw9utxsnTpww/Z3bbrsNzc0snbJ582acPXu2IuBqbm5GIBDA+9//ftx11136d3ziiSdw5MgR/X3xeByJRKLmOIx47LHH8LOf/Qyf//znAQCZTAZnz57Ftquvw31f/QKQnMWvvO1tyt97OeITPzmEhw+NY9+5efx+r/rvj2gL5TpNd9UR9uGwA9H8dDyrT1ZetwvNQa8jpuzcLNv17js3r/y7RjxxlAVbOz50C7asasaLp2eUbQYAlja72tDmw2nANcVTkxEfVrcGsefsHJyQ/Fzsru/EHSwMui4tWg64mgJexGJq52chnUdb2IfWkK+uXox8gW0ynE8nDFdMY7g8bhfawz5MxZ2lAmeSWbRrafHVrUFkCyUsvAbMbhcbx8fjePbkNJ49OY373qq+eeWVga2apQN/nuYVAq5kzpzhivoIxhQC7oV0Hus7wmgLsWDdaTueZFbLRGnHE/F7kMmXlBnx84ELI+CyYaKMSMfjNb0LnYJSive97334x3/8x5qfeb1efbftdrsrdFT89fMNHrABwBe/+EV0d3dj//79KJVKCATMd4I+X7mKpPq4AcDj8eCVV17Bk08+iQceeABf/epX8dRTT6FUKuGll17Sx43H44hEIjXHYQSlFD/60Y9wySWX6K/lCiX8atNKXHHVtTjySj/uvvtu3HfffXjTm97k7CQsA+SLJb2FyZHRGNArybAaoKeXNN2LUw3XTDKns2QA0B72IZ5TW/AopboofP+5eWTyRQS86t8JYItBwOvC5h5W2t8S8iJdYClU2R572UIRo/Np/NbVq/XXeKognskDqA32rWBkuHqag5iIjaFE5X+fYzyWweaeJt3RfyaRg/lTYI14Jg+PiyBoOLfRgAfjM2rjLKTzWN0aRHvYV5fmJa6xFE1GhivoRUohW1pOS7Lr0xkNOE4pxjOFioALAKbTS79gLjcYN0VDMfWK2blUDh4X0YMTznCppOD4vVOt4eIpRUqp1LrIGC4vPG4X2kI+fYOkikTV8fC/M/XVlCwKGhouC7z5zW/GAw88gMlJ5tszOzuLs2fP2v7OzTffjO9///sAUCN857j11lvxk5/8BKlUCslkEg8++CBuvfVW23EjkUhFA+tqLCwsoKenBy6XC//xH/+ha81UkUgksLCwgF/91V/FF7/4Rezfvx8A8Na3vhX/9E//pL/vwIEDwrHe9ra34Z/+6Z/08uK9e/cinS9i+OwgVveuwx9+4IP4tV/7NamxqvHUsQn80Xd2V/TeWirsHZpHIlvANb2tGF3IOGKUeNqF615awz7kSkxzpILpRFYPAgBngdtMMod4toBbN3UgWyhh9+Cc0u8bMTCVwPoO5u8DlCvxVAS552ZTKFFgfUd5984nUD6xykIX30f8WNHkR75IlR3r88USphNZdDcH9MIEJyaNvIrKuBA1BdWLARbSebSEmO6lvoCLXZOoUTQfUBPN87QkD9o6o37HKcVEpoCIdiyrtQq6pQy4ktkC7v6XF+puV8Qxn8rhvd96BY8cGq9rnP2GgMvJJm1eu3/4fehENJ/MFuBxEfg9leFE1EeQL1LEJJ9THnAB7N5xHKxn2bHzKkU+XzgptBmZT+P9396FH+1xVhxTjUbAZYHNmzfjH/7hH/DWt74VW7duxR133IGxMXv9yZe//GV87WtfwxVXXIGRkRHT91x99dX4gz/4A1x//fW44YYb8Ed/9EfCtNqtt96KI0eO6KL5anzwgx/Ed77zHWzbtg3Hjh2zZJ1EiMfjuOuuu7B161bccsst+MIXvgCA2VXs3r0bW7duxebNm/Gtb31LONYnP/lJ5PN5bN26FZdffjk++clPIpkt4LEdP8E73/IGvPGm63DkyBG8973vVT7OP/z2bjxxdAJDs0vfnJlPeP/t5nUAgLML6sHuRCyD5qBXZ5L4pKPiQ5MvljCfyutpLsCZ+J4HJW/fthI+twv3PTuAP/veq8g58L0amE5iQ2f5XuReUyoVQ1zrtNJgV8BTinHVgMtQxclLz+cU25hMxbOglBk7tvLUh4NAJ5Ep1GpeAmpViqUSxXyqXNlVTxl9TGe4KlOKhRKQycvd0zxo42N0Rf1KrV0qxsqWq8y4vmg6vXQNrF8dmsPus3P4+58dEb9ZgOG5FN5170t45sQUvvuy/SbeDpRSvHRmBhd3M1bbSbqe3z8cAa8LHsIqBmVhtnkAgKg2FckI5wvFEjL5EiL+csBVT7AOQPfh4oGXE1uv//vIMTx5bBJffnJxirsujJTiEuFd73oX3vWud9W8zvVLAHD33XfrXlfr16/Hiy++qP/MTMMFAB/96Efx0Y9+tOb1wcFB0/e3tbVh165dlse5adOmCqboc5/7HABg3bp1OHSINYD9gz/4A7zzne/U37Njx46acXp6evDKK6/UvN7R0VER6HG27dOf/nTF+/r6+tDX1wcACAaDuPfee/WfUUpxfDyOj/zV3+DPPvJX8LpdaPeXlFPAuUJ50j00uoCIzXt/GTgzk0Rz0Ivr17cBACYc+F4xTVCZmdIDrkxeDwxE4JOakeFqC/vVjTS14GFVaxC3XdKpi96vvEFNsJwtFHFuNoV3bFupv9asM1zyk3lcF+RWBgIAOz8qMFZx8upA5V6BWvp3RVMAbhdBW8jHqqlaBb9YhVimoC8uHE0BVqUom4JJ5AooUcZKtEcKi8RwVaYU2bHmpdLKfIMQNTBc04msIybaGJCG/R5EAx5HTZUXC3zeUb3nzPCFx0/g3FwKPo9LyRi0GvuHF3BuNo1P3bUZ/3PHEUf9RedT+QqHeEIIwj6C+aRalWLYVxtKRH3sHp5NZvWemFbIaOc36GMcUFc0gNOTzqqkdZuKKoYr44DhGpxhm/qh2RTOzab0ak6naDBcDfxSkCuUkCuyyhGv24WcQ4fu3WfLXeQPjdTXK/DZk1O4f1d9LVEGp5NY1xFGR9gPn9uFWQeLwkQsW2kPEFCvFOL0e4eB4WoJqdsMzGoGge1hPz7wxg3665Mptes1PJdmqUAjw6VN7E5KzivtCrwVP5OFsYpzhcPmzBMLlXYOTlN5iWxe34FzRAMeUABJSUd+LnjmDNdCOl+xIVFB3KTSjJ+riQU5pqE6LdkV9aNQosptVQrFEtL5YoUmqKdZvcffYoI/X6qsajVimTweOjiG37xqFT5w6wYMTCcdsccA8PiRcXhcBO+8ejU8LuKQ4crrui2O9gDR7SJkkMzWsrVAOeCakwjeOIvq97DAvjPqx1Qi66i9D58XQr5qhkt9rLGFNK5c0wIAeOXMrP2bJdAIuBr4pYC3QPFrzUTzDheGHQfGEPK5saEzXJeeYt+5ebznm69g+48OYmjGeWpycDqJ9e0huFwEK5oDmM2of6/JWEY3igSMTJB8YDJjwnCFfW4UKZQW4VlDm47r1rXhe390AwBgXJG54+0+uIkhUBbkqqQUE9oiblx8+b+dpBR5yrUz4oeLqPesnEpUVhe2h/2ONVzVixRnlOKSLIru8B0qexc57RlnpuHi6eCBaTl7kOqgzan5aXWVGcACXCf9Rb/+9Gn8zQ/3Y9JhtSQHT7WrbILMcHgkhky+hLddvgKX9TShWKIYTTibCwdnUljdGkRzyIuWkLNCm/lUDi0GhgsAesKuim4KIiSyhZoKRQDwu1nAlZTQoma1OSrg5QwX01g68c9K5WqrFAH1lGK+WMJkPIsbN7B2a06Nko1Y1gHXhdZ4t0Qpzs4kcXw8vixKUJcT8tr58LoIvG6CIqUomlxfu2tOKcUjh8bx5su6ccWqZqVJoRoHh+f1f/9g9zlHY2TyRYwuZHQ7h57mgCOGazqZq2CmjKkc6THiZUE4R1Db4amI7zlbw4OjN1zUgbVtIUwk1RaFBRObgRad4VLThwCVJechnxs+l7ox4kwyp58fj9uFjohfmTXhu3V+fhwzXJly6xGOMrMpLzIGWIDO759ph5VdsUwBAa9L92ADgN72EAiY0avcGJXXnAelquLnatEzwFK48w6erXufPo0f7hnGp35yWPl3jdAZrmxBZxadgAfnK5oDepptymExwOh8Gqu0Cs7WkNcZw5XO68UsHCvCBOOxDJKSDHIiW6ypUAQAfvlSEowtZ7h46lpvDeVAx8WPO+RnYzlNKY4vZEApsK49VJdRshHLNuAKBAKYmZm5oIKuZLaAhXQe2UJRWmj6egFnuDxuF7yaJUB1VpFSipmZGUtbi3S+iNlkDpt7mrCuPYzRhbRjOn50IQOvm+DqtS14+YxiLb4GbhrI22KsbAliRnHyrDbpA8pVXiqieb7QGkXz3JldZsLjmNNEtF6DbcO6jrCyNs2sv1rU7wGBYsl5tgC/pzIQIISgNUAwpqh/qa7i7G4KKHs7zaVyiPo9+vnpiPgdBTlxQ+sRDlVtmrEcv0m3ynCW8mIO8ZULr9/jRkeQVLQyskN1i5cuh4umnkY2nJ8VzexaqW5kOXPyyOHxijZIqjAWRtTDlvHgvC3s06uS5x0wdwALuHgxSWvYh4TivZwtFJHKFWtSiivC7N6WPV+JTN404OIMl0rAxSsduxwG68bPC2nBm1PRPJ9felqCZaPkOrFsRfOrV6/G8PAwpqampH8nk8lYLtYqcDpOLJ3Xq33yM164SoUlPZ7lNM58Ko9UroAT8SByBUbVpn0Ek+HKcQKBAFavXm06Bg9AmoIe9DQHQKnz3eHYfBrdTQFcsqIJjxwaAy71iX+pCkZfJwBY2RLAfJYtCm6XnB9bwkQUrjNciilFv8dVMfGF/A4YrmROtzvgWN0axN4zagxXzCTgcrlYoHRWobrUrJoPANoUAy6rKs6huNr9M5/KoSVc/k7tYR9imQIKJbX7x9h6xHg8gDxzl86X2T/eFFzVKoMjlSvoAboRKuklvtCF/dUsRQYdlr9VC91HKVCZUixRFjQb9Y52yORZQHHX1h7sODCGw6MLQvG2FYwL/0wyh02ORmG/SwjTMxIAHhfBgoOAi8+hRoZrZEpxU8Q1gFUpRWPAtUVr9G6HpAXDpd0GSEkwZTww9mtBUlcTT0dn0Cb87arjybFNGvf644J+VQ3X2AJ34Q9gVUsQe885t8jhkAq4CCF/CeCPAFAABwH8NwA9AL4PoB3AHgDvoZTmCCF+AP8O4BoAMwDeRSkdVD0wr9eL9evXS733kUPjODUZx+VkHrfffrvqR9Wgv7/fkQP63f/yArKFEo6MxfDBvo24xjezKE7qTo9nOY3z5997FYdGFtD/N1ez6rX/sxN/uMWHT/3+HdJjGFkT7s2jmuriGJ3PYGVzEBd1RTCXyiOWk3cs5+DO3nwRX9EcRJGyBbNLclEwa/zqdbvgd6tpuKbjjL0xVrfxBZRrYmQwZxJwtYd9SOShFEgu8OC4Klha3+zCAUM6V4REtpYJAoDWgAtnFQIusyrO9ogPh5QZrsqqrnZtPBX9jBmrCTCGFABG5uW+F7+uYZ9bD7hk9DJWYwVNKs1aAgTHJEXzPOAKaMLnsJ/1v5yKZwGFYuS4yTOxQnuexhcy0gEX1zVev74NDx8ax4nxOLBV/jiMmE5ksbEzjNNTSaX+gDXHlMiiNeTTn6OOiB/zDnpx8nQXv2fawj7EFQ8rZmJ2CwARL/+53PyTzBX09J0RHheBz+2SKgLRU4qeymB9Kp5VDrhS2WKFBMHtIgj53MopxbKe1Y/VrUE8dHCsbqmQMKVICFkF4C8AXEsp3QLADeB3AHwOwBcppRcBmAPwfu1X3g9gTnv9i9r7zhsODM/jT/9zDz7/2AkorCvnBScnE7hyTQtWtwbroq9fi5iMZ3URLaewVTUHxoBrfTvbqTqxYQCA0YU0eloCuEhzZnciXJ2pEoY3O9BexU128wAQ8hA1DVeVDgwAgjzgUliEZ5O5ioACYJM5hVoAuJDOI+xz1zjKb2x24exMShfVi2CmdQIYwzURy0hPgFMmGreOiB+xHFWSLVSLjHmwreJ3Vu2EzdEa8sLnZqkiGXDmMuT36Ok3pynFdN6c4Qq65atBWVcCl250C7CAVDVAMevNxz3cVFrOcKZwRVMA69pDOD5hbR4twlwqh42dbK5w0sqpfEw53UEfYGbHTlKK1T0QWeNz1Ubjlb5pHDwVmJaUIth1owj53VIMezZfKZqP+D0I+dzONFy5AkJV93LE70FaMT4wPqerW0MolKjeFcQpZDVcHgBBQogHQAjAGIA3AXhA+/l3APyG9u93aP+H9vM3k/PY7+a5U2WvDicu34uFTL6IhTTzTVrXHsbgTCPgMmIqnkWnplmI+D2sjFl1R5YuTxDNIS9CPjfmHFQFlrQHZ2VLUA+4xhwEXNyzivch07VXCouemV4FAMJeNQ3XXDKnL0r6GJxKV9BwxTMFNAUrj4UzXiq9+mKZvGmfw/XNbCI8JFlhGrdguNoCBIUSlU6/TRv6KHK0h33Il1Q1bnm0GjQvfLyYwqJpZnUBMG1ae4DovTVF4AxX0OvWd/SyQmezsYImAVfAQ5DKFaW8tNK5YkWrIoDdO6pFBWXWt3yem7V70knlbnvEh0tWRHF83FnARSlzS+fFMbN1+J3NVjHIXVG/o5Qiv5+51inq96BAGXsqCzMrEMCQCpR4LoolinyR1lx3jrDPo6jhKo/j1Pw0lS3WBFxO+oImcgX4NP0oby9Vr45LmFKklI4QQj4PYAhAGsBjYCnEeUopf7qHAazS/r0KwDntdwuEkAWwtGOFixkh5AMAPgAAnZ2d6O/vd/QFHttTjjgnF1KOxzEikUgoj8N9iuZGz4CkShiaKiCRoEt2PMttnLG5JC4KZ/XfC3kYW6AyzssjbLI9duBVzJ12IewuYSZVUj6W+UyJtXWZPIdjr46BgDFwquPsP55F0AO8+NyzAIBTc2zSeO7lPYgNyMkj906yR+j44f3IDZcnCb+rhLNjk9LHNDmXQqjoqng/Z+127TsI98RRqXHmk2ksTE9UjHNumn2vJ597BcNtcn0VT5/LwF2qvf99xTQAgud37UdxRHyOxqbT6AiSmnGCNAuAYMfO57GhWXxML42y83zi0D4kBtk+c0q7n37x5DPoCsntPadiKSRny/ftuJbSnopnpK/V2Rg7n2dOHkN/7FTFz1q8JRw/J3fdj5/OwucGnn3maWaWCuDQidPop+eUn9HpuRTcYVfN75BiDgDBo0/1I+ix3zefOZcFKRUrxqCZDM7OUyRWFKWPZ98Zdl327npR/8x5rSPA7v2H0TR3QmqcF7Tre+rQPkRzRQzO5PDAw08hUFRbJ7IFpsucHz+HoAc4eGIA/Z4RR/Pg0FQKa6Ll81yIZzGXkT83HC+fZd/t6L7dGPETjJ1j/3/sqWd0/ysRdo2zZ+LowfIzAQDpVBIeQnDs1Bn0u807pnDwNN3I0CD6+yvfm0gkQPMuDA6Pob/fXv+0V3s+D+zdjckT7Fj8pQxOnhtHIlrE/Pw8AGCfxHkansigkK+ce1z5NBao2nk+MZCF38XWF/6cP/7CHmxrVl8rOIQzHiGkFYy1Wg9gHsAPAfyKo08zgFL6DQDfAIBLLrmEcodyxTHwl888jktXhHBsPI68OwAn41Sjv79feZxdg7PAMy/ituuvROjMLJ4ZOYVQOLxkx7OcxskWisg88gi2XbIBfX1Mbtr96tPIIq00zsBzZ4CDR/DWvlvQGvZhzZHnkU7GlL/T3qE5oP8F3HbtVrx5czdan38cGZSUx/nR2F50J+f131s1Ecc/vPwM1l+8GX0Gh3U7zO8dAV7dh76bb6wQ9P7T3kcQo0H09d0mNU7xucexsXcF+vqu0F8bnU8Dzz2FdRsvRt/1a6XGyT/+MDat70Vf36X6a52jC/j87ufQe/Fm9G3pkRrnn4+/iJVhoK/vporX5x55CkAaazdejL4bJI7plaewblUb+vqurHj5xINPAshg0+atuHVTp3CY4ZfOAgcO4S1vfIOur6PHJ/GvB3fhoi1X4eq1Yqv4QrGE9CMP4/JN69HXdzEAxuTd8+xjyBK/9P2za3AWeOFFXH/1tppj/7dDj+LQnEtqrMfmDqJpelx/b6T/UXSsWIW+vsvVn/WXn0LvytrzvHPocQA5XHXdTcKuBz8ceRWtucrn8aHp/Xj6xBQikaD08byaPwEcP4m3valPT09m8kVg5yPoXrMefX0XSY1z4pnTwMFjuPPNt+L6RA73H+9HsnkDOnKDSudmIpYBnngS2y6/BK/MDCDY2oK+vqsczaeZZx7DZetXoq9vCwBgb/4E+odP4pZb3yjd0B0A9j9xEjh6Ar/6ltvgcbswtfscvnv0ALZdcwPWtsu5oU/sGgL2HcSbbr1JT00CbH4PB3LoXFE+TitMJ7LAE0/g8ks3oe+mdRU/6+/vR2erB+GQD31919uOM/7KEHDgIN548026Lu2HI6/i6HgMkQjQ0tICAFLn+6tHX0Cz14W+vhv11743tBuHhyaVrteD43vRlmLzeyZfxD3PPoLoinWIuEccr6MyV/gtAM5QSqcopXkAPwZwM4AWLcUIAKsB8PB2BMAaANB+3gwmnl90jMcymEvl0XdJF4ClTSny3G5XNICOqB8lCketFl6LMIoPOVpD6mXMsar2I+0Rv1Iqh6Nc7ssWkI6Ies9BgKXYjOmBqIPS/LiJsSegXoUXyxRq05K6D5dcmoF3A6jW8pSbNMvf0LF0vsKDiyOgMRaJrFxqKGFinwCopT0Ac61ch3Y/yqa8uH7ImFKM+j3wuV1KovlqzyEj2gIEM8mclFltKlvQ3bQB9t2cVimmc9YpRUBOx5XO147RFmYaLhWdXCbPUpNGLVjA64bHpaaPnEnm4HUTRP0erO8IY31HuEKCIgujKWxb2KeUWjeCV8oa54zmoPqcATBNWVPAowdpfE5U6b4Qt9ASAszrTsk/y2POMod8HilJg9kz0an14iwpWkMlc8WK5wJgaWXVogLj3BPwutEVrd+LSybgGgJwIyEkpGmx3gzgCICdAO7W3vM+AD/V/v0z7f/Qfv4UPU9mWjwnf9NG5gQbd+hnshjgTXa7m/y6iFrV4+e1CqP3DEdLyIukA9F8xF+eZDoifkfneLRKcNoedha4zSRyepUaAF37pCSat9DztAVcSGQLUmNZVb0FdR8uuUmYT4yh6uCPN51WDLjMNFw8UEpIVLhQSvXGuLXjcI8fWXPGPNwuUqE1aVc0C40ZnN05CCFoDXvVqhS5QNhkkeIBjswixRaW8hhhv8dxlWIqVzR1C+enXkYbZqbhag/7kC9SpBQOK2MSuAFA2EuUdI38HuQS4st6ojg1KecpZsSCoUdkW9jvuGel3n2hYs5wFnDNVmk2ud5tsQKuoM+NlISXZIbfyybXC2CBm4rTvN/gt3d1bysS2QL2T6mp3c0sTlpDPiTyVKmvZ7V+dHVrsG4NlzDgopS+DCZ+fxXMEsIFlgrcDuCjhJBTYBqtb2q/8k0A7drrHwVwT11HaIOTE+zh2bqqGWGfe0kZrslYBj6Pq8L12UmrheWKV4fmcM+PDuAFBztEo3iVgz0AauMsVC3inREfEjkol+qOLWQQ9Lr1sTqifkf3zlwqV8F2BL1uuIh8axaA7aI8LlIx0QCsnxkgV7Fm5uUFAD6PC24i35uPT4zVk5Xf40bArcZwWYndXYQg7HNLLeDZAtPambpYa4coa3kR1/y8jPU7HRE/CCBdeVS2Yag2LPUqefxkCnw3Xzv96t9LYpFKVwVcEb/HUZViqUQZO2XCuAV4exZJhquatePBuspcmM4VEfDUnpuQR82brtrM9aLOCM7OqPcuNFbztYd9jm0hylXNhq4SDhuxs7nHEHDpDJfa+Yn4PaZWLyGfW42ZMrleANu8yTFlvEqxfP/cuWUFepoDeGZY7Z5OZoumm8YSVQtsk1Vz2MqWoHQFsRWklL2U0r8D8HdVLw8AqEnMUkozAH67rqOSxPGJOLqifrSGfSy9lHNG9S4GJmIZdDcxHyS+g3FSfbJc8c1nz+AXB8ewa3AWn7ha1c9E86syMlxhLxJaSb5sEWssXahIU3VE/aBguz3u2yKDMc0Sgn9uR8Tn6FrF0oWKkmpCCIIetYeaMzjV56BNC7jG5jO4dEWTcAzAfKca8MgZDwKVNgPVaPITJdfn6mDACNnUl1U1HwD4FZggwNzZ3edxoclPMC6ZuuVBkJlDfDqpkjKrXVw4+PeSYe6SucrvFPF7lBt6AyxQAsqGpUbwglWplGKuiO6myuew3cHmM50vmjImqlYp1R5uG7siKFF1K5m4wa+qLeLDXEotRcrBmbF2ExmCk4Cr08CUOekvGrdwiAfY5lHmHrRLjwOQ3lxlCkV43aQi+PO6Xdjc04STI2qbfDOGi9+HM8lsBUNth2p2vSsawFR8EoBz8/Bl29pHBgNTCd0bheVolzal2K35TPEHYSkZt8UG9xU7PZXEqXk1C4XyRFOeINpCPhSoPPsC8BRB+QHg46m2VuGmpxwdET8yRSi1Y8oXS0jnizU6pZCHKO3CrTRKbUGN4VoQ76isyrsBlnqT1TkZjTSr0RVk/lkyyBVKKJSoZcAV9nuQkJjMrfyqgHJqUjaFZta6BgDa/PJaOauANOL3KLUN0Uvg7RguCeauuvw94vc4soXg59DM+JSnOKUYNxOWjD+jqho3M7aNpRSdP1tOLWDiBgaZp0hVrF84ZqqMkgGDDEGx78xcMl+VUuS2IPJzmFkDdY6gtPbKevPAxpFjyrL5kmmKvV1RX1sqUaRMNFycDVRhJ6vvn86oH8lcUdlA1YgLOuAamU/r/hhNAa+STmCxMREvOyA3BT3wuokjXdByBKUUgzNJ/NpWVqF2NqY2Yc0mc/C4SIW/U7fBOVoWC+l8BaOk71oUNRXzqUr9g5PGv2bmjAAQ8hKlXWbMIhBo8RO4iNz5iVukFAEWmEgHXDygMFl4u8MEg9NJqZ09n2DNFnBAPjCwY+5chCDgdSmI5vOmi0trQJ7hSlgEpE2qKUUbVkCl/1wyV6hIb4b9zkTzunbPNKXI/pbR3JmK5h0Yw1qlN0NeNR+uaoZijdbzdEaxCXbcUKxT9qRTTyuabTzLPTCXKKVoEXCFvIqieZPNA8DS78lcQThvZApF0w1Ie8SPeI5C9opxtrZ6s8fPucp1i1fdPzyLUk/m6oINuHgvKV5CGvF76oo868VkLKs3IyWEsFYLDrq3L0dMxbNI5Yq4cnULACCleJ5nEszsz5g24z3ARhRy4tVmmnzCUZmEgbKeh6PMlCk8jBZBjnpKMV9TXQiwgCIa8Ert6ONV1ZtGhL1E31mLkMpap5a6Qy7EswUpHVcqzwM3azNEmYDLyoXfOI6saD5uUsUJsIBLhkUEyqnZanG5KsPFBcJmO3o+tMz3SuWKFS1VogGPXoShgqTNddcZLmnRfFV1mEMNl5lonqUU1UThxmci4vPARaBsgBnL5PX2ME5MgDlmklm4XaRiDmvSU4ry34s3nTbqR0NeNwjUemmyTYh5ek26SrFQNt81HcfvRomW73nLcfLFCtNTjvawD0Uqr9NNWrDQbfqmWm6OzxVKyBVKiBg2NNxktp5iuAs24OK9pPjCHfa7lbuBLxYS2QIS2UJFjy82Cb82Ai6eTrx4RRR+jwspRbH7fDpX05GeB8oqIsRq0Twfcy4lHyhRSpmbeqBSCwbINw0Gai0qOIJOdCYWAYXsAmqXUlwdceHoWFyKmRIxXAAwKNGyik/UdilFmaC07MJvvigEfW49SJQZy6oJdjxTkNIo8fR3rWhe7VnP5IsgBPC6a7WLukhdhuHKVjJc0QDTcKlUYgHlJthmjKTfDRAiDrgo1YT3vsolJeB1I+xzK2q4SqbsX8RHMJ/KSaf+E9nKINulBTuq1dHGgotyg3F1hou3zTLaXfBnX7UYAECFnMHlIgh4oBRwx7PmmxBASwWqVClaBFx8UyFKK2bzJVOWjLfiyhflsiopCxa6O+qHhwBnZ+U6wPD7vcFwaRieZ3qSVTrD5V0yhmtSq3IyCkYZ47Ykh7PoGJpl57q3LYSmoFr6BDDvJt8d9cNFIN3GJF8sIZWr1Ezx4EuF4cpqXlPGxddJSjFm0YesRdMEyYpqrTRcgCaCVghMzMbpbXJhIZ2XKmfmgZLZON2aEzu/F+ygpxQtJuFoQM6+gKdH7BgueQ1X3nSc1gD7XjKVipzhqm7UGw14kS0yY1QZZPJFBDxu02IR3V9MsHAWSxTZQqmCCWoOekEVK7GA8nU30+4RQhD2icX4+SJzYze75m2K+lorDdeGZhdKlFVMi2BlKVJPwAWgrpTidFUfRYA1Vg64FVlxiw1W0EOUNHx2hS2yVYppGz0iULamyQhaDmUL5gwXP995ycpSq02jx+1CV5hgYEou4EqYsNmv64BrdJ5NkOWAy41sEY6qR+qF7sEVLTNc4SVOcS4meD+rFc0B1pNK8XslsoWaNIzH7UKrn0inFI2NqzkCXjd8bkV/KD1QMgZc9aQUK7/XijALcOYkaUAhwyUxERuNGavR28we8cMSvQuTFgEFAES8LDiQCW7LDJdFoOR3S4l77UTzgMZwSSwKfPE1Oz8R7SWZ78V7q3mrHMH59ZMVLGcsdvNAOYUn+l56ZaHhHPOm2vNptWBA78loyUiKK83SNrq0trCa7YqZnxcAXNzKbFdeHpgVjpHJl1As0Yp+jADQHPIhqcjQG5lELj9w0sA6afGsh7xqrHjZP6vyu6kGbum8dcAV9HmQzot7aGYFVYr8PudMmBWsngmu05XdzPAg0Sw93hN2YWBKzofNbPPZGvLB7SKOmo1zXLAB15i2UPN2E2G/BxRqjWgXC5NxzWW+iuF6raQUJ2IZNAe9CHjdTCCsOGFVl2dztAflG/XGTAIugAUC83XS8QEv85lSYbjKpeKVx7NCS73JPthW2iKABVAyqa5EtgifmzVZrcaqMHvtzLSYmeILr6l4WsEAM6VXvdlUKcoEkja2EGwcuYCL+3mZjcN79cmkdFLZoikLxMeVXTQzJn5VHGUHfUGAo31vo31CiwPGFyinFK0C5JDPg7RgwUzbBNkdYTWX70yhaLr4hrwEl65owr5z88Ix4hbsaEvQi6QqQ58rbxiDPjeCXrcjhsuKuQt51ETz+ner1hL6iNJxpXLm9htAWQ4gYqZ4eteKzZZNKVo9E6opxaTNfbgi5MLQbEoqeNPnMMMxuV0spVyP+8AFG3DNp/MI+9z6ReIPhBMfmrqPRWMzWkKVZbqZX37sd17APcYAFqioMlxJE4YLAJp8BLOS+iszhgtgovB5BVEZX1irF98mP1FkuMzH6dECHBnqOlcoIWviEM8h66uUzhVMWSkA8LnZRCFTvZTKFeD3uEx7unlcBD6PS0ojkhZouCI+D3LFkrB9jZUpLEdIUnyv6+3MWphozJ0MM5DMFUwncj6uLLuQKZhrlAB2nr1uItRwmS103F9I5XkA7O1AALYhES2YnOGq1nABLC2kbHxqcSztEZ8cG8kZ6Kpr7iSlmMxWuvCvbg1KaRmrYcXihBTnMKuUYouf6NkIEYolilyhZC1217tUiO7DEtwuUsP6cgSkU4rmz0Rb2Ac3Yc+MDMqFLbVjrQgT5ItUz47ZwYqxbXXQIcWICzfgSlUKqJ30klosmC2+r6WU4kQsqxcEOE0pmptyEmlTTj7JGq0lAJYSmlcQzVtVFzb5CKYVjD1jafNJryPIFszT02KGy057BbDduczON5UrmrJSANPgMBsGOZsBqyCJH6ccwyUWzbP32Y9lZQrLEZIU9lo58QOMXQDk2Cm2cTBjuNTaqrCKLOupN+TzCJ+LtEnAxRkuFcYXMNp4WKSXvC6hUN1Ot8c1XDJyjxLXptnp/+qwFHHSUqzaSHPLqmYckkjRV4NZH5inuo6MxaQr8azkDK1+gomYnH5UyEx55ZipdN68K4A+jsZwie4fq2fC63ZhbdQlrU2zKmwBGAMIyDHA+vmpeiZaHPQANuKCDbgW0nk0GxglfoKdGP/Vi3iGaTuMor9IwLlovlSi+Pn+USUjzvOJyVgGXZo+rSngVapSpJTWtEjg8LvljU952bQpw+UgpVg9WTX75e0T2Dh5hHzuGjbIRYjmSCweS9coWZRmy2q4Uha95zhkW75k8tYLHR9HypDTYrLi4JO5SNdhV1AAcIZLfDy2TXo98gyXVb9Bfi/JpoWsdvMcYZ9b+FyUg6Ty/ccZrgWFDQhgX53KPkMc2NppuDojfhSonLmnyGZARsAPGJ+tWoYrlYdSJWcyW2mkefnKJkzEspjPqvkRZnJFUyuQS9vciGcKODoWkxrHMpgMMF862UbjgPUzyoMfGTsHu3uZM3pZkYarYD3O+hYWcMlcMd2c2KwRu1YBHJdg+9O5kuk4rSEvEq9HhmshnatwHddTiktQGhjLFCpE2AB7GAqUVV+o4rEjE/jQf+3FX/9w/2IdomOUShST8awhpahaAl9CidZ6FwFMPyPro1RmuEw0XEoMl3l1YZNPno5n41i7NEclW9dYaTH0cfweVlUpmPSsfIs4ZJkp0eQpa+eQFi7gbNoRLeJW/Rj14/HJtR+xs83wuVkaT0bDVW3DwMGrl85JVHAC/DzbMFx+scu3WYDjpGoXYPeP3+My7akHsOBHeDw22hluASNTICNi2yIBuYArbhGUNAe9oIafy4C1UKpkuABgSNEAmqWSa6/7pW3stZfPiIsBAEPAZZJSBMpFXHbQNYAChku0fmUsLDyqxxE963aFJBuaXSiWqBQBoetQTe5DvU2V1OaqVsMFOOsBbMQFHHDl0RKsbW2wVCnF6nQFp6BVWi1w7Dgwqv09tiTfx4jZVA6FEtVN35oCXuRL8m1wyrsxM1dtVu4rCiiAsvaqOlBi3jx56R2rlX9WV8iF+VReOnhL5Mx1aYA8o2SlxTCOA4jv6VSugJDXJjDxu6Xuo0y+ZCq854gqphStWIqgZLpCzHAx0bwohcL1a2YpRUIIogGPVEoxZVFGv7IliK4QwXOSjd2zosDW5xbaXZilFP0eJuhW1XBZfS+OgNctTinapKh4N5DhOQlLEUHVG9c1Cp3LbVJCgJoMIZktVBhpXtwdBQCMKfTP5Mdk9r1aAy74PS7pJupmGRWgHHBNSozDz4/VdecMl7C60KLAgSOos9kiHy5zWwgAaNesW2TWiVSuAELMne95gYzcXGh+H/KUolM3hAs24KrWcOml2ZKMyWIibsJw8cVYNcVZLFE8dWxSD9hUWt+cD3CDv049pagmEObf3yw4CehtTCQEy9kCvG5S8wB0BAkKJSptLxHPsAeymqng1YWnJX1a7DxsmGGpjEO8vYZL1wYJzrWI4QpLiu+zNrQ+G0cucBMxJlzHIhLSilKlfn0Xbj8RxwSBbVPQK23EahVkb2l348XTM1LVVBmLvnEcMoauGQsmqCXkVdZwWRUD6MfjlU8pmonmV7eyljoyXnAibVHE7wGlErYZFkF/bzs7lhMTclXEOa3C1ajhag150RTwYCIpz3BRSm2ZzbBfpWuCeXeKVq3h/URcwlNOsCniwY+Q4cqJUopy8oFMoWTt5aV91aKMeXO2iLDPXPepEnBZpVxbQ14UFXsAG3HBBlwL6XyFezkXs8r0/FpsmDFcTkX8gzNJpHJFvG3LCgByu5XzCe6+zv1Q2rUyXdndmJmBHAd/SebmNWtIChiqAiWrhuKZAmvxURUMlKsLZX1arFmlaMCrZFhqyXDx4FYQvIkYiqhkGsbK7bl8PF5phsvuePRdr6gCSnYcQTAgYhKjAY9USjFjEwD2NruQzBWl0tIiVkDG0NWKUWoOepUZLrvNAyCp4bJpgN0a8sLvlk0psoXZUsMluZG1Oj9XrGqGmwC7z8ql71Im6XFCCNZ3hDGRkg+48kWKEjVv58TGV+uaYObn1aSJwqclPDjsGEnAoL0SabgEmzQ+jt39U9IqJq3ODfemk8lipGwKfzg/IyeLML8PeTs5Fe9HIy7IgCuTLyJbKOkiUcCQflkiDVf1ZO7UpoILJ/su6QIgt1s5n5jWbizuxn5ZTxMA4MhofQJPwMBwybRVyRZMy9ZXKAZK6ar+cxwdQQKPi0gHbnasUkTWsNRCi8EhazeQEjFckvYJGQu3Z46I3y2lfbEKjjmCkrqOVF7AvPjkxuHnz4qdagrIMVx2zFRZfC8XuNmd55DfI218Wr0gtITk+m8akcwVa3rPGaGi4TJbwAkh6AiSRUkp6gUKsgFX1XMR8LqxrsmFPYNit3rAev5a1xHGuEJKkbO5Vt9LtnchwNY4s80Df0lmHP08W6YUNYbLoWGpfkwSm6Jc0b49EJ+uZao4kxaFLQDgdRH43C6pNTmVZ2nbapa+xaH1CscFGXCZeTIFvW743fLMy2KCMVyLF3C5XQS3XNQBQE4AeT6hM1yaw3JvWwgBN6TLou1SiqoMl1lQ0eRjk7Bsy4aUhfmgx0Wwpi2EoRk54bMdiyNbXaifG0tHdjn7BDvHaEATGkscj5DhktRwpfMF2wBQNs2QFqYr5HQm8UweQa/b0iuoKeCV0nClbVJCKoJc0SIlUwxgZnwKAC1Bn7LTfDpXsLQVAdj1yhZKtgwDN0a1YkzaAy4p/6OMTWoSkK9G5+ypmdXAumYXjo7FpHQ4usVJ1SZtXXsYsxk5ITdg0ARZGo2qtKky1za6CPOsk0lNZkQpRZ3hEts52FU2+z0uEFJ2pLcaAzDXXQFlhksmpZjKCqxtJOfCjEW3g1at1ZBK/14jLsiASzcaNYjmCSFYG3Xh0Ii6P0q9YBVrVSlFh4zb4dEYNnaG0Rb2IexzY3LJA65cRYd7l4ugt8mFg5Ln2U40r8RwWYjUCSHY0BHG4IwsM1UwTXsAbPciW+Flxyo1BbzIFUvCySoraPzKxxftWFMCDU7E70EiJyE0Fmq4GPMi2mnKphTFaSrJcUTie4vG1RwspWh/D+aLJctegUBZHyLHlNmfZ+bD5czh20lKUXS9ZFzH9Z56FkUXQY+adsZSNB+Qm1fTWiBgpuXpCLL0b6yOTdHq1iAo5Df4+rNucX5kuyYArPDHrACEjSMXuIlTinIMVzpv7i3GQbQg0M64lG+YrFjfMsNleygANOsW0VwoeR+anRvufD/ukNi5IAMuvR9elQlmb5OagdxioKA1Va6petNE5iqi90KxhD2Dc7h2XRsAoLspsOQpxZlkDm3hyg733WGXlAAWMLhYW/hwAZIMV9Z6UWgJ+aTTKHZsEEstyY9j9WBHJFOBmUIRXjexLccH7AOuUolK+WfJCI1Fhpz8e4km9JTF7pAjIGELQSlFSsDcyZacxzPW/SoBuUXKqmqJQ28RJLh/KGXGnnaLVEirUrQLkNP5ouZKX3m9nIjmU6KUok8c2KZzBQS97hptJEfAQ5Sqw+xE84A4eEvb6O3aNHH52IJ4DrOavzqivP+q3IZYeP94xWlkDlahbx5wyaYm+TMjqlKU2TTaFYAA4k4F2YI9w+UiBC4XkVrXUzZdNwD5CvJ0vmR6bta0BuFxAScn4sIxzCAMuAghlxBC9hn+xAghHyGEtBFCHieEnNT+btXeTwghXyGEnCKEHCCEXO3oyGxg1dS2t4kZv52RcPletGPRhc/VTVK9CHuBs7PyLSCOjMUQzxZw44Z2AKw343IQzVd3uPe7xawCR9JOw+WRr1JM5c09kPjYsqnbxUgFsnGsqeuoZCVnJm9uhMihMws2AYVo4gTkhcYiQ05ZnaSImSrvnu0m4RIotV6gZMcB7BkBQBOFS/teCVKKEufYbhyApa9K1F6wnM6ZB9nNIS9yhRJyRflNZ0oipQjYB7Z2AQ7A9EVS6WiRD5dswGVxfgCgnQdcEinOsils5VidGtMxJdkkMiNgsxnDJTf3zKcqC8aMkBXfW6WkOdSMT+3DiKDAVkR0bgDATYiUaD4p2OwxHzcZ41NzFtrjdmFl2CVd5VoNYcBFKT1OKb2SUnolgGsApAA8COAeAE9SSjcBeFL7PwDcCWCT9ucDAP7F0ZHZwKqpbbcmoJbRCizasdhUQHUFXTgrqQnKFUr4hx1H4SLAjesZw9UsWa5+PjGTzOk0KkfAzQxLZTQQCRudUsBd+R47pLLWu3CVgCtt80BGJbU8Rc4qWQZccnYOmbx1KTQgl1IUtdFhxyMnNBamurTzLxS7S9gMACLGRPy9ZFOTiWytbYsRIa8bhRK1tXQQpX9lHet1psMm0JbRKVkFOFxmodK+hj1b9VWD2gU4AJ8zisJFU5Tqkt082AUCbUF2rUYlGC4eBFUzXNzsdkqW4RKwOCGfHMOVLRSRzhdrOm4Yx5FKKUraQsi05LGbMwDNx802pWifjgZYP1gZDZdIUxaVTila61BXRQlOnC+GqwpvBnCaUnoWwDsAfEd7/TsAfkP79zsA/DtleAlACyGkx9HRWcBKiK3is7FY0NObJhN6Z4hgSNJ9+uDIAl4ZnMU9d16KLq1voUx5+PnGbDKnCwU5/G4Id+AcSU3EaJZq8HOGS7LPn1Vz3bBkyxlAoL0KeqR0HSJWqZxStA/e7Mz+gPKibDcRlxkBO0d28SLFfIJKtpOerGZKJHb3ul3wuIhtoJSSYO5kqxSTAiGtTGArSgnpTcIF90+Z4RIzm6LjMbuP+UIs64Ytk7otX3f7RdO2Wo0/63W0CAIMz1YdKcUWP0vjSzFcWfP7sC3sAwGk+6+KnN0ZMyWee/SCsZDP9OeyWjCrlDSH103gIvZzPKXUUutkhN/jsp0zRM8WoAVcEgxXJm/d+ByQF83bbcxXRVwYc+iPaT1Lm+N3APyX9u9uSumY9u9xAN38eACcM/zOsPbamOE1EEI+AMaAobOzE/39/dIHsf8Mu+n2vvISjnvLCznNpgAQ7Np/CKGZ49LjVSORSEgfz7FZdrMMHD+C/unKz2zxFLBnoognn9ppqdPhODDFbgLX7CD6+9npm5/OYj5RQCJBlc6PFVS+F8f0QhLJYLby94o5AARP7HxGbwhqhZODWXhJyfRz8+kkAILDJ06hvzRkO04slcXs5Bj6+yv9cxKJBGbGc0hkC3hq5064LBodc8wn0pifztUcTyKRwPREDrlCCY8/tRNem+vFe6gNDw6gv3Su4meJRAJnD+8DALy4Zx9yw9aP2LmxDEp583OTSCTwzDNPw+cGTpw+g37vqPkYcXYsZ04eQ3/8lOk4Z6cPseN5ZQ9mT5lPInltMhs9dxb9/WM1PzeO88IruzHdaj2pLaQymJseR39/bek9vwe9LopTZ86iv3/cdIzRBP9eJ9CfHDAdZ/+eXQCAfQcPIzJ7wvJ45mIptLvSluf53OxpAMBTTz+L1oD5AjS4wJ7zU8ePoH+u9rOSySQCboKjpwdNzx/HpObddObUcfSnzb/X4DibR55+/iWsjpofz9BoBsVs7b1zdoYd53QsJfWs54oUxRLF+PCQ6bVIJBIYmilf9xmL++fceAbFrPU8RYpZAASP73zG8hwDwLGTORAALz73TI3gPZFI4KXnnwEBcPTEAPoxbDnO2GQaRQrT40klk2j2ubD3+CD6/dbXCgAOaWvNnpdfRMhbeTxhD8WBE9bPphGvTrD5/fD+vUgOVp7DRCKBqbEcUrkidu7cadmsHSg/FyNnTqI/c6ZmnFQsg+m0eL04eSYLr8v8fYlEAk8//TTTKg2YzwcAUCgxb7HRYes5o7+/H/l0GmP5pOUxHZpm5+bIwf3ID9feX4lEAq3FIrLFovB7JdI5zIyPor9/xnSchZksZuMF4ThTc2l0BInp+wKUrX9OIB1wEUJ8AN4O4GPVP6OUUkKIklKdUvoNAN8AgEsuuYT29fVJ/+7e/Ang+Em87c19FYHMLx7fCSCFVb0b0XfrBpXDqUB/fz9kjyd/ZAJ4ZTduueEabF3dUjnOucdRHM7hsqtv1PuJWWFh3wiwZx9uv/kGbOyMAABeTB3FC+ODiESC0sdjB5XvBWg7mMcexmUX9aKv71L99aeHHweQw1XX34hVgu/1wOiraMvETD+3v78fQW8GnT2r0de32fY4so8+hEs2rkNf3yU1Y1x+yRr89PQxXP+GW21bwQBAaeej2Ni7pubz+vv7sa19HX508jCuuv4NNWlUI87OJIGd/dh2+WXou2Z1zThbtlwHvNCPdRddWvNzI/5jcBfaXBn09d1a8zN+raLPPo6OFSvQ13eF6RivDs0Bz7+Aa6/aqnu3VY9z4xVbgd0v4tItW3HbxZ2m4yyk88Bjj+Gyiy8yfXYqxrl8K95oMQ4A5J94GJvWrUVf32WW3yv83BNo7+62/F4HhxeA557DNVdegb7N3TU/7+/vx/XX3Ag88yR6N16Mvht7LY8Hzz+BdWu60Ne31XScK1ddhO8c2Y8rr70B6zvCpkO8cmYWePFFXHvVNty6qfa79/f3ozVSQnN7G/r6rrQ8lOPjceCZZ3DV1i3ou6KW+O/v78e1mzYD+3Zh87arcPXaVtNx/m3gFRR9efT13VzxesfIAv7PrudQ8gSknvW5ZA54/HFsuXQT+m5eb3o8N1yxDdj1gu398/UTLyIQBvr6bjL9+YujTwDIYus11+vzmxmeTx5BYGgIt99+u+mx9PX1IbTzEeGc8aXDzyMa8KCv7wbTcVa1e+CL+NDXd73lGABwsHgSOH4Cd7zptho2qPm5h+CNtqOv71rbMQAgtn8U2LsXN994PTZprYGMx3PZpjX42eljuPHmN9pq4XYPzgLPvYg3XLOt5hns7+/H2pXNmD03L7z2j84eQHhm0nJe7uvrQ+iZx9DdsxJ9fVvMv1OGzRmbbeaMvr4+3HviJRRKJfT1vcF0nNzhcWD3Htx0/bV6n8rqcfw+Vvlt970opcg/9jAu2lC5XhnHuai3C7smhoTnx7O7H2t6mtHXd1XNz/ZMsHvZCVRSincCeJVSOqH9f4KnCrW/J7XXRwCsMfzeau21RQNPEVSzRrLC1cWEVTNkAAh75SqX2HsKNeOEfB6t+fMvr+rSiHS+iEKJ1nw3v2bnkJZIdyazBb0LgBmCPrfQRylbYA2wrXRBEb+cZopSKiV2F1U8inRTIclUl8iGAWA0u0xK0U70LKPH4MJzu+o5GfF0UXONtls0AOazZHc8KQuxcsUYCo71due5XA1qff+IqucArQJKQlsE2IvmeQrYLtVu5QnGxdSyGi6RZsr4M1vNXb5km8rhigsZh3jxveNBOi8+z3bfqTkoZwFjl3pr9pNFq1Lkc6RIQmLmQWlEyCcnr8jmS5ZeZxwBj/3cnJGYMwB2r9uOI1FI4naJRfN5ja21u+4hnxupvLj/akqrujUdw+OM3QLUAq7fRTmdCAA/A/A+7d/vA/BTw+vv1aoVbwSwYEg9LgqsPJlchCDkc9flNv/1p09j17j87/PF2Uw0r+LNYzYOfwiXoFsRgPLD3RSsDrjY3zIPNu9tZYWAx37hZWPYL77ltk4CzZQWuNn5ZwFyzu4ALEX8MmX0AISaKYB9Z5mSaplAyTbg4pOehIar3kCJjyVTfSnXp02sC7INKLT7076SSnw8MrYiMqJ5fu7sFl+rgII3Z07k5AIuGU1ZuT2LjYhfVOnoltPXiixOADnrA1HgphJw2Zm5nplOShUPZQX3T0giyAYMHpQWVYoyprkAu+52+lGAmZ/a2UJkBWa3HAFBL059s2dzPDIaLpGbP8CqMqmE/tiuk4jFqZeCVMBFCAkDuAPAjw0v/28AdxBCTgJ4i/Z/AHgIwACAUwDuA/BB54dnjnimYNq8E1Ar7a/GU8cm8L8fPoZ7D8jTheUqxdqrwC+MjEdULJ2H3+OquFn4Q5gpLA3Dxc0gq3dTfr3ptDjgSmTNXZE5RA+j8XNEzJSoj6aoMicqGXCJKuj0yVNwfkTNovln2E9W3DRQXO1Yb0Ah58ckFvHzz7G1GZCoUpQR3+eLJRRKtG6RusgWApDrWcl383YBMt9M2gbaefMFM+xzI+h1YyErG3CJK8RkTDBFAU5QZ7jE4Ro+5QAAZ6VJREFUgZLIZkAq4BLYAzQFvVgQmN0C9iLsi1pcmEvlcUaiHVjZ+sCqSlG7BwXMnZjhYs+ViA0See4B7J6wtSaReCYACVsIiaDfRcRVihlBYQJQzgSIPQmtWfp6GC4pDRelNAmgveq1GbCqxer3UgB/5viIJMDSVPVbBFTjx6+yzCf3aZFBPFuA3+OCz+TmlS0VB1jasfohWjYMV1Uwye0cRLQ+YM1Gcvi94pRi0qI0m4MzaCJmU1T5VvbPsg+Q+fFYTehuF4HP4xJOnqIWL4A4pcj7kJndf/oYHnELHBkvHBkbhpREipN/jl1AIWN3wY/J7nhkUoEyBrMiWwiA3Z+JKbmUot1iF5ZguLKFoqmlCCEEXU1+zGdlU108AKyvH146Z+/hxqsUZVryiFKKItYXENsVNAdZz0lKqa1I3S5wu0grHNl9dg4bbHRp/HgA+ypFQByQzqfzIMR8gw8w1p1SxvbYWbMwhksUcLltAy4ZthYQz/FZicDN7WImz3bXSyY9Xt4MF9AWNq/0LBRLyBWtmdbq4gkVXJBO8wkbXVA04JVqsGuGw1pD5rgkHQ/wPooWN7+k+zTAgpvq1N3SM1zmjv4qDFfSorM9R0BAW7MxOGtifs31dh9CM0T7cfj5F10vWY8oqUVBMFkJU4oSDJeM9kqF6RAZYAKSKUWJ3bMwXSHQAIqa9AKSDKBEuoI51ouvuWgc3abCZvG1a6TdFfVjXpbhkkjn6D0rBYuvvQ8X+1ukUZKxGWCeVRKpSUFKMVcsidtL2Vhm9IQJon4PDku0ORPZMMiwmgDbVEZ8Hsuq97Bk4CbDrovmZplNGh9HRs5gdw/y6vO6N40yLL1g7gl6AEExvCUu0ICrqAulq8FSiuqdvGMZRg2HfG6kCvJO6rGMtakij5/kNFy14/CHZ6kYLh54VDNvfP5ZjJSiiG4GyouUqJWObMBlKb7X/apkU5w2ZpoSaQ+R8Sn/DLvFJVsUT1YyDIXMZMUb0dqJ1FOCoLZ8TC7bcUTBccU4dt8rJ9aZSKUUJdIVYQkvpawgtcSOR9xCyYrhAlhbMfmUojhg5/eWVUpRVIwCyDNcaQkjzaDg2RIxFEB5ThPpuNJ5a+bORQjaIj6pVkoZm3GA8v0pCkiTWfvWNTyVL1q/ZBkuGdF8vSnFdK4IF2HeX1ZwE3FXEj1QsikGUJEPWM09LkKE1fBWuCADrmS2YNoMGdBSig40XEc0dutNl7LS+knJHoascbX5yfe6WONOKQ2XSUqRi7IzCm06FhNWKUVuWCp6qAvFEjL5kr1oXiKlqC/iAjNE0WQuEnT79Z28KODSUooC1kQ46QmMTwHx+eEMhV1K0e0i8LkFlUISkychRJjCEwW1HMJxJBkuEZMocvg2foa9OaO4qCDk9yAl0M/IMGVuF0HAKzKLtF7AWUpx8UTzbheB100sn4tc0b4YBWCbNELkdJYyukZbU9iCOMjmonNRwJURacECXqn5XRRIcoZLxNwlBBINvkkXtpiy0AAawTRc9RW28J8XShQFi04OjEX02KZ2uXG2lDmxzfeSMjmW2KSZuRLI4IIMuBI2aSoZ4aoZRrRmzDdofQwnJR2E7VKKAEtTOU0p6gzXEpnNc9F8dUDJY10Rg1Nu/GqfrpCpMgOsdy5hSYYrJZggZBgcQC6lGJKoFhL1LpQZJ1cUMxQACybrpfUBNgnZtxqSrFL02e96U7kifG4XPBYpGOPx2AXIokIJfiyAfaqUNxq3O56wVgFldzwyKUU2lnWXCdYA21r03BUNIFOU61EqoykDuEWA+ffiC5RI9BzyuqVa8tRbpSjqEwgYGK6UwALGpsULIF+klRUUA4QlAgEASGWte8oC5e8s2jTaMaT6WF63baGE7L0sSknLsJrllKJEAGg7L/P2ZDJMmX3RhRNcsAGXtWje64jhmkmyAGtzTxMA4K9+sN+2txqHHcMFsJY/Mu1iYul8zThLzXDFMnlE/J6aRcbnYrtVmd0YYN64miPgEVcpiqpP/B4X3C4i1nUIAiVCCFtYBCXDqTwLBqz0GAAQ8tr3RiuWKHJFsWhetLjwCdEnE5hIVSkKxhFUTcpMVgAL7OyZMvuFTh9HwHDJMGU+twsuwf2czkno7fzilLQMU8bGsm5CzB2+rQMuZto7GRNvGmUDbWYRYL1gAuIgm7Xgql/DFfR6bD0AZQolpFOKAoYrGvBIbajF1iRi3R6g2ezI9L1cBEsan8dlG7jJpMfZz+0ZZFYoYT8Gn97smSmJzZV+LNZzfEpQFAWYt/KTwQUXcOUKJeQKJV1vU42I3414Vq6xshEziRx8HhcuWREFAAzNpnBIQgxpVzEJaA2RBQ81pVRrsLvcGK68abDEU0syuzHA2q8KkKtSFC2aeqrL5iEC5CrfZFKBdh4tFeNIidTF42QLJUsPmmyhxAIGQeuogLA0W263KgrcpKsLBQyXzMIrczwy5oyEEIR8Htv7J1uw79EGGEvO7bVXHpc9U8bGsma4RMzCxi5WMbd/eN72M/jxAPZVigDX85ifZ5kFCpCrIJd5tkTmlTJBtmzAJdJeMe81uf6rdt9LRrfHf27HcMk2dGcMqf159rldKNhs9mXnDJGGVOZZdxGJlKLE8ZQ1XA2GSwp8h2SVUgzoQYqYnTJiOpFDR9iHiN+De65nzaOnJNKKqZx949emoPiBzBZKyBdpzXfSqxSXiOFK5qxTtzLd7fWdr131ktel65BE4wg1UwIbhpTMOBK+YKJmyICEzkRydygyG80VSrb6LY6A11W3nxcgDkjLthBiDVe+aK3rED1XxnFktGlC1kRw/8hYeOhu4aLqQolAMmTThFgkdN+6qhlNPuCJo5OmP68YS2fcJCrWLM6zrJZHhuHKSKTZgwLzynLBhb1nGiBRaJO3Z1+ikgGXqCLZrel9RZs90QZftqE7kzPY389eD7HN8sik6wGDj5sFWyYTcPGqTHvzXbH2Sko+IDFnvPuGtdYHa4MLLuDiD4jVTSfjhm2GmWQW7Vr/vK4Qu7hTEm0bRDsXGcqZf6dqNsnnccHrJktWpZjIFi3PM7MrqM+GARBrcIzj2IohJWwY0rq+yI5xE2vKUoJrDogDk6zk7lBUVWOn5ak4HlFgorBbFaUCAXFKUX9OLRbNjMQ55p+zGClOEWMrZ+EhFj5nJIw9AabhEgdcFlVULoKtnR48d3JK+DkZBYbLasHMSJ7jsN9tG4zqbaGE+jb7Z0ImAJQRTwMyBqqMtRO5oItaHwHcVkTEcMmlFOWqFO2Px+u2Nz6VtoXQ5icrBlmmUEKK4ZKQRchVJGuBm831MutbK4MLNuCy0gWV6Us1hmsmkUN7hBmhNfm0gEvAcPEJwm43z6pYBFqnjPV3Cvk8S+bDZVcNKmV7INU2xJ7pAMru03ZpM5njEVU78p8JRfwS7ItI7C7NcAnKvGUZLr8w9SbJcHndSNs8W6kcS5mJjklvF2PxvVKChc44jn0AKNd+RKbVkJjB0RguAbMpWugAdv9YsUHlNKn1Oe4IEsyl8rbPFSCvAbTrhyebRhalFMuBm9gqhX2u+VgyAZdP61Jg94xSSoXsCy+YEumGs/miWLcnMYclRaJ5CcKhUGQSBaGGy+2yZbh4IYmVJxiH7nNnE7CLgnU+98voNe0NeCUCLklW3AkuuIArKQy4eN8vRYYrkUV7mDFcHhdBW9gnDLhkfD+agmJfMLsgMuxzLxnDlbTx0BIxC4DRu8jOTFNsqijaZbJxJI4nX4RPE9jbjSO2qSgIU2ailKusS7Pugm5Bpcv46QBiDVe2wM6NXWk2Px6RD5cMMyVaGFTGWYxiAGGDXUlDTgC2XlysYbkEw+W3Ybjy9gwXAIS93HRZLGeQ0QDaabhkU0vsO0loZyRSisbPrYaMeJpofXftGDfdMkOQwQAkzJIlgoqQz7pQAmBO66lc0VYTWzbxtdMjirsLAIzhyttpuCRYX2BxNFzcokuUCiTEftPocnG9r31fUEDM2DrBBRdwnY+UIqUU08kcOiJlq//OiF8YcJX9mOwZrmyhZOtnkrDRpYX8niXTcMUz1noBux04h0wuXKptiGSpuIzYvd5WMXwcmRSVndhdhqUAyqyBHcMlw5gEBQFFNl8S7sABiRSerPZK4O6eyatouOrb9fKf20/mYpPasC58ttPKicXKADf3tGC4JNKAPOCaT+VsP0fGHgDgruP1a7jsfLj4PW5X4AAYm3vbpxTrdayXCSR5oZMo4JJNSdulFLkG1SrrABjSd4tgAeN1u1AsUds5THSt2DHZB4FSonlJH66Axy3cNAptRRoMVxmilKJfIeD6we5zmIxlEM8WkCuUKnordUb9Qg2XnEEa789n/SDZpRTDPveSVSkmczYMl8D2AJDTdpQfRkE6ZxECpVSuWHePPz6OnY4CMARKlgGFnFhZtJvnzJQIAYFWTtR7zjiOrQ9X3r6Hmz6Ox/78yKcU7VPSMrtePo5d8YbM+eEO4KJUspyGy5p9kRG6h7UiKpELumyK045JlNZwCTZpKgUOgDilKGSUbAoTKsaRmN9FshGZTVrYbz/3JAVkAwB43Ez3KyMKF92HfF6xSiuy9klywTpg/aync2J9m4yGS4UVt01NSvjKOcUFF3AJqxQFEznHZCyDv33gAP7kP/dgbJ65yve0BPWfd0X9Qh8bnuax24nzHL+dNYRdEBnyLR3DZVcRExIwHYDchKW7u9ulcyQW38Wycwh47b1nAB4MiFKK9otCuRxfMqVoxXAVJVOKHpGIX8zg8OOxb9NRkLNzEKQ+2OQpDtxE4nvunyXa9S5GSlFnuGyrFOUC25DPg3Te3LVexsqBM1wi2wPZogu/jSeTbMPysJ99JyvGRIWZAqw3ITJtmAD7woSK45GwBxDJRmSqU4Ne+16cesAleC5EAYU8w8XuIeuAa3FSijLPFgELuuxTgXKbNBmGSyQ9cYoLLuDiTJGVDxd/OOwccgFgdIEFWWdnUhidZy7zq1oC+s9bQj7hZCUjwuaNn+20FHGbIDLsXxoNV7ZQZFYVFgFXWLA7BCSrhSRTiouSCpSpLhRolAAI+8YB5WtptfjKiuZFTFk2LyeaF/leyU6eQR8TqVt5IKlquKwZQLmUYkDAANp1pag+HnsGUMxMBbwuoSFwRqJpMFAW4JudH5kCh7DWfkvkpC4baNu5jssySnoLLitmSqKqGRBXmqkwZXaMm0xKsazhsh5H1uSYMVzW45Q7d4gtV0R6TUDM+vJ5JWdTSSzLigMwZZBlChM4XC575k7WSob7uFkhLTG/O8UFF3CJ2sXoImzB4stb+VBKMawHXCH952G/G8mcvYFqRmKC4Dl+ux0QTylGTRpyL1WVol2aE+Buz4KUYk78YMtouFISZcNyVYpisTtbeMUGqqIHkl9Lq+olFeNTwEbDJctwCTVKcpNn0OtGsUQtxbSyk55dlSJvhiyVUvTYP++iThAcIlsRmSpFQghrySP04RJfLzsjTBlLkbBPkuHKl6RZCuvWPnJpWx4oWAU5slowkfVBOl/U+z/aHo+ApZdJlUYl5nfZAJBpuGwYrhxnuCTYfruAKy8vmgdg+azz6nERAjZZjHyRacRkNmkuQsRyBomm0kGf/aZaNgB0ggsv4MoVEPBa91iTTSlyVqtE2b89LoJOrSUGwCYHSu3HkSmHLqcU7XYuBbiIOduxVAyXaDfFbQ9sA1LNU8cunSNj4yFDOQckqybr9c8qliiyhZJ4N8+1e1nziVhWRyEqgZdluEI+pnWy02PIBm6AnR5D3iEeMDdDlGmGrI8jEN/HBL1OOWSqHeXTFQIfLklbCMC81YuMSW1Ie2znhQyXnGiepRTtRc+itK0o4OJzgEy1I2Cj4cqJ5x2AFSTZMVwyGYyohEZXtucgq1K0Ox55j7vFSSmKNVwqDJfZnCGb/gVYex977VVBmNYGtGIJGwNVWZbeCS64gCuesRZyA3JlsQAwogVcyWwBQ7Mp9LQEKnK2Mg2RpUSVQf5A2mu4In7zbulLxnDpujLz7xb0uVGycXsG5DVTgESVoijN4PUgZ1MVCMixL5wJErUNkfEcAuwYLjlhZtkWwo7hUljAbcT3stoiwMbOIS9Hx9sxdzLNwfVxBAFgPFOQ6nvm91oHFCUtyJapyGLmlSKtnPx5tmO47K67x0UQ8XukGC4pDZfXjVyhZPpcyBY48LnEqlJRVnyv38s2NgNS97KgAESGcfO6XQh63bYaXVltWthn37JID0gl5jA7lr7MkIoYLrYe5ew0XBLn2at5npnNGSoVgUKGS6FC2m6chI0dUr244AIuUWsDmao3oBxwFUoUu87MYpVBMA8Y3IwlyphlKGe7smGW9jDfhXMfLtXekPVCp69tGC5AbCAn2/bBTj8jw5rwahkRIykbAFoFkjJWIIB45yu76+W6ICsKPJuXq1IUCY1lU136ebYRLMuI3e2YaBlmQR9HkF6KZ2qbwlsdT65QshCpy+ntADFLIe0077f+XrLH0xz0Yj4tYQshlVK0fi5kA5ywwKdMdvH1e9gzYX0vi5shA/ZeZ3wcQBzgMK9FscmxiEkM+lhWxdI+QfK5EOlQZXzcgLIZrhXDlZVow6Qfk0WQI+NlyeF2EaHmToaZCgkYQDv/yXohFXARQloIIQ8QQo4RQo4SQm4ihLQRQh4nhJzU/m7V3ksIIV8hhJwihBwghFy9mAcsOhl+QQkqx/hCBu2aDcRkPIsb1rdX/HyxGK6wzw0XsU8pJrJ5S01ayO8Bhbpzfr0Q2W/INgEVTTIijxY+jri/mn1AwT5DInATaMr4+CIdRURw/5RtIezPj6hRuKyGS3S9MpILr4hRUtllAubXXVaEDRgDdvP7J54pmGojLY/HJPCX1eAALKiw81LKyvZStPH00j3cBNerOei1ZV4AuZ56xs8yZSkkFzrRnCpjlAxopqVea9sMtWq1+kTzANtU222oZe+fcqcCe/81mU2arTZNUTSft8iwsPS4HGdj1WVA9hwDLOCyW4+TkmJ3kd7XrqVdvZBluL4M4BFK6aUAtgE4CuAeAE9SSjcBeFL7PwDcCWCT9ucDAP5FNHhKIWWWELQ24LsfUUPk+XQOt27qwNbVzQCA997UW/HziEBvABg1XNbHQwgRPpDpfMmSFeALu6jH1mJDKJqXCHCyUgyXOKUoU7Em00NMNqXIPrPONiaC5rgZTdhrpUU0Iui1rqrJSvooiXrHZSWMPQF7PQavOJKZ9Pw2Bo0qk7DousuK5svi+9rrLrvQAfbeTnq1msT14ouvGRuULZRACISicFErHUDbFCkwXGbnh/nSyYmV+WdaHQv7LJn72WPZyFhW9Mx1jVZVeLKMWzQgYrhkNVySdhcShTYiE1+Z4+EarlyxvtQtYN1lQOWauwmxN4bNSXoACnS6iWx+6RguQkgzgDcC+CYAUEpzlNJ5AO8A8B3tbd8B8Bvav98B4N8pw0sAWgghPXafMZuRD7hEppOEEAQ84kqzWLqApqAX//lHN+CJj96mN67mkE2ZAeKdgrCHWM56p1BuF/LLVc6LTPZEDWQByZSiQPScL5aQL1Ipp3n+mWYolbTyY8EDWfa9Mr9esilFv8cNn9tlk1KUc3Znn2U9QWQleykK7SUkNVx2AU4mXwKVFLtz5s6sDF5mI8NhF7DniyWk80XdK8l+HOv7UNbCA9AYLotnXVY7A0CvpjVjuHg7J7FI3b51DcCKY2SCJTtHddbfr34doaxJLR/Lrnm1CotoV+0ISKQUhRtqNW2aVVBRbjUkNvEVictljkcPuGwYLllxuVWXAT6fyjzrLKVoLz2RYri8HuSKJUuz5GS2uKQpxfUApgD8GyFkLyHkXwkhYQDdlNIx7T3jALq1f68CcM7w+8Paa5YolCBsssqRzBWEpZ8Br8v2hiuVKOKZPJqDXjQFvLioK1LzHlFKCCibPIr6kEUE1TCZgvWNK6KZzxeELZRkAi4ZzZRAcyc7WYkCJc5SCJkyQWAiy3ABjOVKWFQpygY4/LOs7BNUU4p2FWIy49iJ3fXJU/J7NQXNRd28wETKzsEmYOfBrhTDZRNwyTILgH0gINsgHLB3rc8VSvpiaD+G/bzDx5cJlngXjrlkrSYsKcks8CDSMlDKyVU7AqLzLJviFKTwJGxtADHDJcvYygakokbjIh8uWY2kz2NtfEopVdo0WnUZEPVGNsJlk1LMFUoolKh0ShGwLrpICHTi9UBmVA+AqwF8iFL6MiHkyyinDwEAlFJKCFFSdRNCPgCWcoRvxUX48aP96AqJL95cLIWYL4v+/v6anyUSCfT394OUChg8N4L+/mnTMVJ5ihIFJkeG0N8/VvPzRCKBA6/uAgC8euAwonMnTMc5PZiFhxRNj8V4PMVsGsPjScv3zcyn4M27TH9+aprdYM+9tAsTrXILmRX48cjg8Ck2se5+8bkax91EIoHJg/sBAC/v2YvsOfPbaGouDRoktufn+WefBgFw/NQZ9LtGat4zn2EP+9CZ0+gvDll+p+Oz7OF5aderWBioPU+xLLs9hwcH0E/P1fycj3Nqmo3z/Mu7MWVyvvdMsOtx5MBeJAdrf248x+5SHqfPjqC/f6bmfYPnskBRfO8AQD6TxvBEuua9Oc0fZ2RoEP39o7bjnIuz87hr7wFgrPZ6pXMFTI6OoL9/ynackQQbZ8/+g/BMHq14z1SKX6tT6M+fFX4vbymHU0Nj6O+fq3jPK6PsHB898CrmTpvPCXycRI6dg4NHjmNFaqDiPZPa8YwMio/ntHZdn3vxZQw1VV7XU/Psnjh57DCCM8dtx5mbymIhWTC9rjNpdjxnB8THk9Wu7aGjJ9CfHax4z+BQFqRk/hnGceKzWczGre+xEmXNkKfGhtHfP2l7PGdj7Bw8+8pepIcq75+ZhRSaYT2/8XF2vfQcAODw8ZPoL9R+/9Nns3BD8plIpzE6Yf6ZU3Mp+CzmU+M4g2Psmu987kWsitTeZycGsvC5gaefftp2nMRcFtMx6+vxqvY5B/buwfTJ2s/h45yYY+f4xVdeRcxkDjsxkIXPJT6e6YksEhnr4zmqze0vv/Cs3jLHbJwzC+x4Xt23H6XRymvO557Rc2dN11DjOACQjmcwlSrVHNOuYba5OrxvNyZPWD/r8/PzyGdZ+veJp3bCU7UmJfPGubB2HTEez7kh9plP9j+L1kDlZxZK7DMmR4fQ3z8u/F7KoJTa/gGwAsCg4f+3AvgFgOMAerTXegAc1/59L4DfNbxff5/VH9+Ki+jOYxNUBlv+7hH6dz89ZPqznTt3Ukopvf3/7qR//r1XLcc4N5ukvdt30O+/ctZynPlkjvZu30H/9dkBy3H+8v699A3/+KTlz/nx/P6/vkR/42vPWb7vls89ST/8X+bHu3twhvZu3yF9fuzAj0cGn/nFEXrJJx6yHOf4eIz2bt9Bf7ZvxHIM0XXgx3PZJx+m/+vnh03fMzidoL3bd9AHdp+zHWPf0Bzt3b6DPnFk3PR9QzPsmt+/a8h2nD1nZ2nv9h30KYvz/eCrw7R3+w56ejJuOw6llN75pWfo+7/9iun7PvjdPfT2/7vT9GfV47zr3hfoO//5+Zr3LKTZPXrfM6eF49idx0KxRHu376BfevyEcBy78yhzT1R/r9/+lxdq3vPvLw7S3u076EQsLRwnnSvQ3u076FefOlnznoPD87R3+w76yKEx4Tg7j03Q3u076O7B2Zr3PH9qivZu30FfODUtHOdzDx+lGz/2C1oqlWrec3oyTnu376APvjosHKdUKtF19+yg/+/RYzXv+ej9++hNn33Ccgw+zt//7DC9/FOPWL4nkcnT3u076Nf7TwmPZ3Q+RXu376Dffal2zrzmfz1O7/nRAeHxUErpRf/jF/RzDx81fY/sfEoppe++7yX6mxZz6g2feYL+9Q/2Ccfh13zP2dprTimlH3/wAL3qfz4mHOezDx2hm/6H+VxJKaX3vzJEe7fvoOdmk7bjiO5X2eP5/KPH6Lp7dpjeg5RS+lmbud04zpHRBdq7fQd9+OBozXvmklnh+mi8Xh/5/l56y+dqr+23nhugvdt30NlE1n6c226jo1feQHu376Bzydr38vvzey+br+nG4/nRnnO0d/sOemYqUfOe2QT7Xv/2nPh7AdhNBfFT9R8hpUQpHQdwjhByifbSmwEcAfAzAO/TXnsfgJ9q//4ZgPdq1Yo3Alig5dSjJR4/MiG0PqDajkzUOFiUw+YVg8022g6dbhaUeMtQmHa6DjaOtZFme5hpy2YS9uXdiw2RF4mMSJ1puOprrKyqfxAJcmX9s6w0cyr6oohNqiGbL0r5MQGsCsqMSpcxwOQI2tDoetWblC2EdepNr2yVSOEBQEvQh7lU7X3NU4pNEoalfo8LPo/LVEMTU0hN2rUfkTWpBVgKvqCJ42vHkdeC6a71Js9Xriin24sIumXINEPmaA1pKUWT6yWblgRgW3GbtZkHa8axSSmKrIM4RNYt3EBVhKaAF7liydqJX7Logh+ztWhe7ngCXjcotfbPkvVN4/eYmRWIrEkth5WekBdnyVwvnmkxmwtVpB52qVuRlKZeyFYpfgjAdwkhBwBcCeCzAP43gDsIIScBvEX7PwA8BGAAwCkA9wH4oGhwAuC7Lw/h2ZPmKUCOrGZsKVrsWCNa60CA60bsJnSP2wW/xyWsipAthxY1tLWqFOLu91MJ+0baiw3RpGVXRs8h+2AHPC69Q3s1ZPUPAa/1Q2R8XfRAioSrsm7PANAUsC6WkC3HB6w1InxClTM+5ZO5edUbILaoAOwD7XKLKrnJqjXsxZyJE3oiU4DHRaQCSUIIWoJe056B/JzJBG7lJtjWonkpjx8b/76MZMNy/ZgsbAvykoUSvFuGZWDCLU4EG1iAPV8hn7tGw1UqsU2wTEsVQHP5tnKIV2ipYqXhopQimZPzURK15ZHVgjXp/RTNx1HVcNnZQsg2mAeAjNWcmpfT3PlsWvuobEIALpqv/V6JXAE+bdMkAg+4zNbStMJGWK+wN6ly5ccos0lzAqlRKaX7AFxr8qM3m7yXAvgzlYPo1rRbgzNJvBGdlu/jD5hoNxXyeWzLYvmDIapeCku0fpB1WLYL3Owce8N+D/xuYCq+BAGXzc0rxXBJTsQBX/0Ml6jFix4oCXopCs0ZlXZS1vePbIsXwLoKirMxUs2rbQJSlUohO1sIFcYE4A3ic6CUVgiluZWDjHiajeM1bWHjTDRvtpuXF82Hdf+sAlo1obmTcdhY5kGFLMNlbKVjdk349ZK57gBjuWarGC5+H8gyXHZi95TWtq2ecdL5IkpU7h4UMVyy/TwjhnG6orU/l7Vh0Fl6G5NjJTPgfBHNqF3j0jk581271j4qDvEAey5yhRLyxcqCj0SmIL1B43ozs8CtfC+Lj8duLlSdw1SxLJzmAx4WvU7EMrbv00+qqFu6wNiMmwHapRQBcVm17A7IrlqINwK2u3Gb/eSXHnCJUooiv6pcoYRcsSQ1EQc8bkvftMWs8DG+z3IcvXLJmhXwuV1yVWI2fjiyzu4AWxgS2UKNC3qZ4ZLbHVpV7+rsnwTT4XYR+DzmxopxhYojAGgJepEv0ppzHZfsf1gex2fqqF6udpSxhbB20FdKV/it78OsQkqRfZ45M54rlISVaoC40rq8gVVgJKsYLr6RlGW47CxOZP28ALZxMmNrRS3JjBAxXLKMm6hRfTrP5ozq4qNq6Ga3VoauknYXoq4bqVxBKsjmPm9mAZdqYBK2kGqoVASWGS6TlKKCWbLdWhF/PQRcANAV9WMiZh9UyE4QIgdhmZQi/xwRwyVlD+D3IF+kpo16ZajZZt8vP+Bi/jzW381u4QWMbY/kvJQs21lIPkh6qxhBSlE0jk/r+2V13dO5wqLoTOzSyNWIBlhqKFF1T+saLpUF3Nb3Sp6lMGsdolLiDRh0QVWLuGovs+ZFYLjsHPRVFhed4TI1LJXT8uhj+c3nsZxCSpEdi9XmgX8vueNhDFfleeYL6GIwXCqLbyTgQSpfrNmE8O8qM07I6wYhdoFSSfcJtINMGy+ZZ9StpdEtrW1k228Jsg8yvWkBwOvhPly1c7O+uZJMvel9NKu+W0LQG9kI24ArK795sLO24WPLsm6qWD4BV1NAzHDpuylxStGW4crI3SysEa2gd5MgRQUY3OLNcs8STrvNfoLJuP25scOXnziJf3v+jNLvyAhPAx5rrRzvxi7FcNn4xsgyXC6NwbFOKcqNQwix7bEmG2Tzz7Ls91aQo/WB8sagekLnDJfPXZ9gOaWYWgp63aYMoIoAFmCpQAA1XlwxSXd4fZyg19LPK+CVYyO5vMBsHD4Jy7qXA+a7Z9nUUnksc9F8tliCTyq9aa8JUmUp2sI+a4ZL9t7xeSz9j1LZonTg1qRtQuJVi6/Kd3JpDb5jVoFSTq7oR0oLpuTIbj0XqqYU6xnHTsOlurkypreNSGQL0kGb2yaluCCZtQLKQZldavI1z3B1R/2YFDFcklGsqIFsLM0a2oooXit3XI60QpNUwDwyl+mzVU9KMVco4YtPnMDf//yI0u/JsAx26QEeXEppuLx2qTd5VsCuAkpFe2Vl0gcw6lqW4Qr53LqvSzVke+oB1hO6OsNlfr2Sksxx+Xg8pqyAigAWYBouoLbyLaEacNkwXDKCeYDdX0GvG/MmVXjJHAsERAbHgH2/QFWhsdU8JptStJt3gPJ8KruBaA3VVpWWGSV5XZpZKpAfp+xCxwPk6l6Roh6wNeMEvNZVirIpRVG1o+KcYS+al9co2W0+Za552Wm+dv4StX6rhtVzkcjKa7j4LW92P6sEXHyjZ6aLjStuGlWxbAKuriY/JgQsTnk3JSiv9bHec1bl0LF0XmoijvjtA7e0pMOyPvGZPEgyneSb/QSxTMG28tIKe86WTSVFthtGyEx+QTs7Bx7gSO3IrJkplUbGdsUSKnYOIcEuU5rhsmkdYlcoUQ2rCZ33OJNZfAHrSiGVykvAWsSvIoAFgFZt4quuVIxnFTVcIR/S+WLNPRTL5JUDN7OqyWRW3N2Cw65JuKpo3oqpzxWKUro9UbNoPaWoIJqPZwoVmh51hsu+ulD2WKxaDakyFBG/x5KZkr3u+vO5CAUyLMi2Es3L2ULYpcwA+UDS7SJwu4iphkvVPsEq1a6m4WL3vFlgG8vk4XUTqc1MwOuG3+MyrWzmG4ilbO3zS0F3NID5VF7QkkDuIgd9jG428w8B2MWR6a9mV2XGe/PJLJoyDJfdOFEv21mb7eJFeHFgRv/3QlYu4CqVqL6rt4Od35ls+pePY6nhysn7vdi1dEorsAthn9tGaFzQW5SIYOcNlinItdIByhN69W5eleGKWthU6NpISZaiKWgecKkwFECZ4apmlWQbTnM0W7AdbBy1wM2K4ZKdgMtNy82vOSB/vSw1XNI+XPYaLpViCQBoC/MAuXyOUooMl5WGK5MvSVcXAqwtFFD2VORQEc0D1s8EpVT6PuTn2Vp8L6cFA7Qg22bzqaLhstsMy26uvG77gEu6QEbbXFWvYYmMfErRRdjnmW2KFtKsVZ9sZXNz0JwVT2qVqaLsl1Msm4CLl1BXT5pGJCUFmqK+cbF0Ac1BuQfJzkfJ+Fn242iCQbNJWCKlGPGxi29mOijC8GxK//dESi7g4g+8OLC1TgWqWg2YFRSwY2FpKpkHwI7h4n0v5fq02XgF5YrSC5RVf8eSlmaU9WPim4PqnR2/B2UZLis/L1V7gCaLcZTF7sHaSZj1OVUbR5/M69SCtVqkJpPZgjSrqVcGmpwfJwyXqfGpdErRfh5MZgvwuol08Uar3k+xfI5UWTKrZ0tVwG/NcMmL5gHrZyKrVVnLZEI8bhdCPretaF6252DE70GiTi2YruFaBB2q1+0yNVBNZtUCE96Lc9akQEaJFQ97TdfBhbQcicLREvJaVDbLB4BOsGwCLn0Xb9MEVF/EBRdIZBGwIJlSZDtM89Rk2depXoZLLKSNaAyXWeNYEcYWMujSzFP/61gOv3ffS8LfkaXlAx5rsbusZ1p5HHOGKyMp8AS4hsu6BF52krGzA0kqpRTN70M+ganYQgC1O+iczphI7ub9XtNAQEXfBmgMl8nGSDXg8nlc2o61fF/HMnkUSxTtEb/0OC1BzpRVM1xyzzmHmUYJUGPugl43XMT6Wfe5XVJaMIBt1HKFUs1mRLpK0UYcDPBAUv56tZlo7uKKWp6gxmbXVheqBW5WrKZqSjEa8JoyU7pXo+TiywK3+gxUy+OYM26yGRW7Ruw8MyM7p/rcLkuGSyUwadGulzHgyhaKyBZKSnNGW8hXE7QB8jKh8vH4LAtkzlc6EViGAZfVTQuUdy9iTybN88Mi4FJJKRZK1DQ1qaIt0ndjJhdYxkCuzHCppxTHYxlcu64V0YAHg7ESXjg9YyqCNEKWLg76rAMlnmqQOT8iDZd0wOVzI22ZmpSf9FilkDXDJVOZClinFFWZjvJuvprhUtNwRSwWBRVvMX48sUxtyxjVSRioFbxPay2sOiI+q18xHQNYhNSkFcOl0LqGV7laieZl04nseNg5qNaayAZcLhdhImxLDZd8VSBgKHIwLHizySzcLiIlVgYMrFu1PYBioGT1TCQUAzer9ltlSxG572XVfgtQNzm26ipBqWTxkI2Uga9lMnY9AHu2Tkwkal5PZOXT7ABjAVtC3opgSRe6hxQ2RWHzTVFMSynKwupZZ5oy+WdCFcso4NLM42x9r+RozLL5oFVKUVY0b81MqbACVikPQK5yKaodarXLswiUUowtpLGqJYhre1v112eS9hWPsrvEoE11YUoh1RDwsmo+c0djhf5qXusKKBWGK+Szrk5lpoHyehX+2Uao2gPwfoHVO7KsoiYoGmApqmIVu5DKFaTTpADTzxS1li5GJBUnYYAL1cv39YzWwor3EJWBnpqs0XCpieZbQ17Mp/M1gWQqK2/ICTAPH9PelwX5Qgl+PEDtRktWwwVYpyUBft0V2AWeFkoZA64cWkNeadZOZ6aqggpVHWHEQteYzDK3etlUVzTgMRW7622hJKQnABff11+lGA14TPWRvE2PFMPl4Sa+tfNpSrLwjON3rluLV87M4tDIQsXriUxe+VmvZqdkehqLxuBYUA24LKxkVFl6VSybgKssPLQLuMSNq4FyZZwZw1UolpDMFeX8OvzWTJlKa4Og1w2f22UaUcuI5jnDNa+YUlxI55HJl7CiOYhLe5r010WNsMu7zXpE8/KCXDvTSdaGQj7AsWteLburC9sY56r5cJlXKerNoiUXTUII2kK1Hkh6wKWgDwFqNzWpXFGqmpTDSj8Tz+SVy6lbQ76K52JG+47tDhguIxOUL5aQyZeURPOtIR+KJVqzACcEba6qEfab22aodBfgxwNUpvBKWmcKWTYy4rdhuBQDSX6ejffhTCLnKDiuZu1UGS63iyDqrw1OFtJ5PcUsg6aA1zRtywM5eYbL2s8rnZO3gGkKepHKFWs2n+UG2OLr7nG74HObm1LLGkBz3HnFCgDA4dHKgEtkjG2GtrDPlOFS0V61hq0DLtngGGApTiu95usi4JJJKaYUbRjMAqWYws6F0+12lV0yNy4hREud1N4oMgGXRzPoU2W4xhaYzUZPcwB/fvtFuKabfYaoEbZsaaxtKjBXZG70Mi1IAjZMYr4gZT4IsJ6MllWKkiaGQNkWolpnUtTSyypO80Btk9SMouM4YE6l5xRF800Wfl6qTEfZA6n8vSilmE/ldVZGFtWVgTrDpRBwRfzMU88oguWTcnU/QzvoTFmy+vyoBSaRgLlhskpqCTBPlaq0cwLs+8GmFFKlALtfwz53BeM2k8zpzJcMrAxmVZzCjWNVVynOp/P6eZOBleWKSpcCgKcCzdeurGR1ofHzqgN2meIqI6zmZn5fygYV/NrW6COzBUT8as96dcAl22KveoxUrtIChlKKWKagNE5LyIt0vlgTaKvYVDjBMgq4zCuxjJCtFiqLlU38OiTb+gD2YndZB3QOK3NGWbsCq9+3w/BcGgALuMJ+D951CXt4pgUmqiopRauAK6ml3mSqAu3YTZVdeEhgUyErEA5baCD4/+tNKar21ANYSX71zi6raXlkS6GtFpekgsM3YM5wxbMFFEpUZ2Vk0VrlfcU1XG0K4xBCanas+majKaBwLLWMku4PpbCbt0ovZQvyTEfl8ZS/V7m7QH3eawDT4aiI5gEWwM4YNmyzyRzaFIJjneGqqhBLSrLqRpil3+ZTOaWAy2ruiWfk1wl+LGasJqWUmSXLMlwW7LFMRxIjrEypVYsK9OyMSepWJV0PsGBpxhhwZZwFXEDlM8plEiqieV0fafK9XhcMl3xKUcK40qZKUeUilw1LrVOKshOWVYNdWUPO6t2BDI6NxQAAm7qjAIAmLTU5IxhHRTSftjCYTWXlU2927GZKwQwxpBneVjNTbOyCdMWRlVGtitUFYG1AqOKez8Eq6GrF037JhRcwekTVfi9Z1g4weiCVj4ezQiqMEsCofV6ZCDB9YWvIC4/C9wI0EazheMYX2GZjRbNCwBWu1YKx+1vNeTpiwSplFJgOwDwA1FlNhTSylXN5SjGQBID2iL9i/phJZNHhgEWsWegU7SUA7ZmomsvmU2opRV07XCfDZVVdmCuWUCxRpQpg4+dzcN2nSsW2mQ9XQtJaiYMQYiowZ/IB9ZTiXCqnrxeyPY2N4M+EcS2cTaiz2S02qe3XRcDldhGEbbxMgDJrIoJdleKCnpuXSU1a+9jI9ubjsKqKSOeKUj5T7WEfpgWpwGocHY+htz2k30ABD0HQ6140hivgdaNEYerTksoXlVrFAPUzXNGAF5SaO/rHJStTAeN1r7x/VFuhBC20hBlF7RVgHnBnC2pVb1YtglI5+WsFlCdI46LJ092qKcXu5gAoBUbnWYA0k8gpWUJwtAS9FZOnMZ0ui+ZgrRFruepNfnGxq1JUCbKDPuaIbZw3VAMullK0YH0dMFwdYZ+uAc0XS4hlCmhT0HC12DAL/Hhl0Rn118gj5lJ5PXCWgdVmL5bJgxCFakc/S1FVa6/0TIjiXFhdDMDHkX3eA15zaxsn55n1Kq3UEapq5QCgI+JHsUT1eYw/r44YLkPanxeBqVQ2mxXaFDTd5+si4AJ4aa2NhisrtzDoDJfJpJdQKPe187Epu95LmgaGzKsiZEXYq1tDeopQFsfG4rhsRVPFax1RceCmG2EKFgfd0disGiYrz5rYpZNV0jlWgRvP8cvuVvkiVB1ol9lIedNAr5tY20IoMlwL6TwKhgld1gCTw4pFVtUtcH2VsfiCszCqDNclGvt6YiIOADg3l1IKkjhaQpUM8vhCBj63S0lf1GoiCtd9phTSJ1aGyZl8SdpktHxMlSxOXjGlGPHbd02QdWTnaI/49AWOH5dKSjHsY1Xm1XPhQjrP0lcKm5CuqL+ixyylFAvpnB44y8DK/5Gb78pWX1ppr1TnDKuUoqru08raRrXpNKBVEhsCnESugBKFUuoWKG9+xmNsMxTLqF9z3u2gulKW/Uwl8K9luFRNc51gWQVcVp4oHEnJ8nWvVqVh1iJBpSWB1UNkHEf24rRYmCrKVoitaQtiIZ03DdrMkMoVcGYmict6KgOutrBfIqUo16xXN9gzoa5VWJOoRaoL4KlJeYYLqA0oUoo5/rAFQ8rF77K7VUAzY636Xry6UCW9xIMc444sq+BWD5RNHKvPz3xKTWgc8XsQ8Loq2AW++KpquDbpAVcChWIJJyYSuHRFVGkMoLbqaGwhgxXNAWl9G2C+6+VsV4vC9+IpxepUe6agllJkn1upcVNluEI+j+nGs6TZeqgyXO0RP2YSOc1yhi2c3FhZBoQQ05J81XsQYAxXKlfU541kroh8kSqxrFG/OeuraqRptdlTDbisAsCsomjeqljCCcPVHPRVPBNOmCmgnN4f1+4bVSsHwJBmN6a1eWWzUkqxdj6Na2TP64jhsg+4VBbxoM+88bSKODNqkjoxjuN2Eem0UHPQi0y+VCMyT+flmKC1bSEAwDlDqx47HB+Pg1Lg0p7KxcuqLYsRss7aYb1lkTkDKOvtZNWLLKe111Dpi2Y2jqqJYcjCnFF18gRqhaKA0RbCgYA6WannUWG4zCrESiWKWEZt4iOEoDPqx2Ss3GyeBwUqYneAPRc9zQGcmIjjzHQSuUKpZpMgNU6oOuBKK+m3AFZOHw14KsbhO3uVQDIS8KBEa4susg4YLpZKLge2WScpRZOK23L7LkWGK+xDoUQRSxcwMM0MMTd0hJXGYAFXbXWh6uLbqQV6nOUqB8f1B0ozyZxSpay+2cuapwKlRfMWDvqqonkrL7ikgzmsJeTFgoEs4POHyiYEAFa2BAGU0/2qVg4AtH6JlRouzrSrsNnNJhXAfByV666KZRVw2XVuB3j3dvkKMTMNF7/hZAIKt4ugKeCxCLgYCyS7g9YpzOpyaMld5upWtYDr6BhL0WyuWrysGg8bkcjJCQftjGFVWuCEfR4QYrY7VBOpRywmT71Nh+TDbdXZXlW3BwBd0QAmqzRzWQcpRT6ZGIM3VQ1XwOtGyOeumKzimQIoVd+tdkb8NQyXi8iLjI24uDuKo2MxHNGKPC5doR5wdTcFkMgW9PnjzHQSvdomRQXV7X3mHGjT+DmoftZVRfMAYwUmYuXzrFcpSovmNXlFVfDHN6PKGi5NXzedzGJgKgkXAda2q53nJhOGa8EhwwUYAy71QMCqkGQmmVViTKwZLrXzHPWzubCa4VIVzVu1J0tkC/AoEAWAxh5XsL78PKtdr46IH24XwfhCBvliCUfGYuiKqm+KmoOVZsmzySwCXpdSEKmfZ8P3mtA2kN0Klc2qkDrrhJBBQshBQsg+Qshu7bU2QsjjhJCT2t+t2uuEEPIVQsgpQsgBQsjVsgcT0fyPzFAolpAtlNQq1izKYpWYKQvtlUp/NaC8Q64WzqckW86s4QzXnGzAFUPU78Hq1mDF602BWu+aash+N7vK0rRCusLlIoj4apm3cnAsq3/gdHxtRQ0gz3Dxz0tVTViqPQcBoLOpUmcClCdPlWCJL3TGsbKFktLECVibDzphF4zHMpfKoSXkk9a8GLFtdTNOTMSxd2geXjfBRV0R5THW6BuSNGaTOUwncri4Wz01Wd3A2skiXmYjzQIuNUappzmAiVhGr+LU+2cq2EIAtZsH1WeLw6jfG5hKYk1bSJm1Y+nfqurCdE5ZhG0ZcCncy163C0Gvu2ajr1q8YRlwKbSAA9hc2BSoPT987pEN2K1SiiltbldJtbeEmBkr96ziWkmV8wwwAqM76sfYQgYP7h3Budk03n/LeqUxgFq3+ZkkM99V+U4urR2VMZCc0O6jrib1oh3pz1V47+2U0isppddq/78HwJOU0k0AntT+DwB3Atik/fkAgH+R/YCgRZAElG9clfYsVqJBJWYq6DM1LFU1Q+Q3Z7WOK5OXY4Kag16EfO6K3a4dDo8u4NKeaM33bAqat44wIinZT0okdlfacZikOp00ogVqd6s8wJS2heAMl0VKUeW6d1Wl3gD1Xop8HAAVbBkLuNRTQkaWTJ88FdMDXdFARcDFW7w4wbY1LShR4IE9w9jYGVES0XKsNWxITmoC/E3d6oFbc5UR63w6pzPdsihvrqqe9YKa0zwArGgOolCiuveVajsnq+4Cqs2iObir/HQii9NTCeV0IlAbrAPONFycHZmMs+frzEwSQDl1JYtq7TClVAu4HKQUq8XuDjZp1d50gLpontuB1PY7VfPcA8qeVTyg5X+r9EDkWNEcwNhCGgeHF9AU8KDvkk7lMapNoGcVzXc5qnWfk7EM3C6i1DlBFfWkFN8B4Dvav78D4DcMr/87ZXgJQAshpEdmQDsjzZRiBYEVw6XadNOu55LKjVvOGZulFCXNUy2OpRrpXBEHRxZwTW9bzc94Kwur8wzInyNbsbuiIDcS8NRUqKouCla7zHJKUU3DVX3/8ABexbOqKxpAMles2G1mCyW4COB1q+0yfW6XvrgA8kbARrSGK6veynoMdYZrLpXXGZfJeFY5PcCxdXULAHYfVafAZbGmjS2y52ZTODnJtEWbHDJcxsVuLpVHS9CrtHvmtgTGcfKaH5NKkA2UjVu57kV9E2JuM+Bk8wAAqzTGfN+5eZycTODylc1Kvw+Uqwu5roxSyjRcivdga8iLoNeNc7Osenv/uXm0h301rL4ILVUpqni2gFyxhA6FhddqLnSi+6zuvgAwVpwQtQ4DZjpC1cwMAKzUtJDcusUpKw4A6zrCODWZwNBsCmvbQ0rPFUdryIdZA3s8ncg6CriaQ5XFABOxDDq1tOf5guyZpwAeI4RQAPdSSr8BoJtSOqb9fBxAt/bvVQDOGX53WHttzPAaCCEfAGPA0NnZif7+fkxPZJHIFNDf319zAGMJNrGfPXUC/akB04NMJBL676YTGcSytGassyMZoFgy/QyzcXKJDEbjte8fm0rDTSA9zkyaHf/L+w4iMH1Mf89cLIUFT0ZqHHcph9PnxtDfP2f5XgA4MsOqdUKJYfT3j1eMMzF7BgDwyFNPo8Vv/vBOz6fQgqTlMfHjSeTYhLn34FF0xE/pPy+UKHKFEiZGhio+32ocAChl0xgaS1V85pEZNlmcOHIQZNx8wjKOQSmFiwCHjp9GPy3fgnuG2EN18NVXcM7iO1eP4ybAkRMD6CfD+nsOn2KT4K4XnrN8KI3jAMDsCPvsnz/xDFaE2WefPJOF1wU8/fTTpmOYjQMAUS/FwZND6A9OsLFjKbS6UtL3IADk41mMzhb1114eYwvEiYP7kBy0nsxrvteo9r0e70d70IWhyRQ2trhsj8XqewFAd4hgIkWBxKRwDLNxKKUIeoAXD54EAATcwIm9L+GkYEKvHic1l8XkQnkOOjGYgQ/280X1OPMZ/qwfQnj2OAAgXWDPyvDQIPr7R6SPZyTGnoEnXtiNuW4P9gzze3k3xkPi63Vmnv3+My/vwcJAebo/MMWu+7FD+5Eftg4GzK5Xi5/g358fQLEEdGWH0d8/Zv7LFuMsjOdRKFHseKIfTT6CbJHNF7Nj59DfP6F0LB0Bij0nhtDfP4kXjqewOuSyfa7MxvEU0jg9Un6OxpPaJuLcafT3D0mNk9eCx/1HTqA/O6i/Z7829+zd/TLOSMw9AFDKZDC0ULl2nTidg5fIzxmj2uc+tvOZinn+3HgaxYL8ugUAY3F2Ph57nt1DB49n4XcDLz73rOUYZuMAgC+Zx2Q8h2RmCpe1uaWf9fn5eQDAvv5+ZGNZjGtzWLFEcXwshTet9SjPPaV0BsOx8nk+OphBELUxg8z3kgalVPgHwCrt7y4A+wG8EcB81XvmtL93ALjF8PqTAK61G//iiy+mlFL6/x49Rtfds4OWSiVajQPn5mnv9h30scPjNT/j2Llzp/7vD353D33T53fWvOf3//Ul+o6vPmc5RvU4H/vxAXrN/3qs5j2/8qVn6Pu/vUt6nEQmT3u376Bf7z9V8Z4r//5R+okHD0qN8zv3vkjv/pfnbd9LKaWf/cURuuFjv6CxdK5mnJ/sHaa923fQkxNxy9/f+ulH6ad+Yn1M/HhyhSLt3b6DfuWJExU/n0/laO/2HfS+Z07bHqfx/LzvWy/TX/vKMxU/f/TQGO3dvoMeHJ6XGoNSSrf9/aP0k1XH/tWnTtLe7TtoOleQHueKv3uk5hz840NH6ab/8ZDlGGbjPHNikvZu30FfOj2tv/bxBw/QK//+UaVxKKX0HV99jr77vpf0/1/zvx6nH/vxAaVx/mHHYXrJJ8rf4T9eHKS923fQiYW00jg7j03Q3u076CtnZmipVKIXf/wh+plfHLEdw2wcDn6e9g3NCcewGudXv/wM/f++/gL9nXtfpG8XPONW4/B7JZVl98rv3Psifec/i5854zjZfO1zMRXP0N7tO+i/v3BG6Ximtd/7t+cGKKWUfuu5Adq7fQedSWSlxhmcTtDe7TvoA7vPVfz85/tHaO/2HfT4eEzpeCil9He/8SLt3b6DvunzO03natE4O/aP0t7tO+iR0QVKKaWj8ynau30H/d7LZ5WP5U//Yze9/f/upMlsnq67Zwf94uPHlY6FUko//F+v0ls+96T+/11nZmjv9h20//ik0jib/sdD9LMPVT4D9z59ivZu30Hjmbz0OH/5/b30Df/4ZMVrn/zJQaU548evnqO923fQgalExXt+82uVc4jM8cS1teufd7K1669+sI/e9NknbMcwG4dSSp89MUV7t++gvdt3SM0X+ji33cb+UEr/7yPH6MaP/YJm8gV6bCxGe7fvoA++Oqx8PB/63qv0jf/nKf3/b/vi08I13TgOgN1UIn4y/pHiJymlI9rfkwAeBHA9gAmeKtT+ntTePgJgjeHXV2uvCRHwuUFpWadghCqNGfJai+ZVhKI8z0urcuGqpoEhH+tJVZ2bV0opWgj4jTgzncS3nj+D2y/pMhWJl1tHmI9TKlFpV3av24WA11VDo6cdpCtaQ76adKve7kNhHDMtWDxTgM/tUhIsR7RyeiPSii1wAKPOpKxZyeTVeupxdDf5K1KKqs2HAZZSzORL+jXS22sopgd42mZ0Po1YuoBsoaTkx1SNWzd14sQ/3Ilta1ocj3HH5m68MjiLFwdmcLED4T1QFmJzc2BeDKACn8dV02xetwJRvO5tYR/8Hpdueqzac7DVpPccULYXUU0lA9CLGn5920pHKSEuSp6sQ+zOsa4jjKHZFAamkqAU2Nipft25pozP8byfp0qVIqBZk5g0PgfUKpvNUorpnFrBhVWldVKh5RpHxO9Ba8iL4bkUktkC+o9PYaPD5+syg03RGgdVxGyMJhRKFCcnEjg0sgAA2LJKXYqwqjWIkbk0coUSSiWKc7Mp5XS0KoQBFyEkTAiJ8n8DeCuAQwB+BuB92tveB+Cn2r9/BuC9WrXijQAWaDn1aAt+U5o13VRtHWJdpajWxqQ56EWhRGsWX2ZRIT8O70llbJFQLFFkCyXpRbw5aN/AeiaRxZv+Xz/yRYrfvX6N6XvKTsbmlYpJzUVY1vQv4vfWjJXUS6HVfKaq+6IlFft+AczI0KxNh6rfSyTgqdG9JHPqglMrsbuTgMtoMeHYuFK3l2DjLKTzCHjVglGgLEwenkvrQWBnHQEXIG91YIXfvnYN+L7ISYUiwOwuAOiWF9OJrFLLEI7WcOWzmtEblqudZ0IIettDOKvZwSSyRXjdRLpYIur3wOsmNW2hZhwa1QLAlpXNcBEWcDmB/kxoxSRjWt9LJ/fP+vYwCiWKF05PAwB6FS0q+Odm8iV948jtAVSr1bqilRsigK1lfonWbUa0hrxI5oq6PhJgBRcqQZtVsUQsk5eu1jZidWsII/Np/Hz/KKYTWXzkLZuUxwCYce4bNrYDKHeZUAUPrg6NLODQ6AKCXjfWd6gHgJeuiKJQohicSeLcXArJXNGR6bIKZGbrbgAPajsZD4DvUUofIYTsAvADQsj7AZwF8P9p738IwK8COAUgBeC/yR6M3pInX0Rr1c9UHZ9DVq0NJD2mOIz+WcbfSyqK74Haqoi0YuUlb9BLKTXdWf741RFQCvzjb12BN13aZT6GSeNhI3jwJBugRAO1Bntl+wT589MWZpOMsXRebzFUZ5FDLK0+yXRE/DUtkOZTeb1iRxZmYnc+Cauiu8mP+VQemXxRtwlQLes32kusbg1hfCGjv6aCkI/tekfn03oQ6FQ0v1hY1RLE1Wtb8OrQPNY7qJ4DKq0GUrkCphM5Rzvx1qrS9XJlqpMKzDCGZljApSp6JoTUeIsBjOFqDnrhVWwSDgC/dfUqXN3b6ohNAmpZ30MjMRACXOqgYIJXoj58iGlFe9ucVU3y44kGvDgznUTY59aDb1mwgKtyzpC1/TGiJVyucu3SiiYy+aISO2plB7KQVq8GBRijfXw8jtNTCfg9Lly1pnqFlsd/vv8GDEwncFGXs+BmbVsI0YAHh0YXcGI8gc0rmxwJ3fmm7Ph4XC9gcmK6rALh00YpHaCUbtP+XE4p/Yz2+gyl9M2U0k2U0rdQSme11yml9M8opRsppVdQSnfLHkzAhuHinjayN0vI60a+SGuaiapOWDzAm01UMlNpSTuHyrEqA65y1Ztke6CgT6swrE25AsBjR8axdXUzfvf6tZZUv1WvLg4eiMkyXNGAB4mqsfRASYXhCleWHgPMfdrrJkqsUmu4tqQ6nikolfUDbBKeTlQuUvOpnHLag7uyTxnsPGIKjbSN4Av/8FzKwCKqfa+e5kq357MzScfByarWIEbm03qrjvPpXyOL+957Lf7ktg24ZVOHo9/XjT0TWT2N5zTgMgY5MUUvOCN620MYmk2BUqrZ2qhd8zZDw2mOGYel9AAzn3TilcYR9LnRHPTqzNahkQWs7wg7aqly+cpm+D0u7B2aR3PQ68iqgAeA3KpicCaJ3vawcrrUzORYtnWbEXpPzwqGtIiggqVI2IThyhVKSOWKjlK3l65owpmZJI6Nx7G6NejIb4/D5SKOgy2AzamXr2zCweEFHB5dwJaVzoKkDZ1huF0EJybiODIWh4sAl5xnhmtZOc3zxcPMsmAulUM04JHekXFWpDqtmMyq+WdVazrYmOoNQIHafoo6EyT5QPJg09ik14jxWEboi8MnfCvz05iipod1B1iEFjg8sK1o2ZBVNrQzS006CXA6IrVeQXOpnF7yr4LOqp1vzEEbE6DcbWBoNmWwSVGbzFdpqcARLZgYnEk5SsMAwMrmIIZmU/j5gVF0RHy6+ehSoj3ix8fuvMxRypb9PrsPp+JZnVVa40DXsbIliHNakASUnysn1723PYR0voipeBaJrBpDD9QGf4Bz76LFwpq2oG7ncHg0hi0O7CUAlobeptmKOL2PO6vS/oPTzjYhXU1+zCSyOvsMyLduM8JsLlQ1zS13ASmvf7oO2kFQevnKJlAKPHtyWve8W0psWdmM/cMLSOaK2LLK2b3j97ixqSuC3YNzODK6gA2dEcfzhiyWVcDFc9Rm2qv5VE5Jb6CnJ3OVEX6uWFJiTLqq3IyB8k2syi50Rf26PoAdm2JK0aQXHgelFFPxrFAHEfAyPYGZCzFgSClKa7hqU4pOPH7MxL2q5oNAeXEx9o5jKUV1hiudr/TPYuaM6otUtbbDSdNWwOg1lXbMcDUFPYj4PRiZT2M+lcNCOo917c4Yrqt7WzEwlUT/8Sm876Z1dWuwlgO8bhdaQ15MJ7J6VwcnDNfF3RHMpfK6FqyexY4vcIMzjNlUDbKruwsA3Kh26QKutW0hnJtNIZ7JY2Q+XdPzVQW3a/KJX9/qTFPG9YhDM0nkiyUMz6UdBW9dUT9KFLpJLaBukA2UmeKpqnFU+x8CqOjDWY9/ljGocSp2X0wYj+eqtS2Ox7n90i68MjiLZ05M64H7+cSymiGDPnY41WZtADCbyis5WZcDrvJYug5MYWfHUwzGBXNWF5yq3birWoOYS+X1IFCVTeJUsJlwPpEtIJMvCQMuQohpkMRRPiZ5d/fqAJAHAyoiT77bNi4M0w524a1hH0q00vyUpRTVGS6gzGxSzZzRiZt6V1Mlw+U04OqM+BHwuhjDxYNaxYCLEIKVLQGMzqcxqDE4vQ4Drrdcxqz3gl43fv/GXkdjLEesag3i9GQSuwZnEfK5lavVgLIg+MQ4M2FV7XZgBL8+Z2eSzClcleEKe00DLiffa7GwpjWE4bk0Tk8xd/gNDkTPHH962wac/Myd+OM3bnD0+xG/B2vbQjg6FsfIXBqFEsU6Rw76tRXJ8Yw6I8l1W5NVm3OVzVXA60ZLyIvxmHGjx+4BJ3NPd5NfJypUnfzPB4xVifWkJ99yWTeKJYpcsYQr1zhjylSwvAIuL7uhzDRc84rl2fzmNPbD4w+Cihgy4HWjKeCpaWMCqHUnB2rTOao7Diu3eqDMwMlU+pilATl0V3bJAKUjwlrFGG0zygUO8g92mynDlVUWdPOAaLZKP+OE4QLK5zWWKaBYoo5Yga5oAPOpPLKFIvJFpqNwMukRQrCmNVQRcKmmKwB2H47Mp3FWa4WyzmEqZmNnGDesb8Mf37peZyhfC9i6ugUvDszgoYPjeNd1axxZH1ysaUGOa22GFtJ5uF3EkU5pVUsQLsJSyUkHKcXOSKCiKwClFHOpHNocVF8uFta0hZArlvDSwAwAdi85BSHEkfjfiMt6WAN13h7ISUqxu6l2c57IFJTnnqjfg6DXrWsjAWddJVY0BTC+UMtwOWHpCSG4773Xoi3sw3XrnAvmFwsbOiJ4z429+Pmf31LXOFevbdGrkLe+/hgudkNZabhUApyoSSNjzlZ0RtWbpBrpXb6Yq6a79IDLYYsE/qAsmGi49IArIq4UYwyXlWieBWKyk0RHxI9coYS4gTEbX8gi7HMrCYQ5e1ep4VLfhVenJnmRgTrDxcbh94xqlawRqwwWCvXQ+gBbyA8OLyj7MVUcT2tQ9y4ixHmKgBCC+//kJnz0rZc4+v3liisNE++n7trsaIyOiB8tIS8GphjDtZDOoymg1jSYw+dxYWVLEC8NzOD0VEKZ4equSlHFMgXki1TXCi0F+D334KsjcBFgrcOgf7FwWQ8ThR8diwGAozR79YYagKa5Uy+06W7y682UAUZCqMoHVjQHMB4rH4veA9Hh3POGizqw5xNvMW0Z98uGy0Xwv35jC65YXR8rRQjBQx++FZ+6azOucKgFU8HyCrjsNFxJtXLWFVU9yICyoZ0qa1LTqFebuFTZjpVVAZeqXspOw8UnU5lKsUjAUyGmNCKWySPsc8MjuWPkQee04fxMxDPoblKzCPC4XWgL+/Tm3KlcAel8Ee3KDJcWcGmBW1yvDlPV27Hj57tMXjHkJKXIK7pOTiQc9y7keMPGdozHMrrhn2pKEQCuXNOKeKaAx49MoKcpcN6FohcatmqphV+5fIWjAIljRVNAv5+dVqZyrGkNYdfgHChV86UDoD+LXD96TvP0WsrU0A3r23DV2hYcn4hjTVtIuQn7YmPbmhZQCjywexgRv8eR91pn1A+/h6X8OZyw6wBLK/LrRSl1pN2zZLjquA/reR6WK7qiAfzhLevrqryUhfqdcB7BGa5qDRdnUFQCnBXNfMEsR/g8aFINuDqjfuw7N6//fzaZAyHqbEd3UwBuF6lIKRIiHwyEfW54XMQ0pTgZk0+XRvyeiqadRswkskrpIX4uZ5I5bOjkx5JxZBGwpjWIYU2ozMvYVVlEvmvnAVLZV0yd4Qr73LrOaa4Ohou7Mp+eSujnxenie/NGZnfw+BHWc041zQCwxQ4AjozFcOOGpd+tLjdcuqIJ//zuq/HGizvrGqe7KaCnl5zq9jiMz+vAdFLpd3Vnd20B57+/oY40Xr0IeN34wZ/chG88M6Dsd3U+cNOGdgS9bgxMJ7FlVZOjwIIQgjVtIb36klKKRFY9pQiwe+fg8DwAZpRcouoFMiuaA5hOZJErlODzuPR1o57Av4H6sCwZruqUIrdBUGEXAl432sI+jFYwXFmEfG5lSn7bmhYMzabw4mmmN5jVKiZVzdbcLoI1rUEMajqBWDqPqN8jHVkTQpiXl0mwNJPMwu0iUpN6xF/rncUxGc8qsVO6uNzIcMXUxuBY0xbSd4ecsVPdabZotg3VDJdqSpEQgvWdYZzRFqc5h4USADvfK5sDODWZqDul2NsewsrmAE5OslSV6r0MsPPMKx6XQ4n3csSvXtHjSG9lRHdTuSq53oDr4796GX5taw9+7Yoe/NntFykeB2e42DM1MJUAIc50SosJr9uFP7v9Ivx/15l3xfhlIuB1440Xs83MRQ4NXQG2aeRzWCpXBKXq9kEA0B31YzyW0b3XAPXNFc/yGIP+qN/jyCS0gcXBsgq4vG4Ct4vUOMTzyFxVmMso1cqAy0n7iHffsBYdET/+8+WzAOrzsNnUHcXxcSakjaXV0wzNQS8WTBiuWJrtpGSCN7sqxYlYRtd8yKBa60Qp1cZwFnCNzqdRLFHddHJVi1pAoAtODQsdoJ5SBID1HRE94OKpac6cquKi7igOjy7U5ccEsEDwDRexhSHgdTlyrAeAP+tji7YTl/kG5NDdxKQIxRJlz7oD01OOWzZ14Gu/dzW+9u6rceOGdqXfbQv54HERPfgbmEpiZXOwkUquwv98xxZ88V3bcM+dlzkeY41md0Ep1QuTIg7mnou6IsjkSxiYTjryNQTKcxW/7sNzqWVRYfh6xrIKuAhhruKJqgq6OYd9v3j5O8dUXL3qDWC7n80rmzA0k8JzJ6fx0MFxR0wHwMrFB2dSyOSLjna9zUGvqfFpPCM/odtpuCZjWaUWLW1hHwgp6+PqaWS8ti2EfJFiPJbRdSaqzUQJIVhtSE0+fXwKXjdx5Iy9viOM4bkUsoUixhbSaA56lWl9jjdf2oUTEwn0H58C4DzgAoDr17E04G9etdqxpuJd163Bv7z7anzAYSl9A2J0NQV0X6aFdGHJUjkuF0GXxpgAwMB0YknTicsV3U0B/OZVqx1vqgA2h8WzBcyl8nphkhOG61qtEnDP2TlHvoZAbVeJgalk47ovMZZVwAUwIeeIIUgCjPoZtQmrpzlYIZofX8joNKsqVmttTP7hF0cAwNJWQYSLV0RRLFEMTCUdBVwtIZ+paD6WKUh7Z4U1hstoDgowoXo8W1DSX3ncLrSGfDrDNaZVxThiuLiT+kwKw3MptId9jlJmLOBKo1As4cd7R3DH5m5l8T0AbOgIo0SZyHhsPlPX7vA3rlwFn8eFB/eO4OLuSF0eSG+/ciU+8WuX4ZN3Od+JE0Jw5xU9jjRpDcihW9t0PHtyGtOJLDbV0Q6nXqxqDWJ4Ng1KKc5MJR33QWzAHps0/7WTE3F9jXDCbG7oiKA56MWewbmyr6HDlOL4Qgb5YglDs6lGwLXEWHYB1+rWsuiQo1whpphSbA5gIc2MRktammp1m7NFc3VrELPJnJ7q+rtfv9zROJu15pjffuEMdp+dU34Yqxtgc8QzeUQly4+jvO1DVeqWC++7FZsQ9zQH9CCZFwSoMlOAwUl9LoWh2ZRju4LVmqni6HwGs8kcbnMofuYal4GpJEbm01hZx863OeTF/3w7u2f+4s2b6qr2CXjd+KNbNzhm2xr45YAzDH/1w/3wugl+46pVS3Ys6zvCGJhOYiKWRTJXbCy85wkXa820T0zEddmGk5Siy0Vw5ZoW7B+eL7fxctBVgvt5Dc2mUCjRugxmG6gfyy7gWtsWwrm5VIWRJme4nKQUAUapTsQzyBVLjkXCvI9dIlvAp+7ajJs2qukoODZ2hrGqJYgf7B4GAGQK5qk9KzSHrDVcsgwXnwCqdVw8169aYdjbHtL7zg3rAZf6eV6pGTyem03h3GzaccC1qjWIhXQeh0eZdcLaNmeLC3ebPjOdxNhCBj0tzgMuAPid69di/9+9FXc5bEHSwIWFy1c24U1a25n/3nfRkvYu3NAZwXQiq1dbNxbe84MVTQFEAx7sOTuHv7x/HwBnKUWAeYOdnioX2qhquAghmhdXBgNTS1+Z2sAyDLjWtAWRyhUxYzDAnE/lEfC6lClVvsMcX8gYGtE6DbjKjI3TZpkAewg+/JZN2jhN+N3r1yr9fkvQh3i2gHyxVPF6PJOXNhotNzatYri0SkPVdODatjDOzaU0sXsKfo/LkY+N1+1CT3MQL5yewfBcynEKhl+r505NA3De1LY56EVHxIfDozEspPOLIjitR7vVwIUFl4vg679/DR7/yzfio3dcvKTHwpvaP3mU2Yk0Ft7zA0IILumO4if7RnVdq5OCHYC53+eLFAc0ewgnFjC8cIwb8G5opJKXFMsuJ8EDonOzKV3gPuew0WqPlgIanU/rKRynrMmGjjDcLoKLu6N1NcsEgN++ZrWu6VEFb8cxl8pViNtjCv0Cmyx6MnKGSzWl2NvOxO6j82mWtm0NOk6ZrW0L4cWBGXjdBO9yWC5+6QqWtn3o4Bh8Hpdj3R7AUjE/2z8KoNwfr4EGZOHzuHRdz1KCL7SPHh5H0Ouu65lowB7vvnEtdp+d0//vtFiCy0/ufWYAgDMLmBXNAbxyZhYDU0l0RHyNDd8SY9kFXFxjNTKfxlVrWaXGnGIfRQ5ebTK2kEGhREFIOc2oipaQD3s/dQciPnnfLCsQQuDzOBujQ0tLzCTKAVexpGawxwXb04Z2RQBjuHwel3RqkqNXC2KHZlNawOXc22lNWxAvDgDvuHKVI+E9wILjlpAXc6k8NnaG67pel65owq7BOQS8rrqNMBtoYKmwrj2EkM+NWKaA69e1/VJctV+v+M2rVqMj4seKpgDOzqQc24Gs7whjZXNA95J0wnBd1BXBg3tHsPvsbCONvAyw7FKKK6pM+gAWMK1w4Fzu97jREfFhbCGDU5Nx9NbZQqIp4F3yiarNEHBxJBTd1LkX2XSi0l5iUvPgUmWn+O75+Hgcg9PJusw0+Vj12BW4XEQXvNeT/gWAj95xMe6+ZjX+5zu21N0gt4EGlgoetwtbVrJn4erepW8+/FrHrZs6sak7irds7nY8hsftwgsfe7P+fydFMtyz7XTDEmJZYNkxXM1BL3wel96GAmApwSvXtDgar6c5iNNTCcwmc7h4GVD79aJdb6VTDkhjupu63OVss2C4JmJZ5XQiwJjEnuYAHtgzjHi2gK11NBR9z429uGlDe93X6r/dvB5+z1nH1aQcrWEfPv/b2+oao4EGlgN40cdlPRf+PPh6wud/exsePjjmyCHeOBc78SJsYHEhHXARQtwAdgMYoZTeRQhZD+D7ANoB7AHwHkppjhDiB/DvAK4BMAPgXZTSQYXPqWiJkcoxE7lVDmwGAOBtl3fj84+dAMCa0V7oKDu7l9mpmN6gWY7h8rpdaAl5awOueAaXrnA2GV/d24pfHBgDAMfBMcB0Ctvq+H2Ot29bibdva1QDNtAAx8fuvAwhnxtv3Xzhz4OvJ9x9zWrcfc1qR7/rdbvwqbs2Y3Q+jXff0LvIR9aAKlRyJB8GcNTw/88B+CKl9CIAcwDer73+fgBz2utf1N6nhO5oQE8pcqf4VQ4rxH7/xvJNtqn7wo/wmwJeeFwEM4ZgiZcNq2ivOiL+irQkAEwpuswbwRsiA41KmAYaWI5Y0RzAP/7WVuVq7wYubPzhLevxibs2N677MoBUwEUIWQ3g1wD8q/Z/AuBNAB7Q3vIdAL+h/fsd2v+h/fzNRFEU1N0UwESc93+qL+BqCfnwvT++AZevbMIN6515Zy0nuFwEbWFfRbA0l2QBl4rPT0fEV8FwJbPMZd6pUP13r1+LT/zaZfh/v72t0Ry1gQYaaKCBBqpAjAajlm8i5AEA/wggCuCvAfwBgJc0FguEkDUAHqaUbiGEHALwK5TSYe1npwHcQCmdrhrzAwA+AACdnZ3X/OAHP9B/9t2jWTw7XMDX7wij/1we3z6cwxf6gmgL2MeHiUQCkUj97MpyH+eTz6fRHiD4yDUsOHpyKI//OJLDl24PosVvfY6M4/zzvgzOxkr43BuZwH08WcI9z6bxx1f4cPMq+9Tkcjo/y+lYGuM0xmmMc/7GWU7H0hjnlzvOLZ/4BABg35e+tCyOJxKJ4Pbbb99DKb1W6ZcppbZ/ANwF4J+1f/cB2AGgA8Apw3vWADik/fsQgNWGn50G0GH3GRdffDE14uv9p2jv9h10Ppmjf/fTQ/TSTzxMC8USFWHnzp3C98hguY/zvm+9TN/2xaf1/3/hseO0d/sOmi8Upcf5u58eols+9Yj+/5dOT9Pe7TvosyemlI/HKRZjnOV0LI1xGuM0xjl/4yynY2mM80se57bb2J96x1kE8HEA7KaC+Kn6j0xK8WYAbyeEDIKJ5N8E4MsAWgghXDS0GsCI9u8RLQCD9vNmMPG8NDavZIZvB0cWcHBkAVtWNTXSVAZs7mnCqckEslpboNlkDi0hLzwKtgUrmgOIZwt6e58J3WVe3X6jgQYaaKCBBhqwh3CFppR+jFK6mlK6DsDvAHiKUvpuADsB3K297X0Afqr9+2fa/6H9/CktGpTGtjUtIATYNTiLw6MLuGJVi8qvv+axZVUzCiWKE+OsXcNsMqfcp4278I9rpnrchsOpaL6BBhpooIEGGrBGPU6O2wF8lBByCswa4pva698E0K69/lEA96gO3BTw4qLOCH706jAy+VJdvk6vRVyhmXkeHGHNmWeSWXSE1ZgpbjCrB1zxLPwOXOYbaKCBBhpooAExlAIuSmk/pfQu7d8DlNLrKaUXUUp/m1Ka1V7PaP+/SPv5gJMDu3ptq16heEUj4KrA6tYg2sI+vDrE+nXNJJwwXKzqc2yBneOJWAbdTQHHPRAbaKCBBhpooAFrLNteJbxBdMTvwfr2RksCIwghuH5dG36+fxSPH5nAZDyrN7WWRZem1eIM10Qsg65oQ7/VQAMNNNBAA+cDyzjgYv2+tqxqWvL+hcsRN2xoQ7ZQwh//+24spPPKwVLA60Z72IcxTbs1NJPCSodeZw000EADDTTQgD2WrWDnoq4Iupv8uGlDx1IfyrLEr2xZgYcPjWN9exi9HSG8+3r1tg0rW4IYmklhIpbB6EKmoZVroIEGGmiggfOEZRtwuV0ET/5VHwKeZUvCLSl6moP4wZ/cVNcYW1Y14xcHRvHqWaYFu7q3dTEOrYEGGmiggQYaqMKyjmYifo+St1QDarhyTTNimQIe3DsCn9uFyzX/swYaaKCBBhpoYHHRiGZex9i2pgUA8NiRCWxe2QS/p9HctIEGGmiggQbOBxoB1+sYm7qiaAmxvom8KrSBBhpooIEGGlh8NAKu1zHcLoJNXayZ5+UrG4L5BhpooIEGGjhfaARcr3P8w29cgavWtuBNl3Yt9aE00EADDTTQwGsWy7ZKsYFfDi5ZEcWDH7x5qQ+jgQYaaKCBBl7TaDBcDTTQQAMNNNBAA+cZjYCrgQYaaKCBBhpo4DyjEXA10EADDTTQQAMNnGc0Aq4GGmiggQYaaKCB84xGwNVAAw000EADDTRwntEIuBpooIEGGmiggQbOMwildKmPAYSQOIDjizBUM4CFxjivq3GW07E0xmmM0xjn/I2znI6lMc7rd5wOANMALqGURpV+k1K65H8A7F6kcb7RGOf1Nc5yOpbGOI1xGuOcv3GW07E0xnldj7Pb+LfKn9daSvHnjXFed+Msp2NpjNMY5/9v7/5D9SzrOI6/P23TjDklmjI2awtcgYLWVJTaaFQyMNLSUgkrFoGtov6wnxr9ZfQDK6xItKYIYoVOy0hUstw/bs3pcDtt1vwBHRktEjVJt6bf/jjX7NnybGOc+7nPOXu/4HDu57ruc50PPJzD97mu+75ux+lunMmUxXGO3HEO22RZUnyoqs7oO4ckSdJ49tYrh1O3TJYZruv7DiBJknQQ1+/3/ZBNihkuSZKk6WyyzHCpSbIiyWNJtif5amu7KcmTSTa1r9N7jqkJlGR1kp1Jtgy0fS/JtiSPJrkjyfE9RlQHxnnfT0vyYJLNSe5KMqfPjJpYSU5K8ockf04ykuQLA32fb3/zI0m+22dOdcMZrkkkyQzgL8D7gVFgA3Ap8GXgt1V1W4/x1JEky4AXgJur6tTWdi5wf1XtSfIdgKr6So8xNcHGed83AFdU1QNJVgKLquobfebUxEkyD5hXVQ8nORbYCFwAnAhcCZxXVbuSnFBVO3uMqg44wzW5nAVsr6onqmo38Avg/J4zqWNVtRZ4Zr+2e6tqT3u5Dlgw9GDq1Gu978BiYG07vg+4cKih1Kmq2lFVD7fjfwFbgfnAZ4BvV9Wu1mexNQ1ZcE0u84G/DbwebW0AV7flpR8kOXr40dSjlcDdfYfQUIzwvw9ZHwFO6jGLOpRkIfAOYD1jhfbSJOuTPJDkzF7DqRMWXFPD14C3A2cCbwRcWjpCJLkS2APc0ncWDcVKYFWSjcCxwO6e86gDSWYDtwNfrKrngZmM/W8/G/gS8Ksk6TGiOjCz7wDax9Ps+4l2AfB0Ve1or3cluRG4YujJNHRJPgl8AHhvebHlEaGqtgHnAiRZDJzXbyJNtCSzGCu2bqmqNa15FFjT/s7/lOQVxh4h84+eYqoDznBNLhuAk5MsSnIUcAnwm3ahJe0TzwXAlvGH0HSQZAVjN0t8sKr+3XceDUeSE9r31wFXAdf1m0gTqf0P/zmwtaq+P9B1J7C8nbMYOIqx5/VpGnGGaxJpd6R9DrgHmAGsrqqRJPcnmQsE2ARc3mNMTbAktwLvAd6UZBT4JmPLyEcD97WVhXVV5fs+jYzzvs9O8tl2yhrgxp7iqRvvAi4DNifZ1Nq+DqwGVrctQnYDn3BWe/pxWwhJkqSOuaQoSZLUMQsuSZKkjllwSZIkdcyCS5IkqWMWXJIkSR2z4JIkSeqYBZckSVLHLLgkSZI6ZsElSZLUMQsuSZKkjllwSZIkdcyCS5IkqWMWXJIkSR2z4JIkSeqYBZckSVLHLLgkSZI6NtSCK8kLw/x9kiRJhyrJy0k2DXwtPMC5f0xyxqGOPXNCEkqSJE19L1bV6V0MPPQlxSSzk/w+ycNJNic5v7UvTLI1yQ1JRpLcm+SYYeeTJEnaK8mSJA8k2ZjkniTzBrovazNhW5KcdaBx+riG6yXgQ1X1TmA5cE2StL6TgZ9U1SnAs8CFPeSTJElHpmMGlhPvSDIL+BFwUVUtAVYDVw+c/4Y2I7aq9Y2rjyXFAN9Ksgx4BZgPnNj6nqyqTe14I7Bw6OkkSdKRap8lxSSnAqcC97W5oRnAjoHzbwWoqrVJ5iQ5vqqefa2B+yi4PgbMBZZU1X+SPAW8vvXtGjjvZcAlRUmS1JcAI1V1zjj9dZDXr+pjSfE4YGcrtpYDb+khgyRJ0sE8BsxNcg5AkllJThnov7i1vxt4rqqeG2+goc1wJZnJ2AzWLcBdSTYDDwHbhpVBkiTpUFXV7iQXAdcmOY6xuumHwEg75aUkjwCzgJUHGitV485+TagkpwE3VNUBr+KXJEmaboaypJjkcsYuLLtqGL9PkiRpMhnaDJckSdKRymcpSpIkdayzgivJ6iQ7k2wZaPvlwIZiTyXZ1NoXJnlxoO+6gZ9Z0nak357k2oFNUiVJkqaELu9SvAn4MXDz3oaqunjvcZJrgMHbJx8f5/lFPwU+DawHfgesAO6e+LiSJEnd6GyGq6rWAs+8Vl+bpfoobYfW8bTnFc2pqnU1drHZzcAFExxVkiSpU31dw7UU+HtV/XWgbVGSR9oDIpe2tvnA6MA5o61NkiRpyujj0T4Al7Lv7NYO4M1V9c8kS4A799vJVZIkacoaesHVdpz/MLBkb1tV7aI9R7GqNiZ5HFgMPA0sGPjxBa1NkiRpyuhjSfF9wLaqenWpMMncJDPa8VuBk4EnqmoH8HySs9t1Xx8Hft1DZkmSpMPW5bYQtwIPAm9LMprkU63rEv7/YvllwKNtm4jbgMurau8F96uAnwHbgcfxDkVJkjTFuNO8JElSx9xpXpIkqWMWXJIkSR2z4JIkSeqYBZckSVLHLLgkSZI6ZsElSZLUMQsuSZKkjv0XstW2/hPxAMQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "test_series = to_pandas(test_entry)\n", - "train_series = to_pandas(train_entry)\n", - "\n", - "fig, ax = plt.subplots(2, 1, sharex=True, sharey=True, figsize=(10, 7))\n", - "\n", - "train_series.plot(ax=ax[0])\n", - "ax[0].grid(which=\"both\")\n", - "ax[0].legend([\"train series\"], loc=\"upper left\")\n", - "\n", - "test_series.plot(ax=ax[1])\n", - "ax[1].axvline(train_series.index[-1], color='r') # end of train dataset\n", - "ax[1].grid(which=\"both\")\n", - "ax[1].legend([\"test series\", \"end of train series\"], loc=\"upper left\")\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.019727Z", - "iopub.status.busy": "2022-06-13T08:55:40.019124Z", - "iopub.status.idle": "2022-06-13T08:55:40.021781Z", - "shell.execute_reply": "2022-06-13T08:55:40.022197Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Length of forecasting window in test dataset: 48\n", - "Recommended prediction horizon: 48\n", - "Frequency of the time series: H\n" - ] - } - ], - "source": [ - "print(f\"Length of forecasting window in test dataset: {len(test_series) - len(train_series)}\")\n", - "print(f\"Recommended prediction horizon: {dataset.metadata.prediction_length}\")\n", - "print(f\"Frequency of the time series: {dataset.metadata.freq}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Create artificial datasets\n", - "\n", - "We can easily create a complex artificial time series dataset using the `ComplexSeasonalTimeSeries` module." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.026116Z", - "iopub.status.busy": "2022-06-13T08:55:40.025300Z", - "iopub.status.idle": "2022-06-13T08:55:40.027275Z", - "shell.execute_reply": "2022-06-13T08:55:40.027759Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.artificial import ComplexSeasonalTimeSeries\n", - "from gluonts.dataset.common import ListDataset" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.032788Z", - "iopub.status.busy": "2022-06-13T08:55:40.031798Z", - "iopub.status.idle": "2022-06-13T08:55:40.033989Z", - "shell.execute_reply": "2022-06-13T08:55:40.034405Z" - } - }, - "outputs": [], - "source": [ - "artificial_dataset = ComplexSeasonalTimeSeries(\n", - " num_series=10,\n", - " prediction_length=21,\n", - " freq_str=\"H\",\n", - " length_low=30,\n", - " length_high=200,\n", - " min_val=-10000,\n", - " max_val=10000,\n", - " is_integer=False,\n", - " proportion_missing_values=0,\n", - " is_noise=True,\n", - " is_scale=True,\n", - " percentage_unique_timestamps=1,\n", - " is_out_of_bounds_date=True,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can access some important metadata of the artificial dataset as follows:" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.038267Z", - "iopub.status.busy": "2022-06-13T08:55:40.037453Z", - "iopub.status.idle": "2022-06-13T08:55:40.040693Z", - "shell.execute_reply": "2022-06-13T08:55:40.040228Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "prediction length: 21\n", - "frequency: H\n" - ] - } - ], - "source": [ - "print(f\"prediction length: {artificial_dataset.metadata.prediction_length}\")\n", - "print(f\"frequency: {artificial_dataset.metadata.freq}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The artificial dataset that we created is a list of dictionaries. Each dictionary corresponds to a time series and it should contain the required fields." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.044574Z", - "iopub.status.busy": "2022-06-13T08:55:40.043954Z", - "iopub.status.idle": "2022-06-13T08:55:40.072345Z", - "shell.execute_reply": "2022-06-13T08:55:40.072799Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "type of train dataset: \n", - "train dataset fields: dict_keys(['start', 'target', 'item_id'])\n", - "type of test dataset: \n", - "test dataset fields: dict_keys(['start', 'target', 'item_id'])\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/stellalo/gluon-ts/src/gluonts/dataset/artificial/_base.py:640: FutureWarning: The 'freq' argument in Timestamp is deprecated and will be removed in a future version.\n", - " start=pd.Timestamp(start, freq=self.freq_str),\n" - ] - } - ], - "source": [ - "print(f\"type of train dataset: {type(artificial_dataset.train)}\")\n", - "print(f\"train dataset fields: {artificial_dataset.train[0].keys()}\")\n", - "print(f\"type of test dataset: {type(artificial_dataset.test)}\")\n", - "print(f\"test dataset fields: {artificial_dataset.test[0].keys()}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In order to use the artificially created datasets (list of dictionaries) we need to convert them to `ListDataset` objects." - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.078521Z", - "iopub.status.busy": "2022-06-13T08:55:40.077119Z", - "iopub.status.idle": "2022-06-13T08:55:40.085332Z", - "shell.execute_reply": "2022-06-13T08:55:40.085764Z" - } - }, - "outputs": [], - "source": [ - "train_ds = ListDataset(\n", - " artificial_dataset.train, \n", - " freq=artificial_dataset.metadata.freq\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.090660Z", - "iopub.status.busy": "2022-06-13T08:55:40.089365Z", - "iopub.status.idle": "2022-06-13T08:55:40.097669Z", - "shell.execute_reply": "2022-06-13T08:55:40.098206Z" - } - }, - "outputs": [], - "source": [ - "test_ds = ListDataset(\n", - " artificial_dataset.test, \n", - " freq=artificial_dataset.metadata.freq\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.103146Z", - "iopub.status.busy": "2022-06-13T08:55:40.102346Z", - "iopub.status.idle": "2022-06-13T08:55:40.105699Z", - "shell.execute_reply": "2022-06-13T08:55:40.106131Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['start', 'target', 'item_id', 'source'])" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_entry = next(iter(train_ds))\n", - "train_entry.keys()" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.110793Z", - "iopub.status.busy": "2022-06-13T08:55:40.109983Z", - "iopub.status.idle": "2022-06-13T08:55:40.113071Z", - "shell.execute_reply": "2022-06-13T08:55:40.113498Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['start', 'target', 'item_id', 'source'])" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test_entry = next(iter(test_ds))\n", - "test_entry.keys()" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.121234Z", - "iopub.status.busy": "2022-06-13T08:55:40.120395Z", - "iopub.status.idle": "2022-06-13T08:55:40.356328Z", - "shell.execute_reply": "2022-06-13T08:55:40.356757Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGzCAYAAACfCzsFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB6r0lEQVR4nO3dd3hUVf7H8fdJDyGFEkJIgACBUEPvoIA0kQV7Q8W1oItrX9tPV3d1Xd1d14IdFBU7YhdFaqT3DgESQksoAUJCAqSf3x8ZWFRKAknuZPJ5Pc88mTlzy/fm5ma+c+4pxlqLiIiIiLgfL6cDEBEREZFTU6ImIiIi4qaUqImIiIi4KSVqIiIiIm5KiZqIiIiIm1KiJiIiIuKmfJwO4EzCwsJsbGys02GUiyNHjhAUFOR0GPIbOi/uR+fE/eicuCedF/ezYsWKA9ba8PLcplsnahERESxfvtzpMMpFQkIC/fr1czoM+Q2dF/ejc+J+dE7ck86L+zHG7CjvberWp4iIiIibKlWiZozZboxZZ4xZbYxZ7iqrbYyZYYxJcv2s5So3xphxxphkY8xaY0ynk7Yz2rV8kjFmdMUckoiIiIhnKEuNWn9rbQdrbRfX60eBWdba5sAs12uAi4HmrscY4E0oSeyAp4DuQDfgqePJnYiIiIj83vm0URsJ9HM9/wBIAB5xlU+yJZOILjbGhBljIl3LzrDWZgAYY2YAQ4FPy7LTgoICUlNTyc3NPY/QK19oaCiJiYlOh1FmAQEBREdH4+vr63QoIiIi1U5pEzULTDfGWOBta+14IMJau8f1/l4gwvU8Cth10rqprrLTlZdJamoqwcHBxMTEYIwp6+qOyc7OJjg42OkwysRay8GDB0lNTaVJkyZOhyMiIlLtlDZR62OtTTPG1ANmGGM2nfymtda6krjzZowZQ8ktU8LDw0lISPjV+6GhodSpU4ecnJzy2F2lKSoqIjs72+kwyszPz4/MzMzfnQdPkZOT47HHVlXpnLgfnRP3pPNSPZQqUbPWprl+phtjvqakjdk+Y0yktXaP69ZmumvxNKDhSatHu8rS+N+t0uPlCafY13hgPEBcXJz9bdfjxMREQkJCShO2W6mKNWrHBQQE0LFjR6fDqBDq3u5+dE7cj86Je9J5qR7O2pnAGBNkjAk+/hwYDKwHvgOO99wcDXzrev4dcJOr92cPIMt1i/RnYLAxpparE8FgV1mVkpmZyRtvvHFO6w4bNozMzMzyDegMevXqVWn7EhERkfJXml6fEcB8Y8waYCkw1Vo7DXgeGGSMSQIGul4D/AikAMnABGAsgKsTwTPAMtfj6eMdC6qSMyVqhYWFZ1z3xx9/JCwsrAKiOnUcCxcurPB9iYiISMU5a6JmrU2x1rZ3PdpYa591lR+01l5krW1urR14POmyJe6y1jaz1raz1i4/aVsTrbWxrsd7FXdYFefRRx9l69atdOjQgYceeoiEhAT69u3LiBEjaN26NQCXXnopnTt3pk2bNowfP/7EujExMRw4cIDt27fTqlUrbr/9dtq0acPgwYM5duzY7/b1xRdf0LZtW9q3b88FF1wAlLR1e+ihh+jatSvx8fG8/fbbAKeMo2bNmie29Z///OfEOk899RRQMv3IJZdcQvv27Wnbti2ff/55xfzSRERE5Jy49RRS7uj5559n/fr1rF69GihJkFauXMn69etP9IycOHEitWvX5tixY3Tt2pUrrrgCPz+/X20nKSmJTz/9lAkTJnD11Vfz5ZdfcsMNN/xqmaeffpqff/6ZqKioE7dM3333XUJDQ1m2bBl5eXn07t2bwYMHA/wujuOmT59OUlISS5cuxVrLiBEjmDt3Lvv376dBgwZMnToVgKysrPL+dYmIiMh5qNKJ2t+/38DG3YfLdZutG4Tw1B/alGmdbt26/So5GjduHF9//TUAu3btIikpiTZtfr3NJk2a0KFDBwA6d+7M9u3bf7fd3r17c/PNN3P11Vdz+eWXAyVJ19q1a5kyZQpQklwlJSXh5+f3uziOmz59OtOnTz/RISAnJ4ekpCT69u3Lgw8+yCOPPMLw4cPp27dvmY5bREREKlaVTtTcRVBQ0InnCQkJzJw5k0WLFlGjRg369et3ysF5/f39Tzz39vY+5a3Pt956iyVLljB16lQ6d+7MihUrsNby6quvMmTIkF8tm5CQ8Ks4Tmat5bHHHuOOO+743XsrV67kxx9/5IknnuCiiy7iySefLPVxi4iISMWq0olaWWu+ykNwcPAZx0PLysqiVq1a1KhRg02bNrF48eJz3tfWrVvp3r073bt356effmLXrl0MGTKEN998kwEDBuDr68uWLVuIijrzuMFDhgzhr3/9K6NGjaJmzZqkpaXh6+tLYWEhtWvX5oYbbiAsLIx33nnnnGMVERGR8lelEzUn1KlTh969e9O2bVsuvvhiLrnkkl+9P3ToUN566y1atWpFXFwcPXr0OOd9PfTQQyQlJWGt5aKLLqJ9+/bEx8ezfft2OnXqhLWW8PBwvvnmmzNuZ/DgwSQmJtKzZ0+gpJPBRx99RHJyMg899BBeXl74+vry5ptvnnOsIiIiUv5MyZSc7ikuLs5u3rz5V2WJiYm0atXKoYjOXVUe8Laq/s5LQwNGuh+dE/ejc+KedF7cjzFmhbW2S3luszTjqImIiIiIA5SoiYiIiLgpJWoiIiIibqpKJmru3K7O0+h3LSIi4pwql6gFBARw8OBBJRCVwFrLwYMHCQgIcDoUERGRaqnKDc8RHR1Namoq+/fvdzqUMsnNza2SCU9AQADR0dFOhyEiIlItVblEzdfX95TTJLm7hISEE1M4iYiIiJRGlbv1KSIiIlJdKFETERERcVNK1ERERETclBI1ERERETelRE1ERETETSlRExEREXFTStRERERE3JQSNRERERE3pURNRERExE0pURMRERFxU0rURERERNxUqRM1Y4y3MWaVMeYH1+smxpglxphkY8znxhg/V7m/63Wy6/2Yk7bxmKt8szFmSLkfjYiIiIgHKUuN2r1A4kmv/wW8ZK2NBQ4Bt7rKbwUOucpfci2HMaY1cC3QBhgKvGGM8T6/8EVEREQ8V6kSNWNMNHAJ8I7rtQEGAFNci3wAXOp6PtL1Gtf7F7mWHwl8Zq3Ns9ZuA5KBbuVwDCIiIiIeqbQ1ai8DDwPFrtd1gExrbaHrdSoQ5XoeBewCcL2f5Vr+RPkp1hERERGR3/A52wLGmOFAurV2hTGmX0UHZIwZA4wBCA8PJyEhoaJ3WSlycnI85lg8ic6L+9E5cT86J+5J56V6OGuiBvQGRhhjhgEBQAjwChBmjPFx1ZpFA2mu5dOAhkCqMcYHCAUOnlR+3MnrnGCtHQ+MB4iLi7P9+vU7h8NyPwkJCXjKsXgSnRf3c77n5Jct+9mdeYyosEAahAUSXSuQAF81hz0fuk7ck85L9XDWRM1a+xjwGICrRu0v1tpRxpgvgCuBz4DRwLeuVb5zvV7ken+2tdYaY74DPjHGvAg0AJoDS8v1aESk2ioutvxn+mbeTNj6u/fqBPkRVSuQqLCSR+sGIVzWMYqS5rMiIu6rNDVqp/MI8Jkx5h/AKuBdV/m7wIfGmGQgg5KenlhrNxhjJgMbgULgLmtt0XnsX0QEgNyCIh6cvIap6/ZwffdG/OnCZuzJyiUt8yhph46RlnmM1EPH2Lwvm9mb0skrLGbptgyevawd3l5K1kTEfZUpUbPWJgAJrucpnKLXprU2F7jqNOs/Czxb1iBFRE7nQE4et09azupdmfzfsJbc3rcpxhga1q4B1P7d8tZaXpqxhXGzkzmaX8R/r26Pr7fG/hYR93Q+NWoiIo5KTs/mj+8vY392Hm+O6sTQtpFnXccYwwOD46jh78PzP23iaH4Rr13fUe3YRMQt6WukiFRJC7ce4PI3FnIsv4jPxvQsVZJ2sjsvbMYzI9swM3Eft32wnKP5hWdfSUSkkilRE5Eq54vlu7jp3aVEhATw9djedGgYdk7bubFnDC9c1Z6FWw9w07tLOZxbUL6BioicJyVqIlJlHM4t4IWfN/PQlLX0aFqHKX/q5WqLdu6u7BzNa9d3Yk1qJtdPWEzGkfxyilZE5PypjZqIuJ1j+UUkp+eweV82W/Zls3lvNkn7stmdlQvANV0a8o/L2pZbJ4Bh7SIJ9PXmzo9WcM3bi/j4tu7UCwkol22LiJwPJWoi4jbe/mUr7849yv6fp2FtSZmfjxex4TXp3rQOLSKCaRcVSu/YOuU+Blr/lvV4/4/duO2DZVzlStaia51fbZ2IyPlSoiYibmHz3myen7aJZqFeXN8rlriIYFrUD6Zx7Rr4VNLwGT2b1eGj27ozeuJSbvtgOV+P7U2gn3qDiohz1EZNRNzCC9M3U9PPh/s6BXDfwBZc3C6SZuE1Ky1JO65jo1q8en0nNu/L5v++Xoc9XrUnIuIAJWoi4rgVOw4xY+M+xlzQlJp+zs8UcGGLcB4Y2IKvV6UxadEOp8MRkWpMiZqIOMpay7+nbaJuTT9u6dPE6XBOuKt/LANb1eOZHzayYkeG0+GISDWlRE1EHDU36QBLtmXw5/6xBPm7T7NZLy/Df6/uQFStQP700UrSs3OdDklEqiElaiLimOJiy39+3kR0rUCu697I6XB+JzTQl7du6Mzh3AL+/MkqCoqKnQ5JRKoZJWoi4pgf1+9hfdph7h/YAn8f9+xd2SoyhOcvj2fptgye/2mT0+GISDWjRE1EHFFQVMx/p2+hRURNLu0Y5XQ4Z3Rpxyhu7hXDu/O38f2a3U6HIyLViBI1EXHElBWpbDtwhL8MjsPby/menmfzf8Na0aVxLR75ci1b9mU7HY6IVBNK1ESk0uUWFPHKzCQ6NgpjUOsIp8MpFT8fL94Y1Ykgfx/u/HCFJnAXkUqhRE1EKt2kRdvZeziXR4a2LPepoCpSvZAAXr++EzszjvLA52soVOcCEalgStREpFIdzi3gjYStXNAinB5N6zgdTpl1a1KbJ//QmpmJ+xj78UryCoucDklEPJgSNRGpVO/MTSHzaAEPD4lzOpRzdlPPGP4+og3TN+7jtg+WczS/0OmQRMRDKVETkUqzPzuPd+Zv45L4SNpGhTodznkZ3SuGF65qz4LkA9z07lKyjqnNmoiUPyVqIlJpXp+TTF5hMQ8OauF0KOXiys7RvHZ9J9akZnL9hMUczMlzOiQR8TBK1ESkUiSn5/Dxkh1c3aUhTcNrOh1OuRnWLpLxN3UhOT2Ha8YvZm+WppoSkfKjRE1EKtyhI/nc9sEyQgJ8uW9gc6fDKXf94+ox6ZZu7M3K5aq3F7Lz4FGnQxIRD6FETUQqVH5hMXd+tILdmbmMv6kzESEBTodUIbo3rcPHt3UnO7eQq95eSJIGxRWRcnDWRM0YE2CMWWqMWWOM2WCM+burvIkxZokxJtkY87kxxs9V7u96nex6P+akbT3mKt9sjBlSYUclIm7BWssT36xjybYM/n1lPJ0b13Y6pArVvmEYn4/pSbGFq99eROKew06HJCJVXGlq1PKAAdba9kAHYKgxpgfwL+Ala20scAi41bX8rcAhV/lLruUwxrQGrgXaAEOBN4wx7jkLs4iUi/FzU5i8PJV7BsS6/Xye5SWufjBf3NETfx9vbnl/GenZarMmIufurImaLZHjeunrelhgADDFVf4BcKnr+UjXa1zvX2RKhh4fCXxmrc2z1m4DkoFu5XEQIuJ+ft6wl+enbeKS+EjuG+gZvTxLK6ZuEO+M7kLm0QLGTFpBboEGxRWRc1OqNmrGGG9jzGogHZgBbAUyrbXHR3lMBY5/XY4CdgG43s8C6pxcfop1RMSDrE/L4r7PVhMfHcZ/r2qPVxWYdL28tY0K5aVr2rN6VyaPfrkWa63TIYlIFeRTmoWstUVAB2NMGPA10LKiAjLGjAHGAISHh5OQkFBRu6pUOTk5HnMsnkTnpfwdyi3m6UW5BHrDH2PzWLxgXpnW96RzEgBc3tyXr1bvxvvIfv7QzM/pkM6JJ50TT6LzUj2UKlE7zlqbaYyZA/QEwowxPq5as2ggzbVYGtAQSDXG+AChwMGTyo87eZ2T9zEeGA8QFxdn+/XrV6YDclcJCQl4yrF4Ep2X8nUsv4hrxi8iz+Yz5Y5etG4QUuZteNo5ufBCS9Hnq/ly9W4GdW/H0LaRTodUZp52TjyFzkv1UJpen+GumjSMMYHAICARmANc6VpsNPCt6/l3rte43p9tS+r8vwOudfUKbQI0B5aW03GIiMOKiy0PfrGadWlZjLu24zklaZ7IGMO/roinQ8Mw7v98DevTspwOSUSqkNK0UYsE5hhj1gLLgBnW2h+AR4AHjDHJlLRBe9e1/LtAHVf5A8CjANbaDcBkYCMwDbjLdUtVRDzA63OS+XHdXh4f1oqBrSOcDsetBPh6M/6mzoTV8OX2ScvVE1RESu2stz6ttWuBjqcoT+EUvTattbnAVafZ1rPAs2UPU0Tc2d6sXF6bk8zw+Ehu7dPE6XDcUr3gACbc1IWr3lrEmEkr+GxMDwJ8NUKRiJyZZiYQkfP2yqwkiq3lkaEtKRmNR07l5J6gj6gnqIiUghI1ETkvKftzmLx8F6O6N6Zh7RpOh+P2hraN5KEhcXy7ejdvJGx1OhwRcXNK1ETkvLw4Ywv+Pl7c1T/W6VCqjLH9mvGH9g14acYWth044nQ4IuLGlKiJyDlbn5bFD2v3cGufJoQH+zsdTpVhjOGvw1vh5+PFC9M3Ox2OiLgxJWoics7+/fPmkp6MFzR1OpQqp15wALf1bcrUtXtYsyvT6XBExE0pURORc7Jo60HmbtnP2H7NCAnwdTqcKmnMBU2pE+THcz8lqmOBiJySEjURKTNrLf/+eRP1QwK4qWeM0+FUWTX9fbjnouYsTskgYct+p8MRETekRE1EymzGxn2s2pnJvQObayyw83Rdt0Y0rlODf/20iaJi1aqJyK8pURORMikqtrwwfTNN6wZxVedop8Op8vx8vPjL4Dg27c3mm1W/m/5YRKo5JWoiUibfrEpjy74cHhwch4+3/oWUh0vaRRIfHcqLM7aQW6CZ9UTkf/RfVkRKLa+wiJdmbqFtVAgXt63vdDgew8vL8OjQlqRlHuPDRTucDkdE3IgSNREptU+X7CT10DEeHtISLy9NFVWeesXW5cIW4bw2J5msowVOhyMibkKJmoiUypG8Ql6dnUyPprXp27yu0+F4pEeGtuRwbgFv/qKppUSkhBI1ESmVifO3cfBIPg9r4vUK07pBCJd1iOK9BdvYnXnM6XBExA0oURORszqQk8f4uSkMah1Bp0a1nA7Ho90/qAXWwssztzgdioi4ASVqInJWf/tuA7mFRTwyNM7pUDxew9o1uKlnY6asSGXLvmynwxERhylRE5EzmrFxHz+s3cPdA5oTWy/Y6XCqhbv6xxLk78O/p21yOhQRcZgSNRE5rcO5BTzxzTpa1g/mzgubOR1OtVEryI8/9WvGzMR05iVpaimR6kyJmoic1nM/bmJ/dh7/uiIePx/9u6hMf+zVhGbhQdz/+RrSs3OdDkdEHKL/vCJySou2HuTTpTu5tU8T2jcMczqcaifQz5s3RnUmJ6+Aez9drXlARaopJWoi8jvH8ot47Ku1NKpdgwcGqQOBU+LqB/PMyLYsSjnIK+oFKlItKVETkd95eeYWth88yvOXtyPQz9vpcKq1q7o05KrO0bw6J5m5W9ReTaS6UaImIr+yNjWTCfNSuLZrQ3rFagYCd/D0yLa0qBfMfZ+vZm+W2quJVCdK1ETkhIKiYh6espa6Nf15bFgrp8MRl0A/b14f1YncgiLu/nQlhUXFTockIpVEiZqInPD2L1vZtDebZy5tS2igr9PhyEli69XkucvbsWz7IV6YrvZqItXFWRM1Y0xDY8wcY8xGY8wGY8y9rvLaxpgZxpgk189arnJjjBlnjEk2xqw1xnQ6aVujXcsnGWNGV9xhiUhZJafnMG5WMpe0i2RIm/pOhyOnMLJDFNd3b8Rbv2xl9qZ9TocjIpWgNDVqhcCD1trWQA/gLmNMa+BRYJa1tjkwy/Ua4GKguesxBngTShI74CmgO9ANeOp4cicizioutjzy5VoC/bz524g2TocjZ/Dk8Na0jgzhgclrSNPE7SIe76yJmrV2j7V2pet5NpAIRAEjgQ9ci30AXOp6PhKYZEssBsKMMZHAEGCGtTbDWnsImAEMLc+DEZFzM2FeCit2HOLJ4a0JD/Z3Ohw5gwBfb94Y1YnCIsufP1lJfqHaq4l4sjK1UTPGxAAdgSVAhLV2j+utvUCE63kUsOuk1VJdZacrFxEHfbJkJ8/9tImhbepzeSddklVBTN0g/n1lPKt2ZvL8T5oPVMST+ZR2QWNMTeBL4D5r7WFjzIn3rLXWGFMuw2YbY8ZQcsuU8PBwEhISymOzjsvJyfGYY/Ek1f28zE0tYOL6fOLDvbki6jC//PKL0yFV+3NSWjWAgY18mLhgGwFHdtOtfqn/nZeZzol70nmpHkp1ZRtjfClJ0j621n7lKt5njIm01u5x3dpMd5WnAQ1PWj3aVZYG9PtNecJv92WtHQ+MB4iLi7P9+vX77SJVUkJCAp5yLJ6kOp+XKStSeW/DGi5oEc74GzsT4OseA9tW53NSVr36FHPt+EW8vzGbywd0J7ZecIXsR+fEPem8VA+l6fVpgHeBRGvtiye99R1wvOfmaODbk8pvcvX+7AFkuW6R/gwMNsbUcnUiGOwqE5FK9vWqVB6asobezeq6VZImZePn48UbozpTw8+bOz5cQU5eodMhiUg5K00btd7AjcAAY8xq12MY8DwwyBiTBAx0vQb4EUgBkoEJwFgAa20G8AywzPV42lUmIpXouzW7eXDyGno0qcOEm7ooSavi6ocG8Op1ndh+8CgPT1mDtZq8XcSTnPXWp7V2PmBO8/ZFp1jeAnedZlsTgYllCVBEys/UtXu4//PVdImpzbs3d9E8nh6iZ7M6PDI0jn/+uIl35m3j9guaOh2SiJQTzUwgUk38tG4P93y2io4Nw3jv5q7U8Ku4xudS+W7v25SL29bn+WmbWJxy0OlwRKScKFETqQamb9jL3Z+uon10KO/f0o0gfyVpnsYYw7+vjKdxnRr8+ZOVmrxdxEMoURPxcLsyjvLnT1bRJqokSaupJM1jBQf48vYNnTmaX8RdGgxXxCMoURPxcG/+srXk56hOhARoonVP1zwimH9fGc+KHYf454+JTocjIudJiZqIB9udeYwvlu/iqi7RNAgLdDocqSTD4xtwa58mvL9wO9+uTnM6HBE5D0rURDzYmwkltWlj+8c6HIlUtkcvbkm3mNo8+uU6th844nQ4InKOlKiJeKi9Wbl8vmwXV3aOJkq1adWOr7cXr17fEYvltTnJTocjIudIiZqIh3rrl60UW8vYfqpNq64iQgK4rlsjvl6Vxq6Mo06HIyLnQImaiAdKP5zLp0t3cnmnKBrWruF0OOKgOy5ohrcxvOG6DS4iVYsSNREP9PbcFAqLLXepbVq1Vz80gKu7RjNlxS52Zx5zOhwRKSMlaiIeZn92Hh8v2cHIDg1oXCfI6XDEDdx5YTOshbd/Ua2aSFWjRE3Ew7wzL4X8wmL+rNo0cYmuVYMrOkXz6bJdpB/WjAUiVYkSNREPcjAnj0mLdjCifQOahtd0OhxxI2P7N6Oo2DJ+borToYhIGShRE/Eg78zfRm5hEX8eoNo0+bXGdYIY2b4BHy/ZycGcPKfDEZFSUqIm4iEOHcln0sLtXNIukth6wU6HI25obP9YcguLeGf+NqdDEZFSUqIm4iEmLtjGkfwi7rmoudOhiJuKrVeTS9pFMmnhdjKP5jsdjoiUghI1EQ+QdbSA9xdsZ1i7+rSIUG2anN6fB8RyJL+IiQu2Ox2KiJSCEjURDzBxwTay8wq5e4Bq0+TMWtYPYUibCN5bsI3DuQVOhyMiZ6FErRqz1nIsv4j0w7kkp+ewauchVu48xJG8QqdDkzI4nFvAxAXbGNImglaRIU6HI1XA3QOak51byKSF250ORUTOwsfpAKRiFRQVsy4ti2XbMli2/RB7so6RnVtIdm4B2bmFFBbb361jDMSG1yQ+Ooz46FDaRYfSOjKEAF9vB45AziT9cC6PfLmW7FzVpknptY0KZUDLerw7fxt/7N2EIP8zfxQU29//nxCRyqFEzcMcyy9i1a5DLN2WwdJtGazamcmxgiIAmtYNokndIJrX8yE4wJfggJN/+hAS4EthsWXD7izWpWbxy5b9fLkyFQAfL0OLiGDio0MZ2CqC/i3r4e1lnDzUas1ay+Tlu/jH1ETyC4t5cnhr2kaFOh2WVCF/HhDL5W8s5KPFO7jjwma/eq+o2LJq5yFmJO5j5sZ97DhwlEd9Uri1TxOM0XUvUpmUqFURhUXFHDyST8bpHkfzSTt0jA27sygoshgDreqHcE3XhnRvUpsuMbUJD/Yv1b4GtY4ASpKBvYdzWZtakritTcvip/V7+WzZLqJrBTKqe2Ou6dqQ2kF+FXno8hs7Dh7hsa/WsXDrQbo3qc3zV8TTpK6mipKy6dSoFn1i6zJhXgo39YzBYpmXdIAZG/cxe1M6GUfy8fEy9Ghah8DiXP4xNZFVuzL51xXx1DxLDZyIlB9dbW5sV8ZR5ibtZ+6W/SxMPkj2adqOhdXwpXYNP8KD/bm1T1O6N6lNp8a1CA30Pa/9G2OIDA0kMjSQIW3qAyW3Uqdv2MekRdv517RNvDRzC8PjI7mpZwwdGoad1/7kzIqKLRPnb+O/Mzbj6+XFs5e15bqujfBSzaaco7sHxHLN+MVc9sYCUg4cIb+wmJAAH/q3rMfAVhFcGBdOSIAvc+bMYZNpxH9+3sTmvdm8dUMnjdUnUkmUqLmRo/mFLE45yNwtB5i7ZT8pB44AEBUWyPD2kbRpEEqdID9qBfmd+BkW6IuPd+X1CfH19uKS+EguiY9k895sPly8na9XpvHVyjTio0O5sUdj/tC+gdqzlbNNew/zyJS1rEnNYmCrejxzaVsiQwOdDkuquO5N6zCodQSb92ZzQ/fGDGxdj64xtfH9zf8UYwx/6teM9tGh3P3pKka+toD/XNWeYe0iHYpcpPo4a6JmjJkIDAfSrbVtXWW1gc+BGGA7cLW19pApabzwCjAMOArcbK1d6VpnNPCEa7P/sNZ+UL6HUjVZa5mbdIAJc1NYui2D/KJiAny96N6kDjf0aMwFLcJpFh7klu1C4uoH849L2/HI0JZ8tTKNDxfv4KEpa3n6h40MahXB0Lb1uaBFuJK282Ct5dXZyYyblURooC+vXteR4fGRbvn3IFXThJu6lHrZXrF1+eGePoz9eCVjP17J7X2b8MjQlpX6ZVGkuilNjdr7wGvApJPKHgVmWWufN8Y86nr9CHAx0Nz16A68CXR3JXZPAV0AC6wwxnxnrT1UXgdSFS3bnsF/ft7M0m0ZRIUFMrpXSWLWNaZ2lUpuggN8Gd0rhpt6NmbR1oN8uTKNGRv38tWqNIL8vOnfsh4Xt42kf8twavipErcsxs1K5qWZWxjRvgF/H9GGWmoPKA6LDA3k8zE9+cfUjUyYt401qVm8dn1H6gUHOB2aiEc666emtXauMSbmN8UjgX6u5x8ACZQkaiOBSdZaCyw2xoQZYyJdy86w1mYAGGNmAEOBT8//EKqe9WlZ/Hf6ZuZs3k/dmv48PbIN13ZthJ9P1f5WaoyhV2xdesXWpaCoHYu2HuSn9XuYvmEfP6zdg7+PF/3iwrm4bSRD29avUsmoEz5dupOXZm7hik7RvHBVvGrRxG34+Xjx9Mi2dGpUi0e/WsvwcfP56/DWDGodoetapJyda/VGhLV2j+v5XiDC9TwK2HXScqmustOVVytb9+fw4owtTF27h9BAXx4Z2pLRvRp7ZC2Tr7cXF7QI54IW4Twzsphl2w/x0/o9TFu/l5837KPOD34nauHCaqiW6LdmbNzH41+vo19cOM9f0U5JmrilSztG0TIymLEfr+TuT1cR7O/DkLb1GdmhAT2b1tEtUZFyYGwpBjJ01aj9cFIbtUxrbdhJ7x+y1tYyxvwAPG+tne8qn0VJTVs/IMBa+w9X+V+BY9baF06xrzHAGIDw8PDOkydPPq8DdAf7jxbz1eajLEk3+HrB4Bhfhsb4EuRb/T58i61lc0Yx07YXsGZ/Ef7ecGG0D0NifKkTWPn/1HNycqhZs2al7/dMkg4V8e9luUQHe/FI1wACfKrX34k7npPq7mznpNhaNmUUs2h3Icv3FXKsEEL8DN0jvekR6UPTUC992agAulbcT//+/VdYa0vf8LMUzrUqZ58xJtJau8d1azPdVZ4GNDxpuWhXWRr/u1V6vDzhVBu21o4HxgPExcXZfv36nWoxt2etZem2DN5bsJ3pG/fiheHmXk0Y278ZdWuWbjwzTzUA+BMlPRnf/iWF79bsZvauIkZ0aMCdFzar1EnFExIScKe/seT0bO57axFRtWow5U+9qFMN/1bc7ZxI6c7JAGAskFtQRMLmdL5dvZtZm9KZsSOXRrVrcHHbCGLr1aRxnSAa16lBvWB/JW/nSddK9XCuidp3wGjgedfPb08q/7Mx5jNKOhNkuZK5n4F/GmNquZYbDDx27mG7r7zCIr5fs4f3Fmxjw+7DhAb6MuaCZrQwu7l8aGunw3MrLeuH8NI1HXhwcAvenb+Nz5bu4quVaQxsVY87L2xGl5jaTodYqfZm5TJ64jJ8vLyYdEv3apmkSdUX4OvN0LaRDG0byeHcAqat38t3q3fzzvxtFJ00ZV2ArxeNategUe2SxK1xnRp0blyLNg00w4bIyUozPMenlNSG1TXGpFLSe/N5YLIx5lZgB3C1a/EfKRmaI5mS4Tn+CGCtzTDGPAMscy339PGOBZ4iPTuXjxbv5JMlOziQk0/zejX552XtuKxjFIF+3iQk7HU6RLcVXasGT/2hDfcMaM4Hi7bzwcLtXPnWIro1qc2f+8fSt3ldj//mnXWsgJvfW0rm0Xw+v6MnjerUcDokkfMWEuDL1V0acnWXhuQXFpOWeYwdB4+wM+MoOw6WPHZmHGF+8n5yC4q5q38zJWoiv1GaXp/Xneati06xrAXuOs12JgITyxRdFZCWeYwXp2/huzVpFBRZBrSsxx97x9An1vOTi/JWK8iP+wa2YMwFTfl82S7Gz03hpolLaRcVyl39mzG4dX2PHIU/t6CIMZOWs3V/DhNv7qo5O8Uj+fl40cQ13/BvWWtJz87DS/8zRX7H87obVpK8wiLembeN12YnY7Fc360Ro3vF0DRcDTvPVw0/H/7Yuwmjujfm61WpvJmwlTs/WklsvZqM7deMP7Rv8LuR06uqomLLA5NXs2RbBq9c24G+zcOdDkmk0hljiAjROGwip6JE7RzM2ZzO37/bwPaDRxnapj5PDG9FdC3dqipvfj5eXNO1EVd2bsjUdXt4Y04yD0xew4sztnDHhc24pkvDKj32XG5BEX/5Yg0/rtvL48NaMbJDtRuxRkREzkKJWhnsyjjK0z9sZMbGfTQND2LSLd24oIVqQCqat5dhRPsG/CE+ktmb0nltTjJ//WY9Hy7azrOXtaNrFex0cCAnjzGTlrNyZyaPDG3J7Rc0dTokERFxQ0rUSiG3oIi3ftnKmwlb8fYyPDK0Jbf2aVKla3OqImMMF7WKYEDLeszelM6T327gqrcWcU2Xhjw2rGWVGTh3y75sbnl/GQdy8nhzVCcu1sTWIiJyGkrUzqCwqJgf1+/lPz9vYlfGMYbHR/L4Ja2IDA10OrRq7XjC1rNZHV6ZlcQ787YxI3Efjw9rxeWdoty6E8fcLfu56+OVBPh58/mYnrRvGOZ0SCIi4saUqJ3CsfwivlixiwnzUtiVcYwWETX55Lbu9Iqt63RocpIafj48dnErLu0Qxf99vY4Hv1jDlytTeebStjRzw04dHy3ewVPfbaB5vZq8e3NXosKU8IuIyJkpUTtJxpF8JrnG8Tp0tICOjcJ44pLWDGoV4ZHDQniKVpEhfHlnLz5dtpPnf9rExS/P40/9mvGnfs3cYoLoomLLP39M5N352+gfF86r13eipr8uPREROTt9WlDSSeCdeSl8vnwXuQXFDGxVjzsubEaXxrXc+jaa/I+Xl2FU98YMah3BP35I5JVZSXy4eAf94sIZ0LIefZuHExroW+lxHckr5N7PVjEzMZ2be8XwxCWtNFG1iIiUWrVO1NalZjF+XgpT1+7G28twWccobu/blOaVONeklK96wQGMu64j13RtyOTlu5i9KZ2vVqbh7WXo0rgWA1rW46JW9WgWXrNCk/CdB4/yzeo0vlixi7RDx3h6ZBtu6hlTYfsTERHPVO0SteJiS8KWdMbPTWFxSgbB/j7c3rcpf+zdhPqhGnDRU/SOrUvv2LoUFVtW7TzE7E3pzN6UznM/beK5nzbRsHYg/VrUwyengOAdh2geUZOQgPOrccs4ks/Utbv5ZvVuVuw4BED3JrV57rJ4+jRX+0YRESm7apOo5RYU8c2qNN6Zv43k9BwahAbwxCWtuKZrQ4LP8wNa3Je3l6FLTG26xNTm4aEt2Z15jDmb05mzKZ0pK1I5VlDEe+sXAlA/JIDmETWJrVeT5vWCaR5Rk4jgAPx8vPD38Trx8+Rbl7kFRcxM3Mc3q9JI2LyfwmJLi4iaPDK0JSM6NFCHAREROS8en6gdOpLPR4t38MGi7RzIyadNgxBeubYDw9pFesw0RFJ6DcICGdW9MaO6N6ao2PLltDnUjmlDUnoOSenZJKfn8PmyXRzNLzrtNrwM+Pt44+fjRV5hEbkFxUSE+HNLnyZc2iGKVpHBatsoIiLlwmMTtf3Zebz1y1Y+XrKD3IJi+seFc3vfpvRsVkcfogKU1LbVq+FFv9YRDGwdcaK8uNiyO+sYSftyyDiST15hMfmFRa6fxSU/i4rJKyjCy8swqFUE3ZvWwVs9g0VEpJx5XKJ26Eg+b83dyqSFO8gvKubSDlHccWFTWqiDgJSSl5chulYNzd8qIiKO85hELetYAe/MS2Hi/G0cLShiZPsG3DuwBU3qBjkdmoiIiMg5qfKJWnZuAe8t2M6EeSlk5xZySbtI7hvYXENsiIiISJVXZRO1tMxjfLUilXcXbCPzaAGDWkdw/8AWtG4Q4nRoIiIiIuWiSiVqB3Ly+HHdHr5bvZvlrnGq+sWF88CgFsRHhzkbnIiIiEg5c/tE7XBuAT+v38t3a3azcOtBiootcRHBPDQkjj/EN6BRHTX4FhEREc/k1ola+lFLl3/MJL+wmIa1A7nzwqaMaB9FXH21PxMRERHP59aJWl6R5fpujRjRoQEdG4Zp/DMRERGpVtw6UWsY7MXfRrRxOgwRERERR2gOJRERERE3pURNRERExE0pURMRERFxU0rURERERNyUEjURERERN6VETURERMRNGWut0zGcljEmG9jsdBzlpC5wwOkg5HdCgSyng5Bf0bXifnSduCddK+4nzlpbrqPyu/U4asBma20Xp4MoD8aY5Z5yLJ7EGDPeWjvG6Tjkf3StuB9dJ+5J14r7McYsL+9t6tanVHffOx2ASBWg60TEIUrUpFqz1uoDSOQsdJ2IOMfdE7XxTgdQjjzpWEQqkq4VkdLRteJ+yv2cuHVnAhEREZHqzN1r1ERERESqLSVqIiIiIm5KiZqIiIiIm1KiJiIiIuKmlKiJiIiIuCklaiIiIiJuSomaiIiIiJtSoiYiIiLippSoiYiIiLgpJWoiIiIibkqJmoiIiIibUqImIiIi4qaUqImIiIi4KSVqIiIiIm5KiZqIiIiIm1KiJiIiIuKmlKiJiIiIuCklaiIiIiJuSomaiIiIiJtSoiYiIiLippSoiYiIiLgpJWoiIiIibkqJmoiIiIibUqImIiIi4qaUqImIiIi4KSVqIiIiIm5KiZqIiIiIm1KiJiIiIuKmlKiJiIiIuCkfpwM4k7CwMBsbG+t0GOXiyJEjBAUFOR2G/IbOi/vROXE/lXJONm8u+RkXV7H78SC6VtzPihUrDlhrw8tzm26dqEVERLB8+XKnwygXCQkJ9OvXz+kw5Dd0XtyPzon7qZRzcnz7CQkVux8PomvF/RhjdpT3Nkt169MYs90Ys84Ys9oYs9xVVtsYM8MYk+T6WctVbowx44wxycaYtcaYTidtZ7Rr+SRjzOjyPhgRERERT1KWNmr9rbUdrLVdXK8fBWZZa5sDs1yvAS4GmrseY4A3oSSxA54CugPdgKeOJ3ciIiIi8nvn05lgJPCB6/kHwKUnlU+yJRYDYcaYSGAIMMNam2GtPQTMAIaex/5FREREPFpp26hZYLoxxgJvW2vHAxHW2j2u9/cCEa7nUcCuk9ZNdZWdrrxMCgoKSE1NJTc3t6yrOio0NJTExESnw6iyAgICiI6OxtfX1+lQREREKk1pE7U+1to0Y0w9YIYxZtPJb1prrSuJO2/GmDGU3DIlPDychN80LK1ZsyYRERFERUVhjCmPXVaKoqIivL29nQ6jSrLWkpWVxZo1a8jJySnXbefk5Pzub0ycpXPifirjnHTIzARgtc59qRzOsxTlHdG1Ug2UKlGz1qa5fqYbY76mpI3ZPmNMpLV2j+vWZrpr8TSg4UmrR7vK0oB+vylPOMW+xgPjAeLi4uxve7QkJiYSHR1dpZI0gOzsbIKDg50Oo8oKDg4mJyeHLl26nH3hMlCvKfejc+J+KuWchIUB6NyXQm5BERf8ew7BXt5Me/gCfL01JKonO+vZNcYEGWOCjz8HBgPrge+A4z03RwPfup5/B9zk6v3ZA8hy3SL9GRhsjKnl6kQw2FVWZlUtSZPzp3MuIlJi6to9pGfnsTWrmFdnJTkdjlSw0qThEcB8Y8waYCkw1Vo7DXgeGGSMSQIGul4D/AikAMnABGAsgLU2A3gGWOZ6PO0qq1IyMzN54403znn9l19+maNHj5ZjRCWWL1/OPffcU+7bFRER9zJp8Q6ahgfRu4EPr81JZum2KvdRKmVw1kTNWptirW3verSx1j7rKj9orb3IWtvcWjvweNLl6u15l7W2mbW2nbV2+UnbmmitjXU93qu4w6o47pioFRYW0qVLF8aNG1eu2xUREfeyelcma3ZlMrpnDDe09qNh7Rrc//lqso4VlOt+ktOzue2DZfR+fjZzt+wv121L2ejGdhk9+uijbN26lQ4dOvDQQw8B8J///IeuXbsSHx/PU089BZRM7XHJJZfQvn172rZty5dffsm4cePYvXs3/fv3p3///qfcduvWrYmPj+cvf/kLAPv37+eKK66ga9eudO3alQULFgDwt7/9jRtvvJHevXtz4403kpCQwPDhw0/s+5ZbbqFbt2507NiRb78tuSu9YcMGunXrRocOHYiPjycpSVXmIiJVyaRF2wny8+byTlEE+hhevqYDew/n8sQ367H2/Pv07c/O4/Gv1zHk5XksScnAz8eLmyYu5ZkfNpJXWFQORyBl5dZTSJ3N37/fwMbdh8t1m60bhPDUH9qc9v3nn3+e9evXs3r1agCmT59OUlISS5cuxVrLiBEjmDt3Lvv376dBgwZMnToVgNTUVKKjo3nxxReZM2cOdevW/dV2Dx48yNdff82mTZswxpDp6gF17733cv/999OnTx927tzJkCFDTgzzsXHjRubPn09gYOCvev48++yzDBgwgIkTJ5KZmUm3bt0YOHAgb731Fvfeey+jRo0iPz+foiJddCIiVcXBnDx+WLuHa7o0JDigZKiijo1qcf/A5rwwfQv9WoRzRefoc9r2sfwi3pmXwlu/bCWvsJgbezTmnouaU8PPm+d+TOTd+dtYkHyAcdd1pEWEOsZVpiqdqLmD6dOnM336dDp27AiUdGNPSkqib9++PPjggzzyyCMMHz6cDh06nHE7oaGhBAQEcOuttzJ8+PATtWMzZ85k48aNJ5Y7fPjwiSEqRowYQWBg4Clj+u6773jhhRcAyM3NZefOnfTs2ZNnn32W1NRULr/8cpo3b14evwIREakEny/fRX5hMTf1bPyr8j/1i2Vu0gGe/HY9XWJq0bhO6SdqLyq2fLUylf9O38Lew7kMbVOfRy5uSZO6/9vG30e25cK4cB76Yi1/eHU+j1/Siht7NFYnr0pSpRO1M9V8VRZrLY899hh33HHH795buXIlP/74I0888QR9+vTh2WefPe12fHx8WLp0KbNmzWLKlCm89tprzJ49m+LiYhYvXkxAQMDv1gkKOvXFaK3lyy+/JC4u7lflrVq1onv37kydOpVhw4bx9ttvM2DAgDIesYiIVLaiYsvHi3fSq1kdmv+mRsvby/DSNR24+OW53PvZar64s+dZh+yw1jI36QDP/7SJxD2Had8wjFev70jXmNqnXH5Aywim3XcBD01Zw5PfbiBh837+fWU8dWv6l9sxyqmpjVoZBQcHk52dfeL1kCFDmDhx4olarrS0NNLT09m9ezc1atTghhtu4KGHHmLNmjWnXP+4nJwcsrKyGDZsGC+99NKJ5QcPHsyrr756Yrnjt1zPZMiQIbz66qsn2iusWrUKgJSUFJo2bco999zDyJEjWbt27bn9EkREpFLNStxHWuax39WmHRcVFsg/L2/H6l2ZjDvDkB2FRcV8t2Y3f3htPqMnLiU7t4BXr+vIN2N7nTZJOy482J/3bu7K3/7QmvnJBxj68jwSNqefcR05f1W6Rs0JderUoXfv3rRt25aLL76Y//znPyQmJtKzZ0+gZOaEjz76iOTkZB566CG8vLzw9fU9cRtyzJgxDB06lAYNGjBnzpwT283OzmbkyJHk5uZireXFF18EYNy4cdx1113Ex8dTWFjIBRdcwFtvvXXGGP/6179y3333ER8fT3FxMU2aNOGHH35g8uTJfPjhh/j6+lK/fn3+7//+r4J+SyIiUp4mLdpBZGgAA1tFnHaZ4fENSNi8n9fnJNO3eTjdmvwv8TqaX8jkZbt4Z/42Ug8do2ndIJ6/vB2XdYrC36f0s+YYY7i5dxN6NqvLPZ+u4ub3lvHCVe258hzbxsnZmfLoJVJR4uLi7ObNm39VlpiYSKtWrRyK6NxpZoLzVxHnXqPgux+dE/dTKefk+PY1JdLvJKfnMPDFX3hoSBx39Y89UX6q85KTV8gl4+ZRWGT58d6+FBYV88GiHUxatJ3MowV0blyLOy5oysBWEXh5nV8bs9yCIm58dwnJ6TnM+Us/wmr4ndf2PIExZoW1tlyn0FGNmoiIiBv7aPEO/Ly9uKZrw7MuW9Pfh1eu7ciVby7kqrcWsuPgUfIKixnUOoI7LmhKl7Pc3iyLAF9vnh7ZluGvzue/07fwzKVty23b8j9qoyYiIuKmcvIKmbIilUviI0vdcL9DwzAeGhLH9gNHuaxjFDMfuJAJN3Up1yTtuFaRIdzYozEfL9nB+rSsct++KFETERFxW1+vSiMnr/C0nQhO544Lm7Hh6SE8f0U8sfVqVlB0Je4f1IJaNfx48tv1FBe7b3OqqkqJmoiIiBuy1jJp4XbaRYXSoWFYmdc/2xAd5SU00JdHLm7Jyp2ZfL0qrVL2WZ0oURMREXFDi1IOkpSew0093X9w2Ss7RdOxURjP/bSJw7nlO+9odadETURExA19uGgHtWr48of2DZwO5ay8vAxPj2jLwSN5vDxD80iXJyVqDqhZs2ztBcaNG0erVq0YNWrUr8pXr17Njz/+WOb97969myuvvLLM652r5cuXc88991Ta/kREqro9WceYvnEfV3dtSIBv6cc5c1K76FCu69aIDxZtZ/Pe3w/sLudGiVoV8MYbbzBjxgw+/vjjX5WfKVErLCw87fYaNGjAlClTyjXG0yksLKRLly6MGzeuUvYnIuIJPlmyk2JruaF72ToROO2hwXEEB/jw5LfrcedxWqsSJWrn4KOPPqJbt2506NCBO+64g6KiIqCkpuzxxx+nffv29OjRg3379gGwbds2LrroItq1a8cTTzxx2u2++OKLtG3blrZt2/Lyyy8DcOedd5KSksLFF1/MSy+9dGLZ/Px8nnzyST7//HM6dOjA559/zt/+9jduvPFGevfuzY033sj27dvp27cvnTp1olOnTixcuBCA7du307ZtyXg377//PpdffjlDhw6lefPmPPzww6eM7dFHH6V169bEx8fzl7/8BYD9+/dzxRVX0LVrV7p27cqCBQsAfhdHQkLCiUnmjxw5wi233EK3bt3o2LEj3377LQAbNmw48TuNj48nKUlV5yJSPeUVFvHp0p1c1DKChrVrOB1OmdQK8uOhIXEs2ZbB92v3OB2OR6jaA97edx+UYu7LMunQAVxJ0qkkJiby+eefs2DBAnx9fRk7diwff/wxN910E0eOHKFHjx48++yzPPzww0yYMIEnnniCe++9l1tvvZU77riD119//ZTbXbFiBe+99x5LlizBWkv37t258MILeeutt5g2bRpz5syhbt26J5b38/Pj6aefZvny5bz22mtASYK0ceNG5s+fT2BgIEePHmXGjBkEBASQlJTEddddx/Lly3+379WrV7Nq1Sr8/f2Ji4vj7rvvpmHD/w2sePDgQb7++ms2bdqEMYbMzEwA7r33Xu6//3769OnDzp07GTJkCImJiQC/iiPhpJHGn332WQYMGMDEiRPJzMykW7duDBw4kLfeeot7772XUaNGkZ+ffyL5FRGpbl6fncyBnPwyD8nhLq7t2ohPl+7k2akbuahlPYL8q3aq4TT99spo1qxZrFixgq5duwJw7Ngx6tWrB5QkT8drjjp37syMGTMAWLBgAe+//z4AN954I4888sjvtjt//nwuu+wygoKCALj88suZN28eHTt2LFN8I0aMIDAwEICCggL+/Oc/s3r1ary9vdmyZcsp17nooosIDQ0FoHXr1uzYseNXiVpoaCgBAQHceuutDB8+/MQxzpw5k40bN55Y7vDhwycmpz85jpNNnz6d77777sTcp7m5uezcuZOePXvy7LPPkpqayuWXX07z5s3LdNwiIp7gkyU7GTc7mSs7R9O3ed2zr+CGvL0Mfx/RliveXMi42Uk8dnHVm/bRnVTtRO0MNV8VxVrL6NGjee655373nq+v74ku1N7e3r9qJ1ZZXauPJ3oAL730EhEREaxZs4bi4mICAgJOuY6///9Gu/5t3AA+Pj4sXbqUWbNmMWXKFF577TVmz55NcXExixcvPuV2T47jZNZavvzyS+Li4n5V3qpVK7p3787UqVMZNmwYb7/9NgMGDCj1cYuIVHUzNu7jiW/W0T8unOcub+f2Q3KcSefGtbiqczQT52/jqs4NK3zQXU+mNmpldNFFFzFlyhTS09MByMjIYMeOHWdcp3fv3ica7/+2Q8Bxffv25ZtvvuHo0aMcOXKEr7/+mr59+55xu8HBwWRnn75nTVZWFpGRkXh5efHhhx+e8+3EnJwcsrKyGDZsGC+99BJr1qwBYPDgwbz66qsnlltditvQQ4YM4dVXXz3RyHTVqlUApKSk0LRpU+655x5GjhzJ2rVrzylWEZGqaMWODP78yUraRYfx+qhOlTZYbUV6eGjLkvlAf9h49oXltKr+X0Ila926Nf/4xz8YPHgw8fHxDBo0iD17ztxg8pVXXmHChAm0a9eOtLRTj9rcqVMnbr75Zrp160b37t257bbbznrbs3///mzcuPFEZ4LfGjt2LB988AHt27dn06ZNp63lOpvs7GyGDx9OfHw8ffr04cUXXwRKhg1Zvnw58fHxtG7dmrfeeuus2/rrX/9KQUEB8fHxtGnThr/+9a8ATJ48mbZt29KhQwfWr1/PTTfddE6xiohUNcnp2dzy/nIahAUycXQXavhV7Ztdx4UH+3PvRc2Zu2U/C5MPOB1OlWXcuftsXFyc3bx586/KEhMTadWq6t3vzs7OJjg42OkwqrSKOPcJCQn069evXLcp50fnxP1Uyjk5vv2TOh9VB3uzcrn8jQUUFFu++lOvMvXyrArXSm5BEf1fSCAiJICvx/aq0rdzS8MYs8Ja26U8t6kaNREREQdkHStg9MSlHM4t5L2bu1a5oThKI8DXm3svas7qXZnMTEx3OpwqSYmaiIhIJcstKOL2SctJOZDD2zd2pm1UqNMhVZgrO0fTpG4QL/y8meJi972L566UqImIiFSiomLLA5NXs3RbBi9c1Z7esVVzGI7S8vH24oFBLdi8L5vv1ux2Opwqp9SJmjHG2xizyhjzg+t1E2PMEmNMsjHmc2OMn6vc3/U62fV+zEnbeMxVvtkYM+Rcg3bndnVSMXTORcRTPP9TIj+u28sTl7RiZIcop8OpFJe0i6R1ZAgvzthCQVGx0+FUKWWpUbsXSDzp9b+Al6y1scAh4FZX+a3AIVf5S67lMMa0Bq4F2gBDgTeMMWWeaTYgIICDBw/qg7sasdZy8ODB044DJyJSVSTuOcy787dxffdG3Na3qdPhVBovL8NDQ+LYmXGUyct3OR1OlVKqPsDGmGjgEuBZ4AFT0m1jAHC9a5EPgL8BbwIjXc8BpgCvuZYfCXxmrc0DthljkoFuwKKyBBwdHU1qair79+8vy2qOy83NVaJxHgICAoiOjnY6DBGRc2at5dmpiYQE+vLIkJZOh1Pp+sWF06VxLcbNSuKKTtEE+Ja5rqZaKu1gLS8DDwPHx5eoA2Raa48PYZ8KHK+/jQJ2AVhrC40xWa7lo4DFJ23z5HVOMMaMAcYAhIeH/2qeyKosJyeHmjU1MvP5ONvAwuciJyfHY/7GPIXOifupjHPSwTWH8GoPPvdr9hcyPzmPUS39WLV0wXlvrypeK4MiinhuRx5PfTSbi5v4Oh1OlXDWRM0YMxxIt9auMMb0q+iArLXjgfFQMo6au48RU1pVYbyb6kjnxf3onLifSjknYWEAHnvuC4qKeebluTSt68PfbrygXGYeqIrXSj9gYeZSft6VyRPX9SY4QMna2ZSmRq03MMIYMwwIAEKAV4AwY4yPq1YtGjg+5H4a0BBINcb4AKHAwZPKjzt5HRGR85aencuDk9ewO/MYUbVqEBUWSHStQKLCAoly/YwICcDby7MH3RT389nSnWzdf4QJN3XxiOmhzsdfBsfxh9fm8868bdw/qIXT4bi9syZq1trHgMcAXDVqf7HWjjLGfAFcCXwGjAa+da3ynev1Itf7s6211hjzHfCJMeZFoAHQHFharkcjItXW5r3Z3PL+MjKO5NO3eV32ZOWyPi2LjCP5v1rOx8sQVz+YV6/rSNNwNUeQipd1rICXZibRs2kdBraq53Q4jmsXHcqwdvV5Z14Ko3vFUDvIz+mQ3Nr5TCj2CPCZMeYfwCrgXVf5u8CHrs4CGZT09MRau8EYMxnYCBQCd1lrz22WcBGRk8zdsp+7Pl5JoJ83k+/oSbvo/w0eejS/kN2ZuaRlHiPt0DHSMo/y2dJdXP32Yj66rRst64c4GLlUB2/MSebQ0Xwev6SVx0+hVFoPDIpj2vq9vDEnmSeGt3Y6HLdWpkTNWpsAJLiep1DSa/O3y+QCV51m/Wcp6TkqIlIuPl26kye+WU/zejWZeHNXGoQF/ur9Gn4+xNarSWy9/9WeXdYxmhveWcI1by/mg1u60aFhWCVHLdXFzoNHeW/Bdq7sFO3Rsw+UVWy9mlzRKZpJi3dwa98mRIYGnn2laqp63ygXkSqruNjy3E+JPPbVOvrE1uWLO3v+Lkk7ndh6Nfnizp6EBPowasJilqQcrOBopbr617RNeHsZ/jIkzulQ3M69A5tjrWXcrGSnQ3FrStREpMrJLSjirk9W8vYvKYzq3oh3R3cpc++xhrVr8MUdvagfGsDo95byy5aqNTajuL/l2zOYum4Pd1zYlIgQjaP5W9G1ajCqe2MmL9/F9gNHnA7HbSlRE5EqZX92HteOX8y0DSVT8Pzj0rb4nGMvuvqhAUy+oydN69bktg+WMW39nnKOVqqr4mLLM1MTiQjxZ8wF1WcGgrK6q38s3l6GiQu2OR2K21KiJiJurbComOT0bH5ct4eXZmzh0tcXsGnvYd4c1Znb+jY978bZdWr68+mYHrSLCuWuT1bx9arUcopcqrPv1+5mza5MHhrSkhp+59Nvz7OFB/szon0DpqxIJetYgdPhuCX99YiI2zicW8Cq9EI2zElmy75sNu/NJmX/EfJdkzgbAy3qBfPGqE60L8cOAKGBvnx4a3dun7ScByav4UheETf0aFxu25fqJbegiH/9tIm2USFc3rF6TLp+Pm7uFcOUFal8sXxXtZr/tLSUqImIWygsKuaKNxaSlJ4HbCYqLJAWETW5MC6cFvWCiasfTLPwmgT6Vcz8gEH+Pky8uStjP17JE9+sxxgY1V3JmpTdu/O3sTsrl/9e3QEvDa58Vm2jQukWU5tJi3bwx95NNCD1byhRExG3MGVFKknpOdzcxo8HrupHiANTywT4evPWDZ2548PlPPXtBlrWD6Zz49qVHodUXQdy8nhjTjKDW0fQs1kdp8OpMm7uHcPYj1cyZ1M6A1tHOB2OW1EbNRFxXG5BES/PTKJjozAujPZxJEk7zs/Hi5ev7UhUrUDGfryS9Oxcx2KRqmfSoh0cLSji4aEtnQ6lShncOoLI0ADeW6hOBb+lRE1EHPfhoh3sPZzLw0NausXI7aGBvrx1Q2eyjhXw509WUeBqIydyJrkFRXyyZAcD4ur9aoBlOTsfby9u7NmYBckH2bIv2+lw3IoSNRFx1OHcAl5PSOaCFuFudauoVWQIz13ejqXbMvjXT5ucDkeqgO/X7OZATj639GnidChV0nVdG+Hv48X7C7c7HYpbUaImIo56Z24KmUcLeNgNR26/rGM0o3s25p352/h+zW6nwxE3Zq1l4oLtxEUE08uNvnBUJbWC/LisYxRfrUwl66iG6jhOiZqIOGZ/dh7vzN/GJfGRbjsP4uOXtKZz41o88uVa3ZKR01qckkHinsPc0ifGLW7fV1Wje8WQW1DMZ8t2Oh2K21CiJiKOeX1OMnmFxTw4qIXToZyWn48Xb4zqRA0/H+78cAWHc/VNX37vvQXbqFXDl5EdNG7a+WgVGUKPpiVDdRSqbSigRE1EHLIr4ygfL9nB1V2iaRru3g2vI0ICeP36juzIOMpfJq/BWut0SOJGdh48yozEfYzq3pgA34oZ5686ublXE9IyjzEzMd3pUNyCEjURccTLM5PwMoZ7LmrudCil0r1pHR67uCXTN+7jrV9SnA5H3Mj7C7fjbQw39tQAyeVhUOsIosICeV9DdQBK1ETEAVv2ZfPVqlRG94ohMjTQ6XBK7dY+TRgeH8l/ft7EguQDTocjbiA7t4DJy3cxPD6SiJAAp8PxCN5ehtG9Gp9o91fdKVETkUr3ws+bqennw58ubOZ0KGVijOFfV8QTW68md32yknWpWU6HJA6bsiKVnLxC/thbQ3KUp2u6NCLQ15v3F2x3OhTHKVETkUq1cuchpm/cxx0XNqVWkJ/T4ZRZkL8P747uSk1/H66bsJil2zKcDkkcUlRseX/hdjo3rkX7hmFOh+NRQmv4clmnKL5ZnUbGkXynw3GUEjURqTTWWv49bRN1a/pV6RqIhrVr8MWdPYkI8eemiUv4Zct+p0MSB8zelM6Og0e5pQr/Lbuzm3vFkFeooTqUqIlIpZmXdIDFKRncPaA5Qf4+TodzXiJDA/n8jp40rVuT2z5YxrT1e5wOSSrZewu20SA0gCFtNIl4RWgREUyf2Lp8uGhHtZ7GTYmaiFSK4mLLf37eTHStQK7r1sjpcMpF3Zr+fDqmB+2iQhn78Uq+XJHqdEhSSRL3HGbh1oPc1CsGH299lFaUm3vFsCcrl+kb9jkdimP01yUilWLCvBTWpWXxwKAW+Pl4zr+e0EBfPry1Oz2b1eHBL9YwadF2p0OSSvDegm0E+npzbdeGTofi0fq3rEej2jWYuKD6DtXhOf8tRcRtTd+wl+enbeKS+Egu9cCR2493MBjUOoInv93A63OSnQ5JKtDBnDy+Wb2bKzpHEVaj6nWIqUq8vQx/7B3Dih2HWLnzkNPhOEKJmohUqPVpWdz72Wrio8P471Xt8fLyzHkQA3y9eWNUJ0Z2aMB/ft7Mv6Zt0gwGHuqTJTvJLyzm5l7qRFAZru7SkJAAH96ZVz0Hmj5romaMCTDGLDXGrDHGbDDG/N1V3sQYs8QYk2yM+dwY4+cq93e9Tna9H3PSth5zlW82xgypsKMSEbew73Aut32wnFo1fJlwU2ePn17H19uLl67uwPXdG/FmwlZemrHF6ZCknOUXFjNp8Q4ubBFObD33nvrMUwT5+zCqR2Omrd/LzoNHnQ6n0pWmRi0PGGCtbQ90AIYaY3oA/wJestbGAoeAW13L3woccpW/5FoOY0xr4FqgDTAUeMMY49n/tUWqsWP5Rdw+aTmHcwt4Z3RX6gVXj1HbvbwMz17alqu7RDNudjLfrk5zOiQpR1PX7WZ/dh639FFtWmW6uVcM3l6mWrZVO2uiZkvkuF76uh4WGABMcZV/AFzqej7S9RrX+xcZY4yr/DNrbZ61dhuQDHQrj4MQEfdSXGx58IvVrEvLYty1HWndIMTpkCqVMYZ/XNqObk1q89CUtayqpm1rPE1xseXtX1KIrVeTC5rXdTqcaiUiJIAR7aP4fNkuMo9WrwFwS9VGzRjjbYxZDaQDM4CtQKa1ttC1SCpwvIVwFLALwPV+FlDn5PJTrCMiHuTFGVv4cd1eHh/WioGtq+cYU34+Xrx1Q2ciQvwZ8+EKdmceczokOU8/rd/Lpr3Z3D0glpL6B6lMt1/QhGMFRXy8pHoNgFuqESettUVAB2NMGPA10LKiAjLGjAHGAISHh5OQkFBRu6pUOTk5HnMsnkTnpfwtSCtgwrp8Loz2oVnhDhISyvZP1dPOyZ2t4JnFeVz3RgL/1y0Af5+q9wFfGeekQ2YmAKvd9NwXW8uz84/RoKYh+NAWEhKSnA7J466V0mhb15vxCVtoYXfh66Edk36rTEODW2szjTFzgJ5AmDHGx1VrFg0cb4iRBjQEUo0xPkAocPCk8uNOXufkfYwHxgPExcXZfv36lemA3FVCQgKeciyeROelfC3fnsEHM5bQq1kd3rmlG77nMBCoJ56TBs3TufWDZXyzN4TXr+9U5Xq+Vso5CQsDcNtz/82qNHYfWc3r13diQHyk0+EAnnmtnI1P1AFueHcJh0JiubpL9RjDrjS9PsNdNWkYYwKBQUAiMAe40rXYaOBb1/PvXK9xvT/blvRR/w641tUrtAnQHFhaTschIg7befAoYz5cQXStQN4c1fmckjRP1b9lPf5vWCt+Wr+Xl2aqJ2hVU1hUzCuzkmhZP5iL29Z3OpxqrXdsHVrWD+adeSnVZvib0vwnjQTmGGPWAsuAGdbaH4BHgAeMMcmUtEF717X8u0AdV/kDwKMA1toNwGRgIzANuMt1S1VEqjhrLQ9MXk1RseXdm7sSWsPX6ZDczq19mnBNl4a8qp6gVc7Xq9LYduAI9w9qUeVqQz2NMYYxFzRly74cftmy3+lwKsVZb31aa9cCHU9RnsIpem1aa3OBq06zrWeBZ8sepoi4s1mJ6SzfcYjnLm9Hk7pBTofjlowxPHNpW7YdPMJDU9bSqHYNOjaq5XRYchYFRcWMm51Eu6hQBlfTjjHuZnh8A/49bTMT5qXQL66e0+FUON2bEJHzUuSabL1J3SCu6hztdDhuTT1Bq54pK1LZlXGMBwa1UE9PN+Hn48XNvWNYkHyQ9WlZTodT4ZSoich5+W5NGpv3ZfPg4Bb4qF3aWdUO8uPd0V05ll/Enz5aQXFx9WhnUxXlFRbx6qwkOjQMo19cuNPhyEmu69aIID/vajGtlP6risg5yy8s5r/Tt9A2KoRhbd2jJ1xV0CIimGcubcOa1Cy+UXs1tzV52S52Z+Xy4GDVprmb0EBfru3WiB/W7vH4mmklaiJyzj5dupPUQ8d4aEhLNbIuo5Hto2gbFcJ/p28ht0D9qtxNbkERr81JpmtMLfrEahYCd/TH3jFY4P2F250OpUIpURORc3Ikr5BXZyfTo2ltTadzDry8DI8ObUVa5jE+WrzD6XDkNz5ZspN9h/N4YFCcatPcVHStGgxrF8mnS3aSnVvgdDgVRomaiJyT9xZs40BOHg8PbakPsnPUp3ld+javy2tzksk65rkfNFXNsfwi3kjYSq9mdejZrI7T4cgZ3N63Cdl5hXy+bNfZF66ilKiJSJkdOpLP27+kMKh1BJ00xMR5eWRoSzKPFvDWL1udDkVcJi3azoGcPB4Y1MLpUOQs4qPD6N6kNhPnb6OgqNjpcCqEEjURKbO3ftlKTn4hDw2JczqUKq9tVCiXdmjAxPnb2JuV63Q41V5OXiFv/bKVC1qE0yWmttPhSCnceWEzdmfl8n9fraPIA3tRK1ETkTLZk3WM9xdu57KOUbSICHY6HI/w4OA4rIWXZmh6Kad9sHA7h44WqDatCukXF869FzXnixWpPDRljccla0rURKRMxs1Kotha7h+oD7Ly0rB2DW7o0ZgvVuwiaV+20+FUW5lH8xk/N4WLWtajQ8Mwp8ORUjLGcP+gFtw/sAVfrUzjwcmrKfSg26BK1ESk1FL25zB5eSqjujemYe0aTofjUf48IJYgPx/+NW2z06FUW098s56j+YX8Rbf0q6R7BzbnoSFxfLN6N/dPXuMxyZoSNREptf/O2IK/jxd39Y91OhSPUzvIjzv7NWNm4j6Wbc9wOpxq59vVafywdg/3DWxBq8gQp8ORc3RX/1geGdqS79fs5t7PVntEBwMlaiJSKuvTspi6dg+39WlCeLC/0+F4pD/2jqFesD/P/ZiItZ7Vzsad7ck6xl+/WU+nRmHccUFTp8OR8/Snfs14fFgrpq7bw92frCK/sGona0rURKRU/v3zZsJq+HKbPsgqTA0/H+4f1IKVOzOZvnGf0+FUC8XFloenrKWw2PLi1R00X62HuP2Cpvx1eGumbdjLXZ+srNLJmv4iReSsZiXuY+6W/Yzt14yQAF+nw/FoV3WOpll4EP+etslj2ti4sw8X72Be0gEev6QVMXWDnA5HytGtfZrw9xFtmLFxH2M/XkFeYdWcqk2JmoicUXZuAY9/vZ64iGBu7tXE6XA8no+3Fw8PbcnW/UeYvDzV6XA82tb9OTz3UyL948K5vlsjp8ORCjC6VwzPXNqWmYnpPPnNBqfDOSdK1ETkjJ7/aRPp2bn868p4/Hz0L6MyDG4dQefGtXh55haO5hc6HY5HKigq5oHPVxPo682/rojXNGge7MYejbmxR2O+XpVGxpF8p8MpM/3XFZHTWpJykI+X7OSPvZtoXKlKZIzhsYtbkp6dx/M/bXI6HI/0+pxk1qRm8exl7agXEuB0OFLBbujRmPyiYr5aWfVqqZWoicgp5RYU8ehX62hYO5AHB2tw28rWJaY2t/dtwqRFO/hh7W6nw/Eoa3Zl8ursZC7rGMWwdpFOhyOVIK5+MJ0b1+KTpTurXI9qJWoickovz0xi24EjPH95PDX8fJwOp1p6eGhLOjUK49Ev17HtwBGnw/EIx/KLuH/yauoF+/O3EW2cDkcq0bVdG5Ky/whLt1WtcQqVqInI76xPy2LCvBSu7hJN79i6TodTbfl6e/Ha9Z3w8TaM/XgluQVVs9eaO/nXtE2k7D/CC1e1JzRQPZirk+HxDQgO8OGzZbucDqVMlKiJyK8UFBXz8JS11A7y4/FhrZ0Op9prEBbIS1d3IHHPYf7+fdXsteYu5icd4P2F2/lj7xh9AamGAv28uaxjFFPX7SHzaNXpVKBETUR+ZfzcFDbuOcwzI9sSWkM1Du6gf8t6/KlfMz5duouvV1W9xtDuoLjY8swPG2lSN4hHhrZ0OhxxyLVdG5FfWMxXK9OcDqXUlKiJyAlb9+fwyqwkhrWrz9C29Z0OR07y4KAWdIupzf99tZ7k9Gynw6lypm3Yy+Z92dw3sDkBvt5OhyMOad0ghPYNw/hsWdXpVHDWRM0Y09AYM8cYs9EYs8EYc6+rvLYxZoYxJsn1s5ar3Bhjxhljko0xa40xnU7a1mjX8knGmNEVd1giUlbFxZZHv1xLoK+3Glm7IR9vL8Zd15Eaft6M/Xilxlcrg+Jiy7hZSTQLD2J4fAOnwxGHXd+tIVv25bBy5yGnQymV0tSoFQIPWmtbAz2Au4wxrYFHgVnW2ubALNdrgIuB5q7HGOBNKEnsgKeA7kA34KnjyZ2IOO/jJTtYtv0QT1zSinrBGlfKHdUPDeDlazuQlJ7Dk9+qvVpp/bxhL5v2ZnPPRc3x9tLAttXd8PgGBPl588mSqtGp4KyJmrV2j7V2pet5NpAIRAEjgQ9ci30AXOp6PhKYZEssBsKMMZHAEGCGtTbDWnsImAEMLc+DEZFzk5Z5jOd/2kTf5nW5snO00+HIGfRtHs7dA5ozZUUqk5dXjQ8aJxUXW16ZlURT1aaJS5C/DyM7RjF13W6yjhU4Hc5ZlamNmjEmBugILAEirLV7XG/tBSJcz6OAk/97pLrKTlcuIg46nFvA2I9WUGzhn5e101Q6VcC9FzWnV7M6PPntejbtPex0OG5t+saS2rR7VZsmJ7muayNyC4r5drX7dyoo9SiWxpiawJfAfdbawyf/M7fWWmNMubTKM8aMoeSWKeHh4SQkJJTHZh2Xk5PjMcfiSar7eTlWaHlhWS7bDxfz547+bF27lK0Ox1Tdz0lpXd2omPW7LDePn89TvQIJ9Km4JKQyzkmHzEwAVpfjfoqt5dmFudQPMgQf2kJCQlK5bdsd6Fo5P41DvJgwO5GGudvc+gtqqRI1Y4wvJUnax9bar1zF+4wxkdbaPa5bm+mu8jSg4UmrR7vK0oB+vylP+O2+rLXjgfEAcXFxtl+/fr9dpEpKSEjAU47Fk1Tn85KTV8joiUvZkX2M10d1dptentX5nJRV/eYHGfXOEr7dE8KbN3SqsA+bSjknYWEA5bqfaev3sCt7JS9f04EBHT3vBo6ulfMzJnAHj3+9nlqxHd16LuPS9Po0wLtAorX2xZPe+g443nNzNPDtSeU3uXp/9gCyXLdIfwYGG2NquToRDHaViUglO5pfyC3vLWP1rkzGXdfRbZI0KZseTevw6NCWTNuwl/FzU5wOx62UtE1LpmndIP7QXm3T5PdGtG9AoK83ny7Z6XQoZ1SaNmq9gRuBAcaY1a7HMOB5YJAxJgkY6HoN8COQAiQDE4CxANbaDOAZYJnr8bSrTEQq0bH8Im55fxnLd2Tw8jUdNCl1FXdb3yYMa1eff03bxMKtB5wOx21M37iPxD2HufuiWLVNk1MKDvBlRPsGfL92N9m57tup4Ky3Pq2184HT/ZVfdIrlLXDXabY1EZhYlgBFpPzkFhRx26RlLN2WwUvXdFBNgwcwxvDvK9uzeW82d3+yih/u6UNkaKDTYTnqRE/PukH8QT095Qyu696Iz5fv4rs1uxnVvbHT4ZySZiYQqSZyC4q4fdJyFm49yH+ubM/IDp7XZqe6qunvw9s3dia3oIixH68kv7DY6ZAcNSOxpDbtzwNi8fHWx5ycXvvoUFrWD+bTpe57+1N/wSLVQF5hEXd+tIJ5SQf41xXxXKGx0jxObL1g/n1le1btzOTZqRudDscx1lpemZlEk7pBjFCNsZyFMYbruzdifdph1qVmOR3OKSlRE/FwxcWWuz5eRcLm/Tx3eTuu7tLw7CtJlXRJfCS3923CB4t2VNvJ26dv3MfGPYe5W7VpUkojO0QR4OvFp8vcs1ZNf8UiHm76xr3MTNzHE5e04rpujZwORyrYI0Nb0q1JbR77ah2Je6rXYLjHa9Ni6tRQbZqUWmigL5e0a8C3q9JIyzzmdDi/o0RNxINZWzJEQZO6QdzcK8bpcKQS+Hh78dr1HQkJ8OVPH62oElPklJcZJ2rTmqs2Tcrktr5NMMZwybh5zNmUfvYVKpH+kkU82MzE9JJG1f11G6g6qRccwBujOpF66BgPTl5DcXG5TBzj1o739IypU4ORHVSbJmXTKjKE7+8u6TH9x/eX8e9pmygsco9OOfrPLeKhSmrTttCotj64qqMuMbV5/JJWzEzcx/drdzsdToX7bNkuNuw+zL0DVZsm56ZJ3SC+HtuLa7s25I2ErYx6Zwnph3OdDkuJmoinmrM5nfVpqk2rzkb3jCEuIpjXZid7dK1a+uFcnvspkR5Na3Ophp2R8xDg683zV8Tz36vaszY1i2Hj5rEw2dmBpPXfW8QDHW+bFl0rkMs66YOruvLyMtw1IJak9BymbdjrdDgV5u/fbySvsJh/XtbOrSfXlqrjis7RfPvn3oTV8OOGd5cwblaSY192lKiJeKBftuxnza5M7uofi69q06q1S9pF0jQ8iFdnJ1MycYxnmZW4j6nr9nDPgFiahtd0OhzxIC0igvn2rt6MaN+AF2ds4eb3l5FxJL/S49B/cBEPU1KblkSD0ACu6KSBbas7by/DXf1iSdxzmJmJ7tWb7XwdySvkr9+sp0VETcZc0MzpcMQDBfn78NI1HfjnZe1YnHKQP76/rNJn/lCiJuJhFiQfZNXOTP7UPxY/H13iAiM7NKBR7Rq8OjvJo2rV/jt9C3sO5/Lc5fH6W5cKc3z2gleu6cCaXZn8e9qmSt2//rJFPMjxnp71QwK4uotq06SEj7cXY/s1Y21qFr9s2e90OOViza5M3l+4jRu6N6Zz41pOhyPVwMXtIrmpZ2Pemb+NmRv3Vdp+laiJeJBFKQdZtv0Qf+rXDH8fb6fDETdyeadoosICPaKtWkFRMY9+tY7wYH8eGhrndDhSjfzfsFa0jgzhL1PWsLuSZjFQoibiQcbNSqJesD/XdNV8nvJrfj5e3HlhU1bsOMSirQedDue8TJy/jcQ9h/n7iLaEBPg6HY5UIwG+3rw+qhMFhcXc8+kqCiphUFwlaiIeYknKQRanZHDHhc0I8FVtmvzeVV0aUi/Yn3Gzk5wO5ZztPHiUl2ZuYXDrCIa2re90OFINNakbxD8vb8fyHYd4acaWCt+fEjURD/Hq7GTq1vTnek28LqcR4OvNmAuasjglg2XbM5wOp8ystTz+zTp8vLz4+8g2Tocj1djIDlFc161kBoOKbvepRE3EA6zYkcH85APccUFTAv1UmyanN6p7Y+oE+fHq7GSnQymzb1fvZl7SAR4eGkdkaKDT4Ug19+TwNsRFBPPA56vZV4FTTSlRE/EAr8xKpnaQH6N6qDZNzizQz5vb+jZl7pb9rN6V6XQ4pXboSD5P/7CRjo3CGNW9sdPhiBDo583rozpyNL+Iez9bRVEFzVzgUyFbFbdjrWVnxlF2Z+aSnVtAdm7hiZ85eYUcdr22FlpFBtMuOoz4qFBqBfk5HbqcxdJtGczdsp9Hhrakhp8uaTm7G3s25u25W3ltdhLvjO7qdDil8vfvN3D4WAHPXd4Oby9NEyXuIbZeMM9c2pa/fLGGcbMqpu2n/qt7qOJiy6a92SzbnsHSbRks3Z7B/uy8Uy7r7+NFcIAvIQE+FBZbpq7bc+K9hrUDiY8Ko110KPHRobSNClUvKzdRUFTM+LkpvDIziYgQf27sqVoGKZ2a/j7c0rsJL87YwobdWbRpEHrK5fIKi1i09SAzdhTQNa+QIH9nPjJ+WreHb1bv5r6BzWlZP8SRGERO58rO0SzceqDCOukoUfMAeYVFHDpSQFrmUZZtP8SybSUNhQ/nFgIQGRpAr2Z16BpTm6Z1gwgO8CU4wIfgAB9qBvj8brytrGMFbEjLYm1aFutSs1iblvmr5K1n0zrc1LMxg1pH4KN5JB2xLjWLh79cS+Kew1zSLpKnRrSmpkMfolI1je4Vw4S5Kbw2O5k3b+h8ojzjSD5zNqUzM3Efc7fs50h+EQBLXl/AWzd0JrZe5c6nuT87j//7eh3tokK5q39spe5bpLSeGdmWNbsy2V4B29Z/9ipgV8ZR5iUdYNuBHDKOFJBxJI+MoyU/Dx0pICev8FfLNw0PYli7SLo1qU3XmNpE1wrEmNLfKggN9KVXbF16xdY9UXboSD7r0rJYseMQU1ak8qePV1I/JIDruzfi2m4NqRccUG7HK6d3LL+Il2duYcK8FOrW9OftGzszpI2GKJCyCw305ebeMbw6O5lZifvYuj+HmRvTWb4jg2ILESH+XNoxioGtI1i/di3vb8pn5Gvz+c9V7RnWLrJSYrTW8thX6ziSX8SLV7fHV18MxU0F+fvw+qhOtPpL+W9biZobOppfyOKUg8zdcoC5W/aTcuAIAAG+XtQJ8qdWkC+1g/xpUqcGtYP8qR3kS60gP+oFB9ChYRjhwf7lHlOtID8uaBHOBS3Cueei5szelM6kRdt5ccYWXp2dxNC2JVNrdGlcq0xJoZTewq0HeOyrdew4eJTrujXk0YtbERqo29By7m7p3YSJ87dx6wfLAWgVGcKf+8cysHUE7aJCT1zLZo8PPwzuztiPVzL245Xc3rcJjwxtWeE16l+uTGNm4j4eH9aK5hHBFbovkfNVUbfllai5ic17s0nYnM7cpP0s23aI/KJiAny96NG0Djf0aMwFLcJpFh7kFkmQt5dhUOsIBrWOIGV/Dh8t3skXK3bx/ZrdtKwfzKgejbm4bX3q1iz/hLE6yjpWwPM/JfLp0l00rlODT27vTq9mdc++oshZ1Ary49XrO7Ir4xgXtapHdK0ap102MjSQz8f05NmpG5kwbxtrUrN47fqOFVabnpZ5jL9/t4FuMbW5pU+TCtmHSFVw1kTNGDMRGA6kW2vbuspqA58DMcB24Gpr7SFTkkW8AgwDjgI3W2tXutYZDTzh2uw/rLUflO+hVE1rUzP5z8+bmZd0AIC4iGBG9ypJzLrG1Hb7EeabhtfkyT+05i9DWvDt6t1MWrSDv36znqe+XU/XmNpc3LY+Q9tGUj9Ut0bPxZ6sY1z55iL2ZB1jzAVNuX9gC42TJuVqQMuIUi/r5+PF30e2pWOjWjz21TqGj5vP66M60TWmdrnGVFxseXjKGoqs5YWr2quXp1RrpalRex94DZh0UtmjwCxr7fPGmEddrx8BLgaaux7dgTeB7q7E7imgC2CBFcaY76y1h8rrQKqapH3Z/Hf6FqZt2EutGr48dnFLRnaIqrIJTQ0/H67r1ohruzZk095sflq/l5/W7eFv32/kb99vpFOjMIa1i2RIm/o0rH36b+3yP1lHCxg9cSmHjxXwxZ296Ny4ltMhiQBwaccoWkYGc+eHK7hu/GIeG9aKW3rHlFuN/0dLdrAg+SD/vKwdjero/4VUb2dN1Ky1c40xMb8pHgn0cz3/AEigJFEbCUyy1lpgsTEmzBgT6Vp2hrU2A8AYMwMYCnx6/odQtezKOMrLM5P4elUqNfx8uG9gc27t04RgDxnywhhDq8gQWkWG8MCgFiSn5zBt/R5+Wr+Xf0xN5B9TE2kXFcp13Rpxeacot68xdEpuQRG3T1rO9gNHef+WrkrSxO20rB/Cd3f34S+T1/DMDxv5fs1uLu8UxbB2kefV7GHbgSP888dELmwRznXdGpZjxCJVkynJqc6yUEmi9sNJtz4zrbVhrucGOGStDTPG/AA8b62d73pvFiUJXD8gwFr7D1f5X4Fj1toXTrGvMcAYgPDw8M6TJ08+32N0C2kZOcze60vCrkK8DFzUyJdLmvoS7Fd9qvTTjxazfF8hi3cXsTO7mFB/w6DGPgxo6EsNX2d+Dzk5OdSsWbnDDZxNsbW8vjqPFfuK+FN7f7pHVq+mpO54Tqq7M50Tay2zdxUyZ2cBqTkWLwNt6njTI9KbThE+BPqU7trucN99WOCqa59jd04xz/YJpFaAenmeia4V99O/f/8V1tou5bnN8/4EsNZaY0y5zZtgrR0PjAeIi4uz/fr1K69NO2JXxlE+WLidScuPUEwR13ZrxN0DmlfZW5zn62pK/rEv2nqQN3/ZypQtB5i2wzKqeyNu6dOEiJDK/b0kJCTgTn9j1lqe/HYDK/bt4MnhratlI2p3Oydy9nPS3/Vz097DfLd6N9+u3s2EdcfwTyxkYOsIRrZvwIVx4b8bs/FXwsJIyzxGcmYxr1zbgZEdosr1GDyRrpXq4VwTtX3GmEhr7R7Xrc10V3kacHJddbSrLI3/3So9Xp5wjvt2e9ZalmzLYOL8bcxM3IeXMXSt781z1/clpm6Q0+E5zhhzYpy29WlZvPXLVibMS+G9Bdu5rGMUYy5sSrPw6vkt8fU5yXy4eAd3XNi0WiZpUrW1rB9Cy6EhPDQkjpU7D/HNqt1MXbeHqWv3EODrRUydIBrVrkHjOjVoVCeIxrVrEFMniAZhAeTnF5F66BjD2tVnRPsGTh+KiNs410TtO2A08Lzr57cnlf/ZGPMZJZ0JslzJ3M/AP40xxxvaDAYeO/ew3VNuQRHfrdnNewu2k7jnMLVq+PKnfs24sUcMm1YtVpJ2Cm2jQnnt+k7sOHiECfNS+GJ5KpNX7GJI6/rc1T+WdtGnntrGE01etosXpm/h8o5RPDKkpdPhiJwzYwydG9emc+PaPPmH1sxPPsC8LQfYcfAIKQeOkLBlP/mFxSeW9/EyfLI7Cx8vwz8ubecWwxCJuIvSDM/xKSW1YXWNMamU9N58HphsjLkV2EHJHS2AHykZmiOZkuE5/ghgrc0wxjwDLHMt9/TxjgWeIP1wLh8t3sHHS3Zy8Eg+cRHBPH95Oy7t+L/G8pscjtHdNa4TxD8ubce9F7Xg/YXbmLRoB9M27OWCFuHc1a8Z3ZvWcTrECjV70z4e+3odfZvX5V9XxuOl4QjEQ/h6e9E/rh794+qdKCsutuzLzmXHwaPsPHiUHRlHqP2NH+HB/oQG+TkYrYj7KU2vz+tO89ZFp1jWAnedZjsTgYllis7NHc0v5PU5yUyYu42C4mIuahnBLb1j6Nmsjr4RnqPwYH8eGtKSOy5sxkeLd/DuvG1cM34xXWNqMbZ/LP1ahHvc73bVzkOM/XglrSNDePOGzpomRzyel5chMjSQyNBAehz/ElbJc4iKVBXVqztZObHWMm39Xp75YSO7s3K5rGMU9w1sTuM6urVZXkICfBnbL5Y/9mrC58t2Mn5uCn98bxltGoRwV/9YhrSp7xGDYG7Zl80t7y8jIiSAiTd31cTqIiLyK/pUKKPk9Bz+/v0G5iUdoGX9YF65rmO5j8ot/xPo583NvZtwfffGfLM6jbcStjL245U0DQ/i8WGtuKhV6UdVdzfzkvYz9uOVBPh688Efu1XIHK0iIlK1KVErpSN5hYybncTE+dsI8PXm7yPaMKp7owqflFhK+Pl4cXWXhlzRKZpp6/fy0swt3PrBci5uW5+n/tCmyg138vGSHTz57Qaa16vJO6O7nHGORRERqb6UqJ2FtZYf1u7h2amJ7D2cy1Wdo3nk4paacNwh3l6GS+IjGdQ6ggnzUhg3K4l5SQd4cHALbuoZ4/a3Q4uKLc/9mMg787fRLy6cV6/r6DGzUoiISPlTonYaRcWWGRv38uYvKazZlUmbBiG8PqqTpvJxE34+XtzVP5Y/xDfgr9+u5+/fb+SrlWn887J2bjukx5G8Qu79bDUzE/dxc68YnriklWpkRUTkjJSo/UZuQRFfrUxjwrwUth04QuM6NXju8nZc3aWh29fWVEeN6tTg/T92Zeq6Pfz9+42MfH0+N/WM4cHBLdyqpmpP1jFufX85m/Ye5u8j2jC6V4zTIYmISBWgRM0l82g+Hy3ewfsLt3MgJ5/46FDeGNXJY3oXejJjDMPjG9C3eTgv/LyZDxZt56f1e7h/YAsGto5w/Db1+rQsbv1gGTm5hbw7uiv9W9Y7+0oiIiIoUSMt8xjvztvGZ8t2cjS/iH5x4dxxQTN6NK3tceN1ebrQQF+eubQtl3eK4vGv1/PoV+swX6+jfXQYA1rWY0DLerRpEFJp57WgqJipa/fw2FfrqFXDlyl/6kWryJBK2beIiHiGapuorU/LYsK8FH5YuwcDjGjfgNsvaKoPUg/QsVEtfri7Dxt2H2b2pnRmb07npZlbeHHGFiJC/EtGSW9Zjz6xdct939ZaVu/K5JtVaXy/dg8ZR/JpHx3KhNFdqBdctXqmioiI86pVomatJWHLfibMTWHh1oME+Xlzc68YbunThKiwQKfDk3Lk5WVoFx1Ku+hQ7h3YnAM5eSRs3s/sTfuYunYPny3bhY+XoV4N6JC2gth6wbSIqEnzesHE1K2Bv493mfa3/cARvlmdxjer0th+8Ch+Pl4MahXBpR2j6BcXrtkGRETknFSLRC2vsIhvV+1mwrwUktJzqB8SwGMXt+Tabo0IDXSfBudScerW9OfKztFc2TmagqJilm3PYEHyARZu2M7G3YeZtn4vxbZkWW8vQ+M6NWheryYRIQH4eXvh7+uFv483fj5e+Pv873nWsQJ+WLubVTszMQZ6Nq3D2P6xDG1bnxA36swgIiJVk0cnallHC/hoSUkHgf3ZebSKDOGla9pzSbsG+PmohqO68vX2olezuvRqVpcE/73069eP3IIiUvYfISk9m+T0HJL25bAlPZsl2zLILywmr7CYouOZ3G+0igzh/4a15A/tGxAZqppZEREpPx6ZqGXnFjBx/nbemZ9Cdm4hF7YI5/arm9I7VpOly6kF+HrTukEIrRucvo1iYVEx+UXFJxK3/MJivLyMbpuLiEiF8ahE7Wh+Ie8v3M74uSlkHi1gcOsI7hvY4owfviKl5ePthY+3FzX8nI5ERESqC49I1HILivho8Q7eTNjKwSP59I8L54FBcW47Qr2IiIhIaVTpRC2vsIjPlu7i9TnJpGfn0Se2LvcPaqFpnkRERMQjVLlEzVrLmtQsvlu9m+/X7mZ/dh7dmtRm3HUd6dG0jtPhiYiIiJSbKpOoJe3L5ltXcrbj4FH8vL3oFxfOTT1j1ElAREREPJJbJ2qFxfBGQjLfrd7Npr3ZeBnoHVuXu/rHMqRNfY2BJiIiIh7NrRO11Jxi/j1tM50ahfG3P7TmkvgGhAc7O8G2iIiISGVx60Stlr9h3sP9aVi7htOhiIiIiFQ6tx6eP9TfKEkTERGRasutEzURERGR6kyJmoiIiIibUqImIiIi4qaUqImIiIi4KSVqIiIiIm5KiZqIiIiImzLWWqdjOC1jTDaw2ek4ykld4IDTQcjvhAJZTgchv6Jrxf3oOnFPulbcT5y1Nrg8N+jWA94Cm621XZwOojwYY5Z7yrF4EmPMeGvtGKfjkP/RteJ+dJ24J10r7scYs7y8t6lbn1Ldfe90ACJVgK4TEYcoUZNqzVqrDyCRs9B1IuIcd0/UxjsdQDnypGMRqUi6VkRKR9eK+yn3c+LWiZq11mP+CD3pWNyRMWaiMSbdGLP+pLL/GGM2GWPWGmO+NsaEnWbdocaYzcaYZGPMoyeVNzHGLHGVf26M8auEQ6n2dK1ULF0rnkPXivupiHPi1omaSBm8Dwz9TdkMoK21Nh7YAjz225WMMd7A68DFQGvgOmNMa9fb/wJestbGAoeAWysmdJFK9T66VkSqDCVq5+hU3yxL+63SGPOYa5nNxpghZ9qmlI61di6Q8Zuy6dbaQtfLxUD0KVbtBiRba1OstfnAZ8BIY4wBBgBTXMt9AFxaEbF7Ml0n7kfXinvSteJ+3KX2WYnaOTjDN8uzfqt0LXct0IaSb7VvGGO8z/JtVc7fLcBPAMaYBsaYH13lUcCuk5ZLdZXVATJP+vA6Xi6lpOukytK1Usl0rbit93GD2mclaufmlN8sKd23ypHAZ9baPGvtNiDZtb3TbVPOkzHmcaAQ+BjAWrvbWjvM2aiqBV0nVYyuFcfoWnFD7lL7rETt3Jzum+Upv1UaY0YYY54+y7qnK5fzYIy5GRgOjLKnnoYjDWh40utoV9lBIMwY4/Obcik9XSdViK4VR+laqZoqpfZZiVolsNZ+Z6190uk4qhtjzFDgYWCEtfboaRZbBjR3tRvwo+QWwneuD6o5wJWu5UYD31Z0zNWZrhPn6FqpWnStOK8ya5+VqJ2b032zLM23ytOte7pyKQVjzKfAIiDOGJNqjLkVeA0IBmYYY1YbY95yLXvim4/rm82fgZ+BRGCytXaDa7OPAA8YY5Ip+Sb0bqUeVNWn68QN6VpxS7pWqpBKr3221upRxgclc6SmAE0AP2ANJQ05vwCudS3zFjD2FOu2cS3v71o/BfA+3TadPlY99DjXh64TPfQo3UPXivs+gBhg/UmvhwIbgfCynk/Xe2c9p7/bntO/hKr6AIZR0uNjK/C4q6wpsJSSxpxfAP6u8hHA0yet+7hrvc3AxWfaph56VOWHrhM99CjdQ9eK+z2AT4E9QAEl7cludZ2LXcBq1+Mt17INgB/P9rs/3Tk908O4VhQRERERN6M2aiIiIiJuSomaiIiIiJtSolYGp5ni4yJjzEpXT6n5xpjY06y73RizzrXcamNMrzPs531jzJWne1/E3Z3mWhngulbWG2M+OKnn02/XTXCte/xaOe21YIz5mzHmLxV1HCIV6TRTFNU2xswwxiS5ftY6zbq6TqoJJWqldIYpId6kpItuB+AT4IkzbKa/tbaD67GwomMWccIZrpUPKOnt1BbYQcl4W6cz6qRrZcoZlhOpyt7n91MUPQrMstY2B2a5Xp+OrpNqQIla6Z1uOg4LhLiWCQV2l3aDxphmxphpxpgVxph5xpiWJ7090Biz3BizxRgzvLwOQqQSnOpauQLIt9ZucS0zw1VWKsaYcGPMl8aYZa5H75Pebm+MWeSqgbi93I5CpILZU0xRRMnnygeu52Wa4F7XiWc65a0HOaVTTQnRHbgN+NEYcww4DPQ4wzbmGGOKgDxrbXdgPHCntTbJGNMdeIOSecCgZOyWbkAz13qx1trc8jwgkQpyqmulB+BjjOlirV1OySj2DU+1ssvHrmsK4CLgFUomMp5vjGlEyaCrrVzvx7u2HwSsMsZMtdaW+guTiJuJsNbucT3fC0ScYVldJ9WAErXzdz8wzFq7xBjzEPAiJcnbqfS31h4AMMbUBHoBXxhjjr/vf9Kyk621xUCSMSYFaEnJmC0iVZGlZMqhl4wx/sB0oOgMy49yJXQAGGMGAq1PulZCXNcQwLfW2mPAMWPMHEq+4HxTzvGLVDprrTXGnGkMLV0n1YAStdI71ZQQ+ygZXHCJq+xzYJqrjc4KV9np5mTzomRy1g6n2d9vL04NeCdVxSmnT7HWLgL6AhhjBgMtXM9/pqTWYLm19nRfcryAHr+tVXZ9IOlaEU+yzxgTaa3dY4yJBNJB10l1pjZqpXfKCYmBUGNMC9cyg4BEa23RSQ08TzlxrrX2MLDNGHMVgCnR/qRFrjLGeBljmlEykvHmijowkXJ2ymvFGFMPwFWj9ggl06dgrR3iulZO9+EDJTVwdx9/YYzpcNJ7I40xAcaYOkA/1/5Fqqrv+F9HmxMT3Os6qb5Uo1ZK1tpCY8zxCYm9gYnW2jWuRplfGmOKgUPALWXY7CjgTWPME4AvJY2u17je20nJNBMhlLRjU/s0qRJOc61sMMb8x9Uxxgt401o7uwybvQd43RizlpL/W3OBO13vrQXmAHWBZ9TuRqoKY8ynlCRNdY0xqcBTwPPAZGPMrZT0jr66DJvUdeKBNIWUiIiIiJvSrU8RERERN6VETURERMRNKVETERERcVNK1M7RqeZoc5XfbYzZZIzZYIz5t6vMzxjznimZ63ONMabfSct3dpUnG2PGmZMGwBEREZHqTYnauXuf38zRZozpT8n0H+2ttW2AF1xv3Q5grW1HyRAe/zXGHP/dv+l6v7nr8dt530RERKSaUqJ2jk4zR9ufgOettXmuZdJd5a2B2SeVZQJdXIMZhlhrF9uS7reTKMO8biIiIuLZlKiVrxZAX2PMEmPML8aYrq7yNcAIY4yPMaYJ0JmSkdujKJkH8bhUV5mIiIiIBrwtZz5AbUomvu1KyaCFTYGJlEyMu5ySAQwXcuZ5DkVERESUqJWzVOAr123Mpa7ZCupaa/dTMnk7AMaYhcAWSmYyiD5p/WhK5kkUERER0a3PcvYN0B/ANf+nH3DAGFPDGBPkKh8EFFprN1pr9wCHjTE9XL09b8I1r5uIiIiIatTO0WnmaJsITHQN2ZEPjLbWWtdk1D+7atjSgBtP2tRYSnqQBgI/uR4iIiIimutTRERExF3p1qeIiIiIm1KiJiIiIuKmlKiJiIiIuCklaiIiIiJuSomaiIiIiJtSoiYiIiLippSoiYiIiLgpJWoiIiIibur/AcP7rzU5QfcBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "test_series = to_pandas(test_entry)\n", - "train_series = to_pandas(train_entry)\n", - "\n", - "fig, ax = plt.subplots(2, 1, sharex=True, sharey=True, figsize=(10, 7))\n", - "\n", - "train_series.plot(ax=ax[0])\n", - "ax[0].grid(which=\"both\")\n", - "ax[0].legend([\"train series\"], loc=\"upper left\")\n", - "\n", - "test_series.plot(ax=ax[1])\n", - "ax[1].axvline(train_series.index[-1], color='r') # end of train dataset\n", - "ax[1].grid(which=\"both\")\n", - "ax[1].legend([\"test series\", \"end of train series\"], loc=\"upper left\")\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Use your time series and features\n", - "\n", - "Now, we will see how we can convert any custom dataset with any associated features to an appropriate format for GluonTS.\n", - "\n", - "As already mentioned a dataset is required to have at least the `target` and the `start` fields. However, it may have more. Let's see what are all the available fields:" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.361481Z", - "iopub.status.busy": "2022-06-13T08:55:40.360736Z", - "iopub.status.idle": "2022-06-13T08:55:40.363533Z", - "shell.execute_reply": "2022-06-13T08:55:40.363968Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.field_names import FieldName" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.368878Z", - "iopub.status.busy": "2022-06-13T08:55:40.367966Z", - "iopub.status.idle": "2022-06-13T08:55:40.371320Z", - "shell.execute_reply": "2022-06-13T08:55:40.371747Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "[\"FieldName.ITEM_ID = 'item_id'\",\n", - " \"FieldName.START = 'start'\",\n", - " \"FieldName.TARGET = 'target'\",\n", - " \"FieldName.FEAT_STATIC_CAT = 'feat_static_cat'\",\n", - " \"FieldName.FEAT_STATIC_REAL = 'feat_static_real'\",\n", - " \"FieldName.FEAT_DYNAMIC_CAT = 'feat_dynamic_cat'\",\n", - " \"FieldName.FEAT_DYNAMIC_REAL = 'feat_dynamic_real'\",\n", - " \"FieldName.PAST_FEAT_DYNAMIC_REAL = 'past_feat_dynamic_real'\",\n", - " \"FieldName.FEAT_DYNAMIC_REAL_LEGACY = 'dynamic_feat'\",\n", - " \"FieldName.FEAT_DYNAMIC = 'feat_dynamic'\",\n", - " \"FieldName.PAST_FEAT_DYNAMIC = 'past_feat_dynamic'\",\n", - " \"FieldName.FEAT_TIME = 'time_feat'\",\n", - " \"FieldName.FEAT_CONST = 'feat_dynamic_const'\",\n", - " \"FieldName.FEAT_AGE = 'feat_dynamic_age'\",\n", - " \"FieldName.OBSERVED_VALUES = 'observed_values'\",\n", - " \"FieldName.IS_PAD = 'is_pad'\",\n", - " \"FieldName.FORECAST_START = 'forecast_start'\",\n", - " \"FieldName.TARGET_DIM_INDICATOR = 'target_dimension_indicator'\"]" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[f\"FieldName.{k} = '{v}'\" for k, v in FieldName.__dict__.items() if not k.startswith('_')]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The fields are split into three categories: the required ones, the optional ones, and the ones that can be added by the `Transformation` (explained in a while).\n", - "\n", - "Required:\n", - "\n", - "- `start`: start date of the time series\n", - "- `target`: values of the time series\n", - "\n", - "Optional:\n", - "\n", - "- `feat_static_cat`: static (over time) categorical features, list with dimension equal to the number of features\n", - "- `feat_static_real`: static (over time) real features, list with dimension equal to the number of features\n", - "- `feat_dynamic_cat`: dynamic (over time) categorical features, array with shape equal to (number of features, target length)\n", - "- `feat_dynamic_real`: dynamic (over time) real features, array with shape equal to (number of features, target length)\n", - "\n", - "Added by `Transformation`:\n", - "\n", - "- `time_feat`: time related features such as the month or the day \n", - "- `feat_dynamic_const`: expands a constant value feature along the time axis\n", - "- `feat_dynamic_age`: age feature, i.e., a feature that its value is small for distant past timestamps and it monotonically increases the more we approach the current timestamp\n", - "- `observed_values`: indicator for observed values, i.e., a feature that equals to 1 if the value is observed and 0 if the value is missing\n", - "- `is_pad`: indicator for each time step that shows if it is padded (if the length is not enough) \n", - "- `forecast_start`: forecast start date\n", - "\n", - "As a simple example, we can create a custom dataset to see how we can use some of these fields. The dataset consists of a target, a real dynamic feature (which in this example we set to be the target value one period earlier), and a static categorical feature that indicates the sinusoid type (different phase) that we used to create the target." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.379935Z", - "iopub.status.busy": "2022-06-13T08:55:40.379176Z", - "iopub.status.idle": "2022-06-13T08:55:40.381253Z", - "shell.execute_reply": "2022-06-13T08:55:40.381684Z" - } - }, - "outputs": [], - "source": [ - "def create_dataset(num_series, num_steps, period=24, mu=1, sigma=0.3):\n", - " # create target: noise + pattern \n", - " # noise\n", - " noise = np.random.normal(mu, sigma, size=(num_series, num_steps))\n", - " \n", - " # pattern - sinusoid with different phase\n", - " sin_minusPi_Pi = np.sin(np.tile(np.linspace(-np.pi, np.pi, period), int(num_steps / period)))\n", - " sin_Zero_2Pi = np.sin(np.tile(np.linspace(0, 2 * np.pi, 24), int(num_steps / period)))\n", - " \n", - " pattern = np.concatenate(\n", - " (\n", - " np.tile(\n", - " sin_minusPi_Pi.reshape(1, -1), \n", - " (int(np.ceil(num_series / 2)),1)\n", - " ), \n", - " np.tile(\n", - " sin_Zero_2Pi.reshape(1, -1), \n", - " (int(np.floor(num_series / 2)), 1)\n", - " )\n", - " ),\n", - " axis=0\n", - " )\n", - " \n", - " target = noise + pattern\n", - " \n", - " # create time features: use target one period earlier, append with zeros\n", - " feat_dynamic_real = np.concatenate(\n", - " (\n", - " np.zeros((num_series, period)), \n", - " target[:, :-period]\n", - " ), \n", - " axis=1\n", - " )\n", - " \n", - " # create categorical static feats: use the sinusoid type as a categorical feature\n", - " feat_static_cat = np.concatenate(\n", - " (\n", - " np.zeros(int(np.ceil(num_series / 2))), \n", - " np.ones(int(np.floor(num_series / 2)))\n", - " ),\n", - " axis=0\n", - " )\n", - " \n", - " return target, feat_dynamic_real, feat_static_cat\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.394492Z", - "iopub.status.busy": "2022-06-13T08:55:40.393873Z", - "iopub.status.idle": "2022-06-13T08:55:40.395694Z", - "shell.execute_reply": "2022-06-13T08:55:40.396112Z" - } - }, - "outputs": [], - "source": [ - "# define the parameters of the dataset\n", - "custom_ds_metadata = {\n", - " 'num_series': 100,\n", - " 'num_steps': 24 * 7,\n", - " 'prediction_length': 24,\n", - " 'freq': '1H',\n", - " 'start': [\n", - " pd.Period(\"01-01-2019\", freq='1H')\n", - " for _ in range(100)\n", - " ]\n", - "}" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.400220Z", - "iopub.status.busy": "2022-06-13T08:55:40.399329Z", - "iopub.status.idle": "2022-06-13T08:55:40.402385Z", - "shell.execute_reply": "2022-06-13T08:55:40.402801Z" - } - }, - "outputs": [], - "source": [ - "data_out = create_dataset(\n", - " custom_ds_metadata['num_series'], \n", - " custom_ds_metadata['num_steps'], \n", - " custom_ds_metadata['prediction_length']\n", - ")\n", - "\n", - "target, feat_dynamic_real, feat_static_cat = data_out" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can easily create the train and test datasets by simply filling in the correct fields. Remember that for the train dataset we need to cut the last window." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.408512Z", - "iopub.status.busy": "2022-06-13T08:55:40.407693Z", - "iopub.status.idle": "2022-06-13T08:55:40.409812Z", - "shell.execute_reply": "2022-06-13T08:55:40.410228Z" - } - }, - "outputs": [], - "source": [ - "train_ds = ListDataset(\n", - " [\n", - " {\n", - " FieldName.TARGET: target,\n", - " FieldName.START: start,\n", - " FieldName.FEAT_DYNAMIC_REAL: [fdr],\n", - " FieldName.FEAT_STATIC_CAT: [fsc]\n", - " }\n", - " for (target, start, fdr, fsc) in zip(\n", - " target[:, :-custom_ds_metadata['prediction_length']],\n", - " custom_ds_metadata['start'],\n", - " feat_dynamic_real[:, :-custom_ds_metadata['prediction_length']],\n", - " feat_static_cat\n", - " )\n", - " ],\n", - " freq=custom_ds_metadata['freq']\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.415478Z", - "iopub.status.busy": "2022-06-13T08:55:40.414661Z", - "iopub.status.idle": "2022-06-13T08:55:40.417134Z", - "shell.execute_reply": "2022-06-13T08:55:40.417562Z" - } - }, - "outputs": [], - "source": [ - "test_ds = ListDataset(\n", - " [\n", - " {\n", - " FieldName.TARGET: target, \n", - " FieldName.START: start,\n", - " FieldName.FEAT_DYNAMIC_REAL: [fdr],\n", - " FieldName.FEAT_STATIC_CAT: [fsc]\n", - " } \n", - " for (target, start, fdr, fsc) in zip(\n", - " target, \n", - " custom_ds_metadata['start'], \n", - " feat_dynamic_real, \n", - " feat_static_cat)\n", - " ],\n", - " freq=custom_ds_metadata['freq']\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we can examine each entry of the train and test datasets. We should expect that they have the following fields: `target`, `start`, `feat_dynamic_real` and `feat_static_cat`." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.421645Z", - "iopub.status.busy": "2022-06-13T08:55:40.420939Z", - "iopub.status.idle": "2022-06-13T08:55:40.423668Z", - "shell.execute_reply": "2022-06-13T08:55:40.424088Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['target', 'start', 'feat_dynamic_real', 'feat_static_cat', 'source'])" - ] - }, - "execution_count": 26, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_entry = next(iter(train_ds))\n", - "train_entry.keys()" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.428363Z", - "iopub.status.busy": "2022-06-13T08:55:40.427635Z", - "iopub.status.idle": "2022-06-13T08:55:40.430640Z", - "shell.execute_reply": "2022-06-13T08:55:40.431162Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "dict_keys(['target', 'start', 'feat_dynamic_real', 'feat_static_cat', 'source'])" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test_entry = next(iter(test_ds))\n", - "test_entry.keys()" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.439101Z", - "iopub.status.busy": "2022-06-13T08:55:40.437568Z", - "iopub.status.idle": "2022-06-13T08:55:40.708075Z", - "shell.execute_reply": "2022-06-13T08:55:40.708684Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAGzCAYAAAAYOtIDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADzQ0lEQVR4nOy9d3xb9b3///poT1uWLO+ZxHHi7J0QAibsUaDQlva2dFLa2wFd9Et7oeX2V25vb1vaQkuBzntLaaFAgZad4ZAQssm2E8dOvLesvXU+vz+OzrFkyY6HZK3P8/HIg0Q60jn6IJ3zOu/xehNKKRgMBoPBYDAYyUGS6gNgMBgMBoPByGaY2GIwGAwGg8FIIkxsMRgMBoPBYCQRJrYYDAaDwWAwkggTWwwGg8FgMBhJhIktBoPBYDAYjCQiS/UBTITBYKALFixI9WFkNC6XC1qtNtWHkbGw9ZsdbP1mB1u/2cHWb/awNZwehw8fHqaUmuM9l7Ziq7i4GIcOHUr1YWQ0TU1NaGxsTPVhZCxs/WYHW7/ZwdZvdrD1mz1sDacHIaRjoudYGpHBYDAYDAYjiTCxxWAwGAwGg5FEmNhiMBgMBoPBSCJpW7MVj0AggO7ubni93lQfSkaQn5+P5ubmGb9epVKhoqICcrk8gUfFYDAYDEZukVFiq7u7G3q9HjU1NSCEpPpw0h6HwwG9Xj+j11JKMTIygu7ubtTW1ib4yBgMBoPByB0yKo3o9XphMpmY0JoDCCEwmUwsishgMJLCyR4bjnVZU30YDMacMGuxRQipJITsJIScJoScIoTcG2ebRkKIjRByNPzne7PY3+wOmDFl2FozGIxk8fCrzfjeK6dSfRgMxpyQiMhWEMA3KaUNADYC+DIhpCHOdrsppSvDf36QgP3OOVarFY8//viMXnvDDTfAarUm9oAm4ZJLLpmzfTEYDMZ0sbj8GLSzyDkjN5i12KKU9lFKj4T/7gDQDKB8tu+bjkwmtoLB4KSvfe2112AwGJJwVPGPY+/evUnfF4PBYMwUq8ePYacPHEdTfSgMRtJJaM0WIaQGwCoA++M8vYkQcowQ8johZEki9ztX3H///Whra8PKlStx3333oampCVu2bMHNN9+MhgY+mHfrrbdizZo1WLJkCZ566inxtTU1NRgeHsaFCxewePFifP7zn8eSJUtwzTXXwOPxxOzr73//O5YuXYoVK1bgsssuAwCEQiHcd999WLduHZYvX44nn3wSAOIeh06nE9/rJz/5ifia73//+wD4MQw33ngjVqxYgaVLl+LZZ59NzqIxGAzGOCilGHUHEAhR2DyBVB8Og5F0EtaNSAjRAXgBwNcopfZxTx8BUE0pdRJCbgDwEoC6OO9xN4C7AcBsNqOpqSnq+fz8fDgcjkQd8rR54IEHcPz4cezevRsAsHv3bhw5cgT79u1DTU0NHA4HfvnLX8JoNMLj8aCxsRHXXHMNTCYTKKVwOp1wOp1obW3F7373OzzyyCP41Kc+haeffhof/ehHo/b10EMP4cUXX0RZWRmsViscDgf++Mc/QqVSYceOHfD5fLjmmmtwySWXwO12xxwHwIuzl156CadPn8b27dtBKcUdd9yBN954A8PDwzCbzfjb3/4GALDZbHHX1uv1xvx/SHecfgpPkMKsmd29hNPpzLjPnk6w9Zsd2bx+vhCFP8gBAF7bsQfl+sT3amXz+s0VbA0TR0LEFiFEDl5o/YVS+uL45yPFF6X0NULI44SQQkrp8LjtngLwFADU19fT8TOZmpubRSuD//znKZzuHa/pZkdDWR6+/4GJg246nQ4SiUQ8Bo1Gg/Xr12PZsmXiNj/72c/wj3/8AwDQ09OD/v5+0apCiDbV1tZi8+bNAIANGzZgYGAgxqJhy5Yt+MpXvoKPfOQjuO2226DX6/HOO+/g+PHj+Oc//wmAF0h9fX1xjwMApFIp9uzZg507d4rRMafTiZ6eHmzZsgUPPPAAfvjDH+Kmm27Cli1b4n5mlUqFVatWTXkN04H/+McJvNc+gh3fbJzV+7C5YLODrd/syOb167N5gLd3AABqFi/H5gWFCd9HNq/fXMHWMHHMWmwRvmXt9wCaKaWPTLBNCYABSiklhKwHn74cme2+04HIiehNTU3Ytm0b3nvvPWg0GjQ2Nsa1TlAqleLfpVJp3DTiE088gf379+PVV1/FmjVrcPjwYVBK8dhjj+Haa6+N2rapqWnCyeyUUnznO9/BF77whZjnjhw5gtdeew0PPPAArrzySnzvezNuEk0rBuw+9NtY4S2Dka5Y3WOpwyGHL4VHwmDMDYmIbG0GcCeAE4SQo+HHvgugCgAopU8A+BCAfyeEBAF4AHyUUjqrqsjJIlDJQq/XT5rGtNlsKCgogEajQUtLC/bt2zfjfbW1tWHDhg3YsGEDXn/9dXR1deHaa6/Fb37zG2zduhVyuRxnz55FefnkvQjXXnstHnzwQXz84x+HTqdDT08P5HI5gsEgjEYjPvGJT8BgMOB3v/vdjI813bB7A3D7Q/AFQ1DKpKk+HAaDMQ4mthi5xqzFFqV0D4BJDZkopb8C8KvZ7ivVmEwmbN68GUuXLsX111+PG2+8Mer56667Dk888QQWL16M+vp6bNy4ccb7uu+++9Da2gpKKa688kqsWLECy5cvx4ULF7B69WpQSmE2m/HSSy9N+j7XXHMNmpubsWnTJgB8KvTpp5/GuXPncN9990EikUAul+M3v/nNjI813bCHC25tngCK9ExsMRjphs3jF/8+5GRii5H9ZNS4nnTgmWeeifp3ZD5bqVTi9ddfj/u6CxcuoHvUDa1Jj5MnT4qPf+tb34q7/YsvxpS+gRCC//qv/8J//dd/xRzD+Ly60+kUo3D33nsv7r032mt2/vz5MenIbMHh5e0vbO4AivSqFB8Ng8EYjxDZUkglLLLFyAkyalxPJkMphc0dEKMujOQhrLGVrTWDkZaMhsXWPLOWiS1GTsDE1hwR4ihClMIf4lJ9KFlNiKNw+PjIVmRdCIPBSB+sHj8UMgkqjRomthg5ARNbc4QgsgIhDiHmmJw0nN4xJ3+r2z/JlgwGI1XY3AEY1HIU6ZWsZouRE2Sc2JplE2PKEAz8AGRMdCsT19ruHYtmMWdqRjL5zovH8a/jvak+jIzE6g7AoJHDrFfC4vIjkCHnRAZjpmSU2FKpVBgZGclIERApsCKFV7pCKcXIyAhUqswqMI8UWCyNyEgWHEfx90PdeO1EX6oPJSOxevwwqBUw63nPwREni0IzspuM6kasqKhAd3c3hoaGUn0o02bU7YfHHwJHAe+QDHqVPOn79Hq9sxJLKpUKFRUVCTyi5BMZ2bJ62AmckRxsngCCHEXHiDvVh5KRWN0BVBo1MOt4sTXs9KEkP7Nu7BiM6ZBRYksul6O2tjbVhzEjPv67fXD7Qzg/7MKNy0rx8AcXJ32fTU1NGTdqZ7bYPZE1WyyyxUgOw+E6o44RNyil4Adp8Di8Afzo9Rb8v+sWIV+d/JuqTMTqDmBZuVyMbLEieUa2k1FpxEym0+JGlVGDaqOG3Q0nESGyZdYrWc0WI2kIRd1OXxAWV3QEdU/rMJ7Z34l3zw3HeykD4TSihoktRu7AxNYcEAhx6LV6ebFl0qLD4kr1IWUtgsdWlVHDIluMpBEpDjos0TdP5wad/OPspiou3kAI3gAHg0aBwnAakXUkMrIdJrbmgD6rFyGOotKoQbVJg55RT0YUyWcidm8QhAAVBWpWs8VIGsMRBd0dI9E3T21DvNjqzNGbqi6LG12WiYWmEHE2aORQyaXIU8lYZIuR9TCxNQd0hk88QmSLo0CP1ZPio8pO7J4AdEoZCjQKFtliJI1hpw8yCQEhsRGsc0O5Hdn62rNH8ZEn34PLF4z7vPC7NKgVAIBCvZKJLUbWw8TWHBAttjQAgAsjuXnXm2zs3gDyVHIYNHI4vEEEmX8PIwkMO3ww65UozVOhM0JUcRxF2yD/285FsRXiKE732tFn8+IX287G3UYwGzZo+OYBs46JLUb2w8TWHNBpcUMhlaA4T4VqIy+2OnPwRDwX2D1B5KnlMIS7wOze+HfXDMZsGHL6UKhTosqkiarZ6rN74QmEYNYr0WfLvXKBjhEXPIEQSvJU+MO7F9DcZ4/ZRphZKnRqmpmLPCMHYGJrDuiyuFFRoIZUQmDWK6GWS3Pyrncu4CNbMhg0fIqCdSQyksGw04dCnQI1Jm1UzZZQHH9FvRkcBbpHc+t33tLvAAD85MPLka+W44GXToIbN54sJrI1Lo3o9gdx6Y934NmDnXN01JnDhWEXRl2sFjUTYWJrDui0uFEZjmgRQlBt0sQU1TISg90TQJ5ajvzwiZzNR2Qkg2GHX4xsDTv9cIbrkwSxtXVRMYDYTsVsp6XPDgkB1tUYcf/1i3C4YxR/P9wVtY1YsxW+ITLrlXD6gnD7+TXc325B96gHP3q9hd0sRdA96saNj+7Gd148EfMcpRR7WofZ3N00homtOUDw2BKoHpd6ADJzDmE64vAG+ZqtcIrCyk7WjATDcRQjLh8K9UpUG7UAxsoC2oacMGjkWF1liHo8V2jud2CeWQeVXIoPra7AupoC/Oj1FngDIXEbqycAuZRAq5ACwJiLvIO/MXqndQhyKYHNE8DjTefm/kOkIZRSfOfFE3D5Q9jRMhgjQrc1D+ITv9+PHS2DKTpCxsVgYivJ2NwB2DyBcWJLi06LWwyvtw85sfw/38L+9pFUHWbWwEe2ItKIrCORkWBsngACIQqzTik2vAiR6nODTsw363K2XKCl345FJXoAgERC8JnNtbC6A2LED+AjW/lqhei6LxqbOr0AgN2tw9g0vxAfXFWOP757YVIbiVzhuUNd2N06jA+vqYA/xOHNU/1Rzwsp1062VmnLrMUWIaSSELKTEHKaEHKKEHJvnG0IIeRRQsg5QshxQsjq2e43U+gK12xUjots+YMc+u38yeWpd9rh8AZxpNOaikPMGkIchcM3LrLF0oiMBCOM6inUR4it8EWubdCJBWYdCCGoMmpyymvL4Q2gy+LB4tI88bH5Zh2AMe8xALCF3eMFIl3ke60enBt04rK6QnzrmnoQAD9968zcfIA0pc/mwQ//1YyN84z48e3LUW3S4JWjveLzg3Yvdp7h5wX3MkuhtCURka0ggG9SShsAbATwZUJIw7htrgdQF/5zN4DfJGC/GUGk7YOAkHq4MOLCoMOLF4/08P8ezp0TczJwhjsP89Ry5LE04ozps3nwhz3nWWp7AoTOuUKdAnqVHEatAh0jboy6/Bhx+bGgiBcYVSZNTkUazoSL4xeX6sXHqk0aSAjQNjR2brO6A+LNEBAttva08iOOttSZUWZQ464ttXj5aC+Od1vn4BOkH5RSfPfFEwhyFD++fTkkEoKbV5Rhb9swBh38zfrzR7oR4ijyVDImttKYWYstSmkfpfRI+O8OAM0AysdtdguA/6M8+wAYCCGls913JiCcbCuNavEx4W64c8SNP717AUGOQ7lBzby3ZokwFzFfLYdUQqBXyZix6Qx44XA3fvCv02LklRGN4B4v1BoJDS9C9GZ+EX8zVW3kxVauiNbmsNhaVDIW2VLJpag0aqIiW6PuQFRky6RVQkJ4sfVO6xCK9EosLOYF6xcvnw+TVoFfbGudo0+RXpzosWHnmSF84+qFqDbx36ubV5SBo8Crx/tAKcXfD3VjfY0RKyoNTGylMQmt2SKE1ABYBWD/uKfKAUS2pHQjVpBlJZ0WN4xa/g5YoDRfBbmU4FSvHX/e14HrlpZg4zwTE1uzRCgazVPJAPCt5aybaYydZwZx86/2iKJ0InqsvMjqs+We2LJ7A9h5ZjBmuHQkgk2BEJERhssLdUkLzHxkp9qkgTfAYTBHDDtb+uzIU8lQmq+Keny+WYe2iJotm9uP/LB7PABIJQRGrRL9di/2nBvGljqzWM+lV8lxeb0ZLXH8unIB4Wb9soVm8bG6Yj0Wl+bhlWO9OHhhFOeHXfjIukqUG9Tib5eRfsgS9UaEEB2AFwB8jVI6o18GIeRu8GlGmM1mNDU1JerwUsaxcx4YZIj5LEYl8Nf9HQhSYK3OipPDIQzYA3hz204oZSQh+3Y6nVmxhlPl9Ajf8dR+5hSahlogDfrQ1t0/4zXItvV74awfx7sDeODPO3FbnWLC7U628yfsbXsPw94+81NEpqyfP0TxVkcAx4dCOGflwFHgsgoZPrtUGXf7I2f8kBLg/f3vghAC6vCj1xrAtkPNkEmAc8f3o50QjA7xae2Xtr2LeqN02seVKesnsP+MB6VqYNeuXVGPK7w+tA0GsWPnTkgIwYjTC6elH01No+I2ahLA2yd6YPVRFAaHoj53wOZHny2A7Tt2QiqZ+rkx09YvHnvO8zdG504cQl/L2Gdfqvfj72cD+N7f90MlBfSjrfCNBjDsDOCt7TuhkLJrSLqRELFFCJGDF1p/oZS+GGeTHgCVEf+uCD8WBaX0KQBPAUB9fT1tbGxMxOGllO8f3InlNQY0Nq6Kenzx+QNoOjOEjfOM+Owtm/DPY714sfV9VC1ZE1VgOhuampqQDWs4Vbwn+4CDR3DZxnVoKMtDZdt+OH1BNDZuntH7Zdv6vTp0DEA3tnVxePCjm8TIzHgePrILgBPG8nlo3DJvxvvLlPV7/UQfnn/7CBaX5uGLl5txpHMUZ4ZduPzyy8UISySvDh2DeWQYV1xxBQDAkteNl9uO4ZxLgQVFamy94jIAQPWwC48cboKxaiEa11bGvM/FyJT1A3g7jP6db+H21eVobFwa9VyfphNvXDiBuhUbUJSnhO+NN7Bs4Tw0NtaJ29S2H8A7Z/ki78/fvAWFOmXU6//ZdgKLV29EmUGNqZJJ6zcRu52noW7vxA1XNUZ9FxescOPvP96JFguHj62vwrVXLYPjcDf+ce4YFq5Yj5pCbUL2nw1rmC4kohuRAPg9gGZK6SMTbPYKgE+GuxI3ArBRSvtmu+90Jxji0DPqQZUx9gQhjO35wmXzAQC14R8HMzudOXaPUCDP30Pkq+XM+iGCYSc/z88X5PDrnfH9iyilYt1Hf46kEc8OOEEI8OK/X4JvX7cIt62uwIDdh+Y+R9zth50+FOrHIoNj807dYnE8AJQb1JCQ3GjH7x71wOkLYlGcG8XIjkQhrZ+viY6sCvVvS8ryooQWADEtmYv1SP02L0rzVTGiv6JAg7XVBQCAO9bxQr7MkLvrlAkkIrK1GcCdAE4QQo6GH/sugCoAoJQ+AeA1ADcAOAfADeAzCdhv2tNr9SLI0ahORIHbVldAJZeisZ7PxUeesBkzQ6hFEjoRDRo560aMYNjpR0NpHsoL1PjL/g58dnMtqkzR3027JwiXn0/H5krNVuugA5UFGqjDJpuN4fqYXWeH0FAWKx6EuYgCVcaxKIIgLABAIZOgzKDOCa+t5n6+ciReVH6+mV+ftiEXysORqchuRGCs/m1LnRnjEV7TY/VgbeIOOSPot3tRMq4GTuCeK+uwo2UQKyryAYytU2+O/G4zjVmLLUrpHgCTJogp347z5dnuK9N47SQfvFsTvgOJZEWlASsqDeK/9So5CnUKZv8wC+yeAAgBdIpwgbxaAavbD46jkEyj1iNbGXb6sLBYj3u21uGFw934+baz+PkdK6O26Ym4K+6z5cYd8rlBJ+oiIlJFeSosLs1D05lB/Hvj/Jjthx1+LI7ouCvUKaBVSOHyh6IiW0D8aRHZSEufA4RA7CKMxKhVwKCRo23IieVhYRDZjQiMia3L6gpjXl8aFhG5Iv4j6bd5saHWGPe5yxaaowrnS3I4ApgJMAf5JMFxFH/Z34ENtUYsKNJf/AXgneVZR+LMsXuD0CtlorAyaOTgKOAMz1zLZSilGHH6UahXoCRfhU9vrsFLR3tEbyQB4US9oEiXExe3YIhD+5ALC8aJhMZ6Mw53jMIxrnOT0rFRPQKEEFSF2/IjI1sAH/XqzIHfdEu/HTUmLTSK2Pt3Qgjmm3VoH3KKQ5QN6ug04jUNxfjs5lqsiyMsdEpZTnpIhTiKgUkiW+NRyqQw65U5t06ZAhNbSWJX6xC6LB58YmP1lF9TY9LiwnD23wUnC2EItUB++O+sbotPD/pDnFgb8/kt80Ap0HQmepZabziataaqAIMOH4Ihbs6PdS7ptLjhD3GoG3dDdPlCM4IcxbvnokdoCaN6xtcVVRs1IASYZ44uTK42aTDqDlzUbiPTael3iGN64jGvUIu2IZeY1h8f2ao0avC9DzRALo1/SSozqHNORIw4fQhyNMZKYzLKDOqo6DQjfWBiK0n8ZV8HCnVKXLukZMqvqTFp0G/3wuMPXXxjRgx2bwB5EX5mwnxEZmwa6XquFP9bpFeiNcL/CODTiAqpBEsr8hHiqGjgma0In79uXPpvTXUB9EoZdp2NFqOCx1ahLjoyc9OKUnx0XRVU8miLB6ERJpsHUtu9AVwYcUWZmY5nfpEOQw6fOOdwvNi6GLnoISVElkvyp96BWW5Q5ZwozRSY2EoC3aNu7GgZxEfXVUIhm/oSC+26HTk0Ty2R2D1BsRMRGDuhWz3ZLRimgjDPL9LuYUGRLkZs9Vq9KDWoUC50NmV53ZZgRDp/nNiSSyXYvKAQTWeGohzgBdFqHhfZuml5GX5027KY9xcaEISORJs7II5ZyRb+ur8TlEJs9omHkF490jkKqYRAp5xeuXCZQZ0zNYQCwgSHaUW28tXotXpzZmpBJsHEVhL46wF+AvvHNlRN63U14boPlkqcGTGRLXEYNYtsjUVkxkRCXRHv7B15Yu61elCWr0ZJHn83ne32D60DDpTlq+Je/C+vN6PP5o0SpOKongk8ysYjjFj564FOfOypfVj9w7dx46N7suZi6PGH8Nvd7dhSVxjV8DMeoSPxaKcVBrU8rn/ZZJQaVLC6A3D5cqf+UvjtFedNL43oCYTYOS8NYWIrwfiDHJ492IWti4rFVtypUl0o2D+wyNZMiKnZEiNb7MQz7IxNfy0o1sPpC0bNQOy1elBmUIuePdleJN866MSC4vi1RkKkJrKubTiOaJ0MnVKGsnwVdrcOY8Tlw7qaAgw5fFmTnv3bwU4MO/346ta6SberNGoglxK4/CHxdzkdysWOxNyJbvXZvJBLCUzaiac9jKcswiaDkV4wsZVg3jzVj2GnH5/YOL2oFgDkqeQwaRU5Z2zaY/Xg7EB8A8npYPcGoyJbYwXy2XFhmw3DTh+kEoKCCDPJBeHUjpBKC4Q4DNi9KDeokK+WQyWXoC+LT9ocR9E25Iyp1xIozVejvliPpjND4mNDTh9kEiJ+t6bC3+7ehF33NeKtr1+OL1zOW0lkww2VLxjCk7vasb7WiPUT2BMIyKUS0W9wvMfWVBgTEdkt/iPpt3lQnKealm0NMzZNX5jYSjDvnB2CUavAZXHM+aZCTaEW53PMa+s7L57AZ/54cFaplWCIg9MXXbOllEmhUUhZSB28N5RRq4g6cdeF7Q5aB3ixNWD3gqP8hY0QgtJ8Nfrs2Xtx67F64A1wE4otALi6oRj72kfEwu5hhw8mnWJaF8Aqk0ZMJ9aG/5sNv/HnD3ej3+7FPReJagkIdVsGzdQjNQJC3VI2i//x9Nu906rXAsZEKRNb6QcTWwnmVK8dS8ryZmyiWW3STOo4zXHZUesh4A9yOHjegh6rJ657/q93nsOJbttF38cZruWIjGwB/F00SyOGR8yMS32ZwmaTQk1SbzhqIJywS/NVWX1xax3ko6l1cYw4BT6+sQoSQvDHdy8AGBt5NFMqCtSQSUjGmxcHQhx+09SGlZUGbF5gmtJrhCaE6XYiAnzdkoTklojot3mnVa8F8L9phUzCXOTTECa2Eog/yKF10IElZfkzfo9akxZ9tvj2D6MuP1b851vY0TIwm8NMK070WOEJ8J91b9tw1HPnh134yZtn8OVnjlzUDmNsLmL0iTxfo2CRLQhiKzqiQAgRi+SBsQuZILZK8lVZXSAvRPQWmCf2hyrNV+PG5aV47lAX7N4Ahp3+KddrxUMmlaDSqMn4NOIbJ/vRPerBPVcumHKxuxjZUk8/siWXSlCcp8qZNCKlFH226Ue2CCFhm4zcEaWZAhNbCeTsgAOBEMWSOPPUpkp12P4h3vDaTosbDl8Qfz3QddH36bN5wGVAx9O+dgsA/m53b1u0geSOFr4wudPixi+2nZ30fcS5iKrorjKDWg4bs37AsNMfNyKzoEgvRnh6RLHFn+BL81UYcPgQyrJoqkDroBNFeuVFC7Y/d2ktnL4gnjvYhSFHbIRwutSYNDif4R3HQmTu0gVTL5cQOhJnEtkCcsv+weoOwBfkpuWxJVDGvLbSEia2EsjpPn4Y62zE1mQ1HZbwqItdZ4ZixoiM3+7y/2nC4YH0N0fd1z6ChcU6bK0vwr62kai6rR0tA6gr0uGOtZX43Z7zONkzcTrR7okeQi1g0MhzPrJFKcWQ0xfjDQXwXluj7gBGnD70Wj0o0MjFkSul+WqEOCraRmQbrYPOSVOIAssrDFhfY8Qf373Aj+qZrdgq1KJjxJXR9g8OXxBKmWRaPoJ1xXrkq+WT1shNRml+7ogIoQt4upEtgPfa6suRCGAmwcRWAjnda4dWIRX9smaCYP8QryNRaN/3hzhsa544lThg98If4jDqTe+TeSDE4XDHKDbOM2HTfBNGXH6cDad2HN4A9rdbsHVxEb57w2IUaBS4/8XjE46PGYtsxRFbOV6zZfcG4Q9ycUWCcOFrHXSKtg8CYlFyFkYTKKU4N+CIGdMzEZ/bUoseqyc8qmf6abBIagu1cPtDGMxgEevwBqBXTS9CpVPKcOiBq3Dd0qlP1Yik3KBGr82bdXWr8RiwT99jS6DMoMaAw4tAnHOlLxjCf73WjBFn5n73MhUmthLIqV4bFpfOvDgeGLN/iFfTIUS2CnUKvHq8b8L3ECI53lB6n5RO9Njg9oewoZYXW8BY3dbu1mEEOYorFxUjXyPHf968BCd77PjdnvNx32usZis6jZivVsDmDmR0FGG2iB5b+liRIHYkDjrRa/VGiS1hAG421m312bxw+UMxzvETcdXiYlSH3eBnUyAPjJkXZ3JHIm+zMj0XeICvvZquoalAmUENf5DDiCv7ywJmE9kqN6hBafzf7eELo3jqnXa8emLi6wcjOTCxlSA4juJ0rx0Ns0ghClQUqNE9GhtNGHH5oZRJcOvKcuw6OwTbBBEboUYp3c2W94frtTbMM6KiQINqk0as29rePAiDRo7VVQYAwA3LSnBNQzF+/EYL/vzehZj3EiNbcdKI/hAnFuHnIpMZcZbk8e7pbeHIVqQRb1m4XiQbO5smmok4EVIJwWcuqQEws2hDJLWFwqSIzBVbDm8Q+hmIrdmQzZHW8fTbPJCQmQn7yewfzoT9DE/32md3gIxpw8RWguiwuOHyh2ZVryVg1qvi1smMhDuhblpRhkCI4u3T8VOJQmTLl+aRrX3tI1hQpBNFwCXzTdjXPgJ/kMPOM4NoXGiGTMp/RQkh+OVHV+HKRUV48OVT+J83WqKiVXZPAIQAOkVsgTyQ2yN7BLfyeGKLEIL5RToc6RyFwxcUi+MBXqgqZRL0Z+HFrTV80ZlO/dDHN1bjsY+twrqayQ08L0aZQQ2FVILzGdyROJM04mzJJQ+pPpsXZr0Scun0L9Flk8w1FcyjTzGxNecwsZUgTvXyxduzsX0QMOuVYuonkhGXD0atAisq8lFuUOPV471xXy9EvHxpHMwJhjgcumDBxnljF65N8wvh8AbxzP4OWFx+bF1cHPUatUKKJz6xBh9bX4nHm9rwzb8fEzvl7N4g9EpZTApX6Hyy5EDqYSLGRvXEv0teYNbhRLj5IDKNyBubqrJyZE/bkAsFGjlM0yh2l0sl+MCKMkhnUSYA8FGySqOaRbamSXkOucj3270z6kQEIkVp7Dqd6efF1pkBR9yaLkbySIjYIoT8gRAySAg5OcHzjYQQGyHkaPjP9xKx33TiVK8dMgmZUnfTxSjSKzHi8scUg1tcvAs4IQQ3LS/F7tZhWOOMohEKwtO5ZutUrx2ucL2WwKZ5/N9/ub0VUgnB5XFc+GVSCf7rg8vwtavq8OKRHjy9rwNA7FxEgbrw3LuDFyzJ+BgZwbDTBwkBjBPMWKsr1kEIEpaNm+dZmq/OSrE16opvhTFX1BZqM3rgPB/ZmluxZdBk/wgpgX6bFyV5M/t+quRSmLSKmFIUSilaB5wwaRXwBzm0DTkneAdGMkhUZOtPAK67yDa7KaUrw39+cLE39HOAN4PqbE712lFXrIdSJp31e5n1SlAaG40ZcfphCndC3bS8DEGO4q1TsanEsTTirA8laexr52uzNkREtsx6JRYW81YEa6sLJvQ/IoTg3ivrsKWuED996wyGHD7YvYGYTkSAN1KsL9bj9RP9yfkgGcCw0wejVjlhRCYylTZ+eHrpOGPTgxcs2Hsu2nw2E3H5g9Aq51YsRFJj0uLCiCtjO+v4yNbcphEJISgzqOOmx7KNfpsXpTOMbAG8W79gRSTQZ/PC4QvipuWlAFjd1lyTELFFKX0HQEJDB71OThyQm+5QSnG615aQei1grCgysjWcUooRl0+cAL+0PA8VBWpsj+MmP1Ygn74n8v3nLZhn1qJIH11sfMn8QgDAlYuLJn09IQQP3bwE3kAIP3q9GXZPMKYTUeCGZaU42GHBYBbP+ZsM3ohzYruCBWGxJZeSGC+uknwV+u1ehDiKY11WfOJ3+/Fvv9uP//znKfiCaazmL4LDG4QulWKrUAtfkEN/Bn4ngyEObn9oziNbAMLu6Jm3ZtPB6QvC4QuK3cAzYU11AU712KImbwjF8dcuLYFSJmF1W3PMXNZsbSKEHCOEvE4IWTKVF2SKmeKgw4dhpx8NpYkVW0MRdVtufwjeACfWmBBCMM+si9vem+6RLY6jOHjeEpVCFLhmSTFUcgmuXXJxL575Zh3uvmweXjzSg9N99riRLQC4cXkJKAVeP5mb0a2hCdzjBSoKNFDKJCjJV8XUvJUaeGPT07123P3nQyjUKXHnxmr88d0L+NBv3ovrB5cJOH1zX3MUSSZ3JApzSOc6sgXwHbLZXiDfPwvbB4G11QUIchTHu63iY2fD9VoNpXlYVJon1hkz5oa5OtscAVBNKXUSQm4A8BKAmFHxhJC7AdwNAIqSBdh96BhI/9z/oKfL0UH+5BMYbEdTU8es32/Izddq7Tl4DKRPHvXYUFc7mpr4cT0Bpxc9oxyampqiXt89yJ+MPIFQzHPpgM1H4fAFIXX0o6lpJOb5x7eqcP7EQcR31IpmuZTCpCIY8Qbhto1M+HnLdATP7G5Gtf/ClI/T6XSm5fpNl+4hNxYaJZN+llINoCG+mG2Gw9/tO3/7LjxBigc2qlGpH4ZhlRK/P2HDjb9owk8v10Ali01RpvP6WexuOOTelB3fiIf/Pb+59334u+Of49J1/YRzUe+Fc2gKzv58Nx18Vj+GHAG8vWMn5BdpVEjX9bsYp4b5u+S+9hY0WVtn9B5uP5/V+HvTYXg6+aj2O8d9MCgJjh7YiwL4cKAziJ07d07qe5apa5iOzInYopTaI/7+GiHkcUJIIaV0eNx2TwF4CgCUpXXUVF6LxsYFc3GIs+LE9lYAZ/FvN1yWkLs9byCE+955A8aIz/9+5yjwzl5sXrscjYv4Lr3dztM4ur8TjY2NUa8P7dsBwAM/J4l5Lh042WMDdu7BpWuWoXGGbtKR0JJ+fPHpw1hYU4nGxoa423w4cBaP7mhFw5qNManLiWhqakrL9ZsOlFI4t72BpfOrJlwbAPhdgxMyCUFNYfT0A3OvDb88sgdWH8UTn1gjun83Amho6MO//+UISutXYUWlIeY903n9AjvfxIKaCjQ2TinInnA4juK7774Bhal8wv8v6bp+p3ptwDt7sG7lUjQuLZ3TfY/md+Olc8fwvf0crlxchKsWF+OyOnNcI+l0Xb+LMXSoCzh0HNdfvhHVs5hG8vMTTbBKtWhsXAcA+NmJPVhWJUdj4wZ0qzrQ9NJJLFixAZVGzYTvkalrmI7MSRqREFJCwvKZELI+vN/YkMa4A8uUNOKpXjuqTZqEhdVVcin0KlnU5xeK5Y3asXSQSaeAJxCKyssDkdYP6VmzJYTJZ1OTEMm1S4rx4E0N+PDaigm3uXF5KSgF3syxVKLTF4RvglE9kSwo0sUILQCoMmqQp5LhvmvrY8aszDPztV4dcYampzOUUjj9vFVIqpBICKozdCC1w5u6NOKNy8rwkw8tx/KKfLxwuAef/uNBPLW7fc6PI5l0jPDfidma566pKsDhjlFQShHiKFoHHVgY7s4W6ovHF9EzkkdCzjaEkL+Cv9ktJIR0A/g+ADkAUEqfAPAhAP9OCAkC8AD4KL3I/BSJJLpmKV3pGHFhb9swtiyMtSmYDUV6ZZTYEkZUmCLa94W/j7h8qFDwdyeBEAenLwhC0rdmSygKLpnlyUSAEILPXVo76TYLi/VYUKTDqyf6cOemmoTsNxOYzNB0KuhVchx58GrRXDaSqvAdcUeG1R25/SFQipR2IwJ8R2ImjuwZE1tzv34KmQQfXluJD6+thDcQwp2/349nD3bhC5fNm/EYoHShpd+On799Fm+eGkBDaR5U8tl1tq+tKcDfD3ejfdgFKSHwBjjUh8XWopI8SAgfKJhKfSxj9iTk10Ip/dhFnv8VgF9N5z2lZGzMSLoy7PThk384AImE4BtXL0zoe5vHi63wRdOkixRbSvG5igL+widEtYr0SgzYffAHOShk6eVdO2D3QkIw64G+0+WGZaX41Y5WDDl8KfVYmksEQ9PZfN54QgvgTWZL8lS4MJJZ0RmhwFuXwgJ5gC+Sbzo7BI6js5qnOtc4wqOxUhHZikQll+L21RW4/8UTON5ti5vKzhR+9HoznnqnHTqFDF+7qu6iN49TYU11AQDgcMeoOEljYQkvttQKKeaZdTjNiuTnjPS6CkcgIyStI1suXxCf+9NBDNi9+P2n1mG+efZmppGY9aqoz29x+aCSS6CJGEdjDIuVSD8uoRNR8Ghx+9NvQGJ/eBTFRBfxZHHDshJwFHjjVPamEr2BEB7d3oqecMfWZHMRE0G1SZNxHYmi2EpxZKvapIU/yGWcb1QqI1vjuX5ZKRRSCV4+Gn+aRibAcRR/3HMBV9QX4Z1vX4GvXbUwIUJ2XqEO+Wo5jnSMimN6Ij31GkrzmNfWHJK2YksqSd+arUCIw5efOYITPTY89rHV4h1EIjHrYiNbJm30BbMw/O/I0T6Cx5YwH8vlT79c4mxGUcyG+mI9zHoljnVZ53zfc8UvtrXikbfP4kt/OYJAiBMFe6E+OVHEGpM242q2nN70EFuC/UNLnyOlxzFdxiJbqRdb+Wo5rlhkxj+P94qjuzKNAYcX/hCHrYuKUDDBlIeZIJEQrKnm67bODDhRUaCOSp0vKctDr82L0RweZTaXpK3YkhD+DirdXOSDIQ5f+9tRNJ0Zwg9vXYarG4ov/qIZYNYr4fQFxcjUiMsflUIE4ke2hDRiWVjMeNIwsjVgn/koitlACEGVUYPu0cwSB1PlRLcNv93djqXleTjWZcUvt7Vi2OEDIYBRkxyxVWXSYMjhg8sX/T1z+oLwpKmpbrpEtlZVGZCvluPlY5kVlXF4g1DIJAmZlpEIbllZjiGHD3vbMnOyQWc4DV81SVfgTFlTXYDWQScOX7CI9VoCDaxIfk5JW7ElZJjiDWROFSGO4pt/P4ZXT/ThgRsX4982VCVtX6KxaTi6FekeL6BVSKGUSeKnEcNjV1xpWCXPz/1KTHH8dKksUKPLkllpm6kQCHG47/ljMGkV+MtdG/HhNRX4ddM5bG8ZhFGjSFrKtibcmt4xrm7ra397H785mj6/3UgEsZXqAnmVXIpbVpbhzVP9sIV/t5mA3RtEXhpEtQS2LiqCXinL2FRipyV5Ymt1FZ916bV5xXotgSVl+QDAzE3niPQVW+F60XRJJXIcxbefP46Xj/bi29fV464t85K6v6JxYsvi9EfZPgB8pMakVYgdZ8CY2CoPpxHdaZZGdPuDsHuDKE6Q7cN0qSjQoM/mybqJ9080taGl34Ef3roU+Wo5Hrp5CaqNGpzqtSetXgvga7YARNVtcRzF/nYLhj3pucbONKo5+sjaSviDHF451pPqQ5ky/BDq9DGbVsmluG5pCd442Z92mZCp0GVxQ0Jih8AnghWV+eJM1PGRLaNWgdJ8FQ5eGE34fhmxpLHY4r8g6SK2/ve9C3jhSDe+ftVCfGkOjFYjI1uUUgy7/HG794w6BSyusTWyegIgZMyjJd0K5EWPrVRFtoxqcBRxxxxlKucGHXhsxznctLwU14TbuLVKGX750VWQSUhSOy8FsRXZkdg+7ILDF4Qrvb56IumSRgT4upnFpXl47lB3qg9lyvBDqFO/dpHcuqocTl8Q25sHU30o06bT4kZpvjopXeMahUz01Korjm3iumVlObY1D6BtKDPmEGcyaSu2ZGIaMT2K90722FGSp8I9V86No33kfESXPwR/kIMxTvGkSasUPbgAwOb2I08lF0+G6VYgn2iPrelSGbbI6Mqwou7J+Pth/kL90M3RbugrKg144hNr8LWrYiZjJQy9So5CnQKdlrHIljCPzR1I75qtVKcRAT46/ZG1FTjRY0PzJLUzI2lUTsFHtlK/dpFsnGdCkV6Jl45mToRQoNPiTkoKUWBdjREKqSRux/xdW2qhlEnw+M62pO2fwZO2YkuSZmnEQYcXxXnKOTPOK9AoIJUQDDl84onWFCcdZNIqRA8ugI9s5avlokVEuhXID4TFVirTiADQPZo9dVstfQ4sKNLFTRde1VCMtTXGpO6/yqjBhQgn9OPdfA1IgENapnWcviDkUgJlmvjP3bKyHHIpwd8niG6d6Xdg3cPbcOC8ZY6PLD4ObxB6ZfqkEQFAKiG4dVU5drYMplWd71TotHiSKrbu2VqH5764Ka5JaqFOiX9bX42XjvaIhfqM5JAeZ5s4EAAGjRxDzvRI9/BGmHMnEKQSvh5ryOGL6x4vYNIpYroRDRo5NAr+h5VuBfL9Nv5EmKrIVqlBBQkBusZ1JIY4ileP94HLwPbxM/0OLBpX/DqX1Ji0UTVbx8KRLQCwe9Ov8NvlC0KnlKWN47hRq8DVDcV46WgP/MHYOrfdrUPgKHB+OD1SPemYRgSAD6+pQJCjeOn9zIluuf1BDDt9qDIlT2zla+RYOYnh692XzYOUEPxmF4tuJZO0FVsA7zU17EiPNGIqXMcFF3khchUvjWjUKuEJhMTaLKt7XGQrzSILA3Yv9EpZylI4cqkEpfnqmMjWjpZBfPmZIzhwIT2iB1PF6vaj3+5FfQrFVrVJi16bF95ACIEQh9O9drHBw+5Jr8gqwBfIp0MKMZIPr62ExeXHjpaBmOcOhr+T6VJSkW4F8gJ1xXqsqjLg2YNduMg0uLRB6IyebBh0sinJV+Ej6yrw/OEu9FqzJ+KfbqS32NIr08JFPhDiYHH7xQvIXGHWKzHo8IkF8ON9tiIfEwQZH9lSQCGTQEoQ43+Uavpt3pSlEAUqCtQxNVtC+7OQ5swUWvp5Q8xUiq2awrE6uDP9DviCHC6tKwQw5vuWTjjCka104rI6M4r0SvxjXFSGUip2i1nSwHwyxFG4/KG0jGwBwB1rK9E66MTRDDEuTqbtw3T44uXzQSnw1DvZNdQ7nUh/sZUGNVsjTj8ond18uZkgDKMW7mjHO8jzjwnDqPltrG6/OAdLKU0/64d+e+o8tgQqjZqYNKIwtiJdogdT5UxYbC0qyUvZMVRHeG0J9VqX1fGD2dM1jZhuYkEqIbi6oRi7W4ej6tzahpyiyEqHIvl0ss2Ix43LS6GWS/Hcoa5UH8qUSBexVVGgwW2ry/HXA50ZV/OWKaS12CrUKdPif7wg+FIR2Rp28mlEjUIKtSK2wFFILVpcPnAcFWu2AEAlI2ln/TBg94q2FKmiokCNAbsPvuDYRa25nxdb6XBBmw4t/Q7kq+UoToEjv0C1UbB/cOF4txUGjRxLy3nDRHsaRracvvRLIwLAVYuL4faHsK99RHzswHk+qmXUKqK6jlOFIJ7z0jCNCPDdsTcsK8U/j/XBl6YTDCLpsrihU8pQoEn9en7lijo8ceeauLXBjNmT1mLLrFfC7Q+lPBU26PCKxzOXmHVKBDmKtiFn3HotYGzA8IjTD4cvCI7y88IAQCFNL+uHEEcx6PChJD91wgAYs3/oCddt2b0BsXYiHcT9dDjTb8eiEn1Ki70NGjnyVDJ0jLhxrNuGZeX54ncwLcWWN/3SiACwab4Jark0yivq4AULCnUKrKo0RHUdp4p0GkI9EXesq4TTF8TBgfS60YxHp8WNSqMmLZo1qkwaXFFflBbHko2kt9jSRbuopwoxsjXHERmh+7Gl3x7X9gEYi2yNuPzihU240KmkBJ40ElsjTh9CHE15GrGigHdqForkIwcBp8MFbapwHE15JyLAe0XVFGrR0m/H2QEHVlQYkKfmL8Z2b/pd8JxpmEYEeCf0LXWF2N48IBZ4HzhvwfpaY0zXcaoYG0Kd+kjMRKyrKUBtoRa7u9Pvuzce3mMr8c7xjPQjrcVWYTiSlOpow2BYbMVzcE8mQiRtwB47F1FAo5BCJefnIwqjegzhocNKaXoVyIuGpvmpPbkInT9C3ZZgJllfrMdwGlzQpkqP1QOXP4T6FNZrCVSbtDjUMYoQR7G8Ih9KmRQKSXoWyDt9QWgV6Se2AD6V2GvzornPgREPhx6rB+tqjDDplBhx+VLeZZcJkS1CCD60pgJnRjn02dK3u47jKLqSbGjKSB/SWmylS2Rr0OGFQSOf8yn3kWnLicQWPx+Rr+2yenihINRsKWUkrQrk+1I8qkegOE8FuZSIka3TvXYYtQosKcvDcBo0ZEyVdOhEFKg2aiDogBVhTx+NnKRdGjHEUbj9IejSVCxcsagIhADbmwdwZpT33FpXY4RJq0AgRFMeKXT4hMhWeq6fwLJwzWA6mxcPOX3wBTkmtnKE9BZbESNrUsmQwzfnxfFAdEG+cZKompBiECNbYhoxvWYjjrnHp7ZmSyohKDOM2T8099uxuFSPQn16RA+myplwUX9aiK2wKWNxnlJsgNDI068b0eVPn7mI8TDrlVhRYcC2lkGctYSgV8qwuDRPtHhJdSpxLLKVvmlEINISJ31vnoROxFR6bDHmjoSILULIHwghg4SQkxM8TwghjxJCzhFCjhNCVk/lfY1aBSQkHSJbc29oCvCz2wQn+Mk6RIzasNgSaraEyJY0vSJb/TYvZBKCwjgWFnNNZYEGXaMeBEMcWvodaCjNg0mrgDfApVVTwWQ09ztQaVSnhXCoKeTtH1ZUGMTHNDKSdmlEwbogHdZsIq5aXIRjXVYcHQphTU0BpBICo1ZohEntuTAT0ohARFYkjWswhfE4LLKVGyQqsvUnANdN8vz1AOrCf+4G8JupvKlwkkl1zRYf2UpN6ksQefE8tgSM4fmINjd/YsmP8NlKt5qtIr0SEknqu10qCtToGXXj/LAL/iCHxaV5EZ2d6Xs3HMmZfgfqi1NfrwUAtYVaEAKsqioQH+PTiOnz/QPGhlCnaxoRAK5cXAwAsPoo1oXnWo7300sVdm8ACqkk7py9dKJAm36RrT6bR5wGAPCRLUKA8gJWIJ8LJERsUUrfATDZnJNbAPwf5dkHwEAIKZ3Ke6fa2JRSmrLIFjB2hzZZGrEwXDxrdQeglkvF2jKVjKTVuJ4Be+rd4wUqjRoMO/043MH7GDWUjaVqUi3up4IvGML5YVfKOxEFCnVKPHv3JnzqkmrxMa0s/QrkRbGVxpGtRSV6lBv4C/CG2rDYGjcpIlWk61zE8cilEujk6fVbfnT7OXz0qX04Fna377K4UZqnmvNaYEZqmKuarXIAkZa+3eHHLkqqxZbdG4Q/yKWkZgsYi2xNlnozhtNffTavWBwP8D5bgRCNO9w2FfTbUu8eLyDYP7x9egAKqQTzzToxspUJLvLnBp0IcTQt6rUE1tcaxZmcQDiylWY1W5mQRiSE4LqlJVDLgGUVfKF3pHlxKskUsQUAeUqScnEaSb/NgxBH8Y3njsIbCIkeW4zcIK1+NYSQu8GnGWE2m9HU1ISQ04duSwhNTU0pOaZeJy9Uhrva0dTUOef799v5k+vZE4cxci6+Nh7q5i9oxy8MQAaIa0WCfgAEb+/cBa089am7HosL8zS+lP2/jGRolI/47To7iHKdBO/ufgejXv7/9d7DJ6AcaoHT6UyLY43Huz38/3N7VwuaRs+m+GjiI6cB2NwEO3fuTBujxIP9vNhqPnEUzgvp2x+0Xk1RuZLivT27xcfUMuDYmXY0SXomeWVy6ejxAgGatr+LSLRSDm09g2lzrO19HhQoCdqGXLjnd9twrj+EZYXStDm+eKTzOTDTmCux1QOgMuLfFeHHoqCUPgXgKQCor6+njY2NeM/TjIN7LuDyyy9PyQl7b9swsGc/LtuwEpfML5zz/Z+TtuPdvjO48arLJ6yT4FoG8PuThzDoAVZVGdDYuAkAsKvrbQB+rFq3EWWG1NYFOH1BeN94E2saFqDx8vkpPRYAaHB48cP92xHkgHV1ZWhsXAF/kMPXm16HqbwGjY11aGpqQmNjY6oPNS57X2uGQnoBd1zfCJk0PUXD6+ffBoUfazddmjbda4OHuoCjx9G4eWPaRxXGf/+KD+6E2mBAY+OqpO1zyOHDwQsW3LAsfpXHY817UZYvQWPjxqQdQ6J4/OgbGAqq0uY37Hl3G65ZVgSlXIL/e68DALC+YR4aG+tSfGQTk87nwExjrs7SrwD4ZLgrcSMAG6W0byovNOuU8Ie4uIW2Z/oduPJnTeixJs9LZWwuYmrSX5/YWI1X79kyaUGqUDzvC3IwqMdqu5QyXpymg/1Df5p4bAmYdUooZfzXv6GULzJXyCTIV8vTqs5jIlr6HVhQpEtboQXw1g9AernIp/sg5ckQjE2Tyd8Pd+FLfzkyocWEwxvImLXLU5C0+S2HOIphJ1/7e//1i1Ab7t6tMqW34GckjkRZP/wVwHsA6gkh3YSQzxFCvkgI+WJ4k9cAtAM4B+C3AL401feezGvr/967gLYhF5rODMY8lygEsZWqAnmVXIr5Zt2k20TOTRQ6EQHeZwtAWtg/iB5baSK2CCFi3dbi0rGOPpNOkVZ1HvHw+EM4fMEimoemK9qw2Le506duS+jOTcdB1BdD6DpOJkJDg+ABNR6+Zis9opQXI09J4PAG4U2DJqERlw8cBYrylNAoZHjkIytQW6jFqsqCi7+YkRUk5IxDKf3YRZ6nAL48k/eOdJFfUDQmOryBEF451gsAOHRhFB/fUB339bNl0OGDUiZBXhrfzZkiOhUjC+SVUv5i5/Kl/mQjRB9L06QbEQAqCjRoG3KJkS2A76pLtYnuxdjeMgCXP4QPLJ9SQ2/K0ITrBNOpSN7pC0Ipk0CexhHBiSjUKXA03MmWLAQfrS6LGyvjiPlMKpDPV/DfP4vLn/IyirEMCX89W1VVgJ3fakzhETHmmrQ/40wU2Xrr9AAc3iDK8lVR3iWJZtDuRVGeMm0KfOOhUcigDqcZ8yPFVvic6AmkPo1zftgFuXQsmpQOrKkuwPKK/Kg1K9Qp0sqbJx6vHO1FkV6JDfNMqT6USdGEv3/pNLLHkaZDqKeCUavAqMsPjkvehAMhzRovssVxNDzEO3MiW0B62D8MpjhDwkg9mSO2xtk/PH+4G+UGNT57aS26Rz1JGzg65PSJ0bV0RkglRtZsqdIostU+5ESVUZNWNUb3XFmHV75yadRjhTplWls/2NwBNJ0Zwk3LyyBNA3PYyRA6YNPJa8vlC6a17cNkmLRKBDma1Eih4EPWFUdsOcO1n+kc5Y8kT5E+YivVtb+M1JM+V74JyFfLoZRJsL99RJxZ12/zYk/rEG5fXY71YdO/QxdGk7L/QXvq3OOnQ2E4lRidRuT/mw4F8u1DLsy7SO1ZOmDSKmHzBNLGm2w8b5zqgz/E4ZaVZak+lIsylkZM/fdPwOkNZmS9FhBhbJpEF3mHd+KarUwZ1SMwJrZSf/OU6tpfRupJe7FFCME9V9bhrdMDeGJXOwDgxfe7wVHg9jUVaCjNg0YhxaEkpRKHnKlzj58OY5Gt2JqtVBfIhziKjhE35pm1KT2OqSBc0EbdqT9Bx+Plo72oMWmwPGx2mc6oZQAh6RXZcmR4ZAtIrou8Y5I0oiDEWBpx+gw5fNCrZGk/5oiRPDLirPOlxvlo6Xfgf95swYIiHZ4/3I31NUZUm/iL96oqAw4mIbLlC4ZgdQdS5h4/HUzhVGeeOrZmK9Viq3vUDX+Iw/zC9I9sFerip63TgUG7F++1j+CrW+vSuoZQQEIIdEpZWtVsuXzBtGrSmA7GOZj3J4itXqsHgRAX1UiQaZEtpZRAq5CmRXfxoMObEdcRRvJI+8gWwEe3fvKh5VhWno8v/+UI2odc+NCaCvH5tdVGtPTbE17LIISfMyGyJQyqjUwjygggk5CUpxHbh1wAkBGRrcI5SNXMlH8e7wOlwM0r0j+FKJCnkqddN2KmphHn4rvpDEf+OMoLrkgyLbIF8Deh6RDZGrRnRoaEkTwyQmwBvN/UU3euhUEjh1ouxQ0Rbe/raozgKPB+pzWh+xwMe0MV5aX/j6TSqIFKLony3CKEQKOQprxAvm3ICQCikV86I85HTMPI1itHe7CkLC/KAiXdyVfL0y6ylalpxAJtcodRU8p3Gy4u5edtjk8lZlpkCxC6i1N/4zTkzIzaX0byyBixBQAl+Sq88O+X4JnPb4g6Ya6sMkAqITic4LqtTOog+cjaSrz99cujBgEDvC1EyiNbwy7kq+VRQjBdGStCTi+x1T3qxrFuW0ZFtQAgTy2LO/1hLuA4GuNL5fAGocsgsRCJXMpPOEjWMGpPIIQQR0XfufFiy56BYisdIluUUhbZYmSW2AL4CM6qqmjXXZ1ShobSvITXbWWSN4pCJok7602jlKa8Zqt9yIl5Zm1G1BnplDIoZZK06GCK5GSPDQCwMc29tcaTr5anrED+1zvP4dZfvyuuXSDEwRfkoFNkjlgYj0mrwHCS0oiCx9aCIh0UUkmcyBb//zEvg9KIhWkgtlz+EDyBEKvZynEyTmxNxJrqArzfNYpAKHEt+4MOHwgZq4fKRDSKdBBbLszLgOJ4gE+9psMJejyn+xyQEKC+RJ/qQ5kWqarZujDswmM7zwEAjnfzYksY1ZOpkS2Aj7xaknQj4AivT55ajooCdYzXlsMbhFxKxJmimYBZp4DF5UcoiUawFyOTylEYySNzfjUXYV2NEd4Ah1O99oS955DDB5NWkVZGnNMl1WlEhzeAQYcvI4rjBUw6RdpFtpr77Kgt1GZc63heCmq2KKV48OWTUEgl0CikON3Hiy2h5ihTa7YA3v4hWSnuyJqsSqMmbmRLr5JnRIRawKRTgqOptXIRPbZ06V+OwkgemasixrG2hk8tHjyfuLqtIYcX5gyo15oMbYojW+eH+U7E+Rkktgp1yqj2eps7gNYBRwqPiBdbkQOzM4V8tRwufyihEeeL8eqJPuxuHcY3r1mIpWX5aO7j/98J7uiZLLaM4UhNPEZdftz2+Ls4Nziz76pTFKNyVBk16ByJjWxlUr0WMNbwMlGRvD/IYU/rsGiYnQyEchQW2cptskZsFeepYNQqcH7ElbD3HHJkflGjRiET0yepYMz2ITPSiEC4LiZCbH3nH8dxx1P7knpCngy7N4DuUU9Gii1htItjjlzkHd4AfvDP01hanoc7N1ZjcakezX12cBzNijRioZYXW/HmI+5tG8GRTuuMu7KdPsHaQYYqowZ2bxA291hUMhPFltDwMlFZwE/ebMEnfr8fZwecSTsGsfY3A8a+MZJH1ogtgHdPT1Qxrj/IocPiRkmG341oFFJ4UhjZah9yQkKAalNs8X66UqhXYsTpB6UUfTYP3jw1AIvLP2FEIdm0hCMzDZkotsImu3NVJP/ErjYMOX14+NZlkEklaCjLg9sfQqfFLdYkZXRkS6sARwFrnPV8v5NvEJqpsLVHpFmFZpvIVOKo2w+9MnOK44EIK5c4YutYlxW/33MeANAfrqtKBkMOH+RSEuWByMg9skpsJbI+5K3T/bC6A7h+aenFN05jNAopXCkUW23DLlQUaKCUZU6tkUmrQJCjcAWAZ/Z3isW1HXFGmMwFzX18HeKi0swqjgf4NCKAOavbOt1rR0NpHlZUGgAADaX8WKPTffaINFnmii2TmBaLFQ/vh20uZiq2nBE1W1XjxFa/zYtjXVasrjbM6L1ThVkUW9E3Sv4gh//3wnGxBnK6dhq7zg7FmL5OxKDDC7NOmVG1bozEk1ViK5Ft5n9+rwOVRjUuW2hOyPulCo1SluLIliujiuOBMauPUR/FXw90ifVmHQlMUU+H5j47DBo5SvIyr35QiGwJHYmBEIfP/ukg3msbScr+LO6AKEgAoK5YB6mE4HSvPSvSiEJn9HgXeX+Qw4keoRFgZudAR1RkSw0A6Brlxdbzh7vAUd7PL5PIU8sgl5KYyNaTu9rQ0u/AD25ZCmB6RrGUUtz9f4fwkzfPTGn7IYcP5gz87TISCxNbcWgdcGD/eQv+bX01pJLMvhvRKqTwhzj4gxcvUO6zeaZ8tzYVOI7i/LAzY2wfBISBvzs6Axh2+vD/rlsEQoCOkRRFtvodWFySl5F3xvnj0ohHu6zY0TKIprODSdnfqMsPY0S6RiWXYr5Zi+Y+e1YUyJsmKPhu7rOLv/EZR7Z8AajlUsikEuhVvAlxp8UNjqN49lAXNs0zifNoMwVCCN/BGSG2WgcceGzHOdy0vBS3ry6HTEKmVSJg9wbhC3LY3ToUt3ZuPEMOH/PYYiRGbBFCriOEnCGEnCOE3B/n+U8TQoYIIUfDf+5KxH7Hkyix9fS+DiikEnxkbcXFN05z1GEDx6lEt77+7FF8+In34A0kJhLWb/fCG+AyLrIlFNW+0x1EjUmDqxYXozRPlRKxFeIozvRnZiciMGaAKbjI7z3HR7R6rcmpkRl1+cWxNgINpXk43WcXRYg2g01NhSkM49NeQr1WnkoGh29m50CnL9pdv9KoQZfFjX3tI+iyeHDHusyKagmMt3L58RtnoFFK8dDNS0AIgVE7cYdnPIRth51+NPdf3GooGxqtGLNn1mKLECIF8GsA1wNoAPAxQkhDnE2fpZSuDP/53Wz3Gw9hDttU7jYmwuUL4sUjPbhhWUlUOiJT0Sr4mgR3YPK7XUopTvXY0WP14He72xOy70waQB2JUFQbosAnNlZDIiGoNmlTkka8MOKCN8CJ8+oyjTw1f/EWboLebRsGEDvkOBH4gxwcviAKNNFia3FpHvpsXnSPeqBVSCHJ4Gh1gUYOQmJrkN7vsqIkT4V5Zt2MxyPZx3UbVoW9tp491IU8lQzXLS2Z1bGnikgrlyGHDzvPDOKOdZXi79yoVUxruHdklOyds8OTbhsIcRhx+Vlki5GQyNZ6AOcope2UUj+AvwG4JQHvO23y1XJwFHDOwsTz5aO9cPiCuHNTdQKPLHWow2LrYsOoe6weOMJDeh9vasNAArpz2of5dur5GWT7AIxd0BQS4MNr+Lv5alOsyeNcIBTHZ2pkSy2XQi4lsHsDcPuDYgQmGWLLGjaujIlslfFrd/CCBdoMTiECgEwqgUEtjzE2fb/TilVVBuhVshnXbDm9QeiVkWJLje5RD14/2Y9bV5VnnKGuAD8Rgv9uvHy0ByGO4kOrx7IWpkm8y+IhvJdKLsE7Z4cusm3mjHxjJJdEiK1yAF0R/+4OPzae2wkhxwkhzxNCkhKPFutD3DM72VBK8fS+Diwq0WP1uPmLmYqQMhFc5CmlcTuZzvTz9gI/uGUJgiE65eLPyWgfckGrkGbcXZ1MKkGtSYstFTLkh+t/qk1aDDv9Yt3PXNHcZ4dMQlBXnFmCVYAQwo/s8QRw6MIoAiGKFRX5GLB7EUyw0aklLLaMcSJbAN9Zl8nF8QI1hVq81zYiRvCHnT50WtxYVWVAnlo+i5qtIPQRcw+rjBqEOAp/kMvYFCIAFOoUGHL6QCnFC0d6sLwiH3XFY5Fi47iaroshCN1rl5TgUIclZkJHpB+f4B5flOHm2IzZM1dnnn8C+Cul1EcI+QKA/wWwdfxGhJC7AdwNAGazGU1NTdPaSdcA/6Xfsec9VOdN/y6swx7C6T4vPtmgwK5du6b9+nTD6XSia+QkAGDvgcOwnJNiR2cAf2vx42eNGugVY+mU19vCd2sjrbiqSornD3djqWIYNfkzv5s90uqFSUkzci2/vZLC5wmI30FnP//deuHNXTP6bs2UPSe9KNEA7+3ZPWf7TBROpxNNTU2Q0wBaO3owOtgHKQEadB4co8DLbzXBpE5cj07zCB+97Ww9jSZL9M2CQUlg9VFQv2fa55VUIazfeDYVBPF4pw8/fW471pfI8P5g+GI/cgFOSxDD9tCMPmP/iBslWon4Wkt4PavzJBg6+z6azs7wg6QIYf2sAwH4gxye+scONPd58YnFiqj18Yz6MGALTnnNDofPlfOkIwiEKJ56qQkri/hLaYslhKeO+3DPKiVq8qXi/5uu1pNoGmxO6OebCyb6DjKmTyLEVg+AyNueivBjIpTSyD7v3wH4n3hvRCl9CsBTAFBfX08bGxundSCq9hE89v4+1DWswCULCqf1WoD3VAJO4K4bN6Mqg0w4J6KpqQmbVqwEDr6LhQ1L0bioGI8/8R78nAXqigY0NhSL2/6j/32UG0Zxw9VXYIs3gAM/bcKrfWo8d/OmGXfB/ezEHswzKtDYuD5Bn2huaWpqgvAdLOyx4ddH98Bc24DGZcnzXjs/7IJKLkFpPt96/533tmP9AiMaG1clbZ/JQli/4lPvQqWWo8vlx5pqKa67ZAH+2nIAVYtXYl2NMWH7cx3vAw4ewRWb12FRSXTadeX5A2g6M4TSwgI0Nm5M2D6TSeT3L5ItHMWbvbuwo1+Cb31kCw6+fQYySTvuvLERw9vOYl//hbivuxj0ve2orShEY+MKAECDw4tHjuzAl65egsZ1VbP8NHOPsH6WvG48e+YYDjryIJf68M0PXR6Vaj4easW2zrO45NLLoJjCkO0m+ynou7rxhVuvwG+OvwWrqhSNjUsQCHH44S93w+L1YtuQDk/fsgF9BzqBIydw3eWXoMygTubHTQoTfQcZ0ycRt5UHAdQRQmoJIQoAHwXwSuQGhJDIq9PNAJIi8ce3mU+X5j479EoZKgoy70cxEWKBvD+EYacPBzv42ZFHwrUzAmf6Hagv4UPrepUc/964AAcvjM6qTmnE6RNtFDIdwQE/mR2JlFJ84nf7cfUj7+C1E32wuv3os3kztl5LIE8lQ5fFjZO9NlyywIRyA59SSXTd1kRpRGAslZjJtg8CUgnBV7YuQEu/A283D+D9TisWl+ZBrZBCr5TBF+TgC06/o9jhiy6QL9Kr8O79WzPOW2s8QiH8tuZBbF1UFFPTJ3R4TnVY9bDTh0KdEiq5FBtqTXinla/b+t+9F3Bu0IkrFxVhz7lh7G0bxqDdF3UMjNxl1mKLUhoE8BUAb4IXUc9RSk8RQn5ACLk5vNk9hJBThJBjAO4B8OnZ7jceiRBbi0r1Gd2tNB5N+OLi9oWwvXkAlPIF4JFiKxDi0DbkxMKIOoaVlbzzdtvQzGaGUUox7PSjUBd74ctE9Co5TFoFOi3J60jsGHGjx+qBVELwpb8cwT1/Owogc4vjBfLVcpwfdoFSYPOCQjFq15NgsTUaLnI2xBFbwqijbKjZAoAPLC9DtUmDR7e34lgXXxwPQBRL063b4jjK12yNE6NFelVG+rtFEil0bl8da+cjGsVO0dh0xOkXX3PZQjPah1x4v3MUv9jWiivqzfj1x1ejJE+Fn755BoMOLwo08ilFzBjZTUK+AZTS1yilCyml8ymlD4cf+x6l9JXw379DKV1CKV1BKb2CUtqSiP2OZzZii+Momvsy189oIjThDiKXP4g3Tw2g3KDGLSvLcazLJhYotw+5EAhRLCoZE1uCEalg3zBdHL4g/CEuq+7oqk0aXBhOXmRr/3k+2/7Xz2/Epy+pETudMtX2QUBwkVfLpVhRYYBWKYNBI098ZMvlh14pi3thEzoSsyGyBfBNHF9uXIBTvXa4/CFRbAlrPV2x5Q6EQGn2iNFIhBs+o1aBxvqimOfHvMumJrYsLr/oxXf5Qr5c5fP/dxj+IIfvfWAJVHIp7rmyDkc6rXjjZD8rjmcAyDIHeY1CCpmEzEhsdY264fKHMnLY72RolLzYGnL4sOfcMK5dUoLV1QXwBEJoCXcgtoSN+eojxFaBVoECjRxtMxRbwl2iKUsiWwDfkTg+rXqi24Z+W2IMOve3W2DSKrC4VI+Hbl6Cxz++GvdcWZfxJ2vB2HR9rVEUQmX56oQbm466Yw1NBWpMWhTnKcWZf9nAB1eXozxcB7Sqku+eFroJp2v/IGwf2Y2YLRi1CqjlUnxwVXlcIS6co8bbaUzEiMsHY7g8Yr5Zh9J8FYadPnxuSy1qC3lPwQ+vrUC1ScN7bOVlzw0nY+ZkldgihMzYRT7T/YwmQiGVQCoheONkP/xBDtcsKcaaav7ELKQSz/Q7IJOQGD+seWYd2meYRhRaqbPBGFagyqhBr80j1sO4fEHc8dR7+Olbs7fJAID95y1YX2sU0zY3LCvFN65emJD3TiVCxPmS+SbxsTKDOimRrYnEllRCsPNbjfjM5tqE7jOVyKUSPHhTA65dUizWFM40jZgNQ7onQiaV4F/3XIr7rq2P+7wgnKYS2QpxFBbXWHkEIQTXLilBRYEaX7ligbidXCrB16/if7vmLDoHMmZOVoktgD+xW2cgtk732iEh0dGdbIAQAo1CivZhF4xaBdZWF6AsX4XiPCWOdIyJrXlmbcxd37xCLdqHZxbZEsz8sqVmCwBqCjWgFOiy8CLhrdP9cPtDODc4M0EaSfcoX6+1oTZx3XnpglHLi63NER3C5QZV4mu23NFzEcejUcgyftbpeK5bWoIn71wrCvQxsTX5OfCNk31RY7kcWTCkezLmm3UTmrIa1HJIyNTEltXtB0fH6rwA4MGbGrDtG5fHGOZ+YEUZblhWgsZFsalLRu6RdWIrLzyyZ7qc7nNg3iQ/yExGMDa9clERZFIJCCFYXVWAw+HIVku/I6o4XmCeWYchh29GjtSCy3I21WxVGfkUgTC258UjvMNJ+5AzyshwJuxv57tEN8wzXWTLzOOm5WV46s41WFqeLz5WZlDD4Q3CPkO383iMugITRrZyBXEW5SSRrbYhJ7749BH881iv+JgQCcvLUrE1GRIJmfLIHkGQRUbspRIS97ohlRA8/vE1uHlFWeIOlpGxZJ3Ymk0aMdtSiAKasP3DNUvGZputripAl8WD88Mu9Fg9UcXxAsJMw5kUyQs1W8YsuvjVRNg/DNq9ePfcMAp1Cti9QYzOcGqBwIHzFuSr5aiPI3ozHa1SFvXdAyB6DvUlsG7L4vLHtX3IJcYGf0/8fRRGcXVF1B+OpRGzr2ZrKhi1iim5yAs3kaYsOq8x5oacEVuDjolP6jZ3AD1WT9YVxwtolFKo5VJsqRtL46wO12397WAnAKC+JPazzxfE1vD002TDTh8MGjnk0uz5ihm1CuiUMnRa3Hj5aC84Cnzx8vkAgPMzWKNI9p8fwboaY1bZjkyGILYSVbfl8YfgCYRyPrKlm0LNlnAj1B2x9k6fUCCfe5EtgP9tTyWNKBTRZ1MtKmNuyJ4rYZh4YutEtw3rH94eY+Qp0NwvFMdnX1QBADbWmvDxDVVRoe6l5XlQSCV4/lA3AMSNbFUZtZBKyMwiWy5f1t39EUJ4+4cRF158vwcrKvJx1WLehf/8LCwhBuxeXBhxY+O87KvXmgihiy5RdVuCIWU2RVJnglRCoFVILyK2eMHQMzq29sL22VqzdTFMWuWU0ojZ2GXNmBuy7peVH67Z4jgqRgnODvAWB++2DscdMC10ImZrZOuBmxpiHlPKpFhSnof3O63QKqTixS8ShUyCygL1jMTWsNOflXd/1SYNdp0ZgssfwkMfaEBFgRoyCZlVZGtfO++vtT4Li+MnwqxXQiYhCYtsCVGJghxPIwK8fcNkdZaCqIgUuoLYEuo7c40pR7acPhDCvmeM6ZOVkS2OAs6ISez94RqFQx3xI1une+0o1Clg1mefOJgMQXguLJnYNX+eWTcjF/kRpy+rOhEFqoxauPwhyCQEH1hRBplUgiqjBudn2LUJ8PVaOqUsa8V+PKQSgpJ8VcLEFotsjaFXySaNbAl1R302r2hs7PQFoVNmX7fmVDFqFbC6A+J6TMSIy48CjSJn14kxc7JSbAF8HZaAcEI/0jkKjovtGmvu54vjM30sxXQR/LYmK8qeV6jFhRFX3HWbDH5UT/aJV6FI/vKFZjFyV1uonbHTPsD7a62tKYAsi+rbpgLvtZWYAnkhKiHYTOQyeWo5HL5JIlvhNGKIoxhw8H93eANZ6bE1VYS04MUaXSJH9TAY0yHrzu55cUb29IUdvh3eIFrHeSIFQhzODjizthNxMtZWF0AuJVhZaZhwm3lmHbwBDr22qUcg/EEONk8ga4ZQR1IXFqa3rxmbsVY7A0HKcRQne2x4vOkczg06saE2+ywfLka5QZ24mi2WRhTRq2SweyaLbPkgC0dmhLotpy+Ys/VawNRH9oy4fKxeizEjsu7XJUS2Ilufe60eLCjS4dygE4c7RqOMS9uHXPAHuZxK4QgU5amw45uNYmdYPCLtHyoKpjbqREjpZONJaXWVAa98ZTOWRXhG1RRq4Q1wGHB4xSHLk7HzzCC+8exR8S56aXkeblmZe148ZQYV+u1ehDg667SMxR0AIWO//1xGr5LjwiRp7RGXH4tK9TjZY0eP1Q3ACIc3mLOdiMCY2OK7DSeO9I84/VhclnvXCsbsybrIlkETP7K1aZ4JJq0ChzosUdtn65ieqVJp1Ex6oRsTW2MRwa/+9X18+ZkjE75myCG4x2dfZIsQguUVhqiU87zwPLTzU0wlPr7zHDQKGX750ZU48B9X4l9f3TKp4M1WygxqhDg6qS3LVBl1+ZGvludcKjYeF6vZGnH6sazcAGAssuXwBnM7jTjFkT0jLpZGZMyMrDsz5Y9LI7r9Qdg8AZQaVFhTXYDD44rkj3ZZoZBJRFHBiMasU0KvlIlje450juKfx3rx9umBqHEfkQjdTtlYIB+PWtGP7OJia9DuxaGOUXxkbSVuWVme8UOmZ8OY19bsxZbFzQxNBSYTW95ACE5fEBUFapi0CjGN6/TldmRLiMJPJrayuTyCkXyyXmwJ9Vql+bzY6hhxi5EXpy+IF45045qG4qwy30wkhBDMM48VgD/y1lkQwp94jnVZ474mG4dQT0axXgW1XDqljsQ3T/WDUuD6ZSUX3TbbKU+gsenoJEOoc408lRz+EBf3ZijyRqi8QI1uMbIVgD5H3eMBvtaPkDEfrXhkc3kEI/lkncLQKKSQSciY2LIKYkuNtTV8950Q3Xr2YBcc3iA+v2Veag42Q5hn1qF9yIl97SPYc24YX7liAQjhu+jikWvGfxIJb3Y6FbH12ol+zDdrUVekm4MjS29K8/moXiLEliXcks8Ym28YL7ol3ghplVENCk5vbhfISyUEBrVcdIiPx7BTKI9g3zPG9Mk6sUUIiXKRF7royvLVWFqeD4VUgiOdowiGOPxhz3msrzFixSTdeAy+JqnX5sWPXm9BcZ4SX75iARaV5IlmnOMZdvqgkEmgz6EakHlm7aRFyQB/odt/fgQ3LCvNOZuReOhVcuSpZImJbLn9zPYhjF4cRh1rYzAsRp0VvNga9SAY4uDyh3I6jQhc3Nh0zF4kNyL2jMSSdWILiB7ZI0S2ivOVUMqkWFaRj0MXLHj9ZD96rB7ctaU2lYeaEcwz81GYY11WfOWKBVDJpdhQa8SRzlH4g7EmgMNOPwq1ipwSFLWFWnRa3AhMYor41ukBcBS4bilLIQqUGdTomWbN1skeG2759bvixY9SilFXgKURw+gniWwJhqaFOiUqCtTwBTl0hgdS53KBPBAe2TNJGjHXIvaMxJIQsUUIuY4QcoYQco4Qcn+c55WEkGfDz+8nhNQkYr8TkRchtvrtHhTqFFDK+LmAa6sLcLLHjid2taG2UCvOtmNMjNA8UG5Q4yPrKgEAG+eZ4A1wON5tjdme96LJrbu/2kIdghwVa2Di8dqJPlSbNDlpMzIRVUYNWgcd03rN73a341iXFbvODgIAXP4Q/CGOFciHESJb8Ub2RAqG8rCVS0u/I/y63BZbF4tsiWlEFtlizIBZiy1CiBTArwFcD6ABwMcIIeOH8X0OwCildAGAnwP48Wz3OxnCfESA73SK9D5aXV0Af4jDqV47Pndp7YRjahhjzDNrUV+sx3dvWCyKVmGOX7xU4nCWjuqZjNpC/sI10YxEq9uP99pGcP1SlkKMZPOCQnSMuKOsRSbD7g3g9ZP9AIB3z/HfPdHQlEW2AAB56slrtjQKKTQKmdigMCa2cjsNa9RNLrZGXH7IJERcXwZjOiQisrUewDlKaTul1A/gbwBuGbfNLQD+N/z35wFcSZJ4xYlKI9o8YiEuMDaipkAjx+2rK+K+nhGNUibFm1+/DDcuLxUfM2oVqC/Wxy2SH8nSIdSTUVvIp1onGtvz9ukBBDmK61kKMYqti4oAADtaBqe0/b+O9cEX5FBbqMV7bSOglI7V0rDIFoCLRLZcfjENVl7Ai60z/bzXIEsjKjDq9k84CcLi9MOYY+URjMSRCLFVDqAr4t/d4cfibkMpDQKwAUjafJJ8tRzWiJqtSMPIQp0SNy4rxTeuXgi1QpqsQ8gJNs4z4nDHaFSdEqU0LLZy68JXoJEjXy3HhZH4Yuv1k/0oN6ixvCI/7vO5SqVRg4XFuimLrb8f7kJdkQ6f3VyDHqsHHSNuWNwsshXJ5DVbPtEnKl8th14pEyNbudyNCPA3kByFeO0YTy6WRzASR1r9ugghdwO4GwDMZjOamppm9D7WQT9s7gBee3snHL4g3MM9aGoaEp//cDkAnx1NTRdmf9BpjNPpnPEaTgWdJwi3P4T//edOLDDwwtUdoPCHOFj7u9HUNJC0fc8F010/kyKEI63daGqKTq1ylGJvqxuXlMmwa9euBB9l+jLV9Vug8ePNdide37YTatnEUYNeJ4f3Oz24o14B2Ug7AOCPr+2FcM/UevJ9OM5nT8/PTH+/HKUgAI63nENTqDPquY5+D4wqIr5vvjyEzhG+QL7l+Puwt+fu+g308uL0jZ17UKaT4OhgEMMeiquq+Uhhe68HahmSek5NN5J9DcklEiG2egBURvy7IvxYvG26CSEyAPkAYop9KKVPAXgKAOrr62ljY+OMDqhV0o5/tjejeOFKYPtebF69BI0rxwfbsp+mpibMdA2nwlKnD78+ug1+QzUaGxcACI/12b4LG1cuRuOqzE7TTnf9Xh44in3tIzGvaR9ywvvmLly3vgGN6yrjvzgLmer6aaoteO3J90CLF6FxWemE2/3o9WZIJefxrQ9dhkKdAr88vgPD0gKsqjIAJ5px/RVbkK/Jnrqj2fx+dU1vwlhcjsbGJVGPe9/dhvrqIjQ2LgcA1F84iO5wVHHrlktQkp89Ew2mu36y1mE8cXw/5jesQCBE8au3DiDIUXxgy2psmGfCgwd2YHllARobVyXvoNOMZF9DcolE3MYcBFBHCKklhCgAfBTAK+O2eQXAp8J//xCAHZTS+InxBCC4yJ8Jh8dzce7cXFCoU6KuSIf97WN1W4JDdS6OtFhYrEefzRtTZHuql6+JaWADbOOyusqAfLUc25snTiUGQxxePNKDK+qLYNYrQQjBJQtM2Ns2DIvLD6mE5Hw3XSR5anlMGpHj+Pq2yBS/ULcFsDSisC5720bw708fxnyzDuUGNb738ikEQly4Ziv3zmuMxDBrsRWuwfoKgDcBNAN4jlJ6ihDyA0LIzeHNfg/ARAg5B+AbAGLsIRJJXlhstYQLP0uz6G4t3dgwz4hDFywIhuu2RiJME3ONlWFz3PFjjE712iGXEiws1s/9QWUAMqkEjfVmNJ0ZnLA4edfZIQw5fPjw2rFo6eb5hRh1B/Be+wgKNHLWWRwBPx8xuvbI7g0gyNGouqOKsNgiBNDmeA2rMGD6l9tboVFK8cfPrMP3P9CAMwMOPLmrDS5/KCfPa4zEkJAEPaX0NUrpQkrpfErpw+HHvkcpfSX8dy+l9MOU0gWU0vWU0vZE7HcihMhWS58DhADFeUxsJYstdWa4/CGxwFkwTTTnYCHp8op8SAjwfozYsqGuSA+FLHvqYRLN1kVFGHH5cSyOb5vNE8DPt52FSasQuxcB4JIFfI/N+51WNqpnHPGGUY8ZmkZEtgy8ZYlOKcv5LjuhwUKrkOIPn16HMoMaVzcU44p6M36xrRUAG9XDmDlZefYXxFZzvx1mnZINmU4iVy4qQrlBjd/vOQ9gzPgvFzvDtEoZFhbrcTRCbFFKcarXjqXlLIU4GZcvNENCYi0grG4/PvG7/TjT78CPb18e9VsuzVdjXiFvuJuL37fJ0KvkcPiiI1sj4my/sRshIY2Yl+MeWwAgl0rw9asW4nefWoclZXzXMCEED928RIya5mJ5BCMxZKUKEYpkHd4gSlm9VlKRSSX49CU12H/egpM9Now4/TBo5DkrcFdVGXC0c1RMh/Xb+Rou4eTNiI9Bo8DaamNU3ZbF5cfHfssLrSfvXIOrGmKnPQjRLeaxFY1eJYPdEx3ZEuspoyJb/Pkx1z22BO69qg6b5ke7ElWbtPj3y+cDQFY1EDDmlqy8IhrUY3dpZezHkXTuWF8JrUKK3+85z3vR5HCUYWWlAXZvEOfDflunevi6wSWsOP6ibF1chNN9dix+8A2sf3gbtv6sCe1DTvz2U2uxdVH8sVqb5xcCYJGt8eSp5DE1W+IQ6ojoDD/KTJLzxfEX46tbF+DPn1vPfseMGZOVvzCNQgqZhCDI0ahRPYzkkKeS4yPrKvHn9zpQZdTArM/dUPvKSn5CwdFOK+abdTjVawchwGI2D/GifGx9FUIcxajLD6cvCE8ghH9bX4UN8yb2P9403wSphKAoh79z8RBqtiilYi3WsNMPQngDXgFCCMoL1MhjYmtSZFIJttSZU30YjAwmK39hhBDkq+UYcflZJ+Ic8ZlLavGnvRfQPuzKaWGxoEgHrUKKo11W3L6mAqd6bagt1ELL0jQXJV8tx5evWDCt1xg0Cjx790bMN+uSdFSZiV4lR5Cj8AY4cVLGiNOHAo0CsnEp/odvXQatMrc7ERmMZJOVaURgrEi+1MDE1lxQZdLgmnBNTS63R0slBMsrDGKR/KleO6vXSjJra4wsjTiOsZE9Y6nEEac/bop/03wTllcY5urQGIycJGvFluC1xdKIc8ddW+YByE3bh0hWVhnQ3GdHv82LHquH1Xkw5hxBbNkj7B/42X5MlDIYqSBrcxtCZKuMRbbmjLXVBfjph1fg0gWFqT6UlLKy0oAgR/HcIX4+OxNbjLlGuNm0j4tsLWbfRQYjJWS12JIQFmWZSwgh+NCazJ6HmAhWhZ3k/3aAHwLM0oiMuSZPTCOORbaGnD5cxs6HDEZKyFqxtbwiH8NOX0wxKIORbIryVCjLV6HX5kVZvgpGVk/EmGP0KsFrkI9s+YIhOLzBnLZlYTBSSdYqkbu2zMMzn9+Y6sNg5CgrqwwAgAYW1WKkAP24yJZFNDRlkS0GIxVkrdhiMFKJMJSa1WsxUsH4yNaIM9Y9nsFgzB1MbDEYSWBDLW/Eubq6IMVHwshFtAopJGQssjUszkVkYovBSAVZW7PFYKSSFZUGbPvG5Zhv1qb6UBg5CCEEepUcds+4yBYbpMxgpAQmthiMJLGgiLmaM1KHXiVD09kh3PW/h3Bu0AGApREZjFTB0ogMBoORhVy6oBC+AIfuUTdK89W469Ja6NjYKAYjJbBfHoPBYGQh/3378lQfAoPBCDOryBYhxEgIeZsQ0hr+b9xqYEJIiBByNPznldnsk8FgMBgMBiOTmG0a8X4A2ymldQC2h/8dDw+ldGX4z82z3CeDwWAwGAxGxjBbsXULgP8N//1/Adw6y/djMBgMBoPByCpmK7aKKaV94b/3AyieYDsVIeQQIWQfIeTWWe6TwWAwGAwGI2MglNLJNyBkG4CSOE/9B4D/pZQaIrYdpZTG1G0RQsoppT2EkHkAdgC4klLaFme7uwHcDQBms3nNc889N53PwhiH0+mETsfsB2YKW7/ZwdZvdrD1mx1s/WYPW8PpccUVVxymlK6N99xFxdZkEELOAGiklPYRQkoBNFFK6y/ymj8B+Bel9PnJtquvr6dnzpyZ8bExgKamJjQ2Nqb6MDIWtn6zg63f7GDrNzvY+s0etobTgxCSNLH1EwAjlNL/JoTcD8BIKf32uG0KALgppT5CSCGA9wDcQik9fZH3dgBgamt25AOwpfogMhi2frODrd/sYOs3O9j6zR62htOjnlKqj/fEbMWWCcBzAKoAdAD4CKXUQghZC+CLlNK7CCGXAHgSAAe+RuwXlNLfT+G9D02kEBlTgxDyFKX07lQfR6bC1m92sPWbHWz9Zgdbv9nD1nB6TKZbZmVqSikdAXBlnMcPAbgr/Pe9AJbNZj+MGfPPVB9AhsPWb3aw9ZsdbP1mB1u/2cPWMEHMKrKVTFhki8FgMBgMRqYwmW5J59mIT6X6ABgMBoPBYDCmyIS6JW0jWwwGg8FgMBjZQDpHthgMBoPBYDAyHia2GAwGg8FgMJIIE1sMBoPBYDAYSYSJLQaDwWAwGIwkwsQWg8FgMBgMRhJhYovBYDAYDAYjiTCxxWAwGAwGg5FEmNhiMBgMBoPBSCJMbDEYDAaDwWAkESa2GAwGg8FgMJIIE1sMBoPBYDAYSYSJLQaDwWAwGIwkwsQWg8FgMBgMRhJhYovBYDAYDAYjiTCxxWAwGAwGg5FEmNhiMBgMBoPBSCJMbDEYDAaDwWAkESa2GAwGg8FgMJIIE1sMBoPBYDAYSYSJLQaDwWAwGIwkwsQWg8FgMBgMRhJhYovBYDAYDAYjiTCxxWAwGAwGg5FEmNhiMBgMBoPBSCJMbDEYDAaDwWAkESa2GAwGg8FgMJIIE1sMBoPBYDAYSYSJLQaDwWAwGIwkwsQWg8FgMBgMRhKRpfoAJsJgMNAFCxak+jAyGpfLBa1Wm+rDyFjY+s0Otn6zg63f7GDrN03OnOH/W18vPsTWcHocPnx4mFJqjvdc2oqt4uJiHDp0KNWHkdE0NTWhsbEx1YeRsbD1mx1s/WYHW7/ZwdZvmghr1dQkPsTWcHoQQjomeo6lERkMBoPBYDCSCBNbDAaDwWAwGEmEiS0Gg8FgMBiMJJK2NVvxCAQC6O7uhtfrTfWhZAT5+flobm5O9WHMGpVKhYqKCsjl8lQfCoPBYDAY0yajxFZ3dzf0ej1qampACEn14aQ9DocDer0+1YcxKyilGBkZQXd3N2pra1N9OAwGg8HIAjiOonvUgyqTZk72l1FpRK/XC5PJxIRWDkEIgclkYtFMBiPLeOStM/jRa5kfeWdkJjtaBtH40504P+yak/3NWmwRQioJITsJIacJIacIIffG2aaREGIjhBwN//neLPY3uwNmZBzs/zmDkX3sah3G9pbBVB8GI0fptLjBUeBIx+ic7C8Rka0ggG9SShsAbATwZUJIQ5ztdlNKV4b//CAB+51zrFYrHn/88Rm//he/+AXcbncCj4jn0KFDuOeeexL+vgwGg5EsbG4/hhy+VB8GI0cZdfsBACd6bHOyv1mLLUppH6X0SPjvDgDNAMpn+77pSDqKrWAwiLVr1+LRRx9N6PsyGAxGMrF6ArB5AvAFQ6k+FEYOMuLKMLEVCSGkBsAqAPvjPL2JEHKMEPI6IWRJIvc7V9x///1oa2vDypUrcd999wEAfvKTn2DdunVYvnw5vv/97wPgRxzceOONWLFiBZYuXYpnn30Wjz76KHp7e3HFFVfgiiuuiPveDQ0NWL58Ob71rW8BAIaGhnD77bdj3bp1WLduHd59910AwEMPPYQ777wTmzdvxp133ommpibcdNNN4r4/+9nPYv369bj00kvx8ssvAwBOnTqF9evXY+XKlVi+fDlaW1uTvl4MBoMRjxBHYfMEAADDTn+Kj4aRi4yGxdbpXjuCIS7p+0tYNyIhRAfgBQBfo5Taxz19BEA1pdRJCLkBwEsA6uK8x90A7gYAs9mMpoixAQBvZeBwOAAAP36rDS0DzkQdPgBgUbEO/++a+RM+/8ADD+D48ePYvXs3AOCll17C6dOnsX37dlBKcccdd+CNN97A8PAwzGYz/va3vwEAbDYb8vPz8bOf/Qz//Oc/YTKZxM8BACMjI3jhhRdw+PBhEEJgtVrhcDjwpS99CV/4whewadMmdHV14YMf/CAOHToEn8+HkydP4s0334Rarcbu3bsRDAbhcDjwn//5n9i0aRN++ctfwmKx4Morr8SGDRvw6KOP4u6778Ydd9wBv9+PUCgUdQzpjtfrjfk+TMTRwSC6nRxumqeY1T6dTueU98mIha3f7Mjm9XP6KSjl//5m017MM0gTv48sXr9ksNJqBQAcjVizbF7D9h4PAMATCOFvrzWhQp/cfsGEiC1CiBy80PoLpfTF8c9Hii9K6WuEkMcJIYWU0uFx2z0F4CkAqK+vp+NnMjU3N4tWBnKFHFJpYn+gcoV8UqsEnU4HiUQibrNnzx7s3LkTl112GQD+i9nT04MtW7bggQcewA9/+EPcdNNN2LJlCwC+0Fun08XsQ61WQ6PR4Gtf+xpuuukm3HTTTVAoFNi1a1dUBMrpdIIQAqVSiVtvvRVFRUUAAI1GA5lMBr1ej6amJrzxxhv49a9/DY7j4Pf7MTo6issvvxwPP/wwRkZGcNttt6GuLkbrpjUqlQqrVq2a0rbPP3ME7/WM4KefbZzVPtlcsNnB1m92ZPP6XRh2ATuaAACVC5eisaE44fvI5vVLCgYDAEStWTav4cNHdmFhMXB2wAllaR0a11YmdX+zFluEbxX7PYBmSukjE2xTAmCAUkoJIevBpy9HZrPf738g9ZlISim+853v4Atf+ELMc0eOHMFrr72GBx54AFdeeSW+972JGzBlMhkOHDiA7du34/nnn8evfvUr7NixAxzHYd++fVCpVDGvmWgSO6UUL7zwAurr66N8thYvXowNGzbg1VdfxQ033IAnn3wSW7duneEnT2/s3iCsngAopayTkcFIQ6zhFCIAViTPSAkWlx/XLClGz6gHJ3ts+HCSxVYi4mabAdwJYGuEtcMNhJAvEkK+GN7mQwBOEkKOAXgUwEcpFYLImYNer49KvV177bX4wx/+AKeTT2f29PRgcHAQvb290Gg0+MQnPoH77rsPR44cift6AafTCZvNhhtuuAE///nPcezYMQDANddcg8cee0zc7ujRoxc9xmuvvRaPPfYYhOV9//33AQDt7e2YN28e7rnnHtxyyy04fvz4zBYhA7B7AghxFE5fMNWHwmAw4mB1j9VpDTuZ2GLMLRxHMer2o1CnxJLyfByfgyL5WUe2KKV7AEwaPqCU/grAr2a7r1RjMpmwefNmLF26FNdffz1+8pOfoLm5GZs2bQLApxmffvppnDt3Dvfddx8kEgnkcjl+85vfAAA+87m7cO1116G8rAw7d+4U39fhcOCWW26B1+sFpRSPPMIHCB999FF8+ctfxvLlyxEMBnHZZZfhiSeemPQYH3zwQXzta18TXzN//nz861//wnPPPYc///nPkMvlKCkpwXe/+90krVLqsXv5u2arOwC9io34YTDSDRuLbDFSiM0TAEeBAo0Cy8rz8fS+DgRDHGTS5NVtZdS4nnTgmWeeifr3vffei3vvjfZxnT9/Pq699tqY19740c/i9jvvQrUpOgVYWlqKAwcOxGxfWFiIZ599Nubxhx56KOrfjY2NYl5drVbjySefBBA9ruf+++/H/fffP/mHyxLsHj6iZfMEkNzAMIPBmAlCJ5hJq2BiizHnCLYPJp0CJp0CviCH1kEnFpfmJW2fGTWuJ5OhlMIf5OALJr/FNNeJjGwxGIz0Q6jZml+kwxBLIzLmGMHQ1KhVYGl5PoDk+20xsTVHBEIcKHjBlYHlahmDNxCCPyxorR7m38NgpCN8il+G0nwVi2wx5pyRsLdbgUaBWpMWOqUMJ7qZ2MoKBAHAUYogx8RWshCiWgCLbDGSS+eIGw4v+47NBJsnAINGDrNOiSGHj92AMuYUIbJl0ikgkRAsKctjka1swRfhUOtnqcSkIdRrAdFFuAxGovnwk3vx87fZJIaZYHX7YVArYNYr4QmE4PKzkT2MucPiGotsAcDyinyc7rMjkEQneSa25ohIgcXqtpJHdGSLpREZycEXDGHA7sPZgcyZwpBOWIXIll4JgHUkMuYWi8sPrUIKlZw3Rl9ang9/kENrgqfSRMLE1hzhD3JQSCUgICyylUTsHpZGZCQfoeajw+KK+zzzeJscmzuAfDUTW4zUYHH5UaAdG+e2vMIAADjRY03aPpnYmiP8IQ5KuRQb68unJbYeffRRLF68GB//+MejHj969Chee+21aR9Hb28vPvShD037dTPl0KFDuOeee+Zsf3Yvf5FTyCRRLtUMRiIRxEHPqCfm99zcZ8eK/3wLJ+fAKDFTGXX7WWSLkTIsLj9MEWKr2qiBTinD6d7xY50TB/PZmiP8QQ4aNR+y9IemXp/w+OOPY9u2baioqIh6/OjRozh06BBuuOGGmNcEg0HIZPH/15aVleH555+fxpHPnGAwiLVr12Lt2rVzsj9gLLJVWaCGjUW2GElCcD3nKNBj9aC2cMw772iXFSGO4mSPTWwrZ4zBcZQvkFcrYNYJYsub4qNi5BIWlx8m3ZjYkkgI6kv0aO5PXlkAi2xNk6effhrr16/HypUr8YUvfAGhsHDS6XT4j//4D6xYsQIbN27EwMAAAOD8+fPYuGkTbt26CT/7rx8AJH7N1iOPPIKlS5di6dKl+MUvfgEA+OIXv4j29nZcf/31+PnPfy5u6/f78b3vfQ/PPvssVq5ciWeffRYPPfQQ7rzzTmzevBl33nknLly4gGuvvRarV6/G6tWrsXfvXgDAhQsXsHTpUgDAn/70J9x222247rrrUFdXh29/+9txP/P999+PhoYGLF++HN/61rcAAENDQ7j99tuxbt06rFu3Du+++y4AxBxHU1MTbrrpJgCAy+XCZz/7Waxfvx6rVq3Cyy+/DAA4deqUuKbLly+PGr49XYSarSqjhlk/MJJG5IiZjpHoVOK5Qb7uo8PintNjyhQcviA4Chg0chRoFJBKCPPaYswpFpcfxojIFgAsKtGjpc+etM7YzI1sfe1rwBRmBU6LlSuBsNCJR3NzM5599lm8++67kMvl+NKXvoS//OUv+OQnPwmXy4WNGzfi4Ycfxre//W389re/xQMPPIB7770Xd33+bqy/5oN46+//CwAIcTRqNMDhw4fxxz/+Efv37welFBs2bMDll1+OJ554Am+88QZ27tyJwsJC8TgUCgV+8IMf4NChQ/jVr/gpSA899BBOnz6NPXv2QK1Ww+124+WXX4bZbEZrays+9rGP4dChQzGf6ejRo3j//fehVCpRX1+Pr371q6isHPNdHxkZwT/+8Q+0tLSAEAKr1QqAd87/+te/jksvvRSdnZ249tpr0dzcDABRx9HU1CS+18MPP4ytW7fiD3/4A6xWK9avX4+rrroKTzzxBO699158/OMfh9/vFwXsTLB5AlDIJCjOU+FUEkPCjNxm2Dkm5DvHiSpBbHWO5KbY+v2e8/AHOfx74/y4zwsRZ4OGb7sv1DEXecbcYnH5YdSME1ulefjL/k702bwoM6gTvs/MFVspYPv27Th8+DDWrVsHAPB4PCgqKgLACyAhgrNmzRq8/fbbAIB3330Xf/jzX9HrCODOO+/EQw/+BwC+hksQW3v27MEHP/hBaLV8KuK2227D7t27sWrVqmkd38033wy1mv+SBAIBfPWrX8WpU6cglUpx9uzZuK+58sorkZ/PpzoaGhrQ0dERJbby8/OhUqnwuc99DjfddJP4Gbdt24bTp0+L29ntdnEgd+RxRPLWW2/hlVdewU9/+lMAgNfrRWdnJzZt2oSHH34Y3d3duO2221BXVzetzx2J3RNEnkqOfI0cVk8AlFIQMunoTgZj2gw5fNArZQhyFBeGo0VV25AQ2YpfPJ/t/GnveXSPerBxnhGrqgpinhcizgY1P7fUrFcyscWYMzz+EDyBEIy6aLG1uIQfbdfSb2diK4pJIlDJglKKT33qU/jRj34U85xcLhcv6lKpFMHgWDdSIGxiqpCNZW39QQ7jhPWsEcQaAPz85z9HUVERnnnmGXAcB5VKFfc1SqVS/Pv44wYAmUyGAwcOYPv27Xj++efxq1/9Cjt27ADHcdi3b1/c9408jkgopXjhhRdQX18f9fjixYuxYcMGvPrqq7jhhhvw5JNPYuvWrVP+3JHYvQHkqWUwqBXwBzl4AxzUCumM3ovBmIghpw9mvRIKmQSdEaLK4w+hx+oBIUDHiDvnxL7DG0CXxQMA+I9/nMQrX9kcM9zXKka2wmJLp2RpRMacYXGPzeWMZGFYbDX3ObB1UXHC98tqtqbBlVdeieeffx6Dg4MAAIvFgo6Ojklfs3nzZvz9uWchkxD87a9/FR+PrNvasmULXnrpJbjdbrhcLvzjH//Ali1bJn1fvV4Ph2PiYj6bzYaSkhJIJBL8+c9/nnFqzul0wmaz4YYbbsDPf/5zHDt2DABwzTXX4LHHHhO3OzqFlO61116Lxx57TMyJv//++wCA9vZ2zJs3D/fccw9uueUWHD9+fEbHCvAF8nkquXgiZ3VbjGQw7PChUKdElVGDjoh0YfuwE5QCqyoNcHiDOWc/IviO3ba6HKf77Pi/92LPj4J7tyi24kS23jjZLxpPMhiJxOKMNjQVyFPJUVGgRkuSiuSZ2JoGDQ0N+OEPf4hrrrkGy5cvx9VXX42+vr5JX/PLX/4Sf/rtk/jglZegp6cHACCXSqLaxVevXo1Pf/rTWL9+PTZs2IC77rrroinEK664AqdPnxYL5MfzpS99Cc888wxWrFiBlpaWCaNNF8PhcOCmm27C8uXLcemll+KRRx4BwFtSHDp0CMuXL0dDQwOeeOKJi77Xgw8+iEAggOXLl2PJkiV48MEHAQDPPfccli5dipUrV+LkyZP45Cc/OaNjBXjrhzy1XExR5NrFjjE3DDt9KNQrUG3SoNPiBheOXgv1WlsX8eUF4+u5sp3mPv5C9c1r6nHZQjMeefssBuzRnYbCZId8NX+xM+uVGHb6xTXsGHHhi08fxn/848QcHnn6QynFf7/egjdOTn7NYUyOJWJUz3gWleShpS85tb6Zm0ZMEXfccQfuuOOOmMeFeiUA+NCHPiR6WdXW1uKv/9oGtVyKKpMWP/zhD9E26Izx5vnGN76Bb3zjGzHve+HChbjHYTQacfDgwQmPs66uDu+99x70ej40+uMf/xgAUFNTg5MnTwIAPv3pT+PTn/60+Jp//etfMe9TWlqKAwcOxDxeWFgYV+Q99NBDUf9ubGxEY2MjAECtVuPJJ5+Mec3999+P+++/f8LPMh0cngAqC9TI1zCxxUgeQw4fLl1QiCqTFr4ghwGHF6X5arQNOiEhwGULzfjpW2fRYXFjRaUh1Yc7Z7T025GnkqEsX4Uf3LwE1/ziHfzgX6fx639bLW4TL40Y4ihG3X6YdEq80zoMAHj9ZD8OXbBgbY1x7j9IGvLS0R48sasN881aXLukJCo9Pez04Vt/P4Yf3roUFQWaFB5l+mNx8VHU8ZEtAGgo1WPnmUF4AyHRXT5RsMhWkqGUwh+kUfVaCpkE/ogZTJRSWFx+hNiA6lnD12zJYQjfNbP5iIxE4wuGYPcGUahTosbEX9iEVGLbkAtVRg0WFOkAAJ0juVUk39znwKLSPBBCUFOoxd1b5uHV433ot41Ft6zuAHRKGeThWi6znq/7FOq2dp8dQmm+CkV6JR5+rZkNqQYw6PDioVdOQ6uQom3IhdPjoi9/O9CJpjND2NduSdERZg4WF39NMGmVMc8tKs1DiKNihDqRzFpsEUIqCSE7CSGnCSGnCCH3xtmGEEIeJYScI4QcJ4Ssjvde2UggxIEiWmwpZRIEQpwormyeALpH3UwYzBJKqdiNKNw121jNFiPBCKN6CvVKVBv59Lxg83Bu0In5Zh00ChnMemVUPVe2w3EUZ/odYlcXAFwy3wQAURcvq8eP/HCaH0CUi3wgxOG9thE01hfhW9fU4/1OK1470T9HnyA9oZTiwZdOwhMI4f8+tx4yCcErx3rF5zmO4rlD3QCAXqsnVYeZMVhcPkglBHpVbGJvkVgkn/hUYiIiW0EA36SUNgDYCODLhJCGcdtcD6Au/OduAL9JwH4zAiFdqJBGR7YA3v6BUioWh/qCM/eXYvBNB/4Qx3cjsjQiI0kIhqaFOiXKDCrIJAQXRlwIhjicH3aJUa1qoyanjE17rB44fUEsKs0TH5sfXov24TGxZXMHxN8nEC22jnVZ4fAFcVldIW5fU4FFJXr8+I2WnD43/ut4H948NYBvXL0Qa6qN2FJXiH8d6xNr3Paft4i1gUxsXRyLK4CCsMfbeKpNWqjkkqQUyc9abFFK+yilR8J/dwBoBlA+brNbAPwf5dkHwEAIKZ3h/mZ1vHONkC4cn0YEeCHm9AXhCYTEfzNimer/c2FUT55KDrVcCrmUsPmIM+Dt0wPY/N874A3k7gVuMoSbo0KdAjKpBBUFanRY3Oge9cAf4kSBUWXS5JSxqRANWBQR2SrSK6FTytAWFdmaWGy90zoMCQEumV8IqYTguzcsRqfFjT/H6WrMBWzuAL7/yimsqMjHXZfWAgBuWVmOHqsHhztHAQDPHeqCXilDfbEePUxsXRSLywejVh73OamEoL5Yj5b+9IxsiRBCagCsArB/3FPlALoi/t2NWEF2UVQqFUZGRjJKcPmDHAiIWJ8AjEW5/MEQhhw+yKUS6JSyuGN8ch1KKUZGRib0CYtEGNWTp+Y9z/LVChbZisDhDeDA+YvXdBzuGEWP1YPu0dwRCtNBiGwJIqHKpEXniFtMlc03C5EtLfrt3pwRrS39DhAC1EeILUII5pu1aBsaq10bdfvFmkoA0CqkUMulGHL4sLt1CCsqDWKDy2ULzVhXU4AXjvTM3QdJI452W2Fx+XHftYtEv7KrG4qhkkvwytFe2DwBvHaiDzevLMP8Ii2LbE2BeKN6IllUkofmPkfCdUbCuhEJIToALwD4GqV0RrKQEHI3+DQjzGZz1KiX8PPQarXo6uqK8+r0xOGnCHLA0aHokKXFS2HpBgIcoJXzA229IcDVmzgDxGwxVAyFQnC5XBf1NDs3yl/ULpw9jabRs1BQP1o7etDUNDKj/TqdzpjvYCbz+vkAnj3jxwMbVVhgmLjT5uhZvpj5jXcOYGnhzDtyMmn9OErRYedwYjiEM5YQtlbJsaY4/unxQBtfs3X6yH6ckxLIvD6cGwjirX28B13/2aNoOk/gGuQNgl94cxfKddO/r82k9QOAd457UaQmOLB3T9TjWs6H090h8bMM2VyoUvmiPptOxuHAmU6cGArh5vnyqOfyOB9ODQWnvRaZtn7x2NXN3yz2tR5HU8/Yd2i5ieClwx3gbH3wBTkskAxinyOILksQO3funNF5f2V4FNvRiDXLhjUcT/eQGxV6yYSfS+YMwOLy4+W3dsKgTFw8KiFiixAiBy+0/kIpfTHOJj0AKiP+XRF+LApK6VMAngKA+vp6KlgGZDK3/Ppd5Klk+PPnNkQ//qs9ONZtg04pw7v3b8XLR3vwvZdP4cB3r0RR3sWjOFOhqakJ2bCGU4WeGQT2H8SlG9ZgdVUBypr3QiGToLFx44zeL9vWr8l+CsAFvD2gwedu2TjhCflXzXsBjKKoZiEa11bG3WZK+8uQ9WsbcuKjT+0T04MKmQR5Nh2+eUf8702T/RT0nd245sorAADnpO3Y0dkMi9SIQp0VN17NP57XOYqnju9F8bwlaGyYviN1pqyfwH8easLqeXo0Nq6Jevwk14q9b53Fuk2XQqOQwv3W61iyoBqNjYvEbaqa9+JYlxUUwJ1Xr42ye2ghbdje2YK1my6FTjn1S1amrV88jm1rBU6exS3XNEZPIDH34+4/H8bL7RwWlejx6Zu3gL57AW9eOI2V6zejYJLIzYQYDAAQtWbZsIbj8b7zFuprStHYuCzu88q2EfylZR+Mtctw2UJzwvabiG5EAuD3AJoppY9MsNkrAD4Z7krcCMBGKc0JZ7YuixuVxljfkyoT38X0bxuqkK+Woyb87/PDudUqnkgia7YA3seHpRHHENJf+89bRC+jeAipiD6rd8Jtsol97SMYcvjwXx9chkMPXIXPbK7BoQ4LnL5g3O2HnD4U6sfaxqvDv913zw1jQdGYeXB1+HefC0Xybn8QF0ZcWFSSF/OckFY9P+yC0xdEiKNRaUSA99oKchR6pSzGl0yYU9eXgymyfrsHhTpFlNACgMvrzchTyeD0BXHHukoQQlBm4G/SWd3WxIQ4CqsnAGMc2weBRREzEhNJImJkmwHcCWArIeRo+M8NhJAvEkK+GN7mNQDtAM4B+C2ALyVgv2mPw8uHI6viiK1FJXooZBJ8ZnMNAIhiK5daxRON3ctfHPPU/N1vvlrB7DQiGHb6sKIiHxUFavzPGy1iN1MkwRCH/rDjd789N07arQNOaBVSfGx9JQp1Sly+0IxAiGLvufiClB/VMyYWqsNeW55ASOxEBACjVgGdUpYTXltnB/gxRYtK9THPCQ0DbUNO8eYnXxNdoCzUv22ab4qqbwWAsvzcFRF9Ni9K8mMzHUqZFDcuL4VSJsGtK/nyZ0GUsrqtibG6/aAUMGriF8gDQIFWgZI8FVr6EtuROOs0IqV0D4BJE8SUrzT78mz3lWmc6uWVsWB8GMnnLq3FzSvKUJrP/0DKDCrIpQTnc+DEnCziR7aYz5bAsNOPBWYdPr25Bl9/9hhePdGHD6woi9pmwOGDoMH6bLkR2To36MSCIp2YVl1bbYRWIUXT2SFcs6QkZvthpy+qCDzyZkqI4gB8jWmVUZMTI3uEESeL40S2qk0aSAjQFvYgAyCO0xIQxNaWOGmbMRGRG9/HSPpt3gkd4b97w2J8dnOtmDJkYuviCHM5jbqJI1sA3+SRaPsH5iCfRP52oBN6lSxu3lcll0alF2VSCSoLNOhgYmvG2L0BKGQSccyCQS2Hyx9ilhphhHl+N68ox6ISPX721hkEQtFrI5yotQppzqQRWwcdWFA0Jp4UMgkuWVCIXWeG4nYkDTv9KIw4WavkUpSE6ywjI1sALzRyIY3Y0u+AViFFRYE65jmlTIoqowZtw66IIdTRacRqkwZSCcHldbHnyiK9ElIJyUkR0W/3ojROZAsA9Co56orHvrcmLZ9u7M2Rm6SZIBgSG+OM6omk2qRJeDc2E1tJYsTpw2sn+nH76gpoFFMLINYUanF+OPtPzMlCcI8XGHORZ6lEf5CD1R1AoY6/cH3rmnpcGHHjzVPR7tzCBW1VVQH6bNl/cbN5Ahiw+1BXHC2SGuvN6LF60DYUPbbDFwzB5glEiS2A99QCoiNbwuPdFk/Wj+I63WfHotK8uEaRADDPrEPboDNmLqLATcvLsPObjeI6RiKTSlCsV6I3B76PkXj8IVjdgbhpxHgQQlBuUOdkunWqiJGtizQQlOarYfcG4ZqgbnMmMLGVJJ471A1/iMMnNlZN+TXVJj6ylUk+YukEPxdxTNjma4T5iCyVOOKK9oZqrDdDLiU42RNdBCqcqFdXGRJ+sklHBG+sBeNE0uXhaHTTmaGox8VRPePE1nyzDnqVLCYKUW3Uwh9RB5eNUErR0mePMjMdz3yzFueHXbC4hMhWtNiSSkhcoSVQZlDnXGRL+M6UTKM7vcygyslGgqky4pqa2BKaDRJ5w8nEVhIIcRR/2d+BjfOMUemJi1FbqIXbHxJb0BnTw+4JREe21Gxkj8CwI1okyKQS1BZqcW4wui6h1+pBgUaOeWHxke11W4Kz+fjIVkUBP0x619losTXe0FTg61fV4enPbYix0xDqubK5POBkjx12bxANZbH1WgLzzTr4ghxOh+tY89UTFyjHgxdb2f1dHI9woZ8ojRiPsvzcW6fpMBoWWwUTOMgLCLXUiVxLJraSwDtnh9A96sGdG2um9TqhhfwC60icEXZvEHnq2DQiE1vR8/wE6or0MdPte61elBnU4gm+P8vFVuugA0qZJG4RcuNCM/a3W+D2j0X3xtYx+s64KE8VY1kAjHUqdo64carXhl9sO4un3mlL4CdIPb/eeQ56lSym2SISoSPxSOcoNAoplLLpmeWWGdTot3njdtBmK8Jvb6ppRIBfpwGHN6YWk8Ez4vJDr5Rd9PsnRLYSGU1lYisJPL2vA2a9EtcsmZ6RYa0gtpjX1oxweALIi5jkLnj5sPmIvDcUwPsZCcwv0qHT4o4aJ9Nr9YTFVvjOLsvrZFrDHXLSOLVGl9eb4Q9x2Nc+NoFgbC7i5N1MAqX5/KDq7718Cjc+uge/2NaK/369JWuaNs4OOPDGqX585pKaqKjyeOYV8ue21kFnTCfiVCgzqOAPcRh25U7UX0wjTkNslRvUoDT7b5JmisXln5Lha3GeCoQgoc0GTGwlmC6LGzvODOJj6ypj/GIuRpmBPzFfyOKUQzLha7bGTuT5YmSL1WyJERn92ImmrkgHjkYb6fZYPSg3qFGcz4uJbD9ptw44Y1KIAutrjVDLpVF1W8Phmq3xacSJkEkluGNdJS6vN+N/bl+OB25cDI4CXVkyd/LXO89Bo5DiM5trJ93OqFWIkeb8i3SCxaMsCWmddKff5kWeSjblBiuA2T9MxpDDhx3Ng2gonTjdLSCXSlCkV8atf/vH+90zGjDPxFaC+cf7PSAAPrp+6oXxAjKpBFVGTc6JrWf2d+Inb7bM6j0opTHdiHqlDBLCuhEBvmZLo5BGnbgFkdEaTiXavQE4vEGUGVRQyqQo1CmyumbL5Quix+pBXVF8saWUSXHJfBO2Nw+K3YRDDh90SploLzIVHv7gMvz2k2vxkXWVWFVVACA7otfnh13457Fe3Lmx+qLRAn4gdXyPramQiyKiz+YVI8xTRUx/ZXlEeib85M0WeIMhfPu6+iltX5qvjjn/uXxBfP3ZY/jL/snn9MaDia0Ec7TLigVFOvHkMF2qTRpcyDH7h9/vacdvd5+PSmcJBELclLozfUEO/hAX1Y0okRDkq9nIHiDssTUu9VVbqIWEAOcG+CJ5wVdL+O6W5Kuy2v5BsHWYrInlttUV6LF6sK15AAC/jlONasWjtjB7xnI9vvMc5FIJ7toyb0rbzzfzn318J+JUSEYNTbrTP4F7/GTksgHsZBztsuK5Q9347KW1YvPPxSgzqGK+b8LvVuhqnA5MbCWY0712LCnLn/Hrawq1E9o/UErx1wOdsHuzRzwMOXxoG3LBH+RwpGM06jlfMITN/70DP33rzEXfZ7x7vIBBo2A1W4gvEpQyKapNWpwLiw7hxCKKrTx1VqcRWwfidyJGcu2SYpQb1Pj9nvMA+O/r+OL46VCgkSNPJcv46HWXxY1/vN+Dj62vmrL4FCNbM0gj5qvl0CikOSUiJjM0nQiVXAqTVjFrry1KKV4+2gNfKPMbEjiO4qFXTsGsV+KrW+um/LqyfDV6bZ6oa7FwgzbKxFZqGXH60G/3YskkLdAXo8akhcsfEguaI2kfduE7L57A73efn81hphX7z48VH+9tG4l67sB5CwYdPvymqQ0num2Tvo8gQPPGpSj4yBar2ZpIJCwo0omiQzhBlxvGRkhlcxqxddAJuZSIA6PjIZPy80sPnLfgRLctboRwOhBCUFuozfjo9Zun+hHkKO7aMnmtViTzRLE1/cgWP2g5d7y2/EEOw04fiqfhsSVQGiciM13ODDhw79+O4lB/5vvsvXCkG0e7rPjO9YugU069/q3UoIY3wEVlRtqG+JskywyuKUxsJRBhFuJkfjMXQ2gVjzeQejjcCfXqib5JU2scR/E/b7TA4k3/jqf97RZoFVIsr8jH3rbowb/bmwehlElg0inx/144Pmk7s80THkKtiv4xGTRyVrOF+GlEgBdbF0ZcCIQ49Fo9kEmIuF1Jvgo2TyDK+iCbODfoQG2hFrKLNLJ8ZF0ltAopfr+nPWZUz0zgJ0VkdmTL5gmAkLHC9akgpBGn67ElUGZQZ3VaO5JBhxeUTs9jS4D32prdOnVZ+NdbfZkd2QqGOPzPm2ewusogDuyeKsIA9Mj6t3YW2UoPBLG1pHTmacTJajqEPPG5QSfODjhjnhfotLjxeFMb3h+MrYFKN/a1j2BNjRFb6gpxrNsGZ9ixnFKK7S0DuHRBIX5w8xKc7rOLqZx4TBTZMrCaLQRCHEbdsSNmAL4jMRCi6Bhxo9fqQUm+SrRBEE702Rrdah10om4KpsN5KjnuWFeFfx3vg80TmFXNFsBHr3ttnrg1ipmCwxuETimbcDxPPGpMWtx7ZR1uWFo6o32W5avQkyNpxJl4bAmUGdToGfVMeEM+FQ+unnC3rD3DxVanxY0hhw8fW181re8qwEe2AETNiG0XIltMbKWWU702lBvUouXATCg3qCGTkLiO05FFef863jvhewg1Sumebx92+tA66MTGeUZcMr8QIY7i4HkLAF5Qdlk82Lq4CNctLcHVDcX4+dtnJ+zimrRmK8fTiMKJoTCOSBAGJ58bdIqGpgJCJ1Q2DqT2BkLotLhjBkdPxGc214ALX7xmG9mqLdSCUr7uKVOxewOT+mrFQyIh+PrVCycdyzMZZQY1hp2+jBapU0W4wZluNyLAX0Nc/hDs3tiIdPeoG0u+/2aUd1w8hJICmz+9ryEXQ0j7RQ7snirjI1scR9E+7AQhvIH2dI1jmdhKIHxx/MxTiABfI1Jp1MR1kR8J13GtrzXi1eMTpxIFcZHuY+0OhIXVhloT1lQXQCGViKnE7S2DAICti4pACMH/d8tSKKQSfPPvx+CI0yAgnFgiuxEBPmVh9wazfhDwZAhGnOY4NVtC0fK5QYfosSUwFtnKvtRN+5ALlE5eHB9JpVGDa5eUAIh1j58uNVnQkejwBqFXTb3+JREINwLZ3LQhMDADQ1OByWwyjnZZ4Q9yeK9tamLLnuFiS5iQMS+cwp4OhTol5FIiNmX02b3wBjjUh4XbdDMmTGwlCJcviPMjrll1IgqU5KkwGGdwrcXlh0Ejx60ry9E+7EJznyPOq8d8pdI9srW/fQRqOV+vpZJLsbraIBbJC+Zzwp1dSb4KP7p9GY52WXHHk/ti1mfiyJY86vlcJN6oHgGtUoZygxot/3977x3e2HXda78blQBYwc7hcHrVaGY0MxqNZBWq2ZbsSC6Ke+w4sR0ndlyS3MTX/j7fG9/Y1775EidOcxz36yrLTbYkS1ahNJY0o+ma3jjDYe8Fhej7++PggCAJkGABcQDu93n0iAMcAhuHB+ess9Zv/VaPh56xQKLFHkiIcwvx4nYxPhMykzKizp81r6e21M6WDEwRZyIxKSKPOxI9gfDSB1spNDSFSvdoAIfVPE2DmgkzDVHW5Se65CUderk238uIl/u91JTY55yFBS0Tm2x/o+u19qzWvPKG51gxUcHWInG2ewwpWXBmCzR36lTDqAe9IdwuG6+7rhazSfDYydSlxIlga8FLySoHWofYs7oi4bR/y7oqznSPcWXAx+G2Ie7ZUjNp+zdub+Ab79vD1UEfb/mPlxJtuKCVNWwW0zSzycR8xGUdbM3ser6+ppgDrYNEY3JSGVFvI1/MkRVG4VKfF7NJsLoq85LW9Y1lHPz0PaycoXsxE8qcViqcVq7kcUeiltmav1xiPiwnD6meUc32Yepg80zQs9Op9G0XerSbjLPdswRbw4VSRvRmLBVIRX2ZIyGj0IfW71nlBuau21LB1iKREMevyGKw5QtS6bJRWWznlnWV/DpNKVFPbwYMnNka8oU43+th39rKxGO3rKtESvjSE+eISbhry/TZks2bavjRh/YRCEd56D9eSuheprrH67hdWoChnzyWIzNltkATyesB2VQz3rqyInoKMJNwbcifcMrPBaurXHntIp+LMqJeUlsO9g/do+PzKiFCcvkrVWZLC7Y6R8bTdtQFwlEGvEFsZhPeEHkrwZBScik++3S+aE0Z8czWgI9iu4VNdVo2fK4diYsSbAkhvimE6BNCnErzfLMQYlQIcTz+32cX432NxOmuUdwuG3Xz8EWZSnWJHV8oim+K6GrQG6IyHjy8cXs9bYP+lOlgPdgysmbrlbi/1k1r3InHtjeW47SZ+c3pHqqKbWxfkboku72xnJ98+BaCkRh/+6szgD4XcfrJf8+qCuwWE78905OFT5Ef9HuCOKxmXGk8ZpJ1SyumBFv1ZYXpteUNpA7Ol4o1lS5VRpwjRVYzVcX2gtQQTqV3LDjvYMtkEqwod0xrsgqEo1wd9LGrqRyAM2myW/r3fWtDKZL5dd4ZgX5vEE8gsrDMVrmD3rEA0Ziktd/HumoXlfHRVHP12lqszNa3gdfPss1+KeXO+H+fm+0FB8ZlXn2pTneNsbW+dF5p36lUxzMQU7NbQ74Q7rg497Vb67CYBL9K0ZU4Mh4XyBs4s3WgdYgiq4ntjeWJx2wWEzeu1oKvOzfVzNiqu6ZKayN/+mwvz5ztZWw8dXeUy27hzk01PHGqh1ie3qEtlAFvcNIA6qkkn4ym+vokzweLxiSf+NEx/ujbh1JqCvMJbzCSNvhcClZXuegeDTAeMnitPwVSypyUEUHTIxW6/UM0JukdCyzoxv36xnKOXRuZ9NilPi8xCW++QfObOpNGt6VXAXY0aje7AykMtvMBXRy/oMxWuYNITDLgDXK538va6uLEBIQhbw6CLSnlC8DQYryWjjcsE8ZqRicUiXGh17Moei2AmtJ4sJV0kEdjkiF/iKp4VF3hsnF9Yxmvtk93Vh/1G1+zdaB1UOtAtEw+BG9Zp5UV756i10rF+1+zhvU1xfzPX52m3xOc5rGlc//2evo8QQ5PGQe0XJjN9Xx9tZYWLy2yTLuAJhub/v2T5/nF8S72X+zn/q/sZ//F/qyuO5t4gxFKchxsAbQN5V92KxCOEYnJJc9sweIYdhqdQW+QSEzOy9BUZ3dTOd2jgUn7Sm8K2be2krrSIk53pZ7K0TmiSTN2rCwH8jfY0m0f1tXMvRNRR2/KuNznpXs0wNoqFzaLiRK7JWeZrUy4WQhxQgjxhBDiukx+IV/+yJf6vISjckHO8cnoQubkzNaIP4SU4HZNZCiqi+0pU7wjBhfIB8JRzvd62L3KPe25t+5u5MN3rKN50+zBls1i4nMPXEf70DjnejxpO3fu2lyDzWLi8ZPdC157PjLgmdn1vMxppabEnnJ4un7C/2rLZb76/GXefVMTj3/sNtwuG+/95it8+bcXsrbubOINRijOQbCgk+hIzEPdlm69kpvMlhZsZTKcPl/pThiazt1jS0c/tybfYJ7v0cZTra5ysbWhNG0ZsXN4HJOAbSvyO7N1uc+Ly2ZeUIZQ74Z/MW5JtC5eBahw2eas2Vqqs81RYJWU0iuEuB/4BTBtIqQQ4kPAhwBsdet56egpnIOzDyHONfs7tJOPr+M8LSMXF/x6urdJ8ufv9GgGar3XLtMSbgMgNBakezhCS0vLpN/vjnc5jYej054zAn3+GFKCr7eNlpbpZdB9DjjwYuYaq5vqzBzsieId7k/7ebe5Bb840sbtJX2YMiz1er1eQ+6/udI17KPeOj7jZ7m+IordHJi2Te+gFrF/5dlLbHabuLNsgM6zg/zldsk3Tpr552cusjLSQZVj+n2bkfffsMfP6GAoZ+sbj2jf8WdeOUnRQOpznFH3X5dXOxd1tF6kJbC0c1r9A2H8oShf/OEz7Kwx47Ck/y4bdf/NxpFeTWzbefEULX1n5/Ua0ZjEZoZHXzxJ6bB2Q/TymQC1Dnhx/wu4wiEu9YV56pnnsJm1fbhzZER7/3NXKbcLLr16GIADx89SMXppgZ9qcZFS8tOLYW5psNBQnDpndOj8ODVF8Pzzz8/7fbzxa/HjR7XjfPDqWVoGz2OJBrjU0Tun42tJgi0p5VjSz48LIf5dCFElpRyYst3XgK8B2Os3yPK6JpqbNy3FEhdEy6OncVjbefv9dyZGnSyEWEzyyZYnSP78L18ehBcPcNuNO7llfRUAh4Pn2d91mdtvv2OSvin0u6eBIKGYoLm5ecHrWWwOtg7CCwdovmknt22oXvDrbdkV4N5/fJ69162juXl9ym1Gyzv5+I+OU7pmB3tWT8+opaKlpcWQ+28uRKIxvE8+wfZNa2hu3ph2u3Qfc/WAjy8damGl28EPPnLrpMxq2ZpB3vG1A9St386tG6qm/a6R91/w6SfYtKaJ5uYtOVtD1YHfYiqtpbl5e8rnjbr/jrePwO9e5KZd19O8eXrHcDapXD/Kk+0H+c9Xg1jNgn1rK/nbB65LDLlOxqj7bzbaXroKx07zhrtuXdBoqN2XDtAbjNDcfCsAnznwLLvXVdDcfAOBqm5+dfkotRtvSJQLKdf+Hy0qZU2t5L57bsby3OOU1zbm9HuSin5PkPc/+TRNTU28q3lzym0+/fIz7FtXSXPzznm/j5SS/7b/Sa6ORRECfv/1d1BkNfOdK68w4A0l9m0mLEkZUQhRJ+LKcSHE3vj7zmhhaxb5k7482TnKlvqSRQm0QOsmqSq2TSoj6uXCyqRykNtlIxqTkwYtSykZTQjkF2U5i06P7o68CJ2boJlv7v/ru/jQbWvTbnP3llpsFhOPLbNS4lC8/JzKPT4TmtxOPnb3Br71h3snBVowMTQ937rqwtEYwUiM4hxqtkCbFXglz/Yd5LaMeH1jGYc+cw8P/8nNvP81azjaNsyXn154NcEoXB3w8djJbqxmkeh6my+7V1VwpnsMfyiCNxihc2Q8YVuwNT6/N1U3uz5JQghBmU1M0g4bBd1QNNlrMRlfMELXaCBR9psvQggayouQEhorHAkfxwqXbc5dmotythFC/BBoBqqEEB3A/wCsAFLKrwIPAX8qhIgA48A75CxFd7OY3o1nRL6+v5UjbcP81WvTZw3mQ3WJnT7PRNfNoE/bF8kXvMr4BXTQF6Qi/rg/FCUclRRZTQTCMWIxOecBnNlGH0VRuwAB6FRmm0dZbLdwx8ZqnjjZw//7hq2G2yfZYsATn4s4z3l+JpPgL+5NfWzXlhRht5hSzvE0MrqlSi67EUETyb9wIf+aDDzx0Vi5EMiDNtJs7xo3e9e48QUj/PRoh6bBy/HfcyF0jYzzlWcu8pMjHVjNgr95/eYFn6N2r64g+pzkePsIjniQsCEefKx0OyixW6aJ5CWaoeqK7ZpWqdQuEh58RkIPdPSOw6noA6PXzWNMz1Qayh1c7vextmoicHM7bblxkJdSvlNKWS+ltEopG6WU35BSfjUeaCGl/Fcp5XVSyh1Syn1Sypdme02zyZgRdTKPnuji7x47y33b6vjTNOWr+VJdbJ/0+Qe9IYSAiqSgQvfcGkz6MujieF3sPG7Aoa09o0GcNvOSd4Pdf30dPWMBjrWPLOn7LjXJJoT6MZRqCPVCMZkEqypTz/E0MnqwkEuBPGj2JX2e4DQ/PaOTy8zWVN50wwoC4RhPnc5vH70/+MZBfna0kz/Yt4oX/vpOPjBDlj5Tdq3UxsocbRtOmJnqmS0hBFtSiOTDkRjhqEz47ZXaBAMGTHro4vS2QX/KgdB6xmshHls6epNQ8nzFCpcNfyg6p6HohnWQN3pm66XLA/zVwyfYu9rNl9++c9FKiDo1JUWTPv+gL0i5w4rFPPEnm8hsJQVb8Wi7Id5F4Tegj4/uIbMYnmRz4Z4ttVjNgqfP9i7p+y4lp7tG2fN3v+XhQ+0AiRPlfDNbs7Gq0pV/ma1QPDOT68xWns5IzHVmK5ndTRWsKHfwi+OpR5flA+OhKJf7ffz5Xev5nw9cR03J4mT8y5xWNtQUc6RtmPM9XoqsJlZWTIyauq6hlHPdnkk3Z8GIFrjowVaZXRhSzqPbLkRikmtD02/29HFcTe6FZ7b0jsRkvy69wjSX7Jahg60Bb9CQLb6nOkf5k+8eYVWlk/96755p8/gWg+oSOwPeUMKIc8gXmqaZ0Wv6ycGWrt/So3F/yHh3zT1jgcSQ46WkpMhKk9vJlf78urhlSiQa468feZVhf5jPPnqKS32epFE9C9N/pGN1pZNrQ/68Moz1BoxRRtxSr2UZXr48o3zVcIwFIggBxbbcB1smk+DBnQ28eGnA0DfnM9E+rAULTZULm7mZit2rKjh6bYTzvWNsrC2ZVJrcWl/KeDjKlST7kWBEuzlfUTGR2Rr0hQz3/U62XbicopR4ud/LKrdzmo/jfNAHe0/KbOnGpnPQbRk32DJBODpZ/G0EznSN8Z5vHKTUYeU7f7R3Vq3QfKkusRONyUTkPOANTRLHAwmdVrKTrW5oqpcRjZjZ0oes5oKVbmfi5FZofG1/K6e7xvjcg9fhtFn42A+P0z0awG4xZU3P0lTpIhCO0TflQvfU6R4O9Rgv0AfwBI1RRlxbXcyOxjIeOdJhyJvKdHgCYYptFsPoHt90wwqiMcljKaZp5APX4mX4pgUOOE/F7lUVjI6HeeXKEBtqSiY9d12DLpKf0G3pma2GpDJiNCYT8hSjMOQLY4tXeS6lEMlf6vMuWByvc9fmWt578yp2NVUkHktktnyZ7xfjBlvx77GR7lYu9Hp4zzcO4rCa+eEH96U0gVwsEsam8czEkC80rTvFajZR5rAmxPOQrNkyZmYrFpP0eQKLKo6fC40VDjoKcCj15X4v//T0Re7bVsd7b17Nl966nTPdY/zg4DWqS+xZK9muTtOR+PdPnufXrcY6QevoGqlclxEBHtqzknM9Hk51pjaYNCK5GEI9ExtrS9hSX5q3pUS9DJatYAu0xMWmusnBx/qaYmxm06SxPaFIjDKHNXFzVmrXzhtGKyUO+0PUltmpLbVzuW/yuScSjXF10LegMT3JVJfY+dyD2yZVsNwuLckyFxd5Awdb2h/ZKCL5KwM+3vVfB7GYBD/44L6spHyTmeoiP+gNJjRayVS6bFM0W5MzWz6D+T8M+UOEo3LRbB/mysoKJ6PjYcYCxgwE5kMsJvmbR17FYTXztw9qwxnu3VrLe/Y1EYrGsqbXggndUbJuyxuMcKnfiz9szGyNUcqIAA/saMBuMfHw4fZcLyVjtCHUuRfHJ/PgzgaOt4/kpSP/tSE/Lpt5mkxkMVhT5Uq87sbayZktm8XE9sYyfnO6h0hcZB6MxCYNoy+zxYMtAyU9QEs+VDhtrKsunmb/0D48TjgqF0Ucnw69jDgXF3njBlvxlRkls/Xdl6/iCYT5wQf3saZq4aK72dCHUfeNBYlEY4yMh3G7pl80K4ttDHqTM1shbBZT4gtmtDJiT3wURS40W6CVEQHaU4gq85WfH+vkcNswn33j1kni2s/cv5XNdSVsrM3eSae+rAirWUzqSDzVOYqU4I8YNNgySBkRoMxh5fXb6vjl8c45dTblEqNltkALWoXQOsTzjfYhPyvdzqxkn4UQifKX3omYzAduW0vboJ9fv6r5DwYjsYReCyYyW0ZJeugM+7Vga31NMZf7vJPK8BMDqLN3nS5zWBGiUDRbBisj9o4FWFHhyGq0nExyGXHYH0bK1CJn9xRztVF/mDKHFVdcvGq0MmJPYu5X7sqIQEGVEg+0DlJVbOMtu1ZMetxhM/PoR2/li29J7VC+GFjMJhornAndCcCrHSMA+MMYTlgLE8GWywACb4C37VnJWCDCU2dSd8kGI1H+4anzhtGvGjHYaih3sHe1m58f68wr/Rtoma1slBB1HtzZwC3rKlNWE167tZZNtSX863OXkEAoEk2d2TKY15beMLauuhhPMDIpTjjYOojNbEoZXC4WlriEpyC6EU0CbGaTYf7I/Z4gNVnwKkqHy27BZTPT7wkmgqlUaebKKcOoR8fDlDusOO1afdlwma1Fdo+fK3rrcyFlts73ethcV5ryzthmMWVdyKx5bU2Ub050aIJbCXgNFuyDVkZ02syLbtcyX25eW8mKcgc/SVNKfP58P//y7CWeN4gBqhHLiAAP7W7kyoBv0vBloyOlzHqw9Xs7GvjBB/elPD+YTIKP3LWeS31e+j1BojE5KdhyWsFiMp79w4g/nCgjwmSR/LPn+ti3rhJnlm+m3M65ucgbNtgCpo2sySV9niDVi+R/kinVJXb6PcFEmbAyVRkxntnSMwgj/jDlTuNmtnrHAphE9qwIZkPbN+Zpma3OkXHe/O8v0jcWSPObxiQak1zo9WT1Lm42Vle6aBv0JzIKr3aMoMcxYwbJxiRjNLdxk0nw0O5GfndpgI4UnbKHrg4BMGSQC54RM1sAb9hej8tmTnjM5QP9niDBSCzrGuCZeMP19aytciWE+sllRJMQ06QquSYYieINRnC7rKyr0UqFl+N2Pq39XloHfNy9uSbr66hwzc1F3tDBVnWJ3RC1YiklfWNLm9mCpGArMRcxtUA+Jie6EEfGw5Q5bInxDEYTyPeMBqgusU8yZ11KhBCsdDunXdReuNDPsWsjvNoxmuY3jUnboI9AOJbTYGtVpRNvMMKgL8SQL0T70HhiuK1RSl/JGC3YAi0rIyX89EjntOdeuaplauY6iy1baMGW8TJbTpuF39vRwGMnuxOlYqOjBzgrs5jZmg2zSfBnd65PiORXTOmyryq2G6bCBBNNYBUuG3WlRbhs5oTX1rPn+gC4aymCLaeNoUKwfgDtj2yEzJYvFGU8HM1NsOWdyGylKiO6i/WRPdo2o/4Q5U4rJpPAZjbeuJ6euHt8Lkll/3A2PrYi2UYjHzjfo43h2JzjzBZogZ+u17ptQzUAY+PGu+h5gxFDiOOTWel2sne1m99MGTvjC0Y41andAAwYINgKhKOEojFDZrYAfn/PSvyhaN54bmXT9mEuPLizAbtFu0GfammkBVvGOS8mZDVOG0II1tVMdCQ+d76PDTXFSxK8ul3WwuhGBN1FPfd/ZL20VL3UwVY82Bzy6XMRU2e2YMJFfiSu2QKwmzHc3LXeHLnHJ9NY4aR9yD9JSKt7zRjpDi4TzvV4EIJphoVLiV4CaRv0c6J9FCHgNesqAQxpseEzYGYL4O4tNZztHqNzZOJG4Ni1kcQ4lSEDHJv6qJ5SgwZbu5rKWV9TzMOHO3K9lIy4NuRHiOnZpKXGajaxqtJJudM2TeJRVWw3lPWDHuDopt7rqrWORE8gzMHWIe7akv2slv7+Q/5Qxg0Zhg+2Br3BSbObcoGeXVusmVWZUl1iZ3Q8TNdogAqnLaWgVy8tDvlChCIx/KEoZfFgq8gsGDeaQH40kLNORJ2Vbie+UJTheDo6FpOci2eIjBDcz4XzPR7WVLpw2BZ/ZFSmNFY4MAm4Oujn1Y4R1la5EnfHRiwjegIRQ3hsTeXuLbUAPJs0u/OVq0OYBFy/oswQWVcjDaFOhRCCt+1p5EjbMF3e6QOKjca1IT91pUVZGfk2V9wuG5vrSqYJ6atKbAx4Mw8qso1uJKpXetbXFNM1GuA3p3qIxCR3b65dknW4nTZCkRi+DK+xhg62qortxGTutQr6KJKlzmzpwd35Hs8093gd/YAb9AYTF7ZyZ1Jmy0AC+fFQlLFAxACZLd3+QUvhtw/7ExqPQQNkD+bC+RyL4wHsFjMN5Q6uDvg40THKjsZySuMBv1EF8kZwj5/KumoXqyudPH22L/HYK1cG2dpQSlOl0xDHppGGUKfjzTc0YjEJ9nca59yXDt1jy8hUF9sJRWOMBYyxPxOZLaee2dJkDN/43RXKHFZ2NZUvyToqXHMzNjV0sKUHN7nONkxktpZeswXamKB07sJu50QZcXRc+6OXxR+zm4WhrB9ybfugM2H/oJVrdL2W02bO+bE2F/yhCFcHfTkPtkDTbb1yZYgBb5AdK8spsVsQGDPY8hlQswVaVuaeLbW8fHkQXzBCJCY5dm2EG1e7qZoyKSJXTARbxsxsgXbevGtzDS92hglHjZ3dyrbtw2KgT6AwyrlRF6XrSQXd/uFcj4c7NlYvWfOVe47DqPMi2Mq1SL7PE8RqFok/7lKhf/5gJP3IFYvZRLnTyqA3lOjS0DVbRRZj+Wzl2tBUp9E9ObN1ptuDScCNq92GyB5kysVeL1LmVhyvs6rSmQimtzeWYTIJHBYMczesI6XEGzRmGRG0UmIoGmP/xX6ujsYIRmLsXe3G7dIkBbkOHibKiMbcfzpv2F7PWEj7jhiVQDhK71gwf4Itg+i2hv0hSoosWONB1apKV0Jic/cS6bVgIrOV6XxEYwdbxcYItvo9QaqLszfMNx3JZcuZ5mbpXluJYCseFNrMwlAC+d4xYwRbpUVWyhxW2vVgq2uMtdXFrKhwGObuLRP0TsRNdaU5XokWbIFmgLilXluP0yoMl9kKRmKEo9KQAnmAPasrKC2y8PTZPi4MazdKN65xJ7SZc+l+ygb5UEaEiY46I3+f9Zs9wwdbJdqxZ5TmId09XsdmMbHK7cQk4I6N1Uu2DncuyohCiG8KIfqEEKfSPC+EEF8RQlwSQrwqhNiVyetWGaSM2OcJUJ2D0pfbZUOP71J5bOlUuuwM+oIJr61yh7ZtkcGsH7pHjVFGhMn2D2e7x9hSX0pVsZ0hfyjnDRmZcq7HQ5HVZIiT9aq4/cPm+pKE2NdlFYYTyOs3H0YNFqxmE82banjuXB/nhmKsrXZRVWxPaDZzfcEbM7hAXmeiS9u4wZYRPLYywWhlRH0uYjK3rK/k3q21lKfo2M8WerC11GXEbwOvn+H5+4AN8f8+BPxHJi/qsplxWM2GyWwtNVazKVEXTieQB+2PrpUR45ot3frBIgxlato7FqDEbjFECWdl3P5h1B+mc2ScrfWlVBXbkAZoyMiUcz1jbKotMcTYGd1ra3tjeeIxp8V41g9Gm4uYiru31DDoC3FyIMre1W5AG8sFuT829cyWUTODOokbdY9xv8v6PFEj3CzNRIXThkkYK9iaWun5uzddz3/+wZ4lXUdpkQWzSWTsIr8owZaU8gVgaIZNHgS+KzUOAOVCiPrZXlcIYQgX+X5PkJrSpQ+2YKKU6E4xqkenslgrI46NhxFi4q7dbjbWuJ6e0QC1OS4h6qx0a5mtM3Fx/Jb6ksQdnJHvhpM535P7TkSd1VVOdqws575tdYnHnAbMbCWCBYNmtgCaN9ZgNgkksHeNFmy5DZKp8QQ0jzIjBPgzUWK3YBEwYKDv8i+OdfKRHxxNOLVfGxrHYTXnbHRZpphNArfLGJ6XAMO+cErPyaVGCDEnF/ml0mytAJIHVnXEH5uVXM9HDEdjDPpCOclswUSwNXMZUTNXG/SFKHNYE4OHi8yC8XA0MTcx1xjBPV6nscJJMBLjhYvacN+tDaUTpRoD3w3r6GOcjKDXAs3+4ZcfeU3COR7AaRGGc5BPlBENnJkpc1oTGa0b4//XL8i5buDQhlAbd9/pCCEotQtDfZefPtvLY6928+8tl4GJTsSl1gLPB+06bIx9qWm2jFHGnouLvKG+NUKID6GVGamurqalpQURDNA2FKOlpSUnaxoOaHchI91ttLQs/QiIWPzO7PKZEwSupY6Nh7rDSAnHL3VgR07sq2gIKQW/fbYFuyX3X+hr/X62uM05+1smM9ynXXR/eaiVUhucOXIgYYK4/9BxIp0WvF6vIdaaitMDWnk42NtKS0tbjleTGqsMM+yLGGofHo//3c+dPkGoI/dGkunYWx4hViO5dOIgl4UgJiVmAUfPXGRtJHd/79aOAKZo7s7Hc6HYEuPitW5aWoZzvRQALrZrGtF/fvoCpd5rnGsPUu00GWZf7hwZAeB40nr0c6ApPE5bty/naw1GJePhKMO9HbS09M3+C1lGhMa50uXPaL8sVbDVCaxM+ndj/LFJSCm/BnwNYNOmTbK5uZmnR07S+mo3zc3NS7LQqbzaMQItL3Lrnu00b10aZ9pkXh4/y4tdrdx3561pOxI9J7r43tljDEds1FUW0dz8GgCeufZbIMTufbektY5YKqIxyehTT7Bz0yqamzfndC0ADb0e/unoC3T5JLdtqKK5+SZG/WE+/bunqF65lubb1tLS0pKz4242Lu1vBc7yttfdmvO/bToevfwUwWiY19x2e6JNO9eMHu+Eo8e545abEv48RqQZph1/7peepqSqhubm7blaFv916QB1RTGam2/J2RoypfzIb4jZXDQ335brpQDwucMt3LrewaU+L9+/bGEwGOa1O5pobt6a66VplJcDTDrm9GPwka6jnOkey/n5sGtkHH77LHu2baZ5b1NO1wLw444jXOzz0tx8x6zbLtUZ8FHgvfGuxH3AqJSyO5NfrC4uYtif2l8mGpM8d74vq2ME+nPkHq/TvLGG+6+vS3hnpUIvMXaNBiZtVxS/cfcbQCSvj10yThlxYhbZ1rhVQanDgtUsDGEeORvnejxUFdsMG2iBVkYEYxmbevOgjJiOSpct692ILef7eOt/vJTWz8sTiORFGRGgzGasMmK/J8j6mmK+9NB2LvZ5GQ9HaXLndiZiprhdtpzbjsBEg0jFDA1jS0l9mYPO4fGMYpDFsn74IfAysEkI0SGE+GMhxIeFEB+Ob/I40ApcAv4L+LNMX1v3+EilVfjp0Q7e/61D/O7SwAI/QXr6cuQer3Pzukr+/d27EzqsVFQmieeTjVdtZu13jDCyRze8zPWoHh2nzZLQwWxt0IItIQSVLmMNXU3Hqc5Rw4jj0+G0xoMtAxmbeuNrMUJH7FzRG2GyydFrI9pcwaRh2MlowZYx9DKzUWITDPqChpjpNx6K4glGqC6xc8fGat6zT8vK6JYpRqfcaWNkPJxzW5zhKXMRc82aKifjcXPa2ViUM46U8p2zPC+Bj8zntZONTaeaYT4Sn+x+6MrQJGHuYqJntoycQUgWz5elymwZwEXeKO7xyayocDLgDSVMOEHbl0bPbF0Z8HGux8On7899OXYmnPGzi5E6En3BCEJoo5nyjUqXXZM1ZBHdIf7akD9lIJAvAnmAMrsgHJWMjUcoW+LpH1OZOvLtM/dvZXNdKa9ZX5XLZWWM22lFSu27nMtAJ5HZyvHfU2d1lfYduTLgm/XaZgwhxQwkRvZ4A5Mevzrg45WrmtvEoavZE0D2eQJUOK3YLMbdVRXOCfPT5DKiLoo3gv2DbuDXWGEcT5mVFQ5sFhNrqyYuKlXFxmlxTsejx7sQAn5vR0OulzIjLqvxyoieYIRimyUvOsCm4l6C+Yh65k//vk5lLI/KiKU27W9sBPuHPo92/dKvZw6bmffsW2Xo60oyFXM08MwWU4dQ55o18WvH1UHfrNsa/i89MZdp8h/5Z0c7MAm4b1sdx9qHszYzrN8TzJleK1PMJpEIssqSDkJ7/ObdCMaml/t9lDuthkn/AvzxrWv4uwe3TRpcWllsy3l7/UxIKfnliU5uXO2mvszYeg+9jGikzJY3YMwh1JlQVWzDE4gQjGTv+6xr2lIFW8FIlFAkRmmelBETwZYBZAETchTjZPbnQmI0TYYGntliyK95SZbNoGFeShrKtBv2KwMFEGzpgY4+Vw8gFpP89Ggnt22o5o3bGwiEY5zuGsvK+/d5gnnxBdEdpicL5LWTzXg495mtKwPeSRkkI3BDUwVvu3HlpMf0zJYRdB6pON01Rmu/jwd3GjurBRNlRCO5yPtCEcO7n6dDNzYeztBEcT7opq8dQ9M1W/kyF1Gn1B4Ptgxw85QoI+bIHHuh6JkkI2S2yhzWSTfIucRkEqxyOwsj2CqymtlQU8x3D7TRPaqdAF5uHaRzZJyHdjeyZ3UFAIevzmRgP3/6xoI5E8fPBf3OI1kgb6TMVmu/j7UGbrXXqSq2EYzEEnf4RuPRE11YTIL7t806gCHnJATyBjI29QQieSmOhwltZjbL3J4ZMlt5F2zFM1u5dt0HrYxoNonE+LV8Y65Dl7PFsD9kuH24usrF1UIItgD+7d278AcjfPC7hxkPRXnkSAclRRbu3VpLbWkRTW4nh7IQbEkp6fcav4wIEw7Tk4KtuGZrPMcCeU8gTJ8nyNpqY2W2UqF3dhqxlBiLSX51oos7NlYbpvV5JmwmsJlNxiojBvNHczSVieHK2Ts2kwXy6Z4rsRujhDMbJTa0mX4GKCP2e4JUFdtm7Co3MonMVo7LiMP+kOHOfWuqXLQN+Wed1JIXwdbG2hK+8s4bON01xsd/dIwnTnXzwI4Giqxa6mbP6gqOtA0veulnbDxCKBLLi2BLv/NIrmUnMls5FsjrKda1VXmQ2dIH2BpQJH/o6hDdowEeyIMSIsRHpjgsxiojBvO3jDgxjDp7x6YukB8dDzPqn/x3y7fMlkkI3C4bAwboLu7LA+3vTDhsZhxWc84zW0MGmYuYzOpKF6FIjK7R1HYpOnkRbAHcvaWWv37dZp4600sgHOOh3Y2J525c7WbAG+LqYOoOmvmid0Dmw5dEz8iUOSYORJMQFFlNObd+aO3Xgq11eZHZ0ks1uT9BT+WXJ7pwWM3cs2XpJxnMl1KH1ViZrTwuIyaGUWfx2PQGIzS5tY7h9uHJ59NEZitPBPKAYXzz+vNE+zsTblfmQ5ezxbCB5iLqJDoSB2aOP/Im2AL48B1r+YN9q7h1fRU7V5YnHt+zStNtLXYpsW8sfzpImjdV8+DOhmndfi6bJefWD639XkwCmiqNY/uQjmqDZrZCkRiPn+zm3q21eRUslBZZDWX94M3jzFZpUXYnHESiMfyhaGKiwtRS4lieZbZAM8U2gm+e1mhl/Jv2mahwWXPajSilZMigZUTQmsBmIq+CLSEE/+tN2/jeB26a5JOzrrqYcqd10UXy/d7cjuqZCzc0VfDP77gB8xRNgMNmzvm4nssDPla6ndgtxjeSXIrswXw41TXKiD/Mfdvqcr2UOVHqsObMQb6138uf//BYIiMjpcxrzZaIl8UGs3QjoDfS6BMVpgZbehkxX6wfIJ7ZyvGNUzQmGcwT7e9MVDizP8FgJvwhzXrEaAL52lI7DquZK4WU2UqHySTYs6qCw4tsbprIbOVpuy7oma3clxGNZvuQDqvZRLnTmvMT9FTOdmvWJttWlOV4JXOjzJGbzJaUkk/99CS/OtHFK1e0m7DxcJSYzM9RPTqVLnvWLnieoPZ3qisrwu2ypQi2tOfzyaesqjj3ZcRBX5CYzN3It8XC7bLlNLNltLmIOkIIVlU6ZzU2LYhgC2DPajetA75FvUj2e4MUWU15ObRWx2k351QgH4tJrgx4WZMH4nidSpfNEO3iyZztHqOkyDJpgHY+UFpkyUmw9ciRjsSECT1Q1e088rWMCJr9Q7b0hAkBvN3CygoH7SkyWy6beVr23MhUldjwhaI57cjWb9pVZmth6IGe0QTyoJUSZ7N/KJhg68aE39biZbf6xgJUl9jzcrSHjtNmzmlmq3ssQCAcywvbB53KYvu0iQW55my3hy11pXl3LJbFBfJLaRI77AvxhcfPsmdVBSvdDs7owVYeao6mUuma+YJ3pG143sOCE8FokYWVbmfKzFY+ieMBqly512BOyFGMr/2dCbdLm2CQrWkts6Ef90YTyIPmtZVuxJVOwQRb21aUYTObONa+iMFWAXSQOHNcRmzt10SD+RRsVRfbJ81Te+p0D194/GzO1hOLSc51j7GlviRna5gvpQ4rkZhkPLx0x+CXfnOOsUCEv3vzNq6rL+NstweYCCZctjwOtortaTVbpzpHeet/vMSz5/rm9doTwaiVJreTzuFxIkkXVk8ezUXUqSqZ2ZvsTNcY7//WK4kSaTboH5s8hDpf0ct3I/7cNLzoGV2jZrYiheCzlQl2i5mqRZ5r1+8JUl2c318QLbOVuzLihO1DHpURi20JnUcsJvn842f5+v5WQpHc3NG1D/vxhaJsiXeJ5RO6mHqpXOQPXx3iR4fa+eNb17C5rpStDaVcHfThDUYmZW7yFbdLK4sFUgSvejd2/zw1SrofWrHdQpPbSSQm6R6dGJOWj8GWbomTSrcVjsb4i4eP89z5fs73eLK2hnxqtJoJXZieC91WIBzlP5+/TG2pnRUGlFKsyUCTXDDBFiyup0/HsJ9L/V421uVfNiEZI2S2XDZzXt3VVRXbGQtEiMQkL1zsp23QT0xC58jMpnXZQtccbc7DYEs32V0qr63vvtyG22Xj43dvAGBLfSlSwvmesUTmJp81W/qkiFSZmmPXRgDmnaXRg9GSIsuE11a8NKJpL31U5dnN50wmxf/5/GXOxYOsbNpD9I0FKC2yJEy485WKePkuF7qtLz99gYt9Xr741u2G7GpfXbnMgq2yRQy2fvjKNQTw9imDivMNl82MP4dz/loHtJmI+aQ10mfQeUKS7x1oQ9cDt83SbZItznZ7MAnYVJt/gX+pQwtskl3kL/R6UmZmFoN+T5C1Va5Ex6FuY3Cm21MQAnl9GPVQigy+LqGYr2N/skP8yniwpetQXrqszaN9w3bjz+RMJt2Io0t9Xr7yzKWE1neuAcSHvnuYnx/ryGjbfHeP10k1H1FKbYSYL4vXmCNtQ3zthVbeuXcld26qydr7LISqYtus55WCC7YWo/MpFInx40Pt3LW5lhXlxktZzgWnzYw/HF1SgXIy2gDq/NFrAYm798sjMZ4518fb9mgB92wCyGxxtnuM1VUuHDbj3dHNhl5G1Ee/9HuC3P/P+/n+wWtZeb+ps9MayoooLbJwpmsscUHI5zJiYhj1lG7Zfk+Q9iEt8+qZp6+ZNxDBbBI4rGbqy4qwmETimP/x4XbKHFZed11++bwVWc2U2C2TSquxmORvfvoqDpuZf3rHDQBz8i4LR2M8daaXHx5sz2j7QnCPh4kyYvJ8xIt9mpfdYye7s/Ke/lCEv3z4BCvKHXzmDVuz8h6LgRCC1VUzm3YXXLC1GJmt35zuYcAb4j37mhZhVbnFabcgJQTCs+uNvnegja/vb1209x4PRekcGc+LmYjJ6KWaRy+HMQnBx+7egMNqnnUcQ7Y42zOWl3otmCgj6tmWly4PEInbgWSDIV9okumhEIKtDaWc7R7DUwCZLT1TMzWzdbx9JPHzvIOtuLu+EAKL2cSKCgfXhvwM+0I8eaqHN9+wIi9LYVUl9kmZre+/co0jbcN89o1bWVHuoNhumVMZUc/sHL02nFHJtlAyW+XO6Zmti73a93iumcEfvXKNnxyePVj956cvcnXQz98/tMPw39vZ7I0WJdgSQrxeCHFeCHFJCPGpFM//oRCiXwhxPP7fBxbjfadS5rAuSqfE9w600eR2cvuG6kVYVW5xxrMhmXhtffN3V/jC42cTGqGFkhhAnWeZLV1Ue80T494ttTSUO1hV6eTa0NKXET2BMO1D44kRKvlGqR5sxW+CXro0CEDXSCDt78wXKeW0zBbA1voyzvWMMToexmIS2C35e4+pD6Oe6gN37NowFpNgbZVr3pqtsUB40gWtye2kfXicXxzvJBSN5a2kotI10fAipeTr+1vZs6qCt+xaAegz/zIPFvSuuEhM8tLlwRm3lVLGM1v5H2zZLCaK7ZZJ8xEv9WnB1lyvu9968Sr/90DbrNs9f6GfOzZWc/O6yrktNgesmWUc3YLPOkIIM/BvwH3AVuCdQohU+b4fSyl3xv/7+kLfNxVlDivj4eiCusbO93h45coQ776pCVMemfelwxlvc5/N1C8QjnJ10EdMwt89dmZRyo6tA/ln+wATolqA9968CiDuELz0mS1dwJuPtg+gmZoCjMa7EV+8PABAVxaaDbzBCOGonObDs6W+hEA4xunOMYqLLHmlH5yKy2bGZjFN67o+dm2ErQ2lVJXY5z0eyTul23Cl28m1QR8/PtTO9sayvM2uVhVPjOw53DZM26Cfd+xtShwHcw22kgPd/Rf7Z9zWG4wwHo7m9RSSZKbOR7wct/YZHZ9bZqtnLEDv2Mw3XFJK2gb9rK/Jj8rI6lk6EhfjFm8vcElK2SqlDAE/Ah5chNedM2XOhXc+ff9gGzaLid/fk593cVNxZZjZutjrJSbh5rWVvHhpkKfPzs+rJxnd9iGTtlgj4bKZsVtMNLhE4o5qVaVmWhebp2HkfNGzjPl6obOYTbhsZsYCYdqH/HQMj+O0mbPS2Tkcv+Oe6sOji+SPXhs2fCliNoQQVLlsdCVZMkRjkhMdI9ywspzSIsuCyojJwVaT28mwP8y5Hk9Ct5iPJA+j/umRDpw286QZo5WuuVkG6duurXLxwoWBGbfVtWKFUEYETbeVHJjOJ7M1HooyOh6m3xOc0YC33xNkPBxl1SwZI6Mw2yi1xQi2VgDJxdeO+GNTeasQ4lUhxCNCiKx8cxfaZu4LRvjZ0U7eeH19ovMi39FF1fqQ2fYhP1955uK0oOFcj3ZR/9sHr2N9TTGff+zMgn2lrgz4aCgrSmTX8gUR12m9a4stcffb5HYSisTomeVubLE52z1GmcNKXWn+Cmx1S5YXL2kXpjdcX48nEJl311w6dOHu1O/uhpoSrGaBPxTN+2AL4PaN1Tx1uoe++LF4odeDPxTlhqYKSorm3yTkCUSmlREBiqwmHtjZsPCF54hKl51hfwhvMMJjr3bz+m11k+Zjzj2zpW375htWcG3IP2lMSyAc5fGT3QmX9T6Pbmiav9/fZCqS5iPGYjJRvZhLsKWfQ2NyZmd/vZKwKgNbBSOwcZZu8aU68/wK+KGUMiiE+BPgO8BdUzcSQnwI+BBAdXU1LS0tc3qTtn7tjq7lxYN0VMxdyHm8TzM+XG8ZnPN7GxGv10vXmZMAHDh0FM8VM989E+TZaxEq/O2sLJmItZ8+F8Rqgo4zh3lgZZR/PBLks//3GV6/Zv6jEc5cHafYRF7uy+sEeIsCibWPDmjB6i+feYktlUsnEj54fpx6Bzz//PNL9p6LhdfrpaWlBXM0SGt7N+2d3ZTbBZURrfTy6G/301iyePqpE/Hv/5Xzp2jpnez4X+cUtHsk0YAvb45Hff9NZZcjxsPRGP/vD57nnZvttLRrF7pQ93nGBsMMeyPz+ox9w36cUVPid/tGtWN+d7WJowdenO/HyBn6/hvuDiMlfP6Hz+EJRlhvnnx+9w2FGPCEee655zIqMR+7EMIsoDqg5Ri+8fhL3N2knScfuRDi161h3rnZxutWWznYrR2TV8++SrjD2FrBnSMjABxP2jdTj8GQJ0jXcJSWlhb6/bFE41VH/3DGx9zZwQlJy+PPvciastTn0/0d2nHde+kkLV3G3neZsBjBVieQnKlqjD+WQEqZrCL8OvB/Ur2QlPJrwNcANm3aJJubm+e0kNJrw/zjkZdYt+V6mjfP3Y/j9HOXgPP8wRtuz7sZYKloaWnhlg03wMHfsX7Lddy+pZa/eekZIIK5Zj3NN010W37j8kE21Ye4687buAs46n2Fx9qG+ey7b513Zurvjj7Phppimpt3L84HWmJaWlrQj8F1Q37+/vBzuJs20Hxj9rpU//npi0gkH71zPUIIup95knfsXUlz83VZe89soe+/hnMvI4Sm72jeUsu9N6/mqydeYsWGbfP6nqZj8EgHHDnBPbfum6afuLHvOO1HO2moqaS5ee+ivWc2ST7+pnLAc5wnTvXwhffczGP953C7+vj9++7k2lMXeK79EnfcccectWnR3z3NulW1NDdfD2gWOCeDJ/nT5nV5o5tJRt9/4ye7+e6ZozzfbWJFuYMPv/nOSXrcC6bLPH7lHHtuvjWj8/4TA69S2d/H2++/k387/RzdspTm5j1cGfDx1G9fwGwSPNUOn3nnrVw+1A4nzvCGu29NdPMZlvJygEnH3NRjcL/3DCdeuUZzczMt5/vghUOsrnQSjMTSHqtTGTnWCYeOA9C4YRvNW2tTbnf4yfOYTZd58+uasZrzP9hajE9wCNgghFgjhLAB7wAeTd5ACJHshPcAkJVBcwstI57pGqPJ7SyIQEtHT5ePh6K82jlKb3xO15G2yTMkz/d4JqVB37m3CU8gkmjtnQ+D3mDCFyjfqS8rwmoWWRXJB8JR/u25S/zT0xd519cPcujqEOPh/BzTk0ypw8qpzlEGvCFuWVeV8K5bbN2WXt6Y2o0IJLo589ljK5k/u3M9gUiUr//uCsfaNb2WEIKSIgsxCb55TI3wBMKUJJXXbBYT//C2HXkZaCWjN7x0jQZ48w0rpjU+JYxiMywlDvqCVBbbEUJw+4ZqXr48QCgS43O/Oo3NYuKr79nNoC/Et353hT5PAJvZlLg25TvJ46J0vdauVRXzKiNO/XkqVwd9NFY4CiLQgkUItqSUEeCjwJNoQdTDUsrTQojPCSEeiG/2MSHEaSHECeBjwB8u9H1TsdBg62yeDvudiWSB/JOnezCbBHtXuzl2bSLYGvaF6PME2Zw0mmhdvIOwdZ5+SOFojGF/OGGjkO9YzCYaK5xcy2KwdezaCKFojHfcuJKTHaO85+sHAfLW9kGn1GFJXPxvWV9JdYkdi0nQPbq4wdaQL4TZJBIdkMno+7CkADRbAOtrinnD9fV856WrXOrzckNTOUDiRnGu9g+hSIxgJFYQmrapJI8Y0u0ekqmcYQRSKgZ9oYTf2W0bqvGFovzDU+d57nw/n7hnA/dureXerbV8bX8rl3q9VJfY87oDNhm9+WTEH+Zyv48Kp5V11cWMh1PP60xFz2gAp82M2SQSusNUtA3680avlQmLEjJKKR+XUm6UUq6TUn4+/thnpZSPxn/+71LK66SUO6SUd0opzy3G+05lIcGWPxThyqAv77MIU9EF8v5glKdO97BvrZvmzdW0DvgS5nS6vcCmuonP3uR2YTaJREfhXNFfu6pAunBAEwxfzeLInoNXBhEC/vv9W/jFR15DU6WTYrsl7zMLuov8qkonjRVOzCZBXVnRonttDftDVDhtKS9s+vfaVUDBxEfvWp+Ye3pDkzZ2Ru8mnGtHYvJcxEJDD6Z2NZWztnr6dymdUWw6Br2hxGvesr4Ss0nwny+0sr6mmPfdshqAv3ztRrzBCM+c6yuYTkQgYasy5Atxuc/LuuriCePiDK+7PaMBGsodVBfb09o/SCm5OuhjlTs/OhEzoTDyc3GsZhNOm3lewda5Hg9S5n8WYSq63upk5yiX+328dmsdu+MnZn2W2vl4J2JyZstmMbGywjHvYEs3/qsqkK5OgNWVWmYr2YPs0z8/yS+Odc7wW5lzsHWILXWllDmsbKor4bE/v40nP3l7Xrp2J6OfjG9JMiZsKHcsehlxyBea5rGlU+Gy8Yl7NvDGPJvtNxOb60p53XW1mE2C7Y1a2/lUE9lMSQzpLiAJhU6J3cIbrq/nz+/akPJ5d2J+YmYjewa9wUTGvrTIyq54VvF//t51iZLX5rpSHtihdXAWUrClZ7aG/SEu93tZX1M8ke3KNNgaC1BXWkRtqZ2esdT7fMQfxhOI5I3tQyYU3G1M+TxH9uS7n1E6zHHH7KfO9ABw79ZaKpw2LCbBkbZh7tpcy/leD+VO6zSX47XVxQnTurmin7gqiwvnRNNU6cITjDDsD+N22bjU5+EHB6/ROxrgTTekcjvJnFAkxtFrw7wrqWnBYTOzwpbfszlhIgC4ZV1V4rEV5Q4OXR1a1PcZ9oWneWwl84l7Ni7q+xmB//2W7byvZyxRPpxvZssT1M6ZhVhGFELwb+/elfZ5PXDKpIwYCEfxhaKTtKgfu3sDpzrHuHVD1aRtP3nPRn79ajf1ZYVh+wATgWlrv5dBX4h11cWUx/0thzMsw/aOBVi3rgqHzUx7mnmzegVhtSojGpfSeQZbZ7rGKCmy0FiR/xe3qbjsFgLhGNsby2god+CwmdlSX8rRthFAy+ptqi2ZVn5ZW+XSXOXnYeSp+6cUikAetMwWTJwIfnZUy2hdGVh4afHVjhGCkRg3rTH+WIq5cl1DKU1uJ7eun7gYNZQX0TMamNHUcK4M+UMF44+XKW6XbVIQq+vVZvIw8wYj/P5XX0p468FEcJZK71boOGxmHFZzRmVEPSCrTDrObttQzZ82r5u27eoqFz/4wE0pn8tX9OaTQ1e1qsj6mokyYiaZrWhM0ucJUl+mZbbSlRH1AeizDXfOJwou2JrvMGpNHF9aMELGZPT5iK+7bsI1eVdTOSc6RghHY1zo8bCpbnpjwNrqYgLhGF3zEDLrLstVBZTZ0lPa1wY1J/lfHu/S/j3kT5gYzpeDV7Qsz9417oUt0oDsW1vJC39956QuwYZyB5GYTDhsLwbDvulzEZcbEwL59Jmt1n4vh64O87uLE+7nE2XE5RdsQebGpoPeuWXsb1pbSX1Z4dzAl8cDKz0rnZzZGs2gI3HAq7nG15YVUVdaxLA/TDAyXVh/dcCPENBYoYItw1LmmLuDciwmOdfjKTi9lo4ebL02yc9k16oK/KEoz5ztwxeKpgm24h2J89BtDXhDWM2pO8PylcYKJ0Joma1Xrg7ROTLObRuqiMQkHcML0x8dvDLExtriZZOZaVhk+4dYTBtC7Ta6l1GWyaSMqN8IJe/7CYF84Wm2MqGy2JZRGVHfd4WUsZ8LlriNRfdoALvFxIoKR8I/bCSD+Yg98TFTdaVF1MSnYvSl0G21DfqoLy3Ke71qMgUZbE3NbPlDEb74xDl8wdQnoLYhP/5QtGCDrZIiK2uqXJO62nbFRfI/fOUaMFkcrzMRbM1dtzUQF5EWUqawyGqmvrSIa4N+fn60E6fNzJ/crpUIri6glBiJxjhydaggS4jp0L22Fmsg9VggTEym9thaTjisZiwmMaP1Q388O9OZdIOgb1+Imq1MyDSzpcsjqgrE0mY+6DeEa6q0jnWXTTvmMvHa6k4KtmrjwVaqUmLbUGHZPkABCuRTBVsvXhrkq89fZlNdMW++oXHa7xSqOF7nM2/YgkmISYFPY4WD6hI7L8Sn1qea61RdbKfEbqF1HoHEoDdIVUnhXfiaKp2c7/VwbdDP67fVJYYctw74uHOer3mqawxfKMpNawuvhJgOXTS8WMGWfqFM1424XNCNTWfSbKXKbHkK2PohE9wuW0YGzonjbJlmtgAqnFauQOLmXQhBudOWkWZLD6zqyoqwWUzxx1Jntu7ZktpZPl8pyMyWPxSdpKHRzROnuqbrnO0ew2wSbKjNbz+jdOxqqmDnyvJJjwkh2NVUjpRaliFV+UAIwdpq17zKiJrxX+Hd/a2udHG6awxPMMJbbmikwmmlzGHlyjzNXwEOtmrTrApRr5WOkiIrpUWWRQu2Eu7xy7yMCNq+nbmMGM9sJZcRAxGsZq1zeTlS6bJlZP0w6Atht5gSZtHLET2ztS7Js6zcaWXEn0EZcSyA1SyodNmoLbUnHkvGG4ww4A0VXGar4L5ZZc7pxqZ66vLw1dTB1pmuMdZVuwqqPpwJu1dppcRUJUSdtdXF8yojJhv/FRJNcZF8bamdm9dVIoRgTZVrQR2Jr1wZYm2Vi5qSwmkRzwTNa2txjE2HfNr3fblo3maipMgyc7AVz86M+MMJaYUnEKHYbimosv9ccLvsBMIx/KGZLTMGvEGqigtLHjFX9BuaZFlKucOaURmxdzRATUkRJpOgzGHFZjFNc5FvS9g+FI44Hgox2ErhIt8dv4M73+tJqWXQOxGXG7pua+NMwVaVi67RwKwnoWSklPR7g1QXUCeiju778qadKzDHZ6ytrXJxdWB+Y3yiMckrV4eWVQlRp6HcsXiZLZ/KbOlowVb6C5+uO4KJ7JY3GFm2nYiQNLJnFvuHQr2JnAsVaTNbmWm26uISAiEEdaVF0zRbbfGRaE0q2DI2uoFi8h++a1QbBiqlNn8umRF/iK7RwLIMtrY3lvPG7fW84fr0rtr6eIu5ZG68wQihSKwgT0p7Vldw4+oK3n3TqsRjq6tcdI6MZzwbLBiJ8pPD7XziR8e46QvP4AlEJnklLRcayovmZSuSiiG/rtkqvGNurpTOWkac8CPrGNYubJ5AhBL78tW7JUb2zCKS16YULO9jbH3c7kFvoAIoc9gyslzqjbvH62gu8pODLd3HUJURDU6qOU3do1qLvklM122diYvjC7UTcSZsFhP/+q5dbFtRlnabVPYPJztGJw2ynkqiPboANVs1JUX85MO3TLrrWlOl7aNM5yZ+6Ynz/LdHXuV3lwZ4zfpKvvz2HQU1RiZTGsodk0pZC2HYF8JmMSVsTpYzs2m2BrxBro9/5/WORE8gvKwzW5mO7Eke1bNceWh3Iy9/6u5JsptMNFtSSnrGAokuRICa0qJp1g9tA36qiu0F1xlbsMGWHmXHYpLe0SAbakvYVFc6Ldg6260NYV6Oma1MWFPlQoiJYCsQjvLH3znEJ398PO3vTIzqWR53gHqwdSWDRoJYTPKrV7u4Z0sthz5zD//8jht48w2Ny1IDots/dC9CdmvIp3lsLcf9OJWSIktar8FYTDLkC7GlvhSrWdCRVEYsKbCL21xIjOyZoYwopWTAF6JqmZzX0mEyCRxTbmoqnFZ8oSihSHpz57FABH8oOml8Ucoy4pCvoGYi6hR8sDXoCxGKxqgvK2LPqgqOXRsmktSp+MzZXlaUOwpqWOhiUmQ101DmoDXebfe9A230eYJcHfQnDOqm0u8pPPf4mdCDrUwsMo5cG6bfE+T3dtQv+8Bgwth04SL5Yb9yj9cpLbLgDUVSjtkaC4SJxCQ1JXatQSGR2YosW9sHmLBymKmMWMjyiIVSFtdKzlRK1IOq2rLJZURfKJow1QVNs6WCrTxgarCl3zXXlxWxe1UFvlCU871aNut01ygvXR7kvTevSv1iCoCE/YMvGOE/Wi7T5Na+CAevDKbcXs9sLZdgy2W3UFNiz8jY9ImTPdjMJu7aXLMEKzM2DYtobKppaZav5iiZkiIrUoI3RVPLQJID+opyhxLIx3HZzNgsphmDrQkvt+VxXpsL5QmtdPr9l+wer6OXFPXn/KEI3aOBghpArVNwwZbVrOk29GCrK37X3FDuSFgd6KXEr++/gstm5h17m3Kz2DxhXdz+4dsvXWXQF+LLb99BSZGFA61DKbfXU/HLSUiaif1DLCZ54lQ3t2+sWrZjUZKpLbFjEosTbA37w6oTMU6pI/3IHt1jq6rYrgVb8cyWNxBZ1sekECLutZU+WBhY5qN6ZkKfjziTsakuhE8OtnS7G93+4bdnegHYE79WFxIFF2zBZBf55MxWY4WDmhI7R9qG6R4d51cnunj7jU2JbJgiNWurXfhCUf712UvcvbmG3avc3LjanTDjnMqAN5jwUFkurK2ePdg60TFC92iA+7YtPzF8KixmE3WlRXOejxiNSQ5fnRzoqy6xCSaGUU+/8OnBRGWxjRUVDvo8QTyBMKForOAEyXNltpE9g2pUT1rKHfH5iDPYP+jZq5rSif2n20D0erTnfvRKO01uJ/vWFt7oskW5GgohXi+EOC+EuCSE+FSK5+1CiB/Hnz8ohFi9GO+bjuRgq2c0gM1iwu3SxLN7Vldw+Oow337xKjEpef9rsrqUgmBtlWb/MB6O8sl7NwKwb62b1gHfNEM6WJ5eNGuqXAz6QjNOvv/NqR6sZlFwYygWQrJuKFO+d6CNh776Mq92jADabMnRcZXZ0plpGLXusVXpsicaFC7EZRXLWbMFWrA1U2YrOVBVTCaR2ZqpjDgWwO2yTepirIlrpXtGg1wd8PFy6yBvv3ElJlPh6VkXHGwJIczAvwH3AVuBdwohtk7Z7I+BYSnleuDLwJcW+r4zkRxsdY0GqC8rSoiRd69y0zkyzndfbuO+6+tZ6S48Id5is65Gq5/ft60uYROhD00+eGV6KXHAG1x2d39r4gHplTT2D1JKHj/VzS3rqhJTDhRaF/DJztGMPcoAfnyoHYD9FweACX2mymxp6JmtVB2JA94QQmjdYysqtGDrXI8KtkDz2hqawfphQrOljrOplKeY3DKV3tHJtg+g6V1L7BZ6xwI8fLgdk4C37po+v7gQWIzM1l7gkpSyVUoZAn4EPDhlmweB78R/fgS4W2SxFavMYU2caLpHxie1muq6rfFwlA/dtjZbSygo6ssc/J+3budvH7gu8dh1DaUU2y0cSFFKHPQtx8yWFrSnE8mf7hqjfWic+6+vW8plGZ67NtfgD0VTBu2pON01mvDGe+myFmwl5iKqiyAwc2Zr0BukwmnDYjaxskI7Zs/F7W+Kl7GpKWjC96EZrB8GvEGK7ZZlN9YtE4rtFswmMXMZcSww6VqsU1tWRNfIOI8c6eDOTTWJ0mKhsRjB1gqgPenfHfHHUm4jpYwAo0DWirKTNVsBGsocieeuayjFYTWzd7WbHVOGMyvS87YbV1KTdFdiMZvYvaoifWZrmXQi6qx0OzGJ9PYPT5zqxmwS3LtVBVvJ3LyukiKriefO9WW0/U8Od2Azm3jLrhUcvjpMIBydmIuoyoiA5iAPaTRb3lDCLb2urAiTgHM9WvC63DVblcU2fKFo2izrcpRHZIoQgnKHNXHjk4qeFJkt0OwfWs730+cJ8vYbV2ZzmTnFUN8uIcSHgA8BVFdX09LSMq/XGRsMMuSN8Oxzz9E9Ok5otG/Sa/35TitVjvF5v36+4PV6s/oZawjxfF+YR598jlK7lqiMxCQj/jCegS5aWgay9t5LwVz3X2WR4ODpVlqsXdOe+/khP5sqBK8eemkRV2hsMt1/m8oFjx1r446Svhm9xyIxySOH/OyoNtPEAMFIjG8+2sJ4RPOTunz2BJHOwsk6zPf7G4pq++PEmQusDF6d9Fxr1zgWQeJ1y+2CUx1ad/aF08cJti/f/TfQoQWnjz39PJUOE1JKohIscf3QpY5xrFEK9rqxc2QEgONJn28u+9BKmIttnbS0TK92hGOSQV+IwFD3tOelP0goGqPMLjD1nqWl/9x8P4KhWYxgqxNIDkcb44+l2qZDCGEByoBpfxEp5deArwFs2rRJNjc3z2tBJ6MXefLqBTbuvInYk89x0/ZNNO+b8NKa36vmHy0tLcx3H2ZC6dphfnLhJcz1m2mOj5vpGwvAU8+we9vkfZ6PzHX/bW19hUFfkObm2yY97g1G6H7ySd6+bwPNzRsWeZXGJdP91+lo4zM/P0Xj1j1sqE0/FP2Jk914w0f5yH272L2qgn85/lv8xY2a9ujYSV57xy3UJ2Wx852FfH9tzz5BVUMTzc2bJz3+ucMtbGwopbl5FwBrz77E4bgVTvNr9hXUPLq57r/Q6R6+dfoIG6/fzaa6Ej743cN0jozz6z+/lSKrmS8ef4HVNU6am/dkb9G5pLwcYNI+m8s+bDjzIjabhebmm6Y998vjncBx7t67jebtDZOeOxg4x0tdl3nXzWu5567N0363UFiMMuIhYIMQYo0Qwga8A3h0yjaPAu+L//wQ8KyUcrq98SKhC5DPx4WfDQVaA841168ow2kzTzI37Y93O1Uvw3T7mirN/DU6xbn7bPcYUsK2FWokVCp0g9dnZykl/uRIB3WlRdy2oZqSIis7Gst48fJAQrisuhEnKCmypCwjTi3x6yJ5UGVEvUQ44AvyqZ+9yvMX+rnU5+XfWy4DmhZ1uY/qmYlyp42R8ellxBF/iP/16zPsWFme0vZmdaUTs0nwtj2FW0KERQi24hqsjwJPAmeBh6WUp4UQnxNCPBDf7BtApRDiEvAXwDR7iMVE983Su2wK6W7XSFh13VaSuWliCPUy02yBFnz6Q1Eu93snPX66cxSA6xrSD/xeztSXOdhSX8ozMwRbvWMBWs738ZZdKzDHyzq3rKvi1Y5R2of8OG1mJVxOoqTIwtgUgXwwEmUsEElotmBiPiWwrB3kYcIZ/h+eOs/PjnbyyXs28uDOBr76/GVa+70MLcPGn7mgDaOeHuD/78fPMewP87/ffH3iu5vMW3Y18uxf3pEYe1aoLIrPlpTycSnlRinlOinl5+OPfVZK+Wj854CU8vellOullHullK2L8b7pKI0HW2fjXUupOiAUi8O+tZWc7/Uk/LYSQ6iXYWfYzqZyAI5dmzzs/HTXGJUuG7Wlyy8AzZS7N9dwpG04rU/PI0c6iEl4aPdEW/gt6yuJxiS/PdOrslpTKHVYp2W2hnzTb4T0zJbNYsJuWd7Bqm7pcKpzjId2N/Kxu9fzmfu3YDOb+KufnCAak4mB1YrplDts03wGX748yI8Pt/PB29aytSF1Zt9qNhVU+TodBWnxnZzZKrKaEh4gisXn/uvrEQK+d/AasLwzW2sqXZQWWTjePjLp8dNdY2xtKF32g6dn4q4tNURjkucv9E977jenuvnyby9wx8Zq1lYXJx7f1VSB3WJiULnHT0MrI07ObA2mGDfTGLd/KF3mWS3Q9kFpkYXXrK/kC2++HiEENaVFfPLejRy9NgIoQ9OZKHda8QQjhKMxAALhKJ/++Uma3E4+fvfy0aqmo6CDrSsDPhrKHOoil0XWVLm4e3MN3zvQRiAcpd8bxGY2LcuTt8kk2LGynGPxEzNopZuLfZ6EGawiNTsay6l02aZZQPzqRBcf+cExtjeW8S/vumHSc0VWMzeudgPKY2sqJfbpma2BxFzE6WXE5a7XAs2+4DefuJ1v/eHeSaPG3nfzKjbXaY0bKrOVnqnGpt870MaVAR+ff/M2HLblnTWFAg+2ojFJfbkqIWabP7p1DUO+EL841pnwolmuAe4NK8u50OvBF9SyChd7vYSjkuvSpNAVGmaT4I5N1Tx3vp8fHLzGr0508fX9rXz8R8fY3VTBd//4poR/VDK3rNfs+twqez2JGTNbSQFDIthahjdHqWgod0yb6Woxm/jCW65nU20Jm+rSd8sud/Tr7og/jJSSHx1qZ/eqCm7bUJ3jlRmDgvyGJQ+WVuL47HPz2kq21pfyzRev0FDuWNap9p1N5cQknOwcZd/aSk53KXF8pjywo4GfH+vk0z8/mXhs31o33/zDG3HaUp+qXrOuCjivMltTKCmyTg+24nrKqpKJYMthM1PpslGyzN3jZ2NXUwVPfvL2XC/D0JTHdZOj4yGOtYe51Ofli2+5PserMg4FGWxZzSacNjP+UFSJ45cAIQR/fOsa/vInJ2gb9HPzusKb2J4pOxrLATjePhIPtsYotltYpWZwzkrzphrO/O3rGR0P4wmEGQ9H2VJfitWcPgG/bUUZu5rK2bPKvYQrNT6lDgveYIRoTCY6wAa8IewWE64pJZ2dK8tVBUCxYCqcE5mtp8/24bCaecP26VYPy5WCDLZAy25pwZbKbC0Fv7ejgS/+5hz9nuCy1jVUFttpcjs5Htdtne4aY0t9SUFOsc8GDpsZh82c8Xw0s0nwsz97TZZXlX/ow6i9gUjCd1D32Jpa4v/6+/Ys27K/YvEod2iZre7RAL860cV919cljkNFgWq2YKKUqO7YlgabxcR7447xy934b+fKco61DxONSc52j6kSomLJ0YdRjyWJ5NPN9lOBlmIx0IP6Hx26hjcYKXiT0rlSsMGW7rXVoDJbS8a7963C7bItexHpzpXl9I4FOdA6iD8UVeJ4xZKjdwMn67YGfcFl6X+nWBpK7BZMQvMpW1Xp5KY1qrSfTEGXEYGMyxGKheN22Xjl03djmUFjsxy4IW5u+v2DbYASxyuWHr1845mS2dpcpwJ/RXYwmQRlDivD/jAP7WpUGdMpFOxVsdxhxWUzL0u/p1yy3AMtgK0NpdjMJp463YvNbGJDbfHsv6RQLCKliWBLy2xJKdOWERWKxaLcaUMIeGvSpAeFRsFGIn906xru2FStomvFkmO3mNnSUMqJ9hG2rSiZsZtOocgGUzVbnmCEUDRG1TJuXlFkn7VVLjbUFNNQruQ7UynYYGtLfSlb6lXKXJEbblhZrgVbqoSoyAElUzRbAx7dY0tlthTZ46t/sBspc70KY1KwwZZCkUt2riwHUOJ4RU6Yqtka9E13j1coFhuVxU+P2jMKRRa4fWM1zZuquWtLba6XoliG2Cwm7BZTIrM1GJ+LqDRbCkVuUJkthSILuF02vv3+vblehmIZU+qw0u8Ncm3Qz+muMQCqilVmS6HIBSrYUigUigKk3GHlZ0c7+dnRTgCKrCYqnCqzpVDkAhVsKRQKRQHyuQe3cbprlDKHlQqnjbXVLmwWpRxRKHKBCrYUCoWiALl5XeWyHgqvUBiJBd3mCCHcQojfCiEuxv9fkWa7qBDiePy/RxfyngqFQqFQKBT5xEJzyp8CnpFSbgCeif87FeNSyp3x/x5Y4HsqFAqFQqFQ5A0LDbYeBL4T//k7wJsW+HoKhUKhUCgUBcVCg61aKWV3/OceIJ2pUJEQ4rAQ4oAQ4k0LfE+FQqFQKBSKvEHIWbz1hRBPA3UpnvoM8B0pZXnStsNSymm6LSHECillpxBiLfAscLeU8nKK7T4EfAigurp698MPPzyXz6KYgtfrpbhYDUGeL2r/LQy1/xaG2n8LQ+2/ubHzE58A4Pg//VPiMbUP58add955REq5J9VzswZbMyGEOA80Sym7hRD1QIuUctMsv/Nt4NdSykdm2m7Tpk3y/Pnz816bAlpaWmhubs71MvIWtf8Whtp/C0Ptv4Wh9t8c0fdVS0viIbUP54YQImvB1t8Dg1LKLwohPgW4pZR/PWWbCsAvpQwKIaqAl4EHpZRnZnltD6CirYVRBozmehF5jNp/C0Ptv4Wh9t/CUPtv4ah9ODc2SSlLUj2x0GCrEngYaALagLdJKYeEEHuAD0spPyCEuAX4TyCGphH7JynlNzJ47cPpIkRFZgghvial/FCu15GvqP23MNT+Wxhq/y0Mtf8WjtqHc2OmuGVBpqZSykHg7hSPHwY+EP/5JeD6hbyPYt78KtcLyHPU/lsYav8tDLX/FobafwtH7cNFYkGZrWyiMlsKhUKhUCjyhZniFiMPyvparhegUCgUCoVCkSFp4xbDBltSShVszQEhxOuFEOeFEJfizQoIIb4ff+yUEOKbQghrrtdpVNLsv28IIU4IIV4VQjwihFA90GlItf+SnvuKEMKbq7XlC2mOwW8LIa4kjTvbmeNlGpY0+08IIT4vhLgghDgrhPhYrtdpVNLsv/1Jx16XEOIXOV6moZkpbjFsGVGROUIIM3ABuBfoAA4B7wRWA0/EN/sB8IKU8j9ysUYjM8P+65BSjsW3+UegT0r5xZwt1KCk239SyjPxZpmPA2+WUqpgNQ0zHIN/TQZWOcudGfbfTcCdwB9KKWNCiBopZV/uVmpMZvoOJ23zU+CXUsrv5maV+Y1hMltpouqPxv8t47YRitTsBS5JKVullCHgR2j2Go/LOMArQGNOV2lc0u0/PdASgANQdyapSbn/4ifwv0cLGBQzk3If5nhN+US6/fenwOeklDEAFWilZcbjTwhRCtwF/CI3y8t/DBFsxU/K/wbcB2wF3imE2Aq8CNyDZiuhSM8KoD3p3x3xxwCIlw//APjNEq8rX0i7/4QQ30IbRbUZ+JelX1pekG7/fRR4NGmklyI9M32HPx8vZX9ZCGFf+qXlBen23zrg7fFxcU8IITbkZHXGZ8ZrCNrc42f0G1DF3DFEsEX6zMIxKeXV3C6tIPh3tBLi/lwvJN+QUr4faADOAm/P8XLyCSfw+6gAdaH8d7RA/0bADfxNbpeTd9iBQLxD7L+Ab+Z4PfnKO4Ef5noR+YxRgq3ZomrFzHQCK5P+3Rh/DCHE/wCqgb/IwbryhbT7D0BKGUW7AXjrEq8rX0i1/y4D64FLQoirgFMIcSkHa8sXUh6DUsruuBIgCHwL7cZUMZ103+EO4Gfxx34ObF/ideULM11DqtCOu8dysK6CwSjBlmJhHAI2CCHWCCFswDuAR4UQHwBehyZ0jOV0hcYm3f5bDwnN1gPAuRyu0cik2n+/kFLWSSlXSylXo43sWp/TVRqbdMdgPSSOwTcBp3K3REOTcv+haYzujG9zB5oIXDGddPsP4CG0Jo1AzlZXACzIQX4RmTGzoJgZKWVECPFR4EnADHxTSnlaCHECTe/2snau5mdSys/lcKmGJNX+Qysb7o8LQwVwAk1sq5hCuuMvx8vKK2b4Dj8rhKhGOwaPAx/O4TINywz774vA94UQnwS8xCebKCYzy3f4HYDqwl4ghrB+EEJY0O447kYLsg4B79L/2PEyxB4p5UDOFqlQKBQKhUIxDwxRRpRSRtA6l55Eyyg8HL8r+ZgQogMt0/WqEOLruVynQqFQKBQKxVwxRGZLoVAoFAqFolAxRGZLoVAoFAqFolBRwZZCoVAoFApFFsl5sKUG1CoUCoVCoShkch5sKRQKhUKhUBQyhgi2hBDFQohnhBBHhRAnhRAPxh9fLYQ4K4T4LyHEaSHEU0IIR67Xq1AoFAqFQpEpOe9GjJcRywGnlHIsPhrgALABWAVcQvPYOi6EeBhtsO33crZghUKhUCgUijlgFAd5AXxBCHE7EEObi1gbf+6KlPJ4/OcjwOolX51CoVAoFArFPDFKsPVutGHJu6WU4bhjfFH8uWDSdlFAlREVCoVCoVDkDYbQbAFlQF880LoTrXyoUCgUCoVCkffkNLMVn4kYBL4P/EoIcRI4DJzL5boUCoVCoVAoFoucCuSFEDuA/5JS7s3ZIhQKhUKhUCiySM7KiEKIDwM/BP6fXK1BoVAoFAqFItvk3PpBoVAoFAqFopAxikBeoVAoFAqFoiBZ0mBLCLFSCPGcEOJM3BH+4/HH3UKI3wohLsb/XxF/fLMQ4mUhRFAI8VdTXuvjQohT8df5xFJ+DoVCoVAoFIpMWerMVgT4SynlVmAf8BEhxFbgU8AzUsoNwDPxfwMMAR8D/r/kFxFCbAM+COwFdgBvFEKsX5qPoFAoFAqFQpE5SxpsSSm7pZRH4z97gLNobvEPAt+Jb/Yd4E3xbfqklIeA8JSX2gIclFL6pZQR4HngLdn/BAqFQqFQKBRzI5fdiKuBG4CDQK2Usjv+VA8To3rScQq4TQhRKYRwAvcDK7O1VoVCoVAoFIr5khNTUyFEMfBT4BPx4dOJ56SUUggxY4uklPKsEOJLwFOADziONspHoVAoFAqFwlAseWZLCGFFC7S+L6X8WfzhXiFEffz5eqBvtteRUn5DSrlbSnk7MAxcyNaaFQqFQqFQKObLUncjCuAbwFkp5T8mPfUo8L74z+8DfpnBa9XE/9+Eptf6weKuVqFQKBQKhWLhLKmpqRDiVmA/cBKIxR/+NJpu62GgCWgD3ialHBJC1KHNSiyNb+8FtsZLj/uBSjTx/F9IKZ9Zsg+iUCgUCoVCkSHKQV6hUCgUCoUiiygHeYVCoVAoFIosooIthUKhUCgUiiyigi2FQqFQKBSKLKKCLYVCoVAoFIosooIthUKhUCgUiiyigi2FQqFQKBSKLKKCLYVCoVAoFIosooIthUKhUCgUiizy/wM6IDldfCtdoQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "test_series = to_pandas(test_entry)\n", - "train_series = to_pandas(train_entry)\n", - "\n", - "fig, ax = plt.subplots(2, 1, sharex=True, sharey=True, figsize=(10, 7))\n", - "\n", - "train_series.plot(ax=ax[0])\n", - "ax[0].grid(which=\"both\")\n", - "ax[0].legend([\"train series\"], loc=\"upper left\")\n", - "\n", - "test_series.plot(ax=ax[1])\n", - "ax[1].axvline(train_series.index[-1], color='r') # end of train dataset\n", - "ax[1].grid(which=\"both\")\n", - "ax[1].legend([\"test series\", \"end of train series\"], loc=\"upper left\")\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "*For the rest of the tutorial we will use the custom dataset*\n", - "\n", - "## Transformations\n", - "\n", - "### Define a transformation\n", - "\n", - "The primary use case for a `Transformation` is for feature processing, e.g., adding a holiday feature and for defining the way the dataset will be split into appropriate windows during training and inference. \n", - "\n", - "In general, it gets an iterable collection of entries of a dataset and transform it to another iterable collection that can possibly contain more fields. The transformation is done by defining a set of \"actions\" to the raw dataset depending on what is useful to our model. This actions usually create some additional features or transform an existing feature. As an example, in the following we add the following transformations:\n", - "\n", - "- `AddObservedValuesIndicator`: Creates the `observed_values` field in the dataset, i.e., adds a feature that equals to 1 if the value is observed and 0 if the value is missing \n", - "- `AddAgeFeature`: Creates the `feat_dynamic_age` field in the dataset, i.e., adds a feature that its value is small for distant past timestamps and it monotonically increases the more we approach the current timestamp \n", - "\n", - "One more transformation that can be used is the `InstanceSplitter`, which is used to define how the datasets are going to be split in example windows during training, validation, or at prediction time. The `InstanceSplitter` is configured as follows (skipping the obvious fields):\n", - "\n", - "- `is_pad_field`: indicator if the time series is padded (if the length is not enough)\n", - "- `train_sampler`: defines how the training windows are cut/sampled\n", - "- `time_series_fields`: contains the time dependent features that need to be split in the same manner as the target" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.713795Z", - "iopub.status.busy": "2022-06-13T08:55:40.712794Z", - "iopub.status.idle": "2022-06-13T08:55:40.740935Z", - "shell.execute_reply": "2022-06-13T08:55:40.741440Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.transform import (\n", - " AddAgeFeature,\n", - " AddObservedValuesIndicator,\n", - " Chain,\n", - " ExpectedNumInstanceSampler,\n", - " InstanceSplitter,\n", - " SetFieldIfNotPresent,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.747478Z", - "iopub.status.busy": "2022-06-13T08:55:40.746799Z", - "iopub.status.idle": "2022-06-13T08:55:40.749287Z", - "shell.execute_reply": "2022-06-13T08:55:40.749711Z" - } - }, - "outputs": [], - "source": [ - "def create_transformation(freq, context_length, prediction_length):\n", - " return Chain(\n", - " [\n", - " AddObservedValuesIndicator(\n", - " target_field=FieldName.TARGET,\n", - " output_field=FieldName.OBSERVED_VALUES,\n", - " ),\n", - " AddAgeFeature(\n", - " target_field=FieldName.TARGET,\n", - " output_field=FieldName.FEAT_AGE,\n", - " pred_length=prediction_length,\n", - " log_scale=True,\n", - " ),\n", - " InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=ExpectedNumInstanceSampler(\n", - " num_instances=1,\n", - " min_future=prediction_length,\n", - " ),\n", - " past_length=context_length,\n", - " future_length=prediction_length,\n", - " time_series_fields=[\n", - " FieldName.FEAT_AGE,\n", - " FieldName.FEAT_DYNAMIC_REAL,\n", - " FieldName.OBSERVED_VALUES,\n", - " ],\n", - " ),\n", - " ]\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Transform a dataset\n", - "\n", - "Now, we can create a transformation object by applying the above transformation to the custom dataset we have created." - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.754053Z", - "iopub.status.busy": "2022-06-13T08:55:40.753246Z", - "iopub.status.idle": "2022-06-13T08:55:40.755257Z", - "shell.execute_reply": "2022-06-13T08:55:40.755736Z" - } - }, - "outputs": [], - "source": [ - "transformation = create_transformation(\n", - " custom_ds_metadata['freq'], \n", - " 2 * custom_ds_metadata['prediction_length'], # can be any appropriate value\n", - " custom_ds_metadata['prediction_length']\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.759729Z", - "iopub.status.busy": "2022-06-13T08:55:40.758878Z", - "iopub.status.idle": "2022-06-13T08:55:40.760882Z", - "shell.execute_reply": "2022-06-13T08:55:40.761313Z" - } - }, - "outputs": [], - "source": [ - "train_tf = transformation(iter(train_ds), is_train=True)" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.765485Z", - "iopub.status.busy": "2022-06-13T08:55:40.764513Z", - "iopub.status.idle": "2022-06-13T08:55:40.767422Z", - "shell.execute_reply": "2022-06-13T08:55:40.767850Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "generator" - ] - }, - "execution_count": 33, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "type(train_tf)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "As expected, the output is another iterable object. We can easily examine what is contained in an entry of the transformed dataset. The `InstanceSplitter` iterates over the transformed dataset and cuts windows by selecting randomly a time series and a starting point on that time series (this \"randomness\" is defined by the `instance_sampler`)." - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.772517Z", - "iopub.status.busy": "2022-06-13T08:55:40.771634Z", - "iopub.status.idle": "2022-06-13T08:55:40.774472Z", - "shell.execute_reply": "2022-06-13T08:55:40.774886Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['start',\n", - " 'feat_static_cat',\n", - " 'source',\n", - " 'past_feat_dynamic_age',\n", - " 'future_feat_dynamic_age',\n", - " 'past_feat_dynamic_real',\n", - " 'future_feat_dynamic_real',\n", - " 'past_observed_values',\n", - " 'future_observed_values',\n", - " 'past_target',\n", - " 'future_target',\n", - " 'past_is_pad',\n", - " 'forecast_start']" - ] - }, - "execution_count": 34, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "train_tf_entry = next(iter(train_tf))\n", - "[k for k in train_tf_entry.keys()]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The transformer has done what we asked. In particular it has added:\n", - "\n", - "- a field for observed values (`observed_values`) \n", - "- a field for the age feature (`feat_dynamic_age`)\n", - "- some extra useful fields (`past_is_pad`, `forecast_start`)\n", - "\n", - "It has done one more important thing: it has split the window into past and future and has added the corresponding prefixes to all time dependent fields. This way we can easily use e.g., the `past_target` field as input and the `future_target` field to calculate the error of our predictions. Of course, the length of the past is equal to the `context_length` and of the future equal to the `prediction_length`." - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.779155Z", - "iopub.status.busy": "2022-06-13T08:55:40.778473Z", - "iopub.status.idle": "2022-06-13T08:55:40.782404Z", - "shell.execute_reply": "2022-06-13T08:55:40.782824Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "past target shape: (48,)\n", - "future target shape: (24,)\n", - "past observed values shape: (48,)\n", - "future observed values shape: (24,)\n", - "past age feature shape: (48, 1)\n", - "future age feature shape: (24, 1)\n", - "[0]\n" - ] - } - ], - "source": [ - "print(f\"past target shape: {train_tf_entry['past_target'].shape}\")\n", - "print(f\"future target shape: {train_tf_entry['future_target'].shape}\")\n", - "print(f\"past observed values shape: {train_tf_entry['past_observed_values'].shape}\")\n", - "print(f\"future observed values shape: {train_tf_entry['future_observed_values'].shape}\")\n", - "print(f\"past age feature shape: {train_tf_entry['past_feat_dynamic_age'].shape}\")\n", - "print(f\"future age feature shape: {train_tf_entry['future_feat_dynamic_age'].shape}\")\n", - "print(train_tf_entry['feat_static_cat'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Just for comparison, let's see again what were the fields in the original dataset before the transformation:" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.787366Z", - "iopub.status.busy": "2022-06-13T08:55:40.786505Z", - "iopub.status.idle": "2022-06-13T08:55:40.789580Z", - "shell.execute_reply": "2022-06-13T08:55:40.790002Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['target', 'start', 'feat_dynamic_real', 'feat_static_cat', 'source']" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[k for k in next(iter(train_ds)).keys()]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, we can move on and see how the test dataset is split. As we saw, the transformation splits the windows into past and future. However, during inference (`is_train=False` in the transformation), the splitter always cuts the last window (of length `context_length`) of the dataset so it can be used to predict the subsequent unknown values of length `prediction_length`. \n", - "\n", - "So, how is the test dataset split in past and future since we do not know the future target? And what about the time dependent features?" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.794154Z", - "iopub.status.busy": "2022-06-13T08:55:40.793467Z", - "iopub.status.idle": "2022-06-13T08:55:40.795667Z", - "shell.execute_reply": "2022-06-13T08:55:40.796105Z" - } - }, - "outputs": [], - "source": [ - "test_tf = transformation(iter(test_ds), is_train=False)" - ] - }, - { - "cell_type": "code", - "execution_count": 38, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.800966Z", - "iopub.status.busy": "2022-06-13T08:55:40.800059Z", - "iopub.status.idle": "2022-06-13T08:55:40.803285Z", - "shell.execute_reply": "2022-06-13T08:55:40.803706Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "['start',\n", - " 'feat_static_cat',\n", - " 'source',\n", - " 'past_feat_dynamic_age',\n", - " 'future_feat_dynamic_age',\n", - " 'past_feat_dynamic_real',\n", - " 'future_feat_dynamic_real',\n", - " 'past_observed_values',\n", - " 'future_observed_values',\n", - " 'past_target',\n", - " 'future_target',\n", - " 'past_is_pad',\n", - " 'forecast_start']" - ] - }, - "execution_count": 38, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "test_tf_entry = next(iter(test_tf))\n", - "[k for k in test_tf_entry.keys()]" - ] - }, - { - "cell_type": "code", - "execution_count": 39, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.808707Z", - "iopub.status.busy": "2022-06-13T08:55:40.807777Z", - "iopub.status.idle": "2022-06-13T08:55:40.810415Z", - "shell.execute_reply": "2022-06-13T08:55:40.810881Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "past target shape: (48,)\n", - "future target shape: (24,)\n", - "past observed values shape: (48,)\n", - "future observed values shape: (24,)\n", - "past age feature shape: (48, 1)\n", - "future age feature shape: (24, 1)\n", - "[0]\n" - ] - } - ], - "source": [ - "print(f\"past target shape: {test_tf_entry['past_target'].shape}\")\n", - "print(f\"future target shape: {test_tf_entry['future_target'].shape}\")\n", - "print(f\"past observed values shape: {test_tf_entry['past_observed_values'].shape}\")\n", - "print(f\"future observed values shape: {test_tf_entry['future_observed_values'].shape}\")\n", - "print(f\"past age feature shape: {test_tf_entry['past_feat_dynamic_age'].shape}\")\n", - "print(f\"future age feature shape: {test_tf_entry['future_feat_dynamic_age'].shape}\")\n", - "print(test_tf_entry['feat_static_cat'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The future target is empty but not the features - we always assume that we know the future features!\n", - "\n", - "All the things we did manually here are done by an internal block called `DataLoader`. It gets as an input the raw dataset (in appropriate format) and the transformation object and it outputs the transformed iterable dataset batch by batch. The only thing that we need to worry about is setting the transformation fields correctly!" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Training an existing model\n", - "\n", - "GluonTS comes with a number of pre-built models. All the user needs to do is configure some hyperparameters. The existing models focus on (but are not limited to) probabilistic forecasting. Probabilistic forecasts are predictions in the form of a probability distribution, rather than simply a single point estimate. Having estimated the future distribution of each time step in the forecasting horizon, we can draw a sample from the distribution at each time step and thus create a \"sample path\" that can be seen as a possible realization of the future. In practice we draw multiple samples and create multiple sample paths which can be used for visualization, evaluation of the model, to derive statistics, etc.\n", - "\n", - "### Configuring an estimator\n", - "\n", - "We will begin with GulonTS's pre-built feedforward neural network estimator, a simple but powerful forecasting model. We will use this model to demonstrate the process of training a model, producing forecasts, and evaluating the results.\n", - "\n", - "GluonTS's built-in feedforward neural network (`SimpleFeedForwardEstimator`) accepts an input window of length `context_length` and predicts the distribution of the values of the subsequent `prediction_length` values. In GluonTS parlance, the feedforward neural network model is an example of `Estimator`. In GluonTS, `Estimator` objects represent a forecasting model as well as details such as its coefficients, weights, etc.\n", - "\n", - "In general, each estimator (pre-built or custom) is configured by a number of hyperparameters that can be either common (but not binding) among all estimators (e.g., the `prediction_length`) or specific for the particular estimator (e.g., number of layers for a neural network or the stride in a CNN).\n", - "\n", - "Finally, each estimator is configured by a `Trainer`, which defines how the model will be trained i.e., the number of epochs, the learning rate, etc." - ] - }, - { - "cell_type": "code", - "execution_count": 40, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.814939Z", - "iopub.status.busy": "2022-06-13T08:55:40.814086Z", - "iopub.status.idle": "2022-06-13T08:55:40.942987Z", - "shell.execute_reply": "2022-06-13T08:55:40.943598Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.model.simple_feedforward import SimpleFeedForwardEstimator\n", - "from gluonts.mx import Trainer" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.950649Z", - "iopub.status.busy": "2022-06-13T08:55:40.949825Z", - "iopub.status.idle": "2022-06-13T08:55:40.952815Z", - "shell.execute_reply": "2022-06-13T08:55:40.953390Z" - } - }, - "outputs": [], - "source": [ - "estimator = SimpleFeedForwardEstimator(\n", - " num_hidden_dimensions=[10],\n", - " prediction_length=custom_ds_metadata['prediction_length'],\n", - " context_length=2*custom_ds_metadata['prediction_length'],\n", - " freq=custom_ds_metadata['freq'],\n", - " trainer=Trainer(\n", - " ctx=\"cpu\", \n", - " epochs=5, \n", - " learning_rate=1e-3, \n", - " hybridize=False, \n", - " num_batches_per_epoch=100\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Getting a predictor\n", - "\n", - "After specifying our estimator with all the necessary hyperparameters we can train it using our training dataset `dataset.train` by invoking the `train` method of the estimator. The training algorithm returns a fitted model (or a `Predictor` in GluonTS parlance) that can be used to construct forecasts.\n", - "\n", - "We should emphasize here that a single model, as the one defined above, is trained over all the time series contained in the training dataset `train_ds`. This results in a **global** model, suitable for prediction for all the time series in `train_ds` and possibly for other unseen related time series." - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:40.966230Z", - "iopub.status.busy": "2022-06-13T08:55:40.965395Z", - "iopub.status.idle": "2022-06-13T08:55:44.968444Z", - "shell.execute_reply": "2022-06-13T08:55:44.968932Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/100 [00:00\n" - ] - } - ], - "source": [ - "print(f\"Number of sample paths: {forecast_entry.num_samples}\")\n", - "print(f\"Dimension of samples: {forecast_entry.samples.shape}\")\n", - "print(f\"Start date of the forecast window: {forecast_entry.start_date}\")\n", - "print(f\"Frequency of the time series: {forecast_entry.freq}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also do calculations to summarize the sample paths, such as computing the mean or a quantile for each of the 24 time steps in the forecast window." - ] - }, - { - "cell_type": "code", - "execution_count": 54, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.136873Z", - "iopub.status.busy": "2022-06-13T08:55:45.136122Z", - "iopub.status.idle": "2022-06-13T08:55:45.139374Z", - "shell.execute_reply": "2022-06-13T08:55:45.139805Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean of the future window:\n", - " [ 0.9325081 0.42344594 0.6410389 0.32837266 0.07866155 0.07445939\n", - " -0.14185278 0.19504751 0.07800539 0.44639206 0.6214713 0.93874353\n", - " 1.0759872 1.2639699 1.6049056 1.9173782 1.8374654 1.8084614\n", - " 1.9578192 1.8212903 1.7286431 1.5800558 1.257884 1.1592294 ]\n", - "0.5-quantile (median) of the future window:\n", - " [ 0.90331984 0.50012326 0.6727759 0.36360857 0.0816559 0.09091982\n", - " -0.11844088 0.17335594 0.10704559 0.4449452 0.66597533 0.94671667\n", - " 1.097261 1.2285546 1.5955487 1.9096934 1.8352115 1.81152\n", - " 1.9721138 1.8075656 1.7403402 1.5337147 1.2483954 1.1800429 ]\n" - ] - } - ], - "source": [ - "print(f\"Mean of the future window:\\n {forecast_entry.mean}\")\n", - "print(f\"0.5-quantile (median) of the future window:\\n {forecast_entry.quantile(0.5)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`Forecast` objects have a `plot` method that can summarize the forecast paths as the mean, prediction intervals, etc. The prediction intervals are shaded in different colors as a \"fan chart\"." - ] - }, - { - "cell_type": "code", - "execution_count": 55, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.145408Z", - "iopub.status.busy": "2022-06-13T08:55:45.144631Z", - "iopub.status.idle": "2022-06-13T08:55:45.146656Z", - "shell.execute_reply": "2022-06-13T08:55:45.147147Z" - } - }, - "outputs": [], - "source": [ - "def plot_prob_forecasts(ts_entry, forecast_entry):\n", - " plot_length = 150 \n", - " prediction_intervals = (50.0, 90.0)\n", - " legend = [\"observations\", \"median prediction\"] + [f\"{k}% prediction interval\" for k in prediction_intervals][::-1]\n", - "\n", - " fig, ax = plt.subplots(1, 1, figsize=(10, 7))\n", - " ts_entry[-plot_length:].plot(ax=ax) # plot the time series\n", - " forecast_entry.plot(prediction_intervals=prediction_intervals, color='g')\n", - " plt.grid(which=\"both\")\n", - " plt.legend(legend, loc=\"upper left\")\n", - " plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.152418Z", - "iopub.status.busy": "2022-06-13T08:55:45.150231Z", - "iopub.status.idle": "2022-06-13T08:55:45.360623Z", - "shell.execute_reply": "2022-06-13T08:55:45.360102Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAGxCAYAAABV8nMIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADs9UlEQVR4nOy9ebgcdZn2/6mq3vvsS5aTlSWELGRjC1sIIMs4iIKM4zICKjr4G19nc9T3dXDAGR1mXt9xYVQEUXEGx+AGLgiIeCQgEEJIAiQkAbLn5OxL713b74/qqt6q+/TZq/vU57q4yOnu012pVFc9dT/3934EXddxcXFxcXFxcXGZGsSZ3gAXFxcXFxcXl1rGLbZcXFxcXFxcXKYQt9hycXFxcXFxcZlC3GLLxcXFxcXFxWUKcYstFxcXFxcXF5cpxC22XFxcXFxcXFymEM9Mb0Apmpqa9NNPP31K3jsWixEOh6fkvV2yuPt5enD38/Tg7uepx93H04O7n6eGl156qU/X9Xa75xxbbM2dO5ft27dPyXt3dnayefPmKXlvlyzufp4e3P08Pbj7eepx9/H04O7nqUEQhMOlnnPbiC4uLi4uLi4uU4hbbLm4uLi4uLi4TCFuseXi4uLi4uLiMoU41rNlhyzLHDt2jGQyOaH3aWxsZO/evZO0VS6lqNX9HAgEWLhwIV6vd6Y3xcXFxcWlCqiqYuvYsWPU19ezdOlSBEEY9/tEIhHq6+sncctc7KjF/azrOv39/Rw7doxTTjllpjfHxcXFxaUKqKo2YjKZpLW1dUKFlovLRBAEgdbW1gmrqy4uLi4us4eqKrYAt9BymXHcY9DFxcXFZSxUXbHlRA4dOsTq1atnejPYuXMnjz76qPXzL37xC+66664Z3CIXFxcXFxcXt9hyKIqijPl3Cout6667js9+9rOTuVkuLi4uLi4uY8QttsbBf/zHf7B69WpWr17NV7/6VcAojj7wgQ+wYsUKbrzxRuLxOACf/exnWblyJWvWrOFTn/oUAL29vbz73e/m3HPP5dxzz+XZZ58F4I477uCDH/wgF110ER/84AfZuHEjr732mvW5mzdvZvv27Wzbto0LLriA9evXc+GFF7Jv3z7S6TSf//zn2bJlC+vWrWPLli18//vf5xOf+ARgqG+XX345a9as4YorruDIkSMA3HLLLXzyk5/kwgsv5NRTT+UnP/kJAF1dXWzatIl169axevVqtm7dOi371sXFxcXFpdaoqtWIudz5y9fYc2JkXL+rqiqSJBU9vrKjgX96x6qyv/vSSy/xve99jxdeeAFd1zn//PO59NJL2bdvH/fffz8XXXQRH/7wh/nmN7/Jhz70IX7+85/z+uuvIwgCQ0NDAPz1X/81f/u3f8vFF1/MkSNHuPrqq62IhD179vDMM88QDAb5yle+wkMPPcSdd95JV1cXXV1dnHPOOYyMjLB161Y8Hg9PPvkk/+f//B9++tOf8oUvfIHt27fzn//5nwB8//vft7b7f/2v/8XNN9/MzTffzHe/+10++clP8vDDDwNGYfXMM8/w+uuvc91113HjjTfywx/+kKuvvprPfe5zqKpqFY8uLi4uLi4uY6Nqi62Z4plnnuH666+3hnjecMMNbN26lUWLFnHRRRcB8Bd/8Rd8/etf52/+5m8IBAJ85CMf4dprr+Xaa68F4Mknn2TPnj3We46MjBCNRgGj9RcMBgF4z3vew1VXXcWdd97JQw89xI033gjA8PAwN998MwcOHEAQBGRZHnW7n3vuOX72s58B8MEPfpBPf/rT1nPvete7EEWRlStX0t3dDcC5557Lhz/8YWRZ5l3vehfr1q2byG5zcXFxcXGZtVRtsTWaAlWOqch/KlyhJggCHo+Hbdu28bvf/Y6f/OQn/Od//idPPfUUmqbx/PPPEwgEit4ndxL7ggULaG1tZffu3WzZsoV77rkHgNtvv53LLruMn//85xw6dGjCA0X9fr/1Z13XAdi0aRNPP/00v/71r7nlllv4u7/7O2666aYJfY6Li4uLi8tsxPVsjZFLLrmEhx9+mHg8TiwW4+c//zmXXHIJR44c4bnnngPghz/8IRdffDHRaJTh4WHe/va385WvfIVdu3YBcNVVV3H33Xdb77lz586Sn/fnf/7n/Pu//zvDw8OsWbMGMJStBQsWAPmtwvr6eiKRiO37XHjhhfzoRz8C4MEHH+SSSy4p+/c8fPgwc+fO5aMf/Si33norO3bsKL9jXFxcXFxcXGxxi60xsmHDBm655RbOO+88zj//fG699Vaam5tZvnw53/jGN1ixYgWDg4N8/OMfJxKJcO2117JmzRouvvhi/uM//gOAr3/962zfvp01a9awcuVKS7Gy48Ybb+RHP/oR73nPe6zHPv3pT/O///f/Zv369XmrFi+77DL27NljGeRzufvuu/ne977HmjVr+K//+i++9rWvlf17dnZ2snbtWtavX8+WLVv467/+6/HsLhcXFxcXl1mPYLaNnMby5cv1ffv25T22d+9eVqxYMeH3rsUxMk6klvfzZB2Lk0FnZ+eEW8kuo+Pu56nH3cfTg7ufS3MyepJ5dfPG9buCILyk6/o5ds+5ypaLi4uLi4uLC7C7e/eUvK9bbLm4uLi4uLi4AF2RLnpiPZP+vm6x5eLi4uLi4jLrSSkpEkqCw0OHJ/293WLLxcXFxcXFZdYznBoG4PCwW2y5uLi4uLi4uEw6Q8khAPrifcTSsUl9b7fYcnFxcXFxcZn1mMUWTL665RZbM4g5WBrg7W9/uzU70Unccsst1nDqW2+9NW/MUCGdnZ388Y9/tH6+//77+cEPfjDl2+ji4uLi4jJR8oqtSfZtVe24nlrj0UcfnbbPUhQFj2fs//Tf+c53yj7f2dlJXV0dF154IQAf+chHajZny8XFxcWltsgtto5HjqNoCh5xcsokV9kaA4cOHeLMM8/klltu4YwzzuADH/gATz75JBdddBHLli1j27ZtAMRiMT784Q9z3nnnsX79eh555BEAEokE733ve1mxYgXXX389iUTCeu+lS5fS19cHGIOhzz77bFatWsW9995rvaauro7Pfe5zrF27lo0bN1pDo3O54447+OAHP8gFF1zAsmXLuO+++wCjELrkkku47rrrWLlyJaqq8g//8A+ce+65rFmzhm9/+9uAMRvxE5/4BMuXL+dtb3sbPT3ZJbC5Stxjjz3Ghg0bWLt2LVdccQWHDh3innvu4Stf+Qrr1q1j69atfOlLX+LLX/4yYIwk2rhxI2vWrOH6669ncHDQes/PfOYznHfeeZxxxhls3bp1cv6xXFxcXFxcKkTXdYaTw9bPiqZwfOT4pL1/1Spbf/PY37Dz5M5x/a6qqkiSVPT4unnr+Oo1Xy37u2+88QY//vGP+e53v8u5557LD3/4Q5555hl+8Ytf8KUvfYmHH36YL37xi1x++eV897vfZWhoiPPOO4+3ve1tfPvb3yYUCrF37152797Nhg0bbD/ju9/9Li0tLSQSCc4991ze/e5309raSiwWY+PGjXzxi1/k05/+NPfddx//+I//WPT7u3fv5vnnnycWi7F+/Xr+9E//FIAdO3bw6quvcsopp3DvvffS2NjIiy++SCqV4qKLLuKqq67i5ZdfZt++fezZs4fu7m5WrlzJhz/84bz37+3t5aMf/ShPP/00p5xyCgMDA7S0tHDbbbdRV1fHpz71KSBfrbvpppu4++67ufTSS/n85z/PnXfeyVe/auxrRVHYtm0bjz76KHfeeSdPPvlk2X8DFxeX6SOeVuiLpFncGprpTXFxmTD/74l9+CSR/3XFsrzHo+koqq7mPXZ4+DBLmpZMyue6ytYYOeWUUzjrrLMQRZFVq1ZxxRVXIAgCZ511FocOHQLgiSee4K677mLdunVs3ryZZDLJkSNHePrpp/mLv/gLANasWWMNli7k61//uqVeHT16lAMHDgDg8/m49tprATj77LOtzyvkne98J8FgkLa2Ni677DJLcTvvvPM45ZRTrG38wQ9+wLp16zj//PPp7+/nwIEDPP3007zvfe9DkiQ6Ojq4/PLLi97/+eefZ9OmTdZ7tbS0lN1nw8PDDA0NcemllwJw88038/TTT1vP33DDDaP+nVxcXGaG+7ce5LpvPDPTm+HiMik89XoPj756sujx3BaiyZHhI5P2uVWrbI2mQJVjIjP7/H6/9WdRFK2fRVG0hkLrus5Pf/pTli9fPub37+zs5Mknn+S5554jFApZxRqA1+tFEAQAJEnKG0Kdi/mawp/D4bD1mK7r3H333Vx99dV5r51O75iJuQ/L/Z1cXFxmhr5oiqG4TEpR8XuKOwIuLtVEIq0yEE8XPW5mbOUSTUcZTAzSHGye8Oe6ytYUcPXVV3P33XdjDvl++eWXAdi0aRM//OEPAXj11VfZvbt4BtPw8DDNzc2EQiFef/11nn/++TF//iOPPEIymaS/v5/Ozk7OPfdc22381re+hSzLAOzfv59YLMamTZvYsmULqqrS1dXF73//+6Lf3bhxI08//TQHDx4EYGBgAID6+noikUjR6xsbG2lubrb8WP/1X/9lqVwuLi7OJiEbrZVo0r0Rcql+YmmFobhMPJ1/PNspW2AUXJNB1SpbTub222/nb/7mb1izZg2apnHKKafwq1/9io9//ON86EMfYsWKFaxYsYKzzz676HevueYa7rnnHlasWMHy5cvZuHHjmD9/zZo1XHbZZfT19XH77bfT0dHB/v37815z6623cujQITZs2ICu67S3t/Pwww9z/fXX89RTT7Fy5UoWL17MBRdcUPT+7e3t3Hvvvdxwww1omsacOXP47W9/yzve8Q5uvPFGHnnkEe6+++6833nggQe47bbbiMfjnHrqqXzve98b89/LxcVl+knIGgDRlEJrnX+UV7u4OJt4yrh5ODGU5PQ5ddbjpYqthJKwfXysCKb6Mu43EIRFwA+AuYAO3Kvr+tcKXrMZeAQ4mHnoZ7quf6Hc+y5fvlzft29f3mN79+5lxYoVE9pemFgb0enccccdeSb1maSW9/NkHYuTQWdnJ5s3b57pzah5Zut+vvWBF3lybw+//uTFrOponNLPmq37eLqZrftZ13VO+z+PounwXx85j0uWtVvP/ffu/7ZVsS5cdCFr5tr7qwsRBOElXdfPsXtuMpQtBfh7Xdd3CIJQD7wkCMJvdV0vTL/cquv6tZPweS4uLi4u04TbRnSpFVKKhpbRl7qGktbjiqaUbBemlNSkfPaEiy1d17uArsyfI4Ig7AUWAKWjxl2mjDvuuGOmN8HFxaWGSKQzxVbKLbZcqpt4OhvtcHwo2x7MzdcqZLLaiJNqkBcEYSmwHnjB5ukLBEHYJQjCbwRBWDWZn+vi4uLiMjXE3WLLpUaI5RzDXcPZIqqUXwsgqSRLPjcWJs0gLwhCHfBT4G90XR8peHoHsETX9aggCG8HHgaWFbwGQRA+BnwMDBN2Z2dn3vONjY22q93Giqqqk/I+LuWp5f2cTCaLjs+ZIhqNOmZbapnZup8HR+IA7Ni9h8ahA1P6WbN1H083s3U/H49o1p9fO3iCzk5jkklcjtMqt9r+TqI/QefRzgl/9qQUW4IgeDEKrQd1Xf9Z4fO5xZeu648KgvBNQRDadF3vK3jdvcC9YBjkCw18e/funRTDdS0bt51ELe/nQCDA+vXrZ3ozgNlrdp1uZu1+/uOTQIqOJaey+dLTpvSjZu0+nmZm635++cggPPtHgl6JhBiw9sFTB5/iSL99gGlLsIXNqzZP+LMnXGwJRmLm/cBeXdf/o8Rr5gHduq7rgiCch9G+7B/L59yz/R66urqYH5s/0U0mmUwSCAQqeu1t59w24c+rFk4MJUgpGqe0hUd/sYuLy6zAbCPG3DaiS5VjHsunzQnzZk8MXdcRBGFa2oiT4dm6CPggcLkgCDsz/71dEITbBEEwK5UbgVcFQdgFfB14rz7RzIkZ4mtf+xqrV69m1apV1mw/MII9r7zySpYtW8aVV15pDVou5IEHHmDZsmUsW7aMBx54AIBUKsU111zD6tWr+eY3v2m99mMf+xg7duyY0r+PyS233MLPf/ZTUorKrbfeyp49pdc3dHZ28sc//tH6+Z577uEHP/jBhLfhxIkT3HjjjaO+7ktf+tKEP6sScgdvu7jMVpKZ1YgRt9hyqXLMYmvZnHoSsspwwgj1ropiS9f1Z3RdF3RdX6Pr+rrMf4/qun6Pruv3ZF7zn7qur9J1fa2u6xt1Xf/jaO/rRF599VXuu+8+tm3bxq5du/jVr37FG2+8AcBdd93FFVdcwYEDB7jiiiu46667in5/YGCAO++8kxdeeIFt27Zx5513Mjg4yOOPP87FF1/M7t27+a//+i8Adu3ahaqqJYdVV8JYR9/ogK7Dd77zHVauXFnydYXF1m233cZNN9003s206Ojo4Cc/+cmorxtPsaWq6ugvcnFxyUNWNWTVuC92lS2XamEwYS92mKnxZpjp8aEECTlBWi0e32Oi6VrZ5yvFHdczBvbu3cv5559PKBTC4/Fw6aWX8rOfGRa1Rx55hJtvvhkwBi0//PDDRb//+OOPc+WVV9LS0kJzczNXXnkljz32GF6vl3g8jizL1oif22+/nX/+538uuS133HEHH/zgB7ngggtYtmwZ9913H2AUQpdccgnXXXcdK1euRFVV/uEf/oFzzz2XNWvW8O1vfxswwt0+8YlPsHz5ct72trfR09ODroOm63mKzmOPPcaGDRtYu3YtV1xxBYcOHeKee+7hK1/5CuvWrWPr1q3ccccdfPnLXwZg586dbNy4kTVr1vD+97/fUvg2b97MZz7zGc477zzOOOMMa3RPLocOHWL16tUAfP/73+eGG27gmmuuYdmyZXz6058G4LOf/SyJRIJ169bxgQ98AID//u//5rzzzmPdunX85V/+pVVY1dXV8fd///esXbuWf/3Xf+XP/uzPrM/q7Oy0hnp//OMf55xzzmHVqlX80z/9U/mDwMVlFmFmbIG7GtGleth5cid7eou7M7FMevxp7YZVpmsoyWDSvjDLZTLULbfYGgOrV69m69at9Pf3E4/HefTRRzl69CgA3d3dzJ9v+MnmzZtHd3d30e8fP36cRYsWWT8vXLiQ48ePc+WVV3Lo0CE2btzIJz/5SX7xi1+wYcMGOjo6ym7P7t27eeqpp3juuef4whe+wIkTJwDYsWMHX/va19i/fz/3338/jY2NvPjii7z44ovcd999HDx4kJ///Ofs27ePPXv28IMf/IA//vGP6LpuBb4B9Pb28tGPfpSf/vSn7Nq1ix//+McsXbqU2267jb/9279l586dXHLJJXnbdNNNN/Fv//Zv7N69m5UrV3LnnXdazymKwrZt2/jqV7+a93gpdu7cyZYtW3jllVfYsmULR48e5a677iIYDLJz504efPBB9u7dy5YtW3j22WfZuXMnkiTx4IMPAhCLxTj//PPZtWsXn/3sZ3nhhReIxWIAbNmyhfe+970AfPGLX2T79u3s3r2bP/zhD7YzK11cZiPJnFyiiBtq6lIlRNNRnjnyDCciJ/IezypbxsKtruFE0WvsmIxiy52NOAZWrFjBZz7zGa666irC4TDr1q1DkqSi1wmCgLFuoDI8Ho81oFqWZa6++moeeeQR/u7v/o4jR45w0003cd111xX93jvf+U6CwSDBYJDLLruMbdu20dTUxHnnnccpp5wCwBNPPMHu3but9tzw8DAHDhzg6aef5n3vex+SJNHR0cHll1+eaSNmq63nn3+eTZs2We/V0tJS9u8xPDzM0NCQNWT6/e9/Px/60Ies52+44QYAzj77bA4dOjTqfrniiitobDTGg6xcuZLDhw/nFasAv/vd73jppZesYduJRII5c+YAIEkS7373uwFjH19zzTX88pe/5MYbb+TXv/41//7v/w7AQw89xL333ouiKHR1dbFnzx7WrKlsPIOLSy2Tq2y5bUSXaiGajqLpGk+8+QQ3rLiBBn8DkPVsLW4J4ZUEjg8lCTUeHvX9XGVrBvjIRz7CSy+9xNNPP01zczNnnHEGAHPnzqWrqwuArq4u64Kfy4IFCywlDODYsWMsWLAg7zXf/OY3uemmm3j++edpbGxky5Yt/L//9/9st6WwoDN/Doezqwl1Xefuu+9m586d7Ny5k4MHD3LVVVfZvp9ZaE3VygW/3xhiK0lSRX4y8/XlfkfXdW6++Wbr77dv3z4rRT8QCOQVw+9973t56KGHeOqppzjnnHOor6/n4MGDfPnLX+Z3v/sdu3fv5k//9E9JJifHEOniUu2YFydRcNuILtVDTDY6GEklyW8O/MbyXMXSCj6PiM8jMrchwLHBKL3x3lHfzy22ZoCenh4Ajhw5ws9+9jPe//73A3DddddZqwsfeOAB3vnOdxb97tVXX80TTzzB4OAgg4ODPPHEE1x99dXW84ODg/zqV7/ipptuIh6PI4oigiCQSNiPC3jkkUdIJpP09/fT2dlpqTuFn/mtb30LWTZWXezfv59YLMamTZvYsmULqqrS1dXF73//eyxRK/P/jRs38vTTT3PwoDE/fGBgAID6+nrbsNLGxkaam5stP9aPfvQjS+WaTLxer/X3ueKKK/jJT35i/bsMDAxw+LD9ncqll17Kjh07uO+++6wW4sjICOFwmMbGRrq7u/nNb34z6dvr4lKtmMpWS9jvzkZ0qQpSSgpFyx6rg8lBy7+VSKuEfcYNeEdTkEMDpcf05OK2EWeAd7/73fT39+P1evnGN75BU1MTYBi33/Oe93D//fezZMkSHnroIQC2b9/OPffcw3e+8x1aWlq4/fbbraLo85//fF5r7gtf+AKf+9znEEWRq6++mm984xucddZZ3HabfdbXmjVruOyyy+jr6+P222+no6OD/fv3573m1ltv5dChQ2zYsAFd12lvb+fhhx/m+uuv56mnnmLlypUsXryYCy64wCq29Ey11d7ezr333ssNN9yApmnMmTOH3/72t7zjHe/gxhtv5JFHHuHuu+/O+7wHHniA2267jXg8zuLFi63VlZPJxz72MdasWcOGDRt48MEH+Zd/+ReuuuoqNE2z/l2WLFlS9HuSJHHttdfy/e9/3yqM165dy/r16znzzDNZtGgRF1100aRvr4tLtWJ6ttrr/RwfjM/w1ri4jI6pauXyet/rrJu3jlhKJeQzyp6OxgBb3xio6D0no9gSnBp3tXz5cn3fvn3Wz1ao6Xw31BSM1Yh1dXV86lOfmpT303WdV44bVf6yufUEvcVetLFSywnye/fuZcWKFTO9GcDsTYOebmbjfn5yTze3/mA7m85o55kDvbz5pbePyY86VmbjPp4Jank/Hx0+yq8P/Lro8Xed+S7ufPg4b/RE+e3fXcpdv9nLvU+/yaduOIY4yiG9sn0lm5ZsGvWzBUF4Sdf1c+yeqxpl67Zzbpu0C1wtFwHjJbfm1jRnFuAuLi7Ti9lGbK/zo+mQlDWCvonfiLm4TBXRdNT28b29e4mlw4T8RtlTF0yj6QKxpEh9ULP9HRO3jTiLMU3gk4WWU205Ve10cXGZXqxiq95YrBJJyW6x5eJo7NqIAG8OvkkstcLybAnSEACRuIf6YPnQUtcg7zJp5JZXrrDl4uIChqEYssWWa5J3cTqxtH2xpWgKg/E4oUyxlcZYVDWSGP3mwS22XCaNXGVLc5UtFxcXipUtM4HbxcWplGojAowkk4R8HiKpCIJkmONH4m6x5TKN5Hm23FrLxcWFrLLVFvYBRhvRxcXJlGojAiRlHUlSODx8GL9XxytpjMRHd1PNKs/We3/yXkZGRmh4rWHC7yUrMl6Pt6LX/ujGH03486oBV9lycXEpJCGrBLwi9QHjfOm2EV2cTqk2IkBaEUiqwxwZ7kUQoCGkVtRGNIdR+yTfuLfLVbbGyNKlSznrrLNYt24d55yTXeE5MDDAlVdeybJly7jyyiutAcyFPPDAAyxbtoxly5ZZWU+pVIprrrmG1atX881vftN67cc+9jF27NgxtX+hDB/9yIf57a8fAeBv/uo29uwpHuJp0tnZyR//+Efr53vuuYcf/OAHE96GEydOcOONN476ui996UsT/qxKyB3I7eI8oimFp14vnkHqMnkk0kYuUV3AuC+Ppd1iy8W5KJpCSk3ZPqfrRrEVlQeseYgNIYVIBW1EmLi65RZb4+D3v/89O3fuzLsQ33XXXVxxxRUcOHCAK664grvuuqvo9wYGBrjzzjt54YUX2LZtG3feeSeDg4M8/vjjXHzxxezevdsKAd21axeqqrJhw4Zxb2clI3Hs+H93f4uVK1eWfL6w2Lrtttu46aabxvVZuXR0dFgzHMsxnmJLVV2vSa3xyM7jfPj72+kZcccrTRUJWSXolajLLJd3lS0XJ1POr6VoAiAgibKVMF8fVBlJVNbgc4sth/DII49w8803A3DzzTfz8MMPF73m8ccf58orr6SlpYXm5mauvPJKHnvsMbxeL/F4HFmWrdiF22+/nX/+538u+Xl33HEHH/zgB7ngggtYtmwZ9913H2AUQpdccgnXXXcdK1euRFVV/uEf/oFzzz2XNWvW8O1vfxsw4h0+8YlPsHz5ct72trfR25OdD3X926+yCsnHHnuMDRs2sHbtWq644goOHTrEPffcw1e+8hXWrVvH1q1bueOOO/jyl78MwM6dO9m4cSNr1qzh/e9/v6Xwbd68mc985jOcd955nHHGGdZIn1wOHTrE6tWrAfj+97/PDTfcwDXXXMOyZcv49Kc/DRhJ/YlEgnXr1vGBD3wAgP/+7//mvPPOY926dfzlX/6lVVjV1dXx93//96xdu5Z//dd/5c/+7M+sz+rs7OTaa68F4OMf/zjnnHMOq1at4p/+6Z9K/yO7OIqhuOEf6o3a38m6TJxE2mgjWsWWa5B3cTDlWoiyYiSXej1Zm0xDSCWWlFAqOKzdYmuaEQSBq666irPPPpt7773Xery7u9tKt583bx7d3cXtjePHj7No0SLr54ULF3L8+HGuvPJKDh06xMaNG/nkJz/JL37xCzZs2EBHR0fZbdm9ezdPPfUUzz33HF/4whc4ccKQRnfs2MHXvvY19u/fz/33309jYyMvvvgiL774Ivfddx8HDx7k5z//Ofv27WPPnj384Ac/4IUXnrPe1zwUe3t7+ehHP8pPf/pTdu3axY9//GOWLl3Kbbfdxt/+7d+yc+dOLrnkkrxtuummm/i3f/s3du/ezcqVK7nzzjut5xRFYdu2bXz1q1/Ne7wUO3fuZMuWLbzyyits2bKFo0ePctdddxEMBtm5cycPPvgge/fuZcuWLTz77LPs3LkTSZJ48MEHAYjFYpx//vns2rWLz372s7zwwgvEYsaXccuWLdZ8xC9+8Yts376d3bt384c//IHdu3ePum0uM08sMxh5MOaatqeKhGy0EQNeEUkUiLoGeRcHU84cn7aKrWyAaUPIqLKi0xD/UDUGeafwzDPPsGDBAnp6erjyyis588wz2bQpP8ZfEIQxjbTweDz88Ic/BECWZa6++moeeeQR/u7v/o4jR45w0003cd111xX93jvf+U6CwSDBYJDLLruMbdu20dTUxHnnnccpp5wCwBNPPMHu3but9tzw8DAHDhzg6aef5n3vex+SJNHR0cElmzYXvf/zzz/Ppk2brPfKneNox/DwMENDQ9bw6fe///186EMfsp6/4YYbADj77LM5dOjQqPvliiuuoLGxEYCVK1dy+PDhvGIV4He/+x0vvfSSNW8ykUgwZ84cwJiF+O53vxsw9vE111zDL3/5S2688UZ+/etf8+///u8APPTQQ9x7770oikJXVxd79uxhzZo1o26fy8wSzRRbA/HygYQu4yeRNtqIgiBQ5/e4bUQXR1OujSgrhrbky1W2gsbxPJLw0FRXXt5yi61pZsGCBQDMmTOH66+/nm3btrFp0ybmzp1rzW7s6uqyLviFv9vZ2Wn9fOzYsaL5VN/85je56aabeP7552lsbGTLli1cfvnltsVWYUFn/hwOh63HdF3n7rvv5uqrr8577aOPPmr795NEIT8HYhLx+42sHkmSKvKTma8v9zu6rnPzzTfzr//6r0XPBQIBJCl7x/Le976X//zP/6SlpYVzzjmH+vp6Dh48yJe//GVefPFFmpubueWWW0gmXQ9QNRC1lC232Joq4rJKY9BYiVjn97htRBdHM9pKRMgvtuozylYlWVsJOTGhbXPbiGMgFosRiUSsPz/xxBOWx+i6666zVhc+8MADvPOd7yz6/auvvponnniCwcFBBgcHeeKJJ/KKoMHBQX71q19x0003EY/HEUURQRBIJOz/kR955BGSyST9/f10dnZa6k7hZ37rW99Clg35f//+/cRiMTZt2sSWLVtQVZWuri6e2foHADyiaLURN27cyNNPP83BgwcBw+APUF9fb+2HXBobG2lubrb8WD/60Y8slWsy8Xq91t/niiuu4Cc/+Qk9PT3WNh4+fNj29y699FJ27NjBfffdZ7UQR0ZGCIfDNDY20t3dzW9+85tJ316XqcFsIw6UKLZ6IykrJ8plfCTTKqHMUHqj2HLbiC7OpbyylWkjSjltxGDlxVapVY6V4ipbY6C7u5vrr78eMPxH73//+7nmmmsAw7j9nve8h/vvv58lS5bw0EMPAbB9+3buuecevvOd79DS0sLtt99uFUWf//zn81pzX/jCF/jc5z6HKIpcffXVfOMb3+Css87itttus92eNWvWcNlll9HX18ftt99OR0cH+/fvz3vNrbfeyqFDh9iwYQO6rtPe3s7DDz/M9ddfz1NPPcXKlStZvHgxZ597PpBRtjK0t7dz7733csMNN6BpGnPmzOG3v/0t73jHO7jxxht55JFHuPvuu/M+74EHHuC2224jHo+zePFia3XlZPKxj32MNWvWsGHDBh588EH+5V/+hauuugpN0/B6vXzjG99gyZIlRb8nSRLXXnst3//+963CeO3ataxfv54zzzyTRYsWcdFFF0369rpMDWaa+WCJNuIN33qWa9d08JlrzpzOzaopErJqzUKsC3gsNdHFxYmU92wZ2lKuQd7r0fF7NaLJqVe2BKcOHV6+fLm+b98+62cr1LTBDTUFYzViXV0dn/rUpybl/bqGE/RF04R9EpoOp8+pm/B7RiIR6uvrJ2HrnMfevXtZsWLFTG8GYKysLGxHzwbe+Y1n2XV0iD9dM59vvD8/IkVWNZZ97je2z42X2bifz/mXJ7ly5Vz+9YazuOm72xhOyDzyV1N3QzIb9/FMUKv7+YGdD5BQ7Iui146E+OW2Vj52dRct9dmbhu88MY+WOpkbLuwv+97z6+bzzjOLO1a5CILwkq7r59g9VzXK1o9u/NGkXeBquQgYL7pu9JRFQUDRtFFf7+Iy08TKeLb6o+mSz7lUTlJWrcG99X4PxwfjM7xFLi72aLpWstAC+9WIAHUBtSJlyzXIz1LuuOOOSX0/TdcRRAFRFNAUZ6qdLi65lPNs9WWyt0r5uVxGR9d1K9QUIOyX3Daii2MpZ46HbBsx1yAPUBdUOdzjt/uVPNycLZdJQddBFIz/HNpZdnHJw1qNaOPZMoNOS/m5XEYnrWqomp71bPm9lk/OxcVplDPHg32oKUB9Rtka7bo3UYN81RVbTvWYVTuariMiIAqCO4h6FNxjcObRdT0v1LTw36Qvkir5nEtlJNNGu8VUtkyDvKa5+9PFeZQzx4NRbHkkDbEgArMuqKLrAvFU+XJI0zVSyvgLrqoqtgKBAP39/e7JcwrQdBAE4z/3XFoaXdfp7+8nEAjM9KbMahKyiqZDa9hHWtWIFUQ89GU8W3bPucCTe7p5ck/5Id4J2dhvWWXL+H9cdveni/MYTdlKKyJeqfjiVpeJf4hMcYp8VXm2Fi5cyLFjx+jt7R39xWVIJpPuxbKA3owS4PeKjCQUpOHAmFLw7ajV/RwIBFi4cOFMb8asxmwhLmwJ0R9LMxhLW/P7IOvZAoqec4GvPLmfnkiKy86ckxf3kks8bexjS9nyGyu4o0nF3Z8ujmM0z5asCkV+LTDaiEDGJF8+Ry6pJGmkcVzbV1XfGK/Xa42OmQidnZ2sX79+Eraodvg/33yWOr+HS89o519+vZfdd1xFQ6CyeIxSuPvZZaowvUOLmoPsOjrEQCzNopaQ9XxesRXPf84FukeS9EXTPP9WPxed3mb7miJlK2AOo5aB2ruJcqluRmsjphUBn6d4pb2pbE31fMSqaiO6TB1JWcPvkQhk7mKTbuvFxcGYfi2ziCpcddgXTeGVBNvnZjuyqllt1l/sPFHydUmz2PLmtxHdkT0uTqQSg3yhOR4gHJieNqJbbLkAxok14BWtE2vC9WW4OJhIZiDy4lLFViTNKW3GjFB3RWI+pmUg6JV49NUuUor9dz2eLvRsZduILi5OY9Q2oiLaFluSCCH/1GdtucWWC2AWW5IVYOgWWy5OxlK2mo1iq7Cg6o2mWDbXCC4eiLnz/HI5OWJcMN5zzkIiSYU/7LP3wJpzJYM5sxEBdz6ii+PQdZ24XD5wt1QbUdVU6oOq20Z0mR6SmfDCQKbYirttRBcHE8uYt+c1BpBEIU/ZUlSNwXia09rCSKLgpsgX0JMptm7YsJCWsI9f7LJvJRavRjSLrfxzg7s63GWmictxdMofh2lFsF2NuPPkzmlJkXeLLRfA8GzlthFdz5aLkzFXI9YHPDSHfHnK1kAsja5De72fpqCXAbeNmEf3iNFGXNAc5O1nzePJvd2WUphLkbJlGuSTWWUrKauc/6Xf8ePtR6d6s11cSjKaOR6MNmLhasS0mubV3lfx+xKuZ8tl6tF1naRitBFdz5ZLNWD6hur8HlrDvjxly0yPb6vz0xz2MeQWW3l0jyTxiAItIR/vXLeApKzxW5vMLfMcYFoLwhmDfG5u2aH+GD2RFD9+6dg0bHltcXQgzl2/eR3VDTacMIOJwVFfI6vFBvk3B99EVmV0cZh4SkIdZSywW2y5TIi0qqHruJ4tl6ohllIQBKMQaA57GczxZZkr7drq/bSEfO5qxAJOjiSZU+9HFAXOXtxMR2OAR3YeL3qdeQ4wVyj7PRI+SbQWJwC82WMoCtsPDdAfndg4k9nGNzvf4J4/vMmeEyMzvSlVz0BioOzzup5pIxZ4tl7vex0AGcO3GBullegWWy4TIikbB6DfI1onVtez5eJkoimVsM+DIAi0hH15rUJzVE97nb+oEHOBnpEUcxuNnCxRFHjH2g62Hugr8rYl0iqCYJwXTIyRPdn9+Wavsdxe0+F3e3umYetrg0Ra5Ze7ugB45fiw7Wv+8eFX+GUJP51LPqMVW7IqAPmhpr3xXvrj/QDENWM/j2aSd4stlwmRyrmDNc2wSVfZcnEwsZRitbWaQ768QsEMNG2r9xcVYi5GG3FufTaU9B1rO1A0ncdfO5n3ukRaJeSV8iZJ1Pk9ecOo3+yNsqApyIKmYNHvu5Tm8ddOEs2os3bF1nBC5r+fP8JTr7sFbCX0J/rzftb0fAXLHEKdW2yZqhZAXDOO3cgoylZCSRBJRca1jY4ttpIKtqZNl8nHVLbyPFuusuXiYKIphXBmdVxL2DDImwOS+6IpAl6RsE+yCjF3xVyWkyNJ5jb4rZ9XdTTg84i81ZdvMk7IqnXzZRL2e/LbiL1RTptTx9Wr5rH1jT5r4YJLeX7y0jEWtQS54NRWXrUptnYeHQKMosulPEklWRT78ObAm3k/m8WW2UZMq+m814ii0cqtJP5hX/++cW2nY4utk3HNkqhdppasN8MNNXWpDqIphfpMsdUc8qHp2QtTXzRNW50fQRBoDvlQNJ2IWwQAxrzDSFKx2ogAgiDQXue32q8mibRq2QpM6v3ZNqKm6bzZE+PUtjBXrZpLWtF4ev/E5tbOBo4PJXj2zT7evWEhZy1sZN/JCGklX4l5+Yhh+HaLrdExW4G5HBw6mJcon1aMUseMfnhz4E0ULXtOEKQ4gqBVVmz11VixBe6YjekidyyHKAr4PaKrbLk4mliBsgVY7cLeSIq2OkO5ac4852ZtGfRkYh9y24gAbXU++go9W7JqLZgxqQtk24gnR5IkZJXT5tRx7tIWWsI+t5VYAT/fcQxdxyi2FjSSVjX2d+e3pl4+MgS4xVYl2Pm1YnKMtwbfsn42PFvZNuLr/a/nvV4QdDye2KhtRIBIOsLxkeIFJaPhFlsuVrFl3sUGfZKrbLk4mtw2YmFB1RfNFlstYWPEzGDcvWiB4dcCmNuQX2y12ilbmaDjXMJ+j9UqfKvXaDue1m6Ex75txRyeer2nSKVxyaLrOj956RgbT21hUUuIsxY0Avm+LU3TXWVrDBT6tQDi6XhesZW2PFsaJyInbNUwxGGiicpKoly/V6W4xZYLScX0bBmHQ9ArucqWi6OJpRUr0bwllFG2coqt9nrjseaQq2zlctIqtvx5j7fV+eiP5RdbcZs2Yl1OsWXaPE5vrwPgqpXziCQVnn/L5kLmAsBLhwc51B/nxrMXAcZsz4aAJ6/YeqsvxkhSoa3O5xZbFVCobKmaSlJN0hfvYzhp7FerjejRefnky7bvI0gjDJef+GPx1uBbpJSxRZ04utjqd0+Q04KpbPk9rrI1HbzRE+FIf4XfahdbosmcYqsuU1DF06iazkAsnaNs5Rdisx2rjdhYrGz1R7OLDMA4LxS1Ef2SFSj7Zm+Uer+H9npjX1+8rI2QT3JbiWX4yUvHCPkk/mT1PMDwy61e0Jhnkt+RUbU2ndFOWtHcleGjUFhsxeSYtSDGVLdMg/xQspuuSJft+4ieCNGkp6LPVHWVNwbeGNN2TrjYEgRhkSAIvxcEYY8gCK8JgvDXNq8RBEH4uiAIbwiCsFsQhA2jva8kuHej00VRG9FVtqaUv39oF1/41Z6Z3oyqJpZSs54tS9mSGYil0XSKPVtu/ANgtBGDXslaXGDSVudH0fQ8JSWRLl6NWOf3kpBVFNVYwHTqnDorGiLgldi8vJ3f7unOK9pcDJKyyq92d/H2s+Zbxy7AWQsaeb0ra5J/+cgQDQEP6xc3A24rsRwjqZE8ozuQtzKxsNh6fWBXyfcSpQiy4rVeOxpjbSVOhrKlAH+v6/pKYCPwV4IgrCx4zZ8AyzL/fQz41qgbJrjK1nSRkm3aiO7d1JTRG0kVtWxcKietaKRVjTp/VokNeEUG42krY8tUW+r9HjwFg6pnM92RFHMb/HnZWWC0EYG849K2jZiZjxhLq7zZE+O09nDe81ecOZeeSIrXT44vi6iWOTIQJ5pS2HRGe97jqwtM8i8fGWTd4maagobf0C22SmPnvcottgaTgwwkBqw2Yne89AxP0ZOJf0hWVhb1xntHDVPNe/+KX1kCXde7dF3fkflzBNgLLCh42TuBH+gGzwNNgiDML/e+kuBK/9NFUnEN8hMlkVYrznIaTsiMuCfQcWPm7+WqAy0hH/3RbLFlKluCINBUMKh6NtM9nCwyx0N2f/VGsvupVBsRDIXs5EiS0zJ+LZNFLSEgGyzrksX8zjeHvHmPmyb5104ME00p7O+OsH5RE41usTUqtisR0/l5cW8NvmUZ5AWh9L4UJaPY7Y1Uvr/Hom5V1qCsEEEQlgLrgRcKnloA5JaUxzKP5TVPBUH4GIbyRXjuEo71DtHZ2TmZmwhANBqdkvetVl47aBxcLz7/R4Iegdhwkr6EPuF9NFv2s6Lp/PXv41x/uo+3LfGO+tpYWqVvJD5p+2a27GeT3rihxB47+Aad8mEAvHqaN452sVUxcp7e2rOT+GHjXtJPmv2HT9DZWfldqB21sJ8P9cQ5tVEs+nscixj79OltL5M6alwWosk0fSdP0NmZVQ8OnzQK3YeefB6AZM8hOjuPFb3P8y/tQjsx9stLLezjUuzsMfbdgdd2ox7PFrG6rhP0wOPb9tJ/5ACaDp6hI7yRUWGe2baD2KFJvVTXzH4eSY3QqrbmPXaufC6rW1ZbP0uyxNaRAF5R49bWD5d8r96gl++eBG9vG61SZa3Enr4eOt/srOi1k/YvKAhCHfBT4G90XR/XZE1d1+8F7gVoW3KGntQ9bN68ebI20aKzs3NK3rda2aUcgH37ufKyS/FIIj8/+TIDR4cmvI9my37uj6aIPfEke+Nh/mXzhaO+lieeJKkKk7ZvamE/a5rOE3u6+WbnG8yp9/Odm88t+dq9XSPw9FbOWbuazWcZAvniN18gklRoXzgfdu/l7VdcQkPAKHwX7nsOHdi8+YIJbWO172dd1xn53WOcdfpiNm/Od3r0R1P847NPMnfxaWy+6BR0XSf9+KOccepSNm9ebr1O2N/LN3duI103HzjMdZvPZ9nceuv5k8NJ/vHZ37Hg1GVsPn/JmLex2vdxOYZePg47drL5ovM5tUARXHvgOfplDb1lLrCPm/70Ugbjab7wXCeLTzuTzWcvnNRtqZX9/D+v/A/DqfwE/qcOPpUX+wCQil2PwuncP3B/yffS1ADwv/lDZCdLz1pU1Gq3wy/5edf6d1W0rZNSbAmC4MUotB7Udf1nNi85DizK+Xlh5rGSSIIhn8qqhldy9KLJqiepqHglAY+U9Wy5g6grxwx53HFkMC/jyQ6zJZDKrDIq9MTMNnRd59FXTnL3Uwd4/WQEjyiwVwBF1azjsRC7NmJzyMeRgTi90RQ+j5hnAG8J+3ijx51GMZJQSMqabRuxKeRDFIz0fTCOT12HoC//EmG2EXcdHUISBRa3hvKed1tfpRlJGvukIVisfp+1oJEHnjtMU9DLae1hGkNetIwtwd2X9iiawkiqWNeJybGix9KKgCAWWwl0XedE5ATNwWaCHkCQGY7Dnt49rJqzatRtSKkpkkqSgKf4O1XIZKxGFID7gb26rv9HiZf9ArgpsypxIzCs67r9+ssMpornei2mnqSsEvBkL/oB1yA/JszcIV2H348yODb3xGmefGczv93TzV/9cAeyqvHVP1/HF69fjazqHB4oHY0RtfNshX0MxNL0RVK01+UbwJvDrmcLoDtiH2gKIIkCLWG/5bUyVyMHvfmXiDq/USjs6RphcUvIiosxCXhFfJLoFgg2mDMl6wPFGsfqBY2kFY2tB3rZkFmF2OAWrmUZTAyiU+yTjaeLzx265rUttlJqipOxk/TF+xAEEKURNKWeF0+8aGV0jUalr5sMyegi4IPA5YIg7Mz893ZBEG4TBOG2zGseBd4C3gDuA/6/UTcsc650TfJTT1LW8OcoLCGf5Ga7jIHc4btP7u0u+9q8Yivhzus7kFGcfv3JS3jX+gUsn9cAUFaJMvd3XUGxFUkqdA0nrZV11nMhH4NxedbHEZRKjzdpq/NZylbcHOFlM64HQFb1opWIYCxIaAh63QUgNowkZAJesahAhaxJXtOxIh8kUaA+4HGLrRLYmeN1XS8aSm087kMQimsJ00xvzlEUPRFUtR5FU9h6ZGtFi54K25ilmHAbUdf1Z4CyzU3d2OK/Gsv7Spk7U7fYmnpSsmrFPoDRRpRV3W3hVojZ1lrV0cDWA31l24OuspVPbyRFQ8Bj7a/T5xheljd6olxdQsU393ddjkJg5mkd6ImydmFj3uubwz5UTSeSVGgMlV/AUMt0m4GmDfZt7rY6G2WrsI2Y83PhSkSTxqBbINgxkpQtH2EhS1vDVjr/+sVN1uONQa+7L0tgN6YnqSRR9WKhQNd8CGLxfozKRpGVUBJouoYoRVDShg/0ZPRkRe3E6VS2pgTzGu8WW1NPUskvDsy7WbeVWBmm0vKudQuIp9Wy40pG8pQt9yTaG0lZmVhgqFXzGwOjKFvGcZl74TeDTY1RPfnFhLnUfmCWtxIrU7aMYit3OH0uYX/259LFllsg2DGSUGxbiACiKLCqo4GwT+KMnAUH7r4sjZ2yZadqQXllSxSMYiMmxxA9ETSlAVPQevHEi5bqVYpKlS3HFltuG3H6SMpanrJlFl5J1yRfEabS8raVcwn5pLKtxHxly20j9kaKFxScPqeubLGVNchnL/zN4axiUPh+boq8QfdIksagt6Tq2pYZ2QNYC2QKiy2PJFqPnTanuI0IboFQipGkbGuON/nE5adz+7UrkcRso8jdl6WxCzS1M8eDqWzlf/9VTSWhJGgNGtERsXTMyNrSfei6cQ5RNIXu6CjWkKpXtjLHm/nld5k6Cg3yIVfZGhOmstUS9nHx6W08tbenZK9/2FW28ui1UaJOn1PHm73Rkh6rWErB7xHzViuaMxABW88WuOO/ukeSJVuIYMxHTMgqsZRiffcLPVuQXZhwapurbI2FkUTpNiLAJcvaee95i/Mec/elPSklRUJJFD1uFluFI3zslC3ztY2BRnySj5gcQ8qkyGtKVl0cTbmqemULoCnknfV3o9NBosBjZN65usVWZZjRD2GfxNtWzuXEcJI9XfZRc8MJmaZMW8v1bBW3EcEotuJplRPDxSdTgEhKyTPHQ7agAmgreD93GLXByZFUyRYi5IzsiaZzViMWF1v1AQ+tYZ+lGBbSGPQyHHeP7UIiSaWssmWHW2zZYxf5AMZKxJgcY1f3rrzX2K1GNM3xYW+YOm8dsXQMQTIe09TsjcRQcqjstqTVNAnZ/lyVi6OLrZaQz52POA0UtREzd7Nu1lZlRFPGKiOPJHL5mXMQBHhyj30ExHBCZk69H5/HXR6fSKtEU0pxsdWeNcnbEUspeeZ4MHKiTNw2oj09I/ajekzMIrU3miIhG8qAnbLVEPRy2hx7Vct8PpJSZv3qz0IMg/zY1qS5xZY9pYqtmBwjKRvexBORE+i6jq4LoPuhQNmKylECngAe0UPYF0bWZBQGAdC17PekkjZhJeqWs4utsI8Bt4045aRKKFuuZ6syoinVUlra6vysX9TE71637/MPxWUag14aAt5ZH/1gDY0uKI7MRPJyxVa4YJVcbpBpYbEV9kn4JJGB2Oy9aGmaTk9mCHUp2sLGc33RFIm0MXancDYiwBeuW8Ud7yi9Qqsx6EXXDQXSxUDX9YxBfmzKVkPQSzoTgOySpVRxE5NjpNW09edoOgq6sc9zVyPquk4sHSPsNXyH5v8TqnHeziu2UsOjRkBUUpA5v9hyla0ppzCqwG0jjo1YQVvrihVz2X1s2Fr9lctwIlNsBT2zvo3YE8kUWzZtv3Kp71GbNiJkFazC4k0QBJrD3lnt2eqPpVE1fRRlK6eNKOcPp89l7aImVnY0lHwfs1XmehKzpBSNtKrREBy7sgVusGkh5dqIaS2NJEh4RA9d0S50zTiuc9uIKTWFqqvU+QyFNugNIiAQV4wVjroatF6raAqRdKTs9lS9stVa57YRp4Okkt9GdA3yYyOWUvLSzM0EaLtiYSRhrEgylK3ZfQLtzRRbduONTm8vvSIxmlLyViKatIR9+CTR9oLWHPLN6uiH0WIfAFrzlK1MG3Ec46TcAqEY87teziBvh7sv7SlZbMlx0moav+RnbngukXSEWCZRXhBS1uvMOAdT0RIFkZA3REwZATQ0Lf97MppyVfXKVnPIGLNRSYqry/ixG9cDrmerUqIFxdacTKvGLCZyySpb3lkf/dCbaSPOqbcptubW8UZv1Pa7H0upefvbpCXso63OZztAtjnkY8gttsoWWz6PSEPAYxRbsopHFPB5xn6JcAuEYszv+ngM8uDuy0Lsii1ZlUmpKdJqGp/koz3UjiRInIwfAfKVrZgcQxKkvJmGYV+YuBwDMZbXRoTJWZHo6GKrJZP8PNu9LVOJruvFbcSMsuX6BCojls5va5lKTWGxJasasbSa8Wx5iMzyE2hvJIUg5Mc2mJzeXsdQXLZVtqMp+3DI9523mNs2n2b7WbPdkjBaerxJW70/sxpRG5eqBW6BYIc1hHocBnnAXd2Zg6qp1krCXMxA07Saxit5kUSJOeE5jMjdpIVDCEJ2H0bTUcK+cN6NWdgbRkdHFg+ga8G89x5tRWLVK1ut5lLkWLFC4DI5yKqOplM0rgeyIztcylOotDQEPPg8omUANzFbCY1BL41B76z3bPVGUrSGfXl5WSbm2J4D3cWtRDuDPMCVK+dy0wVLbT+rOexlcBZfsI4OxpFEocjPVkhb2G+tRgzYmOMrwS22irHaiK6yNWEi6YjtAOqYHEPVVDRdwycZtcOc8BxEPAx7tkCmjahqKkklabUQTUz/Vkp6vaiNOFqxJWvyqPEPji62WjIegtl8RzrVJJViI6xrkB8bkaRCXY6HSBCMi1qhsjWcU2wZw3qVWd0i74sWp8ebLJubiX/ozS+2VE0nnrZvI5ajJdNGVGdpHMEf3+xn7cJG28I2l7Z6X8azpdquRKwEt0AoxmojjlfZcvelRSkVKXclollseUQPLb7lxD1bORx7HlmVrTBTs7gy8YpePKKHtHAAXR2bZwtGbyU6u9gKuWGEU40Z7+DPKbZEUcDvEV1lq0LslJa2er/lSTIxT5hNIcMgn1Y1krI2bdvpNOwCTU3mNQSo83t4s8AkH8sYt+1WI5ajOexD02fnCrnBWJrdx4bYdEb7qK81R/YkZHXcbcSQT8IjCm6BkMN4DfINbrFVxGjmeMgWWwBzvOfSLH+YiNzLa72vcTJ6EqBI2RIEgTpvHUnhYFEbMaEkSCrFq8tzGU39cnaxVecWW1ONebEPFBhhgz7JVbYqQNV0ErJaFLI5urJlvH42txJ7I6mSbS1BEDitPcyBnvwl1+ZcxML9PRpWinw8zVu9Uf6/B1/iiv/XOSt8ic+80YeuU1Gx1Rr2M5yQGU7IJWcojoYgCG4YZwGWZ2uMbURJFKj3e9x9mUPJQNN0jLRWXGxBgAblBs5s3kDAEyCSjhDwBJBEm1FUvjAyfSha8f6e6IrEsZ2xppnWsOnZcoutqcJsIxYmRQe9kqtsVUAppaW93s/Oo4N5j+UVW4FsFlG5FWK1iq7rtnMRczl9Tj3PvNGb91h2CPXYTl1mwvwdv3iNP77Zb7UTu0eSLGm1H6hcKzy9v5fGoJe1C5tGfa2ZtXVsMMHiltC4P7Mx6Eab5BJJKvgkEf84Vnc2uPsyj0qULa+YLWrNnK2gz8Py1uX0J/oLirEs9T4jUDkiPEfhrclQcoi5dXPHvF0mjla2Al6JkE9yla0pxLyzz41+AFfZqpRSF//2TEacombbhLkmWSv4cZYqWyNJhbSijVJs1dE9ksrbR9HMHMo6m5ytcphz/55/q58PblzC/71xDVD7N3K6rrP1QB8Xn96GJBZHYhRieui6hpPjbiMC1LvKVh5Gvp7HNpZkNFyVMJ9y6fGyKuMVvXn72Yhx0EBQEASBtlAbDX77UN6wL0xYXMKw52coar6/c9QVidXs2YJM1laNnxBnEquN6C1WtmZDi2WilCy26v3oOnlBmvnKVqaNOEtjTXpLpMfnsmxO8YzEaMZobLcasRwr5zfw7zeu4cm/u5Q7rlvFGZmRQLU+DuxAT5STI0kuWdZW0evNolTV9HGvRgRX2SpkJDn2UT0mbrGVRdd1Iin7NPd4Om5lbOUiJ07F4+9CECpbHDPHdw6aMEJ3tC/v8VGztkZpIzq+2HJT5KcWS9nyFni2vJIbaloBkaTZRsy/MJlFRK5vy/DBiPg90qxXtqxiq0wUwel2xdY424iCIPCecxZZLUPLw1Xj55an9xtt2Er8WpCf5h+agLLlFgj5jCTGPoTaZCr2ZbWugo7JMVS9+Lqk6RpxpbjYUuUmlNRCfOHXKv6MkLeekHIJPfHjyGp2vw8lh3h2TwPb37Afwi7b+LxycXyxNdvDCO34/es9pJTJKYSSJWaguW3Eyohl2lqFSotdsWUOoYbsku7ZevdvDaEuo2wtagnh84h5xZapJNqFmo6FbIZfbZ9b/rC/l9Pn1NHRFBz9xeQXW4U+zrHQGHRN3bmMJOUxm+NNpqTYssmpqgZK+aIScgJN06xiyyy4UjFjYLp/DMWWKCZoUv4CDY2uaJf1eCQd4dUjIQ4cr+y7VPS+4/qtacQttvI50B3hQ99/kV/sPDEp75dUzDZisbLlGuRHJ1pidZx50eqL5rcRzSLLLBZm68iecnMRTSRRYFVHAy8dzi40MBckjFXZKiTk8xDwigzUcGByUlbZdnCATcsqU7XAiG0wzwUT8Ww1ZsZRVauCMtlEksqYYx9MmkJusWVSciWiHEPRFHR0fJKPle0rEQSBdGwVHv8xJO9QyfcMefMXgghiEq++gBbfqfTF+0gpxjlC13ViSYG0MnbfHVRBsdXqFlt5vJkJeSwMexwvprLltzHIu56t0bGiCPz2xVZhG9Estvwe46I2W+/+e6MpvJJg7Y9SbDy1lV1Hh4hniqxs23biC6lbw/6aVrZeODhAStHYdEZlfi0w2q3msTsxZcuLqunWzchsxzTIj4eGoJeUok3q+bhai+CSgabpmNXG80pe5obn0u4/EyW1AF94T9n3XD9vfV7rURCNPK0279kAnIgYwoauS6QVD7I6vrLJ8cVWc9hHQlZdlSXDoX5j/tOhvuLZUOOhZBvR9WxVRCmlJez3EPZJJYstMAIOZ2sbsTdipMeLo6yQu+DUVhRNZ/shQ92KpRSkTOjuRGkJ++ivYYP81v29+Dwi55/SOqbfs4qtCSpb4IZxmowk5XErW1NhOahFZcsKNBV9BL1BfPJGoHwLURAEljYtZUHDAusxUTTG7nj0VtpD7QwkB9B0DU01/J5yLStb4M5HNDncbxRZB0sUW1978gAf/cH2it+vlEE+4HU9W5UQLaFsgZEinzsf0bi7zSm2ZvF8xHLp8bmcvaQZjyjw/Fv9gFFs1fnHt4S+kFq3KDx9oJfzlraMWaEyVyROVNkCt9gCSCkqSVkbt89wKvZltSpbpYqtaDqalx4f8oY42TcfX6CrbAtxTmgOQW+QxQ2LrccEyVC2dC1A2GcUWEkliZ4ptmq2jTjafERF1bjle9vYfmhgOjdrxjjUl1G2+uNoNnPefvd6N7/d080bPfbLYwspFf0QctuIFRFNllZaClPkhxMyTcGsXN0Q8Mzq6IfRhiKDoRCuXdTEc5liK5pSJ6WFCLVtUTg5nGR/d3RMLUSTyVC23DEzWczW90QM8jB5+/K1E8N871WlKueEjlZsCQh4JS+pZB0nB/2cMm/Q9vUmi5uMImthw0LrBk4QVBDS6FqAoMcwwyeURFbZUmu22Cq/RHsglqZzXy+/2t1l+3ytcbg/hkcUSCsaJ4bzp4xrms6BbsPL9bMdxyt6v6Ss4hEFvFKxQV5WdWR19s7uqwRjLqJkq7S058xHlFWNWFrNbyPOZmVrlPT4XDae2sLuY8NEUwrRlEx4jIGmpWgJ+2pWMTfHHFWSGl/IZHm2YPauts1lvHMRTSa72Orc18tzXTr90eo69lNKipRqv81mseWVvIS8IfYdNwqjC5cFkITSx/HSxqUABL1B2kPZhSSimETTAgQ8AQQEY7VjpthSVJHx1KlVX2zFMr6i106MPpW72knKKieGk5y7tAXIqlwmxwYTJGQVryTwyM4TtspX8XtqtjPQzBOt20osTzSllgwrbKvLthFHrEDTrCozWz1bqqYzEEuXXYmYywWntqFqOtsPDRBLqRNeiWjSUucjKWuW+b6WMBXr0BjDXyEbizEZnq3ZqtzmklW2nNFGHMoELVfb4oVyoaKxdMyKfQh5Q7x+PMT85hRzG70sbVpq+ztNgSYaA43Wz4sbc1qJYhJdDSIIAgFPgKSSRFOz+Vrj8W1Vf7GVOWD2nBipqLgYjKVJKNUnnwIcHTCKq8vONCrwg335KxL3dxt3sx84fwnHhxK8cHD01mpSUYv8WpBtKyZdk3xZYimlpNLSXu9nKC6TUtRsenwoW5iZy+NnG4PxNKqmV6xsnb2kGa8k8Nxb/UQznq3JwPKD1qBJ3szh89t8t0djMpQtt42YxRpCPUFlayg+OfvS/DcxMwKrhVItRFVTSSgJZE3GJ/mQtDmcHPRx5kKj87OifYXt7+UWVwCLGhZZfxbERGbMDwQ8ARJKwvJswfhaiY4vthoCHrySUHKJtrliLpZWOTwQt31NLh/9wXZ+9Hp1nlzNlYjnndJK0CtxsEDZ2pcptv6/zacR9kn8/OVjo75nUlaLYh/A8GyBq2yNRiytlFRazGKiP5rOG9Vj0hD0MJKQq9asOl4qGdWTS9AnsW5RE8+/2W8Z5CeD0fyg1YzlxbT5bo/G2oVNnDG3jtPb7ZOyK6HO50EU3GILsureeMf1THbhahZt1aZslfNr6bpuKFuiD02eD8DidsPoPq9uXl6L0KRQ8WoNtRL2GgWVIBltRDBajGk1jaxkv0uyMvbSyfHFliAIZecjxnIOmEpaiSdHkoykq/PiZq5EPKU1zNK2cJGydaA7QkdjgDkNAa5ZPZ/fvHJyVJN7StZslS2zheAWW+Upp7Rkg01T9sVWwIui6bMuYmOsxRYYERCvHB+mJ5KavDZiDY/smYiytbg1xBN/eylzGgLj/nxRFGhwR/YAOcrWONuIkihQ75+8RP6sslU7xZaZseWTfKAZQ6bDgazf+KrTrqIp0GT9HPKGbAuwRY2GuiWKSXTNMMebJvmkll10Np4ViY4vtsA0spbybOUWW/b/GLkkZRW5Sj3fB/tiNIW8NIa8nNIWspQuk/3dUZZlBuzesGEBkZTCb/d0l33PhKzaerbMIbSzrRAYK4ZBvryy1RspUWzN0vmIlcxFLGTjqa1ounGhmPQ2Yg0WWxNRtiYLdz6iwUQN8pBZTFNmX8pq5aGnVrFVZV7FwYT9ysLC2AddNa6B4UB2fwS9Qf5k2Z/Q4DcKscWNi20XNZmtxdw2ollspbQBEIx9V5OeLSifhxPP9J2bQt6Kiq1EWkWpwiWvAIf749Yg3VPawhwZiFurBVVN543eKGfMNaT/jae2Mq8hwM9fLr8qMVmi2Aq6nq2KiCZHbyP2RlLZE26BsgWzz0TcW8FcxEI2LGnGl1kxO2mrEetMZau6VmVVwkSUrcnCLbYMIpl4mNAEV3eW25d3/vI1bv7utorey3yfamojppQUPbEe2+eicrbY8kpeVCVEwKtSsMCesDfM25e9nTpfHUsal9i+V0d9Bx7RYxjkNT+6LuCTfIiCSFrvQfIMAbO02DKr83OXtvDa8eGy/hdd10nIKkqVKluH+mOc0mrMcVraGkbVdI4NGibAw/0x0orGGRllSxIF3rm+gz/s780L1izEKLaKDwPXs1UZ0ZRSMqzQVE76oinLJ1Ho2YLZqWwFvdKY2oEBr8T6xU0A1PnHrxDkUu8v7wetZkxlazKS9seLW2wZGOnxEwviHW1f7jsZYW/X6GIDZD1bkSo67xyPHC+Zeh9NR5HVbBtRVgJ5LcRc6nx1vH3Z2+mo77B93iN6mF8/H1FMAiK65s+sSAyS4gSix1DX0uMY2VMVxVa58EGzzXXe0hb6Y2m6R0oXFilFQ9OpymIrpaicGEpYytap7cb/Td/W/ky+lllsAdywfiGqpvNImaHVSVmzXeLterZGR9d1Ymm1pNIS8Eo0BDxWGzHgFfMWI2SVreo56U0GlabHF7LxVGPsTN0kKVuCIBg3cjW6GtHvESclaX+8jNb6mi0UTo4YD6MVWz2RFCNJZdQYk5SiWuf0kWT1HPdHh4+WfM6MfRAFEUmQSMt+Qv7S160GfwOSWPocsqhhEYJkiBhWK1GqQxYPI3qMFf41q2zVB7xEkvartqIpBZ8ksi5z11vOJG/2tKuxjXhsMIGmw9K2rLIFWCsSzdiHZXOzK4iWz6vn3KXN/OdTB0oG2CUVFb+dZ8vrerZGI6VoqJpeVqExg00L5yLC7PVs9Y0h0DSXC04ziq3xruqyoyXsr02DvKzNqKoFrrJlMpIsrX5XSrl9qes6PRmR4eRwsuz75L5HpJqKrZHSxVY0HSWtGRlboiiSTHlLKluV0FHfYQ2jNk3yfrEZTRgBjyFcJMdh/K6KYqsu4EHT7VWWeEoh5JdYMb8BQShvkk9YxdaUbeqUYa5ENJWtlrCPhoAnR9mKsKglWBRi+MXrzyKaUviXX++1fd+UrNmaaM2MHXdkT2nKzUU0aavz0xdJ2xZbszX4sdJRPYWct7SFf73hLN62cu6kbUtrmcU31UxKsfdiTidmgTDbok0KGUmMfwi1SWOodLEVTSnWtW20YitXaYxWyU3eYGKQaDpq+5yu69YQap/oI+gJEktJeeb4sdIUaCKUmapmxj/4BWPsVVo8DIxv31VHsZW5mNkZ+mJplbDPQ53fw9LWcFllK5FRaapxNaKZFm8qWoIgcEpb2Hp8f3eEM+bUF/3eGXPr+filp/Hzl4/zh/29Rc+P6tlyla2SmEunS61GhHxlK3cuImDd7c62VstYRvXkIooC7ztv8aStRoTaHUadlLUZNceDUWwpmj7rrQiGZ2vibcSUYr/isCdn/urJkcqVrWoxyJdTtZJKElVTrVE9AamelCwSLtNGrIS5Dca1VFczxRZGdlcaQ9mKj+OYrq5iyyZtO55WrMJgZUdDRcqWWoU3Wof7Y9QHPDTnJJCf0hbmYF8MWdU42BfjjHnFxRbAX11+Oqe1h/k/P3ulKFul1GpEU+2a7SfKcphjOEZtI2Y8W4W+Da8kEvJJs6rVklJUhuLyuIqtqaC1rjaLrZSizmjsA0z+mJlqJZJUxp2xZWJZDmz2ZU+OT7lrFGXLNMcL6FVTbB0ZPlLyuUg6gqZrKJqCT/LhE4xRdhNpIwIsaGwGsm1EUW9D1BtJaYMgpMc14qu6ii2bgyOaMyttVUcDxwYT1uynQsy7ArkKPVuH+uMsbQ3nGV6XtoU5MZzg9a4IsqpbsQ+F+D0Sd717DceHEvzHb/dbj+u6TlKxDzUVRQG/R3SVrTLEKmgjttf7iaYUeiKpojYiZOYjVomcPxmYo3EqnYs41bSGfURTihWVUCs4RdkCt9ialDZimX3ZE8kWWJV6thr91RFqqmgKXZGuks/H0jEUzfh7eCUvkm4USeUM8pWwpMkIPNUyxZamhvFpS0ioEQRBJjGOYPTqKLYCZZStnNl0qzqMoZJ7SqhbibRR7VajZ+tQf4wlmdgHk1Pawug6/HavEVy6zKaNaHLu0hY+cP5ivvfsQWv/yKqOqukl74CbQl4rE8mlGDN2pK6M+dUsKgZiaftiK+iZVZ6teAX7bDqp1ZE9SXnmlS2zwBiepJl+1YiiasTSpYfVV0q5YssMCZ7fGBi1jWgqWy0Bw4LjdE5ETqDqpbczN/bBK3oRdaMGmKiy1RgMApq1GlFX6/DSQVJJgJgkJddqsTWKZ8s0ha/qMNJhS7USzRN9tRVbsqpxbDBh+bVMTmkzfn7itZOIApw+p/wss09ffSYeSeSh7UYPPJm5my9lpF0+r4G9XRHb51wMVRXKRxHktstcZctYwQlYAaUzTUuNDqNOKa6y5QRMq8FE24hNZZWtFD6PyBlz6ytWtpr8uhUI7mTKRT6AEWhqjurxil50LZMeP0FlSxDA45GtYktTw/iZg6ZrqEIX4xEFnXHGG4VyxVY8rRDOeLba6vzMawiUNMnnera0KmolHh9MoGp6kbK1NFNsvX4ywpLW8KirjxpDXi5fPodfv9KFqulWW9WujQhG8fpGT4R0tVWn04RlkC/XRqzLLbaKX9cQnJ3F1kwXAiatdbU5H9EJypZbbOXMRZygsmUep72R4k5Dz0iSOfV+5jcGRvVsDSdk6gMegh6Ip51/Xi9njgejjWgpW5IXXTUEh4msRjQJejXLIK+pYQKiET0ji4drN2fLaiPaKVsplVDOxW5VGZN87koOWXP+gWZyyBxA3ZavbDUEvLRlvoTLRlG1TN6xtoPeSIoXDvaTMuenlSjSVs5vQFZ1DvS46pYdFRVbucpWyE7Zml1txJQDks1zqdVh1K6y5QyyytbEiq15DQEkUeDoYLzoud5oijn1fuY1BuiPpcreHA8nZJpCXvxS1lbjVCKpCEPJobKvyR1C7RW9KEoQv0djMu4zQn7BMshrahi/aKhmaeEoiiah6WPbf844442CqWxFbDxbsZSSZ1Be1dHAm71RW2N37mPVpNYczgycXlLQRoRsAba8xErEQi4/cw4hn8SvdnflKFsliq1R2rKzHWs1Ypnoh5awD3NNg10bsbFA2dp+aIBN//57dhyxH7pa7Vgz+2ZYdTGp1WHUTlC26gMeBGH2RZvkkh1CPbE2okcS6WgKcHQgUfRcz0iKOfUB5jUE0PV8w3whQ3HDO+qXIK0anjKnMpqqBVllyyMa45DScoDQJKhaAEEfSIJxDdTVMB6Pik/ykRaOoWu+ktlfpZiUYksQhO8KgtAjCMKrJZ7fLAjCsCAIOzP/fX4s7+/3iHgloWj1hJrJcMkd8HnGvHo0PasG5ZLICdiqpmLrUH+MsE+yVKxczGJr2dzKiq2gT+JtK+bym1e6LKWwVLG1tDVMyCeVXHAw24mlFIJeCUksLSl7JZGWTEKevUHeGGlitrW/8uR+jgzE+asHd9Sc2gLZ751TlK2GgBdJFGpuGLUTlC1RFKj3e2a1smW1ESeobAEsag7ZKls9kRRzGgxlC8qvSDTz/szaL+Zg39ZoqpaiKSSUBLIm4xW9CIJAKu0j7J+ca3vApyHoIXTNg64HEKUYASmATB+67iWWLq4xyjFZ38bvA9eM8pqtuq6vy/z3hbG8uSAIhP2eojai6cHKVRbMC5pdyzE3M0quorCtw/1xlhTEPpiYvq1SsQ92vGNtB4Nxmd/tNaaol/JsSaLAmfPq2VPhgNPZRiytVLSqzlyRWMogr+nGe+06OsSzb/Rzw4YF9MfS/PWPXkatIm9hJaQcVmyJokBzqPaytpKy6gj1sFzy+WzAtAhMdFwPwOKWUJGylZRVhhNyxrNltLzKrUgcykyyMNf0RMeRFzVdjFbMmMqSrMl4Ja+RHp+cWHp8LgGvhqYG0FTjGitKMXweHwqDoPmIpMdmr5mUM56u608DA5PxXqWo83uKoh/imYIqlLMazFyZaJchksg5sKpN2So0x5vcsH4h/3D1ctv0+FJsOqON+oCHn+44BpRWtsBoJe49MTLrR27YEU2pFaWZm74tu7tbc5XSSFLhnj+8SX3Aw53XreKOd6xi64E+7n7qwORu9AyTLbZmvhAwaQ37anI14kyP6wGzTe7cC/pUM6nKVkuIvmgqL1DTNMy31xuLw6C8sjWSkGkMeQlkDg0nZ23F5WIVLxezGJNVQ9kKeUPEUuLkFVs+jbTsQcLI7hKkKD7Jh0oMVdPG3EaczrCbCwRB2AWcAD6l6/prhS8QBOFjwMcA2tvb6ezszD6npDh4/GTeYydjxon78JsH6EwcBOBoxHjsxZd3Q1f+X+/NQ9lWwTPPPU9HnTPurkejeyjGqcFU3t89l1UCPP30sTG957pW2Hrc+FK+tutlYofsT8yeiEwkpfDj3/yeOaGx7a9oNFpym2uBIyeSaGl91L+jGjf2864Xn8Nb0HI8ctI42T342LM89mqKPz3Vy0vPP8t8XeeiDg9fe/IAnqEjrG4r/VWtpv38yhHj4vPSi8/zVsAZ3z9RTnDwRGzUfVgt+1nTddKKRtexI3R2npzZbUkmOBKrfL9Vyz6ulN0H0gjA9ueeQbTpTIyFSJdxrvj540+zoN747rwxmJmJeGg/O6Jv4pPgxdcOcLpanLqu6zqDsTTDPV0sCBg3z08/t40TTTNflNuhJlRa9daSz9cpdcxrnscnuz7JOeFzuCH4Z3wpLdGm+GntKf17ldKS9qDpApv81/Mz4F3NV3BcDfC9yPdQGGKjcgH1PZV3lKar2NoBLNF1PSoIwtuBh4FlhS/Sdf1e4F6A5cuX65s3b7aem/f6H/FKIps3b7Qee/X4MGx9hnPXncXmzHDaowNxePb3LD19OZvPWZT3/r/s2QVHjaJk3YZzLAO4k9F1ncTjj7Li9KVs3rx80t5X7Ohl63e3AXDRxvNKer6ajw7x/deepWHxCjavnj+mz+js7CT337DW+Oa+55hXB5s3X1D2da+oB3gzcpgrL7+s6DnvG318Y+cLPH7cg88j80/vu9RSwjZepPKubzzL/7yh8OyNm0u+fzXt54PPHoQ9e7hs08U0hYo9iDPBj0/sYM+JkVH3YbXs56SswuOPceay09i8+bQZ3ZaHjr/E/u4omzdfWtHrq2UfV0rnyGvUHz/G5ZcVf/fHSsORQe7Z/Ufmnb6KzSuM613y1S54YQdXXHguqxc0svClTjwNDWzevKHo92MpBfXxx1lz5mnETxpax/JVa7hkWfuEt20quH/H/dZKQzte6nqJbX3b0NDYk95Dvfw88C6E1ij9c8bmp7JDjYbhYAuvyj1AE7+K/Q8J3agfZKGXn8V3ce2iqyt+v2m5tdR1fUTX9Wjmz48CXkHIjNGukDobz1Z2EHC2MjeX4cdtViPmRj+kHbwKI5dYWkXTJ6fnn8uFp7Vay97LtRuWz6tHEgXXJG9D4UrYUnzs0lP5zV9fYvucmb/zZm+M95yzKC8qIuiTuGb1PI4PJZCr5HgdDSvU1CGeLTDbiLVjkDfPc07wxTUGvQzE0rYDlGcDI8nimajjZVGzYSU5OpBtr5lDqOc0GOeNuQ2Bkm3EIXNUT45ny6ltRFmV8wqtgYiHHW/mr8YvjH2Q9CaAyTPIe4330WSjVBGlGH7J2M+q0E0kObZzxrR8GwVBmCdk3N2CIJyX+dz+sbxH2M6zlSmocnO2zJWJoxvkq+PilV06PDlfWBOPJPInq+cB5YutgFfitPawG/9gQzSllM3YMvF7JFpLzAI0PVuSKPCxTacWPW+GGQ7VyMgTM2fLKQnyYMRzjCSVqjknjIZZ0DrBs7VuURMDsTSXf7mTh7YfdXTUwFQwklAmPKrHpK3OR9ArcXQwa5LvGUkhCtCaGTs1v7F0sWWOTWoKeTFPW1GHrkYs9Gu9ejjEEy+3kM4JEy0MNBU0o1M1mQZ5gGgijCCkEMRMxAQSitBDLK2Mycs8WdEP/wM8BywXBOGYIAgfEQThNkEQbsu85Ebg1Yxn6+vAe/UxOq7rAx4ihcpWuljZ8ntEJFGwncqdSKtW5lG1GOTNLKfJ+sLm8leXnc5n/+RM20iJXFbOb3BXJNoQS1W2GrEcTUFj31+7Zj6LWooXQTRnWm2DJYarVxspRcUjCngcVGyZWVuDNbIi0UnK1p+fu5gf3no+7fV+Pv2T3Vzzta01myFnx0hSnnDGlokgCCxqCRYoW0na6vxW/My8xgDdI0nbCSlDCeP4bgg63yAfk/PbgGnFOJbjyewxXahsTdaoHpOAz9iHAxEvPq+hYgmCgFcMo4jdKKpEQinOPSvFZK1GfJ+u6/N1Xffqur5Q1/X7dV2/R9f1ezLP/6eu66t0XV+r6/pGXdf/ONbPqPN7ig4MuwRvQRAI+STb/JCErFKfeW21tBGzq1km317X0RTktktPs42UyGVlRwNdw8maWx4/UaIVthHL0Rjy8tU/X8c//ulK2+drbXZfWtEcUQTkYg6jrpVg0+QokyGmmwtPb+Phv7qIe/5iAyMJmX99dO9Mb9K0MZKYvDYiGK3EIwVtRLOFCEaxpWg6fTa5cSM5bUSz2LLrADmBQmVLVo1rVCxlbLiu68TkfGVLUYyb1dAEh1CbBHzG+6QVMe89fWIIRegZc7Cps856Zajze4mn1bzcIbOgKkzwDvs8JZUtc2RK9ShbxsE0FcpWpazqMCapu76tLIqqkZS1sunxlfKu9QvyvFq5mMVW7ShbmqP8WlB7I3uyKf3O2c+CIHDN6vm8/az5vHp8pOby4+x4/eQIxwYTNNuM6Rovi1pCHBtMWO0rMz3exIx/6B4uLraGrDaiD48IoqA7VtkqKrYy7cNY0ii2+hP9qJqKrMlIgoQoiChKEK+k4fNMzrHl92ZrhMZgVpDwiUEUoRtd99ZmsRX2F3uxzIIq6JOKXhuzG9cjq1awZPUUW5MXijdeVsw3euF7uuwHfM9GzOMr7J9a9aAWCwEnZWxB1hfnKltTz1kLGknIKm/2ji2jqNrYdnCAP7vnOcJ+ydaLOV4WNgeJphSrcOqJGHMRTcwU+a7h4vbWcI6yJQjg82iOVbYKA02tNmLK+H9XpAvIBpoa6fF+wuNQtUTBvgwK5BRbTSGJsNcw6PskP5owgqoKtVls1dsMo46lVXySWHSnHPZ7rMDTXHKLrWoxw06VQX4stIR9zG8MuMpWDuYd4UTbiKNherZqp9ia+TEyhVgFbY2sSLSULYftZ4A1Cw2VfPex2r1xe/y1k/zF/S/QXu/npx+/kNPHEDg9Gqav8+hgHEXV6I/ZF1t2KfJDCRmPKFgeZ59XJ5J05nmlZBsxo2x1RTPFVibQNOgJEk9J4/JrtQRbbB8XRaMgBQj5VebXG9FHPsk4X6TVdG0WW3V+o9jIlT1jKSUvPd6klGcrma4+ZWvEAcoWGAO+XZN8lqiNX3Aq8HlE6v2e2im2ZOd5tppDxrDwWtnHlrLlMAUR4NT2OkI+ychIrEEee7WLj//3S6yc38BPbruQhc32kz/GSzb+IcFALI2uQ3tDto3YFvbjEQXbFYnDmVE9pkfX59GJpJy5yrlkGzEloukaJ6NGWK85FzHkDRFPiuMaQj2vbl7J50x1KxTQ6KjvAMDvydQQapLBZOWLPZx11iuDueorkswttlRbz0zY57FWKuaSkFVLIaomg7zPI854S2Dl/Abe7I3N2rycQsxia6KrESuhOeyrGc9WWnWeZ0sSBZqC3pppI5rKVqmZpzOJJAqs6mhg97Ghmd6UKeGXu7qY2xDghx8931JMJ5NFLcb8w6OD8WzGVo6yJYpCyayt4cyoHhOfRyuKU3IK5Txb/fF+0moaXdcNZUsyR/VI42ojNgWaCHgCts/5Myb5sF/NKbaMa3FaS9AV6aI31lvR5zjv21iCuhKeLTvPTMjvKQo1lVUNRdOrTtmKJJVJWzo8EVZ2NKBqOq+fHNvwzVrh6ECcX+46Yf08XW1EMNpctaK6ONGzBbW1j01ly4n7GeCsBU3s6RqpycytgViaBU1Ba0bvZFMf8NIc8nJkIE5PxCio5hQsrpnXGKDLrtiKy9b1DwxlK1olylZaNUqVWEq0WoiqrqKj4xW9hL31xFPiuNqIYW+Yep99q9dStvwadb466v31eCUdQfeR1gxf2UtdL1X0OVVUbBkHSW4lHkurtgd1nV8qWmVhBpqay3CrRdkyiq2Z82uZnNZuzIDKXXY8m/jir/fyv/7nZd7KGHuz0wvcYmssOLGNCEYopKtsTQ9rFjaSlDXeqEGT/GA8TfMUKFq5LGoJcXQgTs+ImR6fr8qYWVuFDCdkmnKLLa9ma7eZaRRNIaXm+ydNZSuelLLm+JzYBy/NgGApW6aZvRLCvjD1/hLFlqlsZdqTHfUdCIKGpM9BNobicGzkGN3R7lE/x5nfRhvMdk1uERVPlVC2fMXKViKdX2zJSnUsPR5JyDPu1wKsOXbDNdLOGgtD8TS/e934Mv3wBWPAq5m87CpbYyPlwJwtgLmNAY4PVh5Q6GScrmytXlC7JvmhuDypUQ92LGo24h/MNmJhKPW8BkPZKswNH0qki5Qtu1X7M02hqgW5ni2J7phxLs4NNBV145gKZZStixZfxKKGRUXvY0d5ZcvYh+YIoI66DgQBvLSR1rNdnkrULeed9UpgXtRyU+SjKcVW2Qr7pKIofbPYCvskJAHSqvMOMjsiSXlGM7ZMzC/pYI2MjRkLv9x1AlnVOXNePT/ZcYykrOYE6k79Bc0stsY4dMGRGKGmzisC1i5s5PhQwmrNVDNOXo0IcGpbmLBP4pUaK7Z0XWcgnrZWEE8VC1uCHB9McHIkmRm9k/99mt8YICGr1uIqk+G4nDf83efRiDtQ2SostnQdZFVEFHRSsmiN/MpVtigY1dMabOVtp76tZBFlIiAQ8oZKKltBv4ok6pbCZa5I9OityHr2+D0ROWEpbqVw5rfRBnO5am4bMZ5WbZWFkN+DrufPQjT/HPJJSGL1eLZGksqUpMePFZ9HpM7vqZkZfWPhJzuOc+a8ej5/7UqG4jKPvtI1basRwVgtl1K0vOO5WkkpquMM8mDM8APYeWRoRrdjMsgqW87bz2CYuFcvaOSVGluRmJBV0oo29W3E5hBpVePV48NFfi3IiX/I8W2pmp65lmRv3P0enXhac9xNXKnYh6awcc7VNKNFmDeqRzVsLmG/hkf00OBvwO/xc/XpV+MRS5+jQ94QgiCULMrOOT3Kuy/ss8b8hbwhPKIHLy1oxFG17Dl5x8kdZf9ezvw22uCRRIJeKc/QF08r1uDpXMzCLLcfbV6oAl4Jrwiy6qwDrBSRpEy9f+aVLTDUraFZ1kZ8oyfKrqNDvHvDQi44rZVT28I8+MIRoikFjyhMywWttcTIHlXT+exPd3M0Uh03DuDcNuLqBY14RIGdR4dmelMmjLEIQRx1DNdMsmZhI3u6Rqom77ASzFb/VLcRF2eytvacGMlLjzcxU+Rzg03NSSSFni1Nzw4udwqlViJaxZaSLbZEQUQSJWtUTzig0hRoso79tlAblyy+pORnhX3Ge5VSthpCKqfOy1e7w74wHqEJMLK2TGpG2QLDt5U7pTyWUm2VBfOx3JE9yUwbMeiVkATBcQdYKUYSzlC2AJrDXoYSs0vZ+umOY0iiwDvXdyAIAu8/fzEvHR7kpcOD1AU803JBay4xsufoQJwfvXiU1/qqR/FyYqgpGDdhK+Y38HINKFtOXYSQy+oFjaQVjf3dtbO6OXcczlRiBpsqml5W2co1yZvbVujZAufNRyxMjzeLrcZMsWWqWLmBpom0B49ojOppDbbm/f7ytuXMr5tv+1mmkb7OV1fx9oW9YbyC4RErNPKXw9nfyALq/R7rwFA1nYSs2ipbpo/LTtkK+kxly/nFlqwarSMneLbAaGfVSt5TJaiazs93HGfTsjbrDvLGsxfi84hsOzgwLSsRofTInhNDxp1ruormzDnVswWwfnETu48NVf3cvqSszngu32isWdgEUFPhpua5cSrytXLpaApYba32huJia0698Xxu/IM5qqcplK9sAY6bj1gq9sHjHQJAU7PKllf0EvaFiSUlQgENQbBPhG8ONtt+lqls+SQffsl+Pm0hIW8Ir9CQ2bbKr4dVVWyF/R6iGTnUVK1sQ00zpuXcYNN4jrLlqRLPVtQh6fEmRhtx9ihbz73Zz8mRJO8+e6H1WFPIx7VrjLuk6ViJCKWLrWNmsVU9wpZjPVtgFFuxtMqBnupWW5yqHuaypCVEfcBTUysSp6uN6PdIVqvQro3o84h0NAbZl5OJOJSoHmWrVBtREYzUeC1X2ZK81Pnq8jK27IqtpkCT7WeFvNmE/1KtxEKMNqIPQffVrrJVl6Nsxa1BwDYGeV9xTESuZ6taiq2R5MzPRcylOeSbVZ6tn+44RkPAw9tWzM17/APnLwGmZyUiQEuJ+YimslUt/kNV05FV3bEtrnWLjLvfam8lJmXVkaN6chFFgdUdtWWSn642ImTH9ti1EQEuOK2VZ9/os4Jjh22KLb/HVLacdbcWk+3biBGlC0FIFilbIW+IWDKbHm9XbDX6G20/KzePa7SVi7m/I4oyHtpqV9nK9WyVW3pvPpabtZXMaSN6RKEq2ogRhylbTSEvwwkZrcrbLJUQTSk89upJrl3bUdSS2bC4ibULG+loCk7LtjQEPUiiUNTCzbYRp2UzJox5g+PUNuLS1hBNIW/Vr0isBmULDJP8612RqrjxrQTz+5lrQp8qFmbG9pQqtjad0c5IUmF3ppg18xHzx/UY53HntxEzxVa6H0GKoal1qJqKpmt4pUwbMSURDqj4Jb/VGsylMVCi2Mp5baXKVsgbQhBlPNoc0kqNFluGZ8tsI5pRDvazEaFA2Upnox+8YnUkyI9k7kYapuHLWwlNIR+anj+fslbZfmiAhKxy7VnFxkpBEHjwoxv5vzeunZZtEQSB5lBxsOmJIcOTUS1tRCv/yaHKliAIrFvUxMtHKx8u60SqQdkCOGthI2m1dkzyg7E0DQEPHmnqj29zRWJherzJJae3IQjw9H5jbp+dsmV6tpzURtR0jaSSv/pPVoz9mdYiiFIUXQ2jaMY2e0UvISk7qsdO1QJo8DcgULyYaVzKli+MIKSR9Hm120Y0PFvGTrZyjuyiH6zViDbRD55MqGkV3E2NOE3ZsoJNa7+VaK7kWdJmP/ahzu8haHPsTRWtNinyx6vMIG8pWw5WXdYvauZAT9RaKl+NpBTN8QZ5gLMySfK7amQo9WBcnvKMLZO3rZjLn6yex8Jme3W9OexjzYJGq9gaissEvVKequxEZatcejxiGjGjbFkZW5IXTWlB1wWa6pSSxZYoiLYrDnOVrUpXJIa9YQQxjUefh6qreVlb5XDuWc8Go41oerZKh0qaKxRzDfIJ2cieEUUBryhUhbIVcZpnK2xsx2yIf+jOzB1rr6tshcpU0xz25hVbuq5ni62qUbaM75xvGu78x8v6xU3oevlRMi8dHuSvHtzh2FWLycy5zuksbgnRHPKyqwayzSAzF3Ea/FpgRGd86y/Oxlvmu7TpjHZ2Hh1iOC4znMgfQg1Ggjw4S9myK7bSmWJLsIqtcDY9XvSSSDYB0N4glyy2oNgk7xW9+KTsv1elbcSgJ4goKnh0w8tbqbrl/G9kDnV+D7Kqk1JUy9Rn59nye0QkUcir2JNp1VIiqiVB3lS2nFJsNQbt855qke6RJC1hn2NWzhXOR+yPpa1jOF0lBvnsGBnnqi5rM0nyLx8p3Up84rWT/PqVLqs14zSqRdkSBIH1i5urfkGCiVFsOeNcDUaxpenw7Jt9DCXkvNgHyFW2nHO3VpixBdk2oiDICFIUXQuTVjNtRMlLNG4USa0NpZUtKPZtFXq7Km0jCoKAz6Pj0eYAlcc/OONKUiFmOy2aVCxly86zJQgCIZ+UdxDF0yrBzAmoWnK2TGWrziFtRPNEMjwL4h+6R1IlzaczQUvYlzeX0jTHA8jOP5QB54+RAcPTclp7uGyS/OF+4+7bSe2XXKpF2QJYv6iJAz1RxxauY2EwJk+bslUJ6xY1Ue/38PT+XoYTcpH3VxTBK+l5HaCZxraNqAoIgoIgaIgeoxhLK8Zcw3pfPf0jPhrDCj6PXrbYavA35P2c69cC8Hv8eUpXOQJeEY8+D4CEUtkA++r4RmYwje/RlGKtSiwVLBn2efIS5BNyttiqmuiHhEKd31iJ5gTME4mdsnW4P5aX61Lt9EaSzC1hPp0JWjKBsmbr6vig8QXvaAxUTRvRbN07vRBYt8hQW0rNjDs8kCm2HHSRysVYjeh8ZQtg/WIjbmN3Dfi2huLpafNsVYJXErnw9Fa2HugzhlDbLLTyeXRHLXiyK7aSsg6Ccc0RpShgiCUe0UOdr46+EQ9tDTJhbxi/p/QNcmH8g92qxUrVrZBPQqKRsKeFnlhPRb4tZ5/1CjAVnkhSIZ65qwyVyDoK+yViBdEPAavYEqoimyiSlB1jjgdjVaQgkKewmNz5yz38w092zcBWTQ1OVLZ0PbuqyPRrnTanrnraiBllyymt2VKsX9xEfyzNscHiO1Zd1znSb9xdO6n9kks1KVtrFjUiCNWfbZZSVGJp1VFtRDBaiceHErzVFy3ybIGxItFJCm1hxhZALCUjFBZbmhFoGvTW0R/xjurXgmLPVqGyBWPwbWUsSfOCq1E0hd5476i/Ux3fyAz1/mykQyxtJFGXMgiG/R6rIAPyRvt4ROcN37RjJCk7xq8FIIkCDQGvldmSy7HBeM2ky6uaTm805Shlq7kgRf7EUJKwT2JuQ6Bqcray0Q/OVl3WL24CYIeNb6s/lrZu4uIOVraqwbMFhh912Zy6sh65amA6A03HwqZl7YARfFzo2QLwepxVbNkpW7G0giCaxVYMHYW4MkDIG0JU56LpAm0VFFv1/vq8+Ac7ZavSFYnm9JCQOI9GfyMnoyetOIpSVFWxZSpb0ZTh2bKLfTAp9GwlcgzyHgHSijPvSnOJJBVHKVtgBJvaKVsnh5OO+tJOhP5YClXTmWszd2ymKBzZc2IoQUdTkIBXrAqVFrI3OE5XXZbPrSfgFdl1tHhF4pGB7MXAice7pumZ+ZPO3se5rF/UzMtHS7dtq4Hpmos4Vha1hDg1E19jq2x5NCIp59wk2xVbibSGIBrbKEhRUuI+NGQa/A1oaWNFYCXFliiIecqVnbJV6OsqRZ3f+HfWNR8d9R2oukp3rLv851f0zg7BjHmIphRiKdXWHG+91ucpiH7QqrCN6MRiy1cU/ZBIq4wkFUctIZ4IPZnYh1KBgTNBYbF1PFNsBb0SqSpRtkyfZMDBOVsAHklk+dx627DNI/25xZbzbthS1j6uDmULDCVxKC5zqL/4QlstmN9LO/Voptl0hqFuNdqobn6P7qjztl2xlVKyni1BSJOUtkPGHJ9MtQD6qCsRTXJ9WxPxbFnFlu4j5A3RHGimJ9ZT9necfdYrwGwjRpIKsZRSdjZdyO/JDzVNK3mrEashZ2skWbyCZKZpCnqL5iOezASAphTNmsVVzfREjL+P0zxbkL2DzipbErJKVagCKYeP68ll2dx69tkUW4dzCgInthGdntJvh2mSr+ZWotlGdNJqRJNNZ7QB9mOE7Dxbmj4z53Bd10nIiaLHZEWw2oiCAElxBwEW4RE9xOINNNcp+CRoDjaP+hm58Q92ylalbcTGoHFt0DXj37ujvmPU/VY930iybUTDs6WUVbbq/FLRIOrc1Yiqpjs2lNDEicpWc8hb5M06OZwdrxCrlqVxZTADTR3l2coZRp2UVfpjaRY0BQh4JXSq4+bBLAScbpAHo5XYG0kVpfYfHohZ6oUTj3UzXqOalK3T59RR5/dUtUnePE6c1kYEw7d1xztWcvmZc4qe89koWyejJ6dr0/KIy3F08q/JI6kRNM2LIBjXHEVTSAlvEWSF8XwsTFuD0VL0iKNfK02TvIBA0Fucvl+pQb4xYPyurhv/3gFPgLZgW9nfcf5ZL4egV0IUTM+WapnU7Aj5CpWtHM9W5m/t5KwtXdcZSTjLIA9GG7Ew+sEcbQPO9LGMFfPv0+4gZSvglQj7JAZiaStja0Fz0LqoJqvAJZ+qgpwtkzPmGSfdwlbikf44Z8ytRxSceaxXo7IliQJrFzVW9UxKU+13YhvRI4ncctEpttNWfB6deEE7/NjIsRlRt+xaiAOJAXTNZ61GjKQiIOgE1fWAh+GYj7YGpWKvlfm6oDeIKBR/RwKeAF5x9H9D0wqha9nXzq8vnqObS/V8IzHCSsN+j9VGDJUxyId9ErG0YrVXkgWeLXD2isSkrKFoOvWOK7a8RJJKXrvwZI0VWz2RFG11vrKjMGaC5kyKvBn70NEYtL70ySpY8FFNbcTlc+2LrcMDcZa0hAxPqAM9W9WobIFhkn+9K0KqCry0dgzGZUI+qSqO7Vx8Ho2ErKHldHn64n1E09Fp35ah5FDRY/2JfnTda7URR1IjiPjxqqvxaguslYjl8rVyMT1bdi1Ek0rULUEwEu3Rs0rmaIGozrqaVEC935iPGEsrtpW6ScjvQdeN9qGiaqRVLS/6AZytbI1k0uOd1kY0+/65ic+5bUQnmS3HS89IkvZ657QQTcxh1Kay1dEUJJA5uSdl5134CzEN8tXQRpzb4Kch4MkL6k0pOr2RFEtaQ4T8kqM9W05fhFDI+sVNKJrO4RHnnpPLMRibvrmIk4nPmxnZk3Ms98f7DQVpmrHLqrKULVE2uj3pEULiYlAbENSFgLESMeCp7Hxd769HFERbc7z1mgpN8pKkWJ6tSqiubySGbyuWUoin1FGVLTBWDCUzJ/lczxY4O0XeGkLtMIN8s2XUzhZbuW3EuAN9LGOleyTlqNgHk+aw0cI9PpREEGBeY8BqjSeqoNhKKSoeUXDMRIRyCILA8nn5KxJ7E8aFaXFrmLDP48gbi+xIpOpSWNZlZlK+OeTcc3I5BuNpmsPOOldXgj8zjNpUaZNKkpgcmxFlqz/eX/RYX2wQ8CAIaVJqirSapk6aD4jIiSUIgk5rvYxfqux8LQoi9b76CStbAJKkWp6tij674lc6hLoKlS3zuXhaIZEpAAI5OVvg7GLLHELtOGUrc/c2nMj6tk6OJC2vghMvQGOleyTJXAcqWy0hH/1RQ9maWx/AK4nZNmIVDEhMVVn+0xlz69l3MmJZEXrixj5e0hIyQpMdeGNRrcpWa52fJa0h3hxy3j6thMG4s+YiVoo5jNo8b5sFz0wUW33xvryfk0qSaCYDTBDTjKRGAKj3GREP0WgHzXUKHomK24hgrEgsp2wVJs2XwitpeZ6t0aiubyRGETWckEnKWsm5iJAdUB1LqVaxlY1+MKotR7cRM206xxnkM0rbYCxH2RpOclq7sWS22j1bqqbTF3WmstViKluDCRY0G6thqqmNmFLUqpnZB7B8Xj0jScVandoTzyhbLaFMaLLzjvVqVbbAGEpd1cpWVRZbprKVKbYSRrEVSU9vGzGSipBSU3mPDSQG0HXjeiMIMiOpEXySj2DmRiKRrKetwbgOVapsgeHbKqdstYXKryo08Xq02la26gMeK3SyXM6W+Vw8rVgtFrPYMn3PTjbIm8NBGxymbJknFDPYVNN0eiIpTms3Dl4nXoDGQn80haZDu4NiH0yawz7iaZW3+qJ0NGWKrSpqI1ZbsvkZGZO8mbfVk9CoD3hoCnldZWsKWL+4mcGUTtdw8UxKp2N4tpx1Y1wOM2LB8mxlztumujTdylahqgVZvxaALiSJpCM0+BsQpOy2WcXWJCpblYSjGp9JjXu2/B56o0axVS5ny3wumsoptnzGX9dbVQZ5Z32BGzMnFHOpc18shaLpnJpRtqIOXKE1FqyMLQfFPpi0Zvxy3SMpOpqMYtBUtlJVUGylFK0qzPEmZrG1P2OS74nrLGkNIQiCq2xNAYtbQgB05Sy4qQYUVWMkqThuLmI5zGgHU9kqbCNOt0HertgaTg5bq/0S2gk0XaPB34AoZYdVt2eKrUoN8jC6suWTfBWZ5P1ewVLeKqF6znwZ6vxeK4y0MmUr20YsjH5wsmfLUraCzlK2GgIeJFGwgk27h43iZGlrGEFwZqr2WDDN/k4KNDVpzglMXGAqW9Xk2ZKrS9lqCftoq/NbJvneuMaSFuMkXefPHwfmFKpZ2TJ9tk4sYsthqvxODDQtRbbYyq5G1HSNwaSRdeYEZSuajlqeqJh6HDBWCgpiEjCOkbYG4/9jaSM2BZrKKlsAraHWUd8n6BVrXdnKFljlPFthX/aLmyxoI1qrER2sbEWSMpIoWNvsFARBoDHotYJNzYyt+Y0Bx67QGgs9Eeelx5vknsw7Go1iq9pWI1ab4rJ8Xh37uyMoqkZfQmdxq6G+hHyeojBIJ1DNypZ5g1x1xZaDA01LYRVbXlPZUhlMDFqPq7paNDpnKrErtiLpiOWJiqm9hDwhPKIHQQDRE0MUdFrqx95GrPPVjZqJ1Rocvdjye4W8nK3RqL5iK8fDFCqrbJmrEVXrQmS2FqsiZyuh0BDwIAjOWybfFPJad3NmsTWvMUDY78zWyljoHjFiFdrqnHeXmltsVaNBPq1Wl7IFRitxf3eU40MJVN1YiQhGYZAbmuwUzOPAX4XKVp0/u6ipmhh08FzEUpjHrd9cjZhULHO8yXSZ5BNygpgcK3rcULZ86MjElYG8uYU+b4qWesXyX49F2arkmlqJSd7n0WvbIF/nz949lF+NmLlLSiuWkdVStqog+iGSlB3n1zLJHUbdPZxEEgXa6vyE/c5M1R4LPZEkrWE/Hoelx4MR/WBiGeTNcT3V0kassiJg+dx6ErLKH980LkS5ypamO2+/Z1P6q2s/Q04b0YHt2XI4eS5iKUwFyyPpCJnRU4U5V9PVSrRTtRJyAkVT0HUvafENdLS8YuuUBW9w4YphADyiB0mcXCW3EpO8Ef3go9L7rar7RuYqW+U8W36PiCQKxHIM8oGMQd7ybDl4NMRIUnGcX8ukOeSzPFsnR5K01/mRRMGxPpax4NRAU4DGoBdRMBQAc5WqeVGtjjaihs+BRWw5zBmJv93TDcCSVtOzlb2ZcxIpWcXvER2piI+GqWxVmxWhmtuIgmCoW9FUsbI1k8WWqarpmp+kuAcgr9havTjNykVGm3MsqlalNAYaR52RaPjdBNAru05X15mPfM9WudWI2RVDKsminC3jNY5XtvzO/PI25RRb3SNJ5jYa/ianrtAaCz2RJHMcuBIRQBQFmkM+OpoC1sVUFAW8YrWsRqw+z9ayOcYJ/pk3+vAIMK/BPNYzNgWHKbkpRau6uYgmfo+IQPV5tqqxjZg7aNrv1W2VrelakWhbbGU+W9e9pMTX8EsBvFL2etgebrf+PBa/1lgYTd3yZlqwlbYSq7DYymkjlkmQN17rycvZClTRuJ6RhOK49HiTplCOQX44ybyMEmSk+zvr4jNWDGXLeeZ4k/Z6v7VE3sQnVYdnK6VUXxuxPuBlQVOQtKLRFsqOGgo7VNlKZpStakQQBAKeKvRsxdL4PGLZ8XFOI6/Y8ugMJ1MklHxDvBOULU31khL35KlaAU+ABn9D3s9TwWgrEq1iq8IViZPyrRQE4buCIPQIgvBqiecFQRC+LgjCG4Ig7BYEYcN4P6sup8Aa7eAO+SRiGYO8VxLwSvltRCcb5CNJ2XFzEU2aQ17iaZWUonJyJGnd7RueLWddfMaComr0RVPMcXCx9R/vWcft167Me8wnClXRRqy2UFOT5ZlW4pxgdttDPmfGFFSzsgUQ9AiObiMqqsYdv3iNw/1ZQ7eRHu+tqtatjk5KMVZee70aQ/HilYfTYZCXVZnh1HDR42ahl9KG0YQo9TnFVq6qBVPTRoTRTfJmRlmlWVuTdeb7PnBNmef/BFiW+e9jwLfG+0Gm2uPziFbxVIqw30M8ZcxGzD0BVYOyFUk6V9lqzMjlXUNJIknFaiOGM0pitdIXTaPrONazBbCyo8HyDZkYypZzj2WTags1NTHDTdtD2Ytp1sztrCK3mpUtgIDkvAI2l6ODCb7/x0N88/dvWo8NxKpzLmJSMVaS+zwaI8l00fPToWwV+sRMzDZiXDsB5Pu12kMFxdZMtRElQ9nyCnVlX2cyKd9KXdefBgbKvOSdwA90g+eBJkEQ5o/ns0xlK1yBZGt5tmQ1TwVzes6WqulEUorj5iKamGMpXs8ka5vKljkkvFrpiRgnnzkOHEJdDq9YJW1Eufo8W2BkbQHMCWVPl1ZossOO92pXtgIewXEFbC7RTNj0L3efsM51Q1U6F9EstrySZg18Lnxe0ab2+LZrIUJWVUvox5D0prxcrDnhOXmvnSplyy5rK/ezzDbivPCSit5vum6BFgBHc34+lnlszJh3lOXM8dZrfR4r+iE3HNTp0Q/ml9ipylZT0Djw9xUUWyGfRFLWUBxaxI6GNarHwcqWHT6pOtqIqSptI65b1IxHFDi1MafY8jlz5VzVK1seZytbkUxREk+r/GqXoboMxtM0h515Y1yOpJoptjxayY7EVJvk7YotXdeJpWPouk5CP0xAP91q0QqCMG3Kllfy5nnDAM7uONsq/Mw24vwKiy1HXc0FQfgYRpuR9vZ2Ojs7bV/nEUFQkiWfN4kOJekb0fApMdS0br0+FoshCQJvvHWIzs4Tk/g3mBx648Y/4onDb9KpHpnhrSnm8IhxYd/6iiGlH359N+ljIiePGieix5/6A2GvQDQaHfXfyElsPWJs/5uv7mDgjeq5YEmodPcNOHpfa7qOoul0HTtCZ+fJmd6cMXP35UHUZMzaxyNp465212uv0x59s8xvTi89/Qn8Eo4+Fsrh0VW6+4ccu/07uo2ixCfBvb97jXnxt+gZirEokHLsNttRRx2rYqvwp/zUy14Op0Rae4qVnO3D2/NWAU42g8lBWrX8z9V0jVuab6E/3c+Ok7ezUFrLR1rOBkASJJoHmvNe3zPUQ+e+zinZvrpUHV7Va332QHSA5mQziqagxo0CsC22gL9s+0sUTeElXir5XtNVbB0HFuX8vDDzWB66rt8L3AuwfPlyffPmzbZv1rj1t7S3hNi8+aKyH/r4wG4O7u2hrrEeAor1+s7OTgLeJPMXLGTz5pVl32Mm2HNiBJ7eynnrVrN59bi6rVPKscE4//TH3zOgBoAY1125ibDfQ1foCD/a9wrrz91IR1OQzs5OSv0bOpEdT+xD3PsG77hysyNDTUvxH9sfg0AdmzdfPNObUpJEWoXHH2P5stPYfOlpM7054yL3eE7KKjz1GB1LTmHz5tNndsNy+L+7tzKvIcDmzefO9KaMi3t3P86A7nXseWNgxzF4eRfvO28JDzx3mLnLNxB7fCurT1/K5s3LZ3rzKuaBRx7geel51s5Zi9rVRLo3TP+cYv/U6iWrWdG+Ykq2QdM1vrPjO3krIwFORk/yq+O/sqIoVL2V+wfuB+D0ltPZPGdz3us3nLqB01qm5pyy/cR2tp/YDsDbTn0bp7eczq/3/5rukW5icQkIMhiOEQ+9xjNHnin7XtN1RfkFcFNmVeJGYFjX9a7xvlldwFM2Pd4k5PNYg6gLZwz6PKJjPVuRpKGwODVB3vQnHOyPUe/3WK3d7Igk57YBytETSdFa58z0+HL4JKxh607FHJBcbaGmpTBDk92crcnF6QZ5s238wQuW4JNE7tv6FppeXYGmJkk520ZMK4JtEvpUrkiMpCJFhVbuZ0blKKIexE9W+Sr0a8HUtREh69uaE57D6S3GTZVp1jfbiClZ4NTmU/GI5WuSSVG2BEH4H2Az0CYIwjHgnwAvgK7r9wCPAm8H3gDiwIcm8nlLW8PWbLhyhH2S5dlqLIhR8EqiYz1bIxkTplMN8iGfhFcSkFXdWokI2UUL1Zq11T2SrDq/FoBXgmTS2fvcGiNTZTlbpTBDk13P1uQS8AiOztmKZM7Ni1pCXLVqLr/YadhQqtIgr5qrEY0kdEUVLNO3yVSuSLSLfACIpqLWZ/v1MxA92eOhMPYBps4gD9n4hwsWXmA9FvYZq8F9Xh3QScoiPsnHac2n8QIvlHyvSSm2dF1/3yjP68BfTcZnAdx30zmIFUSahPwedN0wMJ7SXrBcviqULUdZ6iwEQaAp5KM3krLM8ZCzHN5hF6BK6R5JMb+xulYigpGz5fToh7Q1s696VZdCwr7pjTp59JUuvtn5Br/4q4sRS5wAk7KGv5qVLY+xSjzt0JiQaErBJ4n4PRJ/fu4ifrXbaNBU01xEk+xqRKPASivFxdZUGuSHkkO2j0fTURRNIakkadJWIAhGLIUkSrYrBKcq1BSg3l/PGa1nML8+a+cxlS1RgKBPI5Eyvm/L28q3kZ13NFeAzyNW1OoxlZb+aJpQYRvRycpWwtnFFmTjH3LT1qt1tplJTyTp6EDTUvgkrJFUTsVsI1az6lJI2C9Na0zBnhMjvHp8hOFE8TJ9E2MkUvXu44BkFJFOtSJEk4o1n/ei09pYkBkIX5VtRCXbRgSQ1eICfkqVraS9shVJR4jLcQD82goQjWKrNdiKKBQf21PZRgS4ZPEleT+HvVnhJuTXiKeMbbJrceZSvd/KCjCVlrSqEfQVe7acmiBvStVO9WxBNv5hXmP2QK9mz1ZSVumPpauyjegTBZKKs4stU3lzoloxXszQ5OnCLFjNUVm2r5Gr3LOVub906g1bNKVYN5WiKPDn5xrrvtodOk+1HNlQU0PNkpXi72ZMNiIYpoJSbcRIOmKl23u0RQiCcXNh10IUEPIyuKaCwtWYuQGrIb9qFVuj4VzpZBLIzeKyNcg7VdlKygS8oqMvTOadXH4bsXo9W6+fjKDrcGZmNEs14ZNAVnUUVXOsud/ybDn4mB4rZmjydGHuQ3PwcSGappNWNQJV7IsLZEIQnerbiiSVvJFxf3npqWxY3MzC5lCZ33Im1rienDZiIZquEZfjlk9pMrFrI2q6RiwdI6WmEBCQ9DaEjLI1JzS95vhS5O6LkF+jb2R6x/U4EvPiDxTd7XklJ3u2nJseb9Jk00YMO3ReXCW8cmwIgNULGmd2Q8aBL9N6STr05gFy24jVq7oUYoYmTxepjDo4VELZStWALy6Q2XTnKluy1UYEY19fvKz8DD2nklbTqJpq+bRkm2ILpmZFoqqpti3KuBxH0zXSahqv5EdAsjxb8+rnFb1+Ks3xpfBJPryicf3LbSOORk0XW3nKVmEbURKRlamRRyfKYDxdtHrSaZirb+blGMpDPglBqNJi6/gwLWGf5cGoJkwhw8kje9I1thoRzFmg07fPzVbxQKxUsWU8XxvKljPPIdGUQr2/uhtC397+bT6+++NoukZSSVoRBnaeLZga31bJFmLGkJ9SU/hEQy0UxDTNgeY8r5TJTChbkG0lhvwqibSIVkEpUb3fygrIVbYK24hej0jKocpWfzRNW52zPQBNNsWWIAjG3b5DWwDleOX4CKsXNFpjIaoJ8z7CycVWLbYRw35pWouCrLJl30Y0fXG1oGw5ttjKMchXKz7JR0JLIKsySSVpKVtpG88WTM2KxHLmeDBUN6vYEtJ0NHTYvn4mlC3IthJDfg0QSFSgblX3UTMK4XKeLUlEdmjbpT+WZlVHw+gvnEFu2LCA5pC3aGjzdF+AJoOkrHKgO8LlZxYbMKsBq43oFlvTSsjnmd5iaxSDfC0pW85tI+Z7tqoRc9WcGa/Q4J26NmJKSdmqT+ViH1RNRdEUfIKhHgmizIL6U2xfP5WxD+XIVbYA4imRcKB8PVG938oKCPtLtxH9Ds7Z6oumHK9szW0I8N7zFhc9HvZ7iFbZasTXT0ZQNJ2zqtCvBeCz2ojOPJ4BUnIterYk4rKKVkkPYRLIGuTti62aULY8ZvSDM28cIjWgbM2tmwuArGWULal8G7FUYVQJR0eO2j5ero2YVo3j2ysagoMoKsyvsx9bN1NtRLOlGfQb+y6eGv07V9PFVshXpo0oCY5cjZhSVCJJhba66gvJg4xp2KF3paV45bjxxa9GczxURxvRvLGpJWUrnAlNnq7YDavYitm3EWtC2XKwQT6taKQUreo9W3PDBcXWKG3EiRRbXZEuq3iq5D0j6QgpNbNKEuN83BoKlxyGPVNtRFPZCmeKrUR69O9c9X4rK8CcXwY2BnmH5myZ5tdWhytbpQj7JcfNixuNV48N0xzyVqU5HrJtxISDi61UDaguhYSmOcTXLKZrWdnyiuARBUfesJnbVDNtRNVoI0oiSKJeso0Yl+PIaukg3XKk1BRdkeIxyKU8W9F0NKtsCc0AzKsvTo03mTFly/JsGd/JWHKWK1vm/DIoEf3gQGWrL5Iptqpw/AMYJyIn3pWW45Xjw1VrjocqaSMqNRhqmjm3TNfNxWhtxFpQtgRBIOx3pjpuntfqHB7LMxp+j5+gGLSULQCvpJVsI8L41S1ZlemK5hdbaTVNQkkUvVbTNWJybsaW0UZc0Fg6WmOmla2gz2wjznJlC7J3Ibahpg5UtvpihoRavcrW9GYPTZSkrLK/O1K1fi0wWuLg7DaiWQjUUrFlRstM1/GeNcjX7mpEMG/YnHcsm5M9ql3ZAmj0NloGeQCvR7dCTc2w01zGW2yl1XSRslVO1dJ1nbSSzihWxjVwXn1zyfefKYO86dkSRQj4VLeNCFnfll0b0YnKVn/UuGutVs/WdK/Qmij7qtwcD1lly8ltxLSi4ZUEq61fC9RZ46mmSdnKCTW1G6FiFtvVrGyBmczvvHOIqWw5eWZtpTR4GgxlS82O7DHH9RwaOlT0+okUW73xXhQt++9Z6r1GUiNAJmNL8qFrxjXQX0ZInKk2ot/jLwg2neVtRMiuSLSLfkir2pTNfRov/dHqVrbq/FJVtRF3V7k5HrKerZSDi62UolW94lJIyBpPNV3KlrlqTLcdgF0LCfLgXHU8mjIUxVpQtho8DYayJWeVLdOzdTxyvEjdmkixpeka3dFu67FSKxEHE4PW7/glP7ruRRA0yk0gm6k2IuT4tnyVpcjXfLFVUtmSRHQd1Glatl0p/bE0Aa9o+UGqjbDfQ1LWHLdfS/HqsWGaQl4WNlenOR5yVyM6T6k1SSlqTbUQIZvjN32eLZWWjJdz0CZFvlaUrTqHerasNmItKFveBivUFAzPltlG7I33FqXGT6TYAjgROWE9VqqN2J/oR9EUVF21lC1zpWQpZkrZgmwrMRRQXWULsidEuwR5wHG+rb5oitawv2rN2uZdnxPvTO145fgwZ1WxOR6y43qc3EZMyVpNxT5A9kZuOo51XddJypo1i9TOJG8pW97qvFEzMYKRnXcsW23EGlC2Gj2NqLpKQkmg67rRRlRFEnKCSCpSVGyVUqNGQ9YMNTDXJF+qcBtMDFrFmV/y4xFC+EcptmbKswW5waausgUYSoskCpaJ2MSX0SadNh+xL5quWr8WZNu2TrwzLaQWzPFgLJX3iILDDfK1V2xZnq1pONbNm8L5jWaxVWyST1rBsdW9n8MOXdEcrSVly2Os9EuraVJqymoj9sZ7geLUeEVTxjy2R9EUNN04bntiPdaf7Qo3TdcYSg5ZGVs+j4+A1IhXKn199ogeRGHmjnWr2PKpJFJGp6wc1f2trICwXyLolYqUC7OlkVKddYHqj6aq1q8FOXf7DjxZFlIL5niTgFdydBsxXcOeLTv/1GRjqlaWsmXTRqyVkUh1jvVsKYhCcZekGjGLLXNFolfKFFsxo9iyGz491lZibpipoin0xHpIyImSIaeqrpJWssqWSLBsG3Em/VqQPx9RRxh1RWL1l+ij8KdndVgnqFxMZctpKxL7o2lWznf2XMRyWG1EB7YBCqn25PhcAl7J2W1ERcVf5V6iQnySOG0BnOZKxKyyZVNsySp+j1jVLXHAsTlbkaQxF7Ha9y8Yni0gZxi1RloV6In1APbF1nBqmEUsqvgzCoNQ7cJNTUxzfEpNIQoikiChaz58ntLX55lsIUKOZ8tfWdZWzRdbFy9r4+JlxaFoprIlq85pI+q6Tn8sRVt99Spb1dRGfPV49ZvjTQJe0fGrEX3llhVVIWZo8nREP5gZW3Pq/QiCfRsxpWhF4c3VSNgnIau6UaA7SA2NphTqqzzQ1KTRY9xgmsqWGf3QF+8DJkfZMluCJiciJwh67c+1/Yl+ILsSURAEdN2Dr0wbcSbN8WA3jLr8sVpbZ78x4HWgsjWSVJBVvWrT4yGrbDnRc1HIvu4IK+Y11MSdqvOVLa3mlC2YvokJZosw6JNoDHpLrkas9hYi5N6wOet4jmaUrVqg3lMP5A6j1lE1gaRiFPGFni0Ye7FVqGx1x7rLmuMhm7EFoKoeR7cRcw3yMLqyVf3fzHFiKltOKrbMjK22KvZshatoNeLJ4SQdVToPsZCgV3KMQf6bnW/w8f9+Ke+xWvRsgTEfMT4Nx3rW/C7RHPKVXI1YE8qWQ9XxaEqpCXM8QEAMICBkPVuZdp2uG8pdSkkVFUsT8WyZP781+JbtawcSA0Z6fEbZggqKrRlWtvwePx7Rk6NsucWWLT4HRj/0Rc0h1NWrbIUtg7wzLvyl0DSdnkiKeY3VW9jmEvCKjjDIK6rGd585xO/39eQFBhstodo73YR90xNTkI11EGkKeRkqsRqxFvaxU+NjIqnaUbYEQcAreZE1mZSSwpcpaszUdihuJUbT0bwk+NGwM8KbKfG5JJUkMTlmrV70eXz4JT+yKpT1bM20sgWGbytoKVtuG9EWMwrCicpWa3jmD6Lx4tS70kL6YilUTbddPFGNOKWN+Nxb/fRFUyRljZFE9hhIKVrNhZqCMZ5qOpStlJxdadjiKlszQjQp14yyBeAVvciqTEJJZBWkMsUWjE3dsiu27MhNjgejiAr5QsiKUDb6YaYN8mC0EiUR/N7Rs7Zq7+xXIX7LIO+cYqsvVt1zEcGIfhAE550oC+keNgrbWiq2nNBGfGRnNin65EjS+nMthpqCmQk1fQb5gFeiKeSrac9WnTUGaeaP51yiKaUmAk1NPKIHRVNIKSkk0Thf63r22mPn2yqV/m5HpcXWQGIAyBrqfZKPoCeMoomObiNCbvyDSsJVtuxxokHeVLZaqtggLwgCYd/0XIAmQnemEKilYis1w8dyUlZ5/NWTnNpmnIByi620WpuerbBfmh5lKydDqznkLRlq6ipbU0ctGeQho2xphrKVUIYA0LXsasvpUrbMYitX2fJLRjSFkw3yMLYU+VlbbDnRs9UfTdMc8uKp8iXyIZ/kuBNlIWYhMK9Wii2PSGIaIgjK0bmvh0hK4dZLTgWgezhX2aoN1aWQkM8zvZ4tj0Rz2EdCVouUzFpJ6TdHrDlpRbOqGcO/a6WNKAoiHslQthJygqhiFDy5ytZEiy1zVM9o5CpbkiAhiRIB0VgtWdaz5QRly5tVttxiqwTWuB4nFVux6k6PN3FqAnQu3SNJRKG6W7a5BH0SSWVmi61Hdp6grc7P9esXAAVtxBqNfgj7Rle2jvTH8xYLjIfcUTzNocww6gLflqtsTR3m+axWlC0BAa9oqFjRdJThtBFmmmuQn2j8QyXKlq7rDCazni2zgPIKRrHldM9We7gdASGjbLltRFvMNuJMt15y6Yukqzpjy8QuAXqmVZdCukeStNX5q15FNJlpz9ZIUuZ3r/dw7Zr5BH0SLWGfVWypmo6i6fik6i8ECgn7PcTTKppmf1F4/eQIm/7v79lxZGhCn5O7GrE5ZFwkB2Ny0WtqoaANZzxbo4XF9kaMRS7TgTkXsb6WlC3R+LsklSQDCSPdXde9HBk+wnByeFraiMOpYWuFY0rJZmz5RKM95/Q24pzwHC5deqlRbI0yrqf6v5njxJkG+VRVZ2yZhP35y+EPdEdYc+fj7Do6NHMbVcDJkRTzGmf+zmiyCHiM6IeJKijj5fFXT5JWNK5b1wEYXjizjZjOKRRqDaswKFHo7u82Lli9kaTt85WSysnZasooW0NFylZt+OL8HgmvJJRtIx4bjHPRvz3FL3edKPmaycTcljp/bSTIi4JoKVuyJpPUjEgGWVXpjfcymBwkISeKoh5kTSaWjlX0GZUUW2YLsTBjS9CN9pzT24gAZ7adyaq5i9H18uHYtXf2qxBnhpqma6KtVZiq/Yf9vciqzhs9xXdKM0X3cLJmzPEAgUy+2Uwptb/YdYJFLUHWL2oCYF6D31K2zJV0teAnKiSU8RfFSxQGxwbjwMT/XczfD3hFawHNQEGxlVJUAjVS0I42H/Hhl4+TVjS6hidWxFZKJKNs1ZRnK6NsKZqCIBjHUkLNj2GYiLpVSbGVG/ugo1utweO97Uiizrxme9+XV/RaKpgTWD1v6aivqY1v5jhw2mrEtKIxnJBrwrNVmD304iHj7sUuG2im6I4kmdtQ/fvaJJBRNGaildgbSfHsG328c+0Ca/TRvMaAteIz19xda5jKVqxEy+vYYAKY+L+LuQ99Uk4bsWBFYqpGlC0gs6LZvtjSdZ2f7jgOMC0rQSFX2aqNYssMNYWMkV0w/n4J1ZiNWK7YMtWo0ShMoLfDnImYUIzvScATAN3L/mMNnLEgTtBnf32eVzevom2YLipJEJi1xZbPYW1EsxCp5vR4k9zsIV3X2X7IuHsZsMkGmgmSsspQXK6ZlYiAZYyeiWDTZ9/oQ9PhmtXZE+C8hiB90TRpRbMCOWsx1NRcOVdKhckWWxNVtozVnIIgZNuIOd+naEohrWo14ymqK6NsvXx0iIN9RitruiZV1KJnSxKMc4aiKgiCDkKKhGYY5dNqGl3XbYstc1j1aIxF2Uoqxo1ZwBNAT64hKUusXVq6XdlR31HRNkwXlVy3a+PIGQce0VkJ8r2R6k+PN6nzm9EPHt7sjdGfuSg4RdnqGamtQFOAoM8oZGZiZM9I0riDzd2f5hiknkiyptuIo62cy7YRJ6hs5YTC+jwidX5PXhtxd8YPuaqjYUKf4xQKfZ+5/GzHMQJeEZ8kTqOyZRzjtaJsiYJRuJtZW8aDaZJ6xiiPjqIptisSJ6vY0nSNqGwUc0nl/2/vPaMkSa/zzOcLl7a8a989babHYDAGbuAGPQOAAiGCoEhQBKVdgRIprKSlCJLikSjK7VLiLni0S60RZQCCFLikROJAJDEQQMINGhhAA2AGGO97erqnTbWp6i6TPiPi2x+REemzsnx15H3O6dNVmVmZUVGRkTfe+37vLWEZFpZhUVi6i5G0y8Hpctef3XHFVh+f2/E7+/WJUgrHMqh422MobmU+BunxIZmERbHq4WsdtRAzjrljlK1LMQs0he1tI4arxsKWGtT37eWlUlMgZ9xIO91XzmmtubCRylZDrEPrfMQfvBYoBHfvH1vX6+wUMonObcSy6/H5J2f5S7fvYjKb6Nq+XYnPPXEhukjoh9h5tmof/WGKPICvZvHIM+QEsQsVr0Ku3K5sXS9dx9e9j2fXd9H0/mwtVOuRKCW3RMpK4VVHKeQPcMehPKqL39w2bKYyUz2fe6sZy6y8cCJ+Z79VkDCNHaNsRXMRY+DZCq/+yl7g15rIOLxu70jbUvXtIgo0jdNqxA5txKVSldfmC5v+2qE5PNngFwr37aXFckNsQTz8RI2EylanwuBqrv67r9uzVfWbzO9jLfMRH39tgSNTGUbS8Vgtl3E6txEfev4Ki8UqP37PPtIJs+vChF5cXirxsT96gs88eq7vnwn/vmHb+EZHKRWsSDTrylbZeBmAsWRQsFe8CkvlAt98ZphytV75+Npf0bdVdrurUiGFanBu0lpTdIskrSSl5bsBzR09Woi7srsw1M4qXRKWueIop521xVuMbRlUvJ2R/zSfi4+yFa7QKrmBsvXGQ2NMZJ221VPbxZU4Klt2u7L1W19+iQ9/4pFNf+1CxSNlmxhG/YQc+uFmF4sD0Ubs1M4K/VqwMasRG83vYxknMshrrXn83AL3HIiHqgX1/LJW/usPLjA9lOAdRyeD9P41tBGXisF+W83q6FzJJe2YmEbv5f03EgkzgWVYkZG9YrwCGIwkR4Lv/QrXFof57y+McOZK87lypVZiP+nxYbFV9av42idppigv38XE6FVG0t0/l3daCzFkfIXP7vid/VaBYxpU3Z3RRpzLlyMvxo1O2E6azWvOXSvypkPjjKWdndNGXCyRtA2GY9ISACLVo9zQrnp+dolLS6WugZsbRaHqNbUQAUZSNgnLaGojxtMgX1uN2MFf1FhsrX81YvO4o7G0HQ2jPjtf4Fq+wt0xKrayCbNNLZzPlTn54hX+yt17MQ1VS+9f/X4NW4+vXF1FsVWO11xECHKqbMMOWn5aU1av4ui92IaNQlHxKhQrtXgIr7nIXKnY6sccX6zWWuw1c7zlH8b3Rjmy51LPn9uxxdYKKxLjd/ZbBbalVjUb8cpyieVV9PlXw3yuwmTGiZbO38iEJ6WnrgYnyzffNM5ExmGhUNmyxOdeXFoqsWs4GYt9HdKpjfjqXB5fQ26TTcSFskvKaS62lFLsGklyaalcDzWNYbEV5Wx1VLaCK/fRtL1uz1ap6rcUW/U2YujXuufg6LpeYycR5mw1hvQ++ORFXF/z4/fsAyC9QhZXN8LW4ytX+wvnBFguu7Hxa4UkrEDZ0mg87VHmHAl9OPAzmw4Vr4LnBuGiVbf5XDlfmO/53GGxtVjobh0Ila2w2KLwdpSR58ie7tYHy7B2nF8rZCWTfPzOfqvAMY1VFVsf+d1H+YeffWpTtmUuF4+5iFBvrTx11SPjmNy2e5ixjIOv6xL+dnJlqRyrFiJAqqWNmCu7XKmtcF0sbO4+L1S8jl6WMEU+zjlbjmXU0s7bFZYL14uMpW3GM876VyO6XnMbMe2wXHKpej4/eO062YTFsemhdb3GTiKTsHB93dR+/dwTF7l9zzDHdwW/Z8bpvmKxF6Fidi1f6Vttz5XcFT05NxoJM9E0H9GnRMI/CoBjOlS9Kr4XjM2ptihbYT5WNypehbkli3//xT1cmO+s+BTcoKgqukVMZeIV30Ai+yxDiVTX592Jfq2QlUbt7cyt3iIcy+zbIK+15sxcnq+9cGVTptHP5yqxyNiCuon0Yl5zz8ExLLN76vV2cGkpXunx0OjZCo7nM3P1q/bFTS5wCxWvTdmCwLd1aanUMGomnqebwF/U2bO1byxN0jI3YDVi89zDcPXTQqHK468tcOf+kVj5ibItkRqlqsczFxZ51811VWOtnq3G1mO/rcRcTJWtMNh0sbwIgKNvDv6vKVu+11nZCszzS12fu+JVWMwH+2upi7rVqGwlrTRKO5j2PGk73fV5d2oLEcSz1RPHVH0XW8tll2LVo+L6fP2FKxu+LfO5ciwytqA5AuBNh8aB4EociHwm24XWOmgjxmglItQ9W2Eb8XRDsbXZamKh4kYRCI0EbcR4Rz9AuHKuk2erwL6xFAnb2JCcrcbVnmGw6cWFIi9cWo6VOR4a88uC/fbsxSVcX3NnbRxU8JjAs7XaeaCNBdorfZrkc6X4ebaSZjIa2bNYWkRhY3s3ATVly6/iu8F5suq1v3d7+bYqXoVyrUArVzu/7xs9WwkjyIczrWI0sqcTO7nYEmWrB45l9J0gHwZhAvzFM70NfKtFa81cvsLkUDyUrcaTUlhsRcrWNhdbi8UqFdePsbIVfDi9enVrla10lzZixfWj1Z9xbCNCkLXVqmxprWvKVoqkZTYtXFgLQc5Ws0Ee4JsvXcXzNXcfGF3X8+80woUHYRchHGJ/V0OxlXYsvJZWYz+EaplpqNUpWzEZQh0SGuQhWBGYVNOgk2hNNHewUltV2KpsQW/fVtWrUq6Ei3Y6lxmFagHXd3F9l4QRXCx0G88DgV9rOjPdx2+2PYhBvgf2KnK2wg+MI1MZHnrhCsU1hul1Ild2qbg+k7FRtoIPXlMRfQiM7ZBiqx5oGo99HRKMciFq2b06l4tW/21NsdVeSO2uqYdnrwXtgkRMhiS30imAcy5Xoez6QRvRNiit27PVbpAH+FpNZY9LmGlIa6TGk+cX2DWcbLpIyvQIlO1FqJYdm872bZJfLlVjM6onJIx+CEkZ04AB2mootgL1qXU1IvShbFXDYqv9Z8NsrXAmoqMmAcgkun8e72S/FmxRsaWUep9S6kWl1Cml1K92uP9nlFJXlVJP1P793Ea87noJEuT7K7YuLwcf0h952yGKVY9vvHR1w7YjzNiKi2crZZsoBTeNGJHiMp7eGZ6tS4u1QNOYKVtKKRKWEbURX53LR6NbtlPZgiCaAIIFKXEkE42nqhOuRNw3liKxAcpWqeq15WxBUIQcnsxE38eF1rDYJ88FvrRG0iuMSupGvhy0vY9OZ/vK2tJaxzb6QSkVFVwpcwIArZ2o2Kr6wf5pNcjDysVWKSy23Pb3fdEtorWmVA3Ox44O5qpmU919hzu5hQg0+Qk7se6zn1LKBH4b+GHgNuCnlVK3dXjoH2ut76r9+531vu5G4KxK2QraiB94/R7G0jZ/8czshm3HXIzS4wEMQ3FoIsNd0/UPh5RjkrLNbfdsxXEuYkjKDozYWmtOz+V53Z7ANL35xVZ3zxbAa9cK2KZqCj2NE3tHU7xyNd8UaxJmbG2eshW0f7SGu2LWQoRGg7zHQqHCmflCk18L6gtxVq1s1S4OjkxlOXe9sGIGWjB6LD6jekISZvB5ExVbVqCOar9ebHlqAejcRsxX8/XYhhaala0OxVaDX8tQBqYO2oMjye5Wg51ebK0UJbQRl5pvBk5prU9rrSvAHwEf3IDn3XTsDspWNyPr5aUyKdtkNG3z3ttm+NrzV9Zteg2ZC5WtGF2dfuWX7uP9NzV7HMYzDte2eWRP2EacjlkbEQLfVqnqMZ+vsFxyOTyVYSRlb2qxpbWmWO3cRpweSqBU0DqOq18L4J3HplgsVnny/EJ0W1hs7R1LRX+X9VB2/UglhqCwDouvuJnjob7IJl92efJ8sFLurpZiKx0+ZpUrEgsVl2zC5Mh0Fq3hzHzvVmIunIsYQ2ULglmDpjJJGMH3WttBAaRsXBW0qUtdwr+7qVtBsRUa5NuLkHAlYjimBz8DqsJQsvN52VAGU+mdma/VLxtx9OwFGodMnQfe0uFxP6GUug94CfglrXXbYCql1EeBjwJMTU1x8uTJDdi8dnK5HCdPnuT6XJnlnBe9znPzHr/1/RL/+r4UY8nmOvSZV0oM2z7f+MY32Ktdlssu/+FPv86dU+vfhd85F3wYvvjU95l7OT6tlkI+3/Q3tPwyp87NcvLk9W3bph+8UGbIhke+9fC2bcNGEx7PfrXM2Quz/MlXghPg8sVXsHWVl89e4OTJ3rk4a6XsabSGS+fPcvJku9o7ZCuWKhql3U17P28V4X5uRVU0Cvj9Lz/K0tHggul7z5bJ2vDYI9/i6uUyueLaf3/P13i+5mLLPk6bmrIL3pVTnDz56pqee6cR7uNcJfhwf+LZFyi6wf5dfPVpTp6rf3C/dC0oYB/53g9YOt1/MX/2Qgm/olk4+zwAD578Hpd21c/j37no8uqix0/fGnzwz+aCC/Jzp1/mZCke+1mXNcfcY/zs+M/yqPkoy+4yB80H+OxV+ED2Q+zJVvhf5z7OonsV0BilBBNXJtqe5+mFpzllnWq7vVqq4ucCZdvPt/9s1s2yb3wfv3b117g1cytT1Tt5zTZ4m/c2ElfaCy7bsHn4mzf2OXurSvXPA/9Fa11WSv1PwKeBB1ofpLX+BPAJgOPHj+sTJ05sysacPHmSEydO8OdzT/FK7grh6/zgyy/i+qeYOHwH97X0X//dC49wMAUnTryVt7oev/PMV7mgpvjYiTvXvT2nHj4Nzz7Pe+9/J8PJ+Kx4CfdzyIFXvstyyeXEibdv2zb9wdlH2TtR5MSJ+7ZtGzaacD+PP/kww6MpRvfNwHef4sceeBtfu/I4iaTFiROdrn/Wz1yuDF/5Kq+75WZOvO1Q2/0Hnn6YZy4sMZRKslnv562i9Xhu5JMvf5uzFaJj+/dOf4+bpiucOPEOHik8z7dnz6z598+XXfjyl7jl2BFO3Hckun3miW9Svlbgr//l+7Fi4ocL93HF9eGhP2f3/kM8cW6Bo9MFfvg972p67OSFRfjetzh66+2cuH1X36/xH1/6DjMZn59831v4F4/8BYnJg5w4cQwIlNp/+Vvf4JWrZf7l//AupoeSwUrIb32bN999BydundnIX3fbePBLD3J59DK//+TvBzcoeCn/34C/xecW/wKn8ioF7eOpOQxziUVtMD+90PY84+PjnDh8ou32zzz7GZaftgCTnPKYn26+2Ht89nG+N/c9FtwFzvvnuVa8gM8QLw+dZ/fQ7rbnu2P6Dt5+YPs+NzaCjXiHXgD2N3y/r3ZbhNZ6XmsdZif8DvCGDXjddeNYzZ6t5y8tA3Duevu4gCvLJaaHgoo7YZm8+9Zpvvzc5b6jI3oRro5J2/FttUDQRry+3Qb5GGZshSRreU6n5/LYpmLvWGrT24jhqtxOoaZQX4iQiPmx/a5jkzx5biFK67+wEMQ+QLBSNPTSrYVuCfzHZoZ457HJ2BRajTiWgWMa5CouT55faPNrQe8h4L0oVFwyCYuUY9b8dnWT/IuXl6MViidfCBZBhSb9uLURHdNpWt2njODcrP3ggt9mFFddxbCvU+ng2YKV2og9PFtuMfJ7pawU2stgmIWugaa7sv0X0zuVjXiXPgocU0rdpJRygA8DDzY+QCnVWKr+KPD8BrzuuglytuonwBcuBYm4jQNkIbjaudwy4uV9r9vNQqHK9169tu7tyFdckrYRy5NmI+MZh2u5rSu2Kq7P//eds00n40uL5ditRAxJWibFiserczkOTmQwDbXpxVZoTu40rgfqCxHiuhIx5F3Hp/A1fOvUXC1jq8De0VqxVSs0VzMarJFSlwT+/+un7uK3/9o969jqnU0mYfLy5RxzuUrnYqvHEPBe5MpudLwemco2FVv/7clZDAWTWYevvXAZgOXQsxUzgzzUfVsAqNp5QgetcFOPo1UBzMsdox8AFkoLuH57sduPZyuMfUhaSXwvjWHmuxZbM9kbX1Fc9xlQa+0CPw98iaCI+ozW+lml1K8rpX609rBfUEo9q5R6EvgF4GfW+7obQWPO1nKpyrlrwR//3LVmZStXS48PlS2Aew8HYZ0v1NSw9RDHZcWdGE87LNcyxbaCb5+a45/92TP80z97BoCq5zOfLzMd02Ir5ZiUXI9X5/LcNBmM2RhJWZtabIXm5E4GeWhUtuJdbN25b5ShpMU3X7rKfL5CqepHylbrKKXVEilbLfvQNFSsL9AyCYvvng7aT3ftG227P71mZau+oOPodJbTV/P4vkZrzReenuWtRyZ43+t28fDLc5SqXqRsDcUs1BTqKxKhUdkKii1LB1Yaz7iK53V+f2s0C6WFtturXpVSQ6hpq6hbqBYouSUUioSZQHtpLKscjQ9qJGNnyDrZVf9uO40Neadqrb+otb5Za31Ea/0btdv+udb6wdrX/1hrfbvW+k6t9f1a6xc24nXXS5izpbXmpctB0WSbinMtytblDnEBIykby1DM58qsl0LZ7ZhTFDfCLKCFLWolhquM/uQHF/js989zdbmM1vHL2ApJ2gaFsseZ+QKHo2LLZqlYxffX1sJaibCN2K3Ymqm1bOM6qifEMg3ecXSSb758NbpY2zcWXKWHv3t5jSsSw1XPyRiv6OxENmGRr3g4lhENn24kHL6+WmUrX3ajFuSRqSzFqsfsUonnZpd4dS7PX75jD+++ZYZCxeO7r14jVwouVuKubClVK7ZCZcsPWncu83h+92PverF5wVPVq+L5mqpnYJs+vlZtylhYbAWvb6F1koTd+aIwDi1EGPAEeccMDoCqp3l+Nii27j08wYUWz9aVWqBpo7KllGIi60SBpOshV/aiN3+c2eph1GfnC2QTFvceHuef/dkzfPtU4C/YNRK/2AcIPozPXS9QcX0ONRRbvobcGgb29kMYKNntYmF3VGzFv1C47+YpZhdLfP3FwOuzb7xZ2VrtWJmQMBA17upgK+E58fY9w9E0hEZMQ5Gy20cl9UJrTb7iRdESR6aC98mpKzm+8NQspqF43+t28dYjEyRtg4eevxwpW40zX+NCs7IVFDuhsmX6Qa5VletobbepUyHXS83FVqNfazgdFMKtrcSiW6TiVUiYCXwvuCjJJDu/QBxaiDDoxVbtDVzxfF68tMxQwuItN40zl6s0vYHDIMzW9tNEJsF8fv3KVr4c5L7EnXDEyFaN7Dkzn+fgRJr/+8N3k3LMqJ04PRRTZcsxIw/iTQ3FFhAZtzeaMLF+JYN8pw/LuBGuYP7Mo0GqTejZCoeErzVrq5tBPu6ExdadHVqI9ceY5FcRalp2fTxfR899dDpoT526kuMLT8/ytiMTjGcckrbJO45O8rUXrrBccnEsI5b7v1nZ8gAPrYNzhvL2AgYuCwAUuxS1rcpWo19rJB38TKNJvuSW8HyPql/FNm10rdgKp4y0MpORYuuGJzTtVl2fFy4tccvuIfaPB3/4Cw2txEjZagnCnMg6XN0AZStI4B4cZev6FgWbnp0vcGgiw8xwkv/zr94ZfWjFdjViw4fB4dZia5N8W5FBvsvFwqC0ESEoro5OZ7m0VGI0bTNUi3EJP6TX7tnqbJCPO+EFaGuYaSNpx6KwinE9oRIbGuTHMw6jaZsHn7zI2fkCP/L6+lquB26Z4fz1Io+/tsBQTDsPSbP5XKiMSqRsaW8IiyyuDhaOLZaKbT8PcK3YvEiscVRPXdmqH7vFahFf+7i+i2M4+H7wmTuVbTfHm8pkKnNjh5mGDNa7twU79FK4Pi/MLnN8V73Yaox/CNPjW99wU9nEhni2BsYgv4VtRNfzOX+9wMGJ4O95//FpfuGBo+wfT3W9grrRCRWUjGMyVWt5D9eKraVNKraiNqLd+fgdSlikHXNgCoX7jgUfDKE5Hup/l7VOnAiLtDgqK70IC6JOKxFD0s7qlK1Ci8dQKcWRqSxPnlvAMhQ/dFvdH/TALcEIme+duRZLvxa0rEak5tvSiSD+QSewjSzVqNjqPJpnqbyEr+sXEs1txFDZqrcRC9UCVS84HzUqW7uG203wU5mpHT18ejXE47dYI6GydWY+z3LZ5ZZdw9FJMlyZCHB5qcT0cKJt9tFGebbyZS+WfoBWRmvz3LYi/mF2sUTV01GxBfDLP3Scb/zK/bGd0Rcahm+aykTH6mgqKCw3S9laKWdLKcUHXr+HtxxuT5+OI/fdPAnAvtH6cbf+1Yg1g/yAebb2jaXZO5ri0ETnOAAIWo2r8WyFq2cbL25D39bbj042DfTeNZKMhrnH9WK40bMFgW8raQ7je0Hh4xgpqjqIxljqUmy1rkjsqGw1DKMuuAUqfvAZ4JgOvhfs/7FM+0rEuLQQYesS5HckoY/k6drsrVt3DzGVTZCwDM43KFtXlsvMdPD5TGQTFKveutuA+QFpI9qmwXDSags2/dwTFyhWPD785gMb9lrhSsSDE5mm2+NaaEH9Q/2myfoV4kh6k9uIVQ/bVD09Wb/5oddvymvvRO49PEHGMTkyXT/uotWIa1S2ygOqbP29+4/wN99xqOeA37RjRjlY/RApsQ3FU+jb+suvb08uf/ct0zx7cSm+xVaLsoWqYKssvh4BgmJoyS2g8cmVu18kXy9eZzwVxCFV/WpPz1aTsmXYkUE+5bRfjMTFHA+ibAFEA2RvnhlCKcW+sVSTsnWlpmy1Eg6OXo+6pbWuGeTj+WZuJRhG3by//u1Dp/i9b5/Z0Nc5Mx8Uy4daiq04EyofoTketsCzVXYjRU0ICt4vfuyd/L0TR5tug43P2Yo7wcVZ72yrjLNKZaschvDWj9kHbpnh3bdM88Ova48YeHdtPM9QXNuIbcpWBUWChAoUWsc00fh4LPQsthp9W51WI5ZaPFtNbUQ/jW1VMDoc3nGJfYBBL7ZCZevCIvvHU5Ghdf94mvMLwYe11pory+WOK9gms8GBenUdvq1S1cfXDET0AwRZW43KVq7scupqbkNWdTby2nyepG00xXXEnfBD/XBDsZVxTExDbapBflCO3X45OJFp2iehsrX21YiDaZDvh3TCXFXOVliYZVqUrU/9zJui838jd+wdYfdIkqm4rmC2Wgzyqgo6gUWgUoUNF09dpVDpfg5pjH+oeJUo0HQo5QG6zbNV8SsYysBUJr6XJuW0/w2HnKGuifI3IgN9lrRrytbZ+QLvaRgwun8szeOvLQBBMVCoeMx0ULbCYms9yla+Et8Ml06Mpx0uLdV7/89cWETrIA7C9/WGtfnOzBc4MJ6OdduwlfDDImyLQOCZ2syRPYWK19WvJQSsN2drUA3y/bBaZStX7j1eqhXDUHz2776NbExtHq1tRNN08TwLo9ZGTNhBlIxrXOm5nxvjH0Jly7F85opXSNh7O7YRbcNGKYX2M2RT7efpOLUQQZSt6Otbd9cTiveNpVgsVlkqVbmyHGZsdWgjZsM24tpVmdalyHFnPONwvaGN+FSthetrWNjAguDsfL7NrxV3Hrhlmk/+jTdGpt6QzS223K7p8UJAMop+WFmB+Xt/+H2++tzlpttE2epOepU5W4U1XNzuHU1F3se44ZjNK7OTlqLqKfCGUEaBpBX83q66TKmquw5TXywvRisSw2IrYfu8OPcijuW1FVsVrxKN5lH+EOlE+/NOpOK1qGag372NxdYtu+ofUGH8w/lrRS7XVJhOBvkwymB+HSGd9XTiwSm25vOV6E37ZG1xAsC1DWol+r6uZWzFR4LuB8cyeO9tM22G4uFNVrYGYXHHegi9VqUVDPKu5/PFpy/xrdqkg5Cy6+OYxkCptP2ScSwqrk+1zyHfg3a+XQnHdJqiFVKOQcVVeF4Ww8xhGiamsnDVZTzfjIZHt+Jrn8VScC6veoFBPmn7LFeWwSg1tRGLbpGqX40KPe1nSCfa3xtxaiHCoBdbDUNcb2lRtiDI2rraQ9lK1rK3wseshciwOSBtxLGMQ9n1o+Txp84vREXr3AZFQlxZLlN2fQ4MmLLVjXA+4mbQONRX6Ex9NmLvgiBUaFoL43LVF1WrC+GxV+hT3SqUPQwlKmEjja3EtGNRdQ2qbhLDDFZ0O2YCV10B3yZXyXV9ntC3FUY/JGxNrpLD1cuRslX1qlTcStRG1Bo8N0k60f7ekGIrRoTKVsIymlat7a8NkD1/va5stY7qCZnIOutStvIdDJtxZrxhZM+1fIVz14q8qzbmZKPG+ISxD4OmbHVjs9uIg9ICXytKKRKWsaKyFVoK2oot1xu4lYj9Ep43+/Vt5SvBEOpecRKDgKL++zeuSBxKOHi+olhyMKx87X4HV11Ga6d3sVWsF1thGzFfzePqHIVK0MkoVAu4votG45gOWifwtdEx9iHjxOtieaDfwaFB/uaZIcwGiX40bZNNWJy7VuDKUpmkbXQd1zCxzhT58AQ7KNEPYw0je56+EMjOJ44HxdZGpPFD4NeCwYp96MVIytrUUFMxyK9MwjJWVLbCgmGhJYeu7Ppiju9CqGz1uyIxX5aLA6Cp2GxUtoZTwddLRQvbKtXud/DUFXzfIl/Jd33OMP4hLLZsq4rnexhGKfr7FKoFqn49Y0v5wWIeaSPGnFDZumXXUNPtYdbW+esFLi+XmRlOdr0Smlxninx+wDwE47WU4GuFCk+dW0ApImVrPQphI2fmC9imYndMZyCullDZ8v3O5tb1kJc2Yl8kbXPFUNNwpVzrQpFS1ZO2VxfCwql/ZcsjPSCWjV40+rRCZSttp6MLJ60V6WSwTx3TQasKrl/uu41YrioMI7h4VkY5aiOG5vjweYesIEcr1dJGNJTRFktxozPQ7+BswsI0FK/fN9J2376xdNRG7JXVNJFNrCsjqlPIXpwZzwT78nq+wpPnFzk8mWE0HQyD3YjRRwCvzRfYN5bGMgf68I4YSdn4GnKrWCLfL0UxyPdF0jZXDDUNByovFlrbiD4JCY7tSFg49atsFQYoQLoXnZStseQYtlm/IMvWVgiGxVhF53sWW4ulRbTWlN3auB4zUMaUUcL3HC4tXw7M8Q2BpplasZVuaSPGTdWCAS+2RlI2D/782zuOiQlS5Au19PjuFfZkLRHdW6NqMHDKVoNn66nzC7x+32hwe4dk+bVyZj7fNBNx0IlS5Asb20qsej4Vzxdlqw8SlrFi9EOuwbPVuMQ+aCMO9Km6K6tWtsqixEKzspU0g8+38dQ4jlU/7oZrp9Bw1WDVXyJX7V5sedpjsbxIoeqitUITBIMrowxYvDT/alsbMWkE8Q6tbUQptmLI7XtGIu9WI/vH0+QrHueuF1dUtnxN27y/fslVXBzL6LgNcWQoGaiJz88ucWW5HKmKk5kEcxvg2dI6jH0Qv1bIZo3sCVeAyYfXygRtxJVWIwYFg+vrpuyosrQRuxKu4u43aytfEWULwGj46I+UrdQYtlU/RkfTwb6Nii291NOzBXA5dzlqGWoVPFYZgcJ1+tpFcpVckLFVCzS11RjQ3kbM2PE7f8s7uAv7a/EPnq+Z6aFs1YNN11ZsFcrewLQQIUhkHkvbnHzpKsCGK1vz+Qq5sivKVgPDtWJro+MfilGxJR9eK9GPstXYCms0yUsbsTvhsRe2YFciX3bleKWljWg2FFsNbcRwQoppmBg6S5VFSm4pagN24nL+cpSp5RKoYGGxVaooXlt8LYh9MG0MZaC9DIbSTYoaiLI1UOwbq/+xO43qCamP7FmbKpMvuwPTQgwZSztcXS5jGSpKO19vhEbI2doAaim26myWshUqMaJsrUzg2eov+gGa/1bSRuxO2EbsX9nyBibTsBdNBnkrgVKKseRYU9Ezla2LDLaaoKoDA3y+GihWs8uzPPTqQxSqhehxl3OXo7mIrl4KXqtmlNd+Etd3qfgVHMMhaSUpVkzSCY/W9WdxLLYG61N+FewbT0VfdxpCHTJZU7bm1lgo5AbQsBnGP9w8MxTNjZuoDaj2fN0Uw7FawtiHQRvV04vRmk9uo4utorQR+yZpG1wv9BdqCs3+OmkjdidcPdevslWQ6Aeg3SA/5AxhGVbURkzYPsPJFKZh4vkeNmOUuABkePry01zOX2ahtADA8YnjUXF0rXiNcjU01C+Bqitb2g9ur3pVhpwhUnaK4rLR1kKEeBZb8g7uwnDSjhSBXsrWRG113dwaU+QHMYF7olZs3bm/vgp0IptAr8P7FnJmvoCh6lMAhK3wbMmH10okrNUpWwstylZS2ogdcSwDxzT6Urb8mhcuPWAXt51QKEwVHFNJM8l4ahwAu6ZsZZIeSimGnCAWyWYEl2torXlx/sWo0IJ65AOARkeerbIf3K4alC1f+3jawzZtUlaKQtlsW4kIUmwNHPtr6tZUD2VrJGVjGmrN8Q+5QWwj1oqtO/aORreFI3vW69t6bT7P7pGUhEA2kHFMTENtWhtRQk1XJmEbKxvkyy6hqLvQqGy5omz1Ip0w+1qNGI4IGySPbC/CHKuElWAsFRjVwzZiprY6MCq2jGFQXrSSsJHGwgugVPNs1VcjhspWsp6xZTikrBTFcmdlK27p8SDFVk/2j6VJ2gbDye7FkGGoYLjyGg3y+QFsI4bxD435ZuFCg/WuSDwzX+DQZPyuitaDUmpTRvaEbUTxwKxMPzlb+YoXLcZp8mxVJUG+FxnH6itna9BGo61EVGyZCcaTNWXLDJWt4FgdSgTFlqOCpPey135+blS2gEjZCousurKVaMrYStkpChVjINLjQTxbPfmJe/ZxZCq74hytiYyz5iHKhQEMhbz38ASPn7vO8Ybk/rAdux5l66XLy7xyNccH7tyz7m2MG5tRbIVtr7Q9WMfvWgjG9azcRhzPBAtFFoqtqxHlurgbaac/ZSsKkJaLA6BebNmmzUQ6yLtSChKWTzbZrGw5RhY8qLgVcJqfZ6G40PR9uWpgKB9U8DcJiy3fT1Lx6+nxCTNNqWK2zUVUKFJW/GwgcpbswXtum+E9t82s+LipobVnRAUG+cF687/j2CTvODbZdNt6IjS+f/Ya//7kK3z1+SukbJP3v273hmxnnBjeDGWrVjzI+JOV6Stnq2YpGE3ZkUHe9zUVT1Yj9iKdsPrybEUXBwN2cduNxnE4w4nh6OufePscY9lgX4XKlm0ExU/Zaz8/l70y+Wo+ysYqVw0sqxqtMFRKo1SpWdkybAzCuYjN74uUnYrloHA56jaAiYzDmfneYW+d0FoPZPRDJ8bSDkqtfj7ix//8Bf7DN15hLG3zi+85xkfeeijyhAl1RlI2i+tcfNCKhJr2T9IyqXh+z9W2+YrL9FCSkZQdebbCAk0M8t3JOGZfqxHD43XQbBvd6DZ78MBUXTgIlS3D0Jh6nLLb+YJtobgQFVulqsI0mx+njHLk2TKUEWR3+UGBNwjp8SCerQ1hIptoU2Tmc2VOXek+2gCg4vm4vpZiCzANxVjaWXVe2eefvMg7j03y7V99gF98z81SaHVhM9qI4QdcUvxEKxK2AXsNo86XvUDZStf/VuHjRdnqTtpZrbIlxyt0L7YaCZUtZVSx/JnI4N5Ko2+rXDUwjBK+9rmUu4Tneyijpmz51SiRXvtBcdbaRoxjejxIsbUhTGQdChWvyTfwzz73DH/jU9/t+XODNoR6JVabIr9YqHJhocjbjkxKa2AFRlLWpkQ/pB0TYx25aINCslYslXuY5PNll4xjMpJyouiHUNkSg3x3Mn2uRgwN8qJsBfRTbDlmED6qVAVLz3Q0yEPzisRyxQCjRK6S48LyBS7mLkbKVtWrYhtBFI3vBQpW62pEUbaErkxmwhT5oFAoux7fePEqFxdL0XDZTgzaEOqVmFjlqs7nLwUJxbftGV7hkcJIymap5DYNOF4vhergZcStlXDcTqmnsuXWla1ayzcszkTZ6k6639WIobIl51ugv2ILIOtkUaqKqWeo+uWO55AmZcs10KoQqWBX81dxjYtoP0HFq+CYDkopXDf43JQ2otA3k0PNsQWPnbkeydpne3i5clJsNRGM7Om/jfjcxaDYunX30AqPFEZSNp6vexb/q6Ugc+b6JllrI3aLf/B9TaHq1ZStDm1EWY3YlcxqVyPKBQLQf7E1nBgO2oh6BtAdW4mNKxJLFYVPrkkFu8YX8HyHqh/MRUyaSYqV4NzR1kaMYcYWSLG1IUy0KFsPvXAlui+c1deJguS+NDGRSazKIP/c7BKT2UTPcUpCQJgi3xiWuV4GcfrBWgl9bd08W8Wqh9ZEqxHzFY+K60fFmbQRu5NOWBQqHr7fW7UtVGQ1YiP9FltDzhCoKpaeBuhYbIUrEqGWs2WUIhVrOjPNMo9T0C8CtUBTOwg0dSyf1kNblC2hK1FsQU2V+foLV3jjwSCRt9cqxVw5XB0jJ1IIPFsLhSqu13uJfMjzs0vSQuyTzRjZU6h4kh7fJ4kVlK1GS8Fouv63CouzpChbXQmVquIKOWa5sodjGjjSkgX6L7ZGkiM1z9YuoHOwKQTqludD1QsM8mGxtSu7C4Mk89anAKJRPcWK0Rb7AFJsCT2I5iPmKpyZy3N6Ls8H7tzDZNbh7Fx3ZUtyX5oJh3pf6yOioOL6vHw5Jy3EPhmuFVtLG1psyVDffgmVrW7zEfMNafzDUWFcEYN8H4QerPwKrcRCxZVMuAb6LbYm05O1NuIkoHquSGxMjy+7ZRzTwTIsJq034RlXgXp6fK5kknLa3w+yGlHoSsoxyTgmc7ly1EK8//g0BycyPZWtsNiS1TEB46tIkX/lao6K53PbblG2+kGUre0lNMh3CzaNlC3HYrQ2zqpR2RKDfHdCZauwgkk+X/bk4qAB27SjYdS9GE2OYpk+CgtbpXuuSCxXwyTTQlPMw7h9C6Y/BQRtxKSZ4tJ1h+nR9vNRyo5fejxIsbVhhFlbX3/xCkemMhyYSHNwIt3TsyWrEZtZTYr887OBOf52aSP2xWYVW+LZ6o+wWOqqbDW2ERv8ddFqRGkjdiXsDKykbAWrPeV4baQfdctQBqOpoLVnq+FgZE8HGpUtV10DgrmLAKbpMl79Owzbk1iGhedOUq4a7J1ofq6UlcJQ8TzW4/lbbQOTWYfXrhX47ulrPHBLYCQ8NJHh0lIpGtjbSl4SuJuYyITet5WLrecuLpGwDA5NxFNy3mga1ZKNYhDneq6VMAG+exux3bO1UKhKG7EPwgKqsEKwab4i0zpa6buVmAkuam01Sskrcb10ndcWX+PZq89ydvEsEHi2SmGxpYMoiFDZUkaJtP8WDmXfilKKfD74jNwz3qySxdWvBVJsbRgT2QRPnFug4vncXyu2Dk4EB85r1zqrW/myi2UoaRHUmMiGqzpXjn94bnaJW3YNYZmy7/oh45iYhlpzsTWXK0fqS0ix4sqFQp8kowT5zm3ExsUy0crRYjUqzsQg351I2Voh1iQIjZViq5F+i63pzCgQFFuu73L6+mnmi/O4vsv14nW01pS9Mou1AepVgs5DWGwZtWHU2g9eb2l5goTtMzHU/DeTYktYkdDcPZSweNOhcYBIdenm2wpDDOM4dHMtjKZsDLWyZ0trzfOzS9wqfq2+UUqta2TPT/3HR/j1zz8Xfa91PRdKWJlQmSp3UbYKDYtlhpI2SoWeLVG2VqJfZUva3u30r2xNgKoyqt7AvqF9HJ84zp0zd7IruwtPe7h+cPwuFIKiqqqbiy1llADQfu2CenGYveNlWj/64pqxBTKIesMIVyS+8+ZJ7JraEhZb3YJNc2VPzPENGIZiPOMwt4Jn69JSieuFqsQ+rJLRlM31NQyjvrJc4pWr+aaWYanqozWkRCnoi5WVrXob0TQUw8kgRT6MhRH1uzuZfpWtiivn2xY6FVvDiWGWyktNt40lx4IUecaYyc5Et6eswMxedIvYph0pWxU/j23Ykf9KNShbvp/gei7J7QeaXwNE2RL6IDR3nzg+Hd02krYZTduc6WKSL0gbpo1gPmLvNmKYHC8rEVfHwYk0p692Xx3bjSdeWwDg1bl8NKojX5GhvqshsVL0Q0u6+UjKZqFYlXE9fRAegyt6tsqeRD+00KnY2je8r+0227QxDQ/t2023NxZbANcKwf9VvxipWtCobCXxyvsAxd6J9vO8FFvCitxzYIzjM0O859aZptsPTmR6KFti2GxlIpNYcTViuBLxFim2VsXNM0OcvprvOzQ25IlzC0BwvF6t+emKsrhjVdimwlDdQ00LFZeEZUQexNG0HbURTUOJN7EHmT5ztsSz1U6nYmsmMxMNi27EMn20br7dMiwsw6JUDYqppVIVpUqUvXJLsRWcN3w/ga4cAjS7x9vP81JsCSty5/5RvvRL9zGecZpuPzSR5kyXYNN8WWTtVsazzoqeredmlzg4kZZ9t0qOzQxR8fyuSms3nji3gGkE5opXa8pYISq25G/QD0opkrbZdVxPruVcMJKya6sRPVG1ViBhGRiqd86W6/mUXV8ublvoVGyNp8Y7eqccC7Ru/nxTSpG0kpGy5bkOGAWqXjWKfQgep1GqjPaTuOX9TA67JO328UpxDTSFDSq2lFLvU0q9qJQ6pZT61Q73J5RSf1y7/7tKqUMb8bo3AgcnMlxcLHY8yYphs53JjBMN9O7GcxeXpIW4Bm6eyQLw8uXlvn/G8zVPnlvgvmOTQNBKhIY2orRl+iZhGT2UreYW12jaYbFYpVT1o9gIoTNKKTKO1VPZkpidznQqtsZSYx0VpoStwG9XvFJWiqJbRGsdeLKMy2h0k7IFQStR+0nKxd0dW4ggylZPlFIm8NvADwO3AT+tlLqt5WE/C1zXWh8F/g3wm+t93RuFQxNptIZz14pt97VezQpBivxSyaXSw0h89lpBViKugaPTQbH10uVc3z9z6kqOfMXj/XfsxrGMqNiK2ohSCPRN0ja7erZyLS2ukZTFQqEiylafpBNmT2UrHEIt59tmWout4cQwlmF1VJhSjtnWRoSg2PK1T9Wvov0ErjkL0KHYKuOW9+B5SfZ0aCGCFFsr8WbglNb6tNa6AvwR8MGWx3wQ+HTt688C71YDkndwaLL7isS8eLbaCBcadFs19+KlJbQWc/xaSDsW+8dTvHSlf2XriXNBOOE9B8c4NJHm9Jy0EddK0EbsPq6n8VwwmgqUrWLVl2KrD1ZUtsJoDTnfNtFabI2ngtiijsqWpVC0K2HheJ1itYjvJ/HUZaBTsVXCqwae5k7KVsJMYBrxvXjbiCNvL3Cu4fvzwFu6PUZr7SqlFoEJYK7xQUqpjwIfBZiamuLkyZMbsHnt5HK5TXvuVpYrQV/6q999CvNy81XBcqnK/OWLnDw51+lHb3jWsp9nLwUnxS+d/DYHhtvfeA+9FuRELZ59lpNXnl/3NsaB1ezncbPCE6cv9f34Lz5TJmPD2WceZYgyz57Nc/LkSR67GPydnnni+8yfGoxiYL3njWqpwPnZUsfnuDRXJG2r6L65i1V8Da+cv4Rb1lt2vtpu1rqPvUqRc132LcDpxeDi4PSLz3Hy+kvr2MJ4EO5njWaiMBHd7l/3OXn+JEW3yERloulnslWHLA4/O/6zTbcXvAK/Mv8rvM55HaeZxrI8Lrvwt6f+Ngmj7tv6zNwUr5YhafocK45QW6AYYRlWrI/zHVXma60/AXwC4Pjx4/rEiROb8jonT55ks567Fa01v/bfv4w9tpsTJ14X3V71fNy/+HNuPXoTJ04c25Jt2WrWsp/Tr17jt594hJtufT3vPDbVdv+3v/AcSfssP/6++yUMtsZq9vN3ii/wqW+d5u3vvC/Kg+vFx5/4Jm+4KckD97+Z75WCn33nfe9i9rFz8NTTnHjnW9k9Es/Bsa2s97wx8ey3yaZsTpx4c9t9/+oH3+DATJYTJ94AwNXsOf7oxaeomGnGR01OnHjHml/3RmKt+3jmxUdQwIkTb+14v/PKHDzyXe59493ce3ii42MGicb9/MnvfxJPB8Xo3Yfv5uj4UU5dO8VXT3+16Wf8c2MUFiw+de1Tbc9nGzbfXPomw+5f47r9EpZh8QcLf9D0mCXvQ8AdDA9f4/pMu63m2PgxThw+sSG/305kIy5JLwD7G77fV7ut42OUUhYwAsxvwGvveJRSHJrItK0AkyHUnQlXc3ZbkTi7WGL3SEoKrTVy80yWqqc5M7dy3la+7PLS5WXu2j8KwOHJDFVPc+F6sd6WseX47ZekZfRMkE87zasRAS4vlUhKevyKZByzKWfrdx4+zd/6T4/Wc+GiHDM5XltpbCWOJceAzqsCbVPj6877L2WlKFaqaD+Ny1xbCxHqI3tmxjqvhr554uZVb/uNxEYUW48Cx5RSNymlHODDwIMtj3kQ+Ejt6w8BD+nwXTAAHJxIt3m2wtUxMoW+mXDsUbcU+UuLJXYN9zdiQmjn5pkhoD+T/FPnF/E13H1gFICbpoIT8Om5XGSQT8nqrr5J2CalHgs/Gs3b4eDw5ZJLQuYirkg6UfdsXc9X+DdfeYmHXrjCc7VMvoKsnu1KWGwZymAsFRRbnTxbtqnxvM77L2knKXkFNB6uqhdbw4m6tzYMNt3Twa+VsTMdw1TjxLrfxVprF/h54EvA88BntNbPKqV+XSn1o7WHfQqYUEqdAn4ZaIuHiDOHJjKcv16k2hAmKcpWZ4aTNpahusY/BMqWFFtr5chUFqXgpT7iHx6vmePv2jcKwE21xR6vzuUpVD1sU+GIebtvuilbWmvyLTEwo+m6v1MM8iuTdaxoNeLvfvtV8hUP01B8/slgZVw+GvQt59tWwmJrJDESjdfplLNlWz6+ViTM9kIsZabQeOjkY1S8YpSxdfvU7VhGsM8NaxlUlQOT7RccxyaOxb5bsSHvYq31F7XWN2utj2itf6N22z/XWj9Y+7qktf5JrfVRrfWbtdanN+J1bxQOTqTx/KD9EpKTYqsjhqHYNZJkdqG9p+/7mstLJXZJsbVmUo7JgfE0L/exIvGJ1xY4NJFmrNbancg4DCWtoNhqaXsJK5Poshqx7Pp4vm46F4RtRJAh1P2QTpjkKy6LhSr/6dtneP8du3jH0Uk+/+TFoJgty3ipboTFVrgSEQKzemsr0DKDZtSezKG253BqTiI38fWmjK3x1Dj7R4L7kkOPMbbvtxlNJdp+/vjE8fX/IjscuWTaAsL4hzMNrcRI2ZIPrDb2jqa40KHYmsuXcX0tytY6OTY9tGIbUWvN4+cWuPvAWHSbUorDk5mg2JJA3lWTtIyOOVvhuaA1QT5ElK2VyTgWhYrHp779Kstll7//wDE+cOceLiwUefzcQsMsTznfthIWW2ELMaS1lWhbQbH15r3v4IGbHiDrZOt3FoKFCXmeBeqxDxknw5GxIwAowyWdLLTFO0xnptteO47Iu3gLODgRHLRnG0zykWFTPARt7BtLc/56e7F1aTHo+e8akNVvm8XxXVnOzOW7BscCXFwscXW5HJnjQ26azHD6atBGFL/W6ugWalrokG6etE2SNa+WeLZWJp0w8XzNpx4+zV+6fYZbdw/zQ7fP4JgGn3/yIoWKR8o2o7FTQp1Oyha0m+TtmrLlegaHxw7zods+xD277wFMqoV7sBhnubIABMWWUoqsk2X/8P6orRhmcjUSd2N8iLyLt4CpbIK0Y0bp29D5alYI2DuW4vJSqa0YmK0VW6JsrY+bZ4Zwfd10PLbyxGsLAB2KrSwXF4tcz1dElV0lCcvo2EbMdTkXjKac2s9JUbsS4bGYr3j8wruDKJ3hpM2J41N84alZlktVubDtQrdiq5uyVXGDgtUyLO7ZfQ9m9Ta0N0TKSqEJHpMwE6TtNIYyMA2TQ6OHml4rxFAGx8bjGX3UihRbW4BSilt2DfHU+YXoNpG1u7NvNIWv60pWSF3ZkmJrPRybDlckdvdtfef0PI5ltI1Fumkqg9bw/OySKFurJFS2Whdid0s3D1uJomytTKgKvve2GW7fMxLd/oE793Blucw3Xrwq/tguJK0kpjIZSYw03d5qkq8rW83qYCV3J8ookE4EFxKmMjENkyFnKHrMkfGgldiqbB0cOUjCavdwxRF5F28R9x6e4Knzi9GJVVbHdGffWPCGPL/QnMcyu1jCMQ3G0+0ZLkL/HJ7KYKjuA6nPzuf540fP8SOv39222vBwzX94vVAlI8XWqkjaBr4G128ptirhuaB5f47UViSKsrUy+8fTOKbBx97drJK8+9ZpUrbJxcWSXNh2IWklGU2Otq0GbFO2zKCYqrr1x1VcxeLiTSQyz5K2g4vg0K/V6Onand1Nxs6QspqLreOT8TfGh0ixtUXce3gC19c8djZYTp8vuxiKyJch1NlbK7YutPi2Li0WmRlJYIjvYl0kbZNDE5muJvl/9YXnsUzFP3rfLW33hYs9QFTZ1RIWTa2+rW4xMKOhsiUG+RW59/AET/6LH+J1e5vVmbRj8Z7bgnl8cnHQmaSVbGshQgfPVq2NWG1Qtl66kML3LRJDT0Utwk7FllKKw2OHm4otheLAyIGN+0V2OPIu3iLeeGgMy1A88koQnJ8ru2QcK/bZImshSIinzSQ/u1hi97CY4zeCYzPZjgOpH375Kl957jI//8BRZjqEx2YTFtNDNbOrfHitivDCqlRt9m11W5k8IsXWquh2PH7g9bsBidnpRrdiq1XZCqMfGoutF86nySRLWInXSFpJFCpqCzatVgQOjx9uaiM6phPleg0Cg/ObbjNpx+LO/aN853RQbBUqrrz5u+BYBjNDybb4h9lFydjaKG6eGeLsfIGyW1dZqp7Pr3/+OQ5OpPnZd9zU9WfDcFNRClZHwg72V+M+hx7KVq2NmLRlP6+Hdx2fYihpMZSU820nuipbrZ6tUNlyg7JBa7gw77B/qohSdbP7rswuoL3YmkpPsSu7K/p+ULxaIVJsbSFvPTzB0xcWyZVd8mVPVsf0YO9YivPX654trTWXJD1+wzg2M4Tna05fra9I/IPvnOXlKzn+yftv7ekTOlwb25OSNuKqCBWqNmWrQ/QD1Ef2iLK1PhKWye/9zJv4xfcMRsTAarFNm6nMVNvt7Z6tZmVrIW9RrJgcnPIjhWooMYRtBhcJrcUWwGhyNPq6dWVi3JGz5Rby1iMT/Nuvn+LRM9eCNqIoW13ZN5biB69dj76/lq9Q8XxRtjaIm2eCE+Ev/fETHJnOMjOU5LPfP8c7j03y3prHpRuhsiWhpqsjVKg6ebYsQ7UVVfXViLKf18sbD7UrN0KdTrMQwxT5ihfMqY1WI9YM8hevBRcDe8ervFzMslReavr5TsVWI2H21qAgl0xbyD0HxrBNxXdemQ/aiKIMdGXvaIrZhRJebeWWZGxtLMemh/iZtx1iLO3w/OwSn3nsHK6v+ec/ctuKPsKbJoOTqBRbqyMsplqztvK1C6/W/S6eLWG7aTTJt3q2Lsw72KbP5Ei1aeA0BBEP4UzEboiyJWwaKcfk7v1jfOf0PBVPs3dUIgy6sW8sjVubhbhnNCXp8RuMaSj+lx+9vek239d9rfQ8UmsjDiftFR4pNBIqW63DqPMVr6P/bTQtxZawvaTtNNdLQYdBqSD+IYx+mL3msHu8gqGCIdbnOR/93EqqFohnS9hk7j08ztMXFrmyVGrL1RHqRPEPNZP87JIoW5tNv5Eah6ey/Lu/fg/vr63yEvojaiN2MMh3shTcfWCMn37z/qb5lIKwlbSa5C1TU/UMXA8uLzjsGQ9ajK3KVj/F1qApW1JsbTH3HpnA1zCfr7QlRgt19o42Z21dWixiGorJ7GBdDe1U3n/HbgnkXSVRG7HFIJ8rux3PBdmExf/+469vGkotCFtJp5E9VU9xecHB14o9E2WgQ7Fl96FsiWdL2EzuOTCGYwa7XT6suhOlyNdWJM4ulpgZSsggWeGGpZuyVah4onILO5JOw6irruLCfGCB6aZsDSWGWAlRtoRNJWmb3H1gFGgPMRTqJG2TyawTtREvScaWcIPTK9RUzgXCTqSTsuV6itlrCYbTLtlkcCwPJYaaAkrFs9WOFFvbwFuPTABIztYK7B1LRynyQcaWmOOFG5cwu6zdIC8xMMLOpH0YtU/VU1y4VvdrQRBo2lhgiWerHSm2toF7D4fFlpxge7FvNMWF60W01pIeL9zwRMpWW/SDBBwLO5NOwaYLeYulgsWe8XLTfSOJ+lzKvpQt8WwJm80bD47xD957M+++dXq7N2VHs3csxYWFIovFKsWqJysRhRuaboOoc9JGFHYorZ4ty9IsFYJjtVHZgrpvK2EmomHUvRg0ZUve4duAZRr8/Xcf2+7N2PHsG0tRdn2evrAIIMqWcENjGgrbVE2hplXPp+L6onILOxLTMEmYCcpeoGKFKfKG0syMVZseGxZb2cTKqpZC9VWQxQlRtoQdSxj/8NiZIFRPlC3hRidpmU3KVqEcfC3FlrBTaWwlhsOop0erUeEVMpIM2oj9xD44prPipIq4IcWWsGPZNxa8yR87ew2Q9HjhxidhG02rEfMVF6Bjgrwg7AQaTfJhgdXq14IGZUvM8R2RYkvYsYQp8o+/toBSMD00WIZKIX4kLJNyQ85WvlwrtkTZEnYoTcqWGVwotPq1ICiyWlcldmPQYh9Aii1hB5NNWIykbAoVj6lsAtuUw1W4sUnaRlOCfC4qtkTZEnYmjSb5sI24d6K92AoLLVG2OiOXU8KOZt9YisViVfxaQixoVbYKlZpnS1YjCjuUxjbirfsLGAaMZtyOjx1JjvRlkB+02AcQZUvY4YQmeVmJKMSBZItnKydtRGGH09hGHM14vOXmZbp524edYYaclUf1SBtREHYYoUle0uOFOJC0m1cjimdL2Om0Zm31YiI90VeLcBDbiFJsCTua0CQvypYQBxKW0ZSzlQ/biOLZEnYorSN7erFnaE9fj5NiSxB2GGEbUTxbQhzoqmyJZ0vYoaTtNIr+MrH6MceDeLYEYcdxz4FR7tg7wj0HxrZ7UwRh3SRtk1KjQb7sohSkJWdL2KEYyiBlb6yNYxCVLbmcEnY008NJPv/337HdmyEIG0LCao1+8Mg41sClaQs3Fhk7Q6Fa2LDnE4O8IAiCsGl0aiOKqiXsdFbj2+oHaSMKgiAIm0bCMii5zeN6srISUdjhrGZFYj9IG1EQBEHYNBK2ScX1+a2vvMT5awUeeWWe3aOD98Ej3FhspLKlUAPZRpRiSxAEYYsIV9X+24deZvdIiqPTWX7iDfu2easEoTfdlC1DGSTMBEW32PdzOaazUZt1QyHFliAIwhbx4Tft5/7j04xnHBxLXBzCjUE3ZWs4ESTGn1s61/H+qfQUVwtXm24bxBYiiGdLEARhy1BKsWskKYWWcEPRTdkaSYwwmZ7s+nPHJo613TaILUSQYksQBEEQhB50U7ZGk6OMp8Y73qdQHB0/2na7KFuCIAiCIAgtOKaDZbS7jkaSI0ykJzr+zHBimLSdbkuVl2JLEARBEAShA51aiSOJEUaTo5iqPSsubC+2Kl+DmLEFUmwJgiAIgrACnVqJI8kRDGUwlmofpxYWW2PJ5vvEsyUIgiAIgtCBVmXLMqyoRTiRam8lRsVWSyEmbURBEARBEIQOtCpbw4nh6OtOvq3wNmkjBqyr2FJKjSulvqKUern2f7uWGDzOU0o9Ufv34HpeUxAEQRCEraVV2RpJjERftypbaTtN2k4D7W1EUbbWxq8CX9NaHwO+Vvu+E0Wt9V21fz+6ztcUBEEQBGELaVW2RpOj0detylZj8WWbdtOKRPFsrY0PAp+uff1p4MfW+XyCIAiCIOww2pStZF3ZSlrJpvtbg04b1S1RttbGjNZ6tvb1JWCmy+OSSqnHlFLfUUr92DpfUxAEQRCELaRV2WpsI0KzutVWbDWY5AfVs6W01r0foNRXgV0d7vonwKe11qMNj72utW7zbSml9mqtLyilDgMPAe/WWr/S4XEfBT4KMDU19YbPfOYzq/ld+iaXy5HNZld+oLAuZD9vDbKftwbZz5uP7OOtYa37ea4whyaoGSZSExiqrtfkq3kK1QIQmOIbs7dKbonlyjIK1XO8z43O/fff/32t9Rs73bfiIGqt9Xu63aeUuqyU2q21nlVK7QaudHmOC7X/TyulTgJ3A23Fltb6E8AnAI4fP65PnDix0uatiZMnT7JZzy3Ukf28Nch+3hpkP28+so+3hrXu599/8vcpVAvYhs1P3vOTTfedunaKr57+asf7Lucu86cv/ClJK8mH7vrQejb9hmW9bcQHgY/Uvv4I8LnWByilxpRSidrXk8DbgefW+bqCIAiCIGwhoS+r0a8VEpriO8VAhG3EQW0hwvqLrY8D71VKvQy8p/Y9Sqk3KqV+p/aYW4HHlFJPAl8HPq61lmJLEARBEG4gQt9Wq18LiMb2dGoTOqZDxs4MrDke+mgj9kJrPQ+8u8PtjwE/V/v6vwN3rOd1BEEQBEHYXnopW0opxlJjHdPkIfBxKaU2dft2MpIgLwiCIAjCioTKVmPGViOT6cmuBvix1NhAK1tSbAmCIAiCsCKRstWhjQgwlZ5qG88TMpYcE8+WIAiCIAhCL8IRPJ3aiACHxw5jGmbH+0TZEgRBEARBWIGMkyFhJroWTSk71fVnx1PjAzuqB6TYEgRBEAShDzJ2pquqtRKO6XQ1zw8CUmwJgiAIgrAiCSuxrgT46cz0Bm7NjYUUW4IgCIIg9MXu7O41/2w3P9cgIMWWIAiCIAh9sWdoz3Zvwg2JFFuCIAiCIPRFmLUlrA4ptgRBEARBEDYRKbYEQRAEQRA2ESm2BEEQBEEQNhEptgRBEARBEDYRKbYEQRAEQRA2ESm2BEEQBEEQNhEptgRBEARBEDYRKbYEQRAEQRA2ESm2BEEQBEEQNhEptgRBEARBEDYRKbYEQRAEQRA2ESm2BEEQBEEQNhEptgRBEARBEDYRKbYEQRAEQRA2ESm2BEEQBEEQNhEptgRBEARBEDYRpbXe7m3oiFJqGXhxk55+BFjcpOcW6sh+3hpkP28Nsp83H9nHW4Ps583huNZ6qNMd1lZvySp4UWv9xs14YqXUJ7TWH92M5xbqyH7eGmQ/bw2ynzcf2cdbg+znzUEp9Vi3+wa1jfj57d6AAUH289Yg+3lrkP28+cg+3hpkP28xO7mN+NhmKVuCIAiCIAgbSa+6ZScrW5/Y7g0QBEEQBEHok651y45VtgRBEARBEOLATla2NgSl1PuUUi8qpU4ppX61dtsf1m57Rin1u0ope7u380any37+lFLqSaXUU0qpzyqlstu9nTc6nfZzw33/j1Iqt13bFie6HM//SSn1qlLqidq/u7Z5M294uuxnpZT6DaXUS0qp55VSv7Dd23mj02U/P9xwLF9USv3ZNm9mrIm1sqWUMoGXgPcC54FHgZ8GDgF/XnvYfwa+qbX+99uxjXGgx34+r7Veqj3mt4ArWuuPb9uG3uB0289a6+eUUm8EPgb8Fa21FLXroMfx/A+B/6a1/uw2bl5s6LGf3wLcD/yM1tpXSk1rra9s35be2PQ6bzQ85r8Cn9Na//72bGX8ibuy9WbglNb6tNa6AvwR8EGt9Rd1DeB7wL5t3cobn277OSy0FJAC4lvZbw0d93PtZPqvCYoBYf103M/bvE1xpNt+/rvAr2utfQAptNZNz+NZKTUMPAD82fZs3mAQ92JrL3Cu4fvztdsAqLUP/0fgL7Z4u+JG1/2slPo94BJwC/D/bv2mxYpu+/nngQe11rPbslXxo9d54zdqbfF/o5RKbP2mxYpu+/kI8FNKqceUUn+ulDq2LVsXH3p+DgI/BnwtvDgWNoe4F1sr8e8IWogPb/eGxBWt9d8E9gDPAz+1zZsTR9LATyKF7FbwjwkuGt4EjAP/aHs3J7YkgFJtCf0ngd/d5u2JOz8N/Jft3oi4E/di6wKwv+H7fbXbUEr9C2AK+OVt2K640XU/A2itPQLp+ie2eLviRqf9/ApwFDillDoDpJVSp7Zh2+JEx+NZaz1bcx+Ugd8jaM8Ia6fbeeM88Ce12/4UeP0Wb1fc6PU5OElwHH9hG7ZroIh7sfUocEwpdZNSygE+DDyolPo54C8RmAT9bd3CeNBtPx+FyLP1o8AL27iNcaDTfv4zrfUurfUhrfUhoKC1PrqtW3nj0+143g3R8fxjwDPbt4mxoON+JvAO3V97zLsIzN3C2um2nwE+RLDoo7RtWzcg7OTZiOtGa+0qpX4e+BJgAr+rtX5WKfUkcBZ4JDhv8ida61/fxk29oem0nwnahg/XzJcKeJLA+CqskW7H8zZvVuzocd54SCk1RXA8PwH8nW3czBueHvv548AfKqV+CcgBP7ed23mjs8J548OArBDfAmId/SAIgiAIgrDdxL2NKAiCIAiCsK1IsSUIgiAIgrCJSLElCIIgCIKwicS62JI5cYIgCIIgbDexLrYEQRAEQRC2m9gXW0qprFLqa0qpHyilnlZKfbB2+6HaRPlPKqWeVUp9WSmV2u7tFQRBEAQhXsQ6+qHWRhwF0lrrpVpa7neAY8BB4BTwRq31E0qpzxDMl/uDbdtgQRAEQRBiR6xDTWso4H9TSt0H+AQDOGdq972qtX6i9vX3gUNbvnWCIAiCIMSaQSi2/jrBDMQ3aK2rtflxydp95YbHeYC0EQVBEARB2FBi79kCRoArtULrfoL2oSAIgiAIwpYQW2VLKWURKFd/CHxeKfU08BgyDFkQBEEQhC0ktgZ5pdSdwCe11m/e7m0RBEEQBGFwiWUbUSn1d4D/AvzT7d4WQRAEQRAGm9gqW4IgCIIgCDuBWChbSqn9SqmvK6WeqwWUfqx2+7hS6itKqZdr/4/Vbr9FKfWIUqqslPqVluf6mFLqmdrz/OI2/DqCIAiCIMSIWBRbgAv8A631bcC9wP+slLoN+FXga1rrY8DXat8DXAN+Afg/Gp9EKfU64G8DbwbuBH5EKXV0a34FQRAEQRDiSCyKLa31rNb6B7Wvl4HnCcJLPwh8uvawTwM/VnvMFa31o0C15aluBb6rtS5orV3gG8CPb/5vIAiCIAhCXIlFsdWIUuoQcDfwXWBGaz1bu+sS9eT4bjwDvFMpNaGUSgPvB/Zv1rYKgiAIghB/YpWzpZTKAv8V+MXaLMToPq21Vkr1XA2gtX5eKfWbwJeBPPAEQbK8IAiCIAjCmoiNsqWUsgkKrT/UWv9J7ebLSqndtft3A1dWeh6t9ae01m/QWt8HXAde2qxtFgRBEAQh/sSi2FKBhPUp4Hmt9W813PUg8JHa1x8BPtfHc03X/j9A4Nf6zxu7tYIgCIIgDBKxyNlSSr0DeBh4GvBrN/8agW/rM8AB4CzwV7XW15RSuwhG9wzXHp8Dbqu1Hh8GJgjM87+stf7alv4ygiAIgiDEilgUW4IgCIIgCDuVWLQRBUEQBEEQdipSbAmCIAiCIGwiUmwJgiAIgiBsIlJsCYIgCIIgbCJSbAmCIAiCIGwiUmwJgiAIgiBsIlJsCYIgCIIgbCJSbAmCIAiCIGwi/z9FND3pb8HSOAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_prob_forecasts(ts_entry, forecast_entry)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Compute metrics\n", - "\n", - "We can also evaluate the quality of our forecasts numerically. In GluonTS, the `Evaluator` class can compute aggregate performance metrics, as well as metrics per time series (which can be useful for analyzing performance across heterogeneous time series)." - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.364904Z", - "iopub.status.busy": "2022-06-13T08:55:45.363907Z", - "iopub.status.idle": "2022-06-13T08:55:45.366867Z", - "shell.execute_reply": "2022-06-13T08:55:45.367291Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.evaluation import Evaluator" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.371542Z", - "iopub.status.busy": "2022-06-13T08:55:45.370839Z", - "iopub.status.idle": "2022-06-13T08:55:45.677510Z", - "shell.execute_reply": "2022-06-13T08:55:45.678194Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "Running evaluation: 0%| | 0/100 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
item_idMSEabs_errorabs_target_sumabs_target_meanseasonal_errorMASEMAPEsMAPENDMSISQuantileLoss[0.1]Coverage[0.1]QuantileLoss[0.5]Coverage[0.5]QuantileLoss[0.9]Coverage[0.9]
0NaN0.1430167.75863924.6385481.0266060.3516420.9193360.9589190.6567560.3148985.1350242.5298370.0833337.7586390.5833333.5070800.875000
1NaN0.1071105.87007922.1786310.9241100.3402410.7188621.5095590.5505160.2646734.8598532.4737920.0833335.8700790.6666672.7185950.916667
2NaN0.1601527.50341926.6011391.1083810.3235600.9662590.4710240.6192950.2820717.8315713.3577610.0833337.5034190.5000003.9950450.791667
3NaN0.1118426.40813122.5023330.9375970.3110260.8584671.0477660.6146440.2847766.4415223.1699180.1666676.4081310.5833333.3269740.958333
4NaN0.0582054.48035425.8643881.0776830.3131190.5961991.0109880.3916460.1732256.2403032.5159670.0000004.4803540.5000002.8623650.875000
\n", - "" - ], - "text/plain": [ - " item_id MSE abs_error abs_target_sum abs_target_mean \\\n", - "0 NaN 0.143016 7.758639 24.638548 1.026606 \n", - "1 NaN 0.107110 5.870079 22.178631 0.924110 \n", - "2 NaN 0.160152 7.503419 26.601139 1.108381 \n", - "3 NaN 0.111842 6.408131 22.502333 0.937597 \n", - "4 NaN 0.058205 4.480354 25.864388 1.077683 \n", - "\n", - " seasonal_error MASE MAPE sMAPE ND MSIS \\\n", - "0 0.351642 0.919336 0.958919 0.656756 0.314898 5.135024 \n", - "1 0.340241 0.718862 1.509559 0.550516 0.264673 4.859853 \n", - "2 0.323560 0.966259 0.471024 0.619295 0.282071 7.831571 \n", - "3 0.311026 0.858467 1.047766 0.614644 0.284776 6.441522 \n", - "4 0.313119 0.596199 1.010988 0.391646 0.173225 6.240303 \n", - "\n", - " QuantileLoss[0.1] Coverage[0.1] QuantileLoss[0.5] Coverage[0.5] \\\n", - "0 2.529837 0.083333 7.758639 0.583333 \n", - "1 2.473792 0.083333 5.870079 0.666667 \n", - "2 3.357761 0.083333 7.503419 0.500000 \n", - "3 3.169918 0.166667 6.408131 0.583333 \n", - "4 2.515967 0.000000 4.480354 0.500000 \n", - "\n", - " QuantileLoss[0.9] Coverage[0.9] \n", - "0 3.507080 0.875000 \n", - "1 2.718595 0.916667 \n", - "2 3.995045 0.791667 \n", - "3 3.326974 0.958333 \n", - "4 2.862365 0.875000 " - ] - }, - "execution_count": 60, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "item_metrics.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.727887Z", - "iopub.status.busy": "2022-06-13T08:55:45.726135Z", - "iopub.status.idle": "2022-06-13T08:55:45.849254Z", - "shell.execute_reply": "2022-06-13T08:55:45.849860Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAl/0lEQVR4nO3df5TcdX3v8ed7ZjebJRsITXAREk0qoAICmr3QNsDdhXJPtDT2CseCF3r0FOO9B9RSK+C5rSLe3hrB26uV1hsRLUdlr4JecjEFvQ0rB8SURBOEWCGFajYUiCGkTLrZ7M687x8zm8xOvvNz5zvfH/N6nJPDzny/M/v+zCzfz/fz/vwyd0dERLpXJuoAREQkWqoIRES6nCoCEZEup4pARKTLqSIQEelyPVEH0KwlS5b48uXLow5jlgMHDrBgwYKow5iztJQD0lMWlSN+klqWrVu3/srdTwg6lriKYPny5WzZsiXqMGYZGxtjeHg46jDmLC3lgPSUReWIn6SWxcx+Ue2YUkMiIl1OFYGISJdTRSAi0uVUEYiIdDlVBCIiXU4VgUhC7M1Nsn3XK+zNTUYdiqRM4oaPinSj+7bt5sZ7n6A3k2GqUOAzl53FmnNOjjosSQm1CERibm9ukhvvfYKDUwVenZzm4FSBG+59Qi0DaRtVBCIxN75vgt7M7P9VezMZxvdNRBSRpI0qApGYW3p8P1OFwqznpgoFlh7fH1FEkjaqCERibvFAH5+57Czm92ZY2NfD/N4Mn7nsLBYP9EUdmqREaJ3FZnYncCnwkrufGXD8PwE3Aga8CvwXd98eVjwiSbbmnJNZdcoSxvdNsPT4flUC0lZhtgi+Cqyucfw54N+7+1uATwHrQ4xFJPEWD/Rx9rJFqgSk7UJrEbj7w2a2vMbxH5Y9/BGwNKxYRESkurj0Efwh8HdRByEi0o3M3cN782KL4P6gPoKyc0aAvwbOd/e9Vc5ZC6wFGBwcXDk6OhpCtK3L5XIMDAxEHcacpaUckJ6yqBzxk9SyjIyMbHX3ocCD7h7aP2A58GSN42cB/wSc1uh7rly50uPmoYceijqEtkhLOdzTUxaVI36SWhZgi1e5rkaWGjKz1wHfBq5296ejikNEpNuFOXz0bmAYWGJm48AngF4Ad/8i8HFgMfDXZgYw7dWaLSIiEpowRw1dWef4NcA1Yf1+ERFpTFxGDYmISERUEYiIdDlVBCIiXU4VgUgKaTczaYZ2KBNJGe1mJs1Si0AkRbSbmbRCFYFIimg3M2mFKgKRFNFuZtIKVQQiKaLdzKQV6iwWSRntZibNUkUgkkKLB/pUAUjDlBoSEelyqghERLqcKgIRkS6nikBEpMupIhAR6XKqCEREupwqAkksrbAp0h6aRyCJpBU2pZ69uUlNqmtQaC0CM7vTzF4ysyerHH+TmT1mZpNm9idhxSHpoxU2pZ77tu1m1bpNXHXHZlat28SGbbujDinWwkwNfRVYXeP4y8CHgNtCjEFSZCYV9NTz+7tihc29uUkmpvKq4JqkG4XmhVYRuPvDFC/21Y6/5O6PA1NhxSDpUX6H9/67tnBwOj/reNpW2Jwp73N7DuiOtklairt56iyW2Ku8w5ucdtydvp50rrBZXt68u+5om6SluJtn7h7em5stB+539zNrnHMzkHP3qikiM1sLrAUYHBxcOTo62uZI5yaXyzEwMBB1GHMW13JMTOV5bs8B8mV/q1kzXrf4GLIZY142QzZjs14T17I0ory8g/3w4kSxvCtOWEB/bzbq8FrS6e9j/8QU4/smMMApVg7H9fe25b2T+rc1MjKy1d2Hgo4lYtSQu68H1gMMDQ358PBwtAFVGBsbI24xtSKu5dibm+T6dZs4OHXkLm9+b4ZHb7ygaisgrmVpRHl5P/KWaT7702Kr59E15ye21RPF9xHWqKEk/21Vo9SQxF63bbZSXt6sWerLG5bFA32cvWyRPrcGhNYiMLO7gWFgiZmNA58AegHc/YtmdiKwBTgWKJjZHwGnu/u/hhWTJFe3bbYyU95/eOyRRLcEJBlCqwjc/co6x18Alob1+yV9um2zlcUDffT3ZruqzBINpYZERLqcKgIRkS6nikBEpMupIhAR6XKqCEREupwqAhGRLqeKQEQkAcLciCkRS0yIiHSzsDdiUotARCTGOrG/gioCEZEY68T+CqoIRERirBP7K6giEBGJsU6svqvOYpEWhbXevUilsFffVUUg0oKwR3GIVApz9V2lhkSa1IlRHCKdpIpAIhfmRJkwdGIUh0gnKTUkkUpiiqUTozhEOkktAolMUlMs3baHctwlrUUZR2oRSGRmUiwHOXJ3PZNiiftFtdv2UI6rJLYo4yi0FoGZ3WlmL5nZk1WOm5l93sx2mtkTZva2sGKReEp6imXxQB9nL1ukSiAiSW1RxlGYqaGvAqtrHH87cGrp31rgb0KMRdqoXU1xpViapzTIEeq0b5/QUkPu/rCZLa9xyjuBu9zdgR+Z2SIze627/0tYMcnctbsprhRL45QGmS3pLco4ibKz+GRgV9nj8dJzElNhNcWVYqlPaZCjqUXZPla8IQ/pzYstgvvd/cyAY/cDn3b3R0qP/x640d23BJy7lmL6iMHBwZWjo6OhxdyKXC7HwMBA1GHMWb1yTEzleW7PAfJlfzNZM1acsID+3mwnQmxY2r6TJH32QcL8PvIF51C+wLxshmzGQvkd5ZL6tzUyMrLV3YeCjkU5amg3sKzs8dLSc0dx9/XAeoChoSEfHh4OPbhmjI2NEbeYWlGvHHtzk1y/bhMHp440x+f3Znh0zfmxuwtL23eSpM8+SFq+D0hXWWZEmRraAPxBafTQbwD71T8Qb2qKR0efvYQptBaBmd0NDANLzGwc+ATQC+DuXwQ2Au8AdgL/BrwvrFikfdS5Gx199hKWMEcNXVnnuAPXhvX7JTxhroIotemzlzBoiQkRkS6nikCkDk3iqk2fT/JprSGRGjSJqzZ9PumgFoFIFZrEVZs+n/RQRSBShdayqU2fT3qoIhCpQmvZ1KbPJz1UEYhUoUlctenzSQ91FovUoElctenzSQdVBCJ1aBJXbfp8kk+pIUk9jXMXqU0tAkk1jXMXqU8tAkktjXMXaYwqAkktjXMXaYwqAkktjXNvL/W1pJcqAqkrqRcAjXNvn/u27WbVuk1cdcdmVq3bxIZtgZsJSkKps1hqSnpnq8a5z115X8tBii2sG+59glWnLNHnmRJqEUhVrXa2xq0FsXigj7OXLZp10YpbjHGmvpb0U4tAqpq5AMzcBcKRC0C1O8FOtCD25ibndIef9FZOp6mvJf3UIpCqmr0AdGK45lxz1RpS2jz1taRfqC0CM1sNfA7IAne4+6crjr8euBM4AXgZuMrdx8OMSRo3cwG4oeLuudoFoJUWRDPakasOO8a0Ul9LutWsCMzsInffVPp5hbs/V3bsXe7+7RqvzQK3A5cA48DjZrbB3XeUnXYbcJe7/62ZXQT8BXB168VJv7mmRZrVzAUg7BRCOy7iSnO0TmsKpVe91NBtZT/fW3HsT+u89lxgp7s/6+6HgFHgnRXnnA5sKv38UMBxKRPVEL6gztZq54WZQmjHRVxpDpGj1UsNWZWfgx5XOhnYVfZ4HDiv4pztwLsopo/+I7DQzBa7+9467911kjKEL8wUQrOpqk7H2OnWmki7mLtXP2j2Y3d/W+XPQY8DXns5sNrdryk9vho4z92vKzvnJOALwArgYeAy4Ex3f6XivdYCawEGBwdXjo6ONlvOUOVyOQYGBkL9HRNTeZ7bc4B82feVNWPFCQvo783OOjdfcA7lC8zLZshm6tXXR3SiHO3QSPk6XZb9E1OM75vAAKfYejmuv3fO75uU76SetJQDkluWkZGRre4+FHSsXovg181sA8W7/5mfKT1eUee1u4FlZY+Xlp47zN2fp9giwMwGgMsqK4HSeeuB9QBDQ0M+PDxc51d31tjYGGHHtDc3yfXrNnFw6khqZH5vhkfXnD/r7nMuQyM7UY5O6WRZ9uYmWbVuEwenjlTI83unefTGC+fcMgijHFG0XPS3FW/1KoLynP1tFccqH1d6HDjVzFZQrACuAN5TfoKZLQFedvcC8DGKI4gkQCNpkaSkj9ImSSORNIdCgtSsCNz9B+WPzawXOBPY7e4v1XnttJldBzxIcfjone7+lJndAmxx9w3AMPAXZuYUU0PXtlySLlAvt52kC1KaJGUkkm4UpJqao4bM7Itmdkbp5+Modu7eBfzEzK6s9+buvtHdT3P3N7j7n5ee+3ipEsDd73H3U0vnXOPumtVTR60RPEm5IHVCvuAdW0IiKSOR0rZUhJYJaZ96qaEL3P0/l35+H/C0u/+emZ0I/B1wd6jRSVPaNaomKarluu/btpvxF17liz/Y3LH0RxImXKXpRkEprvaqVxEcKvv5EuBbAO7+glnjo1Gkc5JwQWqHaheCmfTHtW9yXp2cBjqX/oj7hKu03CgoxdV+9SqCV8zsUoqdvauAPwQwsx4gebcRXSLuF6S5qnUhqJX+SPNn0qg03CioL6z96lUEHwA+D5wI/JG7v1B6/mLgu2EGJlJNrQtBmOmPOE4YayWmpN8opCnFFRf1Rg09DawOeP5BM3s5tKhEaqh1IZhJf+zasZWFfT1tS3/EMScdx5g6IS0prjhpavVRMzsduLL07xUgcJaadKdO3THXuxCsOedk/v7lp/naBW9tSyxxzEnHMaZOSkOKK07qVgRmtpwjF/8p4PXAkLv/c6iRSaJ0+u603oUgmzHOXraoLb8rjjnpOMbUaUlPccVJvWWoHwOOpbhy6GXu/oyZPadKIB3adQffrrvTvblJnnp+P2CccdKxDa122okLQRxz0nGMSZKrXovgRYqriA5S3DzmGYpraskcRd3xGHQHf2yL7/XU8/vJVAwnbvbu9L5tu/mTb21nKl/88+rJwP949zmxyHnHMScdx5gkuep1Fv9eaUbxu4CbzexUYJGZnevu/9CRCFMo6k6+anfwt4/Mb/q97tu2mxvu2c7k9Oz7g2buTvfmJrnhnicOVwIA0wX46D3bY5PzjmNOOo4xSTLV7SNw9/3AV4CvmNkg8G7gL83sde6+rParpVIcOvmq5ZcP5Qs1XnW0mbJUVgJ9Pc0tsTC+byJwOemsxSvnHcecdBxjkuRpavN6d3/R3f/K3VcB54cUU6rFYb2Xavnledmm/hwCy3JMb5Yv/cFQUy2cpcf3ky8cnXHMu3LeIp1Qr7N4Q63jwJo2xtIV4tDJVy2/nH3lmabeJ6gsBZwzTmqut2HxQB+3Xn4WH6noI7j18rN1tyvSAfVSQ79JcbvJu4HN1N+eUuqISydfUH55bKx+RVDZyd2usszE08yoIRFpj3oVwYkUF5u7kuKmMt8F7nb3p8IOLM3i0snXbH65Wid3u8qyeKCPC097TcuvF5HW1Bs1lAceAB4wsz6KFcKYmX3S3b/QiQDTKimdfDMtgAXzsjU7uZNQFhEJ1sjM4j7gdyhWAsspLkL3nXDDkjgobwFM5guYz+7Q7baZrCJpVa+z+C6KW1NuBD7p7k92JCppShiT04KGuVbSTFaRdKjXIrgKOAB8GPhQ2WY0Bri7tzoZVdokrMlpQXMN5vdmKBScvp6sZrI2IOrZ4yKNqtdH0NzA8gpmthr4HMXN6+9w909XHH8d8LfAotI5N7n7xrn8zm4S5uS0oKGhABs/dAEHDuV1casj6tnjIs2Y04W+FjPLArcDbwdOB64sLWNd7k+Bb7r7W4ErgL8OK540CnNyWrUN2U8ZXMjZyxZ1vBJI0kbl5RX0q5PTHJwqcMO9TyQidulOTe1H0KRzgZ3u/iyAmY0C7wR2lJ3jcHits+OA50OMJ3XCnpwWl2GuSbu71hLRkjShtQgorlq6q+zxeOm5cjcDV5nZOMUO6Q+GGE/qVLtrb+fFZvFAX1MtgPI79725SR5++iUefnpPy3fDSby7jsPscZFmmHs4q0qb2eXAane/pvT4auA8d7+u7Jw/LsXwWTP7TeDLwJnuXqh4r7XAWoDBwcGVo6OjocTcqlwux8DAQGS/P19wDuWLawUFLd7WqLmWY//EFOP7JjCg4A4YXlq13IBlv3YMx/X3NvWeE1N5nttzgHzZ32nWjBUnLKC/N1v1dVF/J+WfhVOsHJotO0RfjnZJSzkguWUZGRnZ6u6Bu0qGmRraDZSvTrq09Fy5P6S0J7K7P2Zm84ElwEvlJ7n7emA9wNDQkA8PD4cUcmvGxsaIW0yNqBzVUl6OoBEvtUbB7M1NsmrdJg5OVb849/VM8cObLmx6s5rr123i4NTs0UuPrjm/5vvE4Ttpx6ihOJSjHdJSDkhXWWaEWRE8DpxqZisoVgBXUFymotwvgYuBr5rZm4H5wJ4QY5KSWhvTBB1zqJmnD8qLV2plWem4rM3UCs24lqQIrSJw92kzuw54kOLQ0Dvd/SkzuwXY4u4bgI8AXzKz6ym2oN/rYeWq5LBaG9MEHfvoPdsBY3K6+jDVasNNy7W6rHRcOq3bSXMMJE7CbBFQmhOwseK5j5f9vANYFWYMcrRaG9MEHcta5qh1ZytHwVTeuU9MTePY4X0G5rqsdJrurpM2CkrSL9SKQOKp1sY0QcemC3nMMkedX3l3X3nnDmhZ6Qpx2KFOpFKYw0clJionY1UbdprN2OFjPWV/GY7x+/9uKfN7MyzoyzKvJ8OfXXp64IWrfLjpzLLSZ5x0LOP7JmI95HMumpnsFocd6kQqqUWQMpW552ppiFob06w6ZQnZTIbpUstgKu98c8s4f/zbp3Hb935ObzbDp+7fwcK+nropjbSnQZotn+YYSBypRZAi923bzap1m7jqjs2sWreJr2/+Rc3JWNUmi43vmzhq/+KsGbd9/2kO5Z0Dh/INTexK4mSwZrRSvk5MAhRplloEMdfo6JKg3PMn/+8OeismmDWy1EHgXWu+wLyeDIemG3+vtC+10Gr50jgKSpJNLYIYq7zD37Ctcj7eEYG556wxlW8+DRF01/qJ3z2D6cLskb313iupaZDKZTKq5f/nUr5ml+4QCZNaBDHV7OiSoItSvuB84nfP4FPf3XHUZKx6LY2gu9aF83uamtiVxMlg5Tn/g9N53J3+3p7A/H8SyycSRBVBTDWbdqh2UVpzzsmsPvPEqh3Ih/J5rhs5lfec97rA9yz/XeWVw4J5WQ4cyrM3N9lQGqR8GGlcVduV7dXJYj4sqCJWmkfSQBVBTLWSdqh2USq/oAdd7D77/af5wkM7+cyq+n8Oiwf6eGTnr5oaKdPs+VGpt0xGtYo4TZPdpDupjyCmWh1dUi/3HNSXADA5XWhorH+zI2WSNHKo3jIZSejfEGmFWgQxFkbaodbFzqDuiJdmU1ZJGjlUmV4L6iMII2atOyRRU0UQc+1OO8xc7D56z3Ymp2ePAppZN7+WZlNWSRs5FLRMRpgX6bRPuJNkUGqoC60552R+eNPFfOSS0+jrOZJ6auRi12zKKokTqCqXyZjLMM9aw0+TlDaTdFOLoEstHujjgxcXRwvNjOiZGn+yoTRFsymrbh1ZU+9uP0lpM0k3VQRdZOYiPzP0c+nx/bNG9HzgjZN84L//v6rj5ss1m7LqtpE1jcwDSVraTNJLFUGXmLk79YIzmXfm92ZwdwpeXFTuIAXcnelC7XHz0phG7vY1IU3iomsqgiSOzGhXzOV3pzPKf65GaYrWNXq3361pM4mXrqgIkjgyo50xN7KfcBClKVrXzN1+t6XNJH5SXxEkcUeodsdca+5ATwaymQzzshnM8vRkCH3cfLsE9XnEKV7d7UtShFoRmNlq4HMUN6+/w90/XXH8L4GR0sNjgNe4+6J2xpDEkRntjrn87rS8jwDgM5eddfhi9atnfsLmNb/V9gtXGGm5mRYTFNNcfVnDMha71p7u9iUJQqsIzCwL3A5cAowDj5vZhtKG9QC4+/Vl538QeGu740jiyIxqMS+Yl2X7rldauqAGLRhXuR7R2D9Z2y9cYaTlgvo8JvMOeT/cchKRxoU5oexcYKe7P+vuh4BR4J01zr8SuLvdQSR1QlNlzO9euZRLv/BIQ3sTQPBEppnJUacMLqw5SaqZPXjrxRDGhKlq6yWB9v8VaUWYqaGTgV1lj8eB84JONLPXAyuATWEEksRcbeUd/KVfeKShPoO9uUm+vvmX3P7QM8zLZmvehQelbL7+o1/wyft3MC9rTBe87Z3U5SmuVlNGtfo8Zlp7+1qKWKQ7mbvXP6uVNza7HFjt7teUHl8NnOfu1wWceyOw1N0/WOW91gJrAQYHB1eOjo6GEnOrcrkcAwMDob3/xFSe5/YcIF/2XWXNWHHCAvp7s4ef2z8xxfi+CQoV32nGjDeduJBs2baVM+caR9YY8kMT7MrVf22j8gXnH194dVY8M++Xm5w+6vcf19/b8HvPxA9QcCdjxfhm3ifs76RTVI74SWpZRkZGtrr7UNCxMFsEu4FlZY+Xlp4LcgVwbbU3cvf1wHqAoaEhHx4eblOI7TE2NkaYMe3NTXL9uk2zcuLzezM8uub8WfsMrFq3iYNT2aNev7Cvh69d8FbOXrao6rl9PVN88HT47E9n/0n092b5X0NncOFpr2kp9gPbdh81hPKcU5Yc9fvn907z6I0XNtUyqDVqKOzvpFNUjvhJU1lmhFkRPA6camYrKFYAVwDvqTzJzN4EHA88FmIsidbImPRacwUqO8eDzs1ahqB7/ompPO+/awu3Xn52UymimYv0qlOW8OiNF81KAW3f9UpbRkXV69hO4iRCkSiEVhG4+7SZXQc8SHH46J3u/pSZ3QJscfcNpVOvAEY9rBxVStTr56iWN+/rsaMqjcD9jb36ZLPJaW9qHkO9kUKdGMm1f2KKVes2JWoSoUhUQl2G2t03uvtp7v4Gd//z0nMfL6sEcPeb3f2mMONIi1pLIleONOrryfCRS07jhzddfNQFMGhU0q2Xn83S4/uZ35uhv/foP4tGR+NUGym088VXD49ECnsk10xLQMs7izQm9TOLu0kzo6OCzh175RkevfFCnnp+P++/a8usjWsavWMPSjt5wXnHXz1CX3b23XlYI7lmOqHLxX0SoUiUVBGkTDMTwoLOXTzQx4WnvYZbLz+7pVUxg9I+k3kHnEPTRw99LX/PduX0lx7fT2WeMe6TCEWipIpAArV6x17ZsT05nSeTsVkjnoLuzts5A3nxQF8pzTWt5Z1FGqCKQKpqdbmJoMlw5SrvzsNYGPC4/l4evfFCjRoSaYD2LJZQlC9nUa9jOGjJiHYsFTHX/YZFuoVaBBK6Voa+Kqcv0jlqEcRUuxZ+i4tmhr4mYWFAkTRRiyCGkrij2lwlcWFAkbRQi6BJYd+ph7V0cxIopy8SDbUImtCJO/Uk7qgmIsmmFkGDOnWnro5TEek0VQQNCmuIYyV1nIpIpyk11KBad+rt3g1LHaci0klqETSo03fq6jgVkU5Ri6AJulMXkTRSRdCkVtffERGJK6WGpO3SNitaJO3UIpC26sZZ0SJJpxZBRNJ41zyXuRatfh5p/BxFOi3UFoGZrQY+R3Hz+jvc/dMB57wbuBlwYLu7vyfMmOKgk3fN7dr1qxGtzopu9fNQ60OkPUKrCMwsC9wOXAKMA4+b2QZ331F2zqnAx4BV7r7PzF4TVjxxEcYmLNV0+kLZyqzoVj+PTn6OImkXZmroXGCnuz/r7oeAUeCdFee8H7jd3fcBuPtLIcbTsnamHzo1QzmKxetamWvR6ufRzs9R6SXpdmGmhk4GdpU9HgfOqzjnNAAze5Ri+uhmd38gxJia1u676k6tJRTV4nXNzrVo9fNo1+eo9JIImLuH88ZmlwOr3f2a0uOrgfPc/bqyc+4HpoB3A0uBh4G3uPsrFe+1FlgLMDg4uHJ0dDSUmCvlC84/vvAqhbLPKGPGm05cSDZjh5/L5XIMDAw0/L77J6YY3zeBUewYWXp8P8f197Yx8sZjL9dsOdql1c+j1usaKUsrn1GnRfWdtFtaygHJLcvIyMhWdx8KOhZmi2A3sKzs8dLSc+XGgc3uPgU8Z2ZPA6cCj5ef5O7rgfUAQ0NDPjw8HFbMs2zf9Qpf/MFmXp2cPvzcwr4ebh86g+P65x2+4x0bG6PZmObSidvoaw9s280NFXe7F9e4222lHO3S6udR7XWNlKXa9/u1C97K2csWNVuEUET5nbRTWsoB6SrLjDArgseBU81sBcUK4AqgckTQ/wGuBL5iZksopoqeDTGmpgSlHw5O53n/XVuYl80evrge28J7tzpDuZlURpKWxGj185jLTG8t+S1SFFpnsbtPA9cBDwI/A77p7k+Z2S1mtqZ02oPAXjPbATwEfNTd94YVU7MqOz/7ejK4O5PTPqsDNl8IJ71WqZUO4DAWr0tL56qW/BYpCnUegbtvBDZWPPfxsp8d+OPSv1gqv6vePzHFtV//8axUQm8mw6F8ocY7tE+Uu5fNpGCe3L2fT313R2o6V5PUahIJi5aYaMBM+mFvbjIwlTAv25kJ2lGlMmbSUT0ZIzeZB0jV2H0tJCjdTktMNKFaKqFTI0w6mcqYSf/sfPHVw+momUqgXBhzIESks9QiaFJQKmFs7JlIf3+7lXdIT+YLWI0hxupcFUk+VQQtiDqVEObvD1q6IciCeVny7upcFUkBVQQyS1CH9PzeDIWC09dTHDL7Z5eezpknHafOVZGUUEUgswR1SANs/NAFHDiU18VfJIXUWSyzVOuQPmVwYdvnI4hIPKhFIEfR2HqR7qKKoI5ObuwSJ1F3iItI56giqEFLFItIN1AfQRVRbOwiIhIFVQRVdGonsbClZYE4EQmPUkNVpGGJYqW2RKQRahFUkfQlipXaEpFGqUVQQ5KHUUa5ZLWIJIsqgjqSOoyy0dRW+fBYEelOqghSaia1VblncXmlVtmHsO639Ocg0o30f36K1UptBa0yOr5vgr25yUS2gESkdaoIUq5aaiuoD8FKz6siEOkuoY4aMrPVZvZzM9tpZjcFHH+vme0xs22lf9eEGY8cEdSH4KXnRaS7hFYRmFkWuB14O3A6cKWZnR5w6v9293NK/+4IKx6ZLWh4bNJGRolIe4SZGjoX2OnuzwKY2SjwTmBHiL9TmlDZh/DTLY9FHZKIRCDM1NDJwK6yx+Ol5ypdZmZPmNk9ZrYsxHgkwOKBPu0zINLlzGtsTD6nNza7HFjt7teUHl8NnOfu15WdsxjIufukmX0A+H13vyjgvdYCawEGBwdXjo6OhhJzq3K5HAMDA1GHMWdpKQekpywqR/wktSwjIyNb3X0o6FiYqaHdQPkd/tLSc4e5+96yh3cAnwl6I3dfD6wHGBoa8uHh4bYGOldjY2PELaZWpKUckJ6yqBzxk6ayzAgzNfQ4cKqZrTCzecAVwIbyE8zstWUP1wA/CzEeEREJEFqLwN2nzew64EEgC9zp7k+Z2S3AFnffAHzIzNYA08DLwHvDikdERIKFOqHM3TcCGyue+3jZzx8DPhZmDCIiUltoncVhMbM9wC+ijqPCEuBXUQfRBmkpB6SnLCpH/CS1LK939xOCDiSuIogjM9tSrTc+SdJSDkhPWVSO+ElTWWZoYxoRkS6nikBEpMupImiP9VEH0CZpKQekpywqR/ykqSyA+ghERLqeWgQiIl1OFYGISJdTRTBHZpY1s5+Y2f1RxzIXZvbPZvbT0gZBW6KOp1Vmtqi0ku0/mtnPzOw3o46pFWb2xrINm7aZ2b+a2R9FHVcrzOx6M3vKzJ40s7vNbH7UMbXCzD5cKsNTSf0uqtFWlXP3YYprJB0bdSBtMOLuSZwoU+5zwAPufnlpjatjog6oFe7+c+AcOLzJ027gO1HG1AozOxn4EHC6u0+Y2Tcprjv21UgDa5KZnQm8n+I+K4eAB8zsfnffGW1k7aEWwRyY2VLgdyiunCoRM7PjgAuBLwO4+yF3fyXSoNrjYuCf3D1uM+ob1QP0m1kPxYr5+YjjacWbgc3u/m/uPg38AHhXxDG1jSqCufmfwA1Aoc55SeDA98xsa2n/hyRaAewBvlJK191hZguiDqoNrgDujjqIVrj7buA24JfAvwD73f170UbVkieBC8xssZkdA7yD2cvsJ5oqghaZ2aXAS+6+NepY2uR8d38bxT2mrzWzC6MOqAU9wNuAv3H3twIHgJuiDWluSumtNcC3oo6lFWZ2PMUtalcAJwELzOyqaKNqnrv/DFgHfA94ANgG5KOMqZ1UEbRuFbDGzP4ZGAUuMrOvRRtS60p3brj7SxRz0edGG1FLxoFxd99cenwPxYohyd4O/NjdX4w6kBb9NvCcu+9x9yng28BvRRxTS9z9y+6+0t0vBPYBT0cdU7uoImiRu3/M3Ze6+3KKTfdN7p64Ox0AM1tgZgtnfgb+A8WmcKK4+wvALjN7Y+mpi4EdEYbUDleS0LRQyS+B3zCzY8zMKH4nidyAysxeU/rv6yj2D3wj2ojaR6OGBGAQ+E7x/1N6gG+4+wPRhtSyDwJfL6VUngXeF3E8LStVypcAH4g6lla5+2Yzuwf4McUNqH5CcpdouLe0z/oUcG1KBiIAWmJCRKTrKTUkItLlVBGIiHQ5VQQiIl1OFYGISJdTRSAi0uVUEYjUYWZePlnQzHrMbM/MirNmNmhm95vZdjPbYWYbS88vN7MnSz8fY2ZfL63w+qSZPWJmA9GUSGQ2zSMQqe8AcKaZ9bv7BMWx/bvLjt8CfN/dPwdgZmcFvMeHgRfd/S2lc95IcTy6SOTUIhBpzEaKK83C0bN9X0txeQsA3P2JgNe/lrLKw91/7u6TIcQp0jRVBCKNGQWuKG2qchawuezY7cCXzewhM/uvZnZSwOvvBG40s8fM7L+Z2akdiFmkIaoIRBpQustfTrE1sLHi2IPArwNfAt4E/MTMTqg4Z1vpnFuBXwMeN7M3hx64SAPURyDSuA0U19YfBhaXH3D3lykuQvaNUifyhcDWinNyFFff/LaZFSiuaZ/IBdgkXdQiEGncncAn3f2n5U+a2UWlzUooreL6Boqrbpafs6q0Nv/MHgOnA0ndcUxSRi0CkQa5+zjw+YBDK4EvmNk0xZurO9z9cTNbXnbOG4C/KS3FnAG+C9wbcsgiDdHqoyIiXU6pIRGRLqeKQESky6kiEBHpcqoIRES6nCoCEZEup4pARKTLqSIQEely/x8buaaokaT7kgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "item_metrics.plot(x='MSIS', y='MASE', kind='scatter')\n", - "plt.grid(which=\"both\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create your own model\n", - "\n", - "For creating our own forecast model we need to:\n", - "\n", - "- Define the training and prediction network\n", - "- Define a new estimator that specifies any data processing and uses the networks\n", - "\n", - "The training and prediction networks can be arbitrarily complex but they should follow some basic rules:\n", - "\n", - "- Both should have a `hybrid_forward` method that defines what should happen when the network is called \n", - "- The training network's `hybrid_forward` should return a **loss** based on the prediction and the true values\n", - "- The prediction network's `hybrid_forward` should return the predictions \n", - "\n", - "The estimator should also include the following methods:\n", - "\n", - "- `create_transformation`, defining all the data pre-processing transformations (like adding features)\n", - "- `create_training_data_loader`, constructing the data loader that gives batches to be used in training, out of a given dataset\n", - "- `create_training_network`, returning the training network configured with any necessary hyperparameters\n", - "- `create_predictor`, creting the prediction network, and returning a `Predictor` object \n", - "\n", - "If a validation dataset is to be accepted, for some validation metric to be computed, then also the following should be defined:\n", - "\n", - "- `create_validation_data_loader`\n", - "\n", - "A `Predictor` defines the `predictor.predict` method of a given predictor. This method takes the test dataset, it passes it through the prediction network to take the predictions, and yields the predictions. You can think of the `Predictor` object as a wrapper of the prediction network that defines its `predict` method. \n", - "\n", - "In this section, we will start simple by creating a feedforward network that is restricted to point forecasts. Then, we will add complexity to the network by expanding it to probabilistic forecasting, considering features and scaling of the time series, and in the end we will replace it with an RNN.\n", - "\n", - "We need to emphasize that the way the following models are implemented and all the design choices that are made are neither binding nor necessarily optimal. Their sole purpose is to provide guidelines and hints on how to build a model. \n", - "\n", - "### Point forecasts with a simple feedforward network\n", - "\n", - "We can create a simple training network that defines a neural network that takes as input a window of length `context_length` and predicts the subsequent window of dimension `prediction_length` (thus, the output dimension of the network is `prediction_length`). The `hybrid_forward` method of the training network returns the mean of the L1 loss. \n", - "\n", - "The prediction network is (and should be) identical to the training network (by inheriting the class) and its `hybrid_forward` method returns the predictions." - ] - }, - { - "cell_type": "code", - "execution_count": 62, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.857270Z", - "iopub.status.busy": "2022-06-13T08:55:45.856608Z", - "iopub.status.idle": "2022-06-13T08:55:45.859610Z", - "shell.execute_reply": "2022-06-13T08:55:45.860028Z" - } - }, - "outputs": [], - "source": [ - "class MyNetwork(gluon.HybridBlock):\n", - " def __init__(self, prediction_length, num_cells, **kwargs):\n", - " super().__init__(**kwargs)\n", - " self.prediction_length = prediction_length\n", - " self.num_cells = num_cells\n", - " \n", - " with self.name_scope():\n", - " # Set up a 3 layer neural network that directly predicts the target values\n", - " self.nn = mx.gluon.nn.HybridSequential()\n", - " self.nn.add(mx.gluon.nn.Dense(units=self.num_cells, activation='relu'))\n", - " self.nn.add(mx.gluon.nn.Dense(units=self.num_cells, activation='relu'))\n", - " self.nn.add(mx.gluon.nn.Dense(units=self.prediction_length, activation='softrelu'))\n", - "\n", - "\n", - "class MyTrainNetwork(MyNetwork): \n", - " def hybrid_forward(self, F, past_target, future_target):\n", - " prediction = self.nn(past_target)\n", - " # calculate L1 loss with the future_target to learn the median\n", - " return (prediction - future_target).abs().mean(axis=-1)\n", - "\n", - "\n", - "class MyPredNetwork(MyTrainNetwork):\n", - " # The prediction network only receives past_target and returns predictions\n", - " def hybrid_forward(self, F, past_target):\n", - " prediction = self.nn(past_target)\n", - " return prediction.expand_dims(axis=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The estimator class is configured by a few hyperparameters and implements the required methods." - ] - }, - { - "cell_type": "code", - "execution_count": 63, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.865225Z", - "iopub.status.busy": "2022-06-13T08:55:45.864448Z", - "iopub.status.idle": "2022-06-13T08:55:45.866560Z", - "shell.execute_reply": "2022-06-13T08:55:45.867053Z" - } - }, - "outputs": [], - "source": [ - "from functools import partial\n", - "from mxnet.gluon import HybridBlock\n", - "from gluonts.core.component import validated\n", - "from gluonts.dataset.loader import TrainDataLoader\n", - "from gluonts.model.predictor import Predictor\n", - "from gluonts.mx import (\n", - " as_in_context, \n", - " batchify,\n", - " copy_parameters, \n", - " get_hybrid_forward_input_names,\n", - " GluonEstimator,\n", - " RepresentableBlockPredictor,\n", - " Trainer,\n", - ")\n", - "from gluonts.transform import (\n", - " ExpectedNumInstanceSampler,\n", - " Transformation,\n", - " InstanceSplitter,\n", - " TestSplitSampler,\n", - " SelectFields,\n", - " Chain\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 64, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.880269Z", - "iopub.status.busy": "2022-06-13T08:55:45.879310Z", - "iopub.status.idle": "2022-06-13T08:55:45.881745Z", - "shell.execute_reply": "2022-06-13T08:55:45.882239Z" - } - }, - "outputs": [], - "source": [ - "class MyEstimator(GluonEstimator):\n", - " @validated()\n", - " def __init__(\n", - " self,\n", - " prediction_length: int,\n", - " context_length: int,\n", - " freq: str,\n", - " num_cells: int,\n", - " batch_size: int = 32,\n", - " trainer: Trainer = Trainer()\n", - " ) -> None:\n", - " super().__init__(trainer=trainer, batch_size=batch_size)\n", - " self.prediction_length = prediction_length\n", - " self.context_length = context_length\n", - " self.freq = freq\n", - " self.num_cells = num_cells\n", - " \n", - " def create_transformation(self):\n", - " return Chain([])\n", - " \n", - " def create_training_data_loader(self, dataset, **kwargs):\n", - " instance_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=ExpectedNumInstanceSampler(\n", - " num_instances=1,\n", - " min_future=self.prediction_length\n", - " ),\n", - " past_length=self.context_length,\n", - " future_length=self.prediction_length,\n", - " )\n", - " input_names = get_hybrid_forward_input_names(MyTrainNetwork)\n", - " return TrainDataLoader(\n", - " dataset=dataset,\n", - " transform=instance_splitter + SelectFields(input_names),\n", - " batch_size=self.batch_size,\n", - " stack_fn=partial(batchify, ctx=self.trainer.ctx, dtype=self.dtype),\n", - " decode_fn=partial(as_in_context, ctx=self.trainer.ctx),\n", - " **kwargs,\n", - " )\n", - " \n", - " def create_training_network(self) -> MyTrainNetwork:\n", - " return MyTrainNetwork(\n", - " prediction_length=self.prediction_length,\n", - " num_cells = self.num_cells\n", - " )\n", - "\n", - " def create_predictor(\n", - " self, transformation: Transformation, trained_network: HybridBlock\n", - " ) -> Predictor:\n", - " prediction_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=TestSplitSampler(),\n", - " past_length=self.context_length,\n", - " future_length=self.prediction_length,\n", - " )\n", - "\n", - " prediction_network = MyPredNetwork(\n", - " prediction_length=self.prediction_length,\n", - " num_cells=self.num_cells\n", - " )\n", - "\n", - " copy_parameters(trained_network, prediction_network)\n", - "\n", - " return RepresentableBlockPredictor(\n", - " input_transform=transformation + prediction_splitter,\n", - " prediction_net=prediction_network,\n", - " batch_size=self.trainer.batch_size,\n", - " freq=self.freq,\n", - " prediction_length=self.prediction_length,\n", - " ctx=self.trainer.ctx,\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After defining the training and prediction network, as well as the estimator class, we can follow exactly the same steps as with the existing models, i.e., we can specify our estimator by passing all the required hyperparameters to the estimator class, train the estimator by invoking its `train` method to create a predictor, and finally use the `make_evaluation_predictions` function to generate our forecasts." - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.888126Z", - "iopub.status.busy": "2022-06-13T08:55:45.887243Z", - "iopub.status.idle": "2022-06-13T08:55:45.889598Z", - "shell.execute_reply": "2022-06-13T08:55:45.890124Z" - } - }, - "outputs": [], - "source": [ - "estimator = MyEstimator(\n", - " prediction_length=custom_ds_metadata['prediction_length'],\n", - " context_length=2*custom_ds_metadata['prediction_length'],\n", - " freq=custom_ds_metadata['freq'],\n", - " num_cells=40,\n", - " trainer=Trainer(\n", - " ctx=\"cpu\",\n", - " epochs=5, \n", - " learning_rate=1e-3, \n", - " hybridize=False, \n", - " num_batches_per_epoch=100\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The estimator can be trained using our training dataset `train_ds` just by invoking its `train` method. The training returns a predictor that can be used to predict." - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:45.895141Z", - "iopub.status.busy": "2022-06-13T08:55:45.894504Z", - "iopub.status.idle": "2022-06-13T08:55:48.237243Z", - "shell.execute_reply": "2022-06-13T08:55:48.237667Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/100 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_prob_forecasts(tss[0], forecasts[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Observe that we cannot actually see any prediction intervals in the predictions. This is expected since the model that we defined does not do probabilistic forecasting but it just gives point estimates. By requiring 100 sample paths (defined in `make_evaluation_predictions`) in such a network, we get 100 times the same output.\n", - "\n", - "### Probabilistic forecasting\n", - "\n", - "#### How does a model learn a distribution?\n", - "\n", - "Probabilistic forecasting requires that we learn the distribution of the future values of the time series and not the values themselves as in point forecasting. To achieve this, we need to specify the type of distribution that the future values follow. GluonTS comes with a number of different distributions that cover many use cases, such as Gaussian, Student-t and Uniform just to name a few. \n", - "\n", - "\n", - "In order to learn a distribution we need to learn its parameters. For example, in the simple case where we assume a Gaussian distribution, we need to learn the mean and the variance that fully specify the distribution.\n", - "\n", - "Each distribution that is available in GluonTS is defined by the corresponding `Distribution` class (e.g., `Gaussian`). This class defines -among others- the parameters of the distribution, its (log-)likelihood and a sampling method (given the parameters). \n", - "\n", - "However, it is not straightforward how to connect a model with such a distribution and learn its parameters. For this, each distribution comes with a `DistributionOutput` class (e.g., `GaussianOutput`). The role of this class is to connect a model with a distribution. Its main usage is to take the output of the model and map it to the parameters of the distribution. You can think of it as an additional projection layer on top of the model. The parameters of this layer are optimized along with the rest of the network.\n", - "\n", - "By including this projection layer, our model effectively learns the parameters of the (chosen) distribution of each time step. Such a model is usually optimized by choosing as a loss function the negative log-likelihood of the chosen distribution. After we optimize our model and learn the parameters we can sample or derive any other useful statistics from the learned distributions.\n", - "\n", - "#### Feedforward network for probabilistic forecasting\n", - "\n", - "Let's see what changes we need to make to the previous model to make it probabilistic: \n", - "\n", - "- First, we need to change the output of the network. In the point forecast network the output was a vector of length `prediction_length` that gave directly the point estimates. Now, we need to output a set of features that the `DistributionOutput` will use to project to the distribution parameters. These features should be different for each time step at the prediction horizon. Therefore we need an overall output of `prediction_length * num_features` values.\n", - "- The `DistributionOutput` takes as input a tensor and uses the last dimension as features to be projected to the distribution parameters. Here, we need a distribution object for each time step, i.e., `prediction_length` distribution objects. Given that the output of the network has `prediction_length * num_features` values, we can reshape it to `(prediction_length, num_features)` and get the required distributions, while the last axis of length `num_features` will be projected to the distribution parameters. \n", - "- We want the prediction network to output many sample paths for each time series. To achieve this we can repeat each time series as many times as the number of sample paths and do a standard forecast for each of them. \n", - "\n", - "Note that in all the tensors that we handle there is an initial dimension that refers to the batch, e.g., the output of the network has dimension `(batch_size, prediction_length * num_features)`." - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:48.812295Z", - "iopub.status.busy": "2022-06-13T08:55:48.810322Z", - "iopub.status.idle": "2022-06-13T08:55:48.815084Z", - "shell.execute_reply": "2022-06-13T08:55:48.815669Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.mx import DistributionOutput, GaussianOutput" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:48.829651Z", - "iopub.status.busy": "2022-06-13T08:55:48.828373Z", - "iopub.status.idle": "2022-06-13T08:55:48.831222Z", - "shell.execute_reply": "2022-06-13T08:55:48.831800Z" - } - }, - "outputs": [], - "source": [ - "class MyProbNetwork(gluon.HybridBlock):\n", - " def __init__(\n", - " self, \n", - " prediction_length, \n", - " distr_output, \n", - " num_cells, \n", - " num_sample_paths=100, \n", - " **kwargs\n", - " ) -> None:\n", - " super().__init__(**kwargs)\n", - " self.prediction_length = prediction_length\n", - " self.distr_output = distr_output\n", - " self.num_cells = num_cells\n", - " self.num_sample_paths = num_sample_paths\n", - " self.proj_distr_args = distr_output.get_args_proj()\n", - "\n", - " with self.name_scope():\n", - " # Set up a 2 layer neural network that its ouput will be projected to the distribution parameters\n", - " self.nn = mx.gluon.nn.HybridSequential()\n", - " self.nn.add(mx.gluon.nn.Dense(units=self.num_cells, activation='relu'))\n", - " self.nn.add(mx.gluon.nn.Dense(units=self.prediction_length * self.num_cells, activation='relu'))\n", - "\n", - "\n", - "class MyProbTrainNetwork(MyProbNetwork):\n", - " def hybrid_forward(self, F, past_target, future_target):\n", - " # compute network output\n", - " net_output = self.nn(past_target)\n", - "\n", - " # (batch, prediction_length * nn_features) -> (batch, prediction_length, nn_features)\n", - " net_output = net_output.reshape(0, self.prediction_length, -1)\n", - "\n", - " # project network output to distribution parameters domain\n", - " distr_args = self.proj_distr_args(net_output)\n", - "\n", - " # compute distribution\n", - " distr = self.distr_output.distribution(distr_args)\n", - "\n", - " # negative log-likelihood\n", - " loss = distr.loss(future_target)\n", - " return loss\n", - "\n", - "\n", - "class MyProbPredNetwork(MyProbTrainNetwork):\n", - " # The prediction network only receives past_target and returns predictions\n", - " def hybrid_forward(self, F, past_target):\n", - " # repeat past target: from (batch_size, past_target_length) to \n", - " # (batch_size * num_sample_paths, past_target_length)\n", - " repeated_past_target = past_target.repeat(\n", - " repeats=self.num_sample_paths, axis=0\n", - " )\n", - " \n", - " # compute network output\n", - " net_output = self.nn(repeated_past_target)\n", - "\n", - " # (batch * num_sample_paths, prediction_length * nn_features) -> (batch * num_sample_paths, prediction_length, nn_features)\n", - " net_output = net_output.reshape(0, self.prediction_length, -1)\n", - " \n", - " # project network output to distribution parameters domain\n", - " distr_args = self.proj_distr_args(net_output)\n", - "\n", - " # compute distribution\n", - " distr = self.distr_output.distribution(distr_args)\n", - "\n", - " # get (batch_size * num_sample_paths, prediction_length) samples\n", - " samples = distr.sample()\n", - " \n", - " # reshape from (batch_size * num_sample_paths, prediction_length) to \n", - " # (batch_size, num_sample_paths, prediction_length)\n", - " return samples.reshape(shape=(-1, self.num_sample_paths, self.prediction_length))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The changes we need to do at the estimator are minor and they mainly reflect the additional `distr_output` parameter that our networks use." - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:48.849688Z", - "iopub.status.busy": "2022-06-13T08:55:48.848676Z", - "iopub.status.idle": "2022-06-13T08:55:48.851339Z", - "shell.execute_reply": "2022-06-13T08:55:48.851984Z" - } - }, - "outputs": [], - "source": [ - "class MyProbEstimator(GluonEstimator):\n", - " @validated()\n", - " def __init__(\n", - " self,\n", - " prediction_length: int,\n", - " context_length: int,\n", - " freq: str,\n", - " distr_output: DistributionOutput,\n", - " num_cells: int,\n", - " num_sample_paths: int = 100,\n", - " batch_size: int = 32,\n", - " trainer: Trainer = Trainer()\n", - " ) -> None:\n", - " super().__init__(trainer=trainer, batch_size=batch_size)\n", - " self.prediction_length = prediction_length\n", - " self.context_length = context_length\n", - " self.freq = freq\n", - " self.distr_output = distr_output\n", - " self.num_cells = num_cells\n", - " self.num_sample_paths = num_sample_paths\n", - "\n", - " def create_transformation(self):\n", - " return Chain([])\n", - " \n", - " def create_training_data_loader(self, dataset, **kwargs):\n", - " instance_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=ExpectedNumInstanceSampler(\n", - " num_instances=1,\n", - " min_future=self.prediction_length\n", - " ),\n", - " past_length=self.context_length,\n", - " future_length=self.prediction_length,\n", - " )\n", - " input_names = get_hybrid_forward_input_names(MyProbTrainNetwork)\n", - " return TrainDataLoader(\n", - " dataset=dataset,\n", - " transform=instance_splitter + SelectFields(input_names),\n", - " batch_size=self.batch_size,\n", - " stack_fn=partial(batchify, ctx=self.trainer.ctx, dtype=self.dtype),\n", - " decode_fn=partial(as_in_context, ctx=self.trainer.ctx),\n", - " **kwargs,\n", - " )\n", - "\n", - " def create_training_network(self) -> MyProbTrainNetwork:\n", - " return MyProbTrainNetwork(\n", - " prediction_length=self.prediction_length,\n", - " distr_output=self.distr_output,\n", - " num_cells=self.num_cells,\n", - " num_sample_paths=self.num_sample_paths\n", - " )\n", - "\n", - " def create_predictor(\n", - " self, transformation: Transformation, trained_network: HybridBlock\n", - " ) -> Predictor:\n", - " prediction_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=TestSplitSampler(),\n", - " past_length=self.context_length,\n", - " future_length=self.prediction_length,\n", - " )\n", - "\n", - " prediction_network = MyProbPredNetwork(\n", - " prediction_length=self.prediction_length,\n", - " distr_output=self.distr_output,\n", - " num_cells=self.num_cells,\n", - " num_sample_paths=self.num_sample_paths\n", - " )\n", - "\n", - " copy_parameters(trained_network, prediction_network)\n", - "\n", - " return RepresentableBlockPredictor(\n", - " input_transform=transformation + prediction_splitter,\n", - " prediction_net=prediction_network,\n", - " batch_size=self.trainer.batch_size,\n", - " freq=self.freq,\n", - " prediction_length=self.prediction_length,\n", - " ctx=self.trainer.ctx,\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:48.859193Z", - "iopub.status.busy": "2022-06-13T08:55:48.857933Z", - "iopub.status.idle": "2022-06-13T08:55:48.861287Z", - "shell.execute_reply": "2022-06-13T08:55:48.861929Z" - } - }, - "outputs": [], - "source": [ - "estimator = MyProbEstimator(\n", - " prediction_length=custom_ds_metadata['prediction_length'],\n", - " context_length=2*custom_ds_metadata['prediction_length'],\n", - " freq=custom_ds_metadata['freq'],\n", - " distr_output=GaussianOutput(),\n", - " num_cells=40,\n", - " trainer=Trainer(\n", - " ctx=\"cpu\", \n", - " epochs=5, \n", - " learning_rate=1e-3, \n", - " hybridize=False, \n", - " num_batches_per_epoch=100\n", - " )\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:48.868502Z", - "iopub.status.busy": "2022-06-13T08:55:48.867391Z", - "iopub.status.idle": "2022-06-13T08:55:51.725552Z", - "shell.execute_reply": "2022-06-13T08:55:51.726059Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/100 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_prob_forecasts(tss[0], forecasts[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Add features and scaling\n", - "\n", - "In the previous networks we used only the target and did not leverage any of the features of the dataset. Here we expand the probabilistic network by including the `feat_dynamic_real` field of the dataset that could enhance the forecasting power of our model. We achieve this by concatenating the target and the features to an enhanced vector that forms the new network input. \n", - "\n", - "All the features that are available in a dataset can be potentially used as inputs to our model. However, for the purposes of this example we will restrict ourselves to using only one feature.\n", - "\n", - "An important issue that a practitioner needs to deal with often is the different orders of magnitude in the values of the time series in a dataset. It is extremely helpful for a model to be trained and forecast values that lie roughly in the same value range. To address this issue, we add a `Scaler` to out model, that computes the scale of each time series. Then we can scale accordingly the values of the time series or any related features and use these as inputs to the network." - ] - }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:52.048615Z", - "iopub.status.busy": "2022-06-13T08:55:52.047629Z", - "iopub.status.idle": "2022-06-13T08:55:52.050169Z", - "shell.execute_reply": "2022-06-13T08:55:52.050856Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.mx import MeanScaler, NOPScaler" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:52.072147Z", - "iopub.status.busy": "2022-06-13T08:55:52.070751Z", - "iopub.status.idle": "2022-06-13T08:55:52.073611Z", - "shell.execute_reply": "2022-06-13T08:55:52.074183Z" - } - }, - "outputs": [], - "source": [ - "class MyProbNetwork(gluon.HybridBlock):\n", - " def __init__(\n", - " self, \n", - " prediction_length, \n", - " context_length, \n", - " distr_output, \n", - " num_cells, \n", - " num_sample_paths=100, \n", - " scaling=True, \n", - " **kwargs\n", - " ) -> None:\n", - " super().__init__(**kwargs)\n", - " self.prediction_length = prediction_length\n", - " self.context_length = context_length\n", - " self.distr_output = distr_output\n", - " self.num_cells = num_cells\n", - " self.num_sample_paths = num_sample_paths\n", - " self.proj_distr_args = distr_output.get_args_proj()\n", - " self.scaling = scaling\n", - "\n", - " with self.name_scope():\n", - " # Set up a 2 layer neural network that its ouput will be projected to the distribution parameters\n", - " self.nn = mx.gluon.nn.HybridSequential()\n", - " self.nn.add(mx.gluon.nn.Dense(units=self.num_cells, activation='relu'))\n", - " self.nn.add(mx.gluon.nn.Dense(units=self.prediction_length * self.num_cells, activation='relu'))\n", - "\n", - " if scaling:\n", - " self.scaler = MeanScaler(keepdims=True)\n", - " else:\n", - " self.scaler = NOPScaler(keepdims=True)\n", - "\n", - " def compute_scale(self, past_target, past_observed_values):\n", - " # scale shape is (batch_size, 1)\n", - " _, scale = self.scaler(\n", - " past_target.slice_axis(\n", - " axis=1, begin=-self.context_length, end=None\n", - " ),\n", - " past_observed_values.slice_axis(\n", - " axis=1, begin=-self.context_length, end=None\n", - " ),\n", - " )\n", - "\n", - " return scale\n", - "\n", - "\n", - "class MyProbTrainNetwork(MyProbNetwork):\n", - " def hybrid_forward(self, F, past_target, future_target, past_observed_values, past_feat_dynamic_real):\n", - " # compute scale \n", - " scale = self.compute_scale(past_target, past_observed_values)\n", - "\n", - " # scale target and time features\n", - " past_target_scale = F.broadcast_div(past_target, scale)\n", - " past_feat_dynamic_real_scale = F.broadcast_div(past_feat_dynamic_real.squeeze(axis=-1), scale)\n", - "\n", - " # concatenate target and time features to use them as input to the network\n", - " net_input = F.concat(past_target_scale, past_feat_dynamic_real_scale, dim=-1)\n", - "\n", - " # compute network output\n", - " net_output = self.nn(net_input)\n", - "\n", - " # (batch, prediction_length * nn_features) -> (batch, prediction_length, nn_features)\n", - " net_output = net_output.reshape(0, self.prediction_length, -1)\n", - "\n", - " # project network output to distribution parameters domain\n", - " distr_args = self.proj_distr_args(net_output)\n", - "\n", - " # compute distribution\n", - " distr = self.distr_output.distribution(distr_args, scale=scale)\n", - "\n", - " # negative log-likelihood\n", - " loss = distr.loss(future_target)\n", - " return loss\n", - "\n", - "\n", - "class MyProbPredNetwork(MyProbTrainNetwork):\n", - " # The prediction network only receives past_target and returns predictions\n", - " def hybrid_forward(self, F, past_target, past_observed_values, past_feat_dynamic_real):\n", - " # repeat fields: from (batch_size, past_target_length) to\n", - " # (batch_size * num_sample_paths, past_target_length)\n", - " repeated_past_target = past_target.repeat(\n", - " repeats=self.num_sample_paths, axis=0\n", - " )\n", - " repeated_past_observed_values = past_observed_values.repeat(\n", - " repeats=self.num_sample_paths, axis=0\n", - " )\n", - " repeated_past_feat_dynamic_real = past_feat_dynamic_real.repeat(\n", - " repeats=self.num_sample_paths, axis=0\n", - " )\n", - " \n", - " # compute scale\n", - " scale = self.compute_scale(repeated_past_target, repeated_past_observed_values)\n", - "\n", - " # scale repeated target and time features\n", - " repeated_past_target_scale = F.broadcast_div(repeated_past_target, scale)\n", - " repeated_past_feat_dynamic_real_scale = F.broadcast_div(repeated_past_feat_dynamic_real.squeeze(axis=-1), scale)\n", - "\n", - " # concatenate target and time features to use them as input to the network\n", - " net_input = F.concat(repeated_past_target_scale, repeated_past_feat_dynamic_real_scale, dim=-1)\n", - "\n", - " # compute network oputput\n", - " net_output = self.nn(net_input)\n", - " \n", - " # (batch * num_sample_paths, prediction_length * nn_features) -> (batch * num_sample_paths, prediction_length, nn_features)\n", - " net_output = net_output.reshape(0, self.prediction_length, -1)\n", - "\n", - " # project network output to distribution parameters domain\n", - " distr_args = self.proj_distr_args(net_output)\n", - " \n", - " # compute distribution\n", - " distr = self.distr_output.distribution(distr_args, scale=scale)\n", - "\n", - " # get (batch_size * num_sample_paths, prediction_length) samples\n", - " samples = distr.sample()\n", - "\n", - " # reshape from (batch_size * num_sample_paths, prediction_length) to\n", - " # (batch_size, num_sample_paths, prediction_length)\n", - " return samples.reshape(shape=(-1, self.num_sample_paths, self.prediction_length))" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:52.093518Z", - "iopub.status.busy": "2022-06-13T08:55:52.088201Z", - "iopub.status.idle": "2022-06-13T08:55:52.097354Z", - "shell.execute_reply": "2022-06-13T08:55:52.096633Z" - } - }, - "outputs": [], - "source": [ - "class MyProbEstimator(GluonEstimator):\n", - " @validated()\n", - " def __init__(\n", - " self,\n", - " prediction_length: int,\n", - " context_length: int,\n", - " freq: str,\n", - " distr_output: DistributionOutput,\n", - " num_cells: int,\n", - " num_sample_paths: int = 100,\n", - " scaling: bool = True,\n", - " batch_size: int = 32,\n", - " trainer: Trainer = Trainer()\n", - " ) -> None:\n", - " super().__init__(trainer=trainer, batch_size=batch_size)\n", - " self.prediction_length = prediction_length\n", - " self.context_length = context_length\n", - " self.freq = freq\n", - " self.distr_output = distr_output\n", - " self.num_cells = num_cells\n", - " self.num_sample_paths = num_sample_paths\n", - " self.scaling = scaling\n", - "\n", - " def create_transformation(self):\n", - " # Feature transformation that the model uses for input.\n", - " return AddObservedValuesIndicator(\n", - " target_field=FieldName.TARGET,\n", - " output_field=FieldName.OBSERVED_VALUES,\n", - " )\n", - " \n", - " def create_training_data_loader(self, dataset, **kwargs):\n", - " instance_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=ExpectedNumInstanceSampler(\n", - " num_instances=1,\n", - " min_future=self.prediction_length\n", - " ),\n", - " past_length=self.context_length,\n", - " future_length=self.prediction_length,\n", - " time_series_fields=[\n", - " FieldName.FEAT_DYNAMIC_REAL,\n", - " FieldName.OBSERVED_VALUES,\n", - " ],\n", - " )\n", - " input_names = get_hybrid_forward_input_names(MyProbTrainNetwork)\n", - " return TrainDataLoader(\n", - " dataset=dataset,\n", - " transform=instance_splitter + SelectFields(input_names),\n", - " batch_size=self.batch_size,\n", - " stack_fn=partial(batchify, ctx=self.trainer.ctx, dtype=self.dtype),\n", - " decode_fn=partial(as_in_context, ctx=self.trainer.ctx),\n", - " **kwargs,\n", - " )\n", - "\n", - " def create_training_network(self) -> MyProbTrainNetwork:\n", - " return MyProbTrainNetwork(\n", - " prediction_length=self.prediction_length,\n", - " context_length=self.context_length,\n", - " distr_output=self.distr_output,\n", - " num_cells=self.num_cells,\n", - " num_sample_paths=self.num_sample_paths,\n", - " scaling=self.scaling\n", - " )\n", - "\n", - " def create_predictor(\n", - " self, transformation: Transformation, trained_network: HybridBlock\n", - " ) -> Predictor:\n", - " prediction_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=TestSplitSampler(),\n", - " past_length=self.context_length,\n", - " future_length=self.prediction_length,\n", - " time_series_fields=[\n", - " FieldName.FEAT_DYNAMIC_REAL,\n", - " FieldName.OBSERVED_VALUES,\n", - " ],\n", - " )\n", - "\n", - " prediction_network = MyProbPredNetwork(\n", - " prediction_length=self.prediction_length,\n", - " context_length=self.context_length,\n", - " distr_output=self.distr_output,\n", - " num_cells=self.num_cells,\n", - " num_sample_paths=self.num_sample_paths,\n", - " scaling=self.scaling\n", - " )\n", - "\n", - " copy_parameters(trained_network, prediction_network)\n", - "\n", - " return RepresentableBlockPredictor(\n", - " input_transform=transformation + prediction_splitter,\n", - " prediction_net=prediction_network,\n", - " batch_size=self.trainer.batch_size,\n", - " freq=self.freq,\n", - " prediction_length=self.prediction_length,\n", - " ctx=self.trainer.ctx,\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:52.104638Z", - "iopub.status.busy": "2022-06-13T08:55:52.103646Z", - "iopub.status.idle": "2022-06-13T08:55:52.106076Z", - "shell.execute_reply": "2022-06-13T08:55:52.106626Z" - } - }, - "outputs": [], - "source": [ - "estimator = MyProbEstimator(\n", - " prediction_length=custom_ds_metadata['prediction_length'],\n", - " context_length=2*custom_ds_metadata['prediction_length'],\n", - " freq=custom_ds_metadata['freq'],\n", - " distr_output=GaussianOutput(),\n", - " num_cells=40,\n", - " trainer=Trainer(\n", - " ctx=\"cpu\", \n", - " epochs=5, \n", - " learning_rate=1e-3, \n", - " hybridize=False, \n", - " num_batches_per_epoch=100\n", - " )\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:52.114140Z", - "iopub.status.busy": "2022-06-13T08:55:52.112654Z", - "iopub.status.idle": "2022-06-13T08:55:56.642045Z", - "shell.execute_reply": "2022-06-13T08:55:56.642584Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/100 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_prob_forecasts(tss[0], forecasts[0])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### From feedforward to RNN\n", - "\n", - "In all the previous examples we have used a feedforward neural network as the base for our forecasting model. The main idea behind it was to use as an input to the network a window of the time series (of length `context_length`) and train the network to forecast the following window (of length `prediction_length`). \n", - "\n", - "In this section we will replace the feedforward network with a recurrent neural network (RNN). Due to the different nature of RNNs the structure of the networks will be a bit different. Let's see what are the major changes. \n", - "\n", - "#### Training\n", - "\n", - "The main idea behind RNN is the same as in the feedforward networks we already constructed: as we unroll the RNN at each time step we use as an input past values of the time series and forecast the next value. We can enhance the input by using multiple past values (for example specific lags based on seasonality patterns) or available features. However, in this example we will keep things simple and just use the last value of the time series. The output of the network at each time step is the distribution of the value of the next time step, where the state of the RNN is used as the feature vector for the parameter projection of the distribution.\n", - "\n", - "Due to the sequential nature of the RNN, the distinction between `past_` and `future_` in the cut window of the time series is not really necessary. Therefore, we can concatenate `past_target` and `future_target ` and treat it as a concrete `target` window that we wish to forecast. This means that the input to the RNN would be (sequentially) the window `target[-(context_length + prediction_length + 1):-1]` (one time step before the window we want to predict). As a consequence, we need to have `context_length + prediction_length + 1` available values at each window that we cut. We can define this in the `InstanceSplitter`. \n", - "\n", - "Overall, during training the steps are the following:\n", - "\n", - "- We pass sequentially through the RNN the target values `target[-(context_length + prediction_length + 1):-1]` \n", - "- We use the state of the RNN at each time step as a feature vector and project it to the distribution parameter domain\n", - "- The output at each time step is the distribution of the values of the next time step, which overall is the forecasted distribution for the window `target[-(context_length + prediction_length):]`\n", - "\n", - "The above steps are implemented in the `unroll_encoder` method.\n", - "\n", - "#### Inference\n", - "\n", - "During inference we know the values only of `past_target` therefore we cannot follow exactly the same steps as in training. However the main idea is very similar:\n", - "\n", - "- We pass sequentially through the RNN the past target values `past_target[-(context_length + 1):]` that effectively updates the state of the RNN\n", - "- In the last time step the output of the RNN is effectively the distribution of the next value of the time series (which we do not know). Therefore we sample (`num_sample_paths` times) from this distribution and use the samples as inputs to the RNN for the next time step\n", - "- We repeat the previous step `prediction_length` times \n", - "\n", - "The first step is implemented in `unroll_encoder` and the last steps in the `sample_decoder` method." - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:57.010956Z", - "iopub.status.busy": "2022-06-13T08:55:57.009992Z", - "iopub.status.idle": "2022-06-13T08:55:57.012463Z", - "shell.execute_reply": "2022-06-13T08:55:57.012999Z" - } - }, - "outputs": [], - "source": [ - "class MyProbRNN(gluon.HybridBlock):\n", - " def __init__(self,\n", - " prediction_length,\n", - " context_length,\n", - " distr_output,\n", - " num_cells,\n", - " num_layers,\n", - " num_sample_paths=100,\n", - " scaling=True,\n", - " **kwargs\n", - " ) -> None:\n", - " super().__init__(**kwargs)\n", - " self.prediction_length = prediction_length\n", - " self.context_length = context_length\n", - " self.distr_output = distr_output\n", - " self.num_cells = num_cells\n", - " self.num_layers = num_layers\n", - " self.num_sample_paths = num_sample_paths\n", - " self.proj_distr_args = distr_output.get_args_proj()\n", - " self.scaling = scaling\n", - "\n", - " with self.name_scope():\n", - " self.rnn = mx.gluon.rnn.HybridSequentialRNNCell()\n", - " for k in range(self.num_layers):\n", - " cell = mx.gluon.rnn.LSTMCell(hidden_size=self.num_cells)\n", - " cell = mx.gluon.rnn.ResidualCell(cell) if k > 0 else cell\n", - " self.rnn.add(cell)\n", - "\n", - " if scaling:\n", - " self.scaler = MeanScaler(keepdims=True)\n", - " else:\n", - " self.scaler = NOPScaler(keepdims=True)\n", - "\n", - " def compute_scale(self, past_target, past_observed_values):\n", - " # scale is computed on the context length last units of the past target\n", - " # scale shape is (batch_size, 1, *target_shape)\n", - " _, scale = self.scaler(\n", - " past_target.slice_axis(\n", - " axis=1, begin=-self.context_length, end=None\n", - " ),\n", - " past_observed_values.slice_axis(\n", - " axis=1, begin=-self.context_length, end=None\n", - " ),\n", - " )\n", - "\n", - " return scale\n", - "\n", - " def unroll_encoder(\n", - " self, \n", - " F, \n", - " past_target, \n", - " past_observed_values, \n", - " future_target=None, \n", - " future_observed_values=None\n", - " ):\n", - " # overall target field\n", - " # input target from -(context_length + prediction_length + 1) to -1\n", - " if future_target is not None: # during training\n", - " target_in = F.concat(\n", - " past_target, future_target, dim=-1\n", - " ).slice_axis(\n", - " axis=1, begin=-(self.context_length + self.prediction_length + 1), end=-1\n", - " )\n", - "\n", - " # overall observed_values field\n", - " # input observed_values corresponding to target_in\n", - " observed_values_in = F.concat(\n", - " past_observed_values, future_observed_values, dim=-1\n", - " ).slice_axis(\n", - " axis=1, begin=-(self.context_length + self.prediction_length + 1), end=-1\n", - " )\n", - "\n", - " rnn_length = self.context_length + self.prediction_length\n", - " else: # during inference\n", - " target_in = past_target.slice_axis(\n", - " axis=1, begin=-(self.context_length + 1), end=-1\n", - " )\n", - "\n", - " # overall observed_values field\n", - " # input observed_values corresponding to target_in\n", - " observed_values_in = past_observed_values.slice_axis(\n", - " axis=1, begin=-(self.context_length + 1), end=-1\n", - " )\n", - "\n", - " rnn_length = self.context_length\n", - "\n", - " # compute scale\n", - " scale = self.compute_scale(target_in, observed_values_in)\n", - "\n", - " # scale target_in\n", - " target_in_scale = F.broadcast_div(target_in, scale)\n", - "\n", - " # compute network output\n", - " net_output, states = self.rnn.unroll(\n", - " inputs=target_in_scale,\n", - " length=rnn_length,\n", - " layout=\"NTC\",\n", - " merge_outputs=True,\n", - " )\n", - "\n", - " return net_output, states, scale\n", - "\n", - "\n", - "class MyProbTrainRNN(MyProbRNN):\n", - " def hybrid_forward(\n", - " self,\n", - " F,\n", - " past_target,\n", - " future_target,\n", - " past_observed_values,\n", - " future_observed_values\n", - " ):\n", - " net_output, _, scale = self.unroll_encoder(\n", - " F, past_target, past_observed_values, future_target, future_observed_values\n", - " )\n", - "\n", - " # output target from -(context_length + prediction_length) to end\n", - " target_out = F.concat(\n", - " past_target, future_target, dim=-1\n", - " ).slice_axis(\n", - " axis=1, begin=-(self.context_length + self.prediction_length), end=None\n", - " )\n", - "\n", - " # project network output to distribution parameters domain\n", - " distr_args = self.proj_distr_args(net_output)\n", - "\n", - " # compute distribution\n", - " distr = self.distr_output.distribution(distr_args, scale=scale)\n", - "\n", - " # negative log-likelihood\n", - " loss = distr.loss(target_out)\n", - " return loss\n", - "\n", - "\n", - "class MyProbPredRNN(MyProbTrainRNN):\n", - " def sample_decoder(self, F, past_target, states, scale):\n", - " # repeat fields: from (batch_size, past_target_length) to\n", - " # (batch_size * num_sample_paths, past_target_length)\n", - " repeated_states = [\n", - " s.repeat(repeats=self.num_sample_paths, axis=0)\n", - " for s in states\n", - " ]\n", - " repeated_scale = scale.repeat(repeats=self.num_sample_paths, axis=0)\n", - "\n", - " # first decoder input is the last value of the past_target, i.e.,\n", - " # the previous value of the first time step we want to forecast\n", - " decoder_input = past_target.slice_axis(\n", - " axis=1, begin=-1, end=None\n", - " ).repeat(\n", - " repeats=self.num_sample_paths, axis=0\n", - " )\n", - "\n", - " # list with samples at each time step\n", - " future_samples = []\n", - "\n", - " # for each future time step we draw new samples for this time step and update the state\n", - " # the drawn samples are the inputs to the rnn at the next time step\n", - " for k in range(self.prediction_length):\n", - " rnn_outputs, repeated_states = self.rnn.unroll(\n", - " inputs=decoder_input,\n", - " length=1,\n", - " begin_state=repeated_states,\n", - " layout=\"NTC\",\n", - " merge_outputs=True,\n", - " )\n", - "\n", - " # project network output to distribution parameters domain\n", - " distr_args = self.proj_distr_args(rnn_outputs)\n", - "\n", - " # compute distribution\n", - " distr = self.distr_output.distribution(distr_args, scale=repeated_scale)\n", - "\n", - " # draw samples (batch_size * num_samples, 1)\n", - " new_samples = distr.sample()\n", - "\n", - " # append the samples of the current time step\n", - " future_samples.append(new_samples)\n", - "\n", - " # update decoder input for the next time step\n", - " decoder_input = new_samples\n", - "\n", - " samples = F.concat(*future_samples, dim=1)\n", - "\n", - " # (batch_size, num_samples, prediction_length)\n", - " return samples.reshape(shape=(-1, self.num_sample_paths, self.prediction_length))\n", - "\n", - " def hybrid_forward(self, F, past_target, past_observed_values):\n", - " # unroll encoder over context_length\n", - " net_output, states, scale = self.unroll_encoder(\n", - " F, past_target, past_observed_values\n", - " )\n", - "\n", - " samples = self.sample_decoder(F, past_target, states, scale)\n", - "\n", - " return samples" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:57.030512Z", - "iopub.status.busy": "2022-06-13T08:55:57.029569Z", - "iopub.status.idle": "2022-06-13T08:55:57.032020Z", - "shell.execute_reply": "2022-06-13T08:55:57.032547Z" - } - }, - "outputs": [], - "source": [ - "class MyProbRNNEstimator(GluonEstimator):\n", - " @validated()\n", - " def __init__(\n", - " self,\n", - " prediction_length: int,\n", - " context_length: int,\n", - " freq: str,\n", - " distr_output: DistributionOutput,\n", - " num_cells: int,\n", - " num_layers: int,\n", - " num_sample_paths: int = 100,\n", - " scaling: bool = True,\n", - " batch_size: int = 32,\n", - " trainer: Trainer = Trainer()\n", - " ) -> None:\n", - " super().__init__(trainer=trainer, batch_size=batch_size)\n", - " self.prediction_length = prediction_length\n", - " self.context_length = context_length\n", - " self.freq = freq\n", - " self.distr_output = distr_output\n", - " self.num_cells = num_cells\n", - " self.num_layers = num_layers\n", - " self.num_sample_paths = num_sample_paths\n", - " self.scaling = scaling\n", - "\n", - " def create_transformation(self):\n", - " # Feature transformation that the model uses for input.\n", - " return AddObservedValuesIndicator(\n", - " target_field=FieldName.TARGET,\n", - " output_field=FieldName.OBSERVED_VALUES,\n", - " )\n", - " \n", - " def create_training_data_loader(self, dataset, **kwargs):\n", - " instance_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=ExpectedNumInstanceSampler(\n", - " num_instances=1,\n", - " min_future=self.prediction_length,\n", - " ),\n", - " past_length=self.context_length + 1,\n", - " future_length=self.prediction_length,\n", - " time_series_fields=[\n", - " FieldName.FEAT_DYNAMIC_REAL,\n", - " FieldName.OBSERVED_VALUES,\n", - " ],\n", - " )\n", - " input_names = get_hybrid_forward_input_names(MyProbTrainRNN)\n", - " return TrainDataLoader(\n", - " dataset=dataset,\n", - " transform=instance_splitter + SelectFields(input_names),\n", - " batch_size=self.batch_size,\n", - " stack_fn=partial(batchify, ctx=self.trainer.ctx, dtype=self.dtype),\n", - " decode_fn=partial(as_in_context, ctx=self.trainer.ctx),\n", - " **kwargs,\n", - " )\n", - "\n", - " def create_training_network(self) -> MyProbTrainRNN:\n", - " return MyProbTrainRNN(\n", - " prediction_length=self.prediction_length,\n", - " context_length=self.context_length,\n", - " distr_output=self.distr_output,\n", - " num_cells=self.num_cells,\n", - " num_layers=self.num_layers,\n", - " num_sample_paths=self.num_sample_paths,\n", - " scaling=self.scaling\n", - " )\n", - "\n", - " def create_predictor(\n", - " self, transformation: Transformation, trained_network: HybridBlock\n", - " ) -> Predictor:\n", - " prediction_splitter = InstanceSplitter(\n", - " target_field=FieldName.TARGET,\n", - " is_pad_field=FieldName.IS_PAD,\n", - " start_field=FieldName.START,\n", - " forecast_start_field=FieldName.FORECAST_START,\n", - " instance_sampler=TestSplitSampler(),\n", - " past_length=self.context_length + 1,\n", - " future_length=self.prediction_length,\n", - " time_series_fields=[\n", - " FieldName.FEAT_DYNAMIC_REAL,\n", - " FieldName.OBSERVED_VALUES,\n", - " ],\n", - " )\n", - " prediction_network = MyProbPredRNN(\n", - " prediction_length=self.prediction_length,\n", - " context_length=self.context_length,\n", - " distr_output=self.distr_output,\n", - " num_cells=self.num_cells,\n", - " num_layers=self.num_layers,\n", - " num_sample_paths=self.num_sample_paths,\n", - " scaling=self.scaling\n", - " )\n", - "\n", - " copy_parameters(trained_network, prediction_network)\n", - "\n", - " return RepresentableBlockPredictor(\n", - " input_transform=transformation + prediction_splitter,\n", - " prediction_net=prediction_network,\n", - " batch_size=self.trainer.batch_size,\n", - " freq=self.freq,\n", - " prediction_length=self.prediction_length,\n", - " ctx=self.trainer.ctx,\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 88, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:57.038768Z", - "iopub.status.busy": "2022-06-13T08:55:57.037832Z", - "iopub.status.idle": "2022-06-13T08:55:57.040121Z", - "shell.execute_reply": "2022-06-13T08:55:57.040605Z" - } - }, - "outputs": [], - "source": [ - "estimator = MyProbRNNEstimator(\n", - " prediction_length=24,\n", - " context_length=48,\n", - " freq=\"1H\",\n", - " num_cells=40,\n", - " num_layers=2,\n", - " distr_output=GaussianOutput(),\n", - " trainer=Trainer(\n", - " ctx=\"cpu\",\n", - " epochs=5,\n", - " learning_rate=1e-3,\n", - " hybridize=False,\n", - " num_batches_per_epoch=100\n", - " )\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 89, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:55:57.045761Z", - "iopub.status.busy": "2022-06-13T08:55:57.044984Z", - "iopub.status.idle": "2022-06-13T08:57:04.428747Z", - "shell.execute_reply": "2022-06-13T08:57:04.429444Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/100 [00:00" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_prob_forecasts(tss[0], forecasts[0])" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file diff --git a/docs/tutorials/forecasting/quick_start_tutorial.ipynb b/docs/tutorials/forecasting/quick_start_tutorial.ipynb deleted file mode 100644 index ff2001c876..0000000000 --- a/docs/tutorials/forecasting/quick_start_tutorial.ipynb +++ /dev/null @@ -1,1203 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Quick Start Tutorial\n", - "\n", - "The GluonTS toolkit contains components and tools for building time series models using MXNet. The models that are currently included are forecasting models but the components also support other time series use cases, such as classification or anomaly detection.\n", - "\n", - "The toolkit is not intended as a forecasting solution for businesses or end users but it rather targets scientists and engineers who want to tweak algorithms or build and experiment with their own models. \n", - "\n", - "GluonTS contains:\n", - "\n", - "* Components for building new models (likelihoods, feature processing pipelines, calendar features etc.)\n", - "* Data loading and processing\n", - "* A number of pre-built models\n", - "* Plotting and evaluation facilities\n", - "* Artificial and real datasets (only external datasets with blessed license)" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:08.836926Z", - "iopub.status.busy": "2022-06-13T08:57:08.835410Z", - "iopub.status.idle": "2022-06-13T08:57:11.721029Z", - "shell.execute_reply": "2022-06-13T08:57:11.721607Z" - } - }, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "import mxnet as mx\n", - "from mxnet import gluon\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "import json" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Datasets\n", - "\n", - "### Provided datasets\n", - "\n", - "GluonTS comes with a number of publicly available datasets." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:11.728288Z", - "iopub.status.busy": "2022-06-13T08:57:11.727018Z", - "iopub.status.idle": "2022-06-13T08:57:12.212263Z", - "shell.execute_reply": "2022-06-13T08:57:12.211617Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.repository.datasets import get_dataset, dataset_recipes\n", - "from gluonts.dataset.util import to_pandas" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.219591Z", - "iopub.status.busy": "2022-06-13T08:57:12.218276Z", - "iopub.status.idle": "2022-06-13T08:57:12.221870Z", - "shell.execute_reply": "2022-06-13T08:57:12.222312Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Available datasets: ['constant', 'exchange_rate', 'solar-energy', 'electricity', 'traffic', 'exchange_rate_nips', 'electricity_nips', 'traffic_nips', 'solar_nips', 'wiki-rolling_nips', 'taxi_30min', 'kaggle_web_traffic_with_missing', 'kaggle_web_traffic_without_missing', 'kaggle_web_traffic_weekly', 'm1_yearly', 'm1_quarterly', 'm1_monthly', 'nn5_daily_with_missing', 'nn5_daily_without_missing', 'nn5_weekly', 'tourism_monthly', 'tourism_quarterly', 'tourism_yearly', 'cif_2016', 'london_smart_meters_without_missing', 'wind_farms_without_missing', 'car_parts_without_missing', 'dominick', 'fred_md', 'pedestrian_counts', 'hospital', 'covid_deaths', 'kdd_cup_2018_without_missing', 'weather', 'm3_monthly', 'm3_quarterly', 'm3_yearly', 'm3_other', 'm4_hourly', 'm4_daily', 'm4_weekly', 'm4_monthly', 'm4_quarterly', 'm4_yearly', 'm5', 'uber_tlc_daily', 'uber_tlc_hourly']\n" - ] - } - ], - "source": [ - "print(f\"Available datasets: {list(dataset_recipes.keys())}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To download one of the built-in datasets, simply call get_dataset with one of the above names. GluonTS can re-use the saved dataset so that it does not need to be downloaded again the next time around." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.226551Z", - "iopub.status.busy": "2022-06-13T08:57:12.225718Z", - "iopub.status.idle": "2022-06-13T08:57:12.229960Z", - "shell.execute_reply": "2022-06-13T08:57:12.230433Z" - } - }, - "outputs": [], - "source": [ - "dataset = get_dataset(\"m4_hourly\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "In general, the datasets provided by GluonTS are objects that consists of three main members:\n", - "\n", - "- `dataset.train` is an iterable collection of data entries used for training. Each entry corresponds to one time series\n", - "- `dataset.test` is an iterable collection of data entries used for inference. The test dataset is an extended version of the train dataset that contains a window in the end of each time series that was not seen during training. This window has length equal to the recommended prediction length.\n", - "- `dataset.metadata` contains metadata of the dataset such as the frequency of the time series, a recommended prediction horizon, associated features, etc." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.235732Z", - "iopub.status.busy": "2022-06-13T08:57:12.234963Z", - "iopub.status.idle": "2022-06-13T08:57:12.536418Z", - "shell.execute_reply": "2022-06-13T08:57:12.536982Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEbCAYAAAAh9sTfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACjC0lEQVR4nO39aZgcx3UmjL5RmbV2N7qxEwRAACJBcCe471RRtPb5JF2P1xlbsq1rea79jeU7dzSSv/GMPb7Xsmzrs2bkRbZkyZLGsmxZkq3FkkiKRHHHThAbQez73kAv1V1bZsX9ERmZkZGxZIMN9MJ8nwcPuqujo6OyMk+ceM97ziGUUmTIkCFDhtmF3FQvIEOGDBkyTD4y454hQ4YMsxCZcc+QIUOGWYjMuGfIkCHDLERm3DNkyJBhFiIz7hkyZMgwC+FO9QIAYGBggF533XWpx4+NjaGnp2fSx2ZzZ3NP9dzTZR3Z3DNj7i1btpynlC5UDqKUTvm/66+/nk4E69atuyxjs7mzuad67umyjmzumTE3gM1UY1czWiZDhgwZZiEy454hQ4YMsxCZcc+QIUOGWYhpEVBVodPp4Pjx42g2m4mf9ff347XXXks1z0TGvlnnLpVKWLZsGfL5fOq/lyFDhumNaWvcjx8/jr6+PqxcuRKEkNjPRkdH0dfXl2qeiYx9M85NKcXg4CCOHz+OVatWpf57GTJkmN6YtrRMs9nE/PnzE4Y9w+SCEIL58+crT0gZMmSYuZi2njuAzLBfIWTXOUOGqcOZkSYuxyM4bT33qcbQ0BD+8i//8pJ+9z3veQ+GhoYmd0EGPPjgg1fsb2XIkGFycd8nn8a9f/D0pM+bGXcNTMbd8zzj7/7gBz/AwMDAZViVeh0vvfTSZf9bGTJkmHzUW5Et6U5y46TMuGvwiU98AgcOHMDatWvxsY99DLVaDY888gje97734aabbgIA/PzP/zzuuusu3Hzzzfj85z8f/u7KlStx/vx5HD58GDfeeCN+9Vd/FTfffDPe//73o9FoJP7WP/3TP+GWW27B7bffjkcffRQA4Ps+Pvaxj+Gee+7Bbbfdhr/+678GAOU6ent7w7n+5E/+JPyd3/3d3wXAUpXf+9734vbbb8ctt9yCb33rW5fnomXIkGFC2HZ0KPz69NjkGvdpzblz/I/v7cLukyPh977vw3GcVL+rG3vT1XPwu//Hzdrf+9SnPoWdO3di27ZtAJhR3bp1K3bu3BmqSv7iL/4CK1asQKPRwD333IN/+2//LebPnx+bZ9++ffj617+OL3zhC/jJn/xJfOtb38Iv/MIvxMb8/u//Pp544gksXbo0pHO++tWvor+/H5s2bUKr1cJDDz2Ed7zjHQCQWAfHk08+iX379mHjxo2glOJ973sfnnvuOZw7dw5XX301/vVf/xUAUyJlmDgG6y384hc34s//3R1TvZQMswSbDl8Ivx5pZ577lOHee++NGdS/+qu/wu233477778fx44dw759+xK/s2rVKqxduxYAsHbtWhw+fDgx5qGHHsIv/dIv4Qtf+AJ83wcAPPPMM/jqV7+KtWvX4r777sPg4GA4v7wOjieffBJPPvkk7rjjDtx5553Ys2cP9u3bh1tvvRVPPfUUPv7xj+P5559Hf3//JFyNNx+e2HUGu0+N4C9rB6Z6KRlmCV49PhR+3fTehJ677GFfTr24CWLFtlqthlqthpdffhmVSgXValUpJywWi+HXjuOg0+kkxvzVX/0VNmzYgH/913/FXXfdhS1btoBSij/7sz/DO9/5ztjYWq2mrRxHKcVv//Zv49d+7dcSP9u6dSt+8IMf4Hd+53fw8MMP4w/+4A9Sv+8MDK7DJA0trzvFKwHG2x4qhcvz+O46OQy/O7mGJoMaZ0daWDG/giOD42j5kzt3Ks+dEPJRQshOQsguQshvBa/NI4Q8RQjZF/w/N3idEEI+SwjZTwjZTgi5c3KXfGXQ19eH0dFR7c+Hh4cxMDCASqWCPXv2YP369Zf8tw4cOID77rsPv//7v4+FCxfi2LFjePzxx/G5z30u3Az27t2LsbEx4zzvfOc78aUvfQn1eh0AcOLECZw9exYnT55EpVLBL/zCL+BjH/sYXn311Ute65sZQ+NtAECzM8lP4QSx98wobvrvT+Bft5+6LPO/97Mv4H1//uJlmTtDHOfrLVwzrwIAaPlX2HMnhNwC4FcB3AugDeBHhJDvA/gIgKcppZ8ihHwCwCcAfBzAuwGsDv7dB+Bzwf8zCvPnz8dDDz2EW265Be9+97vx3ve+N/bzd73rXfjzP/9z3HjjjVizZg3uv//+S/5bH/vYx7Bv3z5QSvH444/j9ttvx6pVq3D69GnceeedoJRi4cKF+Jd/+RfjPO94xzvw2muv4YEHHgDAAq1/93d/h/379+NjH/sYcrkc8vk8Pv3pT1/yWt/MODfaAgAMjydPX1cSB8+xTf7v1h/Br10/uXNTQbEx2eqNDHF0uxQXxtqRcTeL8CaMNOe6GwFsoJSOAwAh5FkAPwng/QCqwZivAKiBGff3A/hqUGt4PSFkgBCyhFJ6edyMy4i///u/j31frVbDr4vFIr797W8rKR/Oqy9YsAA7d+4MX//N3/xN5fhvf/vbiddyuRw++clP4pOf/GRiDeI6AKBer4enjI9+9KP46Ec/Gvv5tddeG6N3TCeSDHpw4z462U/hBNHosL9/9MI4JjtsNjjWjr5uZMb9UtFNQWuNNDvwujQ07s1J9twJtezOhJAbAXwHwAMAGgCeBrAZwC9SSgeCMQTARUrpQODVf4pS+kLws6cBfJxSulma9yNg3j8WLlx41ze+8Y3Y3+3v74euO9NkqGUmY/xsmnv//v0YHh5Wjq/X6zG5pQkTGTvT5v7jTQ3sHuxicYXgv93ZvSzrTjP2icMdfH0PM8KffYhiTt/kzb3/oo//3wYWO/qPt1DctWxmfDbTae4To1381xcb+NUbKB5aqR97st7F//VCA//htiK+sKOFx5dS/LtbJrbuxx57bAul9G7lIF0XD/EfgA8D2ALgOTCa5X8CGJLGXAz+/z6Ah4XXnwZwt2l+VSem3bt3a7uQjIyMpG1YMqGxb+a5Tdd7unWfmaq53/6nNbri49+n9/7BU1PaiemPfvgaXfHx79MVH/8+/dr3np7UuZ/adTqc+9P/8NSkzn2p42fa3P/yynG64uPfp3f87r8ax20+fIGu+Pj36bo9Z+htv/cE/fBf/GjC68Ab7cREKf0ipfQuSumjAC4C2AvgDCFkCQAE/58Nhp8AsFz49WXBaxkyzGhwWqbRntqA6gWBOjnfmFzlzsXxaO7GJEvz3iwYCmIyjqVeDA/MVwouegrOlKllFgX/XwPGt/89gO8C+FAw5ENg1A2C1z8YqGbuBzBML5Fvp1lA54pgOl/nYxfGcef/9ynsPKGmjK4UOn4XF4OHtjHFahmRF+9MsipzSAgWNyyhhZcPDOI72zK/Tcb5OnMCHIt15U5COe+gUnStnPvHv7kdH/7yptTrSCuU/RYhZD6ADoDfoJQOEUI+BeAbhJAPAzgC4GeCsT8A8B4A+wGMA/jl1KsRUCqVMDg4mJX9vcygQT33Uqk01UtR4m9fPIwLY21899WTeLAydesYrDODuqS/hFPDTXhTqAO/MNbG0oEyTgw1Jt3buzABz/3nv8Dkv//HbVdP7iJmOM4H94rtgDceOAnlQo557paq2/+4+diE1pHKuFNKH1G8NgjgccXrFMBvTGgVCixbtgzHjx/HuXPnEj9rNpupjdFExr5Z5+admK4UKKU4OdzE0oGydeyJoXEAuCwlUScCTldcPVDGqeGm9cG9nBCNe3uSFRZD420s6C1itNmxeu4c+87WU43bf7aO3/jaVnz+g3e9gRVOfwwGnrttc2wGN1Ep76BccHAhZW2Zlpfu5pu2Gar5fF7bGahWq+GOO9LV95jI2GzuK4M/fWov/uyZ/fjfH77XOna4wWiCk0NNwL4XXDaMt5mlW9BbAIBJN6oTwWC9hbXLB4DDmHTP/eJYB3MreQAUDUsmbt4h6PgUr58ZxZwUc3/sm6/i9TOj2HjoAhZOymqnJ86MMBe86TFHRsc8NGKcu4tThs9STJw7OZSusU5WWybDFcfz+84DQKwYnA6cAz45lKymeSUxFljRBb2snMRkG9W06PhdjDS98NQz2ZvMhfE25vYU0FfKo9Exz13KMzkt91RNaHZ8vCJUQJzNOHaR3asUwLjhiMeNO+fcWwZPX7z/0z4LmXHPcMXBa7McHhy3juWe+9nRqW0DyD33+YFxb09ReZmLQTB1cX8JTo5MOj00NN7G3EoevUXXSsvkg4ghj0eYcOBcRN3UpzgJ7HJirOXhwlgby+ayzdf0XrnhL7qMc28aPsuRZjTPaDPd9cuMe4YrDu7pHRk018oBIs/93GhrSlU93HNfGNAyJi8LYNmH/8+vbMaxC/YNjM2XzkoPBZvd3Eoe5bwz6fVILo53MLdSQLngoG0JGvMN73wKz130YNMap5mIE4FXfcNVjKgyGfdmx0cpn0MuR1ApuMbPsiXQMvy625AZ9wxXFN0uDaV8ol5bhZbno9Hx0V/Oo9npGj2byw3+QM3rSee5P7f3HH782hn8t+/sNA8EcOj8GNb8zo/wvVdPWsdyw9hbdJkBtlyTbpem3hQppbg4xmiZopuDSfHZ8btoBjrM8yk8d9G4z2bPnedCvGUhq9w6ZnivjbaPckBt9RSdkKNXoSnEP8ZSHtcy457himK40QnLyZr4SD4WAFYvYinZw60p9NyDtbJgI9CxeLWnhxmNdOKinR/de4bV+vn2VnsTFW4seosu89wt6/jFL23APX/wY+u8ADO6XpdibiWPousYNfSi0RocS+G5tyZOK8xE8Ht2UR9zApqGi9jo+GHZ5krBBYW+nLQYUB1PuTlmxj3DFQU/wvcVXatx50Zg1QLmBQ1dBuN+7MI49p+1F1Ibb3kgBJhTDoy7xXk6eJ5RTmkqK/IiU2k8Mu719gTG3fYrL+4fTOVZAxEFNlApoJjPGTcw0UDXUxhr/t7cHMFoc2qral5OcOO+eA6TGpvKQzcCWgZgnjug9/TFeTLPPcO0BDc0y+dV0LBwh+MBz700CE6NWdQbl4IP/MWL+Ik/fc6qOhlr+6jknVAhYuvXcXYkqCCZwvDxzFfTEZ6jLnjuJQstIxrRjm+PAPO19hVdRssYfoUrPYpuLtW6+We9eE5pVtMyEzHurY6PosvuJ+7B6xwe0aPPPPcM0xL8CL98XhnjHd/IBycUKhaH5eUDg/jHTUcnuB622Ww/Z558vO2hEhg9wE7L8LK86Yw7W8NFSwwCkGmZnHFTOjMS0SVpFC3tYAMo5R0rLdMOjM38nkIqT5KPWTSnmMrTn6kYbnTg5gjm9bATXtPgBbS8LgrB/dRTCDx3jcPDA6qEpPfcp20SU4bZifNBwOmaeRVQag5Mci9mQU+gULF41zwd/mfvuSbVWta9fjb8et9F8wNTb/noKTiCcTfPzdU1jY5vLVXAA8snh5sYaZlrLIwJtIzNAIteIw/0mcANSMHNBQFVg3ojUPfM7Sng7OgoKM0b5+af5cLeIo6kkMDOVAw3Ougv50OP3OS5twXjXikyUzymSaDg3P38nkKmlnkzwO9S/NnT+8Kj4EzA4FgbOcLS+AFzMhA3CPMnmDiUhiYAgF/+26gI0+ERs7UeGm8zLtpNR8uIlSNtjqrosR8ZscQhWh4KTi4ywIZ1iPLKc3V7ngA/+hfdXMC5G8YGP5zXU4DXpbAVkBxveagUHMwp52c9LdNfyYf0Xctk3P1u6Cxwz11nuPkmMa+noN0AZGSe+wzG06+dwf/91F6cHG7gnfOmdi1P7T4DN0dgKwFzvt7GvJ4CegJPxaQXH5NS/tNquk8MNXD9YntT9L6ii9GWh3tWzsW5C+aqkxeDmiuFlLSMeLwet2riPTg5Ar9L0bA8t2MtLwy+FVxz0FNUaow2PfSbpxaMe0TL6NLnW35k3AH7Bjbe8VEpOOgtukEsoGj+hWmGP/zhaxhrefiJAfO4sZbH4iFBoNSklml7XRQqgeeegnPPEWBOKZ957m8G8BthJG2Fp8uEI4Nj+NWvbsYvpyhHOtLoYE45j0rgqZjoQ+799pfzE8rGTCM/PF9vYbTl4b/9m5uwsK9oTdgZCpJ7uHFP47kvDORwtgJS9VYnlM7ZkqPGW364MRZdx6jaicnnUlw87ukX87nQo2xrArGi5w4ATeu6PZQLDvpKLuotb1qXmVbhr589iL9bf9RKsbU6XZTcKPCelpbhG7bJcy/lHfQU3Uwt82ZA2Mtziismvn46khLaHtp6y0Nf0Q2Nu8kb595vT9FFxZKNKf7d4ylqb3Ad+rK5ZZRcu6RwaLyDgQrbZNwcsXPubQ9XBYoJWz/tesuLjLtlHS0vOsrbqBPRa0xj3NsiLRP8DZ3umm8E8yqBcbdM3/aZ0esruejSqavN80ZxbNT8wTc9H8V8Dnknhxxh3+vQ9iPjXuYBVR3n7nHj7mRqmTcDzgbV55DSCRptdi6Lx3RUSLG3PeSMVnBRzrvW8Y22jxxhxqZs6VQjNq1O47lzhcq8ngKKFr142+ui3vIwNzBkNjrE71I0O10snpPOcx9r+VjYxzYCG/XU8iL5XNFKy0RvyiY7ZXMLtEzIGeuMe+C5pyzH0PYoXCeH3iILvE52l6dL4fHTxqrEuW2H5FanG34+hZydluH1eXpCWkbnubNNvVKw54dwZMZ9BoNrqW1p/ABw8Fwdt/7ek/jW1snvnHNYqBFzsWn33HuC1HnAXNVwrMUy+AghqBQc49hhwT0+kcJz59pyXqPFOLdQzwVAag041zrbDNlo08PCvgIISee5c2/PqpbxJkjLSGoZQE/LcC8/8tzN79HrdlFwCHpLzIhNJpO45/QIbvndJybUFeq7r57E7f/jSRwetl8XfsoD7FU4W4HnDgB5Jz0tw8sQ6Dz3ltdlnnvB0colZWTGfQbjyAVmVNMUbtoRtKn78e4zk76Os4Ke2pZFWg8CTmkkhY2OF9I35YJrNHziQ/S9V0/iSy8cMq6DK1TmVgooWeiNcYEeApjxM3Hu/NjMjfu45VmstzroK6UrBNaOGXe2Dm09kgnSMi0VLaMxTnzs3JQB1Y7fhevk0Bca98nz3Dkt+OSudPd2x+/iP3/jVQDAyRQNMsTib7bL2Aw4dwDI54g9oBp47rkcQdHRe+5tz0fByaFSdFOrwTLjPoNx8Bwz7mkSZbh3z43lZIIFG5lXW7dkkXK1Bw84meuXRMHDSsFs+LjxumYe04n//vd3G9dxYawNQliwtpx34FN9Fif3UmMec4q1pKFleAGu3iAOMVHOnb+mgiifS6OwiBt3xzh3yLn3pPPcOz6FmyPoK06+525bq4yNhy6EJ5Kxtt247xFiSnbarBt+LoWcnXPnnyUAFB2iDZb6XQonR9BTYPdemjaPmXGfoRhtdnB2tBV+bQNPHEnb+5PS9NUEL463Q6Nqa/Aw1vLRW8xHnrvFSPLjqq2OCjeoty6zCf6iNfeX83CdnFXZwI0G97IKFlqGH5v7y6y6oimgKiYllQtOCu5aMO42A9zxQQgwUM6nDqg6OQLXyYW0mW5T4Fw8j0Ok8dwLbk6gZSbPc+f3adqyyduPR7LX4RTGfe+Z0fCzt1UDZTERTrUQreNFKY0FVAGg5OpLC3R8irxDQmcnTZJvZtxnKLhhX7WgB2NtP6y0qMP+oM9lmqYXlFJ8+Cub8e//ZkOqtVwc72B5YNxNFETL89H2u+gtpsv0HG9Hmu68Q4xUCDfMP3fP8tj70KHeZPQQgFCT3LAZd4EOMa+bzdNTdFhHI4Mhi2rFOKjkzdQTEFdYRIoWncKiGwajGymlkHxOfhK7OKbemfg6+DW0cu7ccy9NfkCVX++0nvvuUyNYNreMq+aUUlUaPTXcwOrFrDKp7TK2Ot3QWejLE21JCa9LQWnkMACAm9PHOLwuo7V44DVNzkdm3Gco+MN6VRi0M49/PSgrmyYN/fjFBp7ZcxYvHRg0BoQAZkCHxttYOrcMQswPLQ8W9RTdVLTMeNtHObiZ807OeOrgD/iivhI+8e4bAJiDk1xaBkDIJkxLy6RbS6XgYE7JNV6TRjjWRaVo59xltYxp3aE2OqXCQgzWco/8wrjaOLU6XRSdHGs2QQAbDdzxmTKkNwUtMzTexkOfegaffuJ165qB6HSR1rgPjbexsK+IBX2FVJ77SCOSqpoCqt0ujVEtvQUSqrJkyPcUALiEoK25VzitVQmcnTS9DTLjDuCZPWfwwB8+jR3HzVmK0wn8OH9VPw/a6W+6ofF2aNSHbKJrIHZD7j5l7nPKa4DPqxTQW7AYsk5k9CI1hrlwGE/Lzrs5mOye2I8yDf/PPCy2Bm7cdZ4796a4Ue0pusZjMT9aVwou+kqu8TTDA26lvJOKcxeDcKFc0cC5c8993FajGFzGFxj3gEsf0hn3QBVCCKMK7Jy7bNz1449fbODEUAN/vm5/aARN4Dy1KdVfxHjbDzZee59YABhtRQlsps9Hvk/68vpicErjntPHffwuheuQyHNPcfLJjDuAzz69H6eGm9h2fGiql5IaUdCOJ8roP2yewbqkv4Shhl3rLvKEtlZ4XCY4UMmjr2Tuuyne0K6Tg2NJBmKee6AZdswKFa7jLhccDARep6lEcFPwgMsWzl1M7gFYRcZGioBqpeAEG4F9wyvnHZTT0DJeelqm49NQ1pjG8LU8P1al0CXABQ0t0xI2mZ6CebMDGA2Rd0gYFDQZd/GUse3YkHXdfDNNUzufz1/Ou8GmZB8/0vDQV3Ktkll+/3CnobfAAqSq+4pvBGmNu+d34eZyoSAi89xTgvOeQyn04tMFPGi3pN9Oy/CI/eI5JfhdapXmiQFaW6nYcYFW6LVQENwIFZyADrEk4Yy3/dBTyTsknedecDAQNNTQ2CW2FsFz5w+MLhFG9rJ6iy5M+S+cJqgU3ECfn2bdOasiCJDUMi6vX6Iz7sxbLrg5LZcbH09Dg00IYbSC5pno+PHUeavn7jHOGEBwn+jHiieo4xftFSS55647eSXmb3thnRtb2QRKKUabrGRGOe8YA6piEhgA9BVY6rjqtNyWgvQA4BC9cZcDqhnnngKUUpwJkhQupqAspgsijtkut+OcLOfnbU0vxE7rtgQp0UvtK+WNJwjZAy7mzUk44+1I556Wcy8H9TcA8wMgeu6LAsmiLh4RbUps3bYgqXhNSqm9vQnQMm60DkAvhe34XeRzgXFPQW+0/ShjEgB689Byxp5PQ2Nto6kAVmiNz20zqmI2bbrm217wexOjZSoFx2rcx9o+uhTMc7ck0vHnLFTLuMy4q9RscpAeYF2qdPP7XRr33CdLLUMI+X8TQnYRQnYSQr5OCCkRQlYRQjYQQvYTQv6REFIIxhaD7/cHP1+Z5m+kwZ8++Tp+77u7Jms6AOzIxVPXdfzidAQ/ioaNLFJkKnJ+3qZF58ai4Oasxp0/UGVOQVjS+Pm8QOC5a8bzFP5KLKBqWEeHUQpOjkQBUpNyR/Dcr+pn5YdPDauVRAnPvcTeZ1ez2YwJG43NYMeNu2vkUv0u0zfzdcwJZIUjWuNOkXcJiimNuydJ8/IO0fL5Hb8LN8eMF6Nl0nDubHxvKW88PYq0TJomI2Ht/JTGvRHQfYxeM4/lhnlOicl3bUF6IIrh8Eupkvt6XXZd85JaxtN57t0unMn23AkhSwH8JoC7KaW3AHAA/ByAPwLwGUrpdQAuAvhw8CsfBnAxeP0zwbg3jJNDDXz2mf348kuHJ2O6EKJnMjSD6qJzA8KTSNJ4h5zCqVsUAvyGXjGvEnYq0oF3HKoU3DBjUoeE6iTvaGmZiNqIytua7IfYST4sSmaquyJ47r1FF2U3nmYeW7fEj/JEHF0aOK9dnsuR4ChvV8uIG4EuJtKWjv28n6suz6ET8LR5Jz0tEzM2BprAEzzxnqL9xMGkkOKmbj/55B2Sqv8rv79tnb0Adm15+eGeoguva25ByONVfaU8u18N71P23IO9TDm/F7x/vkHy8XrOnSKfI5PvuYPVfS8TQlwAFQCnALwNwDeDn38FwAeCr98ffI/g548TVUHoCeKwJbB3qRB5Vt0RdDqCF9UaCJQhJqeF33QLejmFY5673mTGaWFfcUK0jL17T3q9OOdPSyEtQ2CyT20v8sS5kTclZTYFzx0A5haJ3rjLAdXAY9Zx9Nx4AEHZhBT8cjnvoFxwQKFXv8ib45yAltGVfO74LOhZcCZCy0SPqpuD9vdET7xScO1lE/wu8gFNYaPj+Ia3fG4lFS3DNy5K7XLItt+F36WoFNzQCx437Eyhk1F0UHQshdqEksmA6LkrjHswj+y5654fLyjfUJlMnTul9ASATwM4CmbUhwFsATBEKeV31XEAS4OvlwI4FvyuF4yfb12JBSeH7Mk3lwL+gM6t5GdUR6OxtoeeghsZshQ3Ha/gZwt+jTaZOmBOKW/NfhW5blshq5aCc9dtSrJBzTtMCqmjQsQKe+UUnrvYnBgAKnmiNdbypsTro+i47kY70tCX8w48qj9uy1JIwNCwwY8Ke7HfycEhwIjmM/ICWiYt596ROPd8jmg9fl4rBmCeu81h8AL+H+CBdP1Y/v5XzK9oN1wR4nuz6fnFk1JvoBmvG7yA8PNxHWtNoZbwWQKAE/i0SlomuK5OTtxMifZz8rpM585ox1wqtYy1ExMhZC6YN74KwBCAfwLwLvvU1nk/AuAjALBw4ULUajXj+Bf3Rx7kyGjdOp6jXjeP3XY2SP/OeRga9VCvdydt7jcy3jb2wJEWHPjY8NLzAICxRls7/tUT7OE/vGcHAGBkrGWe+1gTjt/F6MXzGBz2jddk+xE29yubNmDwXBttXz922yl2rV/dugXn9ubQrDfg+75y/Kk6u8kP7n0dtfoBHD/CPv+nazXkc8mD4PFTTXgt9rcppSAA6oZrMt72cPbUCdRq5wAAhPo4O3hBOX5vcO+99PxzIITgwDn2Pp5/eSNODiRr9Rw/1YTfZms5eYxdn6fWPRsG2ETs2cfmfvnF53DsBJv3medewIJy0u8632DX5ND+vag1WWG0skPx+oEjqNVOJ8YPDjXQmyc4iRF4XWp9bi4MNdAtkmhM18PF4VHl7wxeaCDvALVaDRfOttD09J97l1J0KXDi2BHUaqcwfKGJlqf+3AHg9QNtuAQotYdw4FwHI6PUuO7zF6IqoOueewFFf1w7fjC4hscO7Ucp+Dxqz7+MpX1qP3d78Fnv2rENo8Md47q5Ldn56isYO+yg3WoAINjyyitoHYub2tcG/WDe7eieZPcQ9TsYa6jnbzRbOHv6FGq1C8iTLuqacSLStNn7CQCHKKXnAIAQ8m0ADwEYIIS4gXe+DACvt3kCwHIAxwMapx/AoDwppfTzAD4PAGvWrKHVatW4iB8NbkdwIECx3APbeI5arWYcO7ztBLB1G1YtmY9Xjw2ht7cyaXO/kfG2sd88uRVzmyN422NVFJ7+IajjaMef2HAE2LETP/HIA/gfL68DdQvGub94YAMWFz2sunoOXhs+jd7evHb8nmcPAK/twU889gheab+ODacOa8ee33IcePVVPPzA/bhmfgVfPbwJB06eV45/7dQI8MLzWHvbzajesgT7cgeBfa/hgYceCRNhRHz92GYM03FUq48CAMrrfgTqEOXclFJ4P/oBrnvLSlSr1wMAPr35R3DKfahWH0qMX9/Yg8LhQ3jssccAAO6+88CWDbht7R24Z+W8xPi/O7IJY6SJavURHCsdwT++vhN33fsAFgVqJREvjb+G0tHDeNtjj2Hs1ZPAzldw+533YLWiTeCRwTHg2RpuuelGVO9cBgDoee4H6J23CNXqHYnxf/zq81g8UMb1KwaA/a+jVDE/N6VXnsNVCyqoVu8GAPzlth8h75SUv/OZXS9ioJxHtXovtnb24onD+/Doo29FTrHxNjs+8MSPcN21b0G1eh2+f+5V7Bs6oV3LM8M70XP6JKp33oAfHtqBplPB+wzr/szOF4CLLAHx9rvuwfHdW7Rz7z9bB559FmtvvQl9JRefe3Uzbrr9DtxxzVzl+ObO08CWLXjw3nuweXQfzh05o517bPspYOtWPHjfvVhzVR8O/svTAJq46ZZbUb1hcWyss+8csGkj7r4ruof+9+4nQDT3LGpP4Jrly1Ct3oyBjc/Az3WstiQN534UwP2EkErAnT8OYDeAdQB+KhjzIQDfCb7+bvA9gp8/QyehQ4TIvU1mFxceaV/YV0ytk50OaLQjXrfk5lJJtOaU8ig4OWswZqTpoa+UR0/BXl6UH4P5sdV03JY54z6DLl7WDHN+t6PlgGlM6WFSqfC5Rc49n9PPLcoPAcC1rEVM469Ysl+bnWQgWEct8OO9eJQvuXo6ifPiXMJpY2Y63a7EAetpgk6s0YT5PXLOma+DlVg2B5krBQcr5/cAAM6OmxfeCgqeAelpmUrBDUvzmigrsfVgwc0Z4z7hWB5QDS6lqqQA59xjtAzRc+5+kAQGpFMnAek49w1ggdGtAHYEv/N5AB8H8J8IIfvBOPUvBr/yRQDzg9f/E4BPWFeRAmLU3MYZTwT1Fjs2L+orpS6lOR3AOXeAccxppJDFfC5V/ZLRZifU9ba8rjHzr9H2UM4zZUjRdYz1xUO9uGjcNbJMeSPIh1Uk7QE+gPGeuvcZqRoiSsVUtKnt+5JEkBc9029ModbZYrCbAvdvG+urgnApFC1p+77yAGw4tyljsisEVC3qoVAZEoy39n4NGlNwme+IRefQ9rth4ppNDimqsGwlk4E4j24rGBc5DVwKyd4vlz2K4NeExyEABH2C9WoZJxh79UAZpy0bHpCOlgGl9HcB/K708kEA9yrGNgH8dJp5J4Lz9RbTmXrdSfXc68FkC3i7sBnivI+3/VAGydKi9R62KNFiu745SDra9DCn5AoV6PRjG4IyROy7yW9wEXKQtC/QO1NKIQuq5I2AGzRTZyDR6JkyQ2UPC2BGUufBifVc2FrMnnvb64ZB17LVq6WRisTS/aijDMKZ1+0KnrvJW2bvhybUG9oAn5DExAOTYy0fSLJJ6EiabquR7LDGFPyZHLVId9teF/2VPAbH2hjv+MaWwuNCJjO/LibjHmrX3VwQULVLjtNJIdlrrqRO6vhd5fPQETbTu1bMxTN7zmqzhzlmTIbqYD2qGZ5GBpQWYy1WnCosXTrJvR0niv/547246b//CIcs7b/GWlH2ZslS67wZ1AxhRZ7sqeLMc8+HFehMiTVNocSpramyipbxNfI1eSMIDZRm7WI6PICgq5F6zW2JJgDMFERbaMDAxnJP2DBeap+m8yg7gookrM+u2Qgizz1pEFRgre0m5rnHjI2BJuh0u2Fgm8vzdBQenyMveO6+QUHU9tn1nlNiDclTGfeUnntDku4C5jrwoWOUt9OOIZWYkELqaRn5s6QUifLdflAemN93a4J4jNi7WIUZYdzH2x4aHT+sGZ4yES0V6k3W07NStHupVwLP7j2H8baPneftNyl/qEq2mhedLkqcA7bornlnoL6gMxBgLlIUax6RN3OYbb8LQqLjKk+fV0n5ZPlhSIUYDEIsdb6k5yVDYyOoV/IGI9mSPPdC8Hu6OIdYlpdfQ53RYR4wCeY1e+58M3Gko7x+w2NzpzXu8jU0c+7RuqPmzrr3GPfceazDdAorODnkcgRzKwWM2Iy7QMvYOPcwLyPvCpupwXPvyJ67fm6Z7jN67orP0g3HU+VYN6TBzPQdx4ww7jyRZukASxOfTO+63vbQW3LDwNdkngouBXzXPjxifhLH2n4YyLJVq2PlWXm5WrPnXg+irb0lN1XChFhJsOiYPSFuJPmRk2d6qvTicjYm93BMxkb0ggbKBW0mbngkFh8sC70RrwGSi82TGC+cIsIgqcYb97rdcD5bffZwU0oE4cxBz7S0jCcFpfNBHEIVQ/GE4Cs3NjrOvRNSEPH3qesvKl7v+T2FVJ47rwRqE0WI1UPTcO5Nzw+7UxUdS89azw8rXwKRE6Oi7/hnGctQzXGnIT5ezmblzyXPDtdhRhh3noG3MCiSZToaTRRjQcPmkIKYYs+dZ8meGzff0ONtLzxt9BTNVfbEbExbpJ1zjGUhqcZ0TSbS01P08gFzMlCCc08VUI3mHqjktTV02pInCbAHp5XCWItr8QwBW/4+wxZ+BgVMPqXn7qsUFoZAMFe/TISWETdIfnlUJwOxVEHouWtuFHlTiurQq8eL17u/Yi5GB8i0TDp110RoGX7qLbg5UOhbVbLPPYo18UupGh8GVKUYB5C8x6OAtOQwzAbPnWdJzg8CLJOpaGGce+SlTjXnPhTUqTW9x7bXRcen4WljTtlealdsNGEy1h0vuunSXBPxhrZ5nkwiGN38ZQNloePcTZSPaIDnVgoY66gzWvnDUnAlI+mpvVSZlslrPCzVWiohZWGSK8bfo45zlz1ggBlgW5lYvhaTU9QNipLJGar8/cjwxMJhYUDV7LnLtIyp81UkmzRnPfN1z5kgLcMzqgG75843o3Dz1Upg/Zi8lt+Oquvnh7RM/BQGJD/PKCBNwrWL70WHGWHcedU7XhslZTetVBgNOHf+oUzmqWCi6PjdsEJlmtob3DjOsZTaFT13W5nT0Kt1cyk9dz/02KOHReORSZ67SR0ic+7cM9MVd5NlfAOVPCjUp4KOhpZhP0teG5mW4UZKR8uInnsYUNV8oCLnHsYsLJ67GzMIJNyQRXS7NNBG58K1mBwGWdHC/g77X2XMOmLJ34JZChlSEEJAFYhOiTJYADtyGEyUI79WpUCHbg2odpgBzuWiTc/Eucc8d4uD0ZQ8d379VCc8OcgMCCcl6fOUT2yh527JQZkRxp177lwaNam0TJvVUUmb6HE5IRb1N73HkDoJjTujZXR1V1pSBURTgDRKOCGpmvG2BaNqVctI3jVv2qF6WELjHszN69af1dRclysa8h6gqmJwnQkcifn6Yg8tl0Jqrov4PsPm2zrD10167vpiXXEjydetWrNorPnaTUF3lbHReZLRutMF+OQkJq5M0xU8a03Acxfvk0rBsXLurEcA+/tOjsAhLI9BB665BxCeOnWbrxh/AoAcISCamEgUJBVOYbwWjaTCCk8+gTMSFjyzvNcZYdxHAm9tfg97wCcz5jnW8tFTdARecupoGV64bG4lbwx+yV1c+krMS9V5TnHP3UWnq/c6RS6wnMZz70QywbBaoiYFthX09OSIOPrkH5CLjM3vLYIAODuiLiQlZkwCwNwevacf0QSCWoboA7Zsc0x67vJDCLDr6ndpaFAJISg4+kCfFzQ+5ush0G+OyiQmDefuCcY6PJUa6bj0njuX5ombkkP0tIzMGS+by4QRui5LYoYvy77Wr1uk78p5JxUtUxZyMPI5u1qGr8VGy3h+PKgPsGtkkkLGA6rRPPK8gHjyyYHALvucEcadH63nh577ZGaoMlomUhRM2tQTBudl5/UUjA+iXF98TtnctKHl+WGqdciPam4MMdjYk0Ln3hK8Wu4tX9B1fE947vqHhfOuXFnj5Aj6iwRnNMZdLCkLIHy/qhZ0MgcMmPnRREA1pGUUFI702QBA0TF7tdzoEULMiUMKntYhRO1ZC9RT5LlPjJbhnLu82UTcPwnXbXyPEmd89QA37g3l+LawmZYs9fDF610uOFaD15JyFvI5S4ZqzHM3n0xF5VM0v/rz0dVz5/PE541vjrbrzTEjjPtIs8PapwXHqcmiTtpeF22vi96CG35wKXoaXDbwOjfzegroGCRXKs8d0DdtaAredXiks8jW8k4uMpA2zj24djxj1tTxPa4X1xt3+YgLAP1FomyFRymN0UO2uU20jGmj4XByzMPWUThAPPu1kCN6z70b9/ZMxkaVss5oGQOn6+ZC42SyBXx8/H3yNZppAsBS40Y6FZTyDgaKBMc0STgyrWV0dITYTBpaxhdOSmxNxKiWaQqnTVvPWq9LY5QZwK6/6pSsKvkbGnedzl0YW3DI7DDuY0EhoVyOwM2RSTPuUSH+yLh33niNsze8nrmVAigMnK4i0xMwcZiR586DMWNa2RqfmyAXdH4x69zjmm43Z/DcpcCkiaOXNdeA3gOWaQK2fpNxT9IyrkEZIq8b4CoVtbJG/PsAUHRNSUzJxCGTZwgAjsS5+0HwVERkgEkqsUBogN0UxkbB/ZccvcOgakzRVyDansWyWqadytFxUMnbC93J3vVEPHceKzDRT6IBBtjJSRUQ7gSbulhmQOu5K7z8ouF6c8wI497qxI9Gk8WLi9UBw6P2VHruUus8nUeRlJaZVSqi5267QeW5KwXHmNEqKmAIIejLE73nLtMyFgMsPyg8qSY5lksbk9SJko+eoDJEZdx1yUOqrvZFg+feEdrPAdzY6D1DNsYe9BRjJ5HnbqBlFAqiSOeuk+aJGxixOgyudELRSSy7FJDzBNKUtJjXU7C2hez4yZOSicoR40Q9tgJp3W4sQAowD1t1n/hdGvPagciLT2aoJjfT3rx+c+SYGcZdOPrnHXN9h4lAzIJ0c0Fkeyo5d94VKjTu9hsasKfmi12HKhbZWtuLe1m2Fmoi5w4AvQaPTJQIiuvX8dx56UFxNfxlOzRMwrHVtHF4atUJoL6GYqIWh5NTB6WjErHRNSlYOHfZ2JgCduxvJ7Ma5XW3BYOad1jjcGM5ZkUcgqs3ZGdKDNZymDz3joZOais2MTlmYVdgRclui+cUtTGZcO2SATbFcfjfjTx39n9ds4kpPXdHTcuINYU4+OWUT2GqjOq5JYIzli5VM8S4R56Trb7DxOaNbgymajDXa77cCD33itm4t3zZuHOlhy4tWuTcuUY23amgUnC0nHukDIluo4qr5/6Z5y4aveDBVXi1KlpGF2yUa5eIc+s2DnEMINYBiV9DniSToGUIUXrCsoQTAIoO0dMyEk9rCqiqkph0+nxZfmgrUaFK7NLRMiovv+jYPXe5lo/ulMTWIXnumpOPeL0XzSlhtOkZnZGOZIAXlHPawC7A+PVSeOplsS2dGqzTpQnPndHI6kQ6mZ/X1aJRee5zSwSnhvXrBmaQcQ+zxJzJM+68tkVR2DhsSpyRZgfv/ezz2HjowuQsQoDsuZsaJQBI6MtVXme3S1nzaCFDFbDXASmItIy2QFaSXzYZJzkwydUhqrR/LS2jmNtX3PxFg+eu2gzC2tsaD1i10ag99+CeyosbjbmRRYyWcQiaFimkOwFahhubUj5n0bkrPHdtQFXBubumeu7JzcDV1C7XGXdTHRo+nudCDLf0z7AvbaYLywSDY20tTSnW27dl4vpCpUwO1yEJTxzgm3ryNAgYYhyS565Tx3HMDOMuRawni3PnN5eY4m7bOF45OoRdJ0fw61/bMilrEFFveyi4ufD4Z6q9AaSjZcL3KNSWAewBVf4A9Jby0PUNVxn3vCEgKJ7AovF6RYuKllGOVRi9NGoZ8SHX1QFReeJ8vOo+DKm+tJ67xAEPFPXHbZUHp4sVRDRLlBWaRl6bV5xmdOoNcWzJ4LnzE4PcCMSUvCaXKjBlswLsGeZtDIcMxt2TNtN5Qa/aU5przmiZ+LOjUwWxhhoyj662V57CedEFVDtSVUiA3Sc2zAzjLnCeeSeHySr/wpMXJkL57DszCsCeQHApGG+xSo+2tGg5aBcGD1UPi1SGtGLxPtpCIA4A5hkKcHkKr9bkucvJQIBerSBz0eHcquCUwrMx8fmqgKDuSNzReO6OZi0qz71oSmKSWtstqhAcuTBmrInjSiV/Vev2pBMY89zNdAUgpcNrNjxV0auia1DLKAKqulrx/G+F63bNJZNFR4fTmbpqoEAyoBo8DkpHilIa89xzOaYvN4kRVA6J3nOXjbs6xhHd33EppA0zyLhHapnJCnpGHXnEuc07x4FzdfY7ik5DbxRjQWq0raBRxGGm99y5cbLWAZE2jrmGkqsqby/vpK8KCRi8ccWDot0IFJ6NacPreEnjpDsSq+gKgBknFS0jSvM4mCY5eb0ppbEaLQCwqJJDs9NVllnwuqwevlwVkq1TXrdMy5gbuqgyVB0NVaVSv5QC3bVqU1Injak/d3kjmBckLg6OqctOiI7OQCXgxA11lmQppO50wsZSdGm8165Jz69TwOiSzBIBVR0tE+rcxROycgkxzBDjHhWnYk1qJ4mWkRJO8ilomTMj7CbTfcBvBONBKQR+M+k8Idlzj4KH+geL7/ROjqCQs9cB4cGveZUCmr4tGUgMlKkf2jDRKCUt402Alom46LjxINDLLHOSkbRpjOW16JpktDWee7PTTRg+lbRxXol9fVqh4PC6NGEQ0lYSZDVazEaPjVecZhIa+qT6JQjlKE8o6vtEd2KLf5a8h8OJIU1mskAN8liV2bhTKU9AffIBxLZ50UZdcvTPPm+OIkLnuSs3AktAVXWqMmFmGHdBQleYRCmkXL8kDefOMyTbXnfS69Bwz53X0BmsqzW7MtcdJmAZPEn5CK2/QePj+QMzpEhMUgcm1UdcL0g0krlrna677XcVD4qmiJUi248Ha/VFr5LGms0V/0xl7jpci0bnHiqwnLhxB5K8sRz0BFg2K6APBMsGQVc2IZkVaqnRotjEIq9WTfnInjugpiyYtxxP2NFJIT1pU1rYW4RDgFNDmlIFwsm0p8AkzSapu+fTeJ6A5voBURBX9NxNHbt81ebrqNUy8okNEAPYahpM/OzlwK0KM8O4C7RMflKlkHE+Og3nLqa/W4LVE8Z4m3nui+Yw435mVFMkSwpQmRo2q47EJYdoy4W2JX6PJ1Spsk6VtIzGE5dVEBza43m3q9wIujRpbFQqEva9xjv0kqcCe3Zg8kFU1pZRqmXY5DJvLHvX7Gv2v26DVHmG7D3pvL2Iu06ToaouPyB57oqM01JwhFDVLNJ5tKaENG74cjmCeSWCEzrjLtxXhBAMVApmz92P69x1re0Adc6Ca2hr6HW7sVMBG69mGrxuMqaUC+9BOzXoprDcM8S4R4G4OSUXY5bOLGkhP4g2zr3bpThfb4V15U0NMi4FrOk1axxSdoGzIxaeMbgmvNaJSdMtP4i6wmG8Ljr3sngd9WFFYpKOltEFSOV1AIbaKAoDzB/ERBsyhYqErUWfoSo/WDqdu6pUQbRufUBV5bnLVJgqrdyUKatKkrGt2xVomTQZqunKDySvSfQe1fXzVfETo0xVeJ9zCiRstSlDvt5zDQIAIEr75whjFoq1yFJpPt7YHEXBuas8d7+rSHjiAVWd86JYtwkzxLhHSTiL+kpGqdPE5o0foQtOzlhO+OJ4G16XYtUC1qjbVFDrUjAu9EXtLxKc1XjubZ/1deTHNEKIVr0RpebHH0RtxN+LG76wa05Kg53PMWObrHWS3AgAvQKmo6Rl1JSFzrs2BWt1R2JtjZaEp0+UjoDqhMI9d7ngVGjIJCmpOE9svDJJJr7OaN3x013RQssoyw+E6g1NQFXR7CRtcNwNTmGJbEypAiIAlPNE2XRF/Hv8ffaX80anS5ZC6tRGQGQfSoLn7hC9Gozx6Ml7UJehqjoNsjWqT0rxQPosoGUojSfhLJ5TRMufnICmLFuzdSk6GQR1rl/cB2DyW/KNt70wyai/QHBew7nLyUBAwAEr1qMzwCYljmhsTModY+lcT+19JG5+XclaBS2jm1vuDs+hp4ioQreu9ppURa/4WlTenqzA4utgP5ODnsnApG4sX5uKegIUnLvKczeWzk1q0aPaMvaN2rgpKU4cec1nqVLilC1Zz3mHFbkDWAMbE13qSYFM3WkQuBTPXSHf1SUxGTJUk5w7P80k6SQTpr1xlw1wyEdbakikmrsT3/UHKnmMGWrxHAuaC9ywZA6AyadleG15IMXxT2HIlEZSEVDV1ZgG2EMeD75yzz2tCkL9kKseWkDfA7TjKcqnagyfit7gc+v4/NS0jKdZN0l6tIAYwBboDZ13rZhbZ/SAZHYlEB3ldfr8GOdu8NyjU0Q0P7+cvhyHUHYR4n9XcZrR6L8B1X2S3PDKrtlzF+fusdRCkpPGdFJSICp5UErJuSs/H00Sk6pUQci5a2gZuRqoDTPHuAee0KI+loU2Gca97ftwcyS8yAOVgpHP551jbriKee6mDkUThd+laHa6YUleXZEsINloGtDraVWcu61+Seq66IqNww0NcPzimIKeuhOHziDI79NXHOUB/SZmomWS2YEaKSTRBeGYsiteypXTGxr9sqIMgnIz7VLtUV5Hy3AjeUnlB7R8vlraCESFvESoOhSF94mvpqpEI8nqFemNu0iBVYqO8bmUC4fprh+QVNPxdavGUkqDU4H8+eikkPoM1TTS00kx7oSQNYSQbcK/EULIbxFC5hFCniKE7Av+nxuMJ4SQzxJC9hNCthNC7rQvQ4/omMuWykvWTkaGaKsTvzH6y3m0u+pi/JRS/Pi1s1jQW8D8QEEyWaodIApE8SQjndEDdMlAZs5dvkH1lQfjXq2JllFpo7XetcYA6ySFOp4WMFAQiodFxYurShvYPPekcVJvHKoSC/rs16TO/VJpGflekQOkpbyDLtWfBmWVlDh3msSuiXLuWlpGoekuu6xksk7qW5A9d81zw5PG4iWT9Zx7U+G5O0QXpE9+loD+PlFRVUy+m+TofQXtOCmcO6X0dUrpWkrpWgB3ARgH8M8APgHgaUrpagBPB98DwLsBrA7+fQTA56yrMKClKO4FmAvsp55bMpI8w21YUUxltOVh46EL+IX7Vwi13yePluFKCt63lBmmCXB7mkCPmnPX13+RDV9Iyyg2vLaBlkkad7UBNkniVNQToOfzlbr4CZQ2ANJlBwIGKaSvjxUk6nQrdO6uybgrEl90G56cgxDWaDEUMJObR/AGz2maR0TNTtJpuvXB8eT9Wgk2KFU1RnnjqBT1VUxVJzzHsClF/R5kWkZNmclzs/nVnrtqw2O/nxzfMWy8JkyUlnkcwAFK6REA7wfwleD1rwD4QPD1+wF8lTKsBzBACFkywb8TIuLc2QU2VfubKOSu9gNlnrCTNO78oZjfW4xa8k0i5d7qxG8kHRfN162qUmhK8JF5Rl0Hd5kfLZrUMgZaRq9oSce5yzVXAIN3raF8dLy46sHSGbIw0OgmN1O1R6ZfdyKNX6VzNxgb1dw6z1P2xG3VFeUG4+H8CimfqfSwPmdBc+JIseEFalwlNdORyjH3GBrA8/eRpnwDIGaoSrSMQbigrOeeMkOV/X6yobbXZclrchKYDa59SAw/B+DrwdeLKaWngq9PA1gcfL0UwDHhd44Hr50SXgMh5CNgnj0WLlyIWq2m/INHRtgF3rdnN2oX9+J8g13E7bt2Y2B4n3XB9XpdO/fRE034nW748yOD7G+te2kjTs2Lc9rnxtnfPbx/LzaOHGRzN1rauSe6lhOjbP6De/egNrof8D3Ux7rK8afONtFq0djPCLo4ffZ8Yvz242yj2rJpI45W2B1B/Q7Gm55y7jNnm2h2orm5F7Fn3wHU6LHY2J3B3Js3bsChoLqe124CIHh54yacHYiu4cEhdm1379qJwrk94evU72C8EV8LPz6fOHYUtdrp8PV2i829ectWjB6K5t55kj30mzdtwvGe6K6nXR+DF4cT7/P8YAOEIPZ6vV6HA4IDh46gVotu1R0n+PWLz931Omi0SGLu4ydb8Dp+7PVWswGAYNv2HXDOvBa+/vqF4Jrs3AGcCgq6jY3BJQT7Dx5GrXYyNve5802Me/HPvdUYA0CwZ+9+1DpHwtcPHmrDIcCzzz4LADgcfFa151/EwkrSMhw+2gKhfuKaEBAcOnwk9jnsPchUXOtfegHFwGi3G+MACHbufg0LRvfH5j57voG2H7/eneCzXL9xI07NiT7LXUfZOjetfxn7StzytgAQ1F58GdfMiT+Xp0430WpGz8mpY+z3n3zmWVTycePJBRBHDx9CrXYcANAcZ9dv7/4DqCF+f+84Enz2G9djb4HNRb0OxhTPDi9WdvjgAdS6R8Prd+Z0C03F+NGxBgbPtRPXm3YJjhw7hlrtbPj6ocNtEMQ/9+YYW7cJqY07IaQA4H0Aflv+GaWUEkIm5MdSSj8P4PMAsGbNGlqtVpXjth69CLz0Eu5aexuqaxYx7fezT2PVtatRfWCl9e/UajXo5v7H41sw4NdRrb4VANB/9CKw6SWsuelWVG9YFBu7/+wo8NxzuP3Wm1FdsxB45kk4+aJ27omuZcfxYeDFF3DH7beietNifHnXE3DyOeX4Lx7YgFzLQ7X6UPhacf0P0dc/F9XqfbGxJzccBXbuwKMPP4jFQUnUr+95Al1Q5dxf2L8eRa+LavXB8LXcU/+KpctXoFpdExt7bP0RYOdOPPLwg2Gge9c3nwbQxG1r78A9K+eFY/uOXADWv4w7196OR69fGL7+9689AeQQW0vb6wJP/BCrr12FanV1+Pref2Zz33zr7Xh49YLw9XObjwHbt+OhB+7H8nmV8PXPbPkR3EIPqtVHYuv+X7tfRG/RjV2rWq2GQr6Jq5cuQ7V6U/j62U3HgB3b8fBDD4R1TgDgH/Y8CUq6iWv4rVOvoK89HHv9+PeeAdDAmhtvQvW2q8PXC/vPAxs34K471uK+t8wP11EutLD46vg6AOCv965HuRv/bH78zDoA47hm5SpUq9eFr784thuFY0fDdQxvOwHs3IY77r4H1y3qg4wnL+5A+cLp2LprtRqK+RauunoZqtWbw9d3+PuAvXvxtupbQ2//e0+ydax8y3WoPrQqNvdfvv4ycgSoVh8IX9v+Tz8G0MJta+/EHdfMDV8/8tJhYPcuPPrIw2F2NB97qzQWAP7uyGaM5RrhZ3xyw1F8fc8O3HnvA7iqvxQbOzTeBn78FNasvg7Vh9ka161bB0LGseya5P39+rMHgNf24G1vfSRUsX1Ncb8CQeb6Mz/GDWsiu1Sr1XDNsoXYfPZ4Yrz70o+x7OpFqFZvi13vctHDoqsWo1q9NXz9+fpuFE8cTXw2eUfdYJxjIrTMuwFspZSeCb4/w+mW4H++1ZwAsFz4vWXBa5cEuWStrWLiRNAWkqPicydJu7DOhBv1W52sAmbi3+TcqI5DZ2OTvG7OQEEA6aWQHS+pyNDVf1GlrOsy/lS8If9ebtahUpEAoppAF6xV0DKqan+KgCpfi3yEDtVGCq5bdb2Ndbo1dWsSfTfdnFJ14qvUMsHcKklhrPaLhZZRUT4AL6anDnqqOGBltrFR+WTOrAWia69auyxrDRtqKDNlkzEiQlgbwvQ6d02AVHPP6joxqWSTfLwsPfUVskkgWadJxkSM+88jomQA4LsAPhR8/SEA3xFe/2CgmrkfwLBA30wYUX0HttSQc9cYJxGHzo+FtI567riRNPHLIvfPf2cyZe5NaRPTpeUDas5dZ8h0nLvXpcryrG0piQnQJz0pKwlqAnz6gBNbo9jd3jNw6IAq6KnOUNVq6BUGmL8PXV101UbT8Wls3Wzu9Fmkql6kALvHVbX8O91k1i4zTkmDI9fmKQfGXV9XXs0BqwKCfANTccDqptf6sgnapLFYdyr2v6phh/xZzikxgl4VN9MZ4IKTUz47LS8ulQagr0Ovc140nLvc7i8aT5TqJOX9aiHeU9EyhJAeAG8H8GvCy58C8A1CyIcBHAHwM8HrPwDwHgD7wZQ1v5zmb+igqtwI6BtZiHjs0zUAwIfep5vbjwVUTc14RUlmLhdIliZRCilLPtn85vovIlgDZLWxBjRBT7+LUi7OYbK5Fd61ytgoKgnqCjGpKjfy8ZTGPRlVcwLxd7VVChVza5NqFA+G+sFSG2CxqJb4M2WClDA2tm6NEod57mpFRtpNye/SMGsTEHrnaiTE2rkVSTvKAmbBt/rGK8mNF9CrfMT5C1xBpCknLM69ZIBRMacVnZVU1RUBKDdHgDlcJalvg5tj10oOiOpOj9pmHYpcC7aWZH0rVTYrYPfcUxl3SukYgPnSa4Ng6hl5LAXwG2nmTQM5iSmXI1qtqQhdFTkRba+Lnp7oEpgoH1nNkqb2+0Qgy65Ez1D0kPi6VZ67fJwDoGxMIcoV5ZtX3yRDIYVUaMBtiUY6CSLzeNnXKlUDf49AUruuk0I6mroenp8sP8DWkktQPqquTUBkzBjFE5876aWqNyVV3R+A3Ye6zVROkuFrU6lO3Jhx5+0V07eIAwLPU1biKJQ1vMF86pwFjROg0ttzZ0On/a8Uomf46iAuclLx/KvqorPv1etueX6s3C8QT3pyBMdI1SeWjWfGXX6OOwZaRnWakefl6zZholLIK46WQo6kqxki4uigOdgAGGgZhYcge9Z5h8CnyR35UiHLrnR1PQAom16YaBmxyBhgSzhJ8tF5R19dUXc81yXsJHXaJHxPHNo6NFY+X0GdaDTGaY/EpmYd8rrDuVNKOHWee97VaamTpwK+tgQNRuPG2tr/UyE9BaCsR64bm3d0hdpUGar6U5h8T3H7qtLoy6eIOaU8yq7audMZ4LyTQ1vBsTY7cak0oJee6qjE8H0qHBLVPaiqIukp6DgA+OffeDDxmojpb9wV9bF1DSFEiBUVZV5UnFus1WymZSR6aBLrysfm5wHV8Civ1perjrlp+WVTsSSVV5Y30DI6Tbcu0UiXdSqunW+aaRsI8xNLssWZWu/c8amalskRZQVEubVdbC2Kh1xPy2g2JYUnqeOuVd51wSGJDU82HjbPXa+7Vm94qk2m4Oa0+nzdhqcq35y8HvqAKuOu43MPaCqq6ii2gqv23FVO1ET0+UBUD0akZiilyuA4W1vypKQ6DQJRKRYdZo5xj1XZU3sIIsRa6Gl7eoZ8/lTQMjzV2eW0TOAhKDwKneeu4vaMGZMaflSVsKO6Jm1P3S2JzaP2UlWcO/+7HL7Gy9edZkwBWN1pRtXJJq8IrKk2MPa3NGvxFaVcLXGI5ElJbWzYxqEwCArjJAdIbZy7p/EkWeEriZZRvEdAb9w7inXrrh/7bKQYhMlzV2QbFx2iVdbw9yRCx7l3VNVXdcFxbWXSQHwhPJu6TYb/vtJzV1xvG2aAcVdnidmMu1hYTHcUFZuAAIHyQHMqaCZoGXUU/FLR1HjuKg9OJYV0iLpanSoYk9dQCoBOtqY/FSRvfs2xVVH8iM8NxDcx3YOia2bg+RQ5glgAEeA119O9R/73VNmYqo3AVC9GV/9FR/nI44tukkNn45Nt9gA15+5LHm3RdeAQ/bOg89yZ4UtueLJzEa1Dd711ToDCS01ZDRTgnn4yRqSjcAAkuiXp1s0C7+oTW7LstFkE4AvXUKccY2tXKbbU/LwN0964q7SmpnrkHOfrkeeuO4rKhcPCuRW7fqi3Dz13MqlSSFnPHwbsNMZJLhzm5DS6627ySDxRzp3NnU4vbvNs5AdLxV1HnHta1YlaB6yTk3paWkYthVTPreZSVfyorrSBKo0fMBhJBeXDx6voDfn6lVxDkxbN+9RJIXW0jJyzwMar6DvNRq24X51AnaYy2G0vufkWHF3wVe1gsOuXTp+va+6hamACRA6K+Nl3whOEmnNXNTBRfTY2THvj3vL8WNs3QB+4EVEX6n7qPXdFwCSnLqoVJhnFPPd07yENWp6PvBMFPkMKQkXLKHjxnI6WUTSmMBWnUtbe1jXU8JOGzMSlAopkIIUHbNO5q+RzygcluCZizIVSyt6jxktNJhqpqRBHt4kpdO4A98jUdFKiV6zm/tZ51wUFreArNpmSQ4yeuzrInNxoOjpaxlHTMqpm55EUUkGDKdZRyjuGJKbk6VHZg1Yhs+TrVlGUuqY47O+qFVvJeEvSCdCd2PjaVJRmmiqQMqa9ce94ySOgS+xSyEYnuolf2Hc+8XP+kMsesJaW6XSRI5GXVXBzsCxhQpAj85yCUBmyLk02mubSSRkqT1KnVGA1XZI6d0fjAZv5fDUFoatqGOPcgwchR9RjVUlMai+Iz508Eqt59CS/rPNStbRMV71xMCVOcm7+MxEmekMXhFNx7vL1M3nuuiSmvIKqamtOPkVNYNIz3SeKa6Kau5TPKZOYdDSOMviqk+NqOHdlbMuwqbOf29UyusQ4tjZFRrAmoGrD9Dfumoi1LYlpvO3jqqCWyh/+cE/i59xoJmgZzZGOUSGR8S04OXiTKIWU+X+bwkKlG9ZpurU1wGWetktBqa4xRbrjdo4QZeMQXRap6iHXJYSE9EaKozygprYihYqac1d510rPPVTLqBJO1DROks9Xe3AFjVrGmMTkJT9LeWxvnmBQ07pR67nnVOqNpAPA16FSSXWpWqbK5xLR0axDr/1Peu4Fx+K5K2iZtDEl3eeuC47zDVbMBtedTPlr8ty6UgU2zAjjruw8r6l1ztFo+7htWT8WVwhWzK8kfq6LWOtkf/LRcrJpGXkT03nAUcapZPg0NSzMCSSajUOxmWqb/CofcoVx13ipnHsVdcY6nTsQ0BuKI7EudV58X4D++rHXNMoQZbJJ8L4Um69ublUcQtZ0h2MVdJyW8lFktKquyVU9ORw8P5b4fT636nrrSv6mVcuoasUAIsWm4vMVpwKd567YDHRxM11ynI5zV9GfejmuLk5EYj8H9LJJ9ppCLaO53jZMe+Ou4oAdxe4mY6ztoVJwsHquo+TTVE0BAEORLGkXz0+yzl2+kUz8MqD2rpVBT8WuH/GdSUpBPbdaiaP6bPjv6zj3idAy+kSj5JHYpGgRx+uuH/97SU88Kc0DIo9MzY9qHloFv6zcHDVJTKrSBoCOc0/OvaQnhwtjbVwYS3rvurlV69bRMqqyCXxdsgesy2g1pdqrn+PkhldwdLJJ9am3oLneqnwIlcMA6Cmf0LgLp3xVHX8O5UlJE0i3Yfobd01QQ1fVkKPR9lEuuCg66oCqriKftkiWREEUHDKpzTpkfk+bwWeogCgHDwGdtFET8Q+rPKo4d/U1UaXx6x5aQJ/EJHp8Ok08X7uKOpFVOOLc4ngdrcVfU51mZDkcYKNl1A9torSBZuNQbY7dgN7QSyFVapn43Asr7Hd1qfm68gOJKpwaWkYVUI281HQbtUlDL79HSimLcahO34ZCd2ljHCrbo/vcw1Z4ivIDQJyWiZyXlNSgJnnNhmlv3HVFh2zGfbzto6fgoOwSjLf9hNHjH458k+Yd9Y2hpmUmz7rLqhZr4oumUbJapz0xWkYlnUyrlgF0HDD7ffkeVW00Js9dZ8hURlIV9FRVyQzXotG5qx5CfUxEn5qvzPTUeMC6mIV+U7Jz7ryxhqoypKlwmLpKYTp6SMdF69aty35VlljQxIi4g6aq2Ml+ruDcNc+8nNAXBlQ1sbBkJnMyoKorosfXlmizp4kp2TADjLtaLWMyrJRSNDo+KgUHRYeN1TdVVtwYmupzMVpmkjl3uVKhrUysPh3e7knq+Hzdg2jM9FRywOqAqtyjU1y3+Pnwz1ZOSuJrU1EnJs5d9WBp1TIKQ6YsMqa73gZJYUKJo5G4FVRGz3CaUQUyVZ54gZfO1VAWKs7dURkbnVpGsQ4dXRGuWxmH0JwGZQWW5hTLK4ok+vga1Ek6nbtWCqlJSEsEVA2cu1KF5SRLYOg2XhtmgHFXlVBN1tIQ0ex0QSlQLrgoBZ/GWCt+Q+uCh7qiZN5lDqi2PR9FJ4Vx1xwtw3IFisYKqhrqQJJz1wUbzU2s03PuapolmotDV/IXCI6timYdygQcFedu9IBVgWA1zRJtHNH4sGaIhs9XZXrqrh8vKyuvW7kZKDZTX7FxRGn8aiWO2gAn51Y9k2wd+nr42uttaTISjlUkSOlOsfom7Tp1UtKgApqAqoYu1dY34mqZWL8CNSXM166u8DkLPfeWJmKtqvbHwbuwVAoOSsEuLut7oxsjHV8ne6kFd3IzVOUTiqMJ2Ok4Y/6tr/Bqk4lDGs5dE/zSBWtVdWj476uMpIo6MRUO03mpKs9dl8TE5hbUMp56c+R/L0HLWKSQSj5fu+6k4dPRWmw+MRA8capKVbcc0Kfmqzl3XUkGzaauVcuox6etOKkKqOr4/LBcgfQ+dfpyHS2jkmGHn7tG1qoNqKZOYlIFVNWbqQ3T3rjrdO46zv3LLx7C3jOjAIBywUExMD5ywSR90Sadzj3+kE8+5x7/AG20jC57Uxm00wQxkwFVfdDT7yY7N5mTapIPrTroaeLcdR5wulOBihfXbWDRupNBZlMSkzi3qWaI0khqdevstRhVZTGSKs49QcuEnrvKuGvKICtKMuiCzGoppDq2xdadPBHqKiAW3OTYjsYDLuhoGR2No6jl0+1S5clKp8/Xffaclumm6DTGX0tKIS8toJq6QfZUQRlQ1XDAQ+Nt/N73doffzynlQ89dVsxoy63m9FJI8SEvOJOboSo34DBlQAJqXhyYIOeekLgFc2u9lS6KQoMCPa2gNsBKY80595haRu+5uxpDpgyQKq6hiZZRdc3RccCO4hqaJG6qglCq0s1AlFjXUVwTneeeRucetatT0DIGnXuSc9evO21si687Scvo5bVaBZbi9A0kn2NTQLXtd2MNNfhnqctQTcRmNPVi+AlcXLrpNKM9Kc3KgKqiNooqAxIARptxAz6n7EYKAY3nnqjrkZKWmXSdu99FQSw/oDHAuqNoSMsoIu26jUB3hNY1VlApd1S0jDLAp6FOlJy7obCSih/VeTYqTXLHQMu4CspHFzxUbab8PasqJiobgWgyDyNaRnGUV1IW7HkQ1SGqIFyBG70UTS+idauDzFrqxI/LcXVOFKCjZdLr3HXXJGrukS6gyk8VqrK8OilkUh6qOVEraBldHRr2+7mEpHl2B1QVaplUxr2Ut9MbihujrZFRJWgZqm8EMlHItIyu+pwuhTqn6xCjOOYSQpT0holzF/+2OD6tJllrPBSfj04RBKiNjY6nVRngjsFzzyuCtR1FzILNnQyoyg1d5HUneVq9l8p/zuEZNry8kwv70Ebjk564SS2jL22guib6Zh1AnE4y02CaAHZKmaVOABDRMhLnrjn9qK63qoUkIAZU1codXYZqV7Hh6Wr5iGMAds+qKE0bpr1xbyk4TycHdCkSHPBIM97xXDTuev2t+ugqe+9JWia5278RyEXMtFp0za6vq1bXUWTwsd9XV/vjP4vNrb2GerWHracnR44Q5KTNWpfKzdYycc5dNE4dzUPL5lYYSc17VNEy7dC4O4nxeYXCSxdkVnLuGr4YiGg0uUCaKi5DiFotY+LcqfCsdQMVj85zBySKzXDi0AVg1Vm4KrmnJm4WnlCS4x1NuQcgLg0OnwUdRakKjivmjuI+SbWM+r5ir8XvQXUA24Zpb9xNWlPZo5A9976Sq8/G1AVUNTKqBC2j2O3fCORsOJXxAPSBNS0X6OuKPCUlV21NQFXH57NTlW7uJAesS8SQOWNdmz0+Nq23p9IkG3XuTvJe0SVqqU4z3FPU0jIqnbti7qKbvLeiY7/e05cDsPKGRwhByXUSnnuU/Wq4JsHadTEfQIgVKK93elomLZ+vo0Ki2IKsltGcThQnjshzV9seZU9UxXtUFg4zKp/i19uUmWzDjDDuOq2pbJxGGnHPva/kKgN24u+qstsAxZFOQcuo5r1UyO/TmkUqfdi58KZTeBQTDH4l2uzp1DUmSZySwlHfoHKCitFzVwScdF6nSpNso2XYfHHjZPLcxbEtRWOZaN1qPl/n0QLqkgy6OARfK4eOZlGVzjWdClyJhjC1iAtpGS++OYrvSYRSQ69o3QioE7usDlon+eyoTxzJ6+dpTsiRE5WcWx14T3Luugqp7LX49datIw1mgHFPZqjqOGCRlukpOHCdnDUZKFmXgv0v3xiJ8gOK3f6NQFbL5IIjtErzytatOy4q5HY6rynlaUalueelXPWBNZXnrr5B5R6gJi/V1TS9UHGSquxXGy3D/r5onNT8sup4zv+OlpZJyeerOXdzYFI1XnVNVE0vzIXa+DUJjI3RWKs2JdNmqspo1cchtIldumc4UX5YV+Ezef2ipCSNGEER9zF57mLhMF1gF4jsCh9jktfaMO2Nu7IzkIYDFmmZuT2FYGzAX0oftO7YxR9kFS0j0ibRbv/GOfdul8LrxjcxQghUadG+5oZ2FR4CoOfrVLy41rgrNsiIk9RQJ3JpA0WALxpPEl4nAKVxKrjJYlN+V10VUtXcw8R3qoJZulrxPFYgzh21YkznueuyXyMjqTrKGwKw0unHITrjLnvu3JAZPPdgTNtg3KOAajR/x2TIVLSMVueeNMA6maUucKzNK1DOrZZZkqBfgaqgn64QGBCnZTopNmpuf0wt+WyY1sadUhpw0cnAEJDkgHlmKhDdDNFGoI5uv1FaxlQGIS10D0xeqWjhN118bEjLSEayS3U3UTIppO2rr4nKSOpSvwEoa8v4mg5F/O8pg4cpk2q0dVEUVBV/jzrZnziedaZSH+X5+Bgtwzn3lEFmnZfKaTGlWsbg7cnXUN30Qt1QA9B57nGqykjLKDYlnaSQzyG+R0qptpSEyunS1WjRlh/Qqbt4AFu1mapiM8pEI12WdNJz9w3PjhxvMfHzNqQy7oSQAULINwkhewghrxFCHiCEzCOEPEUI2Rf8PzcYSwghnyWE7CeEbCeE3Gmbv6HJ49cZYF3wUKRSfvH+FQAE456yiYBOIyvTMipP4lIRHecl4+6qU9ZV6470t+mCh8oEkrDkr+4oqvBsNN6HSlmjCwrJSoiogqTa2KiyX83UiXBNNO8RMPCdmnW7kgcXSiEVnnteo89PLYU0POQyZ8y9RNWGp4q18O8d1VpycarFRMvwTUklhdRXD1VQOJpNSZxP/FrnoCVOKJaTUmxu02aqCeqrTrHKwmGGk6kcHI8ay18+WuZ/AfgRpfQGALcDeA3AJwA8TSldDeDp4HsAeDeA1cG/jwD4nG3yC021cY8CfHLEOnkTAezDXNRXxK7/8U780oMrg7HxuaK5dV5q0mvi38tVIVVruBTokl9UtIzuSMeX5ncVD4sm+KVVECUCqsnAZPiQq0rWTpRzl8YbszGVfU7NSUzxwmF2zpivxZRJyNcnenAmKaSq4qTO21MZGxP3Ko+38fO6Z6GomJtvVCFNYDLuDnvfcSmkfrwr3d822aT498V1p+XcdXWCTJupTqqabGCiy7VIGnfd6RtIyklN5RtssBp3Qkg/gEcBfBEAKKVtSukQgPcD+Eow7CsAPhB8/X4AX6UM6wEMEEKWmP6GTiquq3USKRWSxr2Yz6Gn6IZ6UyeX1FEDeokWvzGUcruYzp3fEG+cczdF/XVJTIl67govVZfwxP+WjnPX9btUtqtLW1tGcyQGOI0Tje92KQhRl/zVZXoak5gUD5ZJgsiNQmSsdbGCuKE0SSGVyhAtBcEdh+QpLM1mYFIbqfTiHY1zAQCVAqtQwr3gSC6bjhdvGw1Z/DRjKt+gUuJoxQU5lqQnU6uqSpni77cVToA2kU4RHFedBtWFw+wUG7+GPJtY5TDYkKa2zCoA5wD8LSHkdgBbAHwUwGJK6algzGkAi4OvlwI4Jvz+8eC1U8JrIIR8BMyzR2HxdVi3bl0iAWC4xS7I4YP7UfOOhK93Wk0ABOs3bMLp/uhNHz/VhN/uolarha/V63U4hGD/oSOo1aIl7D3AWo299MLzsQ+83WwAINjyyqvwT7DL0w24wBPHjqJWOw0A2H2eXfSNm7dg6EC6C1+v12Nr4zg7zj7Ig/teR238YDjW6+Rw4uQp1GoXw7F7DjFF0PqXX0RZ8LBbDbbuV3fsRPEcawjOr98h6frV63WMjTqoU8TWsy+4Ji8+/2zss+DXZOu2bfCCa3J6jK15/77XURs7EJv7xOkj8LsUz6xbF1IrQyMNoEUS779er6NRd3CmGV2bg4fbyAHKsWdPt9BoebGftdodnDpxHLXaudj45vgYAII9+/aj5h+V3uNzMdqnXq/j4Lld7GcbNuHMgIOLTfYej0jXj4/3vRyOnTiJWm0QALDjCPtstmxYj33F+NwnTrbR8eP3ZqPZwtnT0e/zsVs3b2Tz7dyFORf3AgBePc3iSa9s3YLz+3Kx8cd2bAcAbNz8CkYPOSHNefjgQdTosdjY0ZEmxjs0to4TdfY+977+GmrD+2Ljj5zfGVyTzTg/z8GhYXbf79m9C6Xzr8ev36uvAAA2v7INnePsPnn9ELveL7/0Qlh+m48/faqFpvBZjrb5/Xog/Lz42H2n2D394ssbcKiXvf/tJ9k12bp5E072xK+JSwj2HzwSPq8AcOpME80GTdiHfdu3sXle2Yb2MbbunefZ3Du3b0PrmBMb73dyOHbiFGq1C+Hrp8820Wwl5964YT0AYPeePajV2XOy/yC7Ji88F3/OVJ/lsVH22exTfDYqWyIijXF3AdwJ4D9SSjcQQv4XIgoGAEAppYSQCbmwlNLPA/g8ABSXrKZ3P/Aw+kr52JgTQw1g3TO4+cY1qN5zTfj69n/6MYAWbrvjTtx5zdzw9a8c2oj5bhvV6sPha7VaDaVCC1ddvRTV6s3h61s7e4F9+/D4Y9XYBT72vWcANLDmxptRvZUdOFqeDzzxI6y+9i2oVq8DAJQPDgKb1+OWW2/Hg9ctSPWea7UaqtVq4vV9Z0aB557DbbfcjOrtV4dj5/QSzFvQh2o1Clvsxn7g9dfx2FsfRSkf3XSnvh+s+4YbUV27lL02zK7fTTesQfXe6PrVajUsnF9GveWhWn0ofH1jcw/yhw/isccei63v8HeeBtDEDTfdgurNV0Vrfv453HbLTajednVs7tXXLQP2v44HH47WWHrlOVy1oIJq9e7ENZk/rwgCoFp9AADw8vhryB87nLhWtVoNK69ZhBdOHo39jP74h1i58hpUqzfGxj/9zDoA47hmxSpUq6sBAJtae+AcPIi3Se+xVqvhnhtvBbasx0233o4Hr12AYxfGgdo63HLTDajevTwxvqfcxYJF81CtrgUA7H/+IPDaa3jsrfF7uVar4dpVV6N7cB/e+ta3RvfbuiewYvlyVKs3xcbefcf9wHNP4y2ro89t5NWTwLZX8MB99+C6RX2x8ffeehuw6WXcfOttePT6hRgabwM/fgprrr8O1YdWxcZetbAXJ4YaqFYfCV/feWIYeOEFrL01+nz5+PtvvQ3Y/DJuuOU2vPX6heg7cgF4+WXcufZ2PHr9wtjYVdffAax/AWtuvAXVW9g8O7v7gNf34m3Vt8ZOBrVaDatWXIV1xw6Fn+Xp4SbwzNO4+YY1qN4Xv1/XrroBeHULbr/zLtx8dT8A4NzmY8D27XjogfuxfF4l/tmUOli45CpUq7eGr3/l0EZ4+aR9uO+6tcCGF3HjzbeieiPzUbt7zgCbN+Oeu+/C2uUDsfG9FYoFCwdQrd4Rvv7FAxvgSM9T+Fk++zRWr47e06bWHjiHks+Z+FnedCu73q8eGwJefBF3rb0V1RsWx8aqbImINJz7cQDHKaUbgu+/CWbsz3C6Jfj/bPDzEwDEJ2FZ8JoRQ+OdxGsdjVwxrOshHc+bnS5KimCWurcjC8Kl6gykCB4WpCP8G4FOLaNqkqEvUBT/OaCntQA1L65P2IkrJkxr5nPz+cJ1a6orAoz2kDl33Vh1RyNdaYPg5yl06wArEQ1EFEQUIFWfzApSqdiWgd5Q1gzx9Rm+/OccNopNHG+KWcjXWvw9VfyknGf+XyNQonFaxkRrpQ28F4K6Nbw+kymbVUWDmmILRTenKD8wgYCqIYDNGsZInLumwqeqQbZO7gkk4xbhPeVMnJaxGndK6WkAxwgha4KXHgewG8B3AXwoeO1DAL4TfP1dAB8MVDP3AxgW6BstlMZdF1DV8OJNz1cnkEzAkPG9wZZlx7lIuU78pUDH7Zo622jb7KXkMJVadI16QxWUtqllxDFsXbaAqqTR1skmc4yf5waBdz9SKUNYrkD8QVQ1PebgjgFXSpmkjQA3INHnz79WKnEkmSX7WlNbRskv63l0HeeublNIDDXXFcY92PB431W+fnVjdDa2Iz07qporfN1iLR/z5qi4JoYNr5R3EqWNTRnVAJTBXbWNUCcAqtatapCtixEBkZiBf5ZtgwLLhrS/8R8BfI0Qsh3AWgCfBPApAG8nhOwD8BPB9wDwAwAHAewH8AUAv57mD/z5un2J13Teoa54T0vnuWuaCCgNWS76uWkdleCmF7X1lwqdWoZJ7ZJqGdOJI1agyJTpqQjwaSP+imuSJlNRVh9oDba0Fl7gSQVuJLlBCMunauWK8Qex5cVLK4soBx46Lw9te7CKkgFp+az4m8qQyWWTo5Z8Kb1Uk7GRjJO5JZ++W5I6oMquCXdijGoZnd5es6m70vvkc6sC2KZgrXKjkTZeQO80hNdbEazVlsBQlZIw6dylgKpJFgyInjsPqE7cuKdq1kEp3QbgbsWPHleMpQB+Y6ILOXqhkXhN51GokmqAwHNXHKGVRbJ8tTY6ymiNbgwVLdNbZJdObt93KdDKMlUnDo3nyb00VaKRzoAktOiKhDFAfVIy0TJhVcOYdl3tpfI5YoXDuvpCSWJSjeuYNcN8vFy5UfegcOPOa6+EtIzO03dzMS11q6P23oDoOvGNRveZi6+p0uGNm0GwXpPOXXWK1WVrAwhjJtGGZ5JZJj93nbcsju90uyjDMa5DNbdJdVLMO4osc4pSXqVQUdFg+pPpRMo387ceK/nb1VODsnLHdJqxYeK/cRnQkydKI6n7sHW1zludLkoKr6zgKj5oDUem8tyVtEwx7tG8EfB07aTOXdOVxdA8Ik3xI/aahqpSzs03jpRcqqqqoabNHpDk/3WSNT4WiG5+/r+OOpHnbmuOz0DEraf13OVU/pbX1UrW5ExPUyEwlXzXxAHLxmminruuLjogbHiduOeu85bFMfxr3fWWO06Fn6XBc09bBlneeNn4S6ifr6RlkuUH2rpnRxGv0tkeQIhbJDz3y8C5XwnkkGyDB+gDLKpsTCDSucsoKCgIHe+lqlujMu5F14FDJsdzD2mZxAklye21Lbx4PFnC4Am5ydOMjaqK6a6NXpaaczeVHxD5f119draW+AnFpNEGkkdo3ckHiAxZK3ywzMGssmTcTacC7r2GCVLB+zV5+vHTTPoEH99AKShPbBaD7eZI6MSYksBUIgNdoBGI6MJ2eE0McyuDnsF4VRq/wnPXlvxV5hXo6T5lroWf7BgHCIXDJDGC7YSX4NxnqueeI2rjrtvJI1pG8tw9neeuOIpqaJlQLRM7Wqq91JI7WZ47f9Dj86voJF2yBL+/5XK1gCGJSeHBGZOBFJ7NxDh3fRBJzsbUee5RlUI7vQEEtWhitWVMDxbzmGXPXTe+lM/FylS0PF/7EEa14oPgYXBa061bVniZCkhNmHP3u1IrPPP7LOedMKDaMdAyqmYdumba4t/jc7bSeO5SbZkcUQeOiwrPXUedKNVdIeWjeXaUjejVpzAgHlA1BfXl9/lGaJlp0SCbEPZm5Iuvl0IGP5fVMh1fGVDNa7LylBxZoLCwee4AUHSIclOScXakqex+w9HWeIiuItW+45ubR6TlDQuaGzQ9526ifAJ+VNoMTDyjfNw2BV+B6NRmytzk4+U+p7p1EEJi3rgtmKWiZfQbAT8VcHpDHwwEkCiD7Btry8SNk6lNYUFQqPD7yMR1A0wxE254Bi+fKJ6dtsYZAcSMYL5x6OfW1X/RlYYo5Z3EM68LqIb3VEp1klLooHWMklJI3VggSW2ZegTYMC2MO79+Yy0PA5VC+LrOc1elw/tB2VwVN1Vwcwn6xHSBZa9WV2OEee52437vJ58GAHz5XT3Kn2vVMsqovH5TkkvQGnlDR11+wOS5qwpwGT0hycsyKQRkQ6anZeKeu4mn5a+3JZrA5AWVBC/V7rkrOHeNJl6WWdrmlhuYdAzGRjZOurLQAGIVJPl9oasGylEuRNfEpJKK1p2OlkmUe7gEz11H9RXdnDKgqnSMFDE8U7xKJXTQvc9cjoCQuOducgLkEuWmHgE2TBtaBki2ydN5zKriXqaHJe8kP2jPELGWK+dpaRmHYKz1xmkZbZ0bhXfd9gwlaHM5iZYxBOGcZPODjmZuVUNtIy0Teh+R7E9XypXPIWu69RSOxF1bjE3RdWKfZcvXSyGBuHE3NbwGWKC1GTNkelpGVp3Y1p13icS56/XiTmBA5ICqsiqkijoxeMwAo2UiKaR+4wBUz07604wu9gToeHG9566iZbyuWrlDCAliEUmpr5rSVAkdkk2FOBxCYp67ycEghATXMKCqOpy+U19vE6aFcefLljXjHU2RIv55xholGIo2qbIxTR6FPF4XcCo69oCqaDxFnlNei2rtquOf11VTJwD39BXrVm14CvmXLuIfzh0LCpkkcXKAT7/J8PFdIZmlS00ZfNw48YCq2etkHlw86KkzYgDzUlspvetycPQXk3Bsxr0pGbLUVJXhNCM3dgkLh6kSh5RZpMFaNNx4uRCdUEwS2HDd0qnXSst0pI1acQ1lFQkfb7reyoCq9noT6Zk3eO6aJCbdZ5nLEYjD24Z1A/F4C7+nVJu6DdPCuIu0jAgrLSMGygwPoq5fqOkGVTUFkL2EgkMS/ShlnB5phl83NUO1geMJUCdAsgStuQa4gsPUcO6A4qE1ellxzt0kWQPUUj6dIZN5WpOMDwi86454n+i9a4DRJ40E566jWuKeZ6uTQkMvc9cGWiYRmDRsSqJDYkrAKTpqI8nn0K09VMtYKBwVDabdeCV1UhrPXbxfW52uPsFM2tT57+pPSnIJjG5wIlKrZeQqpqasU4eQmM7d5mCIfW5NDoMN08K48wsoUxy6my4M8Hmi564/Qucdokm11xsQdYZqfHzRiY7ZOlwca4df19tmz10+MqoaPOioEyBZd8UohVTIFVmquH7Di6fOp+DcZeOeUrtu1LlLHpxnMUxF14k95KbjMxCXN9q865Ir8ei+Xucue+42KkTumOQbsnb5Gvn15h+TmnOPq3YA9j4J0SeOVYSAasfvImcYKztSbcP1Tm7Uenmok2Pt7WLG3ZBXUMo76Phx2tFY1kJJDWrGSkKHjuFZ4GuXg/rGe1C43qY4jg3Tw7gH/6ftc5ojjGP0JIkboE9dnqjn3o4ZBPWDWHCIUQUDxJt2nx3XGPfgSCdLuuSbIhxrCMbEA6rpqRP2NdXOLW+QJu41QcsYyiDExocGO43nzo/ygSdpMCCtmOdu85oizr3R8VHOO9ojcUlK8Gl5vpHCAYBGO10gOHFSMsSI5PEmz13VUIPnTpjep5jEZGrWLJ84JhRQtWx4cl2cluenVuIA0DaLB5i3LJ/WtSUt5NwJA4UDsM+hK6llbA5GZNz179GG6WHcubZcYYABvecpex+A/kiXaClnMJLy0VJPy0QFlXSoC0HiP9ncxIv7zyfG6AyOLovURJ2kb9YRj8rzr3U3aEIvrjltAELQk/PihtR5vm4gekhMXZtkz90eUI0/tCadO8ANGRs/1vbD2iq6sYBg3A20TKSWSRdQlXMzTAoigNFP/H2aYhyqipMmXhxgnjunZZodPzyx6NadDKjqKLP49UujIGrLnruBlgHirTd1zeLZ+PgJzzNsYvJzaVKOAcy4x5KYrHEfF+PCNbmUomHAdDHuwf8yR2bUUktHtIlz7uqMMiCZnKKjZQo5YqVlZB38a6dGEmN0G42qEa/pxMFuorhHBkwwVdxobOIySzeXPG0ASc49Mjb6ucW1eF2q7J8KRPy3XH5AT7E5yYCq1bgHnnvbD6si6sYC0QZvCpQlxloCwQkjaSiZDMS9PZNGW5VFagoGhnMH6x5v+2FFVOW6FWIEu3cdbdRWyseTjHvKAHa3q28Wz8bHn3nTSUl+Lm0bdV/Jxfl6K/ze5mBU8k4YmzFRTzZMK+OuqlZX0BwXXScesTZqZB11Vp6O12XlQu20TDHw3HUqGCAp7xR1/OHaNTu5G8gV4+s2ce7x8rbGdl4Kzt1YitQhkvZfP1bm3G2JRgXpCG1Uy8iJLxbOXT5uW/nOfCShG2976DEYskSJYEPhMKZ4iKRtEw2o+hZaRrxnTZupsrqilQN2w42j0TGfZiYUUJW8a5vRk6+JyfCFvV+5EsfCi5fceM6CqS0ksz3JHATdPXjH8gFsOXIxfI5NOneAce7jHS/VWBOmh3EP7ll1cS+TVEwIqHb0D7mYlRfObaBliq4T28VNtIxq3SJkz12WUAH6h4tzfjL9pDXAkkRrwpy7aW4poNr21JmyqrlNPT0B5qkAiCkydDp3WRJnpWXykbSRUqotscBRkrzUNJ57K9jgW5p+AgATDZRcMY3fvCmpqEETLVNK67kr1DK2a1LOs1wBz+9aTzPyum3PGSCqjfTXD0jWi2HjbXOnuweL+bgu3pYlLVKUIS2joZ9uWdqPs6OtsGdFGjluVALDrO4yYXoY9+B/VbU6U4Av7rkHsjVVyV+lttdGyyQ99wQtE3xvomZGmx4Kbg6rFrDs1DHFWF2KtqrBg+kILRcDMxVWciXqhH+tu0HlzZTp7S0B0rBOt1kKKdcMN9WWkWmFUOduCqh63Pjqg+4cZYmWScW5ez684NhvVUHIenFD3ZVYgE9T0VC1bmPhMKVeXP8ssHWznzU6fkDL6K+JLCM2GTLWlyD6LHWd1DgSOQsGTz8Z4zArtkpS5VjPoKZzc3Fn0eZg8PLg/JRvO6HEA6ozXgrJ/k+mC9s8yfQBVQCS2kNvJBPV/jQfHr/HTUHV0WYHfUUXT/zWo2ysolyB1nN3kp67sS6FIoFEV1hJVSLAyLnLCiKDJFMO1to493Jo3Nm1MZUHlj13O+fOEqS8Lg0/U5vBbna66Hap1ZCJtAzP0eAPsnK8G/G6Njqp6KZPYgL4PRupjQBzkbG0JzaA0TJAYNw7fvi9CnIg2GTICCGxgDdXJ+kgB8dZAFtDy0ieu61sglxKwjPUrXGloLQtsUsMvHtdCkr1nzsQSE9TBOltmB7GPfhfNu5tT+9RuFKBIlP1tNDb8+PeuKnoUJx/Uwe/CsHDYzLuI00PfSUXBTfHSgTrPHdNQJX9/XRcd9F1kh6ZQWrHx/C/0aXmdPiEJt5QgEvUXUe1edTje4rxloUT8txT6Nz5eP45mQxIlJjExpsMmVjrnMdWeksG415I1q3Rn0yTumuTBFFMvuKyO6PnntIAA2ICVheNthfSaCoUHVktY48V8DgEK/xnMu5OTP2SRi3Dn+OoVoyOvpMCqprywGyOuHG3FYHjTkCj4xuzxjnEpDFT7oQN08K4A/wYmkxi0honiV821T0uSB4wpdRoJBORc00UP/TcDbTM+dEWFvYV2do0SU86bzyiZeIJVeajfLpUe/kGNeUJsPEKj8xgbMTxtvIDZZlz71Jl6jwQPUCycTc9tAB7yPm1N3HGZWH8WMtDT0q1DI+t9Bk9dycZUDWclOSMSd31A6TiXqaSvwrO3aaWCWmzjmcNqIqbEq9dZGruXHIjQ9awGfd8/P42lVgWN2kger86B6OYoGXsdejDngKpPfeuVe4JBCUwPHZ6NL1HG6aNcS9Kngpg55djWV8mtYyc1RhGt/XGRlTBtDVefjEFLXOu3sKCXmbcS66+45QpjT9extcsLZMlbjbPPWznZSktKlM+niUdXtTcm6pTAoLxCK6NKZMwLKwkJTHpH9poM+Cfk8mAcJlfveXZpZBu9NByz72vlNeOFw2wrSZOMjCp9ySB4LQpnHyACXjuNlpGKHrWaPsoWQKqck9UnTMCAD3FyLjreiBzyEKHtkktI6mqPIuipZSP91w1BlS54qjL4z5malAMvPP1m+9Bvpn6RgWWDdPHuOeTlRttXVxitIxBLSPzjGkUFoDI16npoVJw044KWagyzgmee8FBmJwgQse5yx6CHwTtJqOuB/97fO4w2Ki56eTaGyZaBogXvjJxwIBAy3QEWsYwtxhYMyVTAWI1Ri88optomQV9TKp6vt7CuMVLFU8F9Ra7B4y0jHAibPt+mFKvQsFlMSVeKtZ2TUQppKkxujbWYtH+A8y4j7d9Iy0j3oNRJyv93D1FNywYaOXcBc+dB8htFSflGIde5x6XP5sCqjITEAXHLWvx/PAeNG1ivUXmIIy1PGuRMROmjXGXPUPALNEqSFpTm84dEORzYTcZy5FOuDFUH3Rv0Gx3uKE27i3Px3Cjg4Xcc3dI6J2K0LbOC/4m93zTlLdNJqfYOHf+IPIiWSaaQKKHDA9tQdDF22gZrgFvCJ6nMRtTMiAFJ6cMGgMsgQQA6i0/TP03eU2L+koAgP1n6/C7FHMVeQnyulsi526gZWIqiE7XmukJCMXXDLprPnfHp+j4UZVKVVBapRyzfZaimmkiOvdmqpOSg/FWWs49cgBtNGKibo0li5TXk+LXzjMkjcnlMqKWfGbOvdnphhuIqmMcB3cQRpudoDjaDOfc1d3KDUXtHXWGqq62DKBoCmDIVgMiukUXfK1w4z6uNu7n66xoWMxzVwVUNbwav4n4kdKmDJHlc+aAalwKGckENZ67VNdDd5oJxwtqD57kYQrAVvJOWDjO61KjIRM3MV3fXA7uBdWbXqqAKv+sdgeZxPx73bpLroOm1w059zkGz70oeIc2flmOLXiGIDMQD+5OmHM3CBeAKEZxvt4CpdFJSwV+YqOUpjop9Rbd8NpZOXfhc7fW2nfjDpqdlkl2yrKWwJCZAA39xA15o52OluFxm5GmN/NrywBJqR1g1t+yRhZxKWSOqL1xkfMCzBUNAVXHd/U6KsE9PtxQ13Q/N8pSjkPjniPKhCedWkGWcNqaQTOPNi7hTJtFauPcE/U0LLSM6KVy3bXJYFeKLhodO+fO1ygW6zI9KD1BYKTeEox7Qb+O+T0FEALsOhkY9169cQeinIg0apmywItbjbscJzIYGwAhD97o+Eade7Spp0vo4+sGgJNDDQDAvB7zaYbNSVPyy24ogWU6d4vnLuQg8N9XjuXespTJrKVlQnUN3wzsz07aRDqRluHrNjkk/LQ5PN5Bl15aiz1gGhl3PeduyBKTsuys/FtYbtUczEqM19Aybo6gp+BoaRnZuOcdxCSWHEwzbgp+xRMxTEdLOVBmKjLG/rZEy2huOlVBKNNRXuRS+bpNBrtSED13c3lbUapqS3zp4557ywsNq8mAuE4O83uK2M2Nu8FzZ+t2MdZi9JubIxaZZdS5qdkxB2uLMi1j0F0DQC/fxJpelKGqUByFXYcSGapmJQ4AnBhivQlMxl0s35yGX+4pOqjHaBnDiU2wEeOhcbcEVOVGICm06IA5r0CmtmzVLCNnUaBlTKeZwLifC+rRzPiAqopztycxyYbMzL+JdbcBUwAkoGXaZloGAPrL+fTGPZfMwuXrUX2AE71BOSfJVT625gRsjBRQ1dAyyYJQZrVMpRA9tJzHtCkyxlNy7mKSB6tSaH9Q6s1OKloGYJ8Xpwpsxn1O8PlfqLcxr6dg7JgjnmZsm1LC2FhoGXET87sURJO8BiCWgwDY0+G5AeWeu6o+Eod44kjDuffEPHdbEpMT3t9cdabbILmqKlEaOoVkFjC34ZQbnqTR0PO5+cnDeM8GtMz6A4MAgJUL1L2XbUhl3AkhhwkhOwgh2wghm4PX5hFCniKE7Av+nxu8TgghnyWE7CeEbCeE3Jnmb6jK25rbvsUDfCxyrr5g8oMSpeWbpUtRpF1vyOYYjDuvBDe/h3PuROm5s4crufYo+UralAxcIKXRzWaWQsqcuzmgKpcTtmmje4tu+ADy620y2D0SLWPTdMdK0E6YljEb90XhSYugv6yXNgJAf9nFSKODwbEW5lspHMa5U0qZzDJFMlVYL8Y3xyGiTcyzXj9V/RejWiZ4rk4Op6dlWp4fnlJMm1il6GK87aPtdeF1qZWWYXNHslZjBrFA31nlioqM1rRVTHXlScR188B7RFWZaBl2zz21+wycHMFD1y3QjjVhIp77Y5TStZTSu4PvPwHgaUrpagBPB98DwLsBrA7+fQTA59JMLreuAthFK2o992Thflst7bSJL2lpGSBuxGScHW1ioJIPb4Z8Tl1kTJeYNFFuT0651qlw2Fo0nLvmpss78YbaaWgZUbfO5rDTMrw0qy3VPq0HXHQdFNwcRlteuCGYvCYgMu4LeovW3pVzSmxzHxxrY0Gv3ugB7L6iNDJOJkMmx31sSUzc2xtteUaNNqCKn5hPYbkcKxNw4mJg3A2eeyVYx1iQJwDYPHdO+bC5TZupaNxttAwQF2nY4mxJB9DUbzX+XNqyjcWicc0UDob4Wc6tFIwKLBPeCC3zfgBfCb7+CoAPCK9/lTKsBzBACFlim0ymWQBL/ZJckpbRGnc3+cEBBlomjLSLxl1/U+j6qJ642MDSgXL4fSGX5NwppWztykCwtCmlSHwB4jedbmwuR+AKNfGtahmpz6nNIIgqCC8F584Ntq1OBxBPBmpaAqp8LWMtD+MtD5WCo6UrOBbNYcZ9vsVYAxEtNxjQMiaIBttGQZSFAClg17nPCby90aZnpVnk+JZNCgkwb9LrMmFBnyFoHHL/LT88DRqVIcG6954ZBQBc1V/SjhUNMK/RZKotH8uHsHRLkqlbr6tv7JH03M1KHICdrEYFxZbJwXByJFRd9ZcvzbADQNrfpACeJIRQAH9NKf08gMWU0lPBz08DWBx8vRTAMeF3jwevnRJeAyHkI2CePRYuXIihC4MYGu+iVquFY8YaTZw7cwq12oXYYur1Os6daWG84YXjT55uot2M/z4fu3H9iwCA3a/vQ61zBHsusAu8e8d20JNOYvzpVzYDALZu34XS+ddxfrABQqCcuz7cxGCTJn4GAK8fH8eS3lz4M+p30OyQ2FhOoRw/dgS1WnSJ6vU6tm7eBADYvnMX5lzci/0X2bpf27UD+bOvJdZy+OI+AEDt+Rcwr5TD8Mg4erpjynXXajXkCMWBQ0dRq53Gq8cZtbR10wYcKecS44+dPwQAeKb2HCp5grFGE+fPnkatdlE59/nTbdRbHtatW4fdx9mDuGnDeuwvJeeu1WoYHWriwkgX6559DgBw7PAh1GrHlWOHzrcwXPfZ37nYAMpEef35eKfbwYEjJ1BwCFwk7xFxLADUz7BrcWFoVDlWHD8y2MKFMQ85AI2LbePcR4+xeZ957gVcHGligIxrP5vDw+yz3rT1VfgnXDRabZw+dRK12qD6+gX9eV/Z+RpO1LtA19POTdtNHD15mn0dOBcnj7P7QHdNSmCy3sUV4LnnntW+x73Bs/XSxi0412DGb9vmjTimuKdqtRpOnGb3xg9f3g4AOLl/F2rn9qiv30k2dt3zL+HAEPs7O17ZjDOvq+futps4FrzPHSeC+3vzJhyv5BJj+bO1aesraB1z0Wi2cEZje05tYfZhW2Af9u5n1+alF56LNZkRr5/bbWP/0ZPwh9nf3rj+RRSljUYc3+P4GAFAOg3r/apDWuP+MKX0BCFkEYCnCCGxq08ppYHhT41gg/g8AKxZs4YuuWoRhk6NoFqtRoPWPYEV1yxDtXpz7HdrtRquWb4Qm84dD8d/+dBGeIU2qtWHE2MfffStwFM/wNXLV6JavR7OvnPAxo24+647cM/KeYnxd91xH/D8M1h13fWo3nsN/tfuF9FbdFGt3pcYu3TJHIyclNbN3h8uPP0jvGf1NahWbwIAfGf/k/BpBw8/8mgYoB1tdoAnn8SNq69D9dG3xOa++477geeexluuW4PqfdegfHAQ2LAed9+xFg9KPFytVsOtV18H7HoVd91zH1bM70F+0zosWzKAavWOxNhqtYpi7QlcdfVSVKs34+jLh4Gdu/DWRx4KyyWI42+cvxLYswv3PfAg5vcWQZ57EtcsuxrV6i3KuXfR/fj+wdfxwMOP4tjmY8CuXXjkYfXc1WoVT17cgb3Dp3HfAw8BP34KN65ZjeqDK5Vjnx3dha3BZ5/fXMPSq+agWk2Gdvj4ha8+j56BEsoFF/MaQ4nPShwLANecq+Mru5/F+SZRjhXH7/D34YnDewEAt99wLarV67Rjh7edwJd3bcPtd90LbF2PFUsXoVq9TTl2/9k68PKzuHbNjaiuXQqy7gmsvGZ5eC/J49teF3jmh1iyfCVag+PoHTmfWHt4PXa/iEpwP3f8LvDED7H6LatQra7WXpPle9fjeH0Qd1+3BNXqWu17XHBiGNj4Aq674Wb0DDeBnbtQfeShRDwivAcPDOIvtq1HszgfwGm8920PhYlk8tjWrtPA9i24Ze1d6BwbAnbsRPWRB7Xj525/Hv39JVSr9+DMpqPAjh14+MEHcLVwmg6vyclhYMMLuP7GW1C95SqQZ5/ECs39fftt9wIvrMO1169B9e7l2NJ+HbkD+/G2xx7TXr8lu19EqeDi6uVzgb378PbHqokTZOwefP1lnDp0AcsXz0e1eq/2epuQyrhTSk8E/58lhPwzgHsBnCGELKGUngpol7PB8BMAlgu/vix4zYi8phm0ue1buoh/Lsci57Lm1dSVBYgHYE2aeFWQ9MxIC81OF8vnVaL3GBwSWl6kvonS/g1qGS8dnSRz7rZSrqICJo3OXVyDrbYM5wnrLS+qqmnSuQdqGdtnAwRZjUHtH1tAFYiOxF1LAg7HqgU9+Mk7luJdt1xlHTtPoG7mW2gZTiGMt3xr3Rr+s1hjakuQtBjEFmwBUrEnappCVkCkD19zVZ9xHL++Y0K5B9PnM7cnomVyBFjQow9K98b4fDstI/bD5bSMqfwAINSiMSjkIlomSi600VpzynlcGGujGTRRt1GDXKVlC+ibYOXcCSE9hJA+/jWAdwDYCeC7AD4UDPsQgO8EX38XwAcD1cz9AIYF+kYLuW0eq4imT711pc3A2hvTzQmSQjP/Jve7NNWZELXLInaeGAYA3Hz1nPA1XiJY3AxMmXYTbQYdNlUQyoWaklPEwFqUzq3h3OUgkqE6JSDUi2n5YWxEV6Md4ElMfvgZ2Xp6+l1W2bNpiLVw9AX8f73lpTLuhBD86c+uxTtuthv3G5dEn69NLcODh2Ntj63bEAguy2oZC+cOMP56pNGxFgJj2vwoKxSwK4i4rHfNYotxL0Sce5okJl7e4eD5MQxUCkajJ5ZB4JuTvf57ZKwBc/18QNhMDdc7ehaivBmrcQ8C7wfOjuGqOfq4Agc37nPegHFP47kvBvDPgWrABfD3lNIfEUI2AfgGIeTDAI4A+Jlg/A8AvAfAfgDjAH45zULyUv9PbvR0Hx5v1kEpBSGstru5aJOTkEJORBevrUPjJj13z+/iI/+b8XI3CcadP8tyqzC+PhmJAKlFcpVswmwpyyvUaG91fBBillmyNQinGYMnHj3knjEdnoM/uCNBETZbT0+Ap3PbPfeeIKBKCBJH+DeKmwTjbguociUJN8DGgGr4WTJdN9P+mw3IQIUZEJujI+YJNFIYSf47AHDdol7juB7Bux7vsC5kpkC66JkOWAyZeCoYb7OEJ1smc12S41rrSQlSSHtAlXvuvvXk01/O4+JYGy8fOI8P3LHUOBYAblvWz+ZWOI5pYTXulNKDAG5XvD4I4HHF6xTAb0x0IbI8K6pLYdZps/ophJXGNBgylXHXfdBc+tUSPHdTTYpmQBFw2dy+s3V0KfD2mxbHjo18zWk9dzdHkCPpG1OUJeNuqi3D1hMvwMX0uOqHRexz2vG71rRo8UG0VYUEos2A95lMU4KWH/1thqm3xDx3Qgh6Fly6+kAFcWOxSSH5ezw9wjI95xjKA/Nr2xBqxejyMjgGynkMjXfg5EgKzz0qgwDYPffP/vwdWPf6OSybWzaOqxQcEMKM+4V620pVlfJOSBP1V1Ia95aHi2NtDJTtcycUchbHqNmxy3HFLFz2O+YicAAwp+xiJChRsdqyQQLAB9YuxYWxDh6/YZF1rA5vRAo5qXBz8SqPtptOrmrY9s3V08Ryq5GkMF2Ku0nnXsqzNm6iRn/HcUbJfOLdN8TXrPLcDRLEsHZ5ylLFoXyu7QvNoM30Rtic2FAbGwAqgcRtrOWnMgg9AueeJomJn7oujDPlgZHPD8aeHmmiS+28ZF+Rce51S/ONS8Xbb2JCMTlYLIN77ieDNP4BgzHL5UhYt0bXoF3GQIUZd5vn3lNwQs46jV4cAJbNreAX719h1f0TQtBTYJvp+XorlZyUyx+tnnshugeHGh3j9QPiVSRN/YT5WIAZas+Sl8FfF4vX2U6P4kZk28QAdh0//PCqS85OBdKrZS475JRoW2OFsGIiPxpZKIhywQ3rhfMi+2ZPP2etCimujwdKAODw4BjcHMGq+fEPhj8/Mc+9Y84MFcsy2JpBV/IRXdEOSr/ajv5hr0ZLx5ceHgxsp6vR0itw7i2PJRqZDAM30JzbNW1KXGd97MI4ALOR5GtpeV0Mj3dSce4TxV/8uztxZHDMOnfouQ/bE3YAXpJBDEzajv4FvHZqFKV8zrgWHpDudmmqRKOJoi8IYLPELvOGBwBLB8o4eG7MWNYAEALSbQ9D421jOWYg3pav47N6RfqSDIziaXlRjEj3zPP6PB3Bc7eV5eW5EwCsJ47JwvTx3B0Saydnu+lUJWtN3kpv0QkzJqNUZPPRXyw/oOXnpcw2gB0be4pu4kbKhwFVheeu6wUpeNch564rmyB0qbdVzQOCZCChvrgpwMfT+MdTli2thF6Wl8qz4YaOl2wwbbyczjg6yI27+WHhnn7b72LF/Ipx7KWg4Oaw2hJoBKLP4tQw89xtxp2VtvDCe8TqHVbyGBpv2+uzF11QGlQp7NhVJxOFmNg136B+4eABRtv1KLg5FJwc6i0fF8c7odJGByZ2sIsiwvFuDo12N+rulbKEA6tMajalYqznjQRJJ4LpY9xzLL2dd56x1YKOap3zbEyz51kpuGFzaltrtnC8EIzRfdBhqdB2ZLDH2r7y+F8IaZloI2iGnrv6fRYcxdEyRaniNMftUt5BoyNy7iZjHXlNaQpwiVJIW3EvQDDu3HM3fJY8e+9o4LnPtXju4oN194p5hpGXFwU3h7xDUhv3Bb1FDNZbwj1ioWXKeYy1fYy3zDXAY8032mbhwqWA11tiLSbtXirfcG+wyCwBdioYaXYwNN5Gv8UDLuYjz71tEQAAQcmMthcpawzXWyw7neb+Xix47m9E3jgRTBtaJoxAd7so5iKvWcfr8iMTpypaFklcT8EJjbXNoAIsAMJrdJs4TLkODcAMoOpYnA9pGRXnrucCE8bdshYmFTNXzQPiGv20tMxYS6yPkSKg2vKCY6tdBwxEnrvJ8+Rjj6akZa5dFNFjNp325Ual4KaqowIw3fyRwfHUnjvncs/VW7h5ab9xDQCjzMZDvfjkGff+ch67T46g7XVT0TK//NAq3L1yHu5bZd94F/QWcW60haHxjnVT51JInoVrU7Twkhm2CpIAOw1G9qSLBb1mU7pIkD9eKeM+jTx35hlzDt3mHYZqmW4Xnt9Fy+saj5aVYlRatNHx4QaJTTr0lfIYaXbg+eZqdXLBIYBpfCsq457jgRiVWkY/fytlxD/vMM+wEfPcU7Z9s2yO5dDbS1cfIzxCt1k3mdSee50HVNNz7jYPbqUQ+zAFda8EFvYVw5K8tuP5/N4iBsfSe+78Go42vXSeeyddotFE0V/OhxtYmoBqT9HF/W+Zbw3WAuz6HTo/Bs/SAhFg74mLHWz3N1+HKABIWzspVSKdYA/edJ67KwVI0wZUO343DJRyXlgF8cMYt2QHAozXHW161rKlYn9EjnGNKoO/1Ip57sGDq5lfzCastzzkHWKVfDba6WgZsQBXq2OmZbixHmtHapmS5RpWiqw/pq1yI8A2t1I+FwZUjRtN3oGbIzg5bFedAOya/Nqjb8G9KTzDy40FvQXsPwu87/arrQZhYW8BF8baYdMTO+ceGTubzh1gp7C0apmJQDReaTz3iWBhXxEv7D8PwP65hwoYz0/lufcUnbApNWB2MHqL0ck+TfE6APjfH74XP9p5+pKbb0wU08a4i544gFCRoTPCYY/JTjdssGv03AuM6vG7NJU2ek5Qp7tloXDUnruH5T3JwJ3Sc7ek/VeKblgvfrTZQW/RNXo47H2KAVUb5x7RMnOtSTgsKJ2m4QAQZeWxPqf2m39hXxHHLjCPz+Q1EULCdO7eomvNDgSA337PjdYxVwL8c3lsjV2/PK+ngC4Fzo7YNzwgLiXUdeACIsqsIWzUk8m5i8Y9jec+EYjNU2yee1/YaNpLScuwE4ctn4TPzWMnaZwXAHhk9UI8snqhddxkYdrQMrJuPTr6q5fIFRBjLS/0bEyeuyjlG2+bO7gDjJapt4Ua4DrP3U0a93FdQNXIuavXU8lHmuR60wtLpOpQCTTGaWmZtsc2vFTH1oKLekqdO8CM04WxdiCFtBuPa2J1eMxrWRxwmDbvbbqBb9S2TE8A6A0+68ExRlWlUctwmNL4xSSw0Wa6MsgTwdrlA+HXk+25LxKMu+2z55vM8HjH2IaTozfw3G2ltdnYOC1jOvVOFaaNcZc5d1tRe85hjTS9VLK/KMDnWxslAEyRQWn0YOk9d370E2iZtqfh3Nn/arWMznOPeouONj1r4f45JZYJN5YiUMYDos2Ob1XLAMxbGW50Uiss5vcUMDjWDm5++602EePOMyVnmnH/9E/fjrdevxDXp5BO8trog/W0nnvkyR44N6YdJ3ruF8fsdegnikevX4i7VswFYC/JMFGsEpJ6bBJYHtMYbnQCwYC9TEVdpGVM0uqSi3pAy7Qsjb2nCtOIltF57uqLxrXO9ZYXRq1N2Yfcqx9tdtBI4bnz+c8GqeJ6zl1Ny6iMsEOAHIl77mMtD+W83nPqKbjhtRhtesZGCUAkQ2tYaC0gXq6glcIAz+spYGi8nTqpZn5vATtPDqNScFPd/GIFTdORGACWz2Vjr1RCyGTh7pXz8JVfSZZwVYEb4cF6Os9dvDf4aU+FkHNve7iYIhnoUvCNX3sAg/VWKspsIrh2YXTisall+gXjbktyBES1TBrOPY/RoF9t27efeqcC08a4c805T2RqBMZGZ/QiPq2D8Ta7OVXeMgeXwL1ydAjjbc9KKXD+mdcB0e36PBDKeWhWhla9kxNCgia/QsKTRjbJUREknKMtL9bZSYX+ch7HLzYiqspSEhVgHlzLUqUQYBznntMj1mA3x7yeIi6MtZEjxFp7A5A8d0PFSQBYuYCNHdW0OJwN4A7C4FjguVs+n1yO4NM/fTv2nRnFL9y/QjsuVMu0fFwY71hjLZcCJ0di8r/Jgljbxt7flhv3NtpeF5WK2dz1Fl20vW6oqrNx7m2vG3rvmedugFxStmlRtPQKwZLIkOnHr1nchwW9Raw/NIhGp4t5lsw5HgjifSN1D5bcTLuVQl0jeu71lm/0xisFljrvdylGmx30lczHeZ4dONJgyhqTdx32agwCTrZj60Alj4vjHYw22dw2b2V+TwEdn+LcaGvCnLvNy2IByV0YCmrRzEZExt1MDYr4qbuWWcdECWmMlll1GbJ2LxdcJ4dn/j9vRZfaa+30x2gZO+e+IODzTwS1f9L0K+CSzzlvoB3e5cK0WVFe4bmbON28k0Mpz0p6hmoZgwdMCMGS/hIujLVxbrRlDWgt7OUfdGDcdZy7FFC1BUgTnnvLMwaCK4K+vN6y0zLcuA83Ougv543KGs5Jnh5poN72rJ4Qp2VGmh30lcxzA1HmodelE+bcbQ/u8nkV/P77b8ad18y1zjtTkaRlJufo7wRVT8fbrLri5fDcLyfestAejAaYAXZyJKRlbPcg79B0dJDFK9IYd55IZ2oaPlWYNsa9EmZARllf9sSAPEabnTBqbav4N6fsovb6OQBR8SYdQs89MO66ByvvEDg5Emaohrp1bRap7Ll7RuqkItR0ScO595fz8LsUp4Yb1iQZbsxfPjAISuONRVQYqDBp3omLDes6AODWZVGWZBoD0l/O45p5FfzM3XbvEwA++MDKVONmKrhxPz3SRI7YTzMTnXtovIPRljctDdNkgBCCuZU8Loyl89yXDjAa6XBQs6hgoAZ7pUS66bhBThvjLh6hAKRWtIw2vbDBg00mKHqmaSSFlYIT0jK6tZCATw5pGYtuXfbc600PSwwd37nhP19vwe9S9BbTvcejF8bthamCa7DhEGsCfIshZR2IAljHLoynMu5ix5k7rhmwjieE4Ln/8ph13JsF3Flpe11cv7g3VQZnWgyU8zgUeKgD09AwTRbm97D6PGmCnkv6med++Dy7Lq6hFk2f7LlPw2s4bUK8snFniUaW6HZg3IcbHfQFRzATxOYIf/JTtxlGMlw1p4SzKTImxdrvUZVHvXQyppaxBFQ5l8c3mTSeO8AMsL3qIJvr4LkxEBJRUTpwVcXRC+Pos2wyADPW//U9N6JScGLa5wzp4Dq58L6zbbwTxdyeAg6eqwOYnpTCZGFBXwHn6y20OuZiagA7zfSVoto/NikkIBavm37XcNoad1sDYYDXjWb8cpoymnzMrUv7rf0ugbg0z3SKEBvx2mgZNeeuN9i8bsqxCRr3jk+tzQ/6BDlpfzlvTWThR0+vS1N57gDwq4++BTt/752TWlL2zYRHVi8AALznliWTOu/cSiGs42MrnTuTMb+niAPnxjDS9FJnSfMEQFv5ASB9T4GpwLR54ioFVi9EpGVsF6yvmMe50RaGxzupivHwMWk/iOXzItmVKXmoKNSNtlZ5zOfCmhQA18Trb7oBgQoB7MZd3ORs18TJEdalqOVZNwIgriu20VoiJjP78c2Gz/zsWmw7NjTpaevzBIM+HSmFycL83kJoU8RmQDos7C3iYJAAZvL0Rc99TildCYwrjWlj3AkhodIDSMe5i7RMGuOeCzjLtDfzx991Ax66dgHeduMiowytnHfCWjgR565Xy5z3mMfk+V00O12j586N7vHQc08fV7hhiTlACrAysaMtD/0pjpViRmBazz3DG0NfKX9Z6pGIAcDZTMuIeSG7T45Yx4u1a0wGm9OSXpdO281xWm03onFPk9LbF6QApzXuj92wENU1C/E7770p1Xr6Snm8+9YlVn2xWLnRVuWxlI8ab/PmIaZTQX9o3MetY4H4qeTuFXaZ4JKU/SuBqEkGAFy78NJ7O2aYeogG3ZbGP5Px/7hjafj1g9cusI4X7YjJuJfyuTDGNx2VMsA08twBoK+cx0jMczfvPX1FF/W2h4spaZkbrpqDL/9yutTviaBccDEcJNO0bbSMGwVfuezTZLBdJ4e+ops6oCrOdW0KPTDT9l5MRVWJao3JDvBluLK4SlBoXakStFOB+b1FvPrf3wEKGhNU6PDuW5bgaxuOAjBz7oQQLO4r4uRwc9qefKbVp8qrslFKU1VA7CvlQSmTCc6b5NKiE0ElL3rutuYbUWelsCaOzRvvyYdp9rbAsWiA03Dd/G+nPVp+4YN3475V83CTRROfYXpj2dyZk5X6RtFfyWOgUkj1PDy8OvLubdLTZYHgIvPcU6Cn4OL8KCsR2/a7di9V+Pn8KbzAlaLKuNs993oKzx0Alswp49iFBsp5J9TXmvC5f38nVsxPR5tcF3j371+71DKS4e03Lcbbb1qcamyG6QtRLJAhjjuvGcDWo0PWcZzSnK6c+7Qy7r0lVpWNJyXZjlFikowYCLnSqBTiTS8AC+cebAD1lJ771UHm3FX9pVSJLO++Nb1s7oMPrMBP3LgY18yg+iIZ3jh4TsOD186f4pVMP/z9r96PofGOddxNS+bgO9tO4s4UCXpTgdTGnRDiANgM4ASl9N8QQlYB+AcA8wFsAfCLlNI2IaQI4KsA7gIwCOBnKaWH0/wNXnJzpMGMns1zF7Me51sKgV1OVApRf1abWqaUd+B1KTy/K9Ay5oDtkiDiv+gybGCuk8sM+5sQhBA8/18em/ROSbMBpbyDq/rtmvhfemgl3nnzVVi5YHqKCybCuX8UwGvC938E4DOU0usAXATw4eD1DwO4GLz+mWBcKvQUWUfx0HO38MtilH8qb9JyPmrhZ6dlghLBXhf1ll0tAwArA+M7mX0uM2RYPq+SJZe9ARRdZ9oadiClcSeELAPwXgB/E3xPALwNwDeDIV8B8IHg6/cH3yP4+eMkZVGM3qILr0txPkj5TxPd/uOfug29RTeWTXqlwY1uo+Oj0fZAiKlwWFRFMm1A9f1rl+I3H1+N//Nt103iqjNkyDCbkXbb/p8A/gsAXkx8PoAhSilPtTwOgEfklgI4BgCUUo8QMhyMP2/7I71CFTwgrqvW4WfuXo6fuXt5undxmSCW5R1vs1LFuv0s7rmnC6iW8g7+09uvn8QVZ8iQYbaDUErNAwj5NwDeQyn9dUJIFcB/BvBLANYH1AsIIcsB/JBSegshZCeAd1FKjwc/OwDgPkrpeWnejwD4CAAsXLjwrm984xt44UQHf7OjjfesyuMHhzr4TLWMuaWkB1yv19Hbm66m80TGXurcL57o4As72vjjR8v4waEOtp7x8Nm3JY9r9Xod20dK+Pz2Fj71SBkvnPDww0Md/M07KonN4EqsO5t7+s09XdaRzT0z5n7ssce2UErvVg6ilBr/AfhDMM/8MIDTAMYBfA3ME3eDMQ8AeCL4+gkADwRfu8E4Yvob119/PaWU0id2nqIrPv59+it/u5Gu/MT3advzqQrr1q1Tvv5Gx17q3D/efZqu+Pj36dYjF+hv/cMr9OE/elo7/oc7TtIVH/8+3XliiP73f9lBb/u9J6Zs3dnc02/u6bKObO6ZMTeAzVRjV62cO6X0tymlyyilKwH8HIBnKKX/HsA6AD8VDPsQgO8EX383+B7Bz58JFmEFz5p79fgQ5vcUp2UxHhV4HehTw02Mtz1U8nqahddjH2v5qLd8KyWTIUOGDJeCN2I9Pw7gPxFC9oNx6l8MXv8igPnB6/8JwCfSTsiN5Pl6G4vnTJ20caLgOvSTQw3GuRtULWJjb1uLvQwZMmS4VEzIbaSU1gDUgq8PAkgUaqGUNgH89KUsZn5PAXmHoOPTWILSdEd/OY9SPofTw82gyYi9sXe9xXqi2pQyGTJkyHApmFa8Ry5HQmpm0Qwy7oQQXN1fDmgZ36hH5+UDRpteUMs9M+4ZMmSYfEwr4w5E1MxM8twBYMlACSeHG9YOUr2lyLiPWZpjZ8iQIcOlYhoad2bUZxLnDgBXzSlj7+lR1Fue0XMv5x04OYJ6q2NtsZchQ4YMl4ppZ1m45764f2Z57gOVPMbaPsbavjGlmxDCaug0PYw2vayjUYYMGS4Lpp3nzpUni/tmlnFfImxGH7jDXD63t+ji9EgToy0Pi2cY/ZQhQ4aZgWnnNr7r5qtwYqiB6xenz+yaDvjgAytx36r5uHWZvUPRgt4Cdp5g/RyXzLATSoYMGWYGpp3nvmhOCb/97hvhzpAEJo6Cm0tl2AFg8ZwSTgyxtnmZcc+QIcPlwMyyoLMEokHnMYYMGTJkmExkxn0KIAaLF/fPLFVQhgwZZgYy4z4FWDoQeeu6jk0ZMmTI8EaQGfcpwOpFffZBGTJkyPAGkBn3KcC1i6Zva64MGTLMDkw7KeSbAUXXwc/fuxx3r5g31UvJkCHDLEVm3KcIf/iTt031EjJkyDCLkdEyGTJkyDALkRn3DBkyZJiFyIx7hgwZMsxCZMY9Q4YMGWYhMuOeIUOGDLMQmXHPkCFDhlmIzLhnyJAhwyxEZtwzZMiQYRaCUEqneg0ghIwCeH0Cv9IPYPgyjM3mzuae6rmnyzqyuWfG3GsopepiVZTSKf8HYPMEx3/+cozN5s7mnuq5p8s6srlnxtwm2zlTaZnvXaax2dzZ3FM993RZRzb3DJ97utAymymld0/1OjJkyJBhJsFkO6eL5/75qV5AhgwZMsxAaG3ntPDcM2TIkCHD5GK6eO7THoSQdxFCXieE7CeEfCJ47cuEkEOEkG3Bv7VTvMxpC0LIlwghZwkhO4XX/oQQsocQsp0Q8s+EkIEpXOK0h+Ya3k4IeZkQsoMQ8j1CyJypXON0BiFkOSFkHSFkNyFkFyHko8LP/mNwL+4ihPzxVK5zspB57ilACHEA7AXwdgDHAWwC8PMA/guA71NKvzmFy5sRIIQ8CqAO4KuU0luC194B4BlKqUcI+SMAoJR+fAqXOa2huYabAPxnSumzhJBfAbCKUvrfpnKd0xWEkCUAllBKtxJC+gBsAfABAIsB/FcA76WUtgghiyilZ6dwqZOCzHNPh3sB7KeUHqSUtgH8A4D3T/GaZhQopc8BuCC99iSl1Au+XQ9g2RVf2AyC6hoCuB7Ac8HXTwH4t1d0UTMIlNJTlNKtwdejAF4DsBTA/wvApyilreBnM96wA5lxT4ulAI4J3x8PXgOAPwhohc8QQopXfmmzBr8C4IdTvYgZiF2IHI2fBrB8CtcyY0AIWQngDgAbwDbIRwghGwghzxJC7pnSxU0SMuP+xvDbAG4AcA+AeQAySuESQAj5rwA8AF+b6rXMQPwKgF8nhGwB0AegPcXrmfYghPQC+BaA36KUjoC1G50H4H4AHwPwDUIImcIlTgqyHqrpcAJxj2gZgBOU0lPB9y1CyN8C+M9XfGUzHISQXwLwbwA8TrMA0IRBKd0D4B0AQAi5HsB7p3ZF0xuEkDyYYf8apfTbwcvHAXw7uP82EkK6ABYAODdFy5wUZJ57OmwCsJoQsooQUgDwcwC+GwRoEOzyHwCwUz9FBhmEkHeBBaXfRykdn+r1zEQQQhYF/+cA/A6Av5raFU1fBM/pFwG8Rin9U+FH/wLgsWDM9QAKAM5f8QVOMjLPPQUCNcf/CeAJAA6AL1FKdxFCniGELARAAGwD8B+mcJnTGoSQrwOoAlhACDkO4HfBaK0igKeCU/B6Sml2DTXQXMNeQshvBEO+DeBvp2h5MwEPAfhFADsIIduC1/4vAF8C8KVAYtoG8KHZcIrMpJAZMmTIMAuR0TIZMmTIMAuRGfcMGTJkmIXIjHuGDBkyzEJkxj1DhgwZZiEy454hQ4YMsxCZcc+QIUOGWYjMuGfIkCHDLERm3DNkyJBhFiIz7hkyZMgwC5EZ9wwZMmSYhciMe4YMGTLMQmTGPUOGDBlmITLjniFDhgyzEJlxz5AhQ4ZZiMy4Z8iQIcMsRGbcM2TIkGEW4ooad0JI/Ur+vQwZMmR4syLz3DNkyJBhFuKKG3dCSC8h5GlCyFZCyA5CyPuD11cSQl4jhHyBELKLEPIkIaR8pdeXIUOGDLMBV7SHakDLDACoUEpHCCELAKwHsBrACgD7AdxNKd1GCPkGgO9SSv/uii0wQ4YMGWYJ3Cn4mwTAJwkhjwLoAlgKYHHws0OU0m3B11sArLziq8uQIUOGWYCpMO7/HsBCAHdRSjuEkMMASsHPWsI4H0BGy2TIkCHDJWAqAqr9AM4Ghv0xMDomQ4YMGTJMIq6Y504IccE8868B+B4hZAeAzQD2XKk1ZMiQIcObBVcsoEoIuR3AFyil916RP5ghQ4YMb2JcEVqGEPIfAHwdwO9cib+XIUOGDG92XFEpZIYMGTJkuDK4bJ47IeRLhJCzhJCdwmv/SAjZFvw7TAjZFry+khDSEH72V8Lv3BUkO+0nhHyWEEIu15ozZMiQYbbgcgZUvwzgzwF8lb9AKf1Z/jUh5P8GMCyMP0ApXauY53MAfhXABgA/APAuAD+c/OVmyJAhw+zBZfPcKaXPAbig+lngff8MGA+vBSFkCYA5lNL1lPFHXwXwgUleaoYMGTLMOkxV4bBHAJyhlO4TXltFCHmFEPIsIeSR4LWlAI4LY44Hr2XIkCFDBgOmIkMVAH4eca/9FIBrKKWDhJC7APwLIeTmqVlahgwZMsx8XHHjHiQz/SSAu/hrlNIWgtIDlNIthJADAK4HcALAMuHXlwWvZciQIUMGA6aClvkJAHsopSHdQghZSAhxgq/fAlYl8iCl9BSAEULI/QFP/0EA35mCNWfIkCHDjMLllEJ+HcDLANYQQo4TQj4c/OjnkAykPgpgeyCN/CaA/0Ap5cHYXwfwN2DlgA8gU8pkyJAhgxVZElOGDBkyzEJkbfYyZMiQYRYiM+4ZMmTIMAuRGfcMGTJkmIXIjHuGDBkyzEJkxj1DhgwZZiEy454hQ4YMsxCZcc+QIUOGWYjMuGfIkCHDLMT/Hw3k1EpefdDWAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "entry = next(iter(dataset.train))\n", - "train_series = to_pandas(entry)\n", - "train_series.plot()\n", - "plt.grid(which=\"both\")\n", - "plt.legend([\"train series\"], loc=\"upper left\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.542928Z", - "iopub.status.busy": "2022-06-13T08:57:12.542024Z", - "iopub.status.idle": "2022-06-13T08:57:12.814460Z", - "shell.execute_reply": "2022-06-13T08:57:12.815032Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEbCAYAAADd4+8VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACvr0lEQVR4nO29eZwdR3Uv/q3uu82mGe2WJe+WF1mWd3mVfW0DZt9CQkgey4OEBBKW8AImCQm898IPEsLmsAUCCVsS/CAEAgZsy7qWN9mWZMnWZmvf19Fsd+7a3fX7o7q6q6urqnukkWYk9fl89NHMnbrV1d1Vp059z/ecQyilyCSTTDLJ5MwRa6IHkEkmmWSSycmVTPFnkkkmmZxhkin+TDLJJJMzTDLFn0kmmWRyhkmm+DPJJJNMzjDJFH8mmWSSyRkmuYkeAAD09fXRiy++OFXb0dFRdHV1jWvbE9HniWo70dcfS9uJvv5Y2k709cfSdqKvP5a2E339E9V2LH26GzbAtm3g0kvHtd/R0VFs2rTpCKV0ZqoviEIpnfB/l1xyCU0ry5YtG/e2J6LPE9V2oq8/lrYTff2xtJ3o64+l7URffyxtJ/r6J6rtWPocuOoqSu+4Y9z7XbZsGQWwkh6Dzs2gnkwyySSTM0wyxZ9JJplkcoZJpvgzySSTTM4wmRTOXZW0223s2bMHjUYj8nlvby82btyYqo+0bU9Enyeq7URffyxtj6XPUqmEefPmIZ/Pp/peJplkMnaZtIp/z5496Onpwfnnnw9CSPD5yMgIenp6UvWRtu2J6PNEtZ3o64+l7Vj77O7uRn9/P/bs2YMLLrgg1fcyySSTscukhXoajQamT58eUfqZnN5CCMH06dNjp7xMMslkfGXSWvwAMqV/Bkr2zjOZzOK4HjYfqk70MI5bJq3FP9EyODiIr33ta8f8/S996Uuo1WrjOCImq1evxgc/+MFx7zeTTDJJls89+CJe9eXHcGDUm+ihHJdkil8j46H46/X6OI4IcBwH1157Le67775x7TeTTDJJJw9vOAgA2D2SKf7TUj7+8Y9j69atuPrqq/HRj34UAPC5z30Od9xxBxYtWoRPfvKTAFjY9Gte8xpcddVVWLhwIX70ox/hvvvuw759+/Ca17wGd955p7LvBQsWYNGiRfjzP/9zAMCRI0fwW7/1W7jhhhtwww034IknngAAfOpTn8Lb3/523HrrrXj729+Oxx57DK997WuDa7/73e/G4sWLcc011+BnP/sZAGD9+vVYvHgxbr31VixatAibN28+4c8rk0zOBKm1XACnvuKf1Bg/l//93+uxYd8wAMB1XZb3IoWY2i44ewo++bortN/97Gc/i3Xr1mHNmjUAgAcffBCbN29GpVJBd3c3Xv/612P58uU4fPgwzj77bPzyl78EAAwNDaG3txdf+MIX8Mtf/hLnn39+pN/+/n789Kc/xaZNm0AIweDgIADgYx/7GP7sz/4Mt912G3bt2oV77rknoEJu2LABjz/+ODo6OvDAAw8EfX3605/GXXfdhe985zsYHBzE4sWL8bKXvQzf+MY38KEPfQivf/3rUSwW4bpuqud1JsqhkQbe8e1n8O5LTu2FnMmJl4HRFvYPMeLBcOvULll7Sij+ySAPPvggHnzwQdx2222wLAvVahWbN2/GkiVL8L/+1//Cvffei9e+9rVYsmSJsZ/e3l6USiW85z3vwWtf+9rAeq9UKhHLfHh4GNUqcyK9/vWvR0dHh3JMP//5z/EP//APABgTateuXbj55pvx6U9/Glu3bsXb3vY2zJ8/f7wew2knv1i7H5sOjOA3hRx+Z6IHk8mklnX7hoKfm26m+E+4iJb5ieKmJwmlFH/xF3+B3/u934v1uXr1ajzwwAP4xCc+gbvvvht/8zd/o+0nl8vhmWeewdKlS/HjH/8YX/nKV/DII4/A8zysWLECpVIp9h1dtj5KKX7yk5/gUinr3+WXX44bb7wRP/nJT/DqV78a//RP/4S77rrrGO769Jd8jqGd7Qky+CmlqLdddBbGdykO1lpYsa0f8dmUybHKoeEmAKCYs9A6xQ/RqTB+QsiHCCHrCCHrCSEf9j+bRgh5iBCy2f9/qv85IYTcRwjZQgh5nhBy7Qkc/wmTnp4ejIyMBL/fc889+M53vhNY4Xv37sWhQ4ewb98+dHZ24n/8j/+Bj370o1i9erXy+1yq1SqGhobw6le/Gl/84hexdu1aAMBdd92Ff/zHfwzacYjJJPfccw/+8R//EZQy6+O5554DAGzbtg0XXngh3ve+9+ENb3gDnn/++WN7CGeA1JoOAKA9QRbcD5/ehQV/8xvsHxpfIsCH/mMN/vgHq3G0kUFY4yVHR1sAgHlTO+BPm1NWEs0MQshCAH8IYDGAFoBfE0J+AeC9AJZSSj9LCPk4gI8DuBfAqwDM9//dCODr/v+nlEyfPh233norFi5ciFe96lX43Oc+h40bN+JlL3sZLMtCd3c3fvCDH2DLli346Ec/CsuykM/n8fWvfx0A8N73vhdvfvObMW/ePCxbtizod2RkBG94wxvQaDRAKcUXvvAFAMxxfO+992LRokVwHAe33347vvGNbxjH+Nd//df48Ic/jEWLFsHzPFxwwQX4xS9+gfvvvx/f//73Yds2zj77bPzlX/7liXtQp7j0+4t5dIIW8sMbGUvkuV2D6BzHfjcdYD6xg6OnNiQxmaR/tIW8TTCrp4QjR8d3oz7ZkuZ8eTmApymlNQAghDwK4M0A3gCg7Lf5LoAKmOJ/A4DvUWaGriCE9BFC5lBK94/z2E+4/Nu//Vvk9w996EN497vfHYF6LrroItxzzz2x737gAx/Au971rhgsNGfOHDzzzDOx9tOnT8ePfvSj2Oef+tSnIr8vWbIEr371qwEAHR0d+Kd/+qfYdz7+8Y/j4x//+LhCXaerHBlhx/eGMzEKck4v8928dHAEV58A4PVgLbP404jnUViWOXjw6GgTUzsL6Cra2HuKQz2EwwTaBoRcDuBnAG4GUAewFMBKAG+nlPb5bQiAAUppn38a+Cyl9HH/b0sB3EspXSn1+16wUwNmzpx53f333x+5bm9vL1RVucaL1XOi+zxRbSf6+mNpe6x9btmyBUNDQ9q21WoV3d3dqfpNavsPKxtYd8TFOd0U//e28elzLG2/9XwTT+xzcPVMG39wqZOq3zTX/+AjNQy3KO45h+JtV5z8+zqRfY5325EWxYeW1fC2ywq4eXpT2/ZLqxrob1Cc3UWwbdDB58rprn/lBz4A27ax5ktfOu6xym1f97rXraKUXp/qC6KkqdYC4D0AVgFYDgbdfAnAoNRmwP//FwBuEz5fCuB6U/+qClwbNmxQVp0ZHh5OXaEmbdsT0eeJajvR1x9L22PtU/fuuYxnRaVXf3k5Pe/eX9Cb/88vx63PsbR913eepufd+wt6w98+NG7VnzzPo/P/8gF63r2/oO/56q/TDTRFv8fSdqIrZaVpu3rnUXrevb+g5937C2Pb3/7Gk/S3v/Ek/dj/W0uv+pv08yWpAlflxUN0wV//iu4ZqE2uClyU0m9TSq+jlN4OYADASwAOEkLmAID//yG/+V4A5whfn+d/lkkmk06OVBnU05ogRGSg1gYAHBppwvXGB26qt120XHZDjVMckjgZwp22SdJsu+jI2+gs2uNK5/zf/70eoy0XD60/MG59JklaVs8s//9zwfD9fwPwcwDv9Ju8EwwOgv/5O3x2z00AhugpiO9ncuKFUooXD4yg31e+E3H9/ipb9K0JYvUM1EKlM16bz6C/mQBAPcF38a3l27D9yOj4XPgUlf6Uir/OFX/BRtNFwKaThVKKWz6zFP/6xPZU/fJu1vtBqidD0qZs+AkhZAOA/wbwJ5TSQQCfBfByQshmAC/zfweABwBsA7AFwLcAvH9cR5zJaSO1loum42Lv4MQwJIbrDhyPwiKYMF720dEWbN+p2B6nMYiK3+S0rjYdfPqBjXjdPz4+Phc+RSWtxd9oeyjlLXQWcvAoglOVLCNNB/uGGvjUf29I1e+hYRYNXDuJkzAVj4BSGgtHpZT2A7hb8TkF8CfHP7RMTlWhlKbixdd9TVfMTUzKqME6W/Bzejuwb7AOSulJTQvddj2MNBzMm9qBPQP1cYMP+H3lbYKGgaY66pPRqylJ6Y9vPoLP/Goj/t8f33zcY5xMMiAofhPcVm+76CjY6MgzEkK95aKYi5MXDgylrydRbToY9RV+Y7x2/hSSJWk7gTJnzpwxtb/vvvtw+eWX4/d///cjn69ZsyaSoyet7N+/H295y1vG/L1jlZUrV+KDH/wg9g81sOnAcKIi8/xFNk7Q9phltMkW2vTuAij0FtyJEm6Zn+1TOscL6hny+503tRN1wztIq/C5/I9vP431+4ax+xTnsMtyaCSEGk0+kUabKfrOAlP2Ogt9/xgU/8HhsG3DmWQWfyYnR772ta/h4Ycfxrx58yKfr1mzBitXrgz4+6I4joNcTv0a58yZgx//+McnZKyqcVx//fW4/vrrsXE/wyqTTq7cunI8Cg1cekKl3maKb1pXAQDQaHlKC+5ECcf35/SxxArjFT08WOeKvwPrd+trQowKij/J2hSt4lrrFA9blUSEGk3QWINb/IHiVz+HA2OIwo7Acicxb0hm8RvkBz/4ARYvXoyrr74af/RHfxRkuezu7sZf/dVf4aqrrsJNN92EgwdZ9OX27dtx880348orr8QnPvEJbb9f+MIXsHDhQixcuBBf8rm9H/7wh7Ft2za86lWvwhe/+MWgbavVwt/8zd/gRz/6Ea6++mr85Cc/iaVq3rFjB5YsWYJrr70W1157LZ588kkAwM6dO7Fw4UIAwL/+67/izW9+M175yldi/vz5+NjHPqYcmypl9OHDhyMpo1esWAEgnjK6Uqngta99LSxCUKuN4sMfeL82ZfTVV1+Nu269ATu3bwWlFBNBquEWG1f89ZN41AZCbPnsPmbxN8cZ45/b12F07o4KF0zCudfuGVR+73SQvQN1FGymCnUWv+N6aLsUHXkbXX5eJZ3FPyLga+2EUyT/e1fBPqlQz6lh8X/4w4Cfu6bDdYGUQUHGtldfDRgCKjZu3Igf/ehHeOKJJ5DP5/H+978fP/zhD/GmN70Jo6OjuOmmm/DpT38aH/vYx/Ctb30Ln/jEJ/ChD30I73vf+/COd7wDX/3qV5X9rlq1Cv/yL/+Cp59+GpRS3HjjjbjjjjvwpS99CUuXLsWyZcswY8aMoH2hUMD/+T//BytXrsRXvvIVjIyM4POf/3wkVXOtVsNDDz2EUqmEzZs3421vextWrlwZu/aaNWvw3HPPoVgs4tJLL8UHPvABnHNOyLzVpYz+0Ic+FEkZ/fKXvxwvvvgigGjK6EqlAoBZ8v983+dx46234/5/+4EyZfTv//7vY/P+AQxU2VHXmwDNzxfu9JSK///+YgNuOH9qYuIzz6NwKUXeNttVQ75lftYU3+IfJ8xrsN5CMWehr7NgdBiLFn+S4heVXLXpnDbJ31yP4sBwA5ed1YP1+4a1Fn/DYROUOXfNUE/TCSdzksOWK/7uUi5T/JNBli5dilWrVuGGG24AANTrdcyaNQsAU8Y8nfJ1112Hhx56CADwxBNP4Cc/+QkA4O1vfzvuvffeWL+PP/443vSmNwUZN9/85jfjscceU0Ypm0RM1dxut/Gnf/qnWLNmDWzbxksvvaT8zt13343e3l4AwIIFC7Bz586I4teljH744YexYUPIUBgZGTGmjHY8D08tX4blD/8a3/8Wq2Imp4zes2cPri/fg5lzzwcATASbsu4vyqlc8RsWacvx8O3Ht+Pbj2/Hv75SnS2Vy/t/uBq/Xn8AOz77GmM7rnhndBcBmC1+FniDxLQCAMP4+zrzKOYsOFSfjmBUgCqSKI2nq+IfqrfhehTnTuvE+n3D2nfA50ZHPoR6dPOlKSjwess1PivHn/g9pbzf38kBYU4NxS9Y5vUx5J8ZS1tZKKV45zvfic985jORz0dGRpDP5wP2h23bcJxwAZ0sVoiYqvmLX/wiZs+ejbVr18LzPGVqZwAoFovBz/K4gfQpo0dGRoKwcjllNOc2U1Dc963v4ZVLotHkPGX0L3/5S7znbb+FT/3dl3DtzUsmRPFzZdbXwRS/ybm7eyDEyp0Ey/zXfiBO0jGfszmmdxf89vq2f/2zdfjBil2JmwnAfAd9HQUUfLZUy/VQsuInX9G5OzDaQp+hz7qwSYw2HcwwtD2VZNg/dc3qYWtDF8/BrfFi3g5SaOus+UbE4jdvknzOdRdzGKy1cLIUf4bxa+Tuu+/Gj3/8Yxw6xAKSjx49ip07dxq/c+utt+I//uM/AAA//OEPlW2WLFmC//qv/0KtVsPo6Ch++tOfJhZv0aV45jI0NIQ5c+bAsix8//vfP+aKW7qU0a94xSsiKaNNaZ75srnl9rvw/e98U5sy+oMf/CDuuufV2PoiO0mMN6Fm9a6BgN2iE+6c6+vMAzAr6h1CkFMtpW9TZGyoJLT4meJvGjaUH6zYBcB8KuEyWGuj17f4gSj0oLo+kMzwEWGwsbKBJrMMN3zFH8Bt6nZc8fMALkDv3BUt/iSoJ7T4c5lzdzLIggUL8Ld/+7d4xStegUWLFuHlL3859u83ByB/+ctfxle/+lVceeWV2LtXnaXi2muvxbve9S4sXrwYN954I/7gD/4A11xzjbHfO++8Exs2bAicu7K8//3vx3e/+11cddVV2LRpk7ZwS5KMjIzgta99LRYtWoTbbrstSBl93333YeXKlVi0aBEWLFiA73znO9o+uO56/5/di3a7jUWLFuGKK67AX//1XwMA7r//fixcuBBXX301Xtq0Eb/ztt/3vzd+Jn/b9fDmrz2JV315ubEdX5S9HUzxtzQKEkAQ4Qukz+S5b9Cs+GtNB4QAfZ38xJHcZ/9ocpRzreWiq2AHil93X/VW1DJN6hMAbIucXoq/zu5lpg+36XQv3zyLOUtg9Ywfxt9Typ1UcsGpAfVMkLz1rW/FW9/61shnIr4NAG95y1sCrvwFF1yAp556KvibCuMHgI985CP4yEc+Evt8x44dyvbTpk3Ds88+G1xfhq/mz58fscL/7u/+DgBw3nnnYd26dQCAd73rXXjXu94VtPnFL34Ru44uZfSMGTMiKaP56UNOGV0ul3HN4luw82gNPd2d+NTffwkLzu6NtOEpowFg/d4hTO0qoL/ahEmVUkrxxYdewm9ffw7OmZactX6fT8/bN9RAy9W3r7Vc5G0SWHAmxS8qxqQ0CFy2H6lituHvoy0XnfkwIEhH5/SEk8CRanKUadv1UMhZATW1qeGHt1wXhLCUAaNNF8jr+2TBSsyxOdp0cLqA/Nzin+lDPbp3wCGZQm6szl3zJhko/mIerkcTYcTxksziz2RchU/cQs4yWvGUUniUwiIEhBAjj39nfw33PbIFf/yDVanG8Pe/eTH87rBZmXcWcgEWroNEAKAmOuwSDF7e35rd+tTSAINaOou5wDJPsjYBpMpr1HI8FHJ2iPFr7qvleMxZmbcTrc1ay0VnwUZXMYeqKRz4FBOO8XPFrwui48+wYFso5WwQRP0eoogbbRI0xzea7hKzwU8W2pMp/lNEXI/i4HBDmxhqsghX/HnbMipzSpk/wCKARYiRx8/ZJ2KEpb5fil8+H0Jyu0f0PQ/VQ/YLYHbuigvYZPE32m6gJHggm05GWy66iznkbAsWAXT7jqhI+lNY/C3XQ94miRg/2yAsdBXtCN6vEqb4c+gu5k4vqKcRde7qKLVtweK3LIKCbbD42x6m+Ip8NAnj90LnLrvOGG/gGCVT/KeIHB5p4uBwAyPp8kmNu3iU4shIE62EsHLXo7AtAtsioNBnMOSnAYsQWBaMmwQPSGqkAMF5uPx50xnEY6JIDtba6O3Io2CngXrCjkwGL1ckABKV6WjTCWCDYs42OBbDP4ykULotx0MxZyVa/E3HQ8FmmHUSFl1vOyjlLXQXcxEa6GSW9/1gFf7p0a3GNtVmlNKrU7xc8fPYjKIdPQWK0nBcgSJsflb83XQV2TxwTpJhN6kV/2S3bk+muAFNcmLk6GgL+4bqiRiz61HYhIDTxnWQJf/cspjy581U75wrft1CE2XLIeZ/+cybrgRgTrc8WPcVf4KCBKKsljTRsIQkO/ZqLSeIAi3kLK21KVr8aYJ82q6HvG0lQlgtx0Mxb6GrkEvcpOq+xX+qQD2UUvxq3QF85lebjO34qSdvW8hZRLv58rkRKn5i4PF7gcM+kdXjv3NOETVMwXGVSav4S6US+vv7M+U/SYRT1JKKhXiUBQtZfjyDDuePWPyEbQSUUvT398fiEHhOmzSFSjiF8pxpncaFDDB8t69T4LsbTjP1lhsEWplYPVyBzuwuJirppq94AcYW0S160eJPkyen7bKoYe7c1Vr8LrP4OwvJGH/TP0V0l04NqEfMgWPa/JuOi6IdvgO9czf0XQG+xa/F+D30+UyxJKinLVv8J0nxT1pWz7x587Bnzx4cPnw48nmj0dAGKMmStu2J6HO82w7UWhhtuhjJASOHO7TtAKZUCQiazfG7/pFqE422h6G8he4c1bY9Um3Co8BI0cbR0TbIYBE5ReqCluPh0EgTztECqg0HnufBGehAqVSKJakbrKVPEMbTIPR25lHK22aLv9ZCb0cuEuikk1rLwfSuAgZqLaNzV4zGZQVO9FSZluMh38muzSx+HUtEdBZ6QFHZLNJvQYR6NHEdzTZzAncVky1+3md3gSv+8VEd/N7SJsdrOV4qAyBtxk1x8y3lbbQ0uUNE5y77nxhYPW7oNE9i9fj30pHPRX7XyXCjje5CLlUEt0kmreLP5/O44IILYp9XKpVE3vtY256IPse77R98dyUe3ngQt8/L4Xt/eo+2nedRXPiXD+Ct15+DV80YGrfrlz+3DDv6a1gwZwo+dpWrbfvmrz2BzkIOv7v4HPzpz5/DQ392O+bPjkdPP72tH3/4wxX44R/ciO+s2oadB/qx7C9epexTTHqVxI0fqLWQswh6ijmU8hbamoVMKcUQh3rsZKin1mKZGbuLOTPU4y/0mT1FbNg/bDyxtn2LG+AWvw7qCceVZJlTSn3nrhU6dzXHnpZP++zI2zic4DhvuR66Szl/k3AxXqrj+r99GBYhWPvJV6Rq/6ovL8dww8HnbjVfXwyeM2U9bbbDjKzFnH6+iM5dgFv8ejpn0c/pk4bHXxDelSmQcceRUZT/oYJPvOZy/MGSC439JsmkhXoyicoeP2XASMtsERwcYRP+Ryt3j+v1ObafxKyptVx0FW2BQ64JHvIVWMm3jEyWuajs3vTVJ1Br69sO+HlqCCEo5mxtUFTT8eBRoKuYQ95m1pMR4/fpjEzxa5sFzsIZCQFB/HpckRSMzl3R4jdbkAGd1iaJJ5mWD3N0pXDYthy2mXSXWNvxCrgbaTjBKS1J1u0dwtbDo4mbFBBNtWxy8DcdN1C6RcM8DJ27bK6UcnqLvy04zZPonI7rIWeTwHdgmi8PrGNstUc2HdI3SimZ4j8FxPModvYzxZ8UNcrrp+aO8ygoStv1Alx3OGGRVpvMYRk6FtUTny+ITj+/uWl91P1AK4CxWl44om885DN1AKCYNzlMw6M7IQQ5i2HeOqm12PG9p5RDw7BJBRh/T3Litajit/Q8/nZ6iz+AJHIpLH7RMk1ItcxPB91FG5SOXwrpscgPnw5TpiQFOm0+GAZZmuAT8R0UDe9AfK4As/h1m3Dbo8jZhDnNEwO4aMQRb8L4eZTxeGTxzBT/KSAHRxrBgk/KE7PjCNsguorpjuJpnOdiIquW6xkXErP4c4lKpyYo/lLeNiqSetvFOVPDCFzbsKcN1FqY6jMqSgaLXz665y2zxc+LcCRCPVL+HdNJhitTwAz18MpMXSmhA4CxT0r5hJwyvmXaVcwl9ttyPBRtC93FvD+mk0+62CAUI68mnHw3HwpzW5lujTutAcal191XS6JzmjB+16PIWelosm0/5oIbNiY6Z7XJ1iE3Ao9HMsV/CsgRn7zfkbdTWPzM0smbtKMvT249gks+8Su8sMccYSpWdALMkavVpoPOYpgnRmdFc2pmR8FGwbYCuqpKGm0XpbyND9zFUlePJihevumVDBa/7KzLJSh+HrnaXTJDPaMS1GOGGaIYv86Q45tnX2ch0doTLVN+8hnSDJhbuzxy1wTfiMFegHkOHAsTL+m+KKXYdGAEc/2iNcMJiv/QcDOos2BW/GHd3L7OAqqaA608X/KWPqmf43qwLZYKJDly10tt8XMa7WC9fdxsx0zxnwLCLbbZU4qoJSp+Zg0cHW0l4rBfr2xF26VYvvmwsR3HYOf6Vrdu82m7HlqOh+5CLsT4NRY/PyZ3FnLIWcTo1OJFrv/4josAAKMGjL/peCgJLI20vOy8RRJz9fDIVZPFX2+7PiTCNh+Txd+WLX5NUw5LTe3KJ1vmgmWaty105EI6rKqtqMxNmxRXUPy+THDXq778GP7o+/FCQCZJwvmbjoem4+GysxhRIEnxjzTaQhoG83zhrJ6+zrx2brVdDzmLBGwam+idxo5HkfMVf2LkrstgIb6hGBW/f5p0PZo4D5LkjFb8339qB+743DIMNSd3rAC3jmf1lJDkB9vZzzB+j5ojTEXZfFCf8hkQi3dzi9+cs7yjYAeLSY/xsxnekbeRN3DYWVs3SIebtwlMNUPY0T1kaaSFekwsDSDcfHpKOeNzbbRdlIQMjokYvy1i/Obn2tdRSJ37hffbnSdapcoYLVYQPNQ0bGgBnZMrfs0z4Jb5b9YfDAgJ+rGGL123OXHh9z1rClPmSfmSRhqOkHhN364lQD1TO/OoahU/DeYKwHxoOqe541HkbPZcEyN3Yxa//h2I7LaR4wyiO6MV/1//bD129tewrzoRFV/TC09VMHNKEQ7VK1OATQheC8ZkGQOhBbF7wFwcmqch4LVhdYtOhBm44tGxemptB4WcBdsiyFsELtVDBI22h1LeBiEEvR15I9TTbIcsDcbLTnDu8rY5fbrhtl9vtdMvwpFUkLskVGlq6qxCl7GKQovfTkwX0F3MGRPJAXEnZFeeROIgIm19i78zzSYVnA6Y4tdt/uL4ntrabxyruNEmRjn7D2d6F4fQ9O/A8yiqLSdItWxq2xScu32dBbRcNezEWU1cbIu9Q5U4/ukgDZ3TcSnyVkqopykq/nRMKJ2c0YqfSxJ8MtHCJ8/sHr8ClmG3bzpu0C5R8fv9JFlb4fXNkasizMAtfn0ueDdQOHnbAoU+Mpc7VgFgSkfeSOcUj+4dBRu6uKSWZPF35PS5dfj9dxR86qln2qTcgKIK6JWpfH0ToyQI6y/aqYt35wWLf0BTkKbteMhZocWvg28opczitS30lLjFr24rnkhESmVS26Q8TLwtd5qbDN7RlgNKhVTLhkcWxfi5TyT+vERHPADk/Ghzec56HoVHgZxN0jt3c+nonNWmE/hthjOL/9gkUn0oQUFOtHBrh09kE/Wu6XjBcXg0wSjgFsRAQr1Vvuj49XUWf9sJYYYkHn/Nz0UPIIjs1R1z620XHb4y7yyYGUAi1DOzp4ihFlUq6bbkrCvZeotfhLA6CjY8qsd32enEChS/lhfuhFlMATOjhCvzzoJtjC4GwufNnfudeT0F1/Eo8jZJxPjFTaorwPjVbUW6aXIBd6HGQYJzl7+D6Sms+KoQPQ0kOHfbIdTTU2JKVWVYtRwPeYEizY1/eSPmJIWcxeictZZjzK/V9hlAaSz+0aaDOb3MqBs+GRY/IeTPCCHrCSHrCCH/TggpEUIuIIQ8TQjZQgj5ESGk4Lct+r9v8f9+/nGN0JfHNh/Gb3/jSSMOORbZPxRaI0mW8UQLxwmndXEqnX4mtxwPs8Zo8Q/W20ZHcF06ZustftYuwiHXYfyCFR8EUGmUWt23ogEkBnuJATmze0pwPL0Fx8cKmKEemXoK6N9Bw2FjTYJPmsKzAlg+9oarPvU4LoVFfDgoAeqJ01SJdvN1PM/Hovk9JTOguhOgHlGBj6WAe5p6AAAwtbMAi5jTMHDFnca523JDxc8Vu6OI3nVcD3nB4rd9PFVW/LyUou3TOVkOKv1YebBX4Nw1NG46XnBPJxzjJ4TMBfBBANdTShcCsAH8LoC/A/BFSunFAAYAvMf/ynsADPiff9Fvd9zy9m8/g2d3DKC/MT5KWkzilFCadcIlKAreyVO9qme943pwPIrZvsVvOslQynDQnlIOlJqfQaPtwiJhsQh93vj0wUM82yMQWr06pVZvhYqf5d9RX9/1GCTBLX5+8jk4HI/0lOl5HTl9LVlumXbkcwFjSAdNMOeujRKv6qWzonkpPztqbarGIFL+TOkHeFvxvnS0Qw7f5C0SOncTxiq+V90cEOfm0YRMrpFUFIlpocNTV1chZzQAuVJkEdwJUE/bQ1E+eSqeMWfqcMkFFj+V2oUnLr6hmt4Y23zTsXpajhdQVE8Wxp8D0EEIyQHoBLAfwF0Afuz//bsA3uj//Ab/d/h/v5sQMm5hpCZrbyxSPYWgnnqLUQR5Cl8d55lbsfw4bKLc1VouKAXO9UsZmuhxnFUTVIrSWCWiMiWEIEcMVnzLDZRo3gD18NwzpYjDVj1O2bE52y+grSp6LmPhJZtoMf5IlLGvJHQWaqPNfAwhxp/wrDjM4FvSqgXNozvztoWW6xk53DJN1dYofn6yEC1+3Vi5csv777VgiDkIFHTeToR6RP9PEo+fv4OOvI3Oom20+HnbrmIOBVvPGKOUoum4YSyH4eTpuAyS4ZIj/HMJ6vG4xU+C9WoKMm7579ayCHIWMY615XqY1nWSLH5K6V4A/wBgF5jCHwKwCsAgpZRffQ+Auf7PcwHs9r/r+O2nH88gxUkxXqHiEUbBJFf8PHgosDZ1aXZ5oI/vADIlXOQb35zeDr9PwybhwzJJOGRAJeRHZ9ucIIxb5jlDrhzXo6A0VGQmqCfM9MjaTjFY0XFWDxu/CpqS8wqJn8nCnbtMURO9xS9BMtxpqlrQ3CoMEnmZoAOpX11gmhMo/rFZ/AA7peiop1zpnje9M8gblTRWID3Gn8biF+cBU/x6vr1Hw/lSSLD4bQXGL28SfA3k7JDSa1L8jh+5C8CYTZavg77OPGyLJKZOSZLEuH5CyFQwK/4CAIMA/h+AVx7XVVm/7wXwXgCYOXMmKpWKtu3B0fDhDo3WjW1FqVar2rar9rAH15UHak1nXPo8UW237WrC8lysW/scAGDlc2tB98Vf3UCDPadd27egYAMjjZa2T05hdaqMcjdY1T/XHbubgOvi8eWPggAY1fS73s+hs/6FtWjvsZEjFNt27UalEk8q1T9QR2+RoFKpYMs+puyeeGoFzuqK2iLcCt21czsqlb0Y7G+i6XjK6w/6979z2xZUnJ044M+btS+sR2f/i5G2z/vv/7mVz2BPpwXitgAQPPTIcnQXogfUNYfY+NatfS44HT6x4lkc6IunEh4YrqEXNVQqFeQJRVXzrHYMsWe1aQMb21b/2T224lkcnBrtd9fuJjzHxa4d29l9Do9q39Ua/1k+t2olDnZb8Jw2mm0Sa88x+p3bt2OVwxL6jdSayn75XNny0iZURraAUAe1JlW2XXWQXX+qVcOmmouDA/o5+NyhcJPb+NJWnH2Wvu2a3ex9rVn5NNxWE6Ouq227+gDr9/nnVgPUQV0zVv4M9uzagUplL148yt7BytXPobYz+g4OHWmg3gr7cVpNAARPPLkCs4U5y9fg1s0voa/o+wxcF4ODg1ijmrPDNXS47H1a1MVoUz23+Ua3Z+d2lGyKTdt2YsG5x6780yR0eRmA7ZTSwwBACPlPALcC6COE5Hyrfh6AvX77vQDOAbDHh4Z6AcQIvZTSbwL4JgBceumltFwuawfw1NZ+4LEVAACSL8HUVpRKpaJtu+OJ7cC6DTirrwuuWx+XPk9U2/v3rsLU9ghuu/k64KnluPjSy1G+em6s3c7+UaBSwaIrLsd/79gIz/K0fa7ZPQg8/gSuuuQCVHZvhlXQP9cf7VmFqU4Vd955B4qP/ArEtpVtvU0HgZUrceP11+Gqc/rQsfwB9E2fhXI5nsK5+NxynDWjE+Xy9Rh9fj/w/Gpce/0NuERK4TxUbwMPPYhL51+M8pILURlej1UHdyivv/toDagsw5VXXI7ydfPY748tw8WXXIry9edE2u57ehew7gUsufUWnNVbwiO7HgLQwuKbbw6c41zqL+wHVq/GTYtvYGyKVStw+ZVX4ZaLZsTGYD21FOfOnYFy+Sr0PPkwqO0qx/rcrgHgqSdxzVWLUL5sFvp2D+IfVj6Biy9fiPJlsyNtf3l4LbpGjuDySy4EXtyAUmeX9l0dWbUHeH4tltxyE86Z1omfbn4QDm3jjjvugIi4Doy2gIcfwmWXXIxX3Hw+8PADoHZB2e/G/cPA44/h6iuvQHnhHPSseASw28q2Q2v2As+twZ1Xz8dT+zahSjrwVs1Y+XMFgNlzz0V3xwHtfW19fDuwfgPuumMJ/n3HSgwPD2rbDjy3B1izFrfdfCO+um4FiO0o2x71n8GCS+ejfMv56Nk5ADzzJK64chHuuGRmpO23tz6NXNNBuXwrAODp/Q8DaOLa62+IpB3nc/CKyy/D3KkdwOqnAWKhr69POYbiygrmnNWLcvka9D7zCDyrpX6utTbw8IO49JL5eOrIdkyZNhXd3eZUKyZJg/HvAnATIaTTx+rvBrABwDIAb/HbvBPAz/yff+7/Dv/vj9DjTCzRPxo658YL4x8NeMHFCck0OBbhha6T0iBw+KKYYziokfLmQwrcAWrMjikwcExHZxlf7jAwZRgvOhnqcWT2jSGhmwz1mIqo82pbvF+e2kh1zBdhmQC717yDhsBA6jRAEq4AtQAsARsQpnUWxfGzPXJWiSlJnuy74JCE/M543vmcjy935PXzRWSqAOZKVRzqufSsKQCAw3Uzo4ZLEsbfEHwHxbw50pu/m2Ke+UX0dQ6ic4BDLiqSAUutIEbuxu8BiL5XjvGbNFZLgHo6DMQFkQXWU8yfFIz/aTAn7WoAL/jf+SaAewF8hBCyBQzD/7b/lW8DmO5//hEAHz+uESLKBx4vJT3adJCzCPo68+O2mZwo4UVAkqiEwYT3HcFmjJ9n3GTWrWmT4M5dgOWNT8PqAYCSrXdCRdIVGJy7omMRYInXHE9Ne2wI9y9+R7WQZYw9UJCK5xBuqGHGSx0mLWZ7NDmiHcEJKI5DFQ3Kw/pDJ7i6T0DcfFm/nKIob6r8PvnfOwt6h2m4SYRj1UHsXEGf7fPNTVk0W2Ng9dRaDovy9hkw5qCs0ABKk+66GPhD+PNV+US8CKtHZyiE79UKOPemW+ORuwBT/ProbR4jQ9BTyh234k+Vu5dS+kkAn5Q+3gZgsaJtA8BvH9eoJOkXaGHHmZsoEO4w7SzkJr3FX2+5mN5dCJ27WqXjW7x55lhqjiZT3malyBvfaLsBlbRoKBHIJydfSCaLXwyV5wpFxT6RLVi+ATXabiz1tLzxBBayQpmHGwpPuuWPQbHoRecmP7vqKbWhZVjIWWhrYFiuMLiy4d9RPQPH9ZC3kqmU4veDZ0uin8vX5xsPOyGq7ymwYv22xZyFtsZvyzdUblCYGHO8bVeKmr/1lodOP22HKa8RED355W0LmtuKbBAAUMjxeah27pbyKjqn9Fw5ndMimDWlhLN7S8akfjxyF2CGwqBmzYpzcEpHnkFKxyGnROTu0dFWEDhiskzHItWmg+5ijinICbL4HdfD3Z+v4C1ff9LYjmWGFCz+FFBPV8KGxhUyh3pMz6AhRDcWDYtOZn+UDNz4lhBolTcovTANhH8cLugt7hiH3UDPEwuxAPpIzMh92RZKBUt7fYBtHPy6RSOjxPOvS6SxqgO4xCpNphhGOW+8jn0S8s39iOh8LjGhXS6AeuzEOdBRsNHbkTdWjOMnsSkd+WTF33aD2AhTYXogasmbLP6WcJIDzBa/69Forh6i3iTkDfWiWd3G0wnL+pl8QhQNoO4UFdOS5JRR/LN6ikZ63Fil1nLQWcz52Ob49DlWGay3sfXwKFbuHDBG2TKoJYe8bcEmyRZ/wc8OaVT8vsXPo3FNz7XlhkEuBcOi47h5BOPXQT1C7pMAW1Va5pKC8nFTVb+BFS1BSCrfAYeauMNzrBi/6h1wyh1fyKZnxa1ofu8hlVBx6vGzPZogMfG+xP70gUZRH0NnUV/rwZFOR6yymeb6QttpXQUz1OPfa29HPhXG3yHMQVPzpsPy4bNnRrQ5oMQTMiCcPBXPoe1G6Zw6iz98r3y+2ubIXSHrp4mqLL7XNCUdk+SUUPwDtRb6OvNGB9RYZbTpoqtg+/lPjq14xPGKGD28a1hvFtTaQkIzy4AvRzB+c9GWatMJLKKk5xpPH6xpF0t8RjCitfg9wTLXY/GOhPH3degTaclYNCHEz5uuhpDEYjW6hczHyu8rwPgVCy+wjAUsPCnxGlcmyVBP6NxNgnrEvPEcnpGfrWzFm3IgudJYk0oU8g21z5DmmI2B/W1KKZ8K4+8MLH7buPmJaTuMGL9cXCVIlKay+KPzRXdClE9ynYWcmccv+A5MJUiDk5y/tkeP01o9JRR/temgp5Q3OhbHKrxSU0fBBoU+mdiJlKF66Ls4UjcofiGTZSlHtEnaRCdkRyGXAN+I7JPkxGdpSgTKueBLOaYI5KAoOSWx6YgtQz2mDIqhwzLKvtApczHbIj+6q+6t5XgghCnR4NSlcLA7CiteC/VIGH/SqScfsfiVXQZjFSEJjvHHoB7Jiu/I66FB+dRlwtjF5zqllDeWCuXztaeUSwH1eMF8NSlz3q8YlKUnI3CL32eX8Vw9GrjNVkTu6qAe3lcpb0M31CBtRkBc0K9DMcVHRyGXWDEtSU4JxT/SYDllTFWKxiqjPkWSZ4g83oo2xyKi8jJBAi3HC7BtU04ZcSJ3JSjztp+ZEUAiLDRWCypQfP7kl30S8smAO9VUm2/biSodnpZ2UGXxB1ZR1JLXQj0RxR/tQx6vCAsV7LCQjCiOZEWboJ4Yxm/pLf42r9KU029OYttowRD/HmRWj0DnBIAuA/1Xpp4m1Q4II1HNuYXa/nPtSOHcbbQkqCcB4+cOWxOdU8b4QzKAitUTzdXD31vc4o/CjQzqMRtKUTqnrm3U4geOj+hySin+vE2Mk34sMtp00F20g93eVNzkRIkI9egURC0oUcgVP9GmZBUtfm7FezrrXLAM00A9ogWV5pgP6OETGYfmqRVUOcZlOmcvt/gVNQRk+IL9TJSLKZZf3UDnlDeJgk2UikrGzU0KSsb4LYvA0sBSjsctfjYHkpy7EYtf8w6C5yrSOXXptlWsHtMcCE6H+tKXYtuOvJ2cj1+AO4s5Cy7Vz+2m4wa4vWnzbcqKPzh5qix+DZ3TUyt+vjF05P0MnYrryw52tvmq70tcM0E21eOAvU8Rxd9GTynv797j0yd37ob48sRi/EksiSAtscniFzD+zqBEnoZ2KLAUTFAPTw4lLmaTBSUqyLzG2pTZP9O6CiAADo/Es2i2hWyHAIQC4gaoR8TuNcpUVpC6hQxEoQMAKFhq564M3xQMsJisIPhYdTBDziKBMksqJViI+C7M7JPQMs1prU35JNNVzKHmqOsciHOlZHACszGx00Eai7/WcgJWD+9flwCw6XgocYqmbahl3I7Ow9C5q7H4bYXil56ZK81XflJX14SIvoPejjwo1LEvIk2XExxOa4ufYcQeeoo54+49VuHO3aRJdCJFfMFJDlORKaML3gj5y2E+eJ0TqOV6wURmTiX9cZTS0CrqKub0pRddNxXMIPPtc7aFnoJG8UtQTzFno2BHN00uMnzBx2Bi9XAJnXUai19oW7RTOncNpyN5k+BjUM1DjvEH2VETInfTQFiyI5xv/ioFJZ9k5vSW0HI1dQ6EZ8UgoQTSgG/xJydp8wKoJ00EexqLvy1Z3MEmqXi+rkdj7wpQRES7cYsfUCdq49fnG/VUP1ZmsB4/zTaFdcAL55jIG0ky6RU/t267S8w6Hw/D3PUo6n4AEH/ouhKBJ1JqrbDurE5ByJWaTBTJpu+EzAsZF025+wuCtZe2RODUzryWetp2aERBBlGjMtTjRo/YANBbtNSKX8r4CTCLW5mGQWXxG5y7xYiC1Dv2ZFgoCeoJaI85Czp7wpUwfkB/OuHWJj/1Gam3snNXh/FLjnBOclDFiMib1LypLKPrHkWtZvEkVcpbWl662LaUt9Foe0ZnZcRh6/+vCziTfVK6U5fMVuIsMCWl1vWi2Tk1ZAAVnVP8XO4TCA0VTlxQlcoUiRMdCdlU08ikV/w8P3lPKW9kSYxFOG7eVRCgngmw+Gst/9RhckBJirczpy/CwBcHISRwAOkCPbjDEIAxiE3G4/s682i6ap9IS4hCBPRKR87pAwBTCsDhqkrxc5ghCl+Y8vrkJYxfT+dMB/W0HFdS/GpKrcq5m0TnjFIEiXLj4f6Y0OJX98nuK5pTRmfx87FyZcbzytQU88WRTgdn9zHFr6qpK26oqTF+f66a2oq0R168RmesNQTnbsHWbz4qFphtqTF+V3buBlBPAsYfpGZWQ3iAQFXmFr/CfxW8Lztc28dDbZ/0il8sezdeUE9Q1EGAeiZC8Y+2HJZ8zRQQEyhefnQkGG25SgdQsx0WjuYTTsdWEhWfKTlUiMfzgtRscg4prBIZEuG6UmbryBMeAIo2QVOhTGWoi/erK5YBIIbFqthCMVZPEtQjWfyqscosjYLNisirLEjZ2uRjVUI9PgMrsPgNxo8T45uTyPXCdhKjxDBfZAXJIQkt1CNQf1l9YvXkDlg9AcFCe1uRVBgcxtFRsEWLv7PIIpJV6yVgVknzRbWh8CC6oJ3/Y+y5SoZKAPWoHLYSVXmqb/GrYczQGc/nwWlt8YuUq7xNtEfnsUgz0qfZejiRUveTr5mwYJlDHThMNWkIRCweUFtwvN98JHhHz5AAQljGdBxlfP8wj3lOQ3mTJzxrq34HjgLqyWkXZ3yT0JUelOEbnQUXtBX6LFhqiz9U5lFIQo3bxzF+BkvpGCUhj98Eh7tywRBu8ccUv0TnDCx+FYQVVZAmY0k0KAIFpVlbfJOYyssJGoK9Iha/f31tBHs7xPi7fTy8ZmJhyQ52TcoGsZ0VnKTUGyp/rlN8MoKaKRQ1gKYYiQvh+yqlcPInyaRX/GL+mbxtTs401j4LouKfQKiHWfxm/m6YPlitTIGoU6sjIT6h7dIAluko2FprS2bgTDUcR2XHoo7V4yiteKJ1bPK/h211Ea7xhWxrlKmMhSfl6kmD8auyWPLvy6LC+G1LvfHwXD2WRYzwER9/BLog0euF7aLPqjOw+PWUWt7WmApDZIBxy1yX18gPXprplwodahoUvwBN8oLjhxQ+IYAbQGFqbIAVW5LFVc6XONxGKWWKX8HqkZ+rnNCOl/9MM7eLhvkiOtj5vZlOfkky6RW/qHhM6WDHIiL7JcBNJyBRW63lBBa/Nv+NpCRDXrYC6nFCqCfJ4udWJMASdDlUrXRkBg5PlqeilMaphOHnkWurLC2NxS87wPj3dBGuhMjwiTr2I8bj1yTdCu5LOMnoA7iikIhJ8autTY0/wgs3KVOSPCBu8WstU8na7DRAPbIyMwU6iXAfp1TqSoXytlyR6xQ/pdQPoGL9ch/DPoWPAYhCPab52lbAbRbRw2Iqi1+eW7LvhGe/Nc1t/jzTnBDzlpXKyZ8kk17xy/Uzx8Mwb40R6qGU4m3fXIGfPrfn+C8uiFhgRXdskx2huoAc3jbANhMwfl7kGQA6DBkn5SAXkzKLB0WpWT1qZa6+JznQibdVLySW21ysNGVpWBotxwuchIBIz1NvfhE6p6Xj8UsWv63Hol2PwiIIcurw+9KlkBbrspqO+KLTnvfJrxcZa4zOaYB6JGWWmPwupcXPyADJil/eeGb1lGATYK+CVQREIU/zhsaYOuJ8sRWKX4bwAMAixJ9b5k2iq5jTBua1ZUPB8FzFuRVAPcehCye94hct/vEK4Ir2qYdOuOwbauCpbf34sx+tPf6LC1L3c/AYucZS/htTagHlhNd4gBzXC1IAdBf1RcllVo/JKpGdu3qoJ3pPAJAnGnxbFeikde56EaXH2yqZMhpWj9Lid6UALi3UE92kZvgK7eBwPHl9243ywvkY5PcawAxC9SsTRTKORXOaqhrqEemcgAbq8Z3LXEGaUkiLdM4QizdZ/ARTSjkUbAtDmkyeMm5uWwS9RYIDiucKcIyf3Y/J4pfTMAC+oRDj5sd9Unw8Ojpn1BGsjh53pH45nVTn4AfYhhJa/Kcx1CNanCZO7lhEpEimCeDafHDkuK+pklE/46Ap6VUM49dEYgJswge0T4MFx/vlyiRw2I7qg6KC46jBipWxcB3UIwc68ftSY+EKJyjR0DkVC9nWOOtEH4c41nQpG9i44il5uWXM2p47rRMAsHsgXjSDW5uiqE49MlOolNfnwgc451/htNaxT2xumZqhHnGshBCtg13ceLjy1UWPc58Qz+Spiw9RQS0FWz0HKaUxVg+7L3Uab9V80Vv88vsi2g01svlCHRjXUpx885Ymcthlzm1CWKLAnCH2J41MesUfs/jHA+Pnodq2ZTxecdl2eDT4ebxyBQEi1JOG1cMmkhHqcUMs2rYI8paJ1RNCPVzxqyIGZVaRyQElW9FcrzZjUaNx+CbvW/HyAuHPW1xz2qAsCWri31OWdJScuxYhIJpNQj7JcD+GbPXLi36uj0Xv6o9DEnIKAIC9szhLJKocijkroZSflFNGs6HF8vHn9YaC7DAG9O9AjCPgRICB0fi8AqKng94Og+JXGAo5DYTneBQeFSLNDbWM5Q0N4PNFo8xt+RnE/Ucqpz0h6shd1clXe5qV5kvJkNAtjUx6xS86YvM5Mj5QD48czYcYvwnqEdkD41W0hVIaQD2mQBcxVBsQ0uzqFK8w4Yq2KYAr5HuHTB19xGDA6DAo/mbM4vdPJxpWjyoEXlZ8rhdaOmG/OlaPp4BPNEFRXlTxAwz20EE9cuQwgFhiMdlhWsrb6MkDh0bikIQMybCx6i1+Mc2vyfhwJYtf54QMNnQZ6lGxXxSblJZ+K8QR8Jqz+4fUkExb2FBNFr9K8eoc/HI5xcDiV0I98TlgW/HCLbKPIRiDbWmTtIltCTS5elQbmubkK2++SVHRSXIKKP7Q4i/6GP/xFk0Rces0AVz9QkTp8eTHiIzB9eB4FJ0FG9O7CtoSdbEaqgaLX7a4izZJFcDVZwockZSZEeOXsHBdzEHQpwIWUqW5VUEiOs5/3IpWW/GqY37Ojh/dATXUA8QtftlhCrBTjc4RbaewomXqa5LF39YUBZdph45LQQTnciHH6gyo+O7qsaoZSK7gu5jRXYRFgAMaxc+duwC3+NX3pFK8us2fO5KDXD0Gw47l2E/G+OUU2lxUmwTvUzRUCIGyCld48k1h8bs0EmhmIoSkkVNG8XMGDsXxwy0yfCR+ppJ+4ajaGCeLP4wezmFmTxHDLarO5yE5V00FQxyXRpRpKWdy7oZKMjiSq0LFpWyDacoZctGmbAisTUFB+velcgTHFLSOzunRuAWnYF4E9MAUR/fgviTnLqCHeuRCMKqFLFd00o1VTkvNMP5Yd2G/rjq1gCrQSIZvirbGMnbjY9XdV9sLHey2RdBXJNg3pGbfiPOlt6NgsPj5CTF6X7pTJyCw0ALFryYOpMH4VVlfATZ/VRCavEEQqFM2hAkIkxlrIp0V4Bb/aQz1iNZ5T4kd23TZKdNK0xUVv56hwOWIYPE3x8ni55Z4V8HGzJ4iPKpWvGLJNUCwjDV0yijUQ5QWHG9bEJRJjkCZ5z9GJ7UtEOgsbi8GMxAFfCFGIXLRBVCpcNicpS/aolSmunQFUr9524pd3/PYJiFn5wTiCfCUWLRhIauchXrqq+8wzZkXvJxagBCisUzjDKiihq2khHo0ilfeqKcUiPIkCUQhNCPGL/kjAIPFL0E9QaplDVVY3vxNFE351GPbaoxfnlc6i1/Oxw+Ynmt0bpcMaVbSyKRX/JxDbVkEM3sYZqjK4jimPtuh34AzFExQz5GRZpCRcLwsfu507fAVP6BJSyxZG3yOmNL3ctFZcEDcWZS31WluVYsur7H25D45AyGp0DfvE1Dk9VHgsPosliqMP+4ElHPRB/3acQtOTpIHhBa/TFNU4bt5A1spfpLRK520PH6l78AisTqyKmtXG0fgxamnKsWrOkl15KDNJita/D0lliFWderlMJVcYEcXxAgIxVUMUA+vTyyK0uLnClo2FKw4y1Auyg7oLf6Wq1oH6gh2eW2Z0qykkUmv+MVjtklBjqlP7twNjoN6Bel6FAdHmrhoZjeA8cP4Q4s/h2l+rpKjCvaDzKPX1foEONSTPIk8j8FKck4bHTceUOCQKZVZXoEFy7EJgL6Undri12XcpHGL3yIx+qNc3CXs14opSBk6YO3433QWv2TBpcSXVc5d2RFuYoABvjJTQBJuDEJSbKiGOaCC2+Q5EATbCW1LOYIRjcPYo/HIYWV8xBjSbQfFiPJW5Duq9ZKW1cM3YxXGLxsVqlMEIZoKXG50bZvuS3buTu0soKrxC6aRSa/4RU5uoPiramdRWpGVaVeeKBMjASz4xvUoLpntK/5xs/ijWUcBkxUfOot0CpJ/P42CViUz07EJWkrcmsQsc27tycfhfC4On6gwW5MjWGWZ6hgl8qIzYbaxTcqOW5FyriIg3HyTKJJ8rCpYSnmSUSjesfL4dRZ/nMevYuro4yPUMQcaSESEJHJAtamHEMO4E30AmSpyVhfoJEM9PChKX+dAhnoMrJ4UAVyqk1Qyqyd5zcrva3p3AcNqlmwqmfSKX7T4Z3Qzy/i4LX6HWTCc0dBpUPw8H8j8WT0AxhPjD6GeoNZnimRiocWfDPVoHXAKCyqvU1AK3DqvmJw6ypsS6nHjLInQdxFfdHZMQfl8bcUxWxWJ6XrRMoEqy5yPVbbgWgqrjI9bx/cWN0kT1BO3+ONQkyqOwszjjyuzvIJ22FbAYloITXc60ATmifevKxwkZ2g1FQ5SB/zpMP4o1MPbpqmjC5hZPXG4K27xq/pkUE/s8pqTjG7zjb6vaV0FVA3ZTJMkUfETQi4lhKwR/g0TQj5MCJlGCHmIELLZ/3+q354QQu4jhGwhhDxPCLn2mEcHKdVwQjTqWPoULbiuvLrQNwAsf+kwAGC+b/GPV2neAOop5owOKJUyZ59roB5pEukWMhBPX9xSRFjqrNiYZa6JblRCPVIKAECIT1D0q8LtxWsG/SoCuFTxAaoAMnaP8U1KZfHruPFjde6qMfa4j4OPDWDRsG1PT2l2PAVurWKfKGAxbXyE0rkbhxFV9RA6bIJq04mNtyVBaKacOqEzXjSAiLJOdlh3Okyqp2MAqU4yYzkhqk5SKkOFOXf1Fn+cBaZqG31fUzsLys0krSQqfkrpi5TSqymlVwO4DkANwE8BfBzAUkrpfABL/d8B4FUA5vv/3gvg68c+vKjFb1lE+xLH2qdoEXTm9Bb/shcP48YLpuHiWb7iP75LB8IneEfeNjqgWi5VpkHQsU/SQD2qUHEt1OPEJ6dqk1AlUwPUUI/agiSR64n9xrFVvx8FFqty1onjA0JGlLyh5G2i6DO+SQYbj2yda/jmY8H4Hel0Ep4iQlYPoD6deT5urrRMFVZsnM6ajqmjayvn1AGYc7ft0th4ZZgjTSEY+YRoZPXko+tAl2Nfnq+WSvEr7guAXx9EBfVIGD+INnLXFpAHPla1ARZ9X9N99ONYZaxQz90AtlJKdwJ4A4Dv+p9/F8Ab/Z/fAOB7lMkKAH2EkDnHOkAx1TCgn5xjEZmXbYJ6mo6LaV2FYOG7xxk8FvYbTlA++XTJxCIwgyYfvxq317A0AudqCgXl55SJTs74JqGjvDH4JBmS0SlzNfNC7bBruyqM328r9CvnHxLvS8+jF2AGDdymyvaogsX4GFSKV74vmYFkKm6iOp3x76pyyqgsWGUyMRUspFCmISQSde4C8SRpMjRognrkWBJ+fdV8bbTjUI/udKDbfHWKX+3cVWyoSjonjVn9qrltgmfFthz9OFYZ67d/F8C/+z/PppTu938+AGC2//NcALuF7+zxP9svfAZCyHvBTgSYOXMmKpWK8oIHj9TRchH83SYU23ftRqVyKHGw1WpV2e+ufQ14bS/4W4G2MTDqKNsOjtQwaNXx5OPLAQD1Rks71rTXB4ANO9hG8+yKpwKm0LqNGzF9ZEuk3Z59DTitcKyN+igAgo0vbkaluSNoV/f72LVjOyoVlj6aOm3UGiQ2hkM1NrG2vPQiKqPbAAAWdXHoyECs7bYdLVigkc8t6uLgkf7IZzzyePvWLag4O4P7b9Zt7DtYj7TdubsJ6kWfd6tRB0Cwes1auHvDaXnwcAP1ZvT6TqsJgODRxx7HlEK4GIZHahigtWjbtt92+ePo8dvuHmH3/+LGDagMvBSMdXTExigQ+f72IaZINm5Yj9KRFwEAjXoNAMGGjZtQqW41Pit4DkZGvdhzPTpQh02i13LbLQAEj1QeDRTm84eZwnx+7XOo7bSxcxebN8uWP4a+YlQZc//Tzh3bgjlQrVbRaljYd6AZuZbquRLPwcDgsHKsHbnoPKKug6HaaOSzw+K8qrF5BYc9/0eWP4FZneF4D4yytptfehGV6lbs8J/z06vXwNkbVUtr/Wewds1zqO7wSxk6bTRb8bn9wm72fFY/+zS2l3ykAB727NuPSuVo9L4G6yja0XfguQ5GRqNzaM0hfv3VGNnu5/6pVjEyVEfTjX7/wMEGGvXoc51L2b0uXVaJKO/tO5uwEJ0b1HEwWlPPl4Iw1hcPH18sU2rFTwgpAHg9gL+Q/0YppYSQMZnClNJvAvgmAFx66aW0XC4r231l45Poy1kol28CABSWPYBZZ81Bubwo8RqVSgWqfv/f3tWY0h4O/vZfWx6E47Wx5PY74vSuJ5fi3Lkzcdedi2A9+EtYuYKyz7FcHwA2VLYAm17E3eXbWeDUo0tx4cWXoHzTeZF2P9qzCke9KsrlOwAAv1m6DEAN555/Icrli4J2g7UW8PBDuOySi1G+9QIAwP0vPgiPuLExbDk0AixfjisXXoHyVWcDAL6w8tdAqRvl8m2Rto+OrEdp355IH5995lfontKHcvnm4LNDIw3gkaW47NLwHiqVCqb25tDbVUC5vDho+6sjz6Nz6FCkzx0/WwqggcsXLET5irOCz/9l2zNAvY1y+dbgs2W7HgLQwk033YxZfoUjAMg/uwxz5/ShXL4m+OwRv+2NN9+MWX4cyAt7hoAnHsfVi65EecHsYKwzppfQaHsol28Jvj9l1wDw1JO45qpFKF86CwDws9+wd3Dh/Oj7Wj6yAcV9uyP39b31vwHJWbF38OUNT6C7mEO5fGPw2YM72FhvvuU29PppNNobDgKrVuLG66/HlfN6cWTVHmDDWlx3w004x8/+yWW40QYefhCXXHwxyksuDO5rSg/B9BndKJevC9p+e+vTsBpO5Ll+5blfo5jrCOYal8+/8DhmdEff4Tef/w3ybj5yX9sOV4Hlj+LKKxagfM1cAMAz+x8G0MQ1192A+bN7grYvHRwBHluORQsXoLzobGw9XAWeehQXXXJ58F0uwTO44XosnNsLAPjxSw/ChRN7rtuf2A6s34DyktuCko755Q9g2sxZkXkBAF9c9zimSnPzn1/4DQrF6H011x8AVq/CjTdcjyvO7g2e68wZnTg62oqsme/veBatkQbK5SXBZ1stC4CHW25bEpxsAGDp4DqUDu+LXOtf1/0GVs6O3dcX1z2Ovs5wrMWt/cCqFThWGQvU8yoAqymlB/3fD3IIx/+fm+B7AZwjfG+e/9kxSby4h76GZ1qR4SNd3njell9/vLKDAtEMoSGrJ9m5q8u9osbt2T3Fj5gaqCdt/hsF+0NPkVRAPapAK/97KiqdDhaK1ZF1DY7giHM37oRlY49DIuF9qTD+ONSROpmZAe4Sj/qqyF0gHkMgjjWeeEzFrFI7d3WUYhVNVn6vqvTFPjKlx/itZOKGzmnuKphdKozftnRrS5ePX8dYk+Eu1dxWYfxM4vCoKkmc2h8hO3fF+zsWGcu334YQ5gGAnwN4p//zOwH8TPj8HT675yYAQwIkNGZptj0Jr0vG+CmleHjDQS3fWZdFUufcFPN+qCILj0XEiOScAeNvxtIHs/9VEYNsjNHFoW4bd26a+ObKnDaaRa9qKysTVQqAADdXOCFVOCwQX8xixtGgrRUdH/tenCUCqHn8KqWjS3WsKq5i4sbHnpXCd6CK3AXUxU10ycSYE1KxSakSr2mop2kYQDqaMKAKdou25elYVGlDdEXRAcQD7gSDKnJfmpQNaTB+FZ2U9xs3VNQYPxDfVFtOPLdUjqjTscjvq5g7CYqfENIF4OUA/lP4+LMAXk4I2QzgZf7vAPAAgG0AtgD4FoD3H88AxRzzQDrn7s/X7sMffG8llu0yhIorskiqrCixgHnOJuNn8QuBaaaC77JzV1vyTRNhC6j41v6iizwDHasnmqcG0Fj8Gh5/QcXq0Sw48T646AKSxPsQ+5UXJ69AFVGm2oWcLs2ujk6qSmamqzOgUhA5xYbiBVZ0CtqjJpmYinYol2jk11c7d+OBeeo5EDcoOBtJm96CB1EWc+jIqTN5qvrVzYGm4yJnkVgxGq3TWpWrRxfAJc9DW5EKQ5OyQTVWMYW1eF8qg1U+eR+v4k+F8VNKRwFMlz7rB2P5yG0pgD85rlEJ0my7UqpfdRoCUX697gCA8IHL0nK9oCQb69O/liJvvOPRABZigTDjE7rbEjYUrqzVrB6Kjrwd+SynzBGigHp0DKCAPxy1zPQWfzIkoCpAwe9Nvi/PAN+oomFLec0mITOAHHVeH95P0E7L41ezNNjfkqEeXUI5gKesDt+jevMjQVuxHeuHs19YH6o6C6oIV8DPKaNUOvFnpaISynUe2DX0p051DiZNeguh36klolT8vF91wJ8HFMO2TccLTkViW13RFmWuHgUsxu5Lfq5qOqe8XgOLXwF3qSE0hQEovS9xLh2LHN+2cRJEhfEnWfw8542uVbw2LHszsuKTc/rk7fEp9s6vVRSqZRHosD1FSlzF0b3l6KGetPnwlfxhDRadVGQ67Dd+zHY8GljiQZ+ao7uuYIl4H1xUxVVUG4qqEAzA3q82KEkYgxWMNY7v6uITVAFUWt+FMAb+njmdtisoLKKPcFVb/PH7SpukTZ2dM/5eVVg4H4ucAFA1X6YVLexX1NENY0SikC8QN2pEnxwXbcoGhXVuEVXMg8biV26oJos/fvJWzVePIua7kN/XSYF6JlJiGH8Kxc+tIV1CNRG+4X0C8X4DvJBj/DlrXHn84gS1NY41OWUDa2so0Wcl35cyV44dz78DxPP/AOpFr0tklc/Flamnwvg1ClJVBCTk/Ccr09AnIjpM1Xz3vNLij7clhCBtuL5OQamSeamgHv61sVn8ipOM4oSo2qR0ye9U76Dt6lJhqCx+zRwUxtBbJDiiSMeic+4CitxGKmhSsV4A33ehgLBUuD3vRxRVwJ8S4/f/V63DmFGnMYDEkpYAYpvbWGXyK/6Yxa+enKLwouG6hGq6giHycTSW29san9KPQBzCyilwewCRKkVc8gonc2DtKZzWsTQEKn+A1ipSW9FpUi0DzMmmtoriC07sh4tqIQXFaITx6oqrhMFWgoJSBLuxsSty2mhOBzlF1Ka8OAF9Gm1lagWFEzCw+P17DtgvioyXYZnGZGe8o3HYqnIgKbFowsdnhtDSOncBlka8YcjOGa0lrJ7bbdeLZKgFDHPb82LpFSxLASFqyAC6VBjyGtA5dx2lxa/zX0XfwWkN9VBKfVZN1LlronNSSoMkbjqLX1dRKVYpSsonwjD+Y7gRhYg5iAAT5cxDUTE59JNTYRUpqloBUhoC3RFTecxXR62ya8qblBoSkLo0UCQNDKCIMo/fP2tLgmtyUZ14+HfjNX/V/gBVfV61sy4+Vt6vKt00EH0GMYy/yC1+dcEU1X3ZKp+Qo2BraRSUq4BEVIwxFYQWQD0KKqPc1pTuG4hTlYH4PFSeUBXQJB+7avOV10FwklKwetTZOaPX11n8LWVUut+PYpMQ+z2tLX4ZYwf0eeO5jDSd4O8Nxcvm/ary38j9Bpn+uBM2Z0HT5ZhF3tB0zIO2ivJloFNGONSaxaHCgnUYuxpqSs/jZ4nPVLh9OvhGV7CEtRXhm/iJJ9JvhBsf3/j4WHU8fjV8kgI31yxkZcoExYYmK52CzWrjjqosfk18gorO2VZY/LqU30rficERrZqDOow/ejpQw43BfSmYVSr4JA0LDYjWB+bCLyFCuqrrA2y+qOJOYhi/Bu5z3HRJBfl3o5RiEjOexiKTWvEHhdZTJBPjIjq9NLVVfJglHsAlT075+gUFVnqs0nRcyc+gKfStOroqYQY9+0SHr8r5+NnfUkACivTBOny5oMh46XoU0nrT5r9xFPhygNuLQVmajUcFIekCnXK2qWiLvEBVudjV3HjVfZkw/qhz13+uvvYghLDCQUaLPw0kER9rXqN0TI7oqNM8/lwLCVCPHOzVcj2lY5PdV/w0m8ZhallxgwJApD5wcF8KCMvVGTUK2FlVCEeP8RuICylIDscTwzWpFT9/4WNh9YgVfFYfcpXc/LjFH7degHCy8rY5a/ws/hjUQzST0/FQsON0TlXUKhDP7c3+poGFUlAUVQqCO6Ijjj0Nxq+EeqjK0lLHJ5hYPSpuvqrYOhufaJlqLGNLbcEBGsee6jiuUSQtR7VJqE8yEcVP49cv2URt8WviExhEGfdHqCARNlaF7yTFSUb1XG2L1fxNY3xoi/Eo3kFIVVY5rVWGihpCUrF6xGsCoe9CdepLE2mus/h1VdAARJLK6fxXp63iV1umZqhHzu63Ztdg5HdKaWzS6xxQAUWSY/y58cP4ZQhFdxxtqSaypY7EZH+LK3MdAygC9WiPmHoFEYmGDZgPcfgkTQBX0FYRQCVjq6r0DrqNR3VfJmedXLRF11bF+ZcLnQN6y1RXiEUeq8ra7Mqry3TqMf644lNGOSsUlC4iW51eQv2sijkr5rRV1132/QEyLORj4ZH6DTqMXwVNkjj1lo9B9gkFUE8E449fHwhPfbIBJK8BArWfQ6X41dlk1f4r+T2PRSa14g9ywYtWrMIqFKXeZpbQ2xafCyBOe1M5QXW5ergyE6GeccP4FX6GtEUwVEd3XV1SQI3bA2pYSMVq0VLOFMd8XQUucXHw9MWy5JW+C70DTFzM4VxRL6RoygY9Fg5ErT1XczpQn7rigU4qfwQ3PtJY/Cprd3aXhe39o5BFG2ikgChV84qPXRlAptkkotRTf/OX2hZzljI4ElDTj2UDTJniQ3M60BXjUQXbURo3VPhvnicrc/V85X2J96W3+JNhVBOEJr/Xa2YfO7NnUit+lcVvJ9A56y32t4VzpwCIY6GqXOy6XD0ybq46Mh+ryFGmKmVOKVU6QlW8bFOEqZz7Q1nsXLGQWb8qimJcQejqkhaUyjR+bOb9qqofaRklCgWlKqwBqJVpXJlYwTW5qKJG2RgUpy4l1MPnVtgnv0U99dQT2lJYBBFrc3anhd1Ha0oGFB9b9L6i88XzqJ9/R2PFO4pnpeiT/V1l8as3f9VY1dRPBW6vKBMJqOd2DONXwKg6uI8/ZpdGFa/cJxBucI60SaTG+BXMKtUcaCtO6ADwjgVFHKtMcsWvxqJNypfXsp3exR6KHOGocgKaJpzYNjeOdE65spbqOKqy4tl41JitOFbx5zQlArWMDgMkYKIdBmPw350cjWpLx2aAK4i4MtMGZaWIxlUFRalK3rHrK47ZBgaQCkLTXT+68XBYTGfxm63NGR2MdtovwT3GHERKRZJirLrnqvBdmGoZa1lgIuRqoH6qqJTsb3GMXxX3oU0qqJlbMp1TCU0qxjAmjF+1+QYn7+TT9PHIJFf8CiyaxItni8Kdu7wwuwz1mJKZxY+j0UXPjszHdCsxkWlnOStuvehyr6gYQCqLW8eUUfHYVTlteNuYtaVQUNo8MYHilxaSgoumws1V7BcV9VS3SaowW8dlVrSlsWLdyFg9EKK2+FPFHCigHhMWz+4l2la+tk/l1+PmqrGmUCQq+q/uuaruSxvEp0jUp6JIaoO9VKdeHcbvxgMeVdXCdCe5QPFTsW18M2H9suu4bvTZxjF+f2xpIncVc0C3oR6PnBqKXwp0Yn9TK36+GKZ3+xZ/DOpROZXY/3rmAWtbsMeXxy9vaLHJqTniqbItmjDT2ITz4sXOVcd81q8pgEpUEPGFDIRQj6zMdAsp7txVFw/nY5Ovr7OgIpuEIisjIJxOIm01Y1XBbQpeuMoy1ikdnXM1TrvUW8aAgs5pqxW/lpvvjOG5KoLo4n4efYqPNCdvFW4+Fh6/CupJsvhdGjVU5DUAhDpELuspr9dA8Suegf65RucgENcDxyOTXPHHsejQMlWb3lzR93XkYZEQ+gn7jB/zGTfa0mL8ocU/fvn44wVWVLng9Q5TVboA9re4MldFbaY5YqrGKY5HyTdPAfU4HtVAPVGLnxcP16ZwVrCKdP4I2Vkm49CAyVkXXyaqjJfqegD6Z6WHWqJKRx5qXmfxazYUmabactUGhSqQUedYNFqmquR3Mp3VjcNdelaPOoU0u748txUOUwJQqmahyffFvyk7d1VzILD4/ba6+arLztlScP5V0KTuuR6PTHLFr3busr+ZoZ6Ogo2iItAlnMjS8TlnKY+YYtvxysfveYyXKydp0+U3t1UpGzRt06RldhTYosphyr6rZx4orT0Fh5z1G1XoOjpnBBKhGuhC4WPQORbVmKna4lduEkaLPxnqURdX0WD8ivtSQV16i19jyUs0VZ3Si6Q69kV76gzGGj/JxNJbaHw38qnTBPWkMT747zqndVu1oaWgczoKBa0ag+7EQ8CMS2Xkboq4E11SweOR4yvVfoIlLCcYx61lBTXadPDtx7ej3nZhEabIizaJOXd1k76Qi1v8sj+gME7OXZVzLWfFU0w4GmWmouepE1lF/8ZFFRug4pADPtQiLzoNJMGur3aYyhRBnbPMkaxddh/qhazErXULSbh+S7GZsbFayn5VC862CGotlWMx2bmcpHRipyMNFq9Lg6AKNuN/F09VKl+AfH0t1MPnluS7sBV894LWaS/PFfa/ilatd4SnUPyKoCzdCZUHcLkxbr4e6uF96WIeAGb1y+vFowpYzuA/G0+Lf1Ir/iByV8k3jy66Lz38Er712HZMKeXQXcyBEMIs/raa1SMrU5XibwVtBahnHCx+fh35vtIwHwBdCH7c2tOlBNZl3ASilkYQ7HaMfHNxPEkOSyCOm+ssKJWC1OWpUW8S8fsXxy6zleSNh9/XWOoDq6ivcUjAhxwl57IMixU0UI+rgXBEmipPiwDEE32pkrRpNwmVxa+Lz8iR2CalSm2gPckoYh5sxVhZv1SZjx+QnLCa05GK1aO6PhBHHxyFw5oLQTTVTOi/lJ+rfvMdT4v/FIR6on/jUvVD2IcbDnpKeQDMsVjXYfzSCzcGmQhQjydhhcciSjyeIK7MdcmhlCUC4+yTMBgkvjjSBORooQPF6UBVUUn8bsSSpwbnrgIzVllllvS82orN1HRfqkWkCuASay5Hx6p2WMZPRwosXPNc+RiiUI8KszdDPXqL3wvGye5BfToRFVTgD4gFRakwfo3vREPn1LGKVPelxfgl7FXtZ/H/5qWZW+x/2eJPg/HrfCy8X3FD11GKlQFcZ55zN27B6AKNxEKLvHCzqqKQDi9TQj0Sbq2yXo9F2oHFJaabVleqUo1VmwteaxWpoJ5kNoHescf/nsbij0M9rktjVEreVjXh1YwKSxnWrqq5S4iMmcYpqmzs8U1KjrAOr6+A24xpmUVlrlY6wX1JbeOJ79j/OjqnLsc7vy+dBamMI5BOvUGfyvmi9p3kpVMMG2u8rQ7jV0FofPOPBLv5vjMtcSEFA0mJ8SuSuQHh8ws2VCPUI1v8amWue65srGeIc1cVhq+KGARCzzkgKH4lfKKz+G1Frp7orlwYJ8WvSkXBoJ649QKocEBV3vj44iCExCxIwIc6FH2ya0aP7vI4WVv/PlIwVYLNUpj0JotfzXdXsWpI5Oiue1bsszidMS09r+W4sVNEMFbp/qkCs1UpU10mUSCuJFXOZRPtEVDHHPC+2PXVpyMzh1y9ScjKVGWVKjF+JYTon2QkWMjV9CufJLSZVBXKVIfHh1BP9Prq+RrdUHUUUd5vGm6+Cpo8Ec7dSa34AzqnFOEq/o2L+Eh4IXVV/hvdTl9QlAjkTiVunQZH5uME+lUYq23FNzPdRFJlkVTBN+y7iuAZlyqrFAGSZazJf6PCd/lzjVMP+WYZbauy+HM2ibVj96C2jNXcdM2GIrFqdBsEELX25DKd4liji1PjYzAoHZXFX5A2ao+qnLsc6kkZwBU4rWXLVK3MlVBPyhOiEuNX8fhVbCXu3FVsEupnZSn9ETpKbZpiPPw3OWWDcr5IZIC2ZuMFmGGqeq5xaJLrmDjGrzJAjlUmteJXYdwqS0P+nWP8tkViR0w5/w6XYs5S84fFa48z1BMrfahLGSFPZFXwkKJYBrtG/HRgprwlQy1qbro6g6EqDYLJglLlQdcxgNKwT/j4ZYtbt0HI9yWX6QzuS+Lx63MFkVh+KRPGL0M9KqUX8vjVCjKeRVID9Wjgm3TKlP0vphlpazbUvG0p5rbKucv+jzmCdXM7F39WbGwaqEdxmtRi/BLUY0zZ4I9BV60NiNM5dbTyMJZC4Q84UxR/AImoLH7JOq4K+cm7RahHm4Yh2eJvu9HCzfxnU1roNMIdUrHkc7Iy17xwBl0kO8v4d5WUN93iUCnTNApCw9SRoR6eeE7FlIkpPQ1Th38WZZQY/AHShqLCl9lY45ahXKaTiy3x+F2N0uH9Rul5esswb0fngdriZ/+rUxuo+xTvK6xzocP44+8gfuqLW6aOjiabU2D8bjzxmuVDk6rsnNpn5UQ3HvF+w375fSUbNZzO6cnO3RT039DPFZ8DzLmbbKiY1uHxlluMjGfcejoBos4iqYZbhhvt4OfpXSxPjxrqUVs7usjdSGqH3AmEekicfaONhrWsCL7NxqrOIKhjVMhQj9KC45ukRkHI3HTdxiP2xbvXRu6m4FqzMVhKlobKaSsHhqkc4eJ10jh35fq8OqXDPpOw6ASMXzRW1EnqGO0zbvGrc8oETmt/jDqL3yIEcoW7VpLFn4Kmq+bxq61o5muLG2Dak0QKCE1ZP0LDbFJa/Nq5zT7j63lsdE7zcxXXQVMDuR6PTHLFr3LuRv/GRSzAcuXcXgBqxa974MV8fMLJluF4s3rk3PkyVVSXo4OVCFSNNdky5teP55RRWXBqBaErEaizyvj4eDs+rthYY1i8SUGS2Maj61fO86/j8asCuHRQj1xvVadIgLjiM21oKmWm8ofoWGjKk0zMuWt4VjGoyQwLRSE0E9yo8DMprq+MoFdQNAH/uSpw+1QMJM2pS8nj1z1X6TSbTOdMb/GrDIWTjvETQvoIIT8mhGwihGwkhNxMCJlGCHmIELLZ/3+q35YQQu4jhGwhhDxPCLk2qf+6Jg9C2/VgEYmbrngwQJThcM25UwFwHFiN8csPvGBbaCqCvUTmAZ/8xwv16AK4xPEBQhEQRXZOVd56lYKUHWDsGvpc7GlC8MMqQVH4xKRM+T0brXjZuWuAT2TFq2N0AHGfiO7orgrgYs7deMELnY9Bt/mKkISJ9qc69eg2PpUVneYkIxcYEoVl0lQ4zRUZL8W/8/tKs5kE96W5vorVo90kneQNVRW5qwoOBdTZOVXFgPhYgXCdjAnj12QQUMaoTCDU82UAv6aUXgbgKgAbAXwcwFJK6XwAS/3fAeBVAOb7/94L4OtJnR9tqBV/S8ELVikogOGdr7ziLKz/3/dgZg/LzJkjaoYAoObxx/PhR1O8ckxUlycorZhyEKloXMqUwArnru44nCqZmBK31/kY/H6kRWfE+CWlo4R6JDqn6egcU7wKv4nYr+ywVT+r+Iamt/jVUcZpoB7XdF8S5Oh4NMCdRVGmOnbiUasAUPI3Lm5J6wgOfKziHAhYPQq4SaYoqk6SvE+5CltbA0sVVb42rXNX3nx1uH14TfH6yrb+/zKrxzy3zRAaH0MEQnPSzxcV/ft4JVHxE0J6AdwO4NsAQCltUUoHAbwBwHf9Zt8F8Eb/5zcA+B5lsgJAHyFkjukaukBYR3KuAmraIcAss1LeQlcxzEJhq6AejTIrqCwoyYoOo1DHB+qJlF5UOHW06XMtK55t0MBNVzp3NcpcZWmkydWThIPy98VfmzZlQ8QJaoCFYopXnTcf8K1IiUqnisblJwuxslZT49zN+ZTaIPGZYdHHIQn9qUcFC+msaFXZQZWC5IqfV6cz+RgKdhSLNuWCl4PodKcT2TIGoAy0AnyMP4Fdx0V+Brq4DxXGH8KoGovfSx6rjPEHJ3nFfCFEpirrT6hyxbITYfGnydVzAYDDAP6FEHIVgFUAPgRgNqV0v9/mAIDZ/s9zAewWvr/H/2y/8BkIIe8FOxGgMPsiLFu2LEZD27GrCXgOKpVK8FmzUQdAsPaF9SgdeTH4fKhax9EjrUhb6rTRaJLIZxt3Mifw0yuewpQCu161WsWB/U3Um9Fr7T/YQLPuBZ9tOsospmdXPYfqjuR6l9VqNdIflzX7GQPpuVUrcbDb30zaTQAElcceR1+RffbCPtZu9cpnsd9vV61WsfvgdgDAI5VKYIkdPNJAvU0j16tWq6iP2jjYGo18PjJaR//h6LOqjY6CgGDL9u2oVPZG7nf9C8+D7gvvt14bBUDw0patqFD2qvfsb6Dd8mLXX/HUkwCAjS9uRqW5A8N+YrNtW7eg4uyMtD2wv4lGy4k973XPPw93rx1pW6vaONQI72vr9hZsIPa8q9UqWnUb+w/Wgr8NV2s42t+IjXXlM0+z663fiKlDW9hzaTRx+MA+VCr9kba7D+4AACxdVkHOItg9whbnpo0b0DPwUvT6DQv7DoTXe/6A//5Xr8KRzVak7fBQAyPN8D0ODNbRmSexsTpNC3v3HYh8vmd/A61m/B3seP45AMCzz62BszeHDbvZGlj5zApsLUWv77Qt7Nm3H5XKAABg43Z/vTz1BDoEJ3+1WoVFCXbs2IVK5SAA4MjROiyC2PV3Hebz9VGU/D6ODtbRo7ivVt3GvkO16NxsNHH44IFgTLxtbcRGvRpeb+ew67+D9eg6GuoGrjNWr1kLdy9TeS/sZfe1euUz2NMZPoOG33bN88+DHGBtq7U6Dh9qxefL0ysAAOs2bMKs6lasPcze6/rn16CxK5yvV7ou2m0Pw9XwvtYcYm1fWPMcRndE5zb1CHbu3o1K5RC7n62s0tpTTzwe1LfgbY9V0ij+HIBrAXyAUvo0IeTLCGEdAACllBJCxoR/UEq/CeCbAFCcM5/edOvt6ChElelvjj6PzoFDKJfLwWcHfvkIgDouuewylK+ZFzZe/iDOP+dslMsLg4/+34sPwoMb+f6Wx7YBGzfijiW3obeD8f0rlQouPP8sPLJ7W6Tt93Y8i3a+iXL5NgBAz86jwDNPYcGVi3DHJTMT77FSqUT643Jk1R5g7VrcdvNNOHd6JwDg0d0PAWhh8Y034+y+DgBA/6o9wPNrccvNN+K86V1Bn/N7zgE2b8Itty4JTjjf3LwCJcdDuXxL5PrTpxaQsyyUyzcFn9tPPIxz5s5Cubwo0jZv1zF33rkoly8DAOQ2HwGeeRo3XHcNbjh/WtB22bJlAGqYd+75KJcvAQD8ZP9zONAaitxvpVLBjbcsAZb+GueefyHK5YtwaKQBPLIUl116Cco3nRdpe/65s7DiwK6gj/wWdv3rrr0Giy+YFmkr39fj1Q0o7N0Ve96VSgUzpxVBKVAu3wwAsJ54GOeeHb//6665EVj+CC6+5FKUF58LAHAf/hUuPP9clMuXR9rO72bv4Nbb2Lx9Yc8Q8MTjuHrRlSgvmB1p2zvFRt+UEsrlGwAAw2v3AWuew803LsbFs7ojbWfP7EbraA3l8u0AgM+/8DhmdBdQLi+O9tljYer0LpTL1wWf//vulRhG+F3e9rIF1wFPLcdFly5A+aqzsfPJHcD69bj9tluDgkVBv90E02Z0B/1uwBbgxRdx5x23BycH3rZUbOGss8M196X1T2BKRz421sumnge8uAE33XIr+joZ4+7v1z6GWX3hM+FtZ0wrIG9H56u1/EGcMy+6tiuVCmZO70C97QZzfu3uQeDJJ9g7uDx8Bzt+thRAA5cvWIjyFWcBAA4+uwt44QXcdku43gBg589Z2wVXhG1zmvVy1Q23AJWHcMFFF6N86wVorDsArFqFmxZfjyvO7g3aDto2SsU8rHwhmJ/N9QeA1auw+IbrsXBub6TfjqKDWWfNRrl8JQBgjfMSsHkzXnZnOeLoVxmVaSXN2WEPgD2U0qf9338MthEc5BCO//8h/+97AZwjfH+e/5lRhurt2Gctx1ShRsL42/Hje85ixzAqcXKBuFNHi0MKO2zBtv1xjROrR7CgVL6LxOIiKaCevK1K6KY+uuakqFFtdKNP+4sGxKgx2zDaWWL16Jy7CtxcR+eUIzF1dLdS3kZDYIq0NRRNOYCLUqqFheTANF12UNZWhiT0GH9BikjWxTzI+DYbt/q9coXNc/skYvwRqEfvO8lZVizQqKC5fyCe4kMJiymTJeqT6qVxmKrWS0vrD2C/y1CPOutodL7w+1PNFwIos3MqqcKKdZgTMgiMhyQqfkrpAQC7CSGX+h/dDWADgJ8DeKf/2TsB/Mz/+ecA3uGze24CMCRAQloZrLdin6kWqAqLppSi6bgo5qInBhUnljskVYVY2DUlZSJMzo4C+7kusX/GKqoQbE6nlIOigLhjjS8kmdWiiwSNRS87+sISqjQEaXBInQNMjvLl702ZpC2W/8bkBI1SWuXi9aKU8lGmiC4oi6dm4AvU8Vj+HXWuHjYmHk+hS2YG+MpcwZbSM5uScXM9xh9vKyt+oyM6F1fmOt+JrKBaispugJjjKjpfVXNQlTNLj7GrNyldskI5Nbc4Ni5q567aaS3fV8jWi8PAli5yNwWlV/dcj0fS9vYBAD8khDwP4GoA/x+AzwJ4OSFkM4CX+b8DwAMAtgHYAuBbAN6f5gLfeXx77DNlvdWAmhVVkB5lC1wUFd+8rbE4AwtOdlgKk7OzwGCVWjOa6nmsooxIVjigdLxgZd54LZ2TxMPlPU0agljkrN65mpecgDonpJxj3tNU1eLX8WhobZl40XLRFh37Bohb/LqgrFIuqiBNzjpeFY1vPrpkZkDcOjc5reMBXJoc95qAQ5WC6Aicu77FbwgIKkrXbysibLmo8hXp2DfidQEe5aty7qriE3R5/jXzVRPApTzNSmPgbkZXOnUZA7icNM7dqG7R5UBiYyIxMsB4MnqAdBg/KKVrAFyv+NPdirYUwJ+MdSC7jtZinymhnkCZhw+GHw1liz/Ihe5QoMC/x6yieE6Z6LGN/yyyhLp8xT/aOj6LX5WgyUQ5kznUqrzxuoIhqtz92oRutpqbrrO25M1XdX0+Xr7oTPBNXlCmRctOTsssjVVr8efsQJl7Hisuo974GEWRR8SaFnIQFMXz3xis6JxloeqGxkKooDSbbyRlg579E68nTQMlL0rA6uFQjykwLkciEcG64Ck+1mhQkvrUpVpbuihjuS6GrhgQEI+e1qdh4NeMn7p06R3ElA1tj8LWGDUi3MRPKkqox2f1eH5AnglCk0++zFBJJpOMRcb3/HCM0pEjGG3GlanMowfUuSz4opazKKqLR+u5xnJbeaflzme5uMtYRZmrR3Ec1UXsqfLG6xZoXgrI8Tzqp7nVKHPV4tAm3or6I1QLGYgqaVMAl5xF0bzxRK1NdhxWX7+UD9Mb6KpPAWxxilCDzqDg9wSE7yDMv5MMi/FKWWkCs3TPVQ60AvRQj20RFHLhM+BKVzZ+wrFK+LLmJKVSUMYgPunkrepXpnPyV6zzR4wlylgJY2pTNoSfqWrjqsZgMhQCw05Km6E0FGzVaXZ8Lf5JofgtAKMKZapyFqlw+3CB6k4HemXORYVDykFRhZwFmxy/xd922dFVVH4h1zjZuRrmV49a3Lpw/SjUlYDbK3DQNPCFDuPn/bYCBWmAegJ/AI38nyYffqJzl8M3Bgcca2ulsvjld8ADctTRsOrsnCorMhaN6uqL1sjOXRMWXMpZEYxf106GkNqeHmaIZz1VKyjV2tLBJ8V8NGUDv8exQD1aaNSLz1f52co8fsf14FH1egGim3oSj19sY3Kw52JxH3ED+HhlUih+QlixdFlUi1mV2oCnWohDPfG2Y8YhpQdeyh0/xq+yzDibQC5nqHKsyUWegz5TOIp0R1yA4+YpoR4rOjl1xTKAaI55PmZVNKocIGdMgyA5onW4PRDmYaKUGhcnEHUutlxX2zYo2uJGTydyxks21nRYNBDffHVFa7TOXc19dRTsAONvaZz7bPzSfDFsJnJb3cajg1FVYyjYUajH5IiWEytqAx4DPSAx9hTPNbD4adT4MG6UAquHEPV75d9OY9TIfrm24cRxrDIpFL9FgJoS6olbsapcFnyixJ27yQ5bLqrjaEuhTIs2QS3B4nc9itW7BrR/byoWSAhhRSlnecuKHclly5h/T2eZy5AQ60NjaaTAQdln8SySOoxfBfWYS9mF1ha/lqqtfBzWW/zs86bjKfMkyW25xd80tOWOYDkNQhoGlLGymILVo0zSJm3oAHtuuvvqyNsBxq/Lq8T7lZlluk1CxuN1G4/sBAUMzt18tE/OmtI/q+gJHVDl6uHXlHBzxfUDVo+XbMUD0UhnTjBQQWiyxW/yB8h+uYlk9ZxQIYRBPSKHHtAfHeVQ8abm5YQVhVIwD7jid8ybRNFGouL/8sMv4c1fexI7htTtVDt4iEMmO9bkIs/8e8pjo6XJvaLjD6ty5egUb4pwfd5vmKvHYPFLPPogJbAGN5fvSwffFAW2TtJCFmEhHYTI27E+Zcw2BdSTQOUT03Hoc+wrWD1GP0d4XzoGGOtXynHvqusTs/sKM9pyJ6zSaZ6LG1U630UxZ8P1aHjqS0h3LcM3qrYqeFhnKPF5yXVRSMTQPC/h1NN09HOQT3exbcG2lJu6vPmZqMrHKpNC8VtgThw5v7hWSSuofECcP6uChdoafFNVT1elTEs2UfojRHlqGwvvH43HpAXXkF9kMDnl46hirHZgGUu+C40TUJW+WLmhSs81yeKX+d4mjD9m8StPHBJTJtik1ApCDohJsvgbbc/o3GX9houuZVD8ckxHmLc+eZPieYXU2H10HmqT3+XimWdbihMyl5Jg8eucsIAC6jG0FamXqjKpQZ/8nqRNQu3cjW4SpgytctClPjsnIn2Z7it07soQXrJzl+V1UrNveL98bqkCTrnI1QB1dZ+PRyaH4vcfiqxQdZGIOTvu2APiCkpXPFqnyPg1uai44YUUFv9Ig91HS5N9TpkWWWHx6zYpuXg24DM1NG1VFE0d1KPMGa5LPCbz+Meg+NNkOzRBPcW85IR09DBHSWXx65SZ6Ag2nA5i0bCGfmW2lM6KZ219SEBU/Dr2jYLHb4J6RIvfSNFMOPVyKQi581uaNcjbsfFFT30q44MrQ674TFXY5H51xAWLEBCiMJQUzyrg8fuvK8yMmewMbxkt/qguajquspYzwOZW1MEdL5x0vDIpFD9/2LKDV+8sigY46Baois7JnDqq47jK4o8v0FKOxPjTsgz76SdG22rF31JsPqqc4bqje05F5zRAAo6QRTKsqqVW5nJQmKWxTJVQj3ZxhNapsdA4X/R8IRkgEY5Fc/ZFy+DYDJS042phQS7FnIVGioAcXRoE1QKVlakuXQFvC4g0UTWHXF0qVA/1dBSiGL/uXckYv874AKKWqSkoTN7QTe+gEPhOoha/2liLKlOjUWHFM16q+pRZPSYID/CjwoP5qicY8H5DjF+/SRdz0epqp61zlz9+ORWC43laloRcLANQKH6lNz/O1AHilhbArZ1o26KtdkSLwnW3DupRbWg6qEfn2ARUdE7T4pAmslaZJ1+f9RuFesxWrGDx02TF3xIsflWwHSCkV3BDJW1y2AI+1JMC429K1E9V2w6d4ldi/FYkZ5QJY88plJlu45Odu6b3xSx+/qz0ylzN6tE5d+3gGSXFXADx9MWq+IjA4nfCTQrQQz3itU1xJzmbRKjSus1PZvUkGQodeZEt5Y7B4lcX+AHiFv9p7dwF4snPdLU2Y4W2XTUWqyoYYqI9im0ppX5qA5XFb1b8vPvDNU+Zu1+J8Wv8EcZKUb6S5gXMTYFp7RQLNBezisx872heHTOPP1RkHGpSKHPJwa47nQGh0ohaW3rHJsCUNE/doIpw5W0DHDZgXhiiYVtRjF+XNoPdD4c6PKUVD8RJBo4B6vEEJ3AQ4aqFsKxgrIzVo7++2K+uwA/ALf7kTVL2n5k236LAwGLX58o8mYkXBNFp1kwUxlU/Ky3Gb9pQhYC/1BZ/W79JyBa/6TR7rDI5FD/idC9AzyGWuc46HE5OEAboMUvZ2nT9BF0qiz/JucsDvB7e5eCTP18f+7vq6CZPOIDdvxIz5qweiROsjgKMQgfmeqtRHr+uji9vmybCNGwbWrtAgsUvOAy1sQGSZWg6Dot0zob/buQU4FwiysygoIL8NwKrR0flk2FE0+kotHhDGCuNtWviu/PxBmwlg2NR3nhamhMyH2tTeFeA3scBhEaVyc/CN9lg4wvmq2lDkea2FvKMzleVj4FfJYR69E5rAChJ8RG6ORjouBQMIG7xh/CsFxhF4yWTQ/FrLH6206nZJ6IVr7M2+Fdj3HwDmyB0KqkVJOfxy9RTLpRSVAVfxc/X7Iu1aZtyEEn5d8wWv+wAUy2O6IQzWTA52xoT1JMmO2fYll3XSwP1CBa/CYsHwvdlOg6LdE5+WuvMq9NUlfIKjN8wX0Tnrn6TjCppV3OSlccaRqKq+lS/VxPUw6HUettFR0F9/3K/juaEzMYaQlgmJ2iYvpjDJ/rAOBnq0UWvs359w86JYvw6QoQc8KiDejryNvpHWbbgJOduFEIbC8YfzybMpZhjpy4xIvj0hHr8/5sKzFKvoKLwDRBfoGF2zijfXfUQRQeg2KeMF5ZsNsHknOFcmo4XmWBTuwrxNoqjG08olyYNgZykLcnSYW0lZ5nGzxGlSKopokA8oZspDUBBoP2ZkrTJpy4z1BNvm+jcbbuB8isV9IpX5vErc69YxD+Sh/PFdP+ABN9onis/iTQdV3BWqv0GYp+mmsO830abGSyNtosODaOkKJ9OElg91FdQptwz8mZiio+QN/SkTKbRsbL/VY82Z8npJdSnSUIIrpzXizW7ByN9m/JAiTRZneInUmQ+w/jN8zXc/E5XVo//v8x80OXIkCP2VGmOAXVaZh2VTZ5wOvik6P9e1+D8nMrJZWpnPtaGQTjRfpVQj6sOngnTMnP4xIDbB8fsKGap3CTkYucaqwhQ14bVKjPB2jSyemR82zDhxfdlCh4CBKin7QXvrVNj8YosDZOCAkJlCviQiOF0xNqEJzSdMi0FJwkvcDCaNvQw2E29BsL7suFR1q7WcrU+DhnqMfP4QwUV+EMU/fL3IvpjAB2rJ9o2NGpUVrz8XKmWDKCigOvua8GcKdhyqBoZRzrnbnIAF08DksTjB6JZYlU5/o9HJofiV0A9SSHwooLShdarMP6WRpnJFr+uyDTP0qzD+TkldcGcKQAQlJoTxRTAFWcgpXFqmbjx/jOIZQVUHcklq8iQfyfOTddj/J0FO4BYTEnaZCu2pdn4AFnpmBdnAJ84ocWvde76kaNtN0V6h1y4oemizMXvp7H4xdMJ9+EYA72kDV03hqDfludDPWbFH5ABTOkdhPfFDSZdSmKR88/bqqGeqLVr5vHLTnP9c41VdzNs1F1FO8bWSkqFwYpBmQK4OCwVwl1aqEey+HWQ9/HI5FD8/v9qxa/B+BWsnhjUo9hQHA18Ie+yuvzqJf93HbOH4/sfetl8nD9F/XhV1oYqn4ijsUpix3yDY09LedM5zWNUPvU95GwSK6WnVWYRDrmvzAxO0KYbblJplE4jSZkHdE6G8RdylnasIquk1nLQkbe1Je+YxZ8MNcmBRq6rL24ipoIwWfxx6qveMgZEZ7SLRsuN1M9Vj1U4dRly9QC+09xXUrp+xShfU4ZUHasnzanHMTzXvGUFGyn/jt7BzmpBOK4X6haDc5eP1+jclfyNJueuqIvYafZ0d+5GjmJmBSWXfFPVpFRh/DplwnKxh4wOHXzCDSWd4h9uMPJ+TymHoq0u06jk8XPFH8k4qalLKitzg8UrBwSZNlQZvjEl6BLbBiH4Oos/n0PL9314Bsy2aMcZHYlQj+MFylendERlyvBt/bFZtLirTTdSiEc1hnoKjF/FwNFb/OEmpUs6BogU0XRQD08xwf0cyVBPOF90cJ9YqjJ8B3plFk+FYeLxSz6pFGwhE03WtkjML6iHxcIxpHHuAgz6NdM5o8zFtBg/L/95Wjt300I9cqCRzpuuwvh1OUIAmZ6mhnpKviLSpWY+6rMBZnQXUcwRpS9AhQcTQmKT09Fw01XsF0D/rNg1JaaK6nnZ8ZOUKcKUL0r+KnTZObnSqbWc0LlrsPhFyzCJ/dJyvBC+0Ths8zaz8JnF7xgVv8jWqTYd9JT0ij+C8ScERQGiFWvA+AXIcSzpLRKhHv95jTTYO9A9Az7fQqe53sHP+6y33eA5lLRMlbDAipnVI0fu6qGeuO/EFBGtcO4aLH6AzYE0bCmAvS9zABciYzWdukSLv52woR+rTArFzyU91BOlEuq86TyFs8w3N+GgIbanDhwp+e9KV4zlyEgTADC9q+Bn8lTXGVCnY40HppnSS8hHZyUsJFn8pqCkvG1FrHITN55vvp5HjTgsgIA6WG+7Y6JzOgaHbSFi8ZuVDgB05pmfod720KnBtwHR2vIw2nTQVdS37chHsWBtBkdFNK7W4s+Fp5NjUfza1AL+PfePsvmZFuPXwY1iH7WWm3jq4tRPwEyTDd6rBA3qopfZGEOSg6kKXDzzrdnibzhe6ODXWOfiMzDBN9zi5/PFdOoSLf62ocDP8cikUPwmqEcNX8QLhphKo0X6dfRHVzl1LRC3+AsBxq+2+PtHW7AIc+oWLLXFr8sTIhcX0Saps1jSKdEqY/eq7pNfEzCzFIJFL1A/E7npnmd02AJM6QLsOGzConlVMs58YDCDnikESNamwZKf1l1A/2gL9ZZjbCdae9WmE9RZVomY8dLMfolvaFqntQD1uIbTEb+WfEJNskwHauxEqlP8ciZNU9Qoh8FqLceYXx7wE7qlCIyLQT1BpLdivuaic9sETcaYgMaTv694U5xk+PyoNhwznRPs2XIr3nTqEhlrTX8tnJYWf8DjV1j8uiySculF7THbjtaG1aVBACQcUnPi4Cd/HcZ/pNrCtK4ibIugmANqKTH+4L5ilDM111isPmRm6kSPwybHWiwSMiHxGsCUmImbD0StoqACl2bmifdlyrHf6Vvio00n5OYbFPqM7iKOjDQxUGujT0Gx5SI6F6uNBKhHCN4xYbaxAC6DxV/MWSAkGsCVhtHCMfkkCGnATyClxfgFBztjN1Gt0uN9pLX409A5ZcVvjjSXoB6Dn0kmLphP/iHU0nQ8WETP4+eb31C9DUrNlnkxb0ViSXSbb8TiDyKiT0NWDxBd8IAYMafim0eDh0z8WZFGBphPB1GLX61MOY9fVSoSAI5Um5jRXQjayhY/g0Z0xc5JLHLXhBunsfa4ZRlAPZxKZwgM49aeKt4gbBsqs7BKklnx19uuwFTR3xd/9422nvLW7S+4atMJ7knnWASAGd0FHKk20V9tYkZ3UdtOTOE82nLMzl0h/02j7WoVpMyUaRswfk4yaLRdIWWDic4pY/xmi/9IlUE9ujgG0eIPufnJFj9fN6Z1GOap0St+Tv3kbU31G2RDxZQhVtYvppN/UcDt+RxUxQYACAwDfpIyFUzhqRh42pAkjD+Nc/lYZfIo/pylxvg1TkgZC09TWCPIv6Ol0oXJkXTYIod8dQFc/dUmpvuKP28hkpURCGEUtTNasvgNaQBEzNTIgJKOwzwltDrVsoTvGhJ0hdkpveCebM3kFKGeJItffF9NxzOyRGyLRJSOyeKf2VPEkWoTR6qt4P0o+xWCvaoNJ9hgVNIhZFFstPXOOhmWMVn8vN+6mLLBAPWI70r8XNUnAOwfagBQBxYCUeppYMXroB4R43cYTVZHfRVrGXOLt9N4OpDjadL5OdJa/MaEdgLU0mjr5yAQbn791Vbkuyrh+iW4/wSLv9F2hYDD0zCAC+Cpa0NlGhZr0EE9UYtf76ix45axIYtjrIZqLBqYwSw6527/aCuwKPMWgpB2LsYiy/Lm5+lPJxGox+AskxcHixg047uRo7Nm4+n0J/xoywlzpKSAehL55gU5mZh6rIQQdBVsjDaTg7IABvUM1NqoNh2jxd8pjHWk4aDbAPWUhKjNRlsP9agiknX3DwDdpRyqDccc5SxDeAkpG3iKin2DdQDqwELx+203tPh1G1rwXpsumm1Pu0EAUUOl1mIVpUwYuwz1qMtvRimSrol+nAsJITzzrqlMJcDrN+hPnQAC5z93musCuAB2moxAPSksfu5L1J3QjlUmj+JXHMUAHXwhO2r0Fn9ByqfCvq/f6cOAHP2E6yzaWufukZEmpndxxc8mlpxbm92XejHLDm7TRI5h/Koo36COrY8Fu66+jFwuxO1ZW/3Gw621WjNU5jortlMB9egMXjG9Q8NQpQhgcE+16STiywAiyn66In8SlyklZgnvH6qj5XrGtmLUpsniLwosEcBcrQwAeop5jAiKX4nxy/6YADc3K7MDw2aLX1Sm/Lnq3gFXRozRor9/Nq6waAt7VuZNQq7ApStGw8cKMJ+UjlKct6PwkYkbPxaLv6fInuPKHQMAgHOndWrbciiZGwulFBY/Dwg1QY7HIqkUPyFkByHkBULIGkLISv+zaYSQhwghm/3/p/qfE0LIfYSQLYSQ5wkh16a5hgzfmEq5xSNM9bS/omDxm6r58LbxlA3xtp15ZmnKUm+5GG25IdTjv1eV01qdJC2cnJ7HcuynSXzGn5WJ+eBELP50Tkizxe87V1tmBQUIdM6WA9djtXl1mCljyoRjNSmTzmIOo00R6jFh/EXlz7JM6WALeWd/DQAwVWMZA8zi5VkUTRg/t+w4q6VtCDQCGG7M+faApjD9GOmcMtTTq1H8qvw7uvuy/UR1DG7Tn3hYvyGEV2s5Rgs2AvUYGGNyFTTX02cSFQvem5zmYr/8GZjmYClvwSLA09uPIm8TXH/+VGNbEepJw+rhJBITrfhYZCwW/52U0qsppdf7v38cwFJK6XwAS/3fAeBVAOb7/94L4OtpOpdz7Jtw65wdzRPTNFj8JYFGpgvKCtuGQSamNAilQrhBiMIdZzMFqAeIKn6Ts4ZZ/JxRY17I4unABB/lrKiCMJ2O1MnEdPhu6NgLWT1mpVNrucaoVcBfHC2e+0QfEAMwK6iaktUzsydU4CaMv6tgwyLAjv5RAMA0g8XPx1Zvu2gY/BFxBaUPHgLY5jPcaBsdm3JsQNLcztsWchbLvtpZsLXwBVcwIlPHpNC7ijmMthwM1lro7TCwpXJ2MPfrbU/LaAGixIWkyF3bIkJGXXNqcJnZZiJ5AH7hHoOhBDDIkfuBZnQXEzYJO3AYA3rFn/PfVcMRLP5JBPW8AcB3/Z+/C+CNwuffo0xWAOgjhMxJ6owFLyksYy37JR3Gz6z4ZGXO2oaWhglqYhtEXPFza+qs3hL7Lod6hLb8vpR5SmwLLWESm8aqpHOqonwlSMBs8csUQT3U0xXQKV2Ba50M9ZiCsoAQPmm7LDuraSF1F22MNh3UWk5gfeokrcVPCMGUjnxg8ZsUP1de1SY79Zicu7ZFwnxFrh6SAEKL35QnpiBYhQACg0E3XwAE/grTxset+9GWG8xbU2Bcd5H5Iw4ONzG7p6RtV8xbgYJOjKXI24I/hP2v2ydLOQv1VgjhGOtHSJuJbr52+0p2pMFOk7oSiVz46YnDhDphKb9DK960+XG4q3aCoJ60vVEADxJCKIB/opR+E8BsSul+/+8HAMz2f54LYLfw3T3+Z/uFz0AIeS/YiQAzZ87ErHoNBw7VUalUAADP72M3/NyqZ7G/K3yZ1WoVew7sBKXAI8uWwSIEQ8M1dNPR4Lti25HBBo7WKSqVCg6Oshe/5aUXURndFmlXqVRw5EAT1bqDSqWCdXsY33nlM09je0f0+s2ajf2taux6T/pj3vvSC6jss+C2GgAInljxDHb1sD52j7AxvLRpIyqDmyP9jo7U0XSBSqWCaotNzh3btqHi7Y60q1QqqFXrqFLWdsMuNtZnV6zAlCKJtH3qyccBAJs2b0bF2Yn9hxpoNqnyWe1Ytw4A8MzKVRjcaqPZdrB/3x5UKodjbdeuehYAsPqF9Ti6k93bxg3r0dn/YmyslFIQABs3b0OtTUE9R3n9SqWCkcEG+qsellYeZc9rx3ZUKnuUbevDDRyqeXiJVFGwKB599FHIwts2hRPihtVPY6u0SfJ2AJCnDnYdZc9087rnMLTNUrbdsZe1eXj5kwCAvbt2oFLZq2ybJxRbtu1EpXIAtXoDhw8dQKUyoGw7fKSJo1UHq55bAwB4Ye1zqO20I+2e8d/rhpe2oOLtwqYdbCzPPPUUugsk1icAlMDm51SrFXv+vO3y5Y+iaAMvbt2O/OAuAMD6F9aitceOta1UKrCdBrbtOYg9wy5m2TXtez1yoIVqo41KpYJ9h+po+/Nc1bZRrePgKPv7th0t2ASxd8vbWnCxbdduVCqHcHSwju48UfZ7YG8LzbaLSqWCgQZbg9u3bkGlvTPWdtXT7Nm+sGkLDh910ZlT9xnMF5ed9GkrroMA4ErXxeDgIIYHjmBg2MOza1hVvnXPPYt9JfXcsqiLbTt3Y+Age5crVzwRo1ZXq9XYtdJKWsV/G6V0LyFkFoCHCCGbxD9SSqm/KaQWf/P4JgBceumldGpvD3q7CiiXFwMAjqzaAzy/FrfefBPOERwmlUoFF180D9jyIm657XaU8jZyzyzDvDlTUS5fHblGpVLBvDm9GNw7hHK5jC2HRoDHluPKhVegfNXZkXblchnPNDZh2Z5tKJfL2LNiJ7BuHZbcegtmTSlF2s6aXoLjeSiXb4lcb/2yLcDzL+KNr7gDHQUba+5/GEATV159La4+pw8A8PyeQeCJJ3DtVVeifPnsSL+zZ3bh0EgD5fISHBppAI8sxeWXXYLyTefFxvqdbc9gqN5GuXwrtj6+HdiwAXfcflvkuF2pVHDLbbcDD/8K5553Acrl+fjnLU/Dbjkol2+NPavrF1wJrFyBhYuuwi0XzQB96Fe44LzzUC5fFmu7ZPGtwKMP4pzzL8bV500FnnwC11x1JcqXRe+pXC4DADqW/Rqz5sxj+O7AoeBzue3PD63B/m1HccNNtwAPP4wrLpuP8s3nq9seXINDO45i6szp6B04EutTHgMe+iUA4J6X3WlsN/uFx3B47zAA4JV3LYlZcrxt7YX9wAurcfGCq4Ann8ZCw1i7HnsIM846C+XylbAffwjz5rKfVW1XtV7E0t1bcMnlC4FVq3DjDddj4dzeWLvC0l9h9txzUS5fhpeWbwU2bcKddyyJWIeR+1r/BA7UBnHj5eeiXF6gfQY9jz+MabNm45JLZwKrVuHmxdHri22/vfVpDNbaGG4N4erLLkC5fImy3fPuZjyw/SXctuR2fHnDU5hWyKFcvlHbZ7XJ5uiTtY0o7N6pnS9TVjyCaTOnoVy+Gp97/jHM7i2hXL4h1vaiC8+Gs30z7rjjDuwdrAOVZbji8stQvuEcZb/dld9g+lnzUBg9gjnTOlEuX69sBwA/2LkS24YO4pzZM2LXBoBB20ZfXx/OnTsHe+pHMPXsc4ANm/G6l5djJ5TgHTy1FNNnzcDMniLsrdvw8rvKMb+YapNJK6mgHkrpXv//QwB+CmAxgIMcwvH/P+Q33wtAfJrz/M+MospTA+ihHiB00jCoxxCNK+XfMeXqabvMqWoqblIUinWIsrN/FDO6C8ERjl9HhHpMKRNE+CbANk1l71IE78jwjYmelhdgIUqpz+pJomgmY/wAg3s4hJME9TSEUHnTMbvLd+6OttzA2WySL/zOVXjnzecltuMO3bxN0JPA4wfC4B3TWMX0Dk4Sxl/Kg1JgqG4OCuoo2Kj77LI0gT486HD+rB5tG4DBeCwNQzJbqrcjj62HmeU5sycFTdZntaSBOQBz2g7AX4vtcM3oMH6x4H0Aoxpy3PeUchhutNFyzAQDAEHA5hSDjyPs08HhkSamdRWM76roz5fRpoOugj6A7FglUfETQroIIT38ZwCvALAOwM8BvNNv9k4AP/N//jmAd/jsnpsADAmQkFZyElPHFAmYC6JRw8mhde7mFRk3E8r5NdphqLRq0nE+riybDozgsrOmBL+rnLthwYr4ZFJSNE3xCe2oP0I1VkKIX7+A871Nzt0wcjdk6uidyzyeISlXD8CVlJu4kDnGn1T9CuCK30UtIacOlzdfOw//+w0LE9txxdjbkTcuOO70HKwxmCWJ/RGUE0yB8QMs/QegnwNigZtGm7GlTBh/v08+uHh2t7YN65c916RoXADo68wHY+jr0PsOAupn05wWml0vjKdJor6Ka9FERhBZUCajjktPKYf+ahN7B+uYZdjQgNBnksS8mdlTRLXpYPdAPSCA6GRKRx5D9TaG6u3EDeVYJA3UMxvAT/0FkAPwb5TSXxNCngVwPyHkPQB2Avgdv/0DAF4NYAuAGoD/mWYgeZsELAIgLIiisgzUTkgdNSqecTOZxuUZWTUqi/+hDQfx/J4h/OGSC8Jxqlg9rn4x5SMO2wSKZD6aCx7QK14xjbUpg6AYFJREeQP8eIamEyykpGhU7oQ1LTgewBUqHYPFX7DRcj0M1tvjGtm44Gy2eXOFrh1rkP+GKWhTAFMkHYgh0AgAenxoqT9Q/Lo5YAe5oOptF6WcZdyopnTkMVBr4+JZZsXfVbAjEdEm61yEFk2snk7hhFhrucb3FU2Prk/DwMfWEKifpshd1l+YcdMURNdTymP55iNwPYqbL5yubQcAC89mMFhNQfEWhSv7jfuHcels86lrelcBB4cb8Cg1nqSOVRIVP6V0G4CrFJ/3A7hb8TkF8CdjHohlwXHDoCijxS9Ho6ZM2ZCUzyRSBMPg+VdZ/A+uPwAA+L0bQyhBFcBlylMSoXOmoJyJ9V4Ltn7RixuKyeKPFJUwnEy4dBVyGG25Rq510Hchh5qfg9yk+Hlt2OG64/9utvgB4NBwE5eeZV5IY5Frz+0DEC2KoxJuKBzyU3GbLLMo1OMZN0lu8R8NokH1UA/P+2Iqp8jlX//nYjyzvT+RfdJZzGGo3g5qS5gUuhjnMKVDr07EiOihettM/cxbEVaPCRaLpFkxRESLRk0IYZktfn6SvShho3zlwrPwydctQPnSWcZ2XIEfHmnitotnGNtO6ypg4/5htF0P50/vMrY9FhlfjtBxiJw2teFzuFXKTKwqxUuTmXB7XkZNl2qZi1yAgRC1Fauy+DfsH8aS+TNwwYzwJQUBXMJJxgRhMNzenBaaixjhqsviyUVMRcEsfrWC6BBw2LCUnhm3Zxi/mUMOAD0+Hp8ER/D8L/uHWGoBkzLl/OnD1SauKfRp241V+DsU36VKOgLFz2i8JoXKTzy8WlkSjx9g6T8A/eYfgXoMhT24XDCjK/GeAPYO9g3WcXSUcfNNG7VIfDBb/H5Om9EWWo6nDSAD2P1G8hqZ5nbODk5mprrPIq05oKkanlefcC9TDGk7AAan/s9bLzC2AaI+kCQrfnoXSyPeaLu44fxpiX2PVSaN4s9ZUgF1Q9SmWECclyZLtGLbrgDf6DYJbvF7/uJUbzwMX48q/l39tdgLMgVw6S3+aJCJMcrYr8mZZO2JVpGpPFyIwwrRsKbiJj7GniY75pSOHA4MN9BRMFv83b7y3DPAFL9JmXCLnwcljZcQQvDEx+/SJhHjwufnwWFu8Zvy+ljoH/XCtNiGvkOL34zxdxSYZQ4wQ8mEm49FODe/f7RlTFkBAHN6Uyp+H//ez3MFGfwBRTFnlqevXQBET76mXD3ckdsSi6sYoDlRMfcknJDSSkTxJ2D8U7sKaPnZOU8E1HM8AVzjKnLKhnpLn88jJ6QaNilSIJxwtZZrDMoCoulYHYMTsphjwSg86yalFKOteCZHJdRjqIAVZfWkC8FvOl6itdchJBMzRcOOJb86EGLB4ULSt51SymO43vazIibDHHsGWABVn1Hxh9c7Z6o+R8qxyNy+DkxNUHr8eR1OAfX0+PefRumkVfyd+ZDVk8SUGYvwyOGj1ZYxgA0AzhIsfpOC5M73fTxlhDHKl1n8lFLjOgR4jnvBH5AK40+XzZWLKdXyWGSaAIslKfNZYzgdHItMGsXPUjYIzl1Djoxc4NxNzlctYotJDsuuIKeMa3QUlfJ2JOtm0/Hg0bgTTMnqMZRyK+QseJQpfVPKCjYGKxhrkrOMh4oD5toFtkVQ8p3GafLfdPrZMdOwP7gyMVWqAkTFnwz1zBIiRa89T58j5UQJz3h5cLgBQsKIT5VM6yrg6Ggr9J0YlA6HjHgKEN1GKUI9dUOSuLHKlBJj6hwaaSQq/llTQqVk8lvwTTrY0E3FcHJWsL4cQ+I1gK1ZnjCRbRLJMG6QiiKlxT9eIo4tqf/zBFw/6XRwTGMZ9x6PUWyJx29KeiXy+MOKUuq2HL4YbTpGaxsIMeORRtuvqKRjCvmQkJ+DPEikJClfPq9UGL8phXLL9RJhKbHIcxI9jjujA26+YcJ3+gspTY573jaNFTullGPh6k3XmPiMZzvcO1hHVwIsdP6M0MpfNK9X2+5EScFmCbocj2JKKafNRQ8wxV9vuwE335y33WanP993o01oJ6Swrrc94+loLMIhq11H4/ClLMWcjf/+09swp0+frgFAkLF262GWAykprw/ATqcmMgLATvQ8RXrbkLJBTDESFpgxWPzd5vs5XrksgYwg+mJOc4tfcu62PW3aUpHHz5WuzuIV88TwnB46JcmtzeGGY4RE+IThCl2XM9u2GIc+CvXolSS3rpttLxGW4gq53koOiCkVWMZLFphlVjrMCekG+Y3MrBq26NIcnQOK4mgrJdRTNyoHIPq8xwuHHYsQQjDdt8ZMzkogTAW9b5BBHaZ3AITK17Tx8QLyAHPujhfGz08cbZcmWvwAcOW8XmP+I4CdhrsKNrYdYsFeSaweAAHGXTT5hAo5tBxWx9ZEcuBG3aiYxtvwDi6bM34sMZVMT8L4hfk0IXTOkyWyc5fzkpVtBR4/j0bUKT7R4k9Kh8qVTrXhGJ2gYqAXENbfVUWPinRSIKRTqqw4MboxaUMLFL9f2GGGMfGWhUNt11jrVBxDvZWOR99ZyKEmlD40Qz08KKlpZP/wRGKuR1MFrvzlqy/TFhU5GcIpf2+6eq6xHVegnK1keq4AU75Hqq3kd8XrATjmHPdjEfG5p1H8aWVGTzFIfpcE9QCsfkHLNefD7wxO6Y4xx36XUDgojcU/o7uIv3r15akiwsciS//XHdrqfaIQQjB7ShEHh82lQo9VJo/it0lQuxVgaQ50CzqsUOMi12YKNNHiF5QZx2Zl6RYmkan6kxjoBYSh8KroUZGhwMess2DEvPUjfp+6ClAiA4nlN08uANFMpcx9iz8F1NNTYjz+qh+YZVLo/KgPmAtSi8XNTcqBy3tvvyixzYmUQT9dw23zZxrbcQV6YIjh9qZUxwDQ4ytfc7BbDpSyOTCuzl3hHZgyeY5VpncVsLO/BtsixpKW/PQ24qdMMNEpu4vRtBm65yWvbSD51PWHt19o/PuxyEUzzTEBovziA0vw/J7BcfPdiDKJoB7JuWuofBMWeU62jLkyHvWVmUX0iidnW+gs2Kg222aoR7L4+Q6uWnhi3hHA59HrKhoJrBq+megWiBhs1UgoWMI5/+ksfh+3T0HR5Mrs0HAzcRHNm9oR/GwK9Crm7AAGSIJ6JoPwGK/5SdGwxWhQVtLz4oXWOWNIJWI0bDVl2oo0IgYsTesaP2uTW65JqTC4r2JgtG1MxwKEJ3rO5ddBPV0i1OO4iRHkk0Fm9hRxt5DIcTxl0ty5nKTNxOrhyrDacAI6m66iT0jndJhVlDcnPOouslzoptQGMYs/cO4qLH4J6jGdJDqE00m14cAieliKH8dHGm3f4k/m8QdRw4YJP6Ujh+G6IwRwGYJcOkP4IkmRnd0XKn5V9TFR5vptTwXF/613XI9XX3lWIvWTz9mjvoJKgnrW7xtKvDafG0P1NmotN3EMaWVGdxF/cic7SYkb9vHK+b7DMikgivtLhuotHxo1Jepjfxuuc8VvNqpGm/w0P2lU34TIJIJ6LD8Yi4IQYmT1BIq/6QR4f5LFP9JwUoW18yIYTcfTKp6wNBrH+PV+BjHhFG+rG6sYOVttsrgA3SbFFf9wo50igCtq8Ztghr6OAgbrg4lVgoCQl3xgqJGoyEp5G7N6ijg00jRuPADbJDbsHz4lFP/LF8zGyxckW2X8nae1+HtK+SA4Syf8ne9PwY0fq3z0nsvw9pvOD4oKjYfw1AO1BIybGxSDNcauM80Xvr4HfbaUjqptWQRdBRvVpouWO37U11NVJo3i58FOjscCfEyYZZeg+Ln1qGtbyluY29eBF/YMoauYS1RQfZ0FDNRY0YaixpsuW/ymZFZi3hEAfgphzelEtPib8YAwUbjVNFBro9H2zHROv6IRh6RMC6mvM4/BWjtgQJkU1NQupmgODDcigTw6mTe1A4dGmkaoBwDO6mXPfbxYKpNBQqiHZ/I0K/77/+hm/NvTO3HHpXrfAZ8v+/xoWBNN9lhkPJU+gCCfUlKSOA71DNbbPv3YFB/gr4NRs8UPMH/ZaNOBR82pwc8EmTSKnzsGHZcibzOPvs4yzdsWSnkL1aYTLCAd1EMIwY0XTsNjm49g8fnTEi3+aV0F7D5aMwY6yRh/Uv4dEeqp+fm1VdKZD30X1YajdewCzNKxSLjoTQwYfhwe9C1IE5uhtzOPpuOhf7SJjrxtdNhyjL9hgK9E4bS0pHdw/XnT8IMVu4Lxng5SzLHyizyTZ9LzuvSsnsQU0h2B4mcW/9QUzvCJlGvP7cN/vv+WxKRjnQUWxzBYaxvLfwKh8/nAMHsGxtNBMYdqy4Hr0giJ4EyUSXP3Yv6doses5KRanyONEDYxWYdnTSlhYLSFwyPNRCtyelcBa3YPomBbqVk9prQRxVyYTA1gp5RzutQMnADjbydb/JZF0FPKhxGuhonMednbDydzqHkOlT0DdePGA7CIQr6xJbFUgDCL5ZVzzcFWr100Bzv7a/jdxecY251KQgiDGo6OJgdwpRVu7PDNPymWYKKFEIJrz02OsCaEoLczL2D8hgjb7iIsAuw+ymiipvQO3X6iwHrLHER4JsikOe+Ijs00lX/4S6y13MCa0klPKQ/Ho3hmx1G8sNfsNJvWVcCAnxVPp8xEOin7P8niFzF+V2vxh8/AZ2kkFFie0pELQuCT8sQAwNPbj4IQ4BJDIQ5OodwzUDNWnwLYKY1HIKbBl//o9ouQtwluTMhvnrMtfOhl8zE7BXx0KklXMZcqSVtaCaCeoRMD9Uyk9HUwyDGJ1ZOzLczsKWKXr/hNUE9XgemMwVo7FVX4dJZJo/i5VTpcb6fKE9NdyqHadDDSSK5QY8qaKMu0rgIcj6J/tJXI6hEzXgLqY6ZYGg7wnbsJFM3RJrP4k46jUwSL39SW/23lzgGcP71LC4sBouJPtvgBBBXHzp2WnCTtlQvPwuZPv/qUcNqeCOGKekZ3IZHZkkb4c9zRz9IgnE7KrK8zj6OjLTge1RZZ4nJWb0dg8RtTfvsowWC9dVo9q2ORyaP4JZYKkGzxVxsOhutO4iISw/n/8/23GFpG84vroB7Z4jdF4zJWj+Dcbeotfh7YMtJwGMafZPGXwrJ3plzwXPEfHmkmhn9zqKfWchOvDwDvuvV8AMAbEiJXMwnn4eVzpoxLDVWu+HcfraOQs04rZ3hvRyGIYTDVxgWA2T1FDDcYs87o3C3aGG05GKi1T6vT0bHI5FH8PE9O3Uln8ReZxT+cwuIXreGr5vUZ214uJE/adXRU2SZ07nKLXx+NK0I9rsdy55sgnF6/1uZoSqhH/J5OxI0vydoWLaE0iv/yOVOw/TOvxuILzMm8MkFQdenuy8yVmtJKKW8Hyn5qpzko6lSTvs48th1h6y+JgSPmvTFCPcUcjowwv8FEpvmYDDJpnLuixR/U202y+JsO8jZBb8JLFE8EJl8AEM2Kd+MFaiw6Z1uR5Gstg3NTZPVwvr8pwpIVWW6h2nISMXbRyjdZ/Gk3CEBS/CnhiNNJ4ZxI+eDd83Hd+VNxR0J6h7HI1M486kOusbDJqShiptEk+q+Yp8oE9XQXcwGacKZDPZNH8YsYf4okShzjty2CcxLw5bFkbszZFv7tD2/EnN4OY5k6VtxEqGplKO4SZvHUJ3PjMqWUw/6hBihNVrx8s5w9pWj0Y6TdIAB2XzwlcNLGk8nYpJCzcGdCXdaxSm9nAfuGGqedIhNjCHb6+L1OZqS0+MUT7GSnvp5omTRQj5gSOU3Zvy4O9dSToZ5zp3Xizktn4ifvuznVWG65aEZibdJSIaRpthJy9zf9al2mZG5cejvy2OvT87qLCU5rX4lfObfPaHWX8nagxJMsfkJIwDw57wQUec5kfIUrsNMNs379VWcHPy8820z/FRPJ6YqtA4hAp72n2QlprDJpTLpS3kYhZ/lQTzLG31Nkebj7nVYi+6WUt/Ev/3PxuI6XpS9mitwUZFLkVbU8itGmn9MnAePnCae6ElLC8jTW8w30zGC8RRsjTQe9Y2A4LTh7Suq2mUyMcMrreEfZTrTMmlLC2r95BTxKE08zYrEYU5SvWC2MR52fqTJpLH7Ar+HadFH1FaTJuSj+bdoEWDs84yXgO3e1GH8Y7DUaYPymxGfhhEza0Hjg2II5yQq65j/TGSmKOvzgPTfi+vOmJgZaZTLxwk9wJ6JYx0RLb2ceU7sKiT6k2VNKQRS5qUyjmCjwdDshjVUmjcUPsEjE0RajMgIJxZtFxT+OxSLSSodQ77TlmjD+MKFbUKnLsKGJQUtiTVmV/MldF2PWlBJefeWcxPHeNn8GfrXuQCqM+bb5M3Db/BmJ7TKZeLF8pXim+9d/5/pz8I1HtxoJIXMFxX+mxpJwmVSKv7uYQ63pYqTBoA6Tc1Pk249nsYi00pEP650228nVupqOF0A93QYIRzyyi0dTlUwp5fGe2y5INd7P/85V+OTrrkikiGZyasnV5/YBTyTXcD3d5WP3XIrfW3yuEfKa2V0EIUDesrLsnGkbEkJsACsB7KWUvpYQcgGA/wAwHcAqAG+nlLYIIUUA3wNwHYB+AG+llO5Ic41OP8Ci2nRAiBkSWSTAEONZLCKtdOTtIG1uy/W0sEwE6mmaawcAwBxh4k4fx/vqLOSM183k1JTXLZqDy87qwSWzz2zFb1kE5043s/ssi+Dxe+8at6L0p7KMBeP/EICNwu9/B+CLlNKLAQwAeI//+XsADPiff9Fvl0p4/p2RhjkXPYBI0YnpEwT1iKyeZIvfNRZs4TJvajh5k2IOMsmEEHLGK/2xyNy+juzUi5SKnxAyD8BrAPyz/zsBcBeAH/tNvgvgjf7Pb/B/h//3u0nKCJ/Ogo3RpouRhpPINweAT71uAaaUchPi2GI8fr/0YtvVYot8Q2i2PdS4xW+AemZPKeHzv30V/v4ti8Z5xJlkkkkmTNJufV8C8DEA3LSYDmCQUur4v+8BwJO1zAWwGwAopQ4hZMhvfyTpIl1F5twdabRT5om5AO+6NR3GPd7SKVj8pqIxUVaPi0LOSqz1+VvXzRvfwWaSSSaZCEIopeYGhLwWwKsppe8nhJQB/DmAdwFY4cM5IIScA+BXlNKFhJB1AF5JKd3j/20rgBsppUekft8L4L0AMHPmzOvuv/9+fG9DE8/sd3BOjwXHA/7qpni9z2q1iu7udJXq07Y9lj7vf7GFB3e28c+v6ML7Hh7Fkrk5/N7lxVjbfe0O/H9PN/Dn15ew+pCDZ/Y7+Mrd8cCoEznWiWo70dcfS9uJvv5Y2k709cfSdqKvf6LajqXPKz/wAdi2jTVf+tK49lutVvG6171uFaX0+lRfEIVSavwH4DNgFv0OAAcA1AD8EMyCz/ltbgbwG//n3wC42f8557cjpmtccskllFJK/+5XG+lFf/FLevfnK/S933uWqmTZsmXKz4+n7bH0+bVlW+h59/6CVhttetFf/JL+/a83Kts+v3uQnnfvL+hv1u2nf/aj5+gtn1l60sc6UW0n+vpjaTvR1x9L24m+/ljaTvT1T1TbsfQ5cNVVlN5xx7j3u2zZMgpgJU3Q4ap/iRg/pfQvKKXzKKXnA/hdAI9QSn8fwDIAb/GbvRPAz/yff+7/Dv/vj1CacKzwZVZPEY5HsePIaCKHfaJltk+13DtYh+NRLcbPo29HWw5qTTcxGjeTTDLJ5ETL8UTu3gvgI4SQLWAY/rf9z78NYLr/+UcAfDxth5yD63gUsyZ5JCIvLr7dTx2r4wVzX0W16WK0lZxqOZNMMsnkRMuYtBCltAKg4v+8DUAsAQ6ltAHgt49lMJGo1YTgpYmW2f4mtcNX/DrnLg9CG206LMd+xqXPJJNMJlgmVa4eMepusuce4RY/L3ung3o68jYsAlQbrD5wpyEoLZNMMsnkZMikUvwz/JBqIDlPzURLVzGHnmIugHp0ip8QEqSQzqCeTDLJZDLIpFL8edsKiipMdowfYHDU2t1DAFh+fp3wiOTMuZtJJplMBplUih9gEIpFonU0J6scGm4GQVymrIDc4h9JUUc3k0wyyeREy6RT/LOnlDC9u3hK5Km5bA4LZF4wZwquPqdP2667mMPewTpajoeZp8CGlkkmmZzeMunMz3ffej52D5hrbE4W+ae3X4/BWgsXzjRH2k3rKmD5S4cBnH6VkjLJJJNTTyad4r/l4lOnAMi0rkKqIjCzp7DANCBkA2WSSSaZTJRMOqjndJSZAkNpdqb4M8kkkwmWTPGfBJktBKNN9sC0TDLJ5PSXTPGfBBGravE0zZlkkkkmEyWZ4j8JcvHMrEJSJplkMnkkU/wnQeZOjdcVyCSTTDKZKJl0rJ7TUWyL4O03nYcrzp4y0UPJJJNMMskU/8mS//vGhRM9hEwyySQTABnUk0kmmWRyxkmm+DPJJJNMzjDJFH8mmWSSyRkmmeLPJJNMMjnDJFP8mWSSSSZnmGSKP5NMMsnkDJNM8WeSSSaZnGGSKf5MMskkkzNMCKV0oscAQsgIgBdTNu8FMDTObU9Enyeq7URffyxtJ/r6Y2k70dcfS9uJvv5Y2k709U9U24m+PgDMADCdUjr2ZGCU0gn/B2DlGNp+c7zbnog+s7FO/PWzsU5824m+/ml+XyvHojvFf6ci1PPfJ6DtiejzRLWd6OuPpe1EX38sbSf6+mNpO9HXH0vbib7+iWo70dc/LpksUM9KSun1Ez2OTDLJJJNTRQghKwHgWHTnZEnS9s2JHkAmmWSSySkmx6w3J4XFn0kmmWSSycmTUxHjP2lCCHklIeRFQsgWQsjH/c/+lRCynRCyxv939QQPc1IIIeQ7hJBDhJB1wmefI4RsIoQ8Twj5KSGkbwKHOGlE86yuIoQ8RQh5gRDy34SQrHgDAELIOYSQZYSQDYSQ9YSQDwl/+4A/v9YTQv5+Isd5qklm8WuEEGIDeAnAywHsAfAsgLcB+BiAX1BKfzyBw5t0Qgi5HUAVwPcopQv9z14B4BFKqUMI+TsAoJTeO4HDnBSieVbPAvhzSumjhJB3A7iAUvrXEznOySCEkDkA5lBKVxNCegCsAvBGALMB/BWA11BKm4SQWZTSQxM41FNKMotfL4sBbKGUbqOUtgD8B4A3TPCYJq1QSpcDOCp99iCl1PF/XQFg3kkf2CQU1bMCcAmA5f7PDwH4rZM6qEkqlNL9lNLV/s8jADYCmAvgfQA+Sylt+n/LlP4YJFP8epkLYLfw+x7/MwD4tA9ffJEQUjz5Qzsl5d0AfjXRg5jEsh6hYfHbAM6ZwLFMSiGEnA/gGgBPg22USwghTxNCHiWE3DChgzvFJFP8Y5e/AHAZgBsATANwxkMXSUII+SsADoAfTvRYJrG8G8D7CSGrAPQAaE3weCaVEEK6AfwEwIcppcNgjMRpAG4C8FEA9xNCyAQO8ZSSyULnnIyyF1Grax6AvZTS/f7vTULIvwD485M+slNICCHvAvBaAHfTzKGkFUrpJgCvAABCyCUAXjOxI5o8QgjJgyn9H1JK/9P/eA+A//Tn1DOEEA8shcHhCRrmKSWZxa+XZwHMJ4RcQAgpAPhdAD/3nU3wrYs3Alin7+LMFkLIK8Gc4a+nlNYmejyTWQghs/z/LQCfAPCNiR3R5BB/nX0bwEZK6ReEP/0XgDv9NpcAKAA4ctIHeIpKZvFrxGei/CmA3wCwAXyHUrqeEPIIIWQmAAJgDYA/nsBhThohhPw7gDKAGYSQPQA+CQaLFQE85J/CV1BKz/jnpXlW3YSQP/Gb/CeAf5mg4U02uRXA2wG8QAhZ43/2lwC+A+A7PiW2BeCd2YkyvWR0zkwyySSTM0wyqCeTTDLJ5AyTTPFnkkkmmZxhkin+TDLJJJMzTDLFn0kmmWRyhkmm+DPJJJNMzjDJFH8mmWSSyRkmmeLPJJNMMjnDJFP8mWSSSSZnmGSKP5NMMsnkDJNM8WeSSSaZnGGSKf5MMskkkzNMMsWfSSaZZHKGSab4M8kkk0zOMMkUfyaZZJLJGSaZ4s8kk0wyOcMkU/yZZJJJJmeYnFTFTwipnszrZZJJJpmcqkIIcQkha4R/5xvaVggh16ftOyu9mEkmmWQyOaVOKb36RHR80qEeQkg3IWQpIWQ1IeQFQsgb/M/PJ4RsJIR8ixCynhDyICGk42SPL5NMMslksgoh5DpCyKOEkFWEkN8QQuYIf367fzJYRwhZbOpnIjD+BoA3UUqvBXAngM8TvxI3gPkAvkopvQLAIIDfmoDxZZJJJplMBukQYJ6fEkLyAP4RwFsopdeBFZz/tNC+0z8hvN//m1YmAuohAP4/QsjtADwAcwHM9v+2nVK6xv95FYDzT/roMskkk0wmh0SgHkLIQgALATzk28o2gP1C+38HAErpckLIFEJIH6V0UNXxRCj+3wcwE8B1lNI2IWQHgJL/t6bQzgWQQT2ZZJJJJkwIgPWU0ps1f6cJvwcyEVBPL4BDvtK/E8B5EzCGTDLJJJNTTV4EMJMQcjMAEELyhJArhL+/1f/8NgBDlNIhXUcnzeInhOTALPofAvhvQsgLAFYC2HSyxpBJJplkcqoKpbRFCHkLgPsIIb1g+vtLANb7TRqEkOcA5AG829QXoVR7GhhXIYRcBeBblFKjtzmTTDLJJJMTKycF6iGE/DGY4+ETJ+N6mWSSSSaZ6OWkWfyZZJJJJplMDjlhFj8h5DuEkEOEkHXCZz8SeKk7CCFr/M/PJ4TUhb99Q/jOdX6g1xZCyH0C5z+TTDLJJJNjkBPp3P1XAF8B8D3+AaX0rfxnQsjnAYhe562a8OSvA/hDAE8DeADAKwH8avyHm0kmmWRyZsgJs/gppcsBHFX9zbfafwd+wIFO/HDkKZTSFZRhUt8D8MZxHmommWSSyRklE5WWeQmAg5TSzcJnFxBCnvPzUCzxP5sLYI/QZo//WSaZZJJJJscoE5Wd822IWvv7AZxLKe0nhFwH4L+kwIRMMskkk0zGSU664vcDud4M4Dr+GaW0CT9dA6V0FSFkK4BLAOwFME/4+jz/s0wyySSTTI5RJgLqeRmATZTSAMIhhMwkhNj+zxeCZencRindD2CYEHKT7xd4B4CfTcCYM8kkk0xOGzmRdM5/B/AUgEsJIXsIIe/x//S7iDt1bwfwvE/v/DGAP6aUcsfw+wH8M4AtALYiY/RkkkkmmRyXZAFcmWSSSSZnmGTF1jPJJJNMzjDJFH8mmWSSyRkmmeLPJJNMMjnDJFP8mWSSSSZnmGSKP5NMMsnkDJNM8WeSSSaZnGGSKf5MMskkkzNMMsWfSSaZZHKGyf8PqJ0u1h8UCfQAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "entry = next(iter(dataset.test))\n", - "test_series = to_pandas(entry)\n", - "test_series.plot()\n", - "plt.axvline(train_series.index[-1], color='r') # end of train dataset\n", - "plt.grid(which=\"both\")\n", - "plt.legend([\"test series\", \"end of train series\"], loc=\"upper left\")\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.821044Z", - "iopub.status.busy": "2022-06-13T08:57:12.820081Z", - "iopub.status.idle": "2022-06-13T08:57:12.823098Z", - "shell.execute_reply": "2022-06-13T08:57:12.823662Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Length of forecasting window in test dataset: 48\n", - "Recommended prediction horizon: 48\n", - "Frequency of the time series: H\n" - ] - } - ], - "source": [ - "print(f\"Length of forecasting window in test dataset: {len(test_series) - len(train_series)}\")\n", - "print(f\"Recommended prediction horizon: {dataset.metadata.prediction_length}\")\n", - "print(f\"Frequency of the time series: {dataset.metadata.freq}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Custom datasets\n", - "\n", - "At this point, it is important to emphasize that GluonTS does not require this specific format for a custom dataset that a user may have. The only requirements for a custom dataset are to be iterable and have a \"target\" and a \"start\" field. To make this more clear, assume the common case where a dataset is in the form of a `numpy.array` and the index of the time series in a `pandas.Period` (possibly different for each time series):" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.829912Z", - "iopub.status.busy": "2022-06-13T08:57:12.828798Z", - "iopub.status.idle": "2022-06-13T08:57:12.832695Z", - "shell.execute_reply": "2022-06-13T08:57:12.832073Z" - } - }, - "outputs": [], - "source": [ - "N = 10 # number of time series\n", - "T = 100 # number of timesteps\n", - "prediction_length = 24\n", - "freq = \"1H\"\n", - "custom_dataset = np.random.normal(size=(N, T))\n", - "start = pd.Period(\"01-01-2019\", freq=freq) # can be different for each time series" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Now, you can split your dataset and bring it in a GluonTS appropriate format with just two lines of code:" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.837807Z", - "iopub.status.busy": "2022-06-13T08:57:12.836983Z", - "iopub.status.idle": "2022-06-13T08:57:12.839552Z", - "shell.execute_reply": "2022-06-13T08:57:12.840170Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.dataset.common import ListDataset" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.847095Z", - "iopub.status.busy": "2022-06-13T08:57:12.845923Z", - "iopub.status.idle": "2022-06-13T08:57:12.849078Z", - "shell.execute_reply": "2022-06-13T08:57:12.849642Z" - } - }, - "outputs": [], - "source": [ - "# train dataset: cut the last window of length \"prediction_length\", add \"target\" and \"start\" fields\n", - "train_ds = ListDataset(\n", - " [{'target': x, 'start': start} for x in custom_dataset[:, :-prediction_length]],\n", - " freq=freq\n", - ")\n", - "# test dataset: use the whole dataset, add \"target\" and \"start\" fields\n", - "test_ds = ListDataset(\n", - " [{'target': x, 'start': start} for x in custom_dataset],\n", - " freq=freq\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Training an existing model (`Estimator`)\n", - "\n", - "GluonTS comes with a number of pre-built models. All the user needs to do is configure some hyperparameters. The existing models focus on (but are not limited to) probabilistic forecasting. Probabilistic forecasts are predictions in the form of a probability distribution, rather than simply a single point estimate.\n", - "\n", - "We will begin with GulonTS's pre-built feedforward neural network estimator, a simple but powerful forecasting model. We will use this model to demonstrate the process of training a model, producing forecasts, and evaluating the results.\n", - "\n", - "GluonTS's built-in feedforward neural network (`SimpleFeedForwardEstimator`) accepts an input window of length `context_length` and predicts the distribution of the values of the subsequent `prediction_length` values. In GluonTS parlance, the feedforward neural network model is an example of `Estimator`. In GluonTS, `Estimator` objects represent a forecasting model as well as details such as its coefficients, weights, etc.\n", - "\n", - "In general, each estimator (pre-built or custom) is configured by a number of hyperparameters that can be either common (but not binding) among all estimators (e.g., the `prediction_length`) or specific for the particular estimator (e.g., number of layers for a neural network or the stride in a CNN).\n", - "\n", - "Finally, each estimator is configured by a `Trainer`, which defines how the model will be trained i.e., the number of epochs, the learning rate, etc." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:12.854433Z", - "iopub.status.busy": "2022-06-13T08:57:12.853569Z", - "iopub.status.idle": "2022-06-13T08:57:13.001453Z", - "shell.execute_reply": "2022-06-13T08:57:13.002020Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.model.simple_feedforward import SimpleFeedForwardEstimator\n", - "from gluonts.mx import Trainer" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:13.008812Z", - "iopub.status.busy": "2022-06-13T08:57:13.007908Z", - "iopub.status.idle": "2022-06-13T08:57:13.010380Z", - "shell.execute_reply": "2022-06-13T08:57:13.010948Z" - } - }, - "outputs": [], - "source": [ - "estimator = SimpleFeedForwardEstimator(\n", - " num_hidden_dimensions=[10],\n", - " prediction_length=dataset.metadata.prediction_length,\n", - " context_length=100,\n", - " freq=dataset.metadata.freq,\n", - " trainer=Trainer(\n", - " ctx=\"cpu\", \n", - " epochs=5, \n", - " learning_rate=1e-3, \n", - " num_batches_per_epoch=100\n", - " )\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After specifying our estimator with all the necessary hyperparameters we can train it using our training dataset `dataset.train` by invoking the `train` method of the estimator. The training algorithm returns a fitted model (or a `Predictor` in GluonTS parlance) that can be used to construct forecasts." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:13.016367Z", - "iopub.status.busy": "2022-06-13T08:57:13.015371Z", - "iopub.status.idle": "2022-06-13T08:57:18.285250Z", - "shell.execute_reply": "2022-06-13T08:57:18.285811Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 0%| | 0/100 [00:00\n" - ] - } - ], - "source": [ - "print(f\"Number of sample paths: {forecast_entry.num_samples}\")\n", - "print(f\"Dimension of samples: {forecast_entry.samples.shape}\")\n", - "print(f\"Start date of the forecast window: {forecast_entry.start_date}\")\n", - "print(f\"Frequency of the time series: {forecast_entry.freq}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also do calculations to summarize the sample paths, such computing the mean or a quantile for each of the 48 time steps in the forecast window." - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:18.960584Z", - "iopub.status.busy": "2022-06-13T08:57:18.959787Z", - "iopub.status.idle": "2022-06-13T08:57:18.964291Z", - "shell.execute_reply": "2022-06-13T08:57:18.964935Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mean of the future window:\n", - " [636.38965 572.4451 536.3801 450.12863 528.2869 409.64246 420.2701\n", - " 493.45148 501.92355 592.41895 734.28564 750.54474 665.63617 751.3235\n", - " 804.0946 850.76373 852.19867 869.5502 808.7402 963.85406 758.48517\n", - " 653.4814 682.02734 671.6107 692.8256 529.7951 540.8719 510.67303\n", - " 585.3563 410.13434 510.55417 460.30832 419.06122 564.2022 689.7244\n", - " 742.6515 693.4881 787.705 876.1771 885.452 837.9125 903.38556\n", - " 932.9774 812.0785 858.8974 783.37646 656.0206 728.7835 ]\n", - "0.5-quantile (median) of the future window:\n", - " [629.08655 588.052 529.8576 436.8228 521.4028 420.9239 407.04398\n", - " 514.9176 497.41943 599.31085 709.81915 762.25433 684.2913 749.3914\n", - " 785.725 853.986 920.8516 875.2325 818.1829 961.1764 760.5606\n", - " 652.46954 671.2017 664.1626 685.10333 532.65405 558.9082 510.68195\n", - " 569.67426 410.06537 505.9936 453.70956 421.91092 568.3355 680.79193\n", - " 728.18726 695.9792 788.5569 865.3332 885.6238 842.0535 917.46783\n", - " 924.06244 819.7789 840.2921 761.00916 679.57416 739.25134]\n" - ] - } - ], - "source": [ - "print(f\"Mean of the future window:\\n {forecast_entry.mean}\")\n", - "print(f\"0.5-quantile (median) of the future window:\\n {forecast_entry.quantile(0.5)}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "`Forecast` objects have a `plot` method that can summarize the forecast paths as the mean, prediction intervals, etc. The prediction intervals are shaded in different colors as a \"fan chart\"." - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:19.042279Z", - "iopub.status.busy": "2022-06-13T08:57:19.041225Z", - "iopub.status.idle": "2022-06-13T08:57:19.044095Z", - "shell.execute_reply": "2022-06-13T08:57:19.044697Z" - } - }, - "outputs": [], - "source": [ - "def plot_prob_forecasts(ts_entry, forecast_entry):\n", - " plot_length = 150 \n", - " prediction_intervals = (50.0, 90.0)\n", - " legend = [\"observations\", \"median prediction\"] + [f\"{k}% prediction interval\" for k in prediction_intervals][::-1]\n", - "\n", - " fig, ax = plt.subplots(1, 1, figsize=(10, 7))\n", - " ts_entry[-plot_length:].plot(ax=ax) # plot the time series\n", - " forecast_entry.plot(prediction_intervals=prediction_intervals, color='g')\n", - " plt.grid(which=\"both\")\n", - " plt.legend(legend, loc=\"upper left\")\n", - " plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:19.049989Z", - "iopub.status.busy": "2022-06-13T08:57:19.049124Z", - "iopub.status.idle": "2022-06-13T08:57:19.314710Z", - "shell.execute_reply": "2022-06-13T08:57:19.315199Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGzCAYAAAD+ExlHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADZSklEQVR4nOy9d3wc9Z3//5ydbepdLpJ7b3KhmeYYHMo3IRAIF0hylLs0ksuXu3Qud+Qgl0Ly43sJ4ZIQShLCwcWkACmEHoUSjG2MbcC9yLZs9b59p/z+GM14y+xqV3VX+jwfDx5oZ6fpI3nnpde7SbquIxAIBAKBQCAYexwTfQMCgUAgEAgEUwUhvAQCgUAgEAjGCSG8BAKBQCAQCMYJIbwEAoFAIBAIxgkhvAQCgUAgEAjGCSG8BAKBQCAQCMYJ50TfQDrKy8v1hQsXpnzf7/dTVFQ0jnc0NRHrPD6IdR4fxDqPPWKNxwexzuNDNuv85ptvduq6XpNun5wWXtOmTWP79u0p329sbGTjxo3jd0NTFLHO44NY5/FBrPPYI9Z4fBDrPD5ks86SJB0bah8RahQIBAKBQCAYJ4TwEggEAoFAIBgnhPASCAQCgUAgGCdyOsfLjmg0SnNzM6FQiLKyMvbu3TvRtzTpEeucjNfrpb6+HpfLNdG3IhAIBII8Iu+EV3NzMyUlJcydOxefz0dJSclE39KkZ2BgQKxzDLqu09XVRXNzM/PmzZvo2xEIBAJBHpF3ocZQKERVVRWSJE30rQimKJIkUVVVRSgUmuhbEQgEAkGekXfCCxCiSzDhiN9BgUAgEAyHvBReuUhTUxMrV66c6Ntg586dPP3009br3//+99x1110TeEcCgUAgEAhMhPDKYRRFyfqYROF15ZVXctttt43mbQkEAoFAIBgmQngNk//6r/9i5cqVrFy5kh/84AeAIZQ+9rGPsWzZMq699loCgQAAt912G8uXL6ehoYEvfelLAHR0dPChD32Is846i7POOovXXnsNgDvuuIMbbriB888/nxtuuIH169fz7rvvWtfduHEj27dvZ+vWrZx77rmsXbuW8847j/379xOJRPj617/O5s2bWbNmDZs3b+YXv/gFn/vc5wDDlbv44otpaGhg06ZNHD9+HICbb76ZW2+9lfPOO4/58+fzm9/8BoCWlhY2bNjA+eefz8qVK3nllVfGZW0FAoFAIJisCOE1DN58801+/vOf88Ybb7BlyxYeeOABenp62L9/P5/97GfZu3cvpaWl/PjHP6arq4snnniCd999l927d/Pv//7vAPzzP/8zn//859m2bRu//e1v+cQnPmGdf8+ePbzwwgv87//+L9dddx2PP/44YAihlpYWzjzzTJYuXcorr7zCW2+9xTe+8Q2+9rWv4Xa7+cY3vsF1113Hzp07ue666+Lu+//+3//LTTfdxO7du/nYxz7Grbfear3X0tLCq6++yh//+EfLIXvssce47LLLeO2119i1axdr1qwZ45UVCAQCgWByk3ftJGL57nOHOdgZHNVzLp9Zyn98YEXafV599VWuvvpqa2jmNddcwyuvvMKsWbM4//zzAfj7v/97fvjDH/Iv//IveL1ePv7xj3PFFVdwxRVXAPDCCy+wZ88e65z9/f34fD7ACA8WFBQA8OEPf5hLL72UO++8k8cff5xrr70WgL6+Pm666SYOHjyIJElEo9Ehv7fXX3+d3/3udwDccMMNfOUrX7He++AHP4jD4WD58uW0tbUBcNZZZ/GP//iP+Hw+rrvuOiG8BAKBQCAYIcLxGkUSK90kScLpdLJ161auvfZa/vjHP3L55ZcDoGkaW7ZsYefOnezcuZOTJ09SXFwMEDcFva6ujqqqKnbv3s3mzZstF+v222/noosu4p133uEPf/jDiFsbeDwe62td1wHYsGEDL7/8MjNnzuTmm2/ml7/85YiuIRAIBALBVCevHa+vXrpgQhp7Xnjhhdx8883cdttt6LrOE088wSOPPMI///M/8/rrr3Puuefy2GOPccEFF+Dz+QgEArzvfe/j/PPPZ/78+QBceuml3HvvvXz5y18GjKT4VI7Sddddx/e+9z36+vpoaGgADMerrq4OgF/84hfWviUlJQwMDNie57zzzuNXv/oVN9xwA48++igXXnhh2u/z2LFj1NfXc/PNNyNJEjt27ODGG2/MZqkEAoFAIBDEIByvYbBu3Tpuvvlmzj77bM455xw+8YlPUFFRwZIlS/jRj37EsmXL6Onp4TOf+QwDAwNcccUVNDQ0cMEFF/Bf//VfAPzwhz9k+/btNDQ0sHz5cu67776U17v22mv51a9+xYc//GFr21e+8hX+9V//lbVr18ZVP1500UXs2bPHSq6P5d577+XnP/85DQ0NPPLII9xzzz1pv8/GxkZWr17NBRdcwObNm/nnf/7n4SyXQCAQCASCQSQzrJSLLFmyRN+/f3/ctr1797Js2TJAjLIZL8Q62xP7uzgaNDY2snHjxlE7n8Aesc5jj1jjsUHX9biUFrHO40M26yxJ0pu6rp+Zbh/heAkEAoFAkAeEFDGmbDIghJdAIBAIBHmAEF6TAyG8BAKBQCDIA8JqeKJvQTAKCOElEAgEAkEeIByvyYEQXgKBQCAQ5AFCeE0OhPASCAQCgSAPEMJrciCE1wRjDr0GeN/73kdvb+/E3pANt9xyizU4+xOf+ETcqKNEGhsb+dvf/ma9vu+++0THe4FAIBgFworI8ZoM5HXn+snG008/PW7XUhQFpzP7H/+DDz6Y9v3GxkaKi4s577zzAEO0CQQCgWDkCMdrciAcryxpampi6dKl3HzzzSxevJiPfexjvPDCC5x//vksWrSIrVu3AuD3+/nHf/xHzj77bNauXctTTz0FQDAY5Prrr2fZsmVcffXVBIOnh3zPnTuXzs5OwBhafcYZZ7BixQruv/9+a5/i4mL+7d/+jdWrV7N+/XproHUsd9xxBzfccAPnnnsuixYt4oEHHgAMUXThhRdy5ZVXsnz5clRV5ctf/jJnnXUWDQ0N/PSnPwWMJn2f+9znWLJkCe9973vp6Oiwzh3r0D3zzDOsW7eO1atXs2nTJpqamrjvvvv4/ve/z5o1a3jllVe44447uPvuuwFjLNL69etpaGjg6quvpqenxzrnV7/6Vc4++2wWL17MK6+8Mjo/LIFAIJhECOE1ORDCaxgcOnSIL37xi+zbt499+/bx2GOP8eqrr3L33Xfz7W9/G4BvfetbXHzxxWzdupW//OUvfPnLX8bv9/OTn/yEwsJC9u7dy5133smbb75pe42f/exnvPnmm2zfvp0f/vCHdHV1AYagW79+Pbt27WLDhg2WqEpk9+7dvPTSS7z++ut84xvf4NSpUwDs2LGDe+65hwMHDvDQQw9RVlbGtm3b2LZtGw888ABHjx7liSeeYP/+/ezZs4df/vKXlpiMpaOjg09+8pP89re/ZdeuXfz6179m7ty53HLLLXz+859n586dSbMgb7zxRr773e+ye/duVq1axZ133mm9pygKW7du5Qc/+EHcdoFAIBAYCOE1OcjrUONX//JV9nSnzjcaDmumr+EHl/8g7T7z5s1j1apVAKxYsYJNmzYhSRKrVq2iqakJgOeee47f//73ltsTCoU4fvw4L7/8MrfeeisADQ0N1tDrRH74wx/yxBNPAHDixAkOHjxIVVUVbrebK664AoAzzjiD559/3vb4q666ioKCAgoKCrjooovYunUr5eXlnH322cybN8+6x927d1v5W319fRw8eJCXX36Zj3zkI8iyzMyZM9mwYUPS+bds2cKGDRusc1VWVqZds76+Pnp7e3nPe94DwE033cTf/d3fWe9fc8011vdkrqFAIBAITiP6eE0O8lp4TRQej8f62uFwWK8dDoc1sFrXdX7729+yZMmSrM/f2NjICy+8wOuvv05hYSEbN24kFDL+0nG5XNasLlmW4wZkxxI7zyv2dVFRkbVN13XuvfdeLrvssrh9xzPXzMRcw3Tfk0AgEExlomoURVNwOsSjO58Z8qcnSdLPgCuAdl3XVw5u+/+ADwAR4DDwD7qu9w6+96/AxwEVuFXX9WcHt18O3APIwIO6rt810pv/7kXfzdnhzZdddhn33nsv9957L5Ik8dZbb7F27Vo2bNjAY489xsUXX8w777zD7t27k47t6+ujoqKCwsJC9u3bx5YtW7K+/lNPPcW//uu/4vf7aWxs5K677uLAgQNJ9/iTn/yEiy++GJfLxYEDB6irq2PDhg389Kc/5aabbqK9vZ1XXnmFG2+8Me7Y9evX89nPfpajR48yb948uru7qayspKSkhP7+/qT7KSsro6KigldeeYULL7yQRx55xHK/BAKBQDA0qq4K4TUJyCTH6xfA5QnbngdW6rreABwA/hVAkqTlwPXAisFjfixJkixJkgz8CPg/wHLgI4P7Tlpuv/12otEoDQ0NrFixgttvvx2Az3zmM/h8PpYtW8bXv/51zjjjjKRjL7/8chRFYdmyZdx2222sX78+6+s3NDRw0UUXsX79em6//XZmzpyZtM8nPvEJli9fzrp161i5ciWf/vSnURSFq6++mkWLFrF8+XJuvPFGzjrrrKRja2pquP/++7nmmmtYvXo11113HQAf+MAHeOKJJ6zk+lgefvhhvvzlL9PQ0MDOnTv5+te/nvX3JRAIBJOJbPK2FE1B0UREIN+RdF0feidJmgv80XS8Et67GrhW1/WPDbpd6Lr+ncH3ngXuGNz1Dl3XLxvcHrdfKpYsWaLv378/btvevXtZtmwZAAMDAznreE0kd9xxB8XFxXzpS18alfOJdbYn9ndxNGhsbGTjxo2jdj6BPWKdxx6xxpnTFeiiqrAqo33vf/N+Prziw5R7ywGxzuNFNussSdKbuq6fmW6f0ahq/Efgz4Nf1wEnYt5rHtyWartAIBAIBFMWX8SX0X6arqHpmnC8JgEjChRLkvRvgAI8Ojq3A5IkfQr4FBjhrMbGxrj3y8rKGBgYAEBVVetrwWm++MUvAoza2oh1ticUCiX9fo4En883qucT2CPWeewRa5w5ISXEUefRIffT0akKVLGzf6eV4yXWeXwY7XUetvCSJOlmjKT7TfrpeOVJYFbMbvWD20izPQ5d1+8H7gcj1Jho7+3du9cKe4kQ2Pgg1tker9fL2rVrR+18ImwwPoh1HnvEGmfOtpPbOKsuOY82kWA0yMO7HubcxedSX1oPiHUeL0Z7nYcVahysUPwKcKWu64GYt34PXC9JkkeSpHnAImArsA1YJEnSPEmS3BgJ+L8f2a0LBAKBQJDfZBpqNEOMqqaO5e0IxoFM2kn8L7ARqJYkqRn4D4wqRg/w/GB/qC26rt+i6/q7kiQ9DuzBCEH+k67r6uB5Pgc8i9FO4me6rr87Bt+PQCAQCAR5ga7rBKKBoXfktPASOV75z5DCS9f1j9hsfijN/t8CvmWz/Wlg/DtzCgQCgUCQg0TUCFEtmtG+QnhNHvKqC9t92++jpaWFGf4ZgJHc7PV6x/y6t5x5S9zre+65hwceeABd1/nkJz/Jv/zLvwDQ3d3NddddR1NTE3PnzuXxxx+noqIi6XwPP/ww3/zmNwH493//d2666SbC4TBXXXUVzc3NfPazn+Wzn/0sAJ/61Ke45ZZbWLdu3dh+k8DNN9/MFVdcwbXXXssnPvEJvvCFL7B8uX27tcbGRtxuN+eddx4A9913H4WFhUmNVrPl1KlT3HrrrdYYo1R8+9vf5mtf+9qIrpUJGzdu5O677+bMM9NWBwsEAkHWRNQIETWS0b5CeI0d/eF+Sj2l43Y9MSQ7S9555x0eeOABtm7dyq5du/jjH//IoUOHALjrrrvYtGkTBw8eZNOmTdx1V3Jz/u7ubu68807eeOMNtm7dyp133klPTw/PPvssF1xwAbt37+aRRx4BYNeuXaiqOiLRNdzxOw8++GBK0QWG8Prb3/5mvb7llltGLLoAZs6cOaToAqxh5NmgqiI3QiAQ5A5CeOUGpwZOjev1hPDKkr1793LOOedQWFiI0+nkPe95D7/73e8AY0zPTTfdBBhDoJ988smk45999lkuueQSKisrqaio4JJLLuGZZ57B5XIRCASIRqOYRaK33347//mf/5nyXu644w5uuOEGzj33XBYtWsQDDzwAGKLowgsv5Morr2T58uWoqsqXv/xlzjrrLBoaGvjpT38KGPkFn/vc51iyZAnvfe97aW9vt869ceNGtm/fDsDzzz/PunXrWL16NZs2baKpqYn77ruP73//+1aH+jvuuMMaCL5z507Wr19PQ0MDV199NT09PdY5v/rVr3L22WezePHipM72AE1NTaxcafTp/cUvfsE111zD5ZdfzqJFi/jKV74CwG233UYwGGTNmjV87GMfA+B//ud/OPvss1mzZg2f/vSnLZFVXFzMF7/4RVavXs13vvOduMHcjY2N1sDxz3zmM5x55pmsWLGC//iP/0i55gKBQDBaRLUoUVWEGicaIbxynJUrV/LKK6/Q1dVFIBDg6aef5sQJozdsW1sbM2YYYdDp06fT1taWdPzJkyeZNet0Z436+npOnjzJJZdcQlNTE+vXr+fWW2/l97//PevWrbMd9RPL7t27eemll3j99df5xje+walTxi/Qjh07uOeeezhw4AAPPfQQZWVlbNu2jW3btvHAAw9w9OhRnnjiCfbv38+ePXv45S9/GedgmXR0dHDrrbfy29/+ll27dvHrX/+auXPncsstt/D5z3+enTt3cuGFF8Ydc+ONN/Ld736X3bt3s2rVKu68807rPUVR2Lp1Kz/4wQ/itqdi586dbN68mbfffpvNmzdz4sQJ7rrrLgoKCti5cyePPvooe/fuZfPmzbz22mvs3LkTWZZ59FGjtZzf7+ecc85h165d3Hbbbbzxxhv4/X4ANm/ezPXXXw/At771LbZv387u3bv561//ajtDUyAQCEYT4XjlBp2BTsJKeNyul1c5XrnAsmXL+OpXv8qll15KUVERa9asQZblpP0kSWKw4jMjnE4njz32GADRaJTLLruMp556ii984QscP36cG2+8kSuvvDLpuKuuuoqCggIKCgq46KKL2Lp1K+Xl5Zx99tnMmzcPgOeee47du3dbIby+vj4OHjzIyy+/zEc+8hFkWWbmzJlcfPHFSeffsmUL5513nnWuysrKtN9HX18fvb291gDsm266Kc5luuaaawA444wzaGpqGnJdNm3aRFlZGQDLly/n2LFjccIV4MUXX+TNN9+0ZkoGg0Fqa2sBkGWZD33oQ4Cxxpdffjl/+MMfuPbaa/nTn/7E9773PQAef/xx7r//fhRFoaWlhT179tDQ0DDk/QkEAsFwiagRdPSMBl8L4TU26LpOb6iXoBLE4/SMyzWF8BoGH//4x/n4xz8OwNe+9jXq641mdtOmTTOS/2fMoKWlxXr4x1JXVxfXAbe5uTmpMduPf/xjbrzxRrZs2UJZWRmbN2/m4osvthVeieLOfF1UVGRt03Wde++9l8suuyxu36efHv8iU4/H+MWWZTmj/DNz/3TH6LrOTTfdxHe+kzz60+v1xgnj66+/nv/+7/+msrKSM888k5KSEo4ePcrdd9/Ntm3bqKio4OabbyYUynxwrUAgEAwH0+2KqBEhvCaI/nA/mq7hj/itGZhjjQg1DgMzF+r48eP87ne/46Mf/SgAV155JQ8//DBgVC5eddVVScdedtllPPfcc/T09NDT08Nzzz0XJ4h6enr44x//yI033kggEMDhcCBJEsFg0PZennrqKUKhEF1dXTQ2NlquT+I1f/KTnxCNGrkEBw4cwO/3s2HDBjZv3oyqqrS0tPCXv/wl6dj169fzt7/9jaNHjZEW3d3dAJSUlNiOESorK6OiosLK33rkkUcs92s0cblc1vezadMmfvOb31g/l+7ubo4dO2Z73Hve8x527NjBAw88YIUZ+/v7KSoqoqysjLa2Nv785z/bHisQCASjiZnflUm40WqgqosiodGkN9QLQFCxf8aOBcLxGgYf+tCH6OrqwuVy8aMf/Yjy8nLASPr+8Ic/zEMPPcScOXN4/PHHAdi+fTv33XcfDz74IJWVldx+++2WQPr6178eF777xje+wb/927/hcDi47LLL+NGPfsSqVau45ZZbku4DoKGhgYsuuojOzk5uv/12Zs6cyYEDB+L2+cQnPkFTUxPr1q1D13Vqamp48sknufrqq3nppZdYvnw5s2fP5txzz006f01NDffccw/XXHMNmqZRW1vL888/zwc+8AGuvfZannrqKe699964Yx5++GFuueUWAoEA8+fP5+c///mw1zoVn/rUp2hoaGDdunU8+uijfPOb3+TSSy9F0zTr5zJnzpyk42RZ5oorruAXv/iFJZJXr17N2rVrWbp0KbNmzeL8888f9fsVCASCRGIdr6EwhVemyfiCzOgJGcVfmTayHQ2k02MWc48lS5bo+/fvt15bfbxmTGwfr1zhjjvuoLi4mC996Utjeh0xq9GevXv3smzZslE7n5i7Nj6IdR57xBpnxmvHX+Pt9rf5wOIPUFdal3bfLc1b2Nm6k1mls3j/4vcDYp1Hg8amRvZ17mPN9DWsr19vv08W6yxJ0pu6rqdt/ChCjQKBQCAQTABm13oRapw4zFDjeDpeeRVqvOXMW+JchqnuxNxxxx0TfQsCgUAgSKAz0El1YfWQ+w0n1CiS60eXnuD4hxqF4yUQCAQCwSjypwN/4tlDz9If7k+7nym4MpnXKITX6BOMBgmrRv8u4XgJBAKBQJCnRLUoR3uPcrzvOGtnrOXMmfYpP8LxmljMMCMIx0sgEAgEgrxF1Yw8LFVXebvt7ZT7mRWKmVQqCuE1+pgVjQAhJYSma+NyXSG8BAKBQCAYJVRNRed0t4CwGiZV9wDheE0ssY4XGKHH8SCvQo3X/+Z6+vv7KX23FICoEsXldI35dX917a/iXs+dO5eSkhJkWcbpdFrDpLu7u7nuuutoampi7ty5PP7441RUVCSd7+GHH+ab3/wmAP/+7//OTTfdRDgc5qqrrqK5uZnPfvazfPaznwWMflW33HIL69atG+PvEm6++WauuOIKrr32Wj7xiU/whS98geXLl9vu29jYiNvt5rzzzgPgvvvuo7CwkBtvvHFE93Dq1CluvfVWa7xRKr797W/zta99bUTXyoSNGzdy9913c+aZaauDBQKBALAXRiElRIGrIGm7EF4TS6Lw8kf9FLmL7HceRYTjNUz+8pe/sHPnTkt0Adx1111s2rSJgwcPsmnTJu66666k47q7u7nzzjt544032Lp1K3feeSc9PT08++yzXHDBBezevZtHHnkEgF27dqGq6ohEVyZjeex48MEHU4ouMIRX7FDtW265ZcSiC2DmzJlDii4whFe2qKoowxYIBGOLnTBK1RV9OO0kNF1L6aAJssOsaDQZL8dLCK9R5KmnnuKmm24CjOHQTz75ZNI+zz77LJdccgmVlZVUVFRwySWX8Mwzz+ByuQgEAkSjUesf1e23385//ud/przeHXfcwQ033MC5557LokWLeOCBBwBDFF144YVceeWVLF++HFVV+fKXv8xZZ51FQ0MDP/3pTwFjxuHnPvc5lixZwnvf+15r5A4YTo8pKp9//nnWrVvH6tWr2bRpE01NTdx33318//vfZ82aNbzyyivccccd3H333QDs3LmT9evX09DQwNVXX01PT491zq9+9aucffbZLF682BorFEtTUxMrV64E4Be/+AXXXHMNl19+OYsWLeIrX/kKYEwICAaDrFmzho997GMA/M///A9nn302a9as4dOf/rQlsoqLi/niF7/I6tWr+c53vhM3sLuxsZErrrgCgM985jOceeaZrFixgv/4j/9I/UMWCASCNKRyvBKJFVvZVDWmuoYgnqFElKIp+CK+uG3+qH8sb8lCCK9hIEkSl156KWeccQb333+/tb2trc3qqj99+nTa2tqSjj158iSzZs2yXtfX13Py5EkuueQSmpqaWL9+Pbfeeiu///3vWbduHTNnzkx7L7t37+all17i9ddf5xvf+AanTp0CYMeOHdxzzz0cOHCAhx56iLKyMrZt28a2bdt44IEHOHr0KE888QT79+9nz549/PKXv4xzsEw6Ojq49dZb+e1vf8uuXbv49a9/zdy5c7nlllv4/Oc/z86dO7nwwgvjjrnxxhv57ne/y+7du1m1ahV33nmn9Z6iKGzdupUf/OAHcdtTsXPnTjZv3szbb7/N5s2bOXHiBHfddRcFBQXs3LmTRx99lL1797J582Zee+01du7ciSzLPProowD4/X7OOeccdu3axW233cYbb7yB32/849q8ebM1r/Fb3/oW27dvZ/fu3fz1r39l9+7dQ96bQCAQJGLX4NROeMUm1GfieJkJ+yCEVyacHDiZ9v2+UF9cLh6IHK+c5tVXX6Wuro729nYuueQSli5dyoYNG+L2kSQJSZIyPqfT6eSxxx4DIBqNctlll/HUU0/xhS98gePHj3PjjTdy5ZVXJh131VVXUVBQQEFBARdddBFbt26lvLycs88+m3nz5gHw3HPPsXv3biuE19fXx8GDB3n55Zf5yEc+gizLzJw5k4svvjjp/Fu2bOG8886zzhU7V9KOvr4+ent7rcHYN910U5zLdM011wBwxhln0NTUNOS6bNq0ibKyMgCWL1/OsWPH4oQrwIsvvsibb75pzb8MBoPU1tYCxmzGD33oQ4Cxxpdffjl/+MMfuPbaa/nTn/7E9773PQAef/xx7r//fhRFoaWlhT179tDQ0DDk/QkEAkEsw3G8MhFesa6YEF5D09zfzMLKhSnfT8zvgvFzvITwGgZ1dcZMrdraWq6++mq2bt3Khg0bmDZtmjVLsqWlxXr4Jx7b2NhovW5ubk6aAfXjH/+YG2+8kS1btlBWVsbmzZu5+OKLbYVXorgzXxcVnU4Q1HWde++9l8suuyxu36effjqr73s08Hg8gCGIMsk/M/dPd4yu69x000185zvfSXrP6/Uiy7L1+vrrr+e///u/qays5Mwzz6SkpISjR49y9913s23bNioqKrj55psJhZI/KAUCgWAohhVqzKCdhHC8suNkf3rHK7aVhInI8cpR/H4/AwMD1tfPPfeclZN05ZVX8vDDDwNG5eJVV12VdPxll13Gc889R09PDz09PTz33HNxgqinp4c//vGP3HjjjQQCARwOB5IkEQza/0I89dRThEIhurq6aGxstFyfxGv+5Cc/IRo1/nEfOHAAv9/Phg0b2Lx5M6qq0tLSwl/+8pekY9evX8/f/vY3jh49ChjFAQAlJSXWOsRSVlZGRUWFlb/1yCOPWO7XaOJyuazvZ9OmTfzmN7+xctS6u7s5duyY7XHvec972LFjBw888IAVZuzv76eoqIiysjLa2tr485//POr3KxAIpga2yfU2D/RsHK/EFhVCeKUnpIQYiAykXVc7x2u8mqgKxytL2trauPrqqwEjX+mjH/0ol19+OWAkfX/4wx/moYceYs6cOTz++OMAbN++nfvuu48HH3yQyspKbr/9dksgff3rX48L333jG9/g3/7t33A4HFx22WX86Ec/YtWqVdxyyy2299PQ0MBFF11EZ2cnt99+OzNnzuTAgQNx+3ziE5+gqamJdevWoes6NTU1PPnkk1x99dW89NJLLF++nNmzZ3Puuecmnb+mpoZ77rmHa665Bk3TqK2t5fnnn+cDH/gA1157LU899RT33ntv3DEPP/wwt9xyC4FAgPnz5/Pzn/98mKudmk996lM0NDSwbt06Hn30Ub75zW9y6aWXomkaLpeLH/3oR8yZMyfpOFmWueKKK/jFL35hieTVq1ezdu1ali5dyqxZszj//PNH/X4FAsHUIFPHKzZ0qOoqmq7hkOy9kMRzCuGVnoGwYQr0h/tTzsycSOEl5XJZ6pIlS/T9+/dbr60+XqUT28crV7jjjjsoLi7mS1/60pheZ6oPI09F7MD20aCxsTEp7CwYfcQ6jz1TeY0PdB3gpaMvxW2bVTqL9y9+f9y2fZ37aGxqtF7fvOZmvE6v7Tn9ET+P7H7Eev3+Re9nVtmsKb3O6TjcfZjnjzzPpQsuZX7FfNt9HtzxYJKAlSWZT57xyaR9s1lnSZLe1HU9beNHEWoUCAQCgWCUGE6Ol93rdOcUjld6zOHkpvNl977dGqq6SlgJj+m9QZ6FGn917a/iXIap7sTccccdE30LAoFAIIhhuMIrXYJ94jntWlYITjMQOR1qtKM72J3y2EA0gMfpSfn+aCAcL4FAIBAIRonY6kMTu8712TheiUJLOF7pMQXXcIXXWJOXwiuX89IEUwPxOygQCOywE0WKpiRtT3S40gmvxH2F8EpPbHK9HUJ4ZYnX66Wrq0s8+AQThq7rdHV14fXaJ8IKBIKpS6rxP4nhxqRQY5qxQcLxyhxd161Q40BkwFYrTLTwyqscLzBG7DQ3N9PR0UEoFBIPv3FArHMyXq+X+vr6ib4NgUCQY9iFGsEQXsXuYuu1SK4fG/xRP5quAcZAcX/UH7fumq7ZtpIwEcLLBpfLZY2vaWxsZO3atRN8R5Mfsc4CgUCQGalEUaLjlehwCeE1OiSGF/vD/XHCqzfUawkzO+zy8UabvAs1CgQCgUCQq6QSRYnd60dS1SiEV2rshFcsPcHkUUGx+CNjP69RCC+BQCAQCEaJTB0vEWocGxJ7dyW+TpffBcLxEggEAoEgr8g41JhFVaMQXpljJtabJDpeXcGutMcnOl7dwe60hQ/DQQgvgUAgEAhGifFwvFIl8AuGDjUO5XiF1XBcDtgrx15JmxM2HITwEggEAoFglEjVVT5WeCmagk58m4N0ropwvDInUWjFOmCKpqQcIxSLWdl4sOsgLb6WUW9fJYSXQCAQCASjRKok+djcITt3KxvHa7RDX5MFRVOS2kEEogFr/XqCPUmC145ANEBUjbKleQuAcLwEAoFAIMhVMnG8Riq8RKjRnnRDsWHoMKNJIBrgzZY38UeNfK9MxFo2COElEAgEAsEokUmOl53IStdOIlFoiVCjPYmJ9db2QUGWqfA6NXCK3W27rdej7XjlXQNVgUAgEAhylUyEl53IElWNIyfVbMZsHa+3296Oc7lEjpdAIBAIBDlKKlGk6ZolrmwdL5FcP2JGS3glhhZFjpdAIBAIBDnIULlXZvf6VO5Wqu1CeGVGuhyvsBK2crayReR4CQQCgUCQgwwliMxwYyp3K1WeV1JyfYoE/qlOKsdrIDKQsdtlh3C8BAKBQCDIQTIVXiN1vDRdG3UxMBlIlVzfH+4fkfASOV4CgUAgEOQgYy28YgWACDfGE1JCadfv5MDJYZ9bR09b/JAtQngJBAKBQDAKjLXwim3CKoRXPEN1pD/Rd2JE508c+TQShPASCAQCgWAUGEoMmcIpVS5Xqtwv87yxyeFCeMXTF+5L+/5Iu/2HlfCIjo9FCC+BQCAQCEaBsXK8zGT62HE4QnjF0xvqHdPzC8dLIBAIBIIcYyyEV+w5AxEhvFIhhJdAIBAIBFOMkQovuxBk7DlFqDE1Yy28wqoINQoEAoFAkFMM1V9rOA1U4xwvEWpMiXC8BAKBQCCYYoy4garN9lSO11Bd8qcS/oh/zIWoSK4XCAQCgWCCaPe3224f6uEfVsPoeuqeUNk4XiOt0ptMjLXbBcLxEggEAoFgQni3/V3ePPWm7XuZuC7+qD9l1/mhhFcoGrKOFY7XaYTwEggEAoFgEnKk5wivHn81ZaJ1JsIr1TxBGFp4RdSI9VrkeJ1mPISXSK4XCAQCgWAcaRlo4cUjL6Kjp8z3GanwSlfVqGoqqq5a+wjhdRrheAkEAoFAMIkIK2GeOfSMVbWY6TBrO7J1vMyQovmemdslhNdpxsXxGs/kekmSfiZJUrskSe/EbKuUJOl5SZIODv6/YnC7JEnSDyVJOiRJ0m5JktbFHHPT4P4HJUm6adS+A4FAIBAIxpBANBAXahrPUKMptITwskfVVHwR34jO0eZrG3IfszBiNMjE8foFcHnCttuAF3VdXwS8OPga4P8Aiwb/+xTwEzCEGvAfwDnA2cB/mGJNIBAIBIJcJrGCUNEU2wT5TBLe04YabSoVLcdLM4SXooocr1j6wn3oDF8QabrGtlPbMtp3tPK8hhReuq6/DHQnbL4KeHjw64eBD8Zs/6VusAUolyRpBnAZ8Lyu6926rvcAz5Ms5gQCgUAgyDnscq/sQk8jdbw0XUs6h/navAfheMUz0jDjsd5jtPvbM3KzRivPa7g5XtN0XW8Z/LoVmDb4dR1wIma/5sFtqbYLBAKBQJDT2DlRQ1UgpmKoh3fiec1zWqFGkVwfx0iF17sd76LpWkaiarTyvKRMVJ4kSXOBP+q6vnLwda+u6+Ux7/foul4hSdIfgbt0XX91cPuLwFeBjYBX1/VvDm6/HQjqun63zbU+hRGmpKam5ozHH3885X35fD6Ki4sz+04Fw0as8/gg1nl8EOs89ky2NQ6r4SSnqsJbgdPhjNvWG+odcWPTcm85LofLeu2P+o0cMyXMQGSAYncxXqcXj+zBEXVMqnUeDgORgWE7Uaqm0hPqAYx1T/x5mjgVJ4pTocxThlt2pz3nRRdd9Kau62em28f+KkPTJknSDF3XWwZDiWYb35PArJj96ge3ncQQX7HbG+1OrOv6/cD9AEuWLNE3btxotxsAjY2NpHtfMDqIdR4fxDqPD2Kdx57JtsZ7Ovbw8rGX47atX7SeWWWz4rb9+t1f0xXsGtG15s+czxkzz7Bev3b8NU60n2BPxx7+1vo31tevZ2XtSupL6yk+VTyp1nk4/G7v7+jyD2/N/3rsrxzsPgjAJQsuYU7ZHNv9qtqr6KrtomFuA0uqlwz7Xk2GG2r8PWBWJt4EPBWz/cbB6sb1QN9gSPJZ4FJJkioGk+ovHdwmEAgEAkFOYxfWG26oMZHuYHwKdeI4IhFqTE9fqG9YxwWjQY70HLFeByKBNHsbjFZy/ZCOlyRJ/4vhVlVLktSMUZ14F/C4JEkfB44BHx7c/WngfcAhIAD8A4Cu692SJP0nYJYOfEPX9cSEfYFAIBAIcg7b5Hqbh/BwxNCJ/hNUFlRar4cUXiK53iIYDQ5bDO3t3BtXhRo7BzMVo5VcP6Tw0nX9Iyne2mSzrw78U4rz/Az4WVZ3JxAIBALBBGPnbg23qjGR5v5mVk9bbb0OKkEGwgOUeErizmnegxgZdJrhJtZrusa+zn1x23zRoXuBTXRVo0AgEAgEU4LRrGqMJaSE6PB3JLUyaPOfbuiZ1E5ChBothiu8+sP9SQ5XRqHGUapqFMJLIBAIBII02IkcuxCXOVIoU3wRH4qmMBAZiNseG260HC9NhBoTGa7w6gn2JG0bz1CjEF4CgUAgEKQhkwaqwxFC5qibRCEQK7xMMScaqCYzbOEVShZe/qh/yOPGrXO9QCAQCARTmUxCjSMSXglCoMPfYY0kSsrxEiODLPrCw6totHO8ImrEVmDHIhwvgUAgEAjGgUyqGkfT8VJ1la5AV9y1E6sapzqarqUdv2Qnrqz3bBwvGNr1EsJLIBAIBIJxwE7sJIYaMxmQnUgqxwtOhxtThRqBEQ2Hznd8EZ/toHKTxKpFE1VTUwq2ofK8Ug1HzxYhvAQCgUAgSIOd45UYahyOE2UKr75QX9ID3axsjE2uHwgPEFVihFcGI/8mK+ncLl3XOdR9yFYM94WT19rEHxk6z2s0XC8hvAQCgUAgSIOt46WO3PEyH/SqnuzCmI6XoilE1SjBaJAD3QdoD5xOvJ/Kjlc64dUX7iOshm3HN6ULQWaSYC+El0AgEAgEY4yd46XpWlxeV7Y5XlE1SlAJWq8TRwf1hnoJKSE0XSOinU78Divh007X1NVdaYWXuZYd/o7k90Kph+Zk0lJiNHp5CeElEAgEAkEKNF1L2Z8r9iGcrfBKdFfs8rxODZwCDJFmnl/VVcuBm8qOV7oZjWZhQkcgWXj1BntTHjdevbyE8BIIBAKBIAXpWgzEhhuzFV5mfpeJnSAwhVdEjcQLL1UIr3SOlxliTJx7CakrGiH5Z2KHEF4CgUAgEIwh6QRVbIL9SIXXUI6X6XKpWozjJZLrbTGFV3+4P86VjKrRpCkBsWQUahyFJqpCeAkEAoFAkIJ01YojCTUmCq++cF9Sgr6Zq5TkeE3xUGMwGkz5cwlEAwSjp3PnYsONveHetGI1qASHbBchHC+BQCAQCMaQ8Qo16rqecgROnPDSVKt7/VR1vDJJrDeJDTemq2gEYz2Hcr2E8BIIBAKBYAxJ7NeV6r2RCi9InX8U1U4n18dWUwrhlYyZWG8S63gNJbxg6HCjqGoUCAQCgWAMSSeoRjPUCKmFQaLjZYbZNEbeRT0fySS/y6TT32l9nclQ7aGaqArHSyAQCASCMSRtjldMqDFVywk7NF2zdVZSOl4J7SRMp004XskkCq+gErT2T9fDyyTx56JqapyoTgwvH+s9ltE9x+LM+giBQCAQCKYI6XK8hhtqDEQDtkncqYRXWAnHCa/YsONUpC9s38MrqkZtRVlnoBOv05vRSKDE/mrH+o5RppVZr0NKCEVTeKf9HXa17kJH5+Y1N2d1/0J4CQSCSUGPP8L9rxwhGFH53MULqS72TPQtCSYBY1HVmKpflC/iI6pGccmuuO1BNWhVMKpaTB8v4XjF0R3stl2Tdn87Ra6ilOczj5EkKUmcHeo+xArvCut1MBrk0d2Pxk0d6Av1UeYtI1OE8BIIBHmNP6zw0KtHeeDlI/gjCg5J4nc7mrnt/yzj+rNm4XBIE32LgjxmLByvVMJL13X6w/1UFVbZ7u+RPYTVsJVnNBVzvBRNSZkAn1jRaNIR6KDcW560XdVUWn2ttPnbmF02m+rCagLK6XMHo0Ga+5vRPKfXWUePE11gCLtshJfI8RIIBHlJWFH5+WtH2fC9v/Bfzx/gvIVVPPsvG3jmXy5k+cxSvvbE21x739841jV0eEEgSEWmOV7DEV59oT52te2KO9YujBaIGGLAIxsurvngn+yhRruxQNnkd1nbA11xokzXdboCXbzb8S6t/lZ0TreRiHW8DvccRtO1Ide5zd+W9v1EhPASCAR5harp/Hr7CS6++6/c+Yc9LJ5WwhOfPY+f3nAmi6aVsLC2hP/95Hr+68OrOdju4z//uGeib1mQx6Tt4zXCUONAZABFUxgIn+6mbicsTFHgcXriXk/2UOObLW8mbcumlYSJoikc7T1qvT7ef5ymviZcsoslVUvwOr3WzznWTTvUfQgATUsvvOxGE6VDhBoFAkHe0DEQ5u8ffIP9bQOsqivjrg+t4oKF1UhSfDhRkiSuWVfPvtYBfvbqUXr8ESqK3BN014J8Jp3jNdJQo+lcDUQGqCioAOwdL3M/0/EKRY1Qo46Ooik4HZPzUd7U20S7v53aolprWyrhpela2jmMsd3s+0J9lHnKWFCxAEmScMtuIprxs1Q0hZASIhgN0hkwWlEMVbHaGehE0zUcUmZelnC8BAJBXqDrOl/5zS6auvz86KPr+P3nzufCRTVJoiuWq9bMRNF0/vR2yzjeqWAyMRY5XmY4yxQDsfMD7YSFmdPldhp/PATV0yJiNBp65iK9oV4iaoSjPUfjtqcSXv3h/ox+BmYftCJXkfXZ4XK44n7OgWiAg90Hrdc6etpGupquWSItE4TwEggEecEjW47xl/0dfO19y3h/w4y0gstk+YxSFtUW8/udp8bhDgWTkXSOV+wDOXHOYjoGIgOWAHA6nFaLAoD+ULyw0HXdyiVzy4bwCkdPi63RaOiZLeMR4uzwGx3nY0OEkFp4ZRruM9fS6/Ra29yym6gWtb4vf8RvhRlNUhVEZHt9EMJLIBDkAQfbBvjWn/aycUkNN547J+PjJEniqjUz2drUTXNP+lEgAoEd6RwvOO04Zep4mSLLDB9WF1QDWHleQSUY565EtSiKaoQTZUk2zqGeFluxCf7jxXhc0xz10xvqjevob5dwD5kLH1OomvlygNW+wxTZB7oPJFVODtUDrM2XeYK9EF4CgSCnCSsqt/5qJ8UeJ9+7tiEjpyuWq9bUAfD7XcL1EmRPOscLTouQTIWX+QA3BUBVYRUOyREXbozN8zLHBcUKr1jhMxGO13hcM1ZINfU2AYbTFrtOqfZPhymU4xwvh+EkmoLXvF4siY1Vh3t9EMJLIBgXfvNmM1f96DW+8PhOHnj5CC8f6CAUzTw0MZX5r+cOsLeln+9d20BtiXfoAxKYVVnIGXMqeOotIbwE2TOU42U+rDMVXqZwCEaDOCQHHtlDkasoLpQVG26MqBEUfVB4OeSke5qIHK+xFl66rsflTJnhRn/Ub9vaIaJG0ibWxxJSQ7gcrrhEeDOEm24U01COV1+4L+N1mZylEAJBDnGgbYB/e+Jtqos9nOoN8rsdJwHYuKSGX/zD2RN8d7mNL6zw87818aF19WxaNm3Y57lqzUy+/tS77GtNXYouENgxpOOlhNF1PeNZjWayeFAJDrouDorkGbRGDtDdcjUyRRxydzO/AiRpUHipCl6XF4fkQEKKC0VOhOMVWyE4FvSEeuKEbLu/HX/EnzLM2OHvyDjvLKSE4twuiAk1phHZQ+V4mfeZCcLxEgjGkLCicuv/vkWxx8mT/3Q+2/7tvey4/RI+vWE+jfs72NsihEA6XtrXTkTRuP7sWSM6z/tXzUB2SDwpXC9BlmTieGUqug53H+Zwz2HAEF5uptF97EvovZ8AIKC2oEZqeWvfOdz/7HTePFRMMKKi6AouhyEOZIcclwg+GXO8zMT6WI72Hk0ZZsy0gamu64SVcJLwkiUZh+SwWkrYMVSoEYTwEghygruf3c++1gG+d20DNSVGMmdlkZvPbFyA1+XgF681TewN5jjPvNNCTYmHM2ZXjOg8VcUeNiyq5vc7T6JN8qaTw6F9IMTfP/gGj75xbKJvJafIxMkKq+EhxRkYjslrJ14DjLCkoikQ2IDDOUBl5TtIONBLfk3F7B9QP+s5Ctwaz++sYNu+urheXbIkWxWRMDlDjWZifSxHe46OOLFe0RRUXU0SXpIkJbWUSCQTxyvTBHshvASCMeLVg5088MpRblg/JylMVl7o5kPr6nli50m6fJOzD89ICUZU/rKvg8tWTBuVeYsfXFvHqb4Q+7sn95iVbOkNRLjxoa28eqiTf3viHR54+chE31LOMFSYEQzhM5Q403SNxqZGK0ToDxkiyiNVUzbjEQpL36XYXcRAZABJ0qDgTW68uJ2l9QGOdRQCxAkvTdesexvvUKOiKRkJzZFg53i1+FpsBZmu60n767pOT7AnKfxoVoOajWhjccvutL26hOMlEOQ4nb4wX/z1ThbUFPG19y2z3ecfzp9LRNF47I3j43x3+cFfD3QQjKr8n5UzRuV8ly6fTnmhi+ePje1DI5/whRVu/vk2jnT4+fk/nMX7V83gW0/v5b9fOjj0wVOATASGWXWYjl2tu2j1tQKgqQX0dq8AoLJ6Gw7ZeKCXuEsIKkGrc3pYCbO4LkBocGizJbwchuOlqMY1xzvUGFWjGYdWh4Oma7YzFzVdo7m/OWl7b6g3aQ3a/G0c6T2SNAXArqLRxCW70gptVVOHzG3L9GchhJdAMMq094e4/v4t9AWj3HP9Wgrcsu1+C2tL2LC4hke2HCOiCBcmkWfeaaGi0MU58ypH5XwFbpkb1s/hrXaVIx1Dhw0mO6Goyicf3s7bJ/v474+u5aIltdxz/Ro+uGYmdz93gP/33P5JPwtwKDJyvNRwWuE1EB7grda3ANB1B/1t1xPWO3DgpMB7+vew2FMMnA5p9Uf6mT8thCYZ4sEUXg7JgaqrE+p4ZdMsNlt6gj1ZTQFIzO+KqlFafMakitgZmGCslYRkVTHG4nYYjle63/lMXK9MEMJLIBhFTvUG+fBPX+dUb5Bf/MPZrKwrS7v/P54/l/aBME+LkTZxhBWVF/e2c8nyaTjl0fuYuvHcucgOeOjVo0PvPMm5/cl32HK0i//3d6u5dMV0AJyyg//34TV8+Mx67n3pEK8fth86PFXIxPEKK+mFV7u/3WqBoITrUEJzUd07KXB54nrSFbmKkJCsBPL+UD9et4638ASQ4HjpqnVv453jFdXG1vGyCyem3T8hzNjia0HTNbxOL/2R+OKlkBLC4/TY9gI0KxvT/SyHaimRKUJ4CQSjxInuAB/+6et0+SI88vGzWT+/ashjNiyqYUFNET977eiUdxdi+duhLgbCyqiFGU1qSjycP9PJb95sntK5dRFF4+m3W7j+rFl8cG1d3HuyQ+IbV62kxOPkd2+dnKA7zA0ycbyGCjXGColoaDY6OmG9gwJnQdx+DslBsbvYcmnMMJm7wCh4kJQa4HRyvXnNTMNbo+WMRdVoVo5UtmTTiBTiHa9gNEhHoIOawhqqCqoIKaGknmde2b4XYGIvLzuE4yUQ5BC+sML1929hIKTw6CfP4Yw5mYXHHA6Jm8+fx+7mPg71inCjyZ/faaHE4+S8hUOL12y5bK6LsKLxyJapW8H35rEe/BGVi5bU2r7vdclctnI6z7zTOqUb/WbkeA0RaoxtBKqEZoHzKKpu9OVKpMhVRFAJoumaNZPQ4TLErxoy8sJMxyu2cWu66wejQRqbGvnlrl9yuPvwkN/PUES16JiGGu0S61MRVsJxeVwnB07ikBzMKJ5BibsEON2w1px5aZffBcljg+zIpLIxE4TwEghGgQdePsLJ3iAP3nQmDfXlWR37oXV1FLhktrSM3V+R+YSiajy/p41Ny2rxOO3z40bCzGIH711Wyy9fPzZlRcXLBztwOiTOXZBa2H5wTR2+sMJL+7JzICYTGVc1phAiuq7THewe/Bqi4VloHiPfK9HxAih0GRWMwWjQEhQR+pB0D0pwUHgNjg2KTfS2Czdqusbutt387zv/y77OfWi6xgtHXuBg18gKJ8YyuT5VYn0q2v3tVqSgP9xPX7iPGcUzcMkuCl2FyJJsCdiwGkZHj5vRGEvi2CA7RKhRIMgROgbCPPDKEd63ajpnzc0+EbzQ7eTcBVW80zk1RUAibxztpicQ5fJRDjPG8skL59Ptj/DbHclVUlOBlw90sG5OBSVeV8p9zl1QRW2JhyencLgx06rGVAKtL9xnPcg1pQJdLUZx7gfSC69ANGAJhlA0hCx5UEKz0dRCS3jFhr3swo2tvlb+duJvcUJCR+eloy+xv3P/kN9XKsbS8eoOdtuOBEqFGZbUdZ3m/mbcspvaIsPFlSSJEneJ5Xilq2gEI4cucSpAIiLUKBDkCPe+dJCwovGlS5cM+xwbl9TQFtBp6hydf9j5zLPvtlLgknnP4poxu8bZ8ypZXV/Gg68cRdOmVm5dx0CYd0/1D7m+skPiA6tn0ri/g77A1GzBkYnjFdWiKQVabJgxGpoNQEQ6gSzJVrJ8LG7ZjSzJ+KN+wkrY+E8N45IlwIEaXGrNawwMtpkA+/wtU7gloqPT2NRIy8DwCnrMJqRjQbahPDO/S9EUgkqQmsKauBmMJZ4SImqEsBK21iiV8JIkyWgpMcImqpkghJdAMAKOdvp57I3jfOTsWcyvKR72ecyH4F8PZFfRMxnZerSbs+ZVpmzDMRpIksQ/nD+Po51+th/LbLjuZOG1Q4YY2LBoaGF71ZqZRFSNP78zNatuM20UGogGbLcn5ndJUoiw1kOBq8C2sk6SJApdhdb5+sJ9g8JLxyH3o4VWng41RtKHGlN1eQdDfCX2uMqUsUyuz2YGZOwgbdPxS3QRY/O8QmoopeA1cTvcaccGBaKBUSmCEsJLIBgBdz+3H5fs4NZNi0Z0njlVRUwrlGjcP3XzaQD8YYUDbQOsmVU+5te6ZPk0vC4Hf9g1teY3vnygg8oiNytmlg6576q6MuZXF/HkzqkZbsxUYKQKQcU5XuFZyN7jhKzh2PYkJthH1ShO2Ym7cD9+32wcGLlIw3W80h2TCVEtmlU4MBuCSubCK6yGrbBgKjfL6/TicrjoD/fbzmhMZCjHS9O1uHUfLkJ4CQTDZNeJXv60u4VPXjiP2pL0/6AzYVW1zOtHuqZswjfA7uY+NB3Wzi4f82sVeZxsWjaNp99uQVGnRkWppum8fLCTCxZWZzSGSZIkrlpTxxtHu2npy/yhOFnIJNQI9o6XrutWorimeVAjtUievai6apvfZRKbYN8T6iGqRXE6nLiL9qFpLvSoMTA+VjjZ5XgNJbyG2/8rVxyv2DU3v5fExqixeV4hJTSk8DLHBqVtojoKCfZCeE1xQlGVLUe6UKdYnsto8IMXDlBZ5OaTG+aPyvkaamRCUY2tR7tH5Xz5yFsnjLDfmiwrQ4fLBxpm0uWP8PqRqdEodG9rP52+MBuyyJ+7as1MdJ0p5wxC+gq3WOwexn3hPss9UUL1gANF3gfYJ9abxCbYt/uM5qtOhxOX9xiSpKNF5gIJwstGRA0pvIY5amgsk+uzcbxiRVpIDeGR7RujlnhKjPmSWjRlRaOJS3ahk34wuhBeghERVTU+9cibXH//Ft7z//2FB185wkBoaibRZstAKMorBzv5uzPq01aGZcOSShm300Hj/qmb5/XW8V7mVxdRUZQ80mMs2LikhmKPc8qIipcPmPld1RkfM7e6iNWzynniramxRrGMJMcrvnHqLEAj6jC60KdzXswE+0A0YM13dDqcuF1QUxZBC88D4sVWYtjQTMpPx7BDjWPYTmK4jlc6N8vM8wJSNk81yailxChUNgrhNUXRdZ3bn3yHlw908KkN85lR5uWbf9rLud95iYf/1jTRt5fzvHygE0XT2bRs2qid0yNLrJ9fxV8PTM08L13Xeet4L2vGIcxo4nXJXLpiGs+800pYmfwh3pcPdLB0egm1pdmFxq9dV8feln52nugdmxvLUTINqdmJnLjE+vAsZHcbYdVnuFdy6j/WYhPszYe8U3JS7CqmviqCFl6QdM3E62eSOD/sUGOOOF5mrpWu62nztzxODx7ZcLoyyfGC9IJ7NCobhfCaovy48TC/2naC/3vxQr72vmX8+pbz+P3nzmf5jFLu+vO+KZ1nlAkv7mujrMDFulEWCRsX13C4w8+J7pEncOYbzT1BOn1h1s6uGNfrfmD1TPpDCq8c6Bx65zwmEFHYfqw7qzCjyQfX1lHklvnl602jf2M5TKY5XnaYwkvXJZRQPS7vCYJDJNabFLoKCSpBSwA4ZSfFnmLqqiKgF+BAjnNlEt2rocKMMIJQY444Xua+US2atjEqGOFGYMhQo93YoIgaYY9vj/V60ocaW/3alJ6nNlY88VYz/9+z+7l6bR1fuGSxtb2hvpxbNy0iGFV5WbQ1SImq6TTu7+CiJTWjOsAZ4D1LjIdi4xRcf9NNWTsOFY2xXLCwmvJCF3/YPblDaVuOdBFV9YzaSCRS4nXxoTPq+ePulin1mZzK+Riqqk/XdboCRt6gGqlF173I7uOElFDa/C6TQlchOrrV/NMpOSlxl1BXaay9Q/LEiYNE9ypdKwmTkVQ1jpXjlc09maFGq6IxIYyoaW6ioXqC/WdSFvl76uTrQE+/9i5H/NggXdc52nuUnxz/iZVw74tOcscrrMLnH9815RocjhWapvPQq0f5ym92s35+Jd/9UENSMuI58ysp9Tp5bk9birMIdp7oodsf4eJRDDOazK8uYlZlAX+dgnlebx3vxetysGR6ydA7jyIu2cH/WTmD5/e0EYxMXqd369Ee3LKDM+cOz1G8Yf0cIorG5u0nRvnOcpdUjteJ/vRr0BvqtcKU0bBRhYj7EKquZuR4FbmKgNPOldPhpNhdTFmRiuwM4NCL4u5tWI7XMEONiqago496S4mQEkIn82e9GZY0v/dYNysaqqP72JfpO/VJ/J0fQPVdgNP3UfpOfhIlkjq/UZIkXA6XJWr7wn34Ij5UXbUcwknveFV6JV4+0MGPGw9N9K3kPa19IW782Vb+8497eM/iGn56w5m4nck/fpfsYNOyaby4t23KlNhny4t725Ed0ph0Vpck47x/O9w5JXKOYnnrRA8NdeW4RtlFzIQPrJ5BIKJO6rmERzp8zKkqxOsaXmPaRdNKOG9BFY9uOT5lqqBTOV6HutI/k5Iap8oDRDD+mM3E8TIT7E1xYQovSYLionYkrTTu3hLDhpkIr+H24zKvO9quVzZhxtj9w0oYh+Sw3CqAQM9GJClKybTHqJj1fSrnfoeyGQ+jaQX0nfwUYf/SuHPFijaX7LJaSjT3N1ud8E2hGlSCI/7ec1p4lbglrlw9k/96/gCvH54a5d5jwfN72rj8npd581gP3756FQ/ceCZlBamTOy9bMY2eQJStTVO3rUE6XtrXzllzK9Ku4Uh477JpBCIqj2+bOs5CWFF592T/uPTvsuOceVXUlHgmdXXjkU4/86qLRnSOG8+dw8neIC/unRqOuJ3jFVJCQzpe8aOCZuHyNBNSDaGQieNlJtiDMRRbkiSK3cZkjNLibiS9FEU7LZoUTYkTA5kILxie62WuyWj38somsR5iQo0JrSSU8HSiwcUUlG3BU7Qf2dWLJIGr4BjldT9Fdncw0PYRgr3nAlDqKWXTvE3Wed2ym6gWpSPQQVgNM6vUcCxNcavr+ogrG3NaeAF8+5pVzK0q4tZfvUXHwNTJLRgt2vpD/NNjO6ivKOBPt17AR8+ZbdvrJJYNi2vwOB089+7U+HDNhuaeAPtaB3jvGIQZTd6zuIbzF1bxvWf209Y/vDyMfGPPqX4iqjZhwkt2SFy0pIatTd2jMhIk11A1nWNdfubVjEx4vXfZNGaUeXlky7FRurPcRdd1W3HR6ms1ZgOmcWhM4aWpXjSlCqfn5OCw6/Qja2IxhZe5v9kWobK0FweFKKoU97tqCgNFUzIWBsNJsLccr1FOsM/G8VI0xQoHJlY0BnovQJJCeEu3Jh0nO/spm/Fz3IX78PdswkUNly+8nOrC0+FHt8Nootria6HYXUxVQRVehzcunDvScGPOC69ij5Mf//06+oNRvvD4zom+nbzjp389gqrp/ORjZ2Q8S7DQ7eTCRTU8v6dtUj6ERoIZirp4ae2YXUOSJL71wVVEVI07fv/umF0nl3jreC/AuFc0xrJiZhnd/gitk1DsnuwJElV1FlQPf54ogFN28LFzZvPKwU4Od4zOwOBcJVV+l9lbK12SdU/IaASsRKYD4PScIqgEU85otMMUXi6HC6fDSYHLCFFWlwWQ9AJUTYvLiTKFQaZuV+wxmaLpmiW4Rj3UmE0riUG3S9M1wmrYChWq0Uoi/hV4S7fjkO2/N8mhUFT1DOgOypXrKPWU4pbdVkWjS3ah6RqKplBfUo8kSdS4a+JE6khbSuS88AJYOr2UL126hFcOdrK7uXeibydvaB8I8egbx7hmbR2zKguzOvbSFdM42RvknZOZ/yOeCrywt5151UUjGoidCXOri7h10yL+/E4rz0+BQoe3TvQyo8zLtCz7S40m5uzCPacm3+/8kU7jQTFSxwvgurNm45IlHnl9crteqfK7WnzGwPBUrkdICVlujBqeAYDsbsloZE0ssY6XGWYE4w9jp0NH1aPxjtdg2DAb4ZVtqDF2TSbS8TL3NdfZrGgM9J4PkkpB2etpj3e6e1lU38H+E9X0+Y2cR7OgwRRgld5KitzGthp3TdxaTQnhBXDd2bMocMk89sbxib6VvOGBl48QVTX+6aKFWR/73mXTcEjw3J7WMbiz/MQfVthyuItNY+h2xfKpDfNZMq2Erz/1Dr7w2MxGyxV2nuiZsDCjydIZk1d4He00RMJIc7wAako8XL5yBk+8dXJS9/uzCzOGlTDdQSP3NdXDN1b4KJGZOOQ+VKl3yBmNiXhkD7Ik45JdccLL4/TgdEbRpTDRmDyv4The2YYaY9ckFxyv2IpGVSkhPLAGb/FOHM70wqjcU84lDRqSBK/tNf7dmyKr2F1MqaeUutI6a/9ady1hNWwJ3Umf42VS6nVx5eqZPLXzFP1irM2QdPrC/M+W43xwTR1zh/FhW1nk5ux5lTz7rhBeJq8e6iSialy8bHyEl0t28O1rVtHaH+L/Pbd/XK45EXQMhDnRHWTtrIkLM4KR1jC3qpB3J6nwKvE6qRqlUUx/d0Y9fcEoL+6dvFWgdqHGVn/r6X5OKYTXQHjA+loJz8DpaTndayoLx0uSJJZULWFmycx44SV7cLoMkXIsJu/ZFFFj6nhpOeJ4KacrGsFY11DfuYCDgvLXhjy+uqia0kKVtfN9vH2siO6B066iW3azqHJR3MDtWo/xmW+u8ZRxvAA+tn42wajKk2+dnOhbyXkefOUoIUXlny7O3u0yuXT5dA60+Wj1i7YSYIxbKfY4OWtu5bhd84w5FXxoXT2PvXF80rb3sBqnTrDjBUae156WySe8jnT4mV9dlHF+0VCcv7CaGWVefv3m5K28tQs1tg6c/kM01cPXHNeja27UaBVOT4slFLJxvAAKXAVJoUaP04PbZVz7cEw+oilCMmmeapJtjlfsmkxkVWNsRaMsyciSh1D/mXiK3kF29Qx5fE2h0Qpo/dJ+nA6d1/aWWqFG2/3dxv7mGk+o8JIk6fOSJL0rSdI7kiT9ryRJXkmS5kmS9IYkSYckSdosSZJ7cF/P4OtDg+/PzfZ6DfXlrKwr5bE3jouk7zR0+yP88vUmPtAwkwUjyEW6dIVRubejfXKHuTJle1MP6+ZUjHufqXPnVxFWNJq6Rt64LxfZOyh0lg/mWE0ky2eWcrw7MOlc9aOd/lHNS5QdEh9aV8/LBzpo7Zt8xQhg73iZ+V0wtOOlRKYBDmT3KUJKdhWNicQOevbIHpxOQwDEOl7jEWqMc7wmsI9XbA8vr9OLEp6BrntwF+0Z4kiDmiJDSBV7Nc5Y6OPd44Wo0dSRjFp3jjhekiTVAbcCZ+q6vhKQgeuB7wLf13V9IdADfHzwkI8DPYPbvz+4X9Z87Jw57GsdYMfxoVXtVOXnrx0lGFX53AjcLoD6ikIW1hazr3tyOi3Z0BuIsL9tgLOH2fV7JCydYXzo7msdGGLP/ORA2wCzKgsodA/voTSamOJv7yQKN4aiKid7g6OS3xXLtWfUo+nwu7eaR/W8uUKi4xVRI3QFT/eTTJVc3x8xfneU8EwAw/GKZlbR6JE9TC+enrQ9KcfLYSSENwfiQ426fnrMUCbkUnJ9VuOClNM5Xl6nFyVk9Npyeof+XZQdMpXe01GLcxYP4HbqHDi2OOUxxXIxDslh3aOiKcMeuQQjDzU6gQJJkpxAIdACXAz8ZvD9h4EPDn591eBrBt/fJA3D975y9UyKPU4e3SKS7O3QdZ0nd55kw6IaFk8b+eiVdbPLOdyrTnmH8c1jhtA/cxzDjCYLa4uRHRL7J6nwOtjmY3Ht+I4JSsUKM8F+EoUbTad0tIXX3OoizppbwW+2N0/Kz4dEx6vNF99eJ6SGbF0fy/EKz0CSfUiO/owrGutL65lXPi9pe7HntPByy27kQeHVFwnhCxqP8ZASwhfxZdWNPutQ4xg5XmZbiEwJRo3u8VEtisfpIRqux+HsRXYOIEkSK2tXcsHsC2yPrSyotNYPoMCjcdaiAY63VaIMVqEmIkkSXtkbd48j6eU1bOGl6/pJ4G7gOIbg6gPeBHp1XTdjU82AWRpQB5wYPFYZ3L8q2+sWeZxcvbaOP77dgi8y+f6xj5S9LQOc6A5y+crkv5qGw7rZFfijp6uipipbm7pxyRJrxnmAM4DHKTOvuoi9LZNPeCmqxpFOHwunjW17jkypKfFQXeyeVJWNRzvGRngB/N0ZszjS6WfHYB+2yUSi4xUbZgTjj9zEkFNUjVr5R0pkBk53C6quZFzROLtsNnPL58Y5Y7IkU+g83Q7IITnwyEbfKk3ys/+k8V5YCWcVZoRhhBrHyPHKdlxQIBqw7t0rG46X03OCmqIaPrjkg6yvX8+88nm2DqOZ3xXLWYsH8LpUAj0Xp7ymx+kZtZYSw/b2JUmqwHCx5gG9wK+By4d9J6fP+yngUwA1NTU0NjYm7bNY1ogoGi8e9VNs8/5U5slDESSgsOcwjY1HRnw+dcD46+mx517ngrqxGZGTD7y4K8icEoktr70yZtfw+Xy2v+8AlY4Qu5r8Kd/PV075NKKqjtbdTGPj+PQrS7fOANO9Km8cOEVj4+RIZ3jhsNHrqHnvDjoPjk5yvUmJouOW4Yd/2Mo/rDw9726oNc4HAtEAVdHT3sB56nmcVXlW3D5lPWW45NOfi6qm8vHKj6No8F9HpnH29AJqCzaym91cXXE1S4uX4nQ4bRPTJSQqo5VIvRKfqvqUtY8syVR0xKc4fLT8o+xq20Wx28/ho6VcWupB6VR4+8TbVEWy8DMkaGxrzHj3oBK0zt/U20Src3Sq3hVNoSqU+X1/pOQj7NB2sJe9XFH6UZ5qKWNj1WwuqfhH8GH8B3y66tNJzmWJXIKn3ZN0zovqVP7ctJjL3Z+hrjgS9161XM05xefwXOdz3FxxM7IkUxwoxhsZXt/BkSRVvBc4qut6B4AkSb8DzgfKJUlyDrpa9YBZgngSmAU0D4Ymy4CkAYy6rt8P3A+wZMkSfePGjbYX//WxV9ndPcD3U7w/Vfnurlc4Y04xV1123qicT9N0vvnG0wQKp7Nx46pROWe+EYqqHHv+Wf7xgnls3LhszK7T2NhIqt/3d7SDbH3uAGeeewHFnonPhRot/vx2C7y6gyvfczar6svG5Zrp1hlgS3AfD716hPMu2GA7SD7f+EP7LqaXdnL5ey8ak/O/0L2LZ99t5b7zLqTAbYRwhlrjfOCN5jc43mqktETVKI/sfiQpjHfh7AtZUr3Eet3U28QLp14gGpqJzqd5R/szfT1/BaAx2MhrkddYX7+e/Z37re72JjNKZvD+ue8HYFfbLrad3AbAzJKZvG/O++L2fa7zOQAqCno40u3gWEkP08sKmVE5g6bWpoy/R4/s4Zq112S8/5un3uTYKaNx7pJZS2iY1pDxsek40XeCPx38U0b7BqNBHm1+lJYBw4F8ofsQsJ6u0u101cbnacWuo8m1y6+l3FuedN5llRLPnahk8zE/ZTN+Gffexys/zr7oPjQ07uu4D6/Ty6raVZxTe07m32QMI/lUOQ6slySpcDBXaxOwB/gLcO3gPjcBTw1+/fvB1wy+/5I+gsSACxZW09Sv4Z/kjSWz4UR3gL0t/Vy2YnTCjAAOh8SCMpkdxybHX//DYdeJXqKqzllzxj+/y2TJdCP3aLLleR1sN/40XVA7+mGw4bJiZilRVedQ++QYiXO00zcmYUaTvzuzHl9Y4Zt/2kNfcPJUg8Y6Jf6o3zZ3KnFs0OmKxpjEeiUYV9FY7C5mafXSpHPNKZtjfT23bK71dWxFo4kZeizzDAAS+08WElJCWYcazc7vifSGem23xzp1o9lOYritJFwOF2pkPkhR6iqT5YQ54NrELbsp89j/ged26syc8TbR4AIiwblJ75tjicxw40iaqI4kx+sNjCT5HcDbg+e6H/gq8AVJkg5h5HA9NHjIQ0DV4PYvALcN+66BcxdUoeqwfQoLgkTMZqdmG4jRYkG5gwNtA5O+e3oqtjUZnarPnICKRpOl040P38kmvHKpotHErGx891Tm/ZBymaOdIx+OnY6z51Zy3ZmzePSN41z43Zf4SeNhwmr+59/G5jOlSkJPzPMxhY8anoHkCOJw9hKKhihwnq5oLHIXsbByYVJriViRUOYto6LA+LyJrWg08bq8yJIMDh/VpRH2NRegaAo9weyehzq6bWVju9++Me5YJddnk+Qf2zzV4/SghOpxuk9RUZDcjqayoDJu/aoLq9NWls6dcQKH3Eeg+2ISbSEzry6kGvc6khyvEfnouq7/h67rS3VdX6nr+g26rod1XT+i6/rZuq4v1HX973RdDw/uGxp8vXDw/RElIJ0xpwJZgtcPJ0UrpyzPvdvG0uklzKka3Q/ZheUONN1wfqYi25p6WDytmPLC0en6PRzqKwoo9jjZ1zp5kr4htyoaTeZWFVHolidFZWOPP0JPIMr8MXS8HA6J717bwJ9uvYAz5lTw3Wf28a+vBGkf5rDxbBOtx4pYkZGq7UJiZZspvMzEeh2NgBKwBlwDFLuK8Tg9zKs4Xb1Y7i2nzBvvxMwtn2vs70kWXmZlY0gLMW96Lyc6PfiCjpROVTrsEux7gj22jlYuJNebjldEjeCRvSjhmbi8zbbhQzAKFkzsEutjKfUWUlDxCkp4DtHQ3Lj3nA4nDskxKk1U8zaBodDtZH6Zgy1HhPACY0TQ9mPdXDqKYUaT+eVG3sZUDDeqms6OYz3j2q3eDkmSWDyteFL18ormWEWjieyQWDq9ZFJUNh4ZxRmNQ7FiZhk//4ez+Z+Pn0N3SOc3O4bX32ukc/BGi2E5XpF+dF1GCU/D6WlhIDyApmtWeMvpcFoibGnV6XBjrDgwMcONxa7kfx8epzHHMagGqa9txww36mTvNNqJyv5wvyVwYhkrxytVqPFEX/JkhEA0gKZrRLUoTr0KcFJQ2BonbmOJdRLNxqmpKHIX4S3eieQIEh5YF/deYkuJoBIc9hrkrfACWFop8/bJvikbAovlxb1taDpcunx0w4wARS6JRbXFU7Jp7b7WfgbCyoQLLzCGOO9vHZg0PZOOdQWIqnrOOV5ghBv3tPTn/VqbbWBGs2v9UFywqJqF5Q5+v/PUsI63e+BPBHGOV4q2C/6o3/od0XQNX8SHGqkBnDg9p+gN9eKQHJR4jN/x2LDXtOJpVjjRTnhVFVZR6im1jo3FKxuhxpAWwu3ppro0yr7m7MYRmdiJSl/EZ+tCjbfj9WbLm0n/BoPRoJWbJqv1AFSVpf4jaWbJTCusO5TjVeQqQnJE8RTvJuxfjqbGVy3GtpTQdX3YfyTktfBaViWjarqVgzOVefbdNurKC1gxRmNX1s2u4K0TvXn/IMqWbUcnPr/LZOn0EvqCUVqHGcLJNQ62Ge7daDT6HW1WzCxjIKTQ3JMbYa/hcrTTh9MhUV8xvIfycFk/w8m+1oFhhcZH0phyNMnE8VI11XJrBsLGH0VmE07ZdYrecC9lnjIckvGoLXLHO4/LqpfhdXqpLbIfVzOvYh6FrsKk7W7ZjcPhIKgGCSpBltYHrHBjttiJyoHIwJCO11gn1w+EB+gMdNIZ7IzbHlAClvCSlPk4nD1Ul6RudSQ7ZGaWzKTQVZi0/omYwthbsgN0F2FffNWmx+mxJgTA8H9X81p4LSh34JIltkzxPC9fWOHVQ51ctmL6qA3BTWTdnHJ6A1ErdDFV2Hash5llXuorkj/8xpsl0ybX6KADbblX0WiyfMbkSLA/2ulndmXhuM8XPXuGE9kh8eRb2bteuRJqjK34S9do1Aw3mqN6lMgMJClMkBMomhKXe5SYKL+wciFzy+dawiyRZdXLbN8zQ40hLYQ/6mdpfQAz3JgtiaFGVVMJRAO2YijO8RrNUKON42U2rD3VfyppX0t4hZfh9DRT7ilPe/5ZpbOGdLsACl2FOCQHTk8rTvdJQgNnxCXZe2XDARvpzMa8Fl4eWWLtrIopn+f1yoEOIoo26tWMsaydbTg+UynPS9d1th3tnpAxQXYsHWwpsW+SdLA/2J57FY0mS6aXIDukvM/zOtLhH5f8rkRK3RIbFlXzh12n0LTsXPKIGhlVN2U4JIaR0s00NB++VmJ9eAayp5W+cA8SUlz7gsR8Lbfs5qyZ8U1ZY7GraASjws5Mrg9EA1SXKlSXRnnnWGFSNd5QJIpK8/uxDTVqYxRqtBF5pvA6OXAybnsgetrxcqjzcXmbkwoTEplVNmvI/C4w8rhMh9FTugM1Mt1qDQLJLSUShVemEaG8Fl4A6+dX8vbJPgZCk6d/TLZsOdJFoVvmzDljFw5bWFNMidc5KUeDpOJEd5D2gTBnzcsN4VVW6GJGmZf9k6SyMRcrGk28LpnZlYUc7sgN92U4aJpOU9fECC+Aq9bUcbI3mHXLH13XJzzPK7FvVzrHyww3GaFGCSUyDdnVQm+olxJ3SdxcQLsKRfNhng2xyfWmQDpr0QAtPR7ePpbdzzsxjGoKSNtQ4xg4XlE1aiu0zQapbf62uPeDSpCwGsYlFSLhxOk5kbKi0aTYXczCyoUZ3Y8pdj3Fb4MUIdx/hvVeYkuJRHe2zZ/Z9I1JILyq0HSmdJ7XtqYe1swqxzmG4QSHw5hT+NYUSrDffbIXgLUTMJ8xFUuml0yKUGOuVjTGMreqMK9nlLb0hwhFtXFNrI/lkuXTKHDJPLnz5NA7JzDReV5mI1STWHGi6zrN/c2W6xLreGlKBegeVNc+wmo4SRDYVSgOB49sCK+oHrWu3zDXT31VmJd2leEPZf4sSHTzLMfLLtQ4Bo6X3XV8EZ91H6qm0uozelRG1ShRNUpEjeCkEqQobm8bpZ6hc5tTuYeJFLkM4epwhPEUvUvYtwpFM8TzUC0ljvYezegaeS+81s2pwC072HJkagovX1hhX2v/uITD1s2umFKNVA+2+ZAkWFibO+Jg6fRSDnf4iKrJXbTziVyuaDSZW11EU5c/bwtKzOHYc6snJj+xyOPk0hXTePrtFiJKdr+vE+14JXaAjxUn/qifNn8b3cFu67V5jJlY7+cdgKQQWKYP/6HwOD2Wk2aKREmCy8/oJqI4eGl3ecbnSnTzzFw1u5/BWHSutwtpnhqIz+s62X8y7p4iagRZM3qllXqLUubIDYfYBHxv6Q503cPBXuNzSpIkvE6vrfDSdZ2m3qaMrpH3wsvrklkzu3zKNlJ963gPms6YhhlN1s2pQNNh+xRxFw+1+5hdWYjXJQ+98zixdHoJUVXnSB6HwCC3KxpN5lUXEYiotA+kDjPlMse7jYfUaDdUzoYPrqmjNxDl5QMdWR030Qn2pvgwiRNeg26cKVgGIkY140BkACUyHVDpV05Q6CrELZ9uuixJ0pBVdZnidDitEKUv6rPCotWlCuuX9vPu8SKOtmUWwkwMNZpCLlEQxYYZAdsRSsPBrmLUzO8yMYVYUAmi67ohvNRZOD2tKUcADZdYcez0HKe4wMdb7aergj2yxza5viPQkbFTm/fCC+Dc+VW8e6pvUs0Jy5TtTT04JFg7u3zMr3XOvErKClz8evvwGiPmGwfbB1iUQ24XGKFGIO872OdyRaOJmRuVr+HG490B3LKD6aXeoXceIy5YVE1lkTvrcONEhxpjHa+oGo0Lq5mi0JrZF/ETUAIomoISno7uPkAg6k8KMxY6C0fXmRkMiUWUSJw7dd7SfiqLozy7o5KokrrK3QyVJoYaTdGZGAJMdLhGzfGyCTW2DrTGve4OdROMBuMS62VtJrK7bcj8rmyJFcdOh8zqeSFO+FyoihHONIWXrusommIJx6M9mYUZYZIILzPP69WDnUPvPMl481gPS6aXUuJN3cdktPC6ZK47axbPvNtKa9/k6CWViqiqcbTTz8IcC4UtqCnG6ZDyPs8rlysaTeYOOkVNeSq8TnQHqK8oQHaMTYuZTHDJDq5cPZNn3mnlb4cy/3yecMcrJscrMRRn3pv5wA0pIWtGohKZQcj5MkBSiwO7xPqRYOaLRbVonPByynDZuh56/U62HUx9TdNVSgo1Dn7vETUSl0Afm98Fo5dcn+is+SK+JMdR13VODZyKayXh1KfhdLePvuMVk4c3u2w2y2cZ33fEb0waMJ1G8z7MPxIyDTPCJBFe6+aUM7uykNt+t3tKdVdXVI0dx3s4axybe/79OXPQdJ3Hth4ft2tOBFYOUo4lf7udDubXFFmhunwllysaTWaWF+CWHRztyk/hdbw7wKzKie8/9/lLFjO/pohP/8+bHMjw9zaXcrxiQ2FWYrfDSVSLWuG2UwOn0JRidLWEoLQHt+zG64x3Gkcrsd6k1Gs4MBE1krRec2rDzKgIc7TN3u3sC/VZAivW8dJ0Le5csV8nhhrHKrnerGZMpHmgOa55qlOvRXa1D9lKIltiHa8l1UuoKlGoKdCIBuKFV+yw7I5AR5JYTMekEF4ep8z/fmo9lUVubnjwDbYenRo5SPtaBwhEVM4Yh/wuk9lVhVy0pJbH3jiedcJsPnGo3fhHtCgHxcGcqiIrfycfyYeKRjBmNs6uKrSS1PON490BZueA8CorcPGzm8/C65L5h59vy2h49kSGGhPFR2JiPUCl1yhmMkXZqYFTg/ldEKaNQldhUjPr0UqsNylwFlAilxDVorYJ6nVVEVq63djV4bQH2i0Bo+qqFTb0RXxx8x5jRdF4OV6J+V0mp/pPxYUaXQ43Djk06qFGr9OL0+GkyFVEXUkdAMurVCKhuWiax2opEZtgn02YESaJ8AKoKy/g8U+fy/QyLzf9bCuvZWFr5ytmkvt4N/i84dw5dPrCPPNu69A75ykHczgHaXZlIce7A3lbbXe823ATc1HUJjK3yqhszDf6AlH6gtGcEF4A9RWF/Pzms+gJRPjHh7fhH6IyeiIdr4HwQJz4iHW8TEFozlg0H75dwS6UyHQ0wkQ0HwXO5BFNoy283E435a5yomrUdr3qq8MomoP2XnfSex3+jvjO/IPfR2IbjVhRNG6OVwrh5Y/6aR1oJayGkfUyXO4evE5vkrM4GhS7i1lUtcgSzyuqVNBlooGFuBwuJKS4BHszzJhpwcGkEV4A00q9/OpT5zK7spB//MW2SZ+HtP1YDzPKvNSVj+8ctvcsqmFOVSG//FvTuF53PDnY7qO+IjdzkOZUFRKKanTka7Vdl/GQmFuVG6IgHfNrijjWFci6+/pEc6LHWONcCDWarKwr40cfXcfelgG+9fTetPtGtWicMBhPklpJxORA+aI+Cl2FlrAy3zNmNE5Hde4BGBfh5ZW9lDnLbEONAG6vUdDQ3JUsvNr97XHra4rLxHBZXKhxHBwvX8SXJP5iGYgMEFGjyGZ+1yiHGU2KXEUsrlpsvZ5TquFyhokEliBJUtyw7BP9J6zfmXT3HsukEl4ANSUe7v671YQVje3HJm/IUdd1tjf1TMg4G4dD4ob1c9h+rCfvZ9ml4mC7L+cqGk3Mh2m+hhvN+56dB8JrblURYUWjJc8Gkx8bFLe54niZXLS0lkuXT8uoEGqiXK9UrSTMjvpFriJkh4zT4Yxzw9TIDFSX0b+rwDX2wsvj9BiOlxYloCSvVWf4EEXeMCe74ttKqJpKd7DbdhZlkuOlpHa8dPRRaSkRe43eUO+Q+4cVBac2zahoHGJG43BZWLUwrimrQ4K66m4igcXougOv7LXWLPae7X4Odkw64QWweLpR+ZXvc9bScbI3SGt/aFz6d9nxd2fMwuty8Mjrxybk+mOJqukc7vCxKEd7TM3Oc+F1rCtAgUumpjj7USnjjdl8NN/yvHJZ3DbUl3O8O0CPP72jNVF5Xkld6weTqINKEE3XrDYOsY00dc2NGq0kKh9CQrLygGIZrR5eJh7ZQ7mzHEVTbIc1t/naKCpq42SC49UR6EDTNftQYxaOF4yO6xUrXocS27quE9VCOPXaMXW8FlQsSNq2cGYIXSsgGpptOV6J6R52uXZ2TErh5XHKLKwtZk/L5BVebw7OPxvPxPpYygpdfHBNHU/uPEkwMnrDUnOBE90BIoqWUx3rY6krL0CS8ld4mUnficnHuYjVyyvP8ryOdweoKnJT7Mm9UPnqeuNhuftkerd8olpKpOpab96PKaA8sscSZUqkFnAQ4RRepzfpd9sje+KaqY4GHqeHMpexlolOUVSNGgLLdYiBoJP+wOkm0B1+o5mtbagxixwvGHkvr2A0GOeaxbpfuq7TE+qJEzdRLYqOhlOvRnZ1jpnwsuu3tqLeAZJCxL8Uj+xBR08So5m6tJNSeAEsn1nKu5PY8dre1EORW2bp9IlzZS5aWksoqrE3z5t5JnKw3fjrMVdDjV6XzPRSbx4LL39O5R6lY1qJlwKXnHe9vE7kSCsJO1aawutEb9r9JszxShFq9Ef8yJJsuVlepxdFU1A11RoVFNa7xiXMCOCW3ZQ7ywEjNypWwLQH2tF0DUU+ABDnerUH2gFsQ42JzlmsELITWSNNsE8U16HoaferL9zHkZ4j1mim2Ht2ywVIDmXMQo12FLgdFBQdIxJYgjuhshEM9y/dMPVYJq3wWjGzjI6BMO0D+ZWbkSnbj/Wwbk7FmA7GHooVM40Y+GQL6R4cbCWRq44XGHleJ/JQeOm6zvHuAHNyMARmh8MhMaeqMO+EV660krCj1OtifnURu5rTO14TleOV6HiZrpY/6qfIXWS5WVZbATVsVDQ62olqEdvE+tEOM8LpHC8wutfHiiSz87vsbkN2KDTH5HnZOV5hJYyma8nCK5q6nQSMPNSYKK5jvwfzXrpDNsLLKeGQHJR4xtd4qK44haZU4tJnAvGFF3Yd+FMxaYXX8hmGKNjbkt+NJu3oD0XZ19o/YWFGk7ryAkq9zknnLB5q8zGjzDsu0wCGy5zBlhL5RsdAmFBUy1lRYMe86qK8GhukqBone4M5vcYN9WW8fbI37T4TEWqMqtGk2YFhJYyqqYSUkJXfBVhtDEJKCDUyA829Exh5RWPsNdJh5ngBRLT4ysZWvyG8JEnDW9hmJdgHogFL0CQ6Xv6IP66Nhrm/iV2ocbQdr1ihZzqP/eF+69phxXDdCtxRitzDH44tSzIS2ac6zKox/ljQg2uMlhIxjlc2fyhMeuE1GavuthzuQtfhnHlVE3ofkiSxfGbppMulO9A+kNNuFxgJ9m39YULR/Mqvy+Wk71TMrTYa1ip2nShzkJa+EKqm57jwKqetP0xbmmrRiXC87LqPh5Xw6fyuGFFkdTBXIiiRWqLOfYB9RWOJO3NnJlMXxyN7KJQLkZDienmpmkq7v93aT3cepq3XRUSR4rZrumaFD0NKyP57V8NWCHM8HS9VUwlEA9Y4oJ6QkdMcijhw6CW4PD1ZrWkiha7CYbmQ00q9OL3HCA2sxy17LTcUjN9XpyOznMpJK7zKCl3UVxRMujAYQOOBDorc8oQ7XmCEdPe19OfNQ2koNE3nULsv55t7msIl38KNudrmIB3zqopQNJ2TvZmHEiaSfBC3q2cZD9RdafK8JiLHKzHMqOkaES2SlFgPRgK2y+EiFNFBdxGVjiFLMi5HslOezUM+U3fMLbuRJAm37CaiRiy3qCPQESeInN7j6LpEa487TnhB/KDsVD2ozPOOi+M1KLzM7TWFNRQ4C6w8r4iqWhWNIxFeBa6CYR1f7i2nuOpP6GoBsjonyfGyczvtmLTCCwzXa7K5Mbqu89f9HZy/sBq3c+J/fMtnlBJWtLwKxaTjZG+QUFRjUY6Ps8nXXl7HugNIEtRXjG/T35Ewr2awsjFPfsfzQdwun1GG7JDYnSbPayJCjYniw2wZ4I/48cieJEfD6/QSUgbDYLRT4CqwrdbNVEw5JAeFrsx+bpJk5Dm5ZFfcoOzEWYdOTzNgJNh3BDri3rOElxq2bUkBp8WQneM10qrGWFdT13UrzGveS7G7mMqCSvxRP2ElTEQNIevVOJw9IypYKHQVDis/rNxbjtPTRlHlC8jKIsKKgq4b/cxCSijjn93EP7nHkOUzSzna6R9yPEU+cbjDx8neIBuX1E70rQDGGgOTRuAetGY05rbwytdeXie6A8wsK8DjlIfeOUeYW5Vfwut4dwC37GBa6eiPUhktCtwyi2qL2dXcm3If82E2nqTqWh9Ugra5Vx6nh4jmQ0chrPandDwyFQmyJGf88AaQkHA5XHGhxlZf/Cg3hxzE6e6kudNNZyC+ca0pvFKFGuG0OLJ1vEYx1BhSQlbrCF/EGLskO2QqvEZkpzvYTZR+3I5iJEkfUWJ9oatwWI6Xx+mhwFWAt2wLHqcLjSjhcIlx7+hCeIERBtN1Y5j0ZKFxv/EXy3uW1EzwnRgsrC3GLTsmTUjXnNGY66HGqiI3hW4574TXsS4/syrzx+0CqC42+mHlS2Xjie4A9RUFyI7c7pO2ur6ct0/2pZ05Ot7hRrtWErquE1Ejtn24vLIXlSCq621UXbUVXrJDzjgE5XQ4sxNeMaFGf8SPpmu0+duS78FzjOOdTiJKvHjKKtRol+OVQagxnSsW62qazppZXWkKI4/TQ7GrmI5ABzoR3A7j5zASx6vAWTBs4VbuLTeEX+lBAHq7ziEQMf5AEMKLyefGgCG8FtUWj/t8xlS4ZAeLpxdPmsrGg+0+aks8lBXmbkUjGB+4s/OwpcTx7iBzKnNv8Hg6JElibnUhR7vyY62P53APr1gaZpXRG4hyojt17tx4J9jbda03hYNLTv5MMBPsg86XAfC6kl3GEndJxs2CsxFpcDrPTEenP9xPZ6DTVui4PCeIKm7UaHxBlim8olqUvrB92Hckjpc/4mdL8xbb9xIdTVPgBaIBdPQ4YVVZUGkJP4/LWMuRJtcP93izd1ihx8hrDikKA4FiHJLDdmKBHZNaeM0s81JW4GLPJKlsDEQUth7t5j2Lc8PtMjFz6dL95ZovHGz35Xx+l8nsPGsp4Q8rdPrCOZ30nYq5VUV543jlcg+vWFbXlwOkDTeOZZ5Xm68tadagXdd684FvlzTvlg2h5Zd2AvatJGoKM/+8liXZtioyFQ4cliDsDfXS4mux3c/pNfK8lHBd3PbYlhJD5Xhl20BV13VePPpiUkK/SaqKxtj8LpOKggoYbP/gdUeQHdmFZBMpdBXGzWLMhnJvOYDlgKrOwwQVPwVO+/w+Oya18JIkiRUzSydNGOz1w11EVC1n8rtMVswso9sfoa0/s669uYqu6xxqG8j5MKOJKbzyRfCe6Mn9pO9UzK8uornHGCWVy/QFovQFo3mxxounleB2OtidTniNYahxd9tudrTssF6HlFBSOC2shC2nx87xcunTQHcQ1jtwOVy27QRqizL/vM421OhwOCwBMBAZsBqnJiK7ugAFNTItbrudi5VIulBjujDiztadnBo4lSRmTVL18PJFfHhkT9x6Ox1Oih2zACjwGIPKRzJyrMBVYDTDHUYvL1N4OSRj7VX5MCG9lQJnFj+3rK+aZyyfUcq+1oFJ0e7grwc6KHDJnDVv4ttIxGKGdPO9Z1qHL4w/ojI3TxyZ2VWFhKIaHb78ELz5UG2XirnVRWh67hczWOI2D36H3U4Hy2aUpu1gP5aO16mBU+xo2UGbz8iJsstxCqkhIpo5piY5x0tXanHqhqOVyqnKRnjJDtlqzJoJZqgRDPfq1MAp2/0kSUN2dwzOlDxNJiNuAtEAqqYmuYOA7TYwuuNvO7UNMARtrLNmYud46bqOL+Kzzd+qlC6lVLkKpzM04o71ha5CHJJjWHlipvACo5dakEPoUgCPNDPjc0x64bWizmh3cCRPwgSp0HWdxv0dnLegKucqwpbNmByjg8xckzlV+ZGDZLWUyJPcIzMfLV/GBcUytzo/KhvzTdyuri/jnZN9qJq9aztUjtdwqx67g90EFWNA80tHXyKqRm2dmTjHyybUqEaqcQ6Oj7ELMzodzsEwWWbIkoxDcmQsvmRJtpyhqBpNG/pzuttRo/HCy04QJRJUgrZuF9g7Xoqm8MKRF+JEWV8oWVzb9fAKKSFUXbXNv3Ipq6lxXIbDIY0ovwtOJ8EPR8AVugqRJeMZ7HF6UHTjd9ClLsv4HJNeeC2fYTTqy3dRcLTTz/HuQM5UM8ZS7HEyt6ow7xPsTWGQD4nJkH8tJY51BSjxOikryO3CBTsWVBt/GR/psM+DyRWO59nvcEN9OYGImnJdhwo1vnLslZSuSzpO9p+0vu4L9/HaiddSdq2PalGcDqdtaEuJVuPCEDO2+V1FNVmNtTFDlRlXx0kOHJIDp8NpOXOpkN3taEo5muZB13WiajQz4RUNpgxJ2iXXt/nakhL17URt4s82FD3d0sLOiVKj1chuox3GSIRXbEh4OOeRJMlyN61ket2BI3xGxueY9MJrfk0Rbqcj78Ngfz1gtJHYuDi38rtMJsPoIPOhlS/NPesrCpCkPBJeg8OxR5KbMVGUFbqoLnZzpCO3Ha/j3QGqioz2F/nA6vrBDvYpwo3pHK/+cD+Hew4nNQzNhMSQ3L7Ofezr3Je0X0gNEVWjtm4XGGLALRkPb7tQYzaJ9WCEGsFexKXaX5JO9/JKh9NlJLmrkRpafC283f52RlWjqUKFYJ9cbxe+tKuYTLx2UAnii/hwOVxJYV1N9aKrJcguQ3jZCbNMRVTsz2m4IUtTGJtVrW6pCjW0AF3PLBo16YWXS3awdHpJ3ouCxv0dzK8uytncjRUzyzjeHaA/NHSyZq5yvDvAtFIPXlduhXJT4XHKzCj15o3wOpEn1XapmF9TzOEcd7xO5EkrCZP5NcV4XQ72pvh8DkRTF4/s7dgLwPG+41ldU9d121yo3lBv0jajW7p9Dy8wQo3lrgXUl9bbiqVpRdNsjkqNGcJK5XiZzURjKXAWGN3rhxBestsQXqFQCW3+NnT0lL27YtHRUzZXtXO87MK/to6XTXK9md+V+MeZGq0GwOkyDAg7wTSrbJY12zEdsWs7XOfMEl6Djlehqwh0N0qoPqPjJ73wAiPB/t1T+dvuQNV0tjV1c/7C6om+lZSYQ8n35nG4MR+Fwaw86eWlajrNPQFm51kPr1gW5IHwypdWEiayQ2JRbQn7UzS51tGtNgOxaLpmOVTH+o5ldc3OQGdGSeVwutLRzvHS1AJ0rRi3O8C0omm2Tm42ifVwOtSYKlF/VtmspG1F7iLcDveQoUaHsw9JCtMW3mOFZ81KwqFIVZlo53jZCS/bHK+YUKOZVB/Vorai0xRe6UKNxe5i5lXMS/EdnCZWII/U8fI6vciSTKnXCWhEgkNfH6aI8FpRZzTqa+7JjyG3iRzp8BGIqKyZVT7Rt5KSydCsNt/cAsifXl4tfUGiqp6XifUmC2qK6AlE6fYPnRczEURVjZO9wbwSXmC0ldjfltp5OdabLKyO9hy1BFlvqDelMLDj5MDJoXcaJKgEUTQlqZWELMlWM1Knq9PuUErcJVn15IKhQ42zSpOFV4m7BJfsQtGUtOaCJOmo7t30qTst4RBQMvvssBNOYJ9cPxzHK6yGLTEcK3LN/Dg1UgMoOJy9OB1O23Utdhczr3xo4TOajpdDctAwrYHqolKcnlNEQ0J4WayqM+zHd07mZ56XOUh2Vf3QNupEUVviobrYnbdFDGFFpaU/xKyK/Hpoza4spK0/TCg6splpY83xPKu2s2NBTW4n2B/r8qNqOgtzfM5oIkunl9AxELYEbaJ4ePX4q1bLB5M9HXviXtuJs1SkarmQSFSNElYGxUCC8FpeszzJhUkkW7cLhg41VhZUJs2MLHYXW6HQ2OrDDn8HvaHeuPXskR9Hwm0JuFA0s6rQlI6XTajRXLNY/FF/nEiLqJG41yElZNsvbWn1UuM60WpkVxeSpKVsAVHsLmZa8TTbmZqxxK7tcHt5xZ7DITmMPDvvURFqjGXp9BKcDom381R4vX2yjwKXbH3w5yKSJLFsRv4m2J/sCaLr+ScMzJy/5p7cdr1MVy7f1jcW899froYbzTmj+Sa8lkw3XId9rcZnR1ewK+59VVd55tAzVkfz3lBvkmuVabhR07WMk/HD6ulWEuZ8QDDCgWtnrEVXpmG6MHYMR3ilq2qUJZkidxFl3vg/wIvdxXG9vMAQSsf7j3O45zCHew4TVsL4Ij58+l5KlQ/hlioBo3ggkxScROFlhigzDTUmniOph1c0mDQhwCE5WDdjHU6HEyW2ojFFeNB0r+aWz037vcS6ZcPt5WUn7lwFR4HMilqmhPDyumQWTSvhnTx1Y3Y397KyrjTnh94uqCnmaKc/L3PpTgyGoXO1eCEVppA5luO9vI51B3A6JGaUZd4cMteoqyjA7XRwOEcrGw+1+5AkcvoPNDtM4XVgMM/LThgFlSDPHHoGRVOS3C4wXKxMurC3+9tT9qRKJKyErbypWBdmVtks3LIbWZ2B7OpGkuzbWdQU2Vc0puvRZYUabUJppuBITCAvdhfH9fLSdI3jfcfxyB7qSuoYiAywp3MPR3uP4pQ8lCofRI/OAIxQYSbrkZhcb1Yp2jpeKfLnYsOVdj28Eh2vacXT8Dq9TCusQ4tWWBWNduFBCYkityGGhsrzShS1w+3llYjLexzILPIwJYQXwKq6Ut452Zd3okBRNfa09LOqrnyib2VI5tcUEYiotA/kRyf1WPLVkTFz0nI9wf54V4D6igKccv5+5MgOiXlVRTkbajzY7qOuvIACd35U5ZrUlngoL3RZeV6t/lbb3lydgU5ePPIiB7oOJL2n6RrN/c1DXivTMCOcbiUB8XlHCyoWAEYPLzlFfpfskKkutC+GSuewmKFGuxwvc7agneNlhhojWoQ2XxthNcyssllML57OipoVlLhLiKgRZhTNxkEBWnQ6siQbwisDwZr48zBF1Gg7XhKStQb1JUbYrsK1GJCRzYpGG+FldqIHmFkyM+2w6iThNYw8LzvhJTmiFBa12eydTP5+CmbJqjpjnuCpvuF1Op4oDnX4CEU1GnI4v8tkvtVkMjcdgXSc6A7gdjqoKc5sunyuUFnoxiVLtOW42D2eh4ULdiyoLcppxyvfwoxgpCksmXa6slFRFdvWDgBHe4+mfLBnEm6MbZw6FLFd680QoFs28qNUDYKhopT5XdUF1Skbp6bLQUpX1WgJLxvHS5ZkJCT8ET8tvhbKveXWfm7ZzcLKhaysWUl1UQmSw48aqTVCeJqScYWnSUSNpB2cnernE9vLK7GHV0AJWG07zOrQ+lJDeLmZDYDTnbqHV+w2h+RgTvmclPefKGqH43h5nB7buZwVpR0ZHT9lhNfKwQT7t9PMBctF8iGx3mRejfGBcqQzNx2BdJzoDjCrogBHjodzE3E4JGqKPbTn8IByXddp6vLndUWjyYKaYo53BwgruVXMoGo6hzt8LMpD4QVGuPFAm8+KSHQG7AVNOobq56VqKq0++yHSdphd610OlyUG5pTPQXbI9Pqc6LrDEgOJpMvvSut4DYYa7cYGpXK83LIbr9OLS3bRE+pBkiTb6keP04PDIVkzG03hlUn3+lgC0YB1jJ0zaZdcDwmOV0KoMbFtR4GzgMqCwTy0kPF9G4O+odiTXngBaasbR8PxsjsPwLTK3oyOnTLCa9kMI0cq3yob327uo9jjZF4ezA+cUerF43RwNEcdgXTkW/+jWGpLvbQP5K6T2+WPMBBSLEc0n1lQU4yq6Tk3H/NkT5CwouWl4wWG8PKFFavlT1ega4gjkglEA3T4UzsOA5GBtLMMEzE7tsc2TzXDjF0DhkAoK7L/d5cqvwsyCzWCjTMzKBBMAZZ4TrMAYEbxjJQNX2FwZmOkFnlQeGUSaowlEA1YxyQ6XmEljI59Ok9cjpddqFGNWvlddaV1ltjtGnDhcfuRHIbYsxNKia7VrLJZto6UW3Zb4jbVsZliJ7zqqjL7HJ4ywsvrkllUW5x3lY27T/axsq40L5wYh0NiXnVRzg8STkTXjQdp3gqvktx2vMzfB9MRzWfmD34PuRZuPNhuhOkW1o5sePBEsdRMsB/M8+oMZu94AbT4UlcsDjX3MZGwGk5yYWaWGAOxuweMh3pdeXJjVUmSmF48PeV5zSRwO2LFQuKD3RRcToczSbwVuYsocBVQ4CwYsppSdrej615kClB1dViOl5mQn5hcny5s6Yv4LIfMNrleixdeJl0DLipKjHs03b1EEtfD6XDaun52Ymk0Ha9iT2afcVNGeIGR55VPCfZRVWNvS7/VhywfyEfh1ReMMhBW8jYHaVqpl7YcdrzMZPT51ZNBeOVmS4lD7fnZSsJk0TSzpYQhvLoCXcP6nDZbTtiR+LAfCrO3lCkG5lXMs/K2ugZcFHtVZpSVJx03p2xO2iHXmYQaITnPK9bpSszzKnGXMKt0Fsuqlw05lNvpMhLAZb10xKHGRAcxVX4XEDeiKFEED4QH0HTNCuuaifW6Dl39TmaUO5AdctoeXonYdfm3K1oYbi8vu1y9Yldm//6mlvCqL6PLH6ElTxLsD7QNEFE0VtWXT/StZMz8miKOdweIqvYl1rnIiW4jvJGvwqu2xENvIJpzeUcmRzr9uGSJ+jxrTmtHscfJ9FJvzgmvg+0+aks8lBXYD3POdUq9LurKC04n2GuK7WDloUjnamXrePmjflRdtYTX/Ir51ntdA04qS6K2sxiX1SxLe95MQ42x4s2cx2hiV9koSVJGA+hltxGOlbQqNF3LaFB2LIFowAoxJjpe6YQXGAn2up48BsrM/3LJLioLKi3RORCUiaoOakpVphVNy0p42Tl/doJ4uL287M6Vzs2Mu2bWV8tjrAT7PAk3moUADXnleBWjaHrOtzeIJV9bSZhMKzWs91wNNx7t8DOnqijn+9Blyvya3KtszNeKxliMBPvT/aKGk2CfztXK1vHqDxliwO1wU+AssESWrhuOV1WJQrm3PK51QYW3grqSOtvzgSGs0rU6iHO8YtyZxLwuu8rGTHHIQRxyP5Jq5KFlMig7lnSOV6rEepO+UB9BJRiXlB9RI9Zxboc7bv26BkO6VSUKs0pnpQwL2m2vKqhKyvNK5USORi8vp8OZtkdbLFNKeC2bXopDyp/RQbtP9lHideZVNdi8wXBSPoUbTeGVr45XTanxQZ6r/dOOdvqt34vJwIKaYo50+HImZUHXdQ61529Fo8niaSUc7vChaYNJ1cNIsB9Nx8tsGuqSXZR4Siw3KRB2EI46qCyJIklSXCL9UG6XWX2YilihEBtqTBJeNo5XNsjudlCMJqp24dl0IjVdjtdQjld/uN82sT62Ua3ZRgJOFzFUlUapL623FUguhwuPM1nMSpKU5Hqlmp05Gr28MnW7YIoJrwK3zKLakrxyvBrqyzKyj3OF+XkqvCqL3BR7Mhv3kGtMKzEdr9wLoauazrGuwKTI7zJZUFPEQEihw5cbQretP4wvrOS947V0eglRVac/YPw+DyfBfrQcL13XT4e/HK64h2pHnyEGakoN8WE6YW7ZzaLKRWnP63V6jdl+KXKKUoUaR9PxAkN4SarhLNmty8n+kyn/sIitatTR49yrTEKNiaHN2K71Xqc3LnzbPeDE49Io8mhUFFTYFi2k+94TQ8Fj6XgNNSMyliklvMAIN+ZDgn1YUdnXmh8d62OpKHJTUejiSB4Jr+ae/G7uWZvDjtep3iARVZtcjtegwDncnhu/4/le0Whijg7q9Rn/FoeTYK/pmjVHMJFscplCSihuQHbsQ7V9UHjVlhtiwXRVFlUuSutmwelxQXatDhK3xz7YE4VBqac0TrwVuApSntP2Ou42HFoFYC+8eoI9KYVqUAnGJeTHul5DNWPtC/UlVzQOdq13SA6mF0+PC7d29ruoKolieg920wDSCq/ieOFll1wPwvEac1bVldLpi9Cag+5ALPtbB4iqel50rE9kXnVRXvXyyuceXmB0r3c6JNpy8HfaTEKfn2fzA9Nhfi+50ig43ysaTebXFBGV9/LM8Z9a1XaJw5kzIZVgyEZ4DUQGiGgRa4RNvPByU+RVKfQYTk9NUQ0OyTFkmBGwQmKpRFKmOV52FX7ZuF5OdxsO3RAbiYnuYDhTdmsfUSNE1SiKpliiOLaX11CO10BkICm0aTpeLocrScx0D+bSpWM0HK+Kgoq017DDJbvi+qVlWtEIU1F4DQqZd07m9sBsMxyaT60kTOZVF+fMQ2koFFXjZE+Q2ZX2fwnlAw6HRE2JJycdL6uH1yRyvGaUeilwyTnkePkoL3RRXZy6aWY+4HHK1JUX0hXZbz30u4LZ53nZ5SwFo0HbLuvpzhFVo9YIm8RQY23ZacfHLbtZWbuScm/5kOcdyvGKa6CaJscLkvO8snFcZFcHMoZQsHMIUwmvWPFq5XnFJNgPlVyv6Rptvvh5hrE9vGKFUSgq4QvJVJWkb/CaTngVuAri1i6V8KourM7KMbQ7n3C80rB8RhkOKfcrG99u7qO80EV9Rf4Jgvk1RbT1h/GH0/+lkgu09IVQND2vHS8YbKKao8KrxOPMe1EQi8MhDVY25sYfF4fafSysKc6rXNBUnDnzTBwUWQ/9YVU22iTRZ1vR6I/44xp6mo6Xphnhr5qyeDGwbsa6jM5rVjRm4ng5JAce2ZPkuJnY9fKKpb60PmVoTXIoOF39SLiSXCpN1xgID9gKr1iRZuZlxYYah3K8ANr88cIrFA1Zjlfs/Xb3G2tfWZpeeA2VnxXreqVKrndIDtvWIEMRJ7xEjldqCtwyC2uLeTfHhdeBtgGWTCvJyw/TfKpsPNEzWNGY5z2maku9OZlcf7TTz7yaorz8PU7HgprinBJei6bld5jRZNn0CrzqGvrDA+i6PrzKRhuRlW1Fo+l4mV3rTTej2+dE1SRqE4RXpm6J6Xgljq1JdZ5CV6HVoyuRdJWNHtnDhjkbuHDOhbbXcUgOvN5uHHpJUgNVs5mpWdUZy1COVybCK3HMkFkl6ZJdccKotddY+2llw3e84HSel1nYkIoZJTPSnscO4XhlwdLppVaH5FzELA/P15wNc6xKXgivPG8lYZKrjteRjsnVSsJkQU0xJ3uDBCIT6+p2+cJ0+yMsmCQ5dEtnlOJV1xHVIoSU0PAqG0fB8eoP9xNRI7hko5O6+YA1E+sTHa9MSRdqlJCShEGhq9A2zAjpKxvPqjuLQlchs8tms7xmefx1JIkNczZQXRbGoZcTVpW4Igazca1df69Y4WX18srS8UrEFHpmvzST1h43BW6V0sL0jaGHFF6DTlYq989kRnFq4ZWqCjVWeGXVSy3jPScRS6aXcLI3SH9oeP94xppOX4T+UP6Wh8+tyh/hdbw7gNMhMaMss8Z3ucq0Ui/d/ggRJXcmBoSiKqf6gpNiOHYiy2aUoOuwt2Vic0XNxHpz5E6+s7q+jAJtLWCIn7ASzrrBp21fqiwdr75QHzq6JQZMQdTR68Yh6UPmHaXCFF6mkxaLnQuWmKMUSyrHa0bJDJZULbG2n113NhXe08nj6+vWs7ByIeXFfmS9BEWR4lwvc5j1kDlearzjpema5YJlgyn0XLILr+v053BLj5sZFRHSmeUS0pCCp6rQaKSabowTGM6YnSPmdXpt+4TB6fCiW3anHUyeyJQUXstmDA5kzVHXK9+rlLwumbryAmtGXy5zojtIXUUBTjm//ynUlhgfDLnSWwqgqcuPrk+O4diJrJ5VDsCuExObsnCoI78/KxKpLfVS6i7DTQ39EePBf2rgVFbnsA01Zul49YR6gMFWEu74VhJVpVGc9pHCITEf4HYiKzax3qTAmVp4JbaUKHYXIztkLph1QVxo0ulwsnHuRmSHzNoZa1lRuwKA6tIwDr0URYsflG0KoYgaSXKw7EKNZuhwqMT6VFiNah0uCp2GOIoqEp39LqZXpJ8jWeAqGHI2pUNyUF1YnTK/y8TpcFJTWJO0fV75vJShZFPMZZPfBSMUXpIklUuS9BtJkvZJkrRXkqRzJUmqlCTpeUmSDg7+v2JwX0mSpB9KknRIkqTdkiRllo04BiyZbvwi52q40fwwzefwQb4My27q8ud9Yj2cHhuUSy0lzJYik6l5qsm0Ui/TSj3sbu6d0Ps42Oaj0C0zM88d21iqynx41bVWCKp5oDmr4+3crWxaSUTUiCXUXA5XXJsAo6Jx+JGSdKFGu23pQo0OyREnOgpdhZwx44wkJwwM1+f9i97PGTPOsLaVFenIUgGqHrEVXpDsegWU1KHG4YQZo2rUSth3O92WOGrvc6HrEtMr0wuvTMN704unD+l4gX2e14LKBUMLryzyu2Dkjtc9wDO6ri8FVgN7gduAF3VdXwS8OPga4P8Aiwb/+xTwkxFee9jMLPNS4nWyrzU3W0ocbvdR5JbzOvw1v6aII53+nG5Uq2k6B9oGWDwJwjQ1g45XLs1rNJvozp2Ewgugob6c3c0T63gdbB9gYe3kqGg0qSr14VXORUfHF/Fxqv9UVq0golo0KWE8m1CjmVgPhuNV6DYerqGIRH/QOez8Lkhf1ZhtqDHxGIfkYFXtqpT7Jo7PKXQV4HQ4UPVQnFtlhhohOc8rVsBag7L14Qsvs5UEGK6RKSRbeoyw3fTyISoaM2x8Oq1oWmbCKyHPq8BZQF1JXUrhZQqucRNekiSVARuAhwB0XY/out4LXAU8PLjbw8AHB7++CvilbrAFKJckKfsyglFAkiSWTi9hf646Xu0+FuT5h+m8amOsSpc//V8sE8mJngChqMaSSSC8TnevzyHHq9NPbYknb0cxDcXq+jKOdPrpC05Mrqim6ew+0ZeXvf7SUV3mw6OtQsJBX7iPsBqmw9+R1TkShVY2oUZ/xG/NDnTLbsvxau8zxMBYOV52ocZ0jpfdMdk8MzxOD05ZA0mnb9DZiqrROHGV6HjFtpMYDcfLHD/kkBxx7lVrj5sij0pJwcgS602mFWcmvKYXT48L386rmIckSUhItuHEAmeB0edtHEON84AO4OeSJL0lSdKDkiQVAdN0XW8Z3KcVMJtj1AEnYo5vHtw2ISyZXsK+1oGcdGTMvjz5TD60lDCF9+Lp+S+8qoo8yA4ppxyvo51+q8J1MrKqvhxgwlrTHOrwMRBWWDc7+67buUxliR8HbgocddaD/+TAyazOESu0NF3LShQMRAaIqlFkScYhOawHtjWjsWx4f0x6ZI8ljDINNVYWVKYdQzRUflM6vLIXt9P4XsyK6NgwIxDXUiKqxjuJicn1Q40LssMcF5TYtb61x830IRLrIXPhVegqTHL87PA4PVQWVFqvF1QssL6uKqxK2l92yHhkT9bCayR/ijqBdcD/1XX9DUmS7uF0WBEAXdd1SZKyUjaSJH0KIxRJTU0NjY2NKff1+Xxp30+Hoz/KQEjhd8/8haqC3EmsDio6rf0hHL72YX9vo81w1rk9YIQGnn71TfxN6eeXTRTPHDY+RFr3v0Xj4Yl3F0fy+wxQ4oJdB5po9LQMvfM4cOCUnzOmOXPm99hkpOtsnSdifLQ98fIOIs3j3yD2ryeMB1+09QCNjYfG/frpGMkar4ku4QWvikvawCHlUT5U8iGqo9WUt5dnfI53et/hkNNYE03XqAomPzRTcUb0DF6WX8bpdvLxyo9THinH2e6kr9VNoVNnTn8F0jCCJbIkW2sSiAaoisbfk+yQaWxvzOqcSkihqj3z7y2WSr2SC8sb+FV7I+6emVS1V1GsFPPxyo9b+7gkF2XthqOqamrcewV6AUXtRTT1NtHqbCWoBKmKZHcvRUoRlY5Karw1fND7QUraSwir0NXvZG05TOucltT3K5aWvha69mbf6y0dBZECqpQqHJKDg76DHOQgPp8PR5Mj6WcGcFP5TRRFi3C1Z/6cG4nwagaadV1/Y/D1bzCEV5skSTN0XW8ZDCW2D75/EpgVc3z94LY4dF2/H7gfYMmSJfrGjRtT3kBjYyPp3k9HcVM3v9zzOhXzVrBxafYda8eKXSd64YXXuGR9AxtXJE9inwiGs86qpvPvrz2Du7KejRuHnmE2Efy25S1mVfZw+XsvmuhbAUb2+www+51XcRS62bjx7NG7qWHSG4gw8MzznN+wiI0b5k/07cQx0nWO5Xs7/4LPXcrGjWcMvfMo8/RvdlFR2MZ177so59ISRrLG//7iv+N3FhAIrQIX/LTtp9QU1fCxVR+zQnVDMX/mfM6YafxMWn2tPLnvyYyv/9LRlzgYOojT4eSh7oe4fuX1FLuLOfF2LdUVCt3Thvegry2qZeOyjQDsbN3JluYtce/XldSxccnGrM75/EvPc6o0u6rPWHYd/avx/0AT59bWsKNlBzu6d1jvF7mK+MjsjwDQMtDCn079yXpvYeVCNtZvZMmsJTRMa+CN5jc41nosq+tvP7WdE+ETFLuK+av0V86tPZcTnW50Cimr72XGyqXsbN2Z8viLll9kOzh7JBzuPszzR55nRc0KqwFtY2Mjsxpm8fyR55P2f/bQs5xTe05GI6NMhm316LreCpyQJMlsGLIJ2AP8HrhpcNtNwFODX/8euHGwunE90BcTkhx3zPBSrlU25nsrCRN5cKzKwfbcbSlxoHVgUuR3mdSWeHKmqvHIJJzRaEdDfdmEJdjvON7L2tkVOSe6RgOn5yROZQVOyU1/uB9d17NqKxEbahxO1/qIGsHtcFvNUzXdGBU0kvwuM7EeMg81DsVIQo0AxR7Dqe0LGhEKuypGM4crsTLUdKLM/w8rxyti5Hi55NPjglrNxPqKCLNKZ6X9HrNpWpopZmXjgsoFcdtTCbxCd+H4tpMA/i/wqCRJu4E1wLeBu4BLJEk6CLx38DXA08AR4BDwAPDZEV57RJR6XdSVF7CvJceEV4cPlywxZxK0OFiSwwUMEUXjcIdvUlQ0mtSWeunIke71ZiuJydjDK5bV9eWc7A3SOc790/oCUQ61+1g3u3xcrzteOD3NRnNMuY6BiJGLe6L/xNAHDhIrtobTtV7RFEsMOCQHvT4nUdUxoorGWLcu06rGobBLyM8GU7iYExh6Q71x7+u6bomxoBI/THs0kuv7Ikaj2tgB2a09boq9CsUFGqWe0pROktfpzdgBzYZCVyEzimckVTiWekptf24V3oq0eXh2jEh46bq+U9f1M3Vdb9B1/YO6rvfout6l6/omXdcX6br+Xl3Xuwf31XVd/ydd1xfour5K1/XtI7n2aJCLlY2H2n3MrSrK+4aeAIunGRMCBnJwQkBTlx9F01kyCRLrTWpLPHTlSPf6o51+ZIc0KXqkpWNVvZH/8vY4u15vnTAafE62xHqAcm85Tk8boODRF6FoChE1wsn+zBPsY8VWNj28VE21hIZbdieNCqodZmI9ZCC8himihhqFkw6jYlMipISJKpJtt3qzkW3iOo5Gcr3ZuiJ2QHZLj5vpFVGjktBdlNJpGs5Q60w5b9Z5SU6yJElUFSTneNk1XR2K/H+6j4Al00s43OHLiQeVyeF2X143To3FDOPlYrjRqmicRI6X2UR1vN0XO/a1DjCnqhDXJPgDIh0r68qQJNg1zo1UdxzvxSGd7qA/mVhZuxKHQ8PpacWlrAQMtyUQDdAd7M7oHHGOV4pQY2xrBGvfqN/qaeWW3ZYj1NHnQkKnumz4sznHwvGC7HtIxVLgKkCW3GjSAM3dalL/MzjdyytJeJlDskfgePWHDFFnjgsKRyW6B5zMqIhYXelTCa/pxWOXA11TZC+m7Cobh5NjNrk/FYdgyfQSFE3ncI6MtokoGse6A3mf32Viukm5OJrpQNuAlYc2WTDHBk30sGxd19l5opc1k1AUJFLscbKwpnjc87zeOt7DkumlFE3CHmklnhLqS+pxek7iCJ8JnH7oZxpuDCpBSxCkCjXu79ofN+AZBpunDgoKl8Nl5e6097moLFFwycNvPxQ778/O3RpOjheMLM/J6/TidMho0gAnuux7ZqUSXlaocZgNVHVdxxc1nr1uh5tCZyFtvW5AYnpFxFr7iRBeqbC7l+EI5iktvJbNMBrT5Uq4sanLj6rpk0Z41ZUXUOiW2d+WG+sby/7WAeZVF+EZ7tC1HCRXxgY19xg5T2snYRjMDqODfe+49QTUNJ2dx3tZO0nzuwAWVS3C6TmJpJfilYuth3424UbzmFSOV2egM6k/mJlYD4OhRnchug5tve4R5XdBvONllxM03FDjyIWXA40+WnvthV+qUONIk+tDSsgKT7pkF16n93TH+oqI9X3ZhfcckiOlKzWW2N3LcJjSwmtedREuWWJvjowOOjxJKhpNHA6JRdNKOJCDwutA2+SqaITccbzeOtELwNop4HgBrJ5VRqcvwqm+8RG8k7VxaixzyuZQUGh0IvJI062Hfpu/LcmlSoUvYnyepnK8ekO9HO87nnRMRI0gSzKyQ6bYVUyv30l/wMnsmpH9u4qtasw5x8vRS3e/fa5YouOl6zq6rhPVoui6jqqpRNVoVmOdYHBc0GCj2gJXAbJDprXHRWmBQpFXs0KoHqcnaTRQdWH1sNdrJFQVVsV1th8uU1p4uWQHC2qKc8bxMltJTKbw15JpxexvzY1QrkkwonKsOzCp8rsAqoo9OCRon2DH663jPXhdDpZOosKFdJgje94epzyvHcfMxPrycbneRCA7ZBbXliFJIdzafKJalKgaRdVUuoKZ9dHyR/1E1IhtA05N1xgID3C873icU2kKL9ORKnIXcbTNcKrm1o7s39VY5XiNXHg50aQ++nyV6FqyEzcQHojrWt8T6uHt9rcNwaVFUXU1LrG+N5SZ+2t1rU9oJTG9IpL0fSWG+MYysT4dTocz7QinTJnSwguMcGPOCK8O32B4bvLkbSyeVkKnL0xXDiR8mxxq96Hr/P/t3XmcW3d56P/P9xwdrbOvnvGM9y2LEzsOISYJsUOAsLQspWHpC7gtlLbQlpYfLaX93d+97auU/rj3doH2llKgBZpbSCE/KBRKWeKQQDDZncR24n23x57xrNql7++Po6M50kiaRRppJD3v1yuvaKQj6fiMPXrmeZ7v82XrqsbILDpMQ9HT4qv5tkFPnR7nhqGOhliZuxDXDLThMRTPVKnP68nTV+kMWg0/I21z9yY8vvNYCXvjZyfjUmrfxsvh2cdm4jNFy4xTsSlSOkU4EeZK+Er2fqfHy2vaJa+gFeTEJR9twSSdLUtvrIflW9VYicArxQxamyQi6+cck9KpnOs6EZsgkU6QTCftwCudyikzjoZHFxQch5NhkqmkvaLRChCOGVydthjosgMv92ys/MCrFv1djkoMbG2On4wlbF3VyoWJKBPh2o88ODoy3TBlRke2wf7Sysl6OT1njZbxAnuz7Es13Cg7lkxx8PxkQ/cf5fNbJtsGWnn69HhV3q+RB6e6rWpZRajlEmb8JYAr8AoXDry01hwbO5b9eiYxU7zMGBvP3naXG/OHpwbMEKdH/Kzvj867b+B8lm1V4yKHd+afk8fwoEmTVpPEI5sLHndx+mL2tvN9cEqMKZ0beIUTYc5MzL8IIpKIkEwn8RgeAp4A50btYHd19/wZLwm86tzW7AT72vZ5pTOrKxsu8Op3Aq+VkVUE+1y8HoO13Y2XMehv9dc043Xw/CTxVLpp+rsct23s4bGTY8v+C1yjD07Nd81QBIMWvKqNcNL+wB+ZGSl47FhkLGfcxHR8uugML/egUCfw0lozFZvKDk/1m35GJgLEkkbZZUZDGTkN9ZWaXA92OXSpfUd+jz8b8Jn+g8TDm9Earkau5gRTl6YvAbkbjifTSRIpO/PljOAAO/A6PZnbO1dIJBEhqTOBlxXg7BUfhtKzGS/XmAz3GIcWb0tZIzTKVWikxGI1feB1zSq7Xvvc+doGXufGI0QT6YYLvHpbfXQErRW1svGFi1Ns6m3BNBovY9DX5mOkhhmvpzJZn2ZZ0eh47fYBkmnNdw9enP/gMjTy4NRCdg73Y1ojWOlN2SBqMjZZcAXdxemLTMVnf86UKjU6gzsBRiOjdpCWDGdf12t6Xf1dmnV95f0ykz9hvZKlRkMZ2UGvi+Xz+LAMOyA0/IdIJzsJR4McHz/OhenZHf2cLKN79llS26VGdzAGZMu3heakuU3Hp/MyXj5WdcazIzvcmbwWb0v2Gtaqv8tRiZWNTR94rWr3M9QZ4GcnKrvD+WIdzcwSa5ThqQ6lFFv6W1fULK8XL0011MR6t75WP6MzcRKp2gwFfurMOIPt/uxoi2Zxw1A7Q50Bvv3s8m4/+8SpqxgKbmiSjGKbr43OzmNYyRtyGuUL9XldnL7ITHwmu7quVKnRHXiBnfWaic/kjJIIWSFOXvKzqjNBwFfevyf3ikawfy7m70FYziq9pWaADGVkAxrltcu0I1N2EsJZFQqzM7ucrCPYpUbne+IOvCLJCFprzk6dLfneTpDsMTx4jSAXrnoZ6rYD3IAnMKf06gQ8tSwzAksOct2aPvAC2L2hm/0nxkinqzOHp5Djmb3tNjbQikbH1v5WXrg0VbU5R6VMRBJcmIg2ZH8X2BkvrWs3m+6p01ebLtsF9gfp67YP8MiRK8tabnz4yBVuHO6gpQEHpxazdtUVvGl7w+JSfV4XZy6S1ulsliucCOcED27uHi+AUxOn7P6u9Gzg5TPbOT/mLbvMCHMzXkA20+RYao8XlNdg7wRtaWMCZZ3iauowhjKIp+JzJtmHE+FsWdPdXO9e1ZgddjtPn5cztd5jeIhG+kilFat75pYZHU5vVa0DL6VU2aMsJPACbt3QzXg4weEaZmVOXpmhze+hK+St2Tksly2rWpmKJrlY4zEHAEcyJc9GW9HouGVdF37L4E3/+8f8P994rqplx5GpKGevRpqqsd5tucuNE+EEB86Oc8em8pt768lQl4+gx84yFFvZOBGdyJa2nExKWqdzViw6IolITk8SwMWpi4xFxrL7D1qGRXRmmLRWrOtfnsAr/8O7nA2vywm87P0a7QxW2Pd1NDFWt6wFmBO4hhPhbE+Z0+NVqLke7GG3pWZ7Od8n0zC5OtkFkM14FVow4MzuqkSPVbnyg+bFksAL2L3R/kY+erx25caTozOs7wk15Eolp8F+JYztaOQVjQCb+1vZ9+G9/OLNw9y3/zR3fmIfn334eFXe++lsf1dHVd5vpVnucuOjx6+Q1nD75upP7K6l7kA3gZaTmOleZmKZUmNexsu96s4Z+AlzAwewxyHkS+kUL46+mDM8dWJqAI+ZzgYD5XBvF+TIz3DVKuPlzKVKppOM60fxprfSxksxlJFz/bTWRBIRglYQ0zBnVzW6xkk4G5qDvWm205SfL5VOEUnagbLH8HBloo3OlgQhf7ron6cn2ENfqG9OibYWnHEjS1X7P8EKMNgRYG13kJ/WMPA6fnmGdQ06l2dLv/2PaCWsbDx4fpJWv4fVHYWnNDeCVe1+/uxN2/n+h+7kprUdfPw7h6syLuXpM+N4DMV1g+3L/l4rkbvcOB6eu9lwuR4+coWQ12y6wNYOvA7i1RsJJ+zrGk1Gc/q0Ls7MBl7FyosO94pGt3AinDM89fLVHoZ7YlRiV7GFZLzKKV+VE3gFrSCGMhiLjhFPT9OWfA3JyFZCVijnWkaTUTSaoCeIx/CQ1Eni6bg9QDWTQcxfRVpsb81IMpLt1zOVh4tjQYa6Z//NFPrzdPg7WN26esl/zkoqtOXTYkjglXHr+m72Hx8lVYM+r2gixfmJCOsacLwBQEfQS3+bb0VMsD9wdoIbhtobMrOYb31PiA+9cguptObho8WHTlbKU6fHuXawDb/VOPtfLtbrbrDLjf95sPBv+uV45OgVdm/sxmqSwbQO0zDpalX4VQ/x9Hh2yyB31isn4xUv/QtefmO9WyJlD09NJduYnAmwrr8yo1lqUWrsD/UvKDvkzPKKJqNYhkWHdxXx8GZavC05m407QVXQCuJRnoIZrzmBV5E+r3AinA28fAwRiZsM9cxe60I9XkoptvVsm/fPUw1SaqyQ3Ru7mYwmOXSh+mMlzoyF0bqxtgrKt2UF7NkYS6Y4fHGS7as7anoe1bRjuJOOoMUPDxeefVQpqbTmmbPjTTe/K9/21ctTbjw9GubUaJjbm6y/y9Ed6KYlkAKlmYrYZTunz2smPpNTXpwv8MpvrHeLp+3hqYnIJgDWV6C/C+auaoTlz3ht69nGcNvwvM/1e/x4lP3evcFefKHjpFMdBIwhYDaDGE7ajfXO7C+nuV6jswFX/giJq9GrBTOQTsZLoTDi9tBWd0m32FDYWs7vciuW8VpoGVQCr4xbN9h9XrUoN564Yq/CadSMF9h9XkdGpmqSUXQcujBFIqW5cah5SmGmobhzSy8PvXB5WVftvnhpinA81ZQrGt2Wq9zoZCybrb/L0RPsoT1kzzCbmrF/To6E7V8m3NkuyO3xKqRYqTGt0yTTSbyml3R0GyF/it62ypToF5TxKqPHK+AJ5HzoKxTrOtaxqWvTgs7NNEwUip5gD1bwCABW/GbAFXglwgSsQHZVn9NcD5BIJ7LH5MvfiBxyp9YnY2sJeFN0tc5uyVRO6bQaimW8FpoJk8ArY1W7n/U9odoGXg3a4wX2ysZoIs2ZscKTpKvhQGYT42aZgeTYu7WP0Zk4B84t316Cj520J4Y3W/9RIdly4/OVKzc+cuQKA+3+hhw3sxDdgW683jimbiWcsLNQY+ExUukUl2Zyr7O7PJYvlU4V7QFzggiPESAyvZGtq8NlbxPkWO5So1IqJ0u0qmUVASvA+s7182bS/B4//aF+1ravxTItTM8kpvciqcg1BK0g04npnMZ659xTOpW9Zg73nC/H2cm587ycUqPH8BAJD7C6O55zrVdKZquYYs31C+39ksDL5dYNXew/MVb1rMzJ0Rm6Ql7aA+XVjVeybZmBpbUo5ToOnJ2gp8XLYHtzDfe8c0svSsGDy1hufPDwCOu6gw25DdNibV/dzoaeEF/66amKzK5LpTU/OTbK7Zt6mqI3sZDuYDeGYeAzW0nocVKJTlI6xWhkdE7GS2tdNLiaiE0U/Z44q/FUfCNae7h2uHK/JBZa1VjJjBfkZok2dG7Ivse6jnXznlu7vz1nTIM3cJREdC0hq52Z+AyxVIyUTmXHepiGSVqnsysTHYUyXhenL84ZK+FkvEzlIxprzykz+kxf2XOylluxAEsyXktw64ZupqJJDlZ5+6ATV+xREo1s66pWLFPxzNnly7rM58DZcbavbo7GerfOkJedwx08+MLyBF7RRIqfHBtlz9a+ZXn9eqOU4j13rOfZcxPsPzE2/xPm8ey5CSYiCW7f3Jz9XWBnGFq8LfgsTVKNEJ+xm6zPTp7lavRq9jjnA75Yn1exMiOQHZ6qozvwe8PZzZorYblXNUJu4LW+c3329nzlxkLn5g2+CJj49SY0OjsPLZvxyvSE5fd0FdomKJ6Kzxkr4fR4mdoeZeFurF/pZUYoUWqUjNfi7d7gzPOaO3RvOZ28Em7o/i4An8fkmoE2njkzXpP3n4klOToyzQ1DHTV5/1q7a1sfB85OcHmq8htoP3pslFgyzd5tEng5fuGmIbpCXv7hR+XPUHvkiN3fdVuTNtY7egI9+C1IqVFiYTuYOHT5UDaDNRWb4umLTxNPxYv2ec23ohFAR3ayZtWVipUZYf7AqxKzqZyApTfYmxO8rGlfU7C5v+S5+c+gVBQrfitANvAKWPYYHic7lx9oFduU/NzUuTnHJdNJVLoHQ6VZ1Tkb5K70MiOUKDVKxmvx+tr8bOgN8dPj5f+WulDhuD3RfX1P+fs/rXQ3DnXw7LmJmmzN9Ny5CdIabhxunsZ6NycbtW8Zsl4PvjBCwDJ56fquir92vfJbJu/avZYfHB7h6Eh5q3kfPnKF6wbb6Gkp/uHZDLqD3fYHntJEYkHSqUBOqWsmMYNGE01Gl5bxSsUx8GLQytbVlRt9YxlWwcDKHXhVorTmBCzubBfYQZ1TeizEa3rnlDmVSmMFjqMjO/CZPlI6hd/jz/45nPONpnJXfRbbGDu/zyscD5PSKUgO0d0+lTMrrS4yXsVKjZLxWppbN3TzsxNjJKu0yfDJK/ZvCI3cWO+4cbiD6ViS41eqP8/rQKbE2UyjJNyuG2yjr9XHvhcqO89La80PD49w26bupp7fVcg7b12Lz2Pw2YdPLPk1JsIJnjx9tanLjI7uQHc205BSV4iHN+c87uwXGE/FiwZeztT6VDrFcyPPMRaZ/SU7norjoRvDM8q63sr9XS6UUYLcYKucxnqHE7Cs71g/57H8cuOW7i2sbV87e45moXLjEdKpdkKmvZLWvTl0NvBybRWU1uk5gZhjNDKac6zz/VHJAbatuZpzbLFREiuJrGqssJdt7GY6luTpKpXETo42/igJx45MtunpM9Xv8zpwboLBdj+9rc2ZNVBKsXdrHz968TKJCv5ScezyNGevRqTMWEB3i4+37BrigSfPLXrPzPPjET7+7UPc8YkfkkhpXnVt/zKdZf3IZryAlHmKeDh3mKYzPT2eijMdm/vLndY6m/GKpWLEUjFOT5zOlhjjqRRGapBA60FC3spVINr9hbPslc54tXhb6PB30BmYO9JlsHWQkBXCY3jYs24Pd62/K6ekV3AT78xYCZ+2r7PTWA+zgaJ7pEQkESm6cEFrzfmp84D9/XGCZFP5uG4499+GZLya0B2be/EYiu8fWt6Bkw5nlESjN9cDbOhpocXnqUmf14Gz403b3+XYu62XqViSJ05dnf/gBXrwsJ1Bk8b6wt57xwYS6TRf/MmpBR2vteajDzzLHZ94kH94+Dh3bO7lgfe/jF1rm6eMW2zxS9AK0uHvAEB7XyAR3oTWs5mi+TJeE7GJ7LR0J1hI6RSnJ+05U/FkCo/upatz6RnKQjr9hWfb5WS8ylzRCHbAUijbBfY13Tmwkzdf8+bs9Hd331ehwMv0TGF6L+CN30XQCuYEkM65O0NUoXh/l+Pc5LnscbGEHUAHApdo9eW+dz30eEnGq8LaAxa3bujm+4cqv+VHISeuzNDX6iPkW9nLZyvBMBTbV7fzTGaeVrWMh+OcGg1zQ5P2dzlu29SDZSp+UMG/2z88PMLW/taG3vuyHOt7Qrzq2n6+9NNThOPJeY//j+cu8i8/O829Nw/xo9/fy9/+0k3c1GRDaUttQNwb6sUyLNLmKbT2kYjYgYbWOjsOIpFOEE1G58yYOjJ2JHvbWcHYG+xlPDrOWGSMFBEs5aenvbL7bBbKQEFuebESpUa/x8/m7s1FH7++73q6ArMBvHvERaFxFwDe4FGIXsfWrh05wZnT6+VsGwT2DC+tNQcvH2RkZm7i4uyU3ecVSUSITNtlzpbW03OCznrIeMkcr2Vw9zV9HB2ZzmajltPJK427OXYhNw53cOjCJLFk4QGHy8Hp77qhSfu7HK1+i71b+/jKY2eYiJQ/kXsqmuCxk2NSZpzH+16+kYlIgj//zuGSxyVSaT7x3RfY0t/Cn75xO0Odjb/gphB3L1E+p88rqUZBxYmHtwKzM7jct91ZL601R0ePZr92goWhtiECngCnMtPV/b4wrd7Wyv1hqF7GC8gJrObjzngFPIV/cfIG7LESifDGnPuz0+szG2WDnclK6RSRZKTg6tGZ+Azj0XGm41GiUftnRmtg7udAXfR4FQmwSv3S4CaBVwF3Z/opvr8MG93mOzk6w/om6O9y7BhuJ5HSHLpQvX0bnYn125toq6BiPnj3ZiajST73cCXGHFwhmdbs3dqc29gs1K61nbz39vV88dFTfPOZ80WP+8pjZzhxZYaP3LMN02iuWXNuCwm84qkY3sBR4jNb0Xq2zBjwBAoGXmcnzzKTmP1FOpFK4DE8GMpgbft60pnepGDwcsUDL6c8mq/SPV6LtZCMl8d/FmVEiEfmZtLytw2KJCLZaz+TmCnY73V28izHL7SR0vZx+dktr+ldcNaoloqVFBf6fZTAq4ChziDXDLTxvWUOvKaiCa5Mx5sq4+X0WVWzz+vA2QnW94QaemeAhbpusJ3XbR/gc4+cYGymvJLKgy+M0Or3sGttc5XCluIjr9nGTWs6+OgDz3L88tzG75lYkr/6/hFuWdfFXU2eQSwZeAWdwCuOFTxMOtVOMj6YDbxava2kddreGsjVYP/i6Is5r+Nshq016Il7aUu8GYCAL0Grr3KBl9/jz86+ylfpVY2L5c7O5Ge8eoL2Klp7rMSxTD9d7vNNZdqlRlePlxN4pXQq+z1xOzd5juPnhtDGJRTGnGtTD2VGkIzXsnnlNX08fmqs7A+nUpxREs3QWO8YyKwsrHbgdYNku7J+95WbiSRS/P1Dx5b8GtOxJA++cJmXb+nFY8qPkflYpsHfvOMmPKbi/fc9STSRW2L53CMnuDId4yOv2dZ0OyvkKxV4tXhb8Hl8aDTK/xyoBDOjryaWjKNQ2cZsd4N9NBmds1FzIpXAMi0iE7cTnbqZgdA6rum5Bp/HV9GMV7EyI6yAjJdZOOPlMTzctf6ubKbOHivRRjK2Ouf5TsbLCbbcgRdQcNum06Oaiake8J7AY5hzBru2+drK/nNVgzTXL5NXXruKtLabh5eLM8+qmQIvpRQ3DnVUrcF+ZDLKxcko21dL4OXY1NfKG3es5guPnmRkcnFjDs6MhfnTbx1k95/9gMtTMX7+xsFlOsvGM9gR4C/v3cHhi1N8+F+f4fGTY0xGE4xOx/j7h47x6uv6JXtI6cDLUAZtXvvDOckELT3/RjK6jplwJ17Tm804uKfXHx07ag/rdEmkExjpfsJjr8QXOkCoa1/2fSuZ8SrWWA/L0+O1GO5gy904v2PVDtp8baxpXwOAN/gCyphh+srrc1aROhtlJ1P2ohEn8FIoTGXmlHYBtDaZGLkHZUTR5iU8hgevJzdD1B3oph44PW75pNRYputXt7Gqzb+sfV5Oxmttd3M10d441M6xyzNMRstv8J7PYyft0Qk713Qs+3vVkw/evZlESvO/9y086/Un3zzInf/jQf7xJyfZs62Pr3/gNl593aplPMvGs3dbH7/9is1868AF3vLpR7nhv/8ne/7nPqLJNL/36m3zv0ATMJRRcosbZ6xBPBXH33qAQPuP7dIjfbOBV3o245VfZkzrNMl0knR4Fx7/CVr6vo5Sdh3N5/EtuFy0EMX6u6D2pcZC4yQ6/B1s79sOkB2wapgRWnr/jVR8kPDY3uxzTMO0M16Z5nqnx8treglaQWbiuYHXzNjdJGPDtPR8g5SO4zE8c77P7o26V7pCf08W+nen8WcYLJFSiruv7eOBJ88RTaSWZSr3ydEZBtv9TTfx+8bhDgCePTux7PvPPfSi3Yd0Y5PP8Mq3tjvEvTcP8X/2n+ZXX75h3nEQ+4+P8vkfn+DNO1fz4VdvZVDGRyzZh165hbe+ZJjDFyY5fHGKwxenuHGonU199dHfUg1BK1iwRwjsERAwu3ox0Pk9kpfO4YvdhZHwAs/aQ1Tj01wOX86ZTg8QS9j5Bku10Nb/FZSazYZVa0Uj1D7j5Q4SnMDrtuHbsufSF+ojYAWIJCL4QoeJtz5OZOI2rOBRvIGTeJTHnlafiKK1JpKcDbxC3hAXpy+SSqcwDZPYzFaiEy/D37YfX8tBkuEkQSs4N/Cqk4wXFC4ryjiJCrj7mn7C8RSPHhtdltc/0WSjJBxOv9Vy7w6gteahFy9zx+Ye6UMq4Dfv2oxhwO98+SniyeLT7LXWfPw7h1nV5ufP3rxdgq4KWN0R4BXX9POBvZv41Nt38t47iu+l14xKlRvb/G2YyswGZmkSpIliqXamR96OZXhJpBLEU3GevfRsznO1hsnRlwLQ2vEchpm7t2DFA68Flhpr0eOllMoGX36Pn81dmxloHch53Ck3ArR0/wemNcb0yJtJp/zZc56JzxBNRknr9GzglRkJEU6ESSU6mL78Jjy+c4S6vwvYg1c9hmdOb1mxKf8rUaEgS3q8KmD3xm5CXpPvLdMw1RNXZpqqv8vREfSyvieUHfOwXA5fnOLSZIw9W5p7lVgxqzsCfOItN/LYyav88TefL3rcd5+/yNNnxvnQK7c0XXZW1EbJBnurBZ/py2a8nK2C2joOo9NejNRq4pkRByfGc6fQRyd2E43bmcWAf+6sqUr2d1mGVXKVXq1LjTBbbjSUwa1Dt855fF37uuxtZSRo6fsa6VQL01d+DkPZ5z+dmCacCJPWaRLpRE7gNR2PMDVyLwCtffejVAqtNSmdmlNqrKdsF0jGa9n4PCZ3bu3lP5+/VNH97QCuzsSZiCSaMvACO+v1zDLv2ehsCH2nzJkq6udvHOTX79zIfftPc9/+udvaJFNpPvEfL7C5r4U337S6wCsIUXmlAq+gFcyOlIDZGV5BX4xbr38BM7WaaNyyR0W4ZiAkokPMjL0SvAeBwh+Slcx4lervAru8qLBXsNYi4wXzz/IabB3MOTfLd55g1w+Iz1xPfOKVQGYSfTKSneflzOLymj4mpu3VkC29X8e0xgGy2zZ5DE9OubOe+rugcD+XZLwq5Bd3DXNlOsZ3n79Y0dc9fNFu/NzYpH0dL1nXxcXJKM+eXb7g66EXR9i2qpX+trn7kIlZv/fqrezZ2st/+8bzPHYytx/m/sfPcvzKDL9/zzYp14qqKRV4hbwhvB478NJaz87w8rVy7VASvy9CUk8TmbBLium0j5mxvUxeeBeGZwIVeDK78i5ftVY0Opx+qlr0eMH8zeCmYTLUNpRzX6D9x4R6vkk6ag9VvTqjckZJZMuXeiNRfYFg1/fwhWZ3bXAHXu5gbzFT91eC/MDdVOaCR8HIT9J53LmllzVdwQVvcrtQBy9MAnDdYH3MLam0n7txkKDX5IuPnlyW15+KJnj85FXZvHkBTEPx12/byZquIL/6xcf5k28e5AeHLjEyFeUvv/8iN6/t5O5r5DqK6ik2dBTsLWW8ptcelKpTxJPxbH9Q0AoSDI6gVYypsd1Mj76aq6c/SGR8D1bwKO0DXyCpI3hNb8EPyWrN8HI42aRalxpLcVY3OpSCQNvjdPTZ/VpnL1zHoVN9RDN9ol7TS3RyF2b0dlJqDLPlhznPL5bxcoa21ov87NZiVsNK4DUPw1C889a1/OzkGIcywVIlHDw/SW+rj77W5szGtAcs3rhzNf/2zHmuLsOQ2h8fHSWZ1ty5RcqMC9EesPjsu29m++p27tt/ivd84XFu+Zg9q+ujr5WhnqK65is1OgFDLBkjlorhM+3Bp36PH38mi6Kto0QnXobHd4H21X9PW//9mNZ4dnhqPqVURSenLyTjlQ28apTxKrZVkNtw+3DBf//+gN3KYVgXOHR8OxOjtwCQnNrD9JXXEfLawXM4b55XUrsyXmbjZLwWUy6WwGsBfvHmIXwegy8+Wrms1/PnJ7h2oDmzXY537V5LLJnm/sfPVPy1H3rxMi0+Dzevk4GUC7Wht4UvveelPPPfXsX/ee9Lef+ejXz0NdvYtba+fiCK+lcq8DINM5uZiqfi2cCrxduCUipbLvR1/yvtg39P+8CXsHyze2Q62wXNeU9PMCcAKjcDs5iMV616vBaSpfF7/Kxqsef1eQwPg62DtPpaMZQdPvjbHuOard8C7yEM3U706mswvZfo6fspCjVnkGqhUmOrt7Wi89OqIf98F7PHpMzxWoCOoJc37ljN1586xx+8ZlvZe/7FkimOjkw3/Z5s21a1ccv6Lv55/ynee8eGim0MrLXmoRdGuG1TN5b0JS2a3zJ52aYeXrbMM9aEKKZU4AWz2aRYKkY8FccX8GWzVU5Te0JPYflzNyXXWtsZL3+Bxvq8/q43bnsjo+FRnrr4FCfHTy7q/E1lLmj7m3ooNQK8ZPAlpHWa3mAvpmHy8OmHmYpN4TE8xFMxDO9ptHUMfzpJV/cXwHMew0wWHKTqBF5+jz8bvNVbYz1IqbEq3rl7LZFEiq8+cbbs1zpyaZpkWnNtk/Z3ub1r91rOjEXY90LltmY6OjLN+Ykod8oYCSHqkvtDuZB2XzuGMrLT6Z2MF9iZJoXKrrJzS+kUGl14RaMr8PJ77DlV/S393LPpHu697t4FBylgT9dfSHm+1hmvhZQawR6muqplVTYj6IyLMJVJPBUnnLSb670eL8O9MUxPLHvcTGImZ3VpMp3EUEbOxtz1NkoC5ma4FrqiESTwWrDrV7eza20nX3r0JOm0nv8JJRw8b/eKNXupEeDV162ir9VX0TKujJEQov6Vynq1+uzSlLMRs9fjzQZeIW8Iy7RyNmx2ZFfeFSg1uhvrncDC0RXo4ubBmxd87gspM8IK6PFaRDDp5nxvnI2yp2PTdgnX9NLh66DFmv1eaDThZDj73ELDUxsh4yU9XsvkXbvXcnI0zMNHr5T1OgcvTBL0mqzrbs4ZXm6WafCOl67hoRcvc+LKzPxPWICHXrzM5r6WebfBEUKsXAtpsE9reyWdO+OVnfOVnht4OVmw/GyFoYycsQmFmuyv77t+wZmZhTTWQ+1LjUvtq3ICUyfwSqQTpHU6u12Q8+d3gtnx6Hj2uQUDrzrMeOVfOyk1LpPXXD9AT4uPP/3WwbJW4h08P8k1A20YFeppqnfvuGUNHkPxpQpkvU5cmWH/iVH2Nnn/nBD1zl2KyhfyhrIfdApF0Apm9xsMWkG8hrdgxiuRzgReedmK29fcTl9o9mdGyDv3l2KlFLevuX1B577QjJcTcK3kVY2FOEGxaZj2SA/XDK+QFcr++S3TotXbylhkLFtuTKVTeNTsikaP4VlQP9xKM6fUuIjmegm8FsHrMfjk23dwaizMu//xZ0xF5/YQzCed1hy8MCllRpe+Nj+v3T7A/Y+fYSKy+Gvq0Frzhw88i98yee/t6yt4hkKIaisU/GQfs2YDL5/Hl1MmDFpBLNMikUrk9BbBbKnR/SG5Y9UOtnRvyTmu2FiJgdYBNndtnvfc55ta73DOo2Y9XkssNTrfGyfj5Q68glYwJ+PXHegmnopnVzc6GS/n+9cV6KrLcTX5wbv0eC2jl23s4e9+6SYOnp/kPV94nEg8Nf+TXM5cDTMdSzbt4NRifu3ODUzHknypjIGqX3vyHI8eH+Uj92yjT6bVC1HXSma83IGX6aPFNxsoOaVGjc6uoHMkUgk8hifbuL+hcwO7BnbNef1S87x2D+8u+SFrGVbdlBqXmvHye/yYholHeUjrdHa/TK+RKTW6Mn4d/g4UirGIvStGttSYCfrqscwI5Y2TkMBrCV5xTT9/+dYdPHZyjF//5yeIJxe+j2O2sV4CrxzXDbazZ2svn//xyUUHswCj0zE+9u8H2bW2k3fcsmYZzlAIUU3zbhvkCrzyM17OY/nlxng6ng2auoPd3Ln2zoLZlvzm+vzzumngpqKPr2pZVXJFppsTcNVbxgvs6+CUSMPJMAqFx/AQskJ0+Duy18A0TDr8HYxFxrK7DbgzXvXYWA9zv2eS8aqCn7txkI+/aTsPvXiZP/7m8wt+3vPnJzENxZb+ym1N0Sjev2cTYzNxvvLY6UU/92P/fojpWJKPv3m79M4J0QBKBV7uviC/x59TlrSn19sZ7/wG+0Qqkf3Ad49HyDffBPtNXZuKPjbYOljyuW61XtVoGuaSs20hK5Q9/3AijNf0ErAC9msauXPMugJdpHQqm/VyN9dLxkssyttuWcOvvXwD9+0/zTeePreg5xy8MMmm3hb8Vm3+oa1kt6zv4ua1nfzDwydIpBaeRXzkyBUeeOocv/byjRLQCtEg5hui2uHv4Nqea+kOds/ZY7Hd1w4wZ5ZXIj27XZAz8qCQUv1lYI+zcN4j35ICrxqVGqG8Bnvn/KPJaHZFo8NdbmzztWEqk5EZe16jaZjZbFu9bRXkkDleNfThV2/l5rWd/OEDz3Ls8vS8xx88PyllxhLev3cj58YjfOPp8/MfDEQTKf7o68+yrjvIb95V/LdQIUR9mS/wClkhAlYAQxlzMlTtvnYUKqfUmNZpkulkdoZXsdd3hqfOZ0373JYGj+GhN7Tw+YG1znhBGQ32VignYHQa6x3uPjdDGXQFuogkI8DsBtmGMpYc+K0E7mBLMl5VZJkGn3rHTnyWyQfue7Jkf9LodIyLk1FZ0VjC3q19bFvVyqcfOragQbWf+uERTo2G+bM3bZcsohANZN7Ay5VdyQ+8nB4wd+CVP8OrWFZroRtlD7cPz7lvMf1dYAcgCrWo51TaUmd5uTNezuu4e+PyR2q4M1tOqbHe9mfM5w62JONVZQPtAf7i3ht54dIUH/7qM9y3/xR//f0j/NevP8ffPniUWNIOxg5esBvrZUVjcUopfmPPRo6OTPPNA6WzXocvTvL3Dx3nF24akn0FhWgw7nKUw/3B7p4llb8CMjtE1R145c3wKtZAX6qx3m2wdXBOiXAxZUawA5BaZrugvFKj+9x9pi838Mpb2eleiepkvBYTrKxES814ySbZFbJnax+/tXcTn/zhUf79wAUA2gMWE5EE/37gAn/9th2yonGBXrd9gM/86Di/99UDtAUs9m6dOww1nbZndrX6PfzR666pwVkKIZZbwAoQS8WyX2/u3szTF58GZgOkFm/LnJWJTuA1Hh0nlU5hGmbOrCmlVNkZL4/hYaB1gLOTs/v3LiXwqtWKRkc5s7zyS43ua9rma7MHrKbtxINSiu5AN5dmLmXHSTRrxksCrwr60Ku28gu7hvBbJp1BL16PwfcPXuIjXzvA6z/1CAPtflZ3BOgI1vdftuXmMQ3++T0v5Z2f38+vffEJ/uYdO3nVdatyjrnvZ6d58vQ4f3HvjXSF5HoK0YiCVjBnu5kNnRs4ePkg8VQ8+yFfqEk+aAXpDnQzGhnlxPgJNnZuzCk1ltqEe77GerfhtuFs4OUxPDnT7xfCY3hq2lgP5WW8lFLZIar5pUZDGXT4OxgNj2bvG2gZoCfYk+3tWkyWaCVyB47S41VDa7tD9Lf58XrsS3v3tf38x++8nJdt7ObkaJhrpL9rQTpDXu57761cO9jG++97km8+c57LUzEOXZjkwcMjfOI7h7ltUzdv2rm61qcqhFgm7j6vkBWiL9SX/bDLZrx8hQOvVl8rw23DTMQmOD99nng6jkJhKrNkOXGhGS/I7fPqD/UvulerrjNemWvoBI6Wac0JWvP7vJRSdonRtDCUUf8ZL0MyXitWb6uPz/+Xl/Afz11kc//C/1E3u/aAxZfecwu/8k+P8Vv/8lTOYyGvycfeuL0ut5oQQiyMO/Ba27EWmM0yOB/y+aMk3M/rDfYSToS5OH0Ry7Bmy4wlAq+F9niB3TAeskLMJGYWXWaEldHjtdTgxzTM7ArQtE5jKGPOgohiE/yd96z7wMusUY+XUsoEHgfOaa1fr5RaD3wZ6AaeAN6ptY4rpXzAF4FdwCjwVq31yXLfv14opXjN9oFan0bdafVb/NMv38JXHjuDx1R0h3z0tHjZ2NdCT0v9LkMWQszP/UG+vsPef9X9oZ3fV5T/PKUUa9rXEE1GmUnMZLNZpcqJi8l4gZ31Onzl8NIDrzotNQLZzcmdZvn8QKrLX3hGl5Nlq/fAy71YYDEqkfH6IHAIcGpo/y/wl1rrLyulPg28B/i7zP+vaq03KaXeljnurRV4f9HgQj4PvyKbXgvRdJwAymt6Wd1mtxW4S2NBK1gw4+Xz+LK9R4Yy2Ni5kcOjh7OrHytVagR7nteR0SOL7u+ClZHxKmfboJAVYm37WjS64PiPYhkvJ9hrlFWNiw0gy+rxUkoNAa8DPpv5WgF3AV/NHPIF4I2Z22/IfE3m8VcoqRMJIYQowvkwH24bzvZPuT/kQlaoaKAUsGZHTFimxXW91zHcZvdkBb3Fh6cuNhBa3bqagdaBJQVQK6HHq5ysU9BrN9gbyigYzLZ4Wwq+fqNkvJzy4mIDyHKb6/8K+H3A2d+lGxjXWjtbwp8FnO7n1cAZgMzjE5njhRBCiDmcwGt952zG2/1h3eprLTpoNT8QMJSR7Qkttl3QYrNdYGdvdqzasejnQf2XGnPmqhUJZvMb7GH2e1jvqxqdgGuxfw6l9fzTwQs+UanXA6/VWr9fKbUH+DDwX4Cfaq03ZY4ZBr6jtb5eKfUccI/W+mzmsWPAS7XWV/Je933A+wB6e3t33X///UXPYXp6mpYWaVZfbnKdq0Ouc3XIdV5+lbrGWmtGI6N0B7tR2EHTTGKGcCIMQCwZywkcFAqN/Zk2FZvKmQHm1unvLJih8pm+nM2dq2EqNkWrb2l7zFbiOqd1mtHI6PwHFhBNRpmO21vlBa1gwSB4Oj5NNBnNuS/gCRDyhmj1tmY3NF/Jil3naDLKVHwKr+Gl3W/v3bl3794ntNY3l3q9cnKctwE/r5R6LeDH7vH6a6BDKeXJZLWGAGf36HPAMHBWKeUB2rGb7HNorT8DfAZg69ates+ePUVPYN++fZR6XFSGXOfqkOtcHXKdl18lr/F3jnyHvZv3Zr9+6sJT7D+3H4Dx6Dgd/o7sY22+NiZj9qDqR88+yvNjzxd8zV/e8csFA6/req/jjrV3VOS8F2rfyX3sWbdnac+twHWOp+J8/qnPL+m5ZybO8N2L3wXgtuHbuKZ37jDrg5cP8pORn+Tct2tgFzv7dnLThpvY2LVxSe9dTcWu89Gxo3z/+PdZ076GPZvnPl7MkkuNWuuPaq2HtNbrgLcBP9Ra/xLwIPCWzGHvBr6Ruf1vma/JPP5DvdR0mxBCiKZwbe+1OV+7M1zuoAvIyVaV2gS7WD/WUkqN5ap1xsdrerPZxMXKmbNWZKVoT3Dudm7O97Due7yM2vR4FfIR4ENKqaPYPVyfy9z/OaA7c/+HgD9YhvcWQgjRQNa0r8n5utSHtXuF40J7v3IeW8TU+kopZ1VhpZSzUbaj2HXtDnTPGSzbcM31i+zxqshyCq31PmBf5vZx4JYCx0SBX6zE+wkhhGgO+YvfSwZevvkDr2JN4FCbjFc5ze2VPIdi/XCl+D1+TGWS0qmi19s0TDoDnTlbB2XHSTRKc/0KyHgJIYQQy2KhGa9iGZhKTa2vlHrOeCmlCFpBTMPMGd+RL7/c2CiT65e6OlMCLyGEEHWj2Ie1Qi0o41XJ4amVUOseLygv+At6C69mdMsPvJz3q/sBqkuc4yV7NQohhKgbxQIvn8eX85jX9Gan17sV6+NayvDUSlgppcalClmheZvzGzXjtdQ5XpLxEkIIUTeKBl6mb85jhTJYxTJetch2wcooNZaV8bKCOde00Gt1B7pzglpnS6d637ymVpPrhRBCiKopNv4gP+MFFNy4uljGqxb9XdAYGS/3NV3VsmrOMYYyshtmW6aFoYy6z3Y5LMOSjJcQQojGVmz/v/zMQ/4oClh5Ga+VEICUtV9jXsarL9Q3Z3wEzJYbsw3pdd7f5bBMSzJeQgghGlvBwMvjQymV89hAy8Ccvq9i2YlaBV4rQbmlRndzfZuvrWBw6wRejTLDyyEZLyGEEA2v0Ie2szrQ/ZhpmKxuXZ39ulQ5sb+lv4JnWF/KKjV6c0uNbb62guXc3lBvzns1SuDlNb2S8RJCCNHYipUaCz3mLjcW6+/qD/UX7AdrFuVkvEJWKCegLZbx6vB34DE8s6Mk6nx4qsMyJeMlhBCiwRUrNRZ6bLh9OLt6rljG66aBmyp8hvWlnIyXaZjZgNYyLAJWoGCAayiD7kB3w4yScFiG9HgJIYRocIvJePk9fvpDdhmx0HZB3YFu1nasXYazrB/zBUEBT/Gp9G7OANti/XI9wZ6G6/Eq1TdYjAReQggh6kqhDE2hHi+HU24slPFq9mwXlC41+kwfu4d3L+h12nxtQPHMYk+oZ3afxgZZ1egM6l0MCbyEEELUlcWUGqF44NXua2dD54ZlOMP6UqrUuHNgZzZjOJ9s4FWkl6432Ntwpcb5tksqRLYMEkIIUVcWU2oEu7G73d8+JyDYObCz7qenV4KhDHymj1gqlnN/i7eF7X3bMZSBqUxSOlXydebLeLX72pmKTQGN01xfLMgsRTJeQggh6spiM14Aa9rW5AQELd4WtnRvWZ4TrEP3bLpnTvnvJYMvwTRMlFK0+9vnfY35Ml5KqezYjmbOeEngJYQQoq4sdI6X26auTTkltaG2oYIT1pvVQOsAr9/y+uz16wp05QSmHf6OeV/DCbwMZRRtyJdSowReQggh6kz+h7bH8GSDqGIf6N3B7pyvF7pSr5n0t/Tzc1t+Dp/p49ahW3PKsAsJvFq9rdnb85XgGqW5fil7fErgJYQQoq7kB1fuVXkLzaQELAm8CukN9fKWa98yZ5/L+QKvkBXCNMzs1/NtwdQoGS8n07oYEngJIYSoK/njD9wffgsOvCTjVZQzj8ut099Z8jlOmdExXyaoUQKvpSzOkMBLCCFEXZmT8fJIxmu5zZfxmhN4zVdqbJBVjUshgZcQQoi6UpFSo2S8FsUyrZJZrGbNeC2FBF5CCCHqimVaKGZLPJLxqo5SWa/FZLwUatHT3huJBF5CCCHqjjvAWkqP11KaoptdZ6B4n1d+4FWqub6Zs10ggZcQQog65P7wdpcaDWXMm03xmT6Z4bUEi8p4lSg1NnN/F0jgJYQQog7lBF55ew3Ol1GRMuPSFAu8PIZnzjW1TKvorC7JeAkhhBB1xh1s5Y+XmG84pzTWL02xkRL52S5HsXJjowxPXSoJvIQQQtSdUhmv/K/zScZraULeUMGgqVjgVazBXjJeQgghRJ0p1lyf/1gh0li/dIXKjUUDryJ9XhJ4CSGEEHWmWHN9/mOFSKlx6RYVeBXJeElzvRBCCFFnpLm+NiTjVT4JvIQQQtQd58PbUMacD3LJeC2fQrO8pLl+cSTwEkIIUXec4KpQkCUZr+WTn/HqCfZIc/0iNe/MfiGEEHXL6evK7+8CyXgtp3ZfOwqFRrOxcyN71+8tOoy2WKmx2Xu8JPASQghRd5zgqtDoCMl4LR/TMGnztbGlewu7BneVPDZgBTCUQVqnc+6XjJcQQghRZ5wP70KjIUp9sCuUjJMo0z2b7im5b6NbyAoxFZ/Kua/ZAy/p8RJCCFF3shmvRZYaJegq30KDLijc5yWBlxBCCFFnllpqlDJjdRXq85JVjUIIIUSdcQKuxWa8pLG+uiTjNZcEXkIIIeqOx/BgKGPRPV6S8aquQgNXm31VowReQggh6pJlWIsvNUrGq6pWtayac59kvIQQQog65PP4CpYanWxYIZLxqq6uQFdOsGsqs+j3plk0959eCCFE3fKa3oIZLyjewC2rGqtvoHUge7vZs10ggZcQQog65TW9RQOpYh/wUmqsvsHWweztZu/vAgm8hBBC1Cmv6S1YaoTCYyZASo214A68JOMlgZcQQog6VarUKBmvlaMr0JXNTErgJYGXEEKIOhWyQkUbtYv1eEnGqzYGWuw+r2YfngoSeAkhhKhTbb62oo8VyoSZypSMS4045Ua5/hJ4CSGEqFOlAq9CH/CyorF2nMBLmusl8BJCCFGnWn2tRR8rFHhJmbF2uoPd+EyfZLyQwEsIIUSdavG2FH2sUC+RNNbX1kDrgPR4AZ5an4AQQgixFKUmoBfq8ZKMV20Ntg6iULU+jZqTjJcQQoiGU7DUKBmvmhpsHZRSI5LxEkII0YCkx2vl6Q50E0vGan0aNScZLyGEEA1HMl4rj1IqZ9/GZiWBlxBCiIYjGa+VqVRfXrOQKyCEEKLhyBwvsVJJ4CWEEKLhSKlRrFRLDryUUsNKqQeVUgeVUs8rpT6Yub9LKfU9pdSRzP87M/crpdQnlVJHlVIHlFI3VeoPIYQQQrgVnOMlpUaxApST8UoC/5fW+lrgVuADSqlrgT8AfqC13gz8IPM1wGuAzZn/3gf8XRnvLYQQQhSllMoJvizDwmPIQn5Re0v+W6i1vgBcyNyeUkodAlYDbwD2ZA77ArAP+Ejm/i9qrTXwU6VUh1JqIPM6QgghREV5TS9BK8jGro1s6tpU69MRAqjQHC+l1DpgJ7Af6HcFUxeB/szt1cAZ19POZu6TwEsIIUTFvWHbG0pupC1ELSg7AVXGCyjVAjwEfExr/YBSalxr3eF6/KrWulMp9S3gz7XWj2Tu/wHwEa3143mv9z7sUiS9vb277r///qLvPT09TUtL8b26RGXIda4Ouc7VIdd5+ck1rg65ztWxmOu8d+/eJ7TWN5c6pqyMl1LKAr4G3Ke1fiBz9yWnhKiUGgBGMvefA4ZdTx/K3JdDa/0Z4DMAW7du1Xv27Cn6/vv27aPU46Iy5DpXh1zn6pDrvPzkGleHXOfqqPR1LmdVowI+BxzSWv+F66F/A96duf1u4Buu+9+VWd14KzAh/V1CCCGEaCblZLxuA94JPKuUejpz3x8Cfw7cr5R6D3AKuDfz2LeB1wJHgTDwy2W8txBCCCFE3SlnVeMjgCry8CsKHK+BDyz1/YQQQggh6p1MrhdCCCGEqBIJvIQQQgghqkQCLyGEEEKIKpHASwghhBCiSiTwEkIIIYSoEgm8hBBCCCGqRAIvIYQQQogqkcBLCCGEEKJKJPASQgghhKgSCbyEEEIIIapEAi8hhBBCiCqRwEsIIYQQokqUvXf1yqSUmgJeKHFIOzBRpdNpZnKdq0Ouc3XIdV5+co2rQ65zdfQAVxZ47FatdWupAzzln8+yekFrfXOxB5VSn9Fav6+aJ9SM5DpXh1zn6pDrvPzkGleHXOfqUEo9XioWyT92vmPqvdT4zVqfQJOQ61wdcp2rQ67z8pNrXB1ynevQSi81LjjKFEIIIYSotMVmvOY7dqVnvD5T6xMQQgghRFNbTCwy77ErOvDSWn8GQCk1rJR6UCl1UCn1vFLqg84xSqnfUkodztz/idqdbf0rdp2VUl9RSj2d+e+kUurpGp9qXStxnXcopX6auc6PK6VuqfW51rMS1/lGpdSjSqlnlVLfVEq11fpc65lSyq+U+plS6pnMdf7jzP3rlVL7lVJHMz9DvLU+13pW4jr/ZuYaa6VUT63PsxE5sUiljl3RpUaHUmoAGNBaP6mUagWeAN4I9AN/BLxOax1TSvVprUdqeKp1rdh11lofdB3zv4AJrfWf1Oo8612Jv89/Bfyl1vo7SqnXAr+vtd5TsxOtcyWu8xeAD2utH1JK/QqwXmv9X2t4qnVNKaWAkNZ6WillAY8AHwQ+BDygtf6yUurTwDNa67+r5bnWsxLXOQZcBfYBN2utF7r6TtTIis54ObTWF7TWT2ZuTwGHgNXAbwB/rrWOZR6ToKsMJa4zkP2Hfy/wL7U5w8ZQ4jprwMm+tAPna3OGjaHEdd4C/Chz2PeAX6jNGTYGbZvOfGll/tPAXcBXM/d/ATvoFUtU7DprrZ/SWp+s3Zk1HqXUPUqpFzKZxD/I3FexzGJdBF5uSql1wE5gP/YP0Dsy6eyHlFIvqenJNZC86+y4A7iktT5Sk5NqQHnX+XeA/6GUOgP8T+CjtTuzxpJ3nZ8H3pB56BeB4RqdVsNQSpmZFoQR7GD2GDCutU5mDjmL65c4sTT511lrvX+ep4hFUkqZwN8CrwGuBd6ulLoW+DFwN3Cq3Peoq8BLKdUCfA34Ha31JPYcsi7gVuD3gPszWRlRhgLX2fF2JNtVMQWu828Av6u1HgZ+F/hcLc+vURS4zr8CvF8p9QTQCsRreX6NQGud0lrvAIaAW4BttT2jxpR/nZVS19f4lBrRLcBRrfVxrXUc+DLwhkpmFusm8MrUtL8G3Ke1fiBz91nsHgKttf4ZkMaeMCuWqMh1RinlAd4MfKVW59ZIilzndwPO7X/F/gEgylDoOmutD2utX6W13oX9i8SxWp5jI9FajwMPAruBjszPDbADhXO1Oq9G47rO99T4VBrRauCM6+uKZ2vrIvDKZLE+BxzSWv+F66GvA3szx2wBvCx8rL/IU+I6g51iPay1Plv9M2ssJa7zeeDOzO27ACnplqHYdVZK9WX+bwD/N/Dp2pxhY1BK9SqlOjK3A8ArsfvpHgTekjns3cA3anKCDaLIdT5c05MSS7LStwxy3Aa8E3jWNcrgD4HPA59XSj2HXS54t66HZZorV8HrrLX+NvA2pMxYKcX+Pv8q8NeZLEEUkK1AylPsOm9WSn0g8/UDwD/W4NwayQDwhUxvjAHcr7X+llLqIPBlpdSfAk8hpfNyFbvOvw38PrAKOKCU+rbW+r21PNE6d47cvs+KZ2vrYpyEEEIIIcRyy/zi+yLwCuyA6zHgHVrr5zOPn6TMsR11UWoUQgghhFhumZW4vwl8F7tkfr/W+nml1G8rpc5iZ8AOKKU+u9T3kIyXEEIIIUSVSMZLCCGEEKJKJPASQgghhKgSCbyEEEII0bSUUiml1NOu/9aVOHafUurmct6vXsZJCCGEEEIsh0hmR4CqkIyXEEIIIYSLUmpXZg/oJ5RS31VKDbgefmcmM/acUmrRO4xI4CWEEEKIZhZwlRn/v8xWY58C3pLZWuzzwMdcxwczGbL3Zx5bFCk1CiGEEKKZ5ZQaM5uPXw98z955DBO44Dr+XwC01j9SSrUppToy+2cuiAReQgghhBCzFPC81np3kcfzB6AuaiCqlBqFEEIIIWa9APQqpXYDKKUspdR1rsffmrn/dmBCaz2xmBeXjJcQQgghRIbWOq6UegvwSaVUO3as9FfA85lDokqppwAL+JXFvr5sGSSEEEIIUSVSahRCCCGEqBIJvIQQQgghqkQCLyGEEEKIKpHASwghhBBNRSn1eaXUiFLqOdd9X3ENUj2plHo6c/86pVTE9dinXc/ZpZR6Vil1VCn1SZUZ/FWKrGoUQgghRLP5J+BvgC86d2it3+rcVkr9L8A9JuJYkf0c/w74VWA/8G3gHuA7pd5YMl5CCCGEaCpa6x8BY4Uey2St7iUzob6YzP6NbVrrn2p7RMQXgTfO994SeAkhhBBCzLoDuKS1PuK6b71S6qnMxtl3ZO5bDZx1HXM2c19JUmoUQgghhJj1dnKzXReANVrrUaXULuDreZPsF0UCLyGEEEIIQCnlAd4M7HLu01rHgFjm9hNKqWPAFuAcMOR6+lDmvpKk1CiEEEIIYbsbOKy1zpYQlVK9Sikzc3sDsBk4rrW+AEwqpW7N9IW9C/jGfG8ggZcQQgghmopS6l+AR4GtSqmzSqn3ZB56G3Ob6l8OHMiMl/gq8Otaa6cx//3AZ4GjwDHmWdEIslejEEIIIUTVSMZLCCGEEKJKJPASQgghhKgSCbyEEEIIIapEAi8hhBBCiCqRwEsIIYQQokok8BJCCCGEqBIJvIQQQgghqkQCLyGEEEKIKvn/AXzvRGXEzPDqAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "plot_prob_forecasts(ts_entry, forecast_entry)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We can also evaluate the quality of our forecasts numerically. In GluonTS, the `Evaluator` class can compute aggregate performance metrics, as well as metrics per time series (which can be useful for analyzing performance across heterogeneous time series)." - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:19.319954Z", - "iopub.status.busy": "2022-06-13T08:57:19.319052Z", - "iopub.status.idle": "2022-06-13T08:57:19.321644Z", - "shell.execute_reply": "2022-06-13T08:57:19.322207Z" - } - }, - "outputs": [], - "source": [ - "from gluonts.evaluation import Evaluator" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:19.327722Z", - "iopub.status.busy": "2022-06-13T08:57:19.326817Z", - "iopub.status.idle": "2022-06-13T08:57:20.051326Z", - "shell.execute_reply": "2022-06-13T08:57:20.051973Z" - } - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "Running evaluation: 0%| | 0/414 [00:00\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
item_idMSEabs_errorabs_target_sumabs_target_meanseasonal_errorMASEMAPEsMAPENDMSISQuantileLoss[0.1]Coverage[0.1]QuantileLoss[0.5]Coverage[0.5]QuantileLoss[0.9]Coverage[0.9]
00.04342.1881512514.81201231644.0659.25000042.3713021.2364950.0826730.0809270.07947214.4483291231.5863590.0000002514.8118590.5625001558.6270320.958333
11.0164508.30208316701.164062124149.02586.437500165.1079882.1073540.1426320.1300510.13452515.9148763763.6555180.14583316701.1647950.8958338935.0069821.000000
22.043759.8854178240.22070365030.01354.79166778.8890532.1761100.1187990.1273380.12671415.7101914048.2582520.0000008240.2211910.1875003664.8080930.750000
33.0289310.45833321805.435547235783.04912.145833258.9822491.7540970.0916190.0932800.09248117.02919711473.9867190.02083321805.4353030.4375009689.2828120.895833
44.088446.87500012454.733398131088.02731.000000200.4940831.2941710.0964390.0924230.09501013.4309414931.9367550.00000012454.7332760.6250007710.4772461.000000
\n", - "" - ], - "text/plain": [ - " item_id MSE abs_error abs_target_sum abs_target_mean \\\n", - "0 0.0 4342.188151 2514.812012 31644.0 659.250000 \n", - "1 1.0 164508.302083 16701.164062 124149.0 2586.437500 \n", - "2 2.0 43759.885417 8240.220703 65030.0 1354.791667 \n", - "3 3.0 289310.458333 21805.435547 235783.0 4912.145833 \n", - "4 4.0 88446.875000 12454.733398 131088.0 2731.000000 \n", - "\n", - " seasonal_error MASE MAPE sMAPE ND MSIS \\\n", - "0 42.371302 1.236495 0.082673 0.080927 0.079472 14.448329 \n", - "1 165.107988 2.107354 0.142632 0.130051 0.134525 15.914876 \n", - "2 78.889053 2.176110 0.118799 0.127338 0.126714 15.710191 \n", - "3 258.982249 1.754097 0.091619 0.093280 0.092481 17.029197 \n", - "4 200.494083 1.294171 0.096439 0.092423 0.095010 13.430941 \n", - "\n", - " QuantileLoss[0.1] Coverage[0.1] QuantileLoss[0.5] Coverage[0.5] \\\n", - "0 1231.586359 0.000000 2514.811859 0.562500 \n", - "1 3763.655518 0.145833 16701.164795 0.895833 \n", - "2 4048.258252 0.000000 8240.221191 0.187500 \n", - "3 11473.986719 0.020833 21805.435303 0.437500 \n", - "4 4931.936755 0.000000 12454.733276 0.625000 \n", - "\n", - " QuantileLoss[0.9] Coverage[0.9] \n", - "0 1558.627032 0.958333 \n", - "1 8935.006982 1.000000 \n", - "2 3664.808093 0.750000 \n", - "3 9689.282812 0.895833 \n", - "4 7710.477246 1.000000 " - ] - }, - "execution_count": 29, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "item_metrics.head()" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": { - "execution": { - "iopub.execute_input": "2022-06-13T08:57:20.097761Z", - "iopub.status.busy": "2022-06-13T08:57:20.094383Z", - "iopub.status.idle": "2022-06-13T08:57:20.267490Z", - "shell.execute_reply": "2022-06-13T08:57:20.268171Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAcRklEQVR4nO3dfZRU9Z3n8fe3+gmkibSN6RCaCSSoWR+Q2KzBRV0aH+I4DprFzdE4E5IxIdmZTJyYDeiaE9fMZCeSbBKdzUnGic5oxrF1wYjDGE1CMLNmIwkotKCivfGBRkTtNA5Fmqab+u4f9/alaKqprqbq3gv1eZ1Tp+9TVX24dNW3f/fh9zN3R0REBCCTdAAREUkPFQUREYmoKIiISERFQUREIioKIiISqU06wJGYPHmyT58+fUzP3bNnDxMmTChvoCOUxkygXKVIYyZQrlKkMROUN9eGDRvecvcTC65096P20dbW5mO1du3aMT+3UtKYyV25SpHGTO7KVYo0ZnIvby5gvY/wvarDRyIiElFREBGRiIqCiIhEVBRERCSioiAiIhEVBRGRo0xPtp9N23bRk+0v+2sf1fcpiIhUm1Ubt7NsZSd1mQwDuRzLF81i4eypZXt9tRRERI4SPdl+lq3sZO9Ajt39g+wdyLF0ZWdZWwwqCiIiR4nu3j7qMgd/bddlMnT39pXtPVQURESOEq1N4xnI5Q5aNpDL0do0vmzvoaIgInKUaG5sYPmiWYyryzCxoZZxdRmWL5pFc2ND2d5DJ5pFRI4iC2dPZd7MyXT39tHaNL6sBQFUFEREjjrNjQ1lLwZDKnb4yMzuMrM3zGxz3rITzOwnZvZi+LMpXG5mdruZdZlZp5mdValcIiIyskqeU/gH4JJhy24A1rj7ScCacB7g94GTwscS4LsVzCUiIiOoWFFw938Ffjts8eXA3eH03cAVecvvCbv6fhKYZGZTKpVNREQKs2C8hQq9uNl0YLW7nx7O73L3SeG0Ab3uPsnMVgNfc/cnwnVrgGXuvr7Aay4haE3Q0tLS1tHRMaZs2WyWxsbGMT23UtKYCZSrFGnMBMpVijRmgvLmam9v3+DucwquHGn0nXI8gOnA5rz5XcPW94Y/VwPn5i1fA8wp9voaeS0eyjV6aczkrlylSGMm92N35LWdQ4eFwp9vhMu3A9PytmsNl4mISIziLgoPA4vD6cXAqrzlHwuvQpoLvO3uO2LOJiJS9Sp2n4KZ3QfMByabWTdwM/A14AEzuxZ4BfhIuPkjwKVAF/A74BOVyiUiIiOrWFFw96tHWHVBgW0d+LNKZRERkdFR30ciIhJRURARkYiKgoiIRFQUREQkoqIgIiIRFQUREYmoKIiISERFQUREIioKIiISUVEQEZGIioKIiERUFEREJKKiICIiERUFERGJqCiIiEhERUFERCIqCiIiElFREBGRiIqCiIhEVBRERCSioiAiIhEVBRERiagoiIhIREVBREQiKgoiIhJRURARkYiKgoiIRFQUREQkoqIgIiKRRIqCmX3ezLaY2WYzu8/MxpnZDDNbZ2ZdZna/mdUnkU1EpJrFXhTMbCrwOWCOu58O1ABXAbcC33L3mUAvcG3c2UREql1Sh49qgfFmVgscB+wAFgArwvV3A1ckE01EpHqZu8f/pmbXAV8F+oAfA9cBT4atBMxsGvCjsCUx/LlLgCUALS0tbR0dHWPKkM1maWxsHNs/oELSmAmUqxRpzATKVYo0ZoLy5mpvb9/g7nMKrnT3WB9AE/Az4ESgDngI+COgK2+bacDmYq/V1tbmY7V27doxP7dS0pjJXblKkcZM7spVijRmci9vLmC9j/C9msThowuBl9z9TXcfAB4E5gGTwsNJAK3A9gSyiUjCerL9bNq2i55sf9JRqlJt8U3K7lVgrpkdR3D46AJgPbAWuBLoABYDqxLIJiIJWrVxO8tWdlKXyTCQy7F80SwWzp6adKyqEntLwd3XEZxQfgp4JsxwB7AMuN7MuoBm4M64s4lIcnqy/Sxb2cnegRy7+wfZO5Bj6cpOtRhilkRLAXe/Gbh52OLfAGcnEEdEUqC7t4+6TIa95KJldZkM3b19NDc2JJisuuiOZhFJhdam8QzkcgctG8jlaG0an1Ci6qSiICKp0NzYwPJFsxhXl2FiQy3j6jIsXzRLrYSYJXL4SESkkIWzpzJv5mS6e/tobRqvgpAAFQURSZXmxgYVgwTp8JGIiERUFEREJKKiICIiERUFERGJqCiIiEhERUFERCIqCiIiElFREBGRiIqCiIhEVBRERCSioiAiIhEVBRERiagoiIhIREVBREQiKgoiIhJRURARkYiKgoiIRFQUREQkoqIgIiIRFQUREYmoKIiISERFQSQlerL9bNq2i55sf9JRpIrVJh1ARGDVxu0sW9lJXSbDQC7H8kWzWDh7atKxpAqppSCSsJ5sP8tWdrJ3IMfu/kH2DuRYurJTLQZJhIqCSMK6e/uoyxz8UazLZOju7UsokVSzRIqCmU0ysxVm9ryZPWdm55jZCWb2EzN7MfzZlEQ2kbi1No1nIJc7aNlALkdr0/iEEkk1S6qlcBvwqLu/HzgTeA64AVjj7icBa8J5kWNec2MDyxfNYlxdhokNtYyry7B80SyaGxuSjiZVKPYTzWZ2PHA+8HEAd98H7DOzy4H54WZ3A48Dy+LOJ5KEhbOnMm/mZLp7+2htGq+CIIkxd4/3Dc1mA3cAzxK0EjYA1wHb3X1SuI0BvUPzw56/BFgC0NLS0tbR0TGmHNlslsbGxjE9t1LSmAmUqxRpzATKVYo0ZoLy5mpvb9/g7nMKrnT3WB/AHGAQ+GA4fxvwl8CuYdv1FnuttrY2H6u1a9eO+bmVksZM7spVijRmcleuUqQxk3t5cwHrfYTv1STOKXQD3e6+LpxfAZwF7DSzKQDhzzcSyCaSOrqpTeIU+zkFd3/dzLaZ2SnuvhW4gOBQ0rPAYuBr4c9VcWcTSRvd1CZxO2xLwcwW5E3PGLbuPx3B+/45cK+ZdQKzgf9BUAwuMrMXgQvDeZGqpZvaJAnFWgrfIDi0A7AybxrgS8CDY3lTd99IcG5huAvG8noix6Khm9r2cuAehqGb2nR1klRKsXMKNsJ0oXkRKSPd1CZJKFYUfITpQvMiUka6qU2SUOzw0XvN7GGCVsHQNOH8jJGfJiLloJvaJG7FisLledPfGLZu+LyIVEBzY4OKgcTmsEXB3X+eP29mdcDpBHcf6z4CEZFjTLFLUr9nZqeF08cDm4B7gKfN7OoY8omISIyKnWg+z923hNOfAF5w9zOANmBpRZOJiEjsihWFfXnTFwEPQXBXcqUCiYhIcooVhV1mdpmZfQCYBzwKYGa1gC6WFhE5xhS7+ujTwO3Au4C/yGshXAD8SyWDiYhI/IpdffQCcEmB5Y+Z2W8rlkpERBJRUi+pZnYqcHX42EXh/otEROQoVbQomNl0DhSCAeA9wBx3f7miyUREJHbF7lP4JcG5g1pgkbu3AbtVEKTaaKAbqRbFWgo7galAC3Ai8CLqCE+qjAa6kWpy2JaCu18BnAFsAP67mb0ENJnZ2TFkE0mcBrqRalN0jGZ3f9vd/97dLwbmAl8GvmVm2yqeTiRhQwPd5Bsa6EbkWFS0KORz953u/jfuPg84t0KZRFJDA91ItTnsOYW88RNGsrCMWURSZ2igm6XDzimoK2s5VhU70XwOsA24D1iHhuCUKqSBbqSaFCsK7yLoCO9q4KMEl6fel9dzqkhV0EA3Ui2KXX20390fdffFBCeZu4DHzeyzsaQTEZFYjeaO5gbgDwhaC9MJOsj7YWVjiYhIEoqdaL6HYPjNR4Bb3H1zLKlERCQRxVoKfwTsAa4DPmcWnWc2wN39HRXMJiIiMSvWdXZJ9zGIiMjRTV/6IiISUVEQEZGIioKIiEQSKwpmVmNmT5vZ6nB+hpmtM7MuM7vfzOqTyiYiUq2SbClcBzyXN38r8C13nwn0AtcmkkpEpIolUhTMrJXghrjvh/MGLABWhJvcDVyRRDYRkWqWVEvh28BSYKhP4mZgl7sPhvPdBCO+iYhIjMw93tE1zewy4FJ3/1Mzmw/8V+DjwJPhoSPMbBrwI3c/vcDzlwBLAFpaWto6OjrGlCObzdLY2Dim51ZKGjOBcpUijZlAuUqRxkxQ3lzt7e0b3H1OwZXuHusD+GuClsDLwOvA74B7gbeA2nCbc4DHir1WW1ubj9XatWvH/NxKSWMmd+UqRRozuStXKdKYyb28uYD1PsL3auyHj9z9RndvdffpwFXAz9z9GmAtcGW42WJgVdzZRESqXZruU1gGXG9mXQTnGO5MOI+ISNUp2nV2Jbn748Dj4fRvgLOTzCMiUu3S1FIQEZGEqSiIiEhERUFERCIqCiIiElFREBGRiIqCiIhEVBRERCSioiAiIhEVBRERiagoiIhIREVBREQiKgoiIhJRURARkYiKgoiIRFQUREQkoqIgIiIRFQUBoCfbz6Ztu+jJ9icdRUQSlOjIa5IO9z75Crf88xbqajLsd2f5olksnD016VgikgC1FKrcvU++wk0PbWbffmfPvv3sHcixdGWnWgwiVUpFoYr1ZPu5ZfWzhyyvMaO7ty+BRCKSNBWFKtbd20d9jR2yfGB/jtam8QkkEpGkqShUsdam8Qzm/JDlN//haTQ3NiSQSESSpqJQxZobG1i+aBbj6jJMaKihvjbDVz98OtfMfU/S0UQkIbr6qIr1ZPt5T/MEVn/2XPbs209r03i1EESqnIpClVq1cTvLVnZSl8kwkMuxfNEszpw2KelYIpIwHT6qQj3Zfpat7GTvQI7d/YO6DFVEIioKx6jD3aHc3dtHXebg//q6TEaXoYqIDh8diwodGsq/Q7m1aTwDudxBzxnI6TJUEVFL4ZgzmkND+VcdTWyoZVxdhuWLZukks4jE31Iws2nAPUAL4MAd7n6bmZ0A3A9MB14GPuLuvXHnO9oNHRray4GWwNChofwv/YWzpzJv5mS6e/t01ZGIRJJoKQwCX3D3U4G5wJ+Z2anADcAadz8JWBPOS4lKOTTU3NjAmdMmqSCISCT2ouDuO9z9qXB6N/AcMBW4HLg73Oxu4Iq4sx0LdGhIRI5EoieazWw68AFgHdDi7jvCVa8THF6SMdChIREZK3M/tO+bWN7YrBH4OfBVd3/QzHa5+6S89b3u3lTgeUuAJQAtLS1tHR0dY3r/bDZLY2PjmJ5bKUeaaX/O2bc/R31NhprMoR3dJZWrUtKYK42ZQLlKkcZMUN5c7e3tG9x9TsGV7h77A6gDHgOuz1u2FZgSTk8BthZ7nba2Nh+rtWvXjvm5lXIkmR56uttP+dIjfvqXH/VTvvSIr3q6OxW5KimNudKYyV25SpHGTO7lzQWs9xG+V2M/p2BmBtwJPOfu38xb9TCwOJxeDKyKO9vRSncoi0i5JHH10Tzgj4EFZrYxfFwKfA24yMxeBC4M52UUdIeyiJRL7Cea3f0JYKQD3hfEmeVYoTuURaRcdEdzCgz1U7Q/HPDmcP0WFaLLUEWkXNT3UcLy+yn6zCn9/HzVMzywvvugfotGc3mpLkMVkXJQUUhQ/gniveTIuXPPL18FiLqpuP6BjdRkMtTXFO7cLl9zY4OKgYgcER0+SlChE8TDDeagf1BXFYlIPFQUElToBHExuqpIRCpJRSFBQyeI6zJQV2MY8JE5rdTXGBPqa2ioNepqDr5QS1cViUgl6ZxCwh5Yv42BHIDjwAPru2lsqGHffufmPzyNiQ21LB02YI7OG4hIpagoxKQn2093bx8T6mt47e0+/q1vkB1v9/FEV88h22b79wPwl6uf5RfLFvCLZQt0VZGIxEJFIQarNm5n6YpN5HIwkBt9B4RD5w805oGIxEVFoYJ6sv1see1tPt+xkdJOJwd0/kBE4qaiUCFDN6Xlcl5yQZjYUKvzByKSCBWFURg6HzDaY/o92X6Wruikf7C0cpAB7vmTszl+fJ3OH4hIIlQUisjvhqLYHcVDvvLPW0ouCACYcdq736FiICKJUVE4jOHdUAB8cUUnk46rL/jl3bVzN1d85wmy+0ovCBlQ60BEEqeicBhD3VDszTsr0D+Y4zM/2EAOj1oNQ8Xjp8+9Mab3qa8xvr94DrnXni1XdBGRMVFROIyRuqH43UBwH8HSlZ3seHsvtz76PCVcaXqITMY47d3H88xrY38NEZFyUDcXh5E/TsFx9TWHrHd3/vpHpReET507Q2MfiEgqqaVQxNA4BVtee5tP3bOe/sEDFSB/erTmzmjipstO5TPz36e7lEUkddRSGIXmxgbOP/mdfP3KMxlXl6GhZqTRRA/vugUz6fj0f4heU3cqi0jaqKVQgoWzp3LqlHdw6d88AYy+ldB8XB0/vv4/qgCISOqpKJRoz779NNRk2DfK+xC+/ZFZXHHWtAqnEhEpDx0+KqAn28+mbbsKjnBWysA4t181WwVBRI4qaikMU+wO5qErkpau7GTfYO6QK48aauCLH3o/Hz6rVYeLROSoo6KQp9AdzEtXdjJv5uSDvuCHrkjq7u3jrd17eejp7ezZt59rPvh7XHDqu5KKLyJyxKq+KOR3dvfDp7oZ3H/wn/5DYxoM/6u/ubEhWqZCICLHiqouCvc++QpffngL7j7iDWgDuRxv7d7LN3+8lfNPmsycGc3xhhQRiVHVFoXf7tnHTY9uLrpd84Q6rr1nAwC3/6yL82Y284NPzq10PBGRRFTl1Uc92X627+ob1bbbdx18BdL/6eph/UuHjqssInIsqMqi0PZXPz2i5//ri2+VKYmISLpUXVG45JuPH/FrnH/S5CMPIiKSQqkqCmZ2iZltNbMuM7uh3K/ftXM3z7+x54he47yZzTrZLCLHrNScaDazGuA7wEVAN/BrM3vY3cs28sxjW3aM6Xn1NUb7Ke/kU+fNUEEQkWNaaooCcDbQ5e6/ATCzDuByoIzDkZXWu2ldBj53wcl89IO/p7uTRaQqmPsRDBlWRmZ2JXCJu38ynP9j4IPu/tlh2y0BlgC0tLS0dXR0jPo9+gdzvLBzNwAt42HnsAuQDDh+fB2Tjquntsaor8lQkxlbN9ljkc1maWxsjO39Rku5Ri+NmUC5SpHGTFDeXO3t7RvcfU6hdWlqKYyKu98B3AEwZ84cnz9/fknP/8WqZ7jnl6/yhTMG+Z/PHPjnr/j03MQPDT3++OOU+u+Jg3KNXhozgXKVIo2ZIL5caSoK24H8LkVbw2Vl9ZXLz+Bjc6fz9K/+L1+8eAYfOm0KM1smlvttRESOSmkqCr8GTjKzGQTF4Crgo5V4o5ktE+me2MB/nn9yJV5eROSolZqi4O6DZvZZ4DGgBrjL3bckHEtEpKqkpigAuPsjwCNJ5xARqVapunlNRESSpaIgIiIRFQUREYmk5ua1sTCzN4FXxvj0yUDaujtNYyZQrlKkMRMoVynSmAnKm+s97n5ioRVHdVE4Ema2fqQ7+pKSxkygXKVIYyZQrlKkMRPEl0uHj0REJKKiICIikWouCnckHaCANGYC5SpFGjOBcpUijZkgplxVe05BREQOVc0tBRERGUZFQUREIlVXFCo9DnSR955mZmvN7Fkz22Jm14XLTzCzn5jZi+HPpnC5mdntYdZOMzurgtlqzOxpM1sdzs8ws3Xhe99vZvXh8oZwvitcP72CmSaZ2Qoze97MnjOzc1Kyrz4f/v9tNrP7zGxc3PvLzO4yszfMbHPespL3jZktDrd/0cwWVyjX18P/w04z+6GZTcpbd2OYa6uZfShveVk/p4Vy5a37gpm5mU0O52PZXyNlMrM/D/fXFjNbnrc8ln2Fu1fNg6D31f8HvBeoBzYBp8b4/lOAs8LpicALwKnAcuCGcPkNwK3h9KXAjwgGhZsLrKtgtuuBfwJWh/MPAFeF098D/ks4/afA98Lpq4D7K5jpbuCT4XQ9MCnpfQVMBV4Cxuftp4/Hvb+A84GzgM15y0raN8AJwG/Cn03hdFMFcl0M1IbTt+blOjX8DDYAM8LPZk0lPqeFcoXLpxH0zPwKMDnO/TXCvmoHfgo0hPPvjH1fVeKDk9YHcA7wWN78jcCNCeZZBVwEbAWmhMumAFvD6b8Frs7bPtquzDlagTXAAmB1+GF4K++DHO238AN0TjhdG25nFch0PMGXrw1bnvS+mgpsC78YasP99aEk9hcwfdgXSkn7Brga+Nu85QdtV65cw9Z9GLg3nD7o8ze0ryr1OS2UC1gBnAm8zIGiENv+KvB/+ABwYYHtYttX1Xb4aOgDPaQ7XBa78DDCB4B1QIu77whXvQ60hNNx5f02sBTIhfPNwC53HyzwvlGmcP3b4fblNgN4E/j78LDW981sAgnvK3ffDnwDeBXYQfDv30Dy+wtK3zdJfB7+hOCv8MRzmdnlwHZ33zRsVZK5TgbOCw81/tzM/n3cmaqtKKSCmTUCK4G/cPd/y1/nQbmP7TphM7sMeMPdN8T1nqNUS9C0/q67fwDYQ3BIJBL3vgIIj9NfTlC03g1MAC6JM8NoJLFvijGzm4BB4N4UZDkO+G/Al5POMkwtQSt0LvBF4AEzszgDVFtRiGUc6MMxszqCgnCvuz8YLt5pZlPC9VOAN8LlceSdByw0s5eBDoJDSLcBk8xsaBCm/PeNMoXrjwd6ypwJgr94ut19XTi/gqBIJLmvAC4EXnL3N919AHiQYB8mvb+g9H0T2+fBzD4OXAZcExaspHO9j6Cwbwp/91uBp8zsXQnn6gYe9MCvCFrvk+PMVG1FIRoHOrw65Crg4bjePKz4dwLPufs381Y9DAxdybCY4FzD0PKPhVdDzAXezjs8UBbufqO7t7r7dIL98TN3vwZYC1w5QqahrFeG25f9L1J3fx3YZmanhIsuAJ4lwX0VehWYa2bHhf+fQ7kS3V8F3ms0++Yx4GIzawpbQBeHy8rKzC4hODy50N1/NyzvVRZcoTUDOAn4FTF8Tt39GXd/p7tPD3/3uwkuAnmdZPfXQwQnmzGzkwlOHr9FnPvqSE/eHG0PgisLXiA4Y39TzO99LkGTvhPYGD4uJTjGvAZ4keDKgxPC7Q34Tpj1GWBOhfPN58DVR+8Nf+m6gP/NgashxoXzXeH691Ywz2xgfbi/HiK44iPxfQXcAjwPbAZ+QHBFSKz7C7iP4JzGAMEX2rVj2TcEx/i7wscnKpSri+C499Dv/Pfytr8pzLUV+P285WX9nBbKNWz9yxw40RzL/hphX9UD/xj+bj0FLIh7X6mbCxERiVTb4SMRETkMFQUREYmoKIiISERFQUREIioKIiISUVEQGaWwJ81/zJuvNbM37UDPsi1mttrMNlnQE+4j4fLpQz1hhvc33Gtmz1jQy+oT4R3uIqlQW3wTEQntAU43s/Hu3kfQmWH+3aNfAX7i7rcBmNmsAq9xHbDT3c8ItzmF4Dp1kVRQS0GkNI8AfxBOX01wA9KQKQQ3IQHg7p0Fnj+FvELi7lvdvb8COUXGREVBpDQdBN0NjANmEfRyO+Q7wJ0WDKR0k5m9u8Dz7wKWmdkvzeyvzOykGDKLjJqKgkgJwr/+pxO0Eh4Ztu4xgu4u/g54P/C0mZ04bJuN4TZfJ+gN89dm9u8qHlxklHROQaR0DxOMqTCfYWMjuPtvCUaw+6fwBPT5BOMt5G+TJehd9UEzyxH0XfNc5WOLFKeWgkjp7gJucfdn8hea2YKwn37MbCJB98yvDttmnh0YO7meYJjFV2JJLTIKaimIlMjdu4HbC6xqA/6XmQ0S/MH1fXf/dTjK3pD3Ad8Nu93OAP9CML6GSCqol1QREYno8JGIiERUFEREJKKiICIiERUFERGJqCiIiEhERUFERCIqCiIiEvn/0ueL2cmf9NoAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "item_metrics.plot(x='MSIS', y='MASE', kind='scatter')\n", - "plt.grid(which=\"both\")\n", - "plt.show()" - ] - } - ], - "metadata": { - "language_info": { - "name": "python" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file