diff --git a/src/qa4sm_reader/img.py b/src/qa4sm_reader/img.py index e5e61dd..9b56dac 100644 --- a/src/qa4sm_reader/img.py +++ b/src/qa4sm_reader/img.py @@ -463,7 +463,7 @@ def _metric_stats(self, metric, id=None) -> list: # The number of observations are needed for the averaging of correlation values for Var in self._iter_vars(type="metric", filter_parms={'metric': 'n_obs'}): - nobs = Var.values + nobs = Var.values[Var.varname] # get stats by metric for Var in self._iter_vars(type="metric", filter_parms=filters): diff --git a/src/qa4sm_reader/plotting_methods.py b/src/qa4sm_reader/plotting_methods.py index 7ffa6b4..024657c 100644 --- a/src/qa4sm_reader/plotting_methods.py +++ b/src/qa4sm_reader/plotting_methods.py @@ -1624,7 +1624,8 @@ def output_dpi(res, return float(dpi) -def average_non_additive(values: Union[pd.Series, np.array], nobs: pd.Series) -> float: +def average_non_additive(values: Union[pd.Series, np.array], + nobs: pd.Series) -> float: """ Calculate the average of non-additive values, such as correlation scores, as recommended in: @@ -1647,7 +1648,6 @@ def average_non_additive(values: Union[pd.Series, np.array], nobs: pd.Series) -> # Transform to Fisher's z-scores z_scores = np.arctanh(values) - # Remove the entries where there are NaNs mask = np.isfinite(values) & np.isfinite(nobs) z_scores = z_scores[mask]