forked from crosire/blink
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblink_linker.cpp
465 lines (389 loc) · 15.7 KB
/
blink_linker.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/**
* Copyright (C) 2016 Patrick Mours. All rights reserved.
* License: https://github.com/crosire/blink#license
*/
#include "blink.hpp"
#include "coff_reader.hpp"
#include "scoped_handle.hpp"
#include <assert.h>
#include <Windows.h>
#include <TlHelp32.h>
static void write_jump(uint8_t *address, const uint8_t *jump_target)
{
#ifdef _M_IX86
DWORD protect = PAGE_READWRITE;
VirtualProtect(address, 5, protect, &protect);
// JMP
address[0] = 0xE9;
*reinterpret_cast<int32_t *>(address + 1) = jump_target - (address + 5);
VirtualProtect(address, 5, protect, &protect);
#endif
#ifdef _M_AMD64
DWORD protect = PAGE_READWRITE;
VirtualProtect(address, 12, protect, &protect);
// MOV RAX, [target_address]
// JMP RAX
address[0] = 0x48;
address[1] = 0xB8;
*reinterpret_cast<uint64_t *>(address + 2) = reinterpret_cast<uintptr_t>(jump_target);
address[10] = 0xFF;
address[11] = 0xE0;
VirtualProtect(address, 12, protect, &protect);
#endif
}
static uint8_t *find_free_memory_region(uint8_t *address, size_t size)
{
#ifdef _M_AMD64
SYSTEM_INFO sysinfo;
MEMORY_BASIC_INFORMATION meminfo;
GetSystemInfo(&sysinfo);
address -= reinterpret_cast<uintptr_t>(address) % sysinfo.dwAllocationGranularity;
address += sysinfo.dwAllocationGranularity;
auto maxaddress = static_cast<uint8_t *>(sysinfo.lpMaximumApplicationAddress);
maxaddress -= size;
while (address < maxaddress)
{
if (VirtualQuery(address, &meminfo, sizeof(meminfo)) == 0)
break;
if (meminfo.State == MEM_FREE)
return address;
address = static_cast<uint8_t *>(meminfo.BaseAddress) + meminfo.RegionSize;
// Round up to the next allocation granularity
address += sysinfo.dwAllocationGranularity - 1;
address -= reinterpret_cast<uintptr_t>(address) % sysinfo.dwAllocationGranularity;
}
#endif
return nullptr;
}
struct thread_scope_guard : scoped_handle
{
thread_scope_guard() :
scoped_handle(CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, 0))
{
if (handle == INVALID_HANDLE_VALUE)
return;
THREADENTRY32 te = { sizeof(te) };
if (Thread32First(handle, &te) && te.dwSize >= FIELD_OFFSET(THREADENTRY32, th32ThreadID) + sizeof(te.th32ThreadID))
{
do
{
if (te.th32OwnerProcessID != GetCurrentProcessId() || te.th32ThreadID == GetCurrentThreadId())
continue; // Do not suspend the current thread (which belongs to blink)
const scoped_handle thread = OpenThread(THREAD_SUSPEND_RESUME, FALSE, te.th32ThreadID);
if (thread == nullptr)
continue;
SuspendThread(thread);
}
while (Thread32Next(handle, &te));
}
}
~thread_scope_guard()
{
if (handle == INVALID_HANDLE_VALUE)
return;
THREADENTRY32 te = { sizeof(te) };
if (Thread32First(handle, &te) && te.dwSize >= FIELD_OFFSET(THREADENTRY32, th32ThreadID) + sizeof(te.th32ThreadID))
{
do
{
if (te.th32OwnerProcessID != GetCurrentProcessId() || te.th32ThreadID == GetCurrentThreadId())
continue;
const scoped_handle thread = OpenThread(THREAD_SUSPEND_RESUME, FALSE, te.th32ThreadID);
if (thread == nullptr)
continue;
ResumeThread(thread);
}
while (Thread32Next(handle, &te));
}
}
};
bool blink::application::link(const std::filesystem::path &path)
{
// Object file can be a normal COFF or an extended COFF
COFF_HEADER header;
const scoped_handle file = open_coff_file(path, header);
if (file == INVALID_HANDLE_VALUE)
return false;
return !header.is_extended() ?
link<IMAGE_SYMBOL>(file, header.obj) :
link<IMAGE_SYMBOL_EX>(file, header.bigobj);
}
template <typename SYMBOL_TYPE, typename HEADER_TYPE>
bool blink::application::link(HANDLE file, const HEADER_TYPE &header)
{
thread_scope_guard _scope_guard_; // Make sure the application doesn't access any of the code pages while they are being modified
#ifdef _M_IX86
if (header.Machine != IMAGE_FILE_MACHINE_I386)
#endif
#ifdef _M_AMD64
if (header.Machine != IMAGE_FILE_MACHINE_AMD64)
#endif
{
print("Input file is not of a valid format or was compiled for a different processor architecture.");
return false;
}
// Read section headers from input file (there is no optional header in COFF files, so it is right after the header read above)
std::vector<IMAGE_SECTION_HEADER> sections(header.NumberOfSections);
if (DWORD read; !ReadFile(file, sections.data(), header.NumberOfSections * sizeof(IMAGE_SECTION_HEADER), &read, nullptr))
{
print("Failed to read an image file sections.");
return false;
}
// Read symbol table from input file
SetFilePointer(file, header.PointerToSymbolTable, nullptr, FILE_BEGIN);
std::vector<SYMBOL_TYPE> symbols(header.NumberOfSymbols);
if (DWORD read; !ReadFile(file, symbols.data(), header.NumberOfSymbols * sizeof(SYMBOL_TYPE), &read, nullptr))
{
print("Failed to read an image file symbols.");
return false;
}
// The string table follows after the symbol table and is usually at the end of the file
const DWORD string_table_size = GetFileSize(file, nullptr) - (header.PointerToSymbolTable + header.NumberOfSymbols * sizeof(SYMBOL_TYPE));
std::vector<char> strings(string_table_size);
if (DWORD read; !ReadFile(file, strings.data(), string_table_size, &read, nullptr))
{
print("Failed to read a string table.");
return false;
}
// Calculate total module size
SIZE_T allocated_module_size = 0;
for (const IMAGE_SECTION_HEADER §ion : sections)
{
// Add space for section data and potential alignment
allocated_module_size += 256 + section.SizeOfRawData + section.NumberOfRelocations * sizeof(IMAGE_RELOCATION);
#ifdef _M_AMD64
// Add space for relay thunk
if (section.Characteristics & IMAGE_SCN_CNT_CODE)
allocated_module_size += section.NumberOfRelocations * 12;
#endif
}
// Allocate executable memory region close to the executable image base (this is done so that relative jumps like 'IMAGE_REL_AMD64_REL32' fit into the required 32-bit).
// Successfully loaded object files are never deallocated again to avoid corrupting the function rerouting generated below. The virtual memory is freed at process exit by Windows.
const auto module_base = static_cast<BYTE *>(VirtualAlloc(find_free_memory_region(_image_base, allocated_module_size), allocated_module_size, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE));
if (module_base == nullptr)
{
print("Failed to allocate executable memory region.");
return false;
}
// Initialize sections
auto section_base = module_base;
for (IMAGE_SECTION_HEADER §ion : sections)
{
// Skip over all sections that do not need linking
if (section.Characteristics & (IMAGE_SCN_LNK_INFO | IMAGE_SCN_LNK_REMOVE | IMAGE_SCN_MEM_DISCARDABLE))
{
section.PointerToRawData = 0xFFFFFFFF; // Mark this section as being unused
section.NumberOfRelocations = 0; // Ensure that these are not handled by relocation below
continue;
}
// Check section alignment
UINT_PTR alignment = section.Characteristics & IMAGE_SCN_ALIGN_MASK;
alignment = alignment ? 1 << ((alignment >> 20) - 1) : 1;
// Align section memory base pointer to its required alignment
section_base = reinterpret_cast<BYTE *>((reinterpret_cast<UINT_PTR>(section_base) + (alignment - 1)) & ~(alignment - 1));
// Uninitialized sections do not have any data attached and they were already zeroed by 'VirtualAlloc', so skip them here
if (section.PointerToRawData != 0)
{
SetFilePointer(file, section.PointerToRawData, nullptr, FILE_BEGIN);
if (DWORD read; !ReadFile(file, section_base, section.SizeOfRawData, &read, nullptr))
{
print("Failed to read a section raw data.");
return false;
}
}
section.PointerToRawData = static_cast<DWORD>(section_base - module_base);
section_base += section.SizeOfRawData;
// Read any relocation data attached to this section
if (section.PointerToRelocations != 0)
{
SetFilePointer(file, section.PointerToRelocations, nullptr, FILE_BEGIN);
if (DWORD read; !ReadFile(file, section_base, section.NumberOfRelocations * sizeof(IMAGE_RELOCATION), &read, nullptr))
{
print("Failed to read relocations.");
return false;
}
}
section.PointerToRelocations = static_cast<DWORD>(section_base - module_base);
section_base += section.NumberOfRelocations * sizeof(IMAGE_RELOCATION);
#if 0
// Protect section memory with requested protection flags
DWORD protect = PAGE_NOACCESS;
switch (section.Characteristics & (IMAGE_SCN_MEM_EXECUTE | IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE))
{
case IMAGE_SCN_MEM_READ:
protect = PAGE_READONLY;
break;
case IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE:
protect = PAGE_READWRITE;
break;
case IMAGE_SCN_MEM_EXECUTE:
protect = PAGE_EXECUTE;
break;
case IMAGE_SCN_MEM_EXECUTE | IMAGE_SCN_MEM_READ:
protect = PAGE_EXECUTE_READ;
break;
case IMAGE_SCN_MEM_EXECUTE | IMAGE_SCN_MEM_READ | IMAGE_SCN_MEM_WRITE:
protect = PAGE_EXECUTE_READWRITE;
break;
}
if (section.Characteristics & IMAGE_SCN_MEM_NOT_CACHED)
protect |= PAGE_NOCACHE;
if (!VirtualProtect(module_base + section.PointerToRawData, section.SizeOfRawData, protect, &protect))
print("Failed to protect section '" + std::string(reinterpret_cast<const char(&)[]>(section.Name)) + "'.");
#endif
}
// Resolve internal and external symbols
std::vector<BYTE *> local_symbol_addresses(header.NumberOfSymbols);
std::vector<std::pair<BYTE *, const BYTE *>> image_function_relocations;
for (DWORD i = 0; i < header.NumberOfSymbols; i++)
{
BYTE *target_address = nullptr;
const SYMBOL_TYPE &symbol = symbols[i];
// Get symbol name from string table if it is a long name
std::string symbol_name;
if (symbol.N.Name.Short == 0)
{
assert(symbol.N.Name.Long < string_table_size);
symbol_name = strings.data() + symbol.N.Name.Long;
}
else
{
const auto short_name = reinterpret_cast<const char *>(symbol.N.ShortName);
symbol_name = std::string(short_name, strnlen(short_name, IMAGE_SIZEOF_SHORT_NAME));
}
const auto symbol_table_lookup = _symbols.find(symbol_name);
if (symbol.StorageClass == IMAGE_SYM_CLASS_EXTERNAL && symbol.SectionNumber == IMAGE_SYM_UNDEFINED)
{
if (symbol_table_lookup == _symbols.end())
{
VirtualFree(module_base, 0, MEM_RELEASE);
print("Unresolved external symbol '" + symbol_name + "'.");
return false;
}
target_address = static_cast<BYTE *>(symbol_table_lookup->second);
}
else if (symbol.StorageClass == IMAGE_SYM_CLASS_WEAK_EXTERNAL)
{
if (symbol_table_lookup != _symbols.end())
{
target_address = static_cast<BYTE *>(symbol_table_lookup->second);
}
else if (symbol.NumberOfAuxSymbols != 0)
{
const auto aux_symbol = reinterpret_cast<const IMAGE_AUX_SYMBOL_EX &>(symbols[i + 1]).Sym;
assert(aux_symbol.WeakDefaultSymIndex < i && "Unexpected symbol ordering for weak external symbol.");
target_address = local_symbol_addresses[aux_symbol.WeakDefaultSymIndex];
}
else
{
VirtualFree(module_base, 0, MEM_RELEASE);
print("Unresolved weak external symbol '" + symbol_name + "'.");
return false;
}
}
else if (symbol.SectionNumber > IMAGE_SYM_UNDEFINED)
{
const IMAGE_SECTION_HEADER §ion = sections[symbol.SectionNumber - 1];
if (section.PointerToRawData != 0xFFFFFFFF) // Skip sections that do not need linking (see section initialization above)
{
target_address = module_base + section.PointerToRawData + symbol.Value;
if (symbol_table_lookup != _symbols.end() && symbol_name != reinterpret_cast<const char(&)[]>(section.Name))
{
const auto old_address = static_cast<BYTE *>(symbol_table_lookup->second);
if (ISFCN(symbol.Type))
{
image_function_relocations.push_back({ old_address, target_address });
}
else if (strcmp(reinterpret_cast<const char *>(section.Name), ".bss") == 0 || strcmp(reinterpret_cast<const char *>(section.Name), ".data") == 0)
{
// Continue to use existing data from previous uninitialized (.bss) and initialized (.data) sections instead of replacing it
target_address = old_address;
}
}
}
}
_symbols[symbol_name] = local_symbol_addresses[i] = target_address;
i += symbol.NumberOfAuxSymbols;
}
// Perform relocation on each section
for (const IMAGE_SECTION_HEADER §ion : sections)
{
const auto section_relocation_table = reinterpret_cast<const IMAGE_RELOCATION *>(module_base + section.PointerToRelocations);
for (unsigned int k = 0; k < section.NumberOfRelocations; ++k)
{
const IMAGE_RELOCATION &relocation = section_relocation_table[k];
const auto relocation_address = module_base + section.PointerToRawData + section.VirtualAddress + relocation.VirtualAddress;
auto target_address = local_symbol_addresses[relocation.SymbolTableIndex];
#ifdef _M_AMD64
// Add relay thunk if distance to target exceeds 32-bit range
if (target_address - relocation_address > 0xFFFFFFFF && ISFCN(symbols[relocation.SymbolTableIndex].Type))
{
write_jump(section_base, target_address);
target_address = section_base;
section_base += 12;
}
#endif
switch (relocation.Type)
{
#ifdef _M_IX86
// No relocation necessary
case IMAGE_REL_I386_ABSOLUTE:
break;
// Absolute virtual address
case IMAGE_REL_I386_DIR32:
*reinterpret_cast<uint32_t *>(relocation_address) = reinterpret_cast<uintptr_t>(target_address);
break;
// Relative virtual address to __ImageBase
case IMAGE_REL_I386_DIR32NB:
*reinterpret_cast< int32_t *>(relocation_address) = target_address - _image_base;
break;
// Relative to next instruction after relocation
case IMAGE_REL_I386_REL32:
*reinterpret_cast< int32_t *>(relocation_address) = target_address - (relocation_address + 4);
break;
case IMAGE_REL_I386_SECREL:
*reinterpret_cast<uint32_t *>(relocation_address) = reinterpret_cast<uintptr_t>(target_address) & 0xFFF; // TODO: This was found by comparing generated ASM, probably not correct
break;
#endif
#ifdef _M_AMD64
// Absolute virtual 64-bit address
case IMAGE_REL_AMD64_ADDR64:
*reinterpret_cast<uint64_t *>(relocation_address) = reinterpret_cast<uintptr_t>(target_address);
break;
// Absolute virtual 32-bit address
case IMAGE_REL_AMD64_ADDR32:
assert(reinterpret_cast<uint64_t>(target_address) >> 32 == 0 && "Address overflow in absolute relocation.");
*reinterpret_cast<uint32_t *>(relocation_address) = reinterpret_cast<uintptr_t>(target_address) & 0xFFFFFFFF;
break;
// Relative virtual address to __ImageBase
case IMAGE_REL_AMD64_ADDR32NB:
assert(target_address - _image_base == static_cast<int32_t>(target_address - _image_base) && "Address overflow in relative relocation.");
*reinterpret_cast< int32_t *>(relocation_address) = static_cast<int32_t>(target_address - _image_base);
break;
// Relative virtual address to next instruction after relocation
case IMAGE_REL_AMD64_REL32:
case IMAGE_REL_AMD64_REL32_1:
case IMAGE_REL_AMD64_REL32_2:
case IMAGE_REL_AMD64_REL32_3:
case IMAGE_REL_AMD64_REL32_4:
case IMAGE_REL_AMD64_REL32_5:
assert(target_address - relocation_address == static_cast<int32_t>(target_address - relocation_address) && "Address overflow in relative relocation.");
*reinterpret_cast< int32_t *>(relocation_address) = static_cast<int32_t>(target_address - (relocation_address + 4 + (relocation.Type - IMAGE_REL_AMD64_REL32)));
break;
case IMAGE_REL_AMD64_SECREL:
*reinterpret_cast<uint32_t *>(relocation_address) = reinterpret_cast<uintptr_t>(target_address) & 0xFFF; // TODO: This was found by comparing generated ASM, probably not correct
break;
#endif
default:
print("Unimplemented relocation type '" + std::to_string(relocation.Type) + "'.");
break;
}
}
}
// Reroute old functions to new code
for (const auto &relocation : image_function_relocations)
write_jump(relocation.first, relocation.second);
FlushInstructionCache(GetCurrentProcess(), module_base, allocated_module_size);
print("Successfully linked object file into executable image.");
return true;
}