-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnode_batch.py
133 lines (97 loc) · 4.27 KB
/
node_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import time
import math
import copy
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import init_params, seed_everything, split
from evaluation import node_evaluation
from model import GCN, EigenNeuron, EigenMLP, SpaSpeNode, Encoder
from torch_geometric.loader import NeighborLoader
def main(args):
seed_everything(args.seed)
device = 'cuda:{}'.format(args.cuda)
if args.dataset in ['pubmed', 'computer', 'photo', 'wiki', 'cs', 'physics']:
data = torch.load('data/{}.pt'.format(args.dataset))
x = data.x.float().to(device)
edge = data.edge_index.long().to(device)
e = data.e[:args.spe_dim].float().to(device)
u = data.u[:, :args.spe_dim].float().to(device)
y = data.y
print(y.min().item(), y.max().item())
if 'train_mask' in data.keys:
if len(data.train_mask.size()) > 1:
train_idx = torch.where(data.train_mask[:, args.seed])[0]
val_idx = torch.where(data.val_mask[:, args.seed])[0]
test_idx = torch.where(data.test_mask)[0]
else:
train_idx = torch.where(data.train_mask)[0]
val_idx = torch.where(data.val_mask)[0]
test_idx = torch.where(data.test_mask)[0]
else:
print('self split')
train_idx, val_idx, test_idx = split(y)
elif args.dataset in ['flickr', 'arxiv']:
data = torch.load('data/{}.pt'.format(args.dataset))
x = data.x
y = data.y
train_idx = torch.where(data.train_mask)[0]
val_idx = torch.where(data.val_mask)[0]
test_idx = torch.where(data.test_mask)[0]
train_loader = NeighborLoader(data, batch_size=2048, num_neighbors=[-1, -1], shuffle=True)
infer_loader = NeighborLoader(data, batch_size=2048, num_neighbors=[-1, -1], shuffle=False)
print(len(test_idx))
spa_encoder = GCN(x.size(1), args.hidden_dim, args.hidden_dim).to(device)
#spa_encoder = Encoder(x.size(1), args.hidden_dim, args.hidden_dim).to(device)
spe_encoder = EigenMLP(args.spe_dim, args.hidden_dim, args.period).to(device)
model = SpaSpeNode(spa_encoder, spe_encoder, args.hidden_dim, args.t).to(device)
model.apply(init_params)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
record = []
for idx in range(1000):
model.train()
for batch in train_loader:
x = batch.x.to(device)
edge = batch.edge_index.to(device)
e = batch.e.to(device)
u = batch.u[:batch.batch_size].to(device)
loss = model(x, edge, e, u, batch.batch_size)
loss.backward()
optimizer.step()
optimizer.zero_grad()
if (idx+1) % 1 == 0:
model.eval()
spa_emb = []
spe_emb = []
for batch in infer_loader:
x = batch.x.to(device)
edge = batch.edge_index.to(device)
e = batch.e.to(device)
u = batch.u[:batch.batch_size].to(device)
h_a = model.spa_encoder(x, edge)[:batch.batch_size, :]
h_e = model.spe_encoder(e, u)
spa_emb.append(h_a.detach())
spe_emb.append(h_e.detach())
spa_emb = torch.cat(spa_emb, dim=0)
spe_emb = torch.cat(spe_emb, dim=0)
acc, pred = node_evaluation((spa_emb + spe_emb)/2, y, train_idx, val_idx, test_idx)
record.append(acc)
print(acc)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--cuda', type=int, default=0)
parser.add_argument('--dataset', default='flickr')
parser.add_argument('--spe_dim', type=int, default=500)
parser.add_argument('--period', type=int, default=20)
parser.add_argument('--hidden_dim', type=int, default=512)
parser.add_argument('--t', type=float, default=1.0)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=0)
args = parser.parse_args()
print(args)
main(args)