-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnode_main.py
117 lines (88 loc) · 3.72 KB
/
node_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import time
import math
import copy
import random
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import init_params, seed_everything, split
from evaluation import node_evaluation
from model import GCN, EigenNeuron, EigenMLP, SpaSpeNode, Encoder, Basic, SAN
def main(args):
seed_everything(args.seed)
device = 'cuda:{}'.format(args.cuda)
if args.dataset in ['pubmed', 'flickr', 'arxiv', 'wiki', 'facebook']:
data = torch.load('data/{}.pt'.format(args.dataset))
x = data.x.float().to(device)
edge = data.edge_index.long().to(device)
e = data.e[:args.spe_dim].float().to(device)
u = data.u[:, :args.spe_dim].float().to(device)
y = data.y
print(y.min().item(), y.max().item())
if 'train_mask' in data.keys:
if len(data.train_mask.size()) > 1:
train_idx = torch.where(data.train_mask[:, args.seed])[0]
val_idx = torch.where(data.val_mask[:, args.seed])[0]
test_idx = torch.where(data.test_mask)[0]
else:
train_idx = torch.where(data.train_mask)[0]
val_idx = torch.where(data.val_mask)[0]
test_idx = torch.where(data.test_mask)[0]
else:
train_idx, val_idx, test_idx = split(y)
else:
pass
print(len(test_idx))
#spa_encoder = GCN(x.size(1), args.hidden_dim, args.hidden_dim).to(device)
spa_encoder = Encoder(x.size(1), args.hidden_dim, args.hidden_dim).to(device)
spe_encoder = EigenMLP(args.spe_dim, args.hidden_dim, args.hidden_dim, args.period).to(device)
#spe_encoder = Basic(args.spe_dim, args.hidden_dim, args.hidden_dim).to(device)
#spe_encoder = SAN(args.spe_dim, args.hidden_dim, args.hidden_dim).to(device)
model = SpaSpeNode(spa_encoder, spe_encoder, args.hidden_dim, args.t).to(device)
model.apply(init_params)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
'''
flip = 2 * torch.randint(0, 2, (args.spe_dim,)) - 1
sign_flip = torch.diag(flip).float().to(device)
coor_flip = torch.randperm(args.spe_dim).to(device)
uuu = torch.mm(u, sign_flip)
uu = u.clone()[:, coor_flip]
ee = e.clone()[coor_flip]
'''
t1 = time.time()
for i in range(1000):
model.eval()
spe_emb = model.spe_encoder(e, u).detach()
t2 = time.time()
print(t2 - t1)
for idx in range(100):
model.train()
loss = model(x, edge, e, u)
loss.backward()
optimizer.step()
optimizer.zero_grad()
if (idx+1) % 10 == 0:
model.eval()
spa_emb = model.spa_encoder(x, edge).detach()
spe_emb = model.spe_encoder(e, u).detach()
acc, pred = node_evaluation((spa_emb + spe_emb)/2, y, train_idx, val_idx, test_idx)
#acc, pred = node_evaluation(torch.cat((spa_emb, spe_emb), dim=-1), y, train_idx, val_idx, test_idx)
#acc, pred = node_evaluation(spe_emb, y, train_idx, val_idx, test_idx)
print(acc)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--cuda', type=int, default=3)
parser.add_argument('--dataset', default='facebook')
parser.add_argument('--spe_dim', type=int, default=100)
parser.add_argument('--period', type=int, default=20)
parser.add_argument('--hidden_dim', type=int, default=512)
parser.add_argument('--t', type=float, default=1.0)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--weight_decay', type=float, default=0)
args = parser.parse_args()
print(args)
main(args)