-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAttModel.py
839 lines (682 loc) · 38 KB
/
AttModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
# This file contains Att2in2, AdaAtt, AdaAttMO, TopDown model
# AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
# https://arxiv.org/abs/1612.01887
# AdaAttMO is a modified version with maxout lstm
# Att2in is from Self-critical Sequence Training for Image Captioning
# https://arxiv.org/abs/1612.00563
# In this file we only have Att2in2, which is a slightly different version of att2in,
# in which the img feature embedding and word embedding is the same as what in adaatt.
# TopDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA
# https://arxiv.org/abs/1707.07998
# However, it may not be identical to the author's architecture.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import misc.utils as utils
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
from .CaptionModel import CaptionModel
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['the']
def sort_pack_padded_sequence(input, lengths):
sorted_lengths, indices = torch.sort(lengths, descending=True)
tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True)
inv_ix = indices.clone()
inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix)
return tmp, inv_ix
def pad_unsort_packed_sequence(input, inv_ix):
tmp, _ = pad_packed_sequence(input, batch_first=True)
tmp = tmp[inv_ix]
return tmp
def pack_wrapper(module, att_feats, att_masks):
if att_masks is not None:
packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1))
return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)
else:
return module(att_feats)
class AttModel(CaptionModel):
def __init__(self, opt):
super(AttModel, self).__init__()
self.vocab_size = opt.vocab_size
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
self.use_bn = getattr(opt, 'use_bn', 0)
self.ss_prob = 0.0 # Schedule sampling probability
self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
# ---------------------------------------------
self.length_level_embed = nn.Sequential(nn.Embedding(6, self.input_encoding_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
# ---------------------------------------------
self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
self.att_embed = nn.Sequential(*(
((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+
(nn.Linear(self.att_feat_size, self.rnn_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))+
((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ())))
self.logit_layers = getattr(opt, 'logit_layers', 1)
if self.logit_layers == 1:
self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
else:
self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)]
self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)]))
self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size)
# For remove bad endding
self.vocab = opt.vocab
self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings]
def init_hidden(self, bsz):
weight = next(self.parameters())
return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
weight.new_zeros(self.num_layers, bsz, self.rnn_size))
def clip_att(self, att_feats, att_masks):
# Clip the length of att_masks and att_feats to the maximum length
if att_masks is not None:
max_len = att_masks.data.long().sum(1).max()
att_feats = att_feats[:, :max_len].contiguous()
att_masks = att_masks[:, :max_len].contiguous()
return att_feats, att_masks
def _prepare_feature(self, fc_feats, att_feats, att_masks):
att_feats, att_masks = self.clip_att(att_feats, att_masks)
# embed fc and att feats
fc_feats = self.fc_embed(fc_feats)
att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)
# Project the attention feats first to reduce memory and computation comsumptions.
p_att_feats = self.ctx2att(att_feats)
return fc_feats, att_feats, p_att_feats, att_masks
def _forward(self, fc_feats, att_feats, seq, att_masks=None):
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
outputs = fc_feats.new_zeros(batch_size, seq.size(1) - 1, self.vocab_size+1)
# Prepare the features
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
# pp_att_feats is used for attention, we cache it in advance to reduce computation cost
# --------------- set the length levels here ------------------
lvl = (seq != 0).sum(dim=-1).to(torch.long) + 1
lvl_1 = (lvl <= 9).to(torch.long)
lvl_2 = ((lvl >= 10) & (lvl <= 13)).to(torch.long)
lvl_3 = ((lvl >= 14) & (lvl <= 17)).to(torch.long)
lvl_4 = ((lvl >= 18) & (lvl <= 21)).to(torch.long)
lvl_5 = ((lvl >= 22) & (lvl <= 25)).to(torch.long)
lvl = lvl_1 * 1 + lvl_2 * 2 + lvl_3 * 3 + lvl_4 * 4 + lvl_5 * 5
# -------------------------------------------------------------
for i in range(seq.size(1) - 1):
if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample
sample_prob = fc_feats.new(batch_size).uniform_(0, 1)
sample_mask = sample_prob < self.ss_prob
if sample_mask.sum() == 0:
it = seq[:, i].clone()
else:
sample_ind = sample_mask.nonzero().view(-1)
it = seq[:, i].data.clone()
#prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1)
#it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1))
# prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1)
prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1)
it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
else:
it = seq[:, i].clone()
# break if all the sequences end
if i >= 1 and seq[:, i].sum() == 0:
break
# -------------------------------------------------------------
output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, lvl)
# -------------------------------------------------------------
outputs[:, i] = output
return outputs
def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, lvl):
# 'it' contains a word index
# -------------------------------------------------------------
xt = self.embed(it) + self.length_level_embed(lvl)
# ------------------------------------------------------------
output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks)
logprobs = F.log_softmax(self.logit(output), dim=1)
return logprobs, state
def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
beam_size = opt.get('beam_size', 10)
batch_size = fc_feats.size(0)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
seq = torch.LongTensor(self.seq_length, batch_size).zero_()
seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
# lets process every image independently for now, for simplicity
# ----------------------------------------------------------------------------------
lvl_id = opt.get('eval_lvl', 2)
lvl = seq.new_full((beam_size,), lvl_id).cuda()
# ----------------------------------------------------------------------------------
self.done_beams = [[] for _ in range(batch_size)]
for k in range(batch_size):
state = self.init_hidden(beam_size)
tmp_fc_feats = p_fc_feats[k:k+1].expand(beam_size, p_fc_feats.size(1))
tmp_att_feats = p_att_feats[k:k+1].expand(*((beam_size,)+p_att_feats.size()[1:])).contiguous()
tmp_p_att_feats = pp_att_feats[k:k+1].expand(*((beam_size,)+pp_att_feats.size()[1:])).contiguous()
tmp_att_masks = p_att_masks[k:k+1].expand(*((beam_size,)+p_att_masks.size()[1:])).contiguous() if att_masks is not None else None
for t in range(1):
if t == 0: # input <bos>
it = fc_feats.new_zeros([beam_size], dtype=torch.long)
# ----------------------------------------------------------------------------------
logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state, lvl)
# ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------
self.done_beams[k] = self.beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt, lvl=lvl)
# ----------------------------------------------------------------------------------
seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
seqLogprobs[:, k] = self.done_beams[k][0]['logps']
# return the samples and their log likelihoods
return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)
def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):
sample_method = opt.get('sample_method', 'greedy')
beam_size = opt.get('beam_size', 1)
temperature = opt.get('temperature', 1.0)
decoding_constraint = opt.get('decoding_constraint', 0)
block_trigrams = opt.get('block_trigrams', 0)
remove_bad_endings = opt.get('remove_bad_endings', 0)
# ----------------------------------------------------------------------------------
lvl_id = opt.get('eval_lvl', 2)
# ----------------------------------------------------------------------------------
if beam_size > 1:
return self._sample_beam(fc_feats, att_feats, att_masks, opt)
batch_size = fc_feats.size(0)
state = self.init_hidden(batch_size)
p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
trigrams = [] # will be a list of batch_size dictionaries
seq = fc_feats.new_zeros((batch_size, self.seq_length), dtype=torch.long)
seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
# ----------------------------------------------------------------------------------
lvl = seq.new_full((batch_size,), lvl_id).cuda()
# ----------------------------------------------------------------------------------
for t in range(self.seq_length + 1):
if t == 0: # input <bos>
it = fc_feats.new_zeros(batch_size, dtype=torch.long)
# --------------------------------------------------
logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, lvl)
# --------------------------------------------------
if decoding_constraint and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
logprobs = logprobs + tmp
if remove_bad_endings and t > 0:
tmp = logprobs.new_zeros(logprobs.size())
prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
# Impossible to generate remove_bad_endings
tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
logprobs = logprobs + tmp
# Mess with trigrams
if block_trigrams and t >= 3:
# Store trigram generated at last step
prev_two_batch = seq[:,t-3:t-1]
for i in range(batch_size): # = seq.size(0)
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
current = seq[i][t-1]
if t == 3: # initialize
trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
elif t > 3:
if prev_two in trigrams[i]: # add to list
trigrams[i][prev_two].append(current)
else: # create list
trigrams[i][prev_two] = [current]
# Block used trigrams at next step
prev_two_batch = seq[:,t-2:t]
mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size
for i in range(batch_size):
prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
if prev_two in trigrams[i]:
for j in trigrams[i][prev_two]:
mask[i,j] += 1
# Apply mask to log probs
#logprobs = logprobs - (mask * 1e9)
alpha = 2.0 # = 4
logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)
# sample the next word
if t == self.seq_length: # skip if we achieve maximum length
break
it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)
# stop when all finished
if t == 0:
unfinished = it > 0
else:
unfinished = unfinished * (it > 0)
it = it * unfinished.type_as(it)
seq[:,t] = it
seqLogprobs[:,t] = sampleLogprobs.view(-1)
# quit loop if all sequences have finished
if unfinished.sum() == 0:
break
return seq, seqLogprobs
class AdaAtt_lstm(nn.Module):
def __init__(self, opt, use_maxout=True):
super(AdaAtt_lstm, self).__init__()
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
self.use_maxout = use_maxout
# Build a LSTM
self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size)
self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size)
self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)])
self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)])
# Layers for getting the fake region
if self.num_layers == 1:
self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size)
self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size)
else:
self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size)
self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size)
def forward(self, xt, img_fc, state):
hs = []
cs = []
for L in range(self.num_layers):
# c,h from previous timesteps
prev_h = state[0][L]
prev_c = state[1][L]
# the input to this layer
if L == 0:
x = xt
i2h = self.w2h(x) + self.v2h(img_fc)
else:
x = hs[-1]
x = F.dropout(x, self.drop_prob_lm, self.training)
i2h = self.i2h[L-1](x)
all_input_sums = i2h+self.h2h[L](prev_h)
sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
# decode the gates
in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)
# decode the write inputs
if not self.use_maxout:
in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size))
else:
in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size)
in_transform = torch.max(\
in_transform.narrow(1, 0, self.rnn_size),
in_transform.narrow(1, self.rnn_size, self.rnn_size))
# perform the LSTM update
next_c = forget_gate * prev_c + in_gate * in_transform
# gated cells form the output
tanh_nex_c = torch.tanh(next_c)
next_h = out_gate * tanh_nex_c
if L == self.num_layers-1:
if L == 0:
i2h = self.r_w2h(x) + self.r_v2h(img_fc)
else:
i2h = self.r_i2h(x)
n5 = i2h+self.r_h2h(prev_h)
fake_region = torch.sigmoid(n5) * tanh_nex_c
cs.append(next_c)
hs.append(next_h)
# set up the decoder
top_h = hs[-1]
top_h = F.dropout(top_h, self.drop_prob_lm, self.training)
fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training)
state = (torch.cat([_.unsqueeze(0) for _ in hs], 0),
torch.cat([_.unsqueeze(0) for _ in cs], 0))
return top_h, fake_region, state
class AdaAtt_attention(nn.Module):
def __init__(self, opt):
super(AdaAtt_attention, self).__init__()
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
self.drop_prob_lm = opt.drop_prob_lm
self.att_hid_size = opt.att_hid_size
# fake region embed
self.fr_linear = nn.Sequential(
nn.Linear(self.rnn_size, self.input_encoding_size),
nn.ReLU(),
nn.Dropout(self.drop_prob_lm))
self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size)
# h out embed
self.ho_linear = nn.Sequential(
nn.Linear(self.rnn_size, self.input_encoding_size),
nn.Tanh(),
nn.Dropout(self.drop_prob_lm))
self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
self.att2h = nn.Linear(self.rnn_size, self.rnn_size)
def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None):
# View into three dimensions
att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size
conv_feat = conv_feat.view(-1, att_size, self.rnn_size)
conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size)
# view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num
fake_region = self.fr_linear(fake_region)
fake_region_embed = self.fr_embed(fake_region)
h_out_linear = self.ho_linear(h_out)
h_out_embed = self.ho_embed(h_out_linear)
txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1))
img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1)
img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1)
hA = torch.tanh(img_all_embed + txt_replicate)
hA = F.dropout(hA,self.drop_prob_lm, self.training)
hAflat = self.alpha_net(hA.view(-1, self.att_hid_size))
PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1)
if att_masks is not None:
att_masks = att_masks.view(-1, att_size)
PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step.
PI = PI / PI.sum(1, keepdim=True)
visAtt = torch.bmm(PI.unsqueeze(1), img_all)
visAttdim = visAtt.squeeze(1)
atten_out = visAttdim + h_out_linear
h = torch.tanh(self.att2h(atten_out))
h = F.dropout(h, self.drop_prob_lm, self.training)
return h
class AdaAttCore(nn.Module):
def __init__(self, opt, use_maxout=False):
super(AdaAttCore, self).__init__()
self.lstm = AdaAtt_lstm(opt, use_maxout)
self.attention = AdaAtt_attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
h_out, p_out, state = self.lstm(xt, fc_feats, state)
atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks)
return atten_out, state
class TopDownCore(nn.Module):
def __init__(self, opt, use_maxout=False):
super(TopDownCore, self).__init__()
self.drop_prob_lm = opt.drop_prob_lm
self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1
self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v
self.attention = Attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
prev_h = state[0][-1]
att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1)
h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0]))
att = self.attention(h_att, att_feats, p_att_feats, att_masks)
lang_lstm_input = torch.cat([att, h_att], 1)
# lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ?????
h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1]))
output = F.dropout(h_lang, self.drop_prob_lm, self.training)
state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang]))
return output, state
############################################################################
# Notice:
# StackAtt and DenseAtt are models that I randomly designed.
# They are not related to any paper.
############################################################################
from .FCModel import LSTMCore
class StackAttCore(nn.Module):
def __init__(self, opt, use_maxout=False):
super(StackAttCore, self).__init__()
self.drop_prob_lm = opt.drop_prob_lm
# self.att0 = Attention(opt)
self.att1 = Attention(opt)
self.att2 = Attention(opt)
opt_input_encoding_size = opt.input_encoding_size
opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size
self.lstm0 = LSTMCore(opt) # att_feat + word_embedding
opt.input_encoding_size = opt.rnn_size * 2
self.lstm1 = LSTMCore(opt)
self.lstm2 = LSTMCore(opt)
opt.input_encoding_size = opt_input_encoding_size
# self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size)
self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
# att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks)
h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]])
att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks)
h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]])
att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks)
h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]])
return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)]
class DenseAttCore(nn.Module):
def __init__(self, opt, use_maxout=False):
super(DenseAttCore, self).__init__()
self.drop_prob_lm = opt.drop_prob_lm
# self.att0 = Attention(opt)
self.att1 = Attention(opt)
self.att2 = Attention(opt)
opt_input_encoding_size = opt.input_encoding_size
opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size
self.lstm0 = LSTMCore(opt) # att_feat + word_embedding
opt.input_encoding_size = opt.rnn_size * 2
self.lstm1 = LSTMCore(opt)
self.lstm2 = LSTMCore(opt)
opt.input_encoding_size = opt_input_encoding_size
# self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size)
self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size)
# fuse h_0 and h_1
self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size),
nn.ReLU(),
nn.Dropout(opt.drop_prob_lm))
# fuse h_0, h_1 and h_2
self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size),
nn.ReLU(),
nn.Dropout(opt.drop_prob_lm))
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
# att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks)
h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]])
att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks)
h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]])
att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks)
h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]])
return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)]
class Attention(nn.Module):
def __init__(self, opt):
super(Attention, self).__init__()
self.rnn_size = opt.rnn_size
self.att_hid_size = opt.att_hid_size
self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
self.alpha_net = nn.Linear(self.att_hid_size, 1)
def forward(self, h, att_feats, p_att_feats, att_masks=None):
# The p_att_feats here is already projected
att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1)
att = p_att_feats.view(-1, att_size, self.att_hid_size)
att_h = self.h2att(h) # batch * att_hid_size
att_h = att_h.unsqueeze(1).expand_as(att) # batch * att_size * att_hid_size
dot = att + att_h # batch * att_size * att_hid_size
dot = torch.tanh(dot) # batch * att_size * att_hid_size
dot = dot.view(-1, self.att_hid_size) # (batch * att_size) * att_hid_size
dot = self.alpha_net(dot) # (batch * att_size) * 1
dot = dot.view(-1, att_size) # batch * att_size
weight = F.softmax(dot, dim=1) # batch * att_size
if att_masks is not None:
weight = weight * att_masks.view(-1, att_size).float()
weight = weight / weight.sum(1, keepdim=True) # normalize to 1
att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size
att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size
return att_res
class Att2in2Core(nn.Module):
def __init__(self, opt):
super(Att2in2Core, self).__init__()
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
#self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
# Build a LSTM
self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size)
self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size)
self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
self.dropout = nn.Dropout(self.drop_prob_lm)
self.attention = Attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks)
all_input_sums = self.i2h(xt) + self.h2h(state[0][-1])
sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)
in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \
self.a2c(att_res)
in_transform = torch.max(\
in_transform.narrow(1, 0, self.rnn_size),
in_transform.narrow(1, self.rnn_size, self.rnn_size))
next_c = forget_gate * state[1][-1] + in_gate * in_transform
next_h = out_gate * torch.tanh(next_c)
output = self.dropout(next_h)
state = (next_h.unsqueeze(0), next_c.unsqueeze(0))
return output, state
class Att2inCore(Att2in2Core):
def __init__(self, opt):
super(Att2inCore, self).__init__(opt)
del self.a2c
self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size)
"""
Note this is my attempt to replicate att2all model in self-critical paper.
However, this is not a correct replication actually. Will fix it.
"""
class Att2all2Core(nn.Module):
def __init__(self, opt):
super(Att2all2Core, self).__init__()
self.input_encoding_size = opt.input_encoding_size
#self.rnn_type = opt.rnn_type
self.rnn_size = opt.rnn_size
#self.num_layers = opt.num_layers
self.drop_prob_lm = opt.drop_prob_lm
self.fc_feat_size = opt.fc_feat_size
self.att_feat_size = opt.att_feat_size
self.att_hid_size = opt.att_hid_size
# Build a LSTM
self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size)
self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
self.dropout = nn.Dropout(self.drop_prob_lm)
self.attention = Attention(opt)
def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks)
all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res)
sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)
in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size)
in_transform = torch.max(\
in_transform.narrow(1, 0, self.rnn_size),
in_transform.narrow(1, self.rnn_size, self.rnn_size))
next_c = forget_gate * state[1][-1] + in_gate * in_transform
next_h = out_gate * torch.tanh(next_c)
output = self.dropout(next_h)
state = (next_h.unsqueeze(0), next_c.unsqueeze(0))
return output, state
class AdaAttModel(AttModel):
def __init__(self, opt):
super(AdaAttModel, self).__init__(opt)
self.core = AdaAttCore(opt)
# AdaAtt with maxout lstm
class AdaAttMOModel(AttModel):
def __init__(self, opt):
super(AdaAttMOModel, self).__init__(opt)
self.core = AdaAttCore(opt, True)
class Att2in2Model(AttModel):
def __init__(self, opt):
super(Att2in2Model, self).__init__(opt)
self.core = Att2in2Core(opt)
delattr(self, 'fc_embed')
self.fc_embed = lambda x : x
class Att2all2Model(AttModel):
def __init__(self, opt):
super(Att2all2Model, self).__init__(opt)
self.core = Att2all2Core(opt)
delattr(self, 'fc_embed')
self.fc_embed = lambda x : x
class TopDownModel(AttModel):
def __init__(self, opt):
super(TopDownModel, self).__init__(opt)
self.num_layers = 2
self.core = TopDownCore(opt)
class StackAttModel(AttModel):
def __init__(self, opt):
super(StackAttModel, self).__init__(opt)
self.num_layers = 3
self.core = StackAttCore(opt)
class DenseAttModel(AttModel):
def __init__(self, opt):
super(DenseAttModel, self).__init__(opt)
self.num_layers = 3
self.core = DenseAttCore(opt)
class Att2inModel(AttModel):
def __init__(self, opt):
super(Att2inModel, self).__init__(opt)
del self.embed, self.fc_embed, self.att_embed
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self.fc_embed = self.att_embed = lambda x: x
del self.ctx2att
self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size)
self.core = Att2inCore(opt)
self.init_weights()
def init_weights(self):
initrange = 0.1
self.embed.weight.data.uniform_(-initrange, initrange)
self.logit.bias.data.fill_(0)
self.logit.weight.data.uniform_(-initrange, initrange)
class NewFCModel(AttModel):
def __init__(self, opt):
super(NewFCModel, self).__init__(opt)
self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self._core = LSTMCore(opt)
delattr(self, 'att_embed')
self.att_embed = lambda x : x
delattr(self, 'ctx2att')
self.ctx2att = lambda x: x
def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks):
# Step 0, feed the input image
# if (self.training and state[0].is_leaf) or \
# (not self.training and state[0].sum() == 0):
# _, state = self._core(fc_feats, state)
# three cases
# normal mle training
# Sample
# beam search (diverse beam search)
# fixed captioning module.
# is_first_step = (state[0]==0).all(2).all(0)
# if is_first_step.all():
# _, state = self._core(fc_feats, state)
# elif is_first_step.any():
# # This is mostly for diverse beam search I think
# new_state = torch.zeros_like(state)
# new_state[~is_first_step] = state[~is_first_step]
# _, state = self._core(fc_feats, state)
# new_state[is_first_step] = state[is_first_step]
# state = new_state
if (state[0]==0).all():
# Let's forget about diverse beam search first
_, state = self._core(fc_feats, state)
return self._core(xt, state)
def _prepare_feature(self, fc_feats, att_feats, att_masks):
fc_feats = self.fc_embed(fc_feats)
return fc_feats, None, None, None
class LMModel(AttModel):
def __init__(self, opt):
super(LMModel, self).__init__(opt)
delattr(self, 'fc_embed')
self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size)
self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
self._core = LSTMCore(opt)
delattr(self, 'att_embed')
self.att_embed = lambda x : x
delattr(self, 'ctx2att')
self.ctx2att = lambda x: x
def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks):
if (state[0]==0).all():
# Let's forget about diverse beam search first
_, state = self._core(fc_feats, state)
return self._core(xt, state)
def _prepare_feature(self, fc_feats, att_feats, att_masks):
fc_feats = self.fc_embed(fc_feats)
return fc_feats, None, None, None