-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpresentation.tex
1138 lines (802 loc) · 32 KB
/
presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%=======================================
% ============== PREAMBLE ==============
% ======================================
% Beamer Presentation
\documentclass[12pt]{beamer}
% Packages
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{fontspec}
\usepackage[american]{babel}
\usepackage[autostyle]{csquotes}
\usepackage{graphicx} % Enable PNG,JPEG import
\usepackage{amsthm} % Theorems
\usepackage{amsfonts} % AMS fonts
\usepackage{amsmath} % AMS math
\usepackage{bm} % For bold font
\usepackage{alltt} % Easy verbose environment
\usepackage{fixltx2e} % Fixes
\usepackage{booktabs} % Proper tables
\usepackage{microtype}
% Beamer (LaTeX PDF presentation) stuff
\usetheme{uleiden}
\beamertemplatenavigationsymbolsempty
\setbeamercolor{alerted text}{fg=uleiden}
\setbeamerfont{footnote}{size=\scriptsize}
\frenchspacing % Only one space after period
% Bibliography
%\usepackage{biblatex}
\addtobeamertemplate{footnote}{\vspace{-6pt}\advance\hsize-0.5cm}{\vspace{6pt}}
\makeatletter
% Alternative A: footnote rule
\renewcommand*{\footnoterule}{\kern -3pt \hrule \@width 2in \kern 8.6pt}
% Alternative B: no footnote rule
% \renewcommand*{\footnoterule}{\kern 6pt}
\makeatother
\usepackage[style=verbose,autocite=footnote]{biblatex}
% Bibliography
%\bibliographystyle{plainnat}
\bibliography{mybib}
\newtheoremstyle{break}% name
{}% Space above, empty = `usual value'
{}% Space below
{\normalfont}% Body font
{}% Indent amount (empty = no indent, \parindent = para indent)
{\bfseries}% Thm head font
{.}% Punctuation after thm head
{\newline}% Space after thm head: \newline = linebreak
{}% Thm head spec
\theoremstyle{break}
\newtheorem{mydef}{Definition} % Environment for definitions
% Bibliography and citation
%\addbibresource{/home/benny/Dropbox/seminar/Paper/V3/pagerank_paper.bib}
%\DeclareFieldFormat[inbook,article]{citetitle}{#1}
%\DeclareFieldFormat[inbook,article]{title}{#1}
% Title page
\title{Entity Resolution in Unstructured Data}
\subtitle{and applications in the analysis of historical documents}
\author{Benjamin van der Burgh}
\date{March 15th 2016}
%%% Separation between items in list
\usepackage{etoolbox}% http://ctan.org/pkg/etoolbox
\makeatletter
\patchcmd{\@listI}{\itemsep3\p@}{\itemsep.7em}{}{}
\makeatother
\makeatletter
\newenvironment{customlist}[2]{
\ifnum\@itemdepth >2\relax\@toodeep\else
\advance\@itemdepth\@ne%
\beamer@computepref\@itemdepth%
\usebeamerfont{itemize/enumerate \beameritemnestingprefix body}%
\usebeamercolor[fg]{itemize/enumerate \beameritemnestingprefix body}%
\usebeamertemplate{itemize/enumerate \beameritemnestingprefix body begin}%
\begin{list}
{
\usebeamertemplate{itemize \beameritemnestingprefix item}
}
{ \leftmargin=#1 \itemindent=#2
\def\makelabel##1{%
{%
\hss\llap{{%
\usebeamerfont*{itemize \beameritemnestingprefix item}%
\usebeamercolor[fg]{itemize \beameritemnestingprefix item}##1}}%
}%
}%
}
\fi
}
{
\end{list}
\usebeamertemplate{itemize/enumerate \beameritemnestingprefix body end}%
}
\makeatother
%%% Packages used for nice quoting
\usepackage{etoolbox}
%\usepackage[svgnames]{xcolor}
\usepackage{tikz}
%\usepackage{framed}
\usepackage{libertine} % or any other font package
\newcommand*\quotefont{\fontfamily{LinuxLibertineT-LF}}
%%% Commands used in nice quoting
\newcommand*\quotesize{40}
\newcommand*{\openquote}
{\tikz[remember picture,overlay,xshift=-4ex,yshift=-2.5ex]
\node (OQ) {\quotefont\fontsize{\quotesize}{\quotesize}\selectfont``};\kern0pt}
\newcommand*{\closequote}[1]
{\tikz[remember picture,overlay,xshift=4ex,yshift={#1}]
\node (CQ) {\quotefont\fontsize{\quotesize}{\quotesize}\selectfont''};}
% select a colour for the shading
\colorlet{shadecolor}{red}
\newcommand*\shadedauthorformat{\emph}
\newcommand*\authoralign[1]{%
\if#1l
\def\authorfill{}\def\quotefill{\hfill}
\else
\if#1r
\def\authorfill{\hfill}\def\quotefill{}
\else
\if#1c
\gdef\authorfill{\hfill}\def\quotefill{\hfill}
\else\typeout{Invalid option}
\fi
\fi
\fi}
\newenvironment{shadequote}[2][l]%
{\authoralign{#1}
\ifblank{#2}
{\def\shadequoteauthor{}\def\yshift{-2ex}\def\quotefill{\hfill}}
{\def\shadequoteauthor{\par\authorfill\shadedauthorformat{#2}}\def\yshift{2ex}}
\begin{quote}\openquote}
{\shadequoteauthor\quotefill\closequote{\yshift}\end{quote}}
%\newcommand\mathmacro[1][A]{\ensuremath{{#1}_1}}
\newcommand*{\parsevar}[1]{\ensuremath{\left\{\textrm{#1}\right\}}}
%%% Colored box around text
\newcommand{\cfbox}[2]{%
\colorlet{currentcolor}{.}%
{\color{#1}%
\fbox{\color{currentcolor}#2}}%
}
%%% Algorithms
\usepackage[noend]{algpseudocode}
\usepackage{algorithm}
\newcommand*\Let[2]{\State #1 $\gets$ #2} % Defined for convenience
\newcommand*{\LineFor}[2]{%
\State\algorithmicfor\ {#1}\ \algorithmicdo\ {#2} \algorithmicend\ \algorithmicfor%
}
\newcommand*{\To}{\:\bm{ to }\:}
\newcommand*{\SizeOf}[1]{\:\vert {#1} \vert\:}
%%% Syntax highlighting in code
\usepackage[cache=false,outputdir=.texpadtmp]{minted}
\usemintedstyle{autumn}
\usepackage{listings}
\definecolor{codebg}{RGB}{248,248,248}
\usepackage{etoolbox}
\AtBeginEnvironment{minted}{\singlespacing%
\fontsize{10}{10}\selectfont}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{pgfplotstable}
\usepackage{tikzscale} % Nice scaling of plots
\definecolor{sns1}{HTML}{4c72b0} % Colors as defined in the 'seaborn' Python package
\definecolor{sns2}{HTML}{55a868}
\definecolor{sns3}{HTML}{c44e52}
\definecolor{sns4}{HTML}{8172b2}
\definecolor{sns5}{HTML}{ccb974}
\definecolor{sns6}{HTML}{64b5cd}
\pgfplotscreateplotcyclelist{seaborn}{
sns1!70!black, every mark/.append style={solid,fill=sns1},mark=*\\%
sns2!70!black, every mark/.append style={solid,fill=sns2},mark=square*\\%
sns3!70!black, every mark/.append style={solid,fill=sns3},mark=triangle*\\%
sns4!70!black, every mark/.append style={solid,fill=sns4},mark=diamond*\\%
sns5!70!black, every mark/.append style={solid,fill=sns5},mark=pentagon*\\%
sns6!70!black, every mark/.append style={solid,fill=sns6},mark=x\\%
}
\usetikzlibrary{positioning,shapes.geometric,snakes,decorations.pathreplacing,calc,arrows}
\usepgfplotslibrary{colorbrewer}
\pgfplotsset{
compat=1.12, % newest version, most features
}
%%% Scalable paired delimiters in math mode, e.g. |a|
\usepackage{mathtools}
\DeclarePairedDelimiter\abs{\lvert}{\rvert}%
\DeclarePairedDelimiter\norm{\lVert}{\rVert}%
%%% Pretty URLs (put last!)
\usepackage{hyperref}
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
\urlstyle{same}
%=======================================
%============ PRESENTATION =============
%=======================================
\begin{document}
\begin{frame}[plain]
\maketitle
\begin{center}
\footnotesize
\begin{tabular}[t]{l l}
Supervisors: & Dr. Arno Knobbe\\
& Dr. Siegfried Nijssen
\end{tabular}%
\end{center}
\end{frame}
%%%%%%% Overview %%%%%%
% Informal introduction to the problem with example (motivation) (2)
\begin{frame}
\frametitle{Overview}
\begin{enumerate}
\item Goals of the Traces Through Time project
\item Format problem description
\item Record extraction
\item Comparison of record fields
\item Candidate pair classification
\item Maximally Informative $k$-Itemsets
\item Experiments
\item Conclusions and future work
\end{enumerate}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Traces Through Time (1) -- Context}
\begin{itemize}
\item The National Archives stores millions of documents.
\item Many documents have been converted to a digital format. \begin{itemize}
\item Automatic: Optical Character Recognition (OCR).
\item Manual: transcribed by hand.
\end{itemize}
\item Connecting pieces of information regarding people is mostly done manually.
\item Automating this process allows for studying people in all layers of society, not just the aristocracy.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%\begin{frame}
%
% \begin{shadequote}[r]{Paulo Coelho (The Alchemist)}
% No matter what he does, every person on earth plays a central role in the history of the world. And normally he doesn't know it.
% \end{shadequote}
%
%\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Traces Through Time (2) -- Goals}
\begin{itemize}
\item Develop a methodology to \alert{identify} and \alert{trace} individuals across large and diverse historical datasets.
\item Look particularly at `fuzzy' data \begin{customlist}{3.5em}{0em}
\item Aliases: Will, William
\item Incomplete data: John (only a name)
\item Spelling variations: Owen, Eoghan
\item (OCR) Errors: Wihiam (William)
\end{customlist}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
\includegraphics[width=\textwidth]{images/medieval_document}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Traces Through Time (3) -- Collaboration}
\begin{itemize}
\item The project set out as a collaboration between several institutes: \begin{itemize}
\item The National Archives
\item Institute of Historical Research
\item Brighton University
\item Leiden University (Arno Knobbe, Kleanthi Georgala, me)
\end{itemize}
\item Brighton University worked on \emph{Natural Language Processing}.
\item Our job was to perform record linkage on the extracted references delivered by Brighton University.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Problem Definition (1)}
\begin{block}{Record}
A record $r$ is a tuple of $m$ attributes, each having a certain domain, that describes an entity, i.e., $r \in A_1 \times A2 \times \dots \times A_m$.
\end{block}
\begin{itemize}
\item We assume that records are \alert{descriptions} of people.
\item Records are potentially \alert{ambiguous}: they can describe more than one person.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Problem Definition (2)}
\begin{block}{Record Linkage}
Given a set $\mathcal{R}$ of records, determine which of these records refer to the same entity.
\end{block}
\begin{itemize}
\item Record linkage is a \alert{binary classification problem}.
\item Record pairs are classified as \alert{matching} or \alert{non-matching}.
\item The set of entities is usually unknown.
\item Even with expert knowledge, it is hard to determine the match status of a record pair.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Record Extraction}
\begin{itemize}
\item Instead of waiting for input from Brighton University, a simple context-free grammar was written in order to extract occurences.
\item First names and articles (of, de la, etc.) were used as anchor points in the text.
\item Capitalization, punctuation and ordering define the class of surrounding words.
\end{itemize}
\begin{center}
\parsevar{first name} \parsevar{article} \parsevar{capitalized word} \\
$\downarrow$ \\
\parsevar{first name} \parsevar{article} \parsevar{last name}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Record Examples -- Fine Rolls of King Henry III}
\begin{quote}
\footnotesize
``Concerning the corn of \underline{Roger of Hyde}. Order to the \underline{sheriff of Oxfordshire} to make the king’s advantage without delay, by the view of law-worthy men, from all of the corn of \underline{Roger of Hyde, knight}, in Hyde, who is with the Earl Marshal, and to put in gage etc. all those who he will find threshing that corn and intermeddling with the land of the same \underline{Roger} without warrant, to be before the king at his command to answer for it.''\footnotemark
\end{quote}
\begin{table}
\footnotesize
\centering
\input{tables/segmentation.tex}
%\caption{A possible segmentation of the paragraph taken from \emph{Fine Roll C 60/33}.}
%\label{tab:segmentation}
\end{table}
\footcitetext{FineRolls}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Record Field Comparison (1)}
\begin{itemize}
\item Records are compared on a \alert{per-field basis}.
\item Fields can be of many different types, but we assume \alert{strings}.
\item Many different ways of computing distances between strings exist.
\item To give an impression we will have a look at one particular approach.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Record Field Comparison (2) -- $Q$-gram similarity}
\begin{itemize}
\item A $q$-gram is a sequence of $q$ characters.
\item To compute the $q$-grams of a word, move a sliding window over the word.\begin{itemize}
\item \framebox{Joh}n
\item J\framebox{ohn}
\end{itemize}
\item String similarity between words defined as the similarity between their respective multisets of $q$-grams.\footnotemark
\end{itemize}
\pause
\begin{equation*}
\textrm{sim}_{\textrm{jaccard}}(\sigma_1, \sigma_2) = \frac{c_{\textrm{common}}}{c_1 + c_2 - c_{\textrm{common}}}
\end{equation*}
\onslide<1-2>\footcitetext{Ukkonen1992}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Record Field Comparison (3) -- More Metrics}
\begin{itemize}
\item Many different string similarity functions exist. \begin{itemize}
\item Edit distance\footnotemark: uses number of transformation steps.
\item Soundex\footnotemark: phonetic similarity.
\end{itemize}
\item Similarity values can often be converted to distances, e.g., $\mathrm{dist}(\sigma)=1-\mathrm{sim}(\sigma)$.
\item Distance function chosen depending on the content.
\end{itemize}
\footcitetext{Levenshtein1966}
\footcitetext{Soundex}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Candidate Pair Classification (1) -- Distances}
\begin{itemize}
\item A distance function is defined for every field.
\item The classifier first uses these functions to map a record pair to an array of distance values.
\end{itemize}
\vspace{-8mm}
\begin{equation*}
\mathrm{map}_{\mathrm{dist}}(\bm{r}_1, \bm{r}_2) \to (d_1, d_2, \ldots, d_n) \qquad \text{with } \left\vert \bm{r_1} \right\vert = \left\vert \bm{r_2} \right\vert = n
\end{equation*}
\pause
\begin{itemize}
\item Distance values are thresholded to obtain a binary value: fields are either \alert{equivalent} or \alert{nonequivalent}.
\item If one or both values are missing, the fields are considered equivalent.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Candidate Pair Classification (2) -- Probabilities}
\begin{itemize}
\item If a record field pair is equivalent, we look up the \alert{prior probability} of a person having that property, e.g., in a census.
\item If such information is unavailable, we can compute the prior probability from the data.
\item Equivalent, but are not unequal values, are treated as an \alert{equivalence class} and their probabilities are summed.
\item Using the data itself introduces a bias towards `famous people', i.e., people that occur often.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Candidate Pair Classification (3) -- An Example}
\begin{center}
\begin{tabular}{| l | c | c | c |}
\cline{2-4}
\multicolumn{1}{l|}{ } & \textit{First name} & \textit{Article} & \textit{Last name} \\\hline
$p$ & $0.182$ & $0.917$ & $0.00214$ \\\hline
$r_1$ & John & de & Engelfield \\\hline
\multicolumn{1}{c}{ } & \multicolumn{1}{c}{$0.0 \updownarrow$} & \multicolumn{1}{c}{ } & \multicolumn{1}{c}{$0.13 \updownarrow$} \\\hline
$r_2$ & John & & Englefield \\\hline
$p$ & $0.182$ & & $0.00321$\\\hline
\multicolumn{1}{l|}{ } & \textit{First name} & \textit{Article} & \textit{Last name}\\\cline{2-4}
\end{tabular}
\bigskip
\begin{tabular}{| l | c | c | c |}
\cline{2-4}
\multicolumn{1}{l|}{ } & \textit{First name} & \textit{Article} & \textit{Last name} \\\hline
$p'$ & $0.182$ & & $0.0535$ \\\hline
$E_q$ & $1$ & $1$ & $1$\\\hline
\end{tabular}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Candidate Pair Classification (4) -- Confidence}
\begin{itemize}
\item The last step of classification is to aggregate the probabilities in a \alert{confidence score}.
\item Record pairs with nonequivalent fields are not considered for linking.
\item Assume \alert{independence} of fields, e.g., \textit{First Name = John} does not affect the probability of \textit{Last Name = Williams}.
\item The confidence score is computed as the sum of log probabilities:
\end{itemize}
\begin{equation*}
\mathrm{conf}(\bm{p})=\sum_{i=0}^{\left\vert \bm{p} \right\vert}\log{p_i}
\end{equation*}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Contextual Information (1)}
\begin{itemize}
\item The previously described procedure makes use of information that is relatively easy to obtain.
\item Fields often have \alert{missing values} and the confidence score is therefore low.
\item We may be able to exploit the fact that references occur within a certain \alert{context}.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Contextual Information (2) -- An Example}
\begin{quote}
``A letter from the Secretary to Mr. Carkesse, desiring him to move the Commissioners of the Customs, that their Officers in the Out Ports may give this Board an Account of the quantities of Salt that is necessary and used in curing several species of Fish, was agreed and ordered to be sent.''
\end{quote}
\bigskip
\begin{quote}
``Ordered that Mr. Carkesse be desired to let this Board have on Tuesday next, if possible, the Account of Fish exported, which was desired the 17th of the last month.''
\end{quote}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Contextual Information (3) -- Observations}
\begin{itemize}
\item Many \alert{stop words} occur that are probably not informative.
\item There are a few interesting words: Customs, Fish, Salt.
\item Individual words might be indicative of the \alert{topic} discussed.
\item We need of means of extracting these words from the data.
\item We propose \emph{Maximally Informative $k$-Itemsets}\footnotemark for this.
\end{itemize}
\footcitetext{Knobbe2006}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Maximally Informative $k$-Itemsets -- Definitions}
\begin{block}{Joint entropy}
Suppose that $X = \left\{ x_{1}, \dots, x_{k} \right\}$ is an itemset, and $B = \left( b_{1}, \dots, b_{k} \right) \in \left\{ 0, 1 \right\}^{k}$ is a tuple of binary values. The \emph{joint entropy} of $X$ is defined as
\small
\begin{equation*}
H(X) = -\sum_{B \in \left\{ 0, 1 \right\}^{k}} p \left( x_{1} = b_{1}, \dots, x_{k} = b_{k} \right) \lg p \left( x_{1} = b_{1}, \dots, x_{k} = b_{k} \right)
\end{equation*}
\normalsize
\end{block}
\pause
\begin{itemize}
\item Presence and absence of items are treated equally.
\item The maximum achievable entropy of an itemset of size $k$ is $k$.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Maximally Informative $k$-Itemsets -- An Example}
\begin{table}
\centering
\begin{minipage}{.3\textwidth}
\centering
\begin{tabular}{c c c c}
\toprule
$A$ & $B$ & $C$ & $D$ \\
\midrule
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
\bottomrule
\end{tabular}
\end{minipage}%
\begin{minipage}{.3\textwidth}
\centering
\begin{tabular}{c c}
\toprule
$I$ & $H$ \\
\midrule
A & 1.00 \\
B & 1.00 \\
C & 1.00 \\
D & 0.95 \\
\bottomrule
\end{tabular}
\end{minipage}%
\begin{minipage}{.3\textwidth}
\centering
\begin{tabular}{c c c}
\toprule
$I_{1}$ & $I_{2}$ & $H$ \\
\midrule
A & B & 1.81 \\
A & C & 2.00 \\
A & D & 1.41 \\
B & B & 1.81 \\
B & D & 1.41 \\
C & D & 1.91 \\
\bottomrule
\end{tabular}
\end{minipage}
\end{table}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Maximally Informative $k$-Itemsets -- Definitions}
\begin{block}{Maximally informative $k$-itemset}
Suppose that $I$ is a collection of $n$ items. An itemset $X \subseteq I$ of cardinality $k$ is a \emph{maximally informative k-itemset}, $\mathrm{iff}$ for all itemsets $Y \subseteq I$ of cardinality $k$,
\begin{equation*}
H(Y) \leq H(X)
\end{equation*}
\end{block}
\pause
\begin{itemize}
\item There are many itemsets that can be a Miki: $\dbinom{n}{k}$.
\item Knobbe et al. proposed several algorithms for finding exact and approximate Mikis.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Maximally Informative $k$-Itemsets -- Algorithm}
\begin{center}
\begin{algorithmic}[1]
\Function{ForwardSelection}{$k$, $n$}
\State $X:=\varnothing$
\For{$i:=1 \To k$}
\State $h_{\mathrm{max}}:=0$
\For{$j:=1 \To n$}
\State $h:=\textrm{JointEntropy}(X \cup \left\{j\right\})$
\If{$j \not\in X \textbf{ and } h \geq h_{\mathrm{max}}$}
\State $h:=h_{\mathrm{max}}$
\State $m:=j$
\State $X:=X \cup \left\{m\right\}$
\EndIf
\EndFor
\EndFor
\State \Return $X$
\EndFunction
\end{algorithmic}
\end{center}
\footcitetext{Knobbe2006}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Maximally Informative $k$-Itemsets -- Usage}
\begin{itemize}
\item Per definition, Mikis consist of items that are \alert{uncorrelated}.
\item Roughly stated: items that occur frequently together are captured in the Miki by only one of the items.
\item This makes the items within a Miki a good candidate for modelling `topics' of text segments.
\item For each item in the Miki, we introduce a binary feature to the records, using the probability of each in the `lookup step` of the classifier.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Experiments -- Dataset}
\begin{itemize}
\item For validation of the system, we used manually annotated data from The Gascon Rolls project.
\item The Gascon Rolls are records that were drawn up by the English royal administration of Aquitaine-Gascony (south-western France) between 1273 and 1468.
\item Contain grants of land, oaths of treaties and other important documents.
\item The dataset consists of so-called \emph{calendars}, which are summaries of the actual rolls.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Experiments (1) -- Dataset}
\begin{table}
\centering
\caption{Overview of the size of the Gascon Rolls dataset.}
\label{tab:data_overview}
\begin{tabular}{l r}
\toprule
& Size \\
\midrule
Number of rolls & $66$ \\
Number of membranes & $943$ \\
Number of sections & $1153$ \\
Number of occurrences & $30426$ \\
Sum of file sizes & $27$ MB \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Experiments (2) -- Occurrence Extraction}
\begin{itemize}
\item The dataset contains $25 836$ annotated occurrences.
\item A parser based on a context-free grammar was able to find and segment $22 206$ occurrences.
\item Out of these $1684$ were not annotated and removed from the dataset resulting in $20 522$ segmented records.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Experiments (3) -- Occurrences}
\begin{table}
\footnotesize
\centering
\begin{tabular}{l l}
\toprule
\textbf{Field} & \textbf{Description}\\
\midrule
id & As provided in the source document.\\
forename & \\
article & Word(s) between the forename and surname.\\
surname & \\
provenance & Origin of a person.\\
title & Used to address a person. \\
role & Ascribed to person.\\
regnal\_number & Used to distinguish monarchs.\\
fileId & Filename \\
sectionId & Section identifier. \\
pos & Start position in section. \\
endpos & End position in section. \\
words & Words and their frequencies in section.\\
orig & Original text.\\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Experiments (4) -- Mikis}
\begin{itemize}
\item To reduce the number of items considered, several unpromising items were removed. \begin{enumerate}
\item \emph{Infrequent tokens}: any tokens that appear less than $5$ times are discarded.
\item \emph{Frequent tokens}: all tokens appearing in a fixed list of $319$ stop words were ignored.
\item Tokens that are part of \emph{occurrences}, such as first names, were ignored.
\end{enumerate}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Experiments (5) -- Evaluation}
\onslide<1>{
\begin{block}{Precision}
Precision, $E_{p}$, is the fraction of pairs that are correctly classified as true matches, i.e.,
\begin{equation*}
E_{p} = \frac{ \abs{\text{TP}} }{ \abs{\text{TP}} + \abs{\text{FP}} }
\end{equation*}
\end{block}
}
\onslide<2>{
\begin{block}{Recall}
Recall, $E_{r}$, is the fraction of true matches that are detected by the system, i.e.,
\begin{equation*}
E_{r} = \frac{ \abs{\text{TP}} }{ \abs{\text{TP}} + \abs{\text{FN}} }
\end{equation*}
\end{block}
}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Experiments (6) -- Evaluation}
\begin{block}{F-measure}
The general \emph{F-measure} measures the effectiveness of retrieval with respect to a user who attaches $\beta$ times as much importance to recall as precision in the following way:\footnotemark
\begin{equation*}
F_{\beta} = (1 + \beta^{2}) \cdot \frac{2 E_{p} E_{r}}{(\beta \cdot E_{p}) + E_{r}}
\end{equation*}
\end{block}
\begin{itemize}
\item Details are not important: the F-measure is a means of combining precision and recall in one measure.
\end{itemize}
\footcitetext{Rijsbergen1979}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\begin{table}
\footnotesize
\centering
\input{tables/miki_words_gascon_short.tex}
\end{table}
%\includegraphics[width=\textwidth]{images/pic1}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
\begin{figure}
\centering
\includegraphics[width=\textwidth,height=\textheight]{plots/miki_gascon.tikz}
\end{figure}
%\includegraphics[width=\textwidth]{images/pic2}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
\begin{figure}
\centering
\includegraphics[width=\textwidth,height=\textheight]{plots/kde.tikz}
\end{figure}
%\includegraphics[width=\textwidth]{images/pic3}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
\begin{figure}
\centering
\includegraphics[width=\textwidth,height=\textheight]{plots/roc.tikz}
\end{figure}
%\includegraphics[width=\textwidth]{images/pic4}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}[plain]
\begin{figure}