-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMapFunction.dfy
841 lines (760 loc) · 23.6 KB
/
MapFunction.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
module MapFunction {
import Std.Collections.Seq
import opened Circ
import opened Utils
import opened Subcircuit
datatype FI = FI(
inputs: map<NP, bool>,
state: map<CNode, bool>
)
datatype FIKeys = FIKeys(
inputs: set<NP>,
state: set<CNode>
)
function FItoKeys(fi: FI): FIKeys
{
FIKeys(fi.inputs.Keys, fi.state.Keys)
}
datatype FO = FO(
outputs: map<NP, bool>,
state: map<CNode, bool>
)
datatype SI = SI(
inputs: seq<bool>,
state: seq<bool>
)
datatype SO = SO(
outputs: seq<bool>,
state: seq<bool>
)
predicate FIValid(fi: FI, inputs: seq<NP>, state: seq<CNode>)
{
&& fi.inputs.Keys == Seq.ToSet(inputs)
&& fi.state.Keys == Seq.ToSet(state)
}
predicate FIKValid(fik: FIKeys, inputs: seq<NP>, state: seq<CNode>)
{
&& fik.inputs == Seq.ToSet(inputs)
&& fik.state == Seq.ToSet(state)
}
predicate FOValid(fo: FO, outputs: seq<NP>, state: seq<CNode>)
{
&& fo.outputs.Keys == Seq.ToSet(outputs)
&& fo.state.Keys == Seq.ToSet(state)
}
ghost predicate SIValid(si: SI, inputs: seq<NP>, state: seq<CNode>)
{
&& Seq.HasNoDuplicates(inputs)
&& Seq.HasNoDuplicates(state)
&& |si.inputs| == |inputs|
&& |si.state| == |state|
}
ghost predicate SOValid(so: SO, outputs: seq<NP>, state: seq<CNode>)
{
&& Seq.HasNoDuplicates(outputs)
&& Seq.HasNoDuplicates(state)
&& |so.outputs| == |outputs|
&& |so.state| == |state|
}
//datatype MapFunction = MapFunction(
// inputs: seq<NP>,
// outputs: seq<NP>,
// state: seq<CNode>,
// sf: SI --> SO
//) {
// ghost opaque predicate Valid()
// {
// && (forall si: SI :: SIValid(si, inputs, state) ==> (
// && sf.requires(si)
// && SOValid(sf(si), outputs, state)
// ))
// && Seq.HasNoDuplicates(inputs)
// && Seq.HasNoDuplicates(outputs)
// && Seq.HasNoDuplicates(state)
// && SeqsNoIntersection(inputs, outputs)
// && SeqsNoIntersection(inputs, StateONPsSeq(state))
// && SeqsNoIntersection(outputs, StateINPsSeq(state))
// }
// function NPs(): set<NP>
// {
// Seq.ToSet(inputs) + Seq.ToSet(outputs) + StateONPs(state) + StateINPs(state)
// }
// function rf(): (r: UpdateFunction)
// requires Valid()
// ensures r.Valid()
// {
// reveal MapFunction.Valid();
// reveal UpdateFunction.Valid();
// UpdateFunction(|inputs|, |outputs|, |state|, sf)
// }
// lemma InputsHasNoDuplicates()
// requires Valid()
// ensures Seq.HasNoDuplicates(inputs)
// {
// reveal Valid();
// }
// lemma OutputsHasNoDuplicates()
// requires Valid()
// ensures Seq.HasNoDuplicates(outputs)
// {
// reveal Valid();
// }
// function si2fi(si: SI): (fi: FI)
// requires SIValid(si, inputs, state)
// ensures FIValid(fi, inputs, state)
// {
// reveal Seq.HasNoDuplicates();
// var i := SeqsToMap(inputs, si.inputs);
// assert i.Keys == Seq.ToSet(inputs);
// var s := SeqsToMap(state, si.state);
// FI(i, s)
// }
//
// function so2fo(so: SO): (fo: FO)
// requires SOValid(so, outputs, state)
// ensures FOValid(fo, outputs, state)
// {
// var o := SeqsToMap(outputs, so.outputs);
// var s := SeqsToMap(state, so.state);
// FO(o, s)
// }
// function fo2so(fo: FO): (so: SO)
// requires Valid()
// requires FOValid(fo, outputs, state)
// ensures SOValid(so, outputs, state)
// {
// var o := seq(|outputs|, (index: nat) requires index < |outputs| =>
// reveal Seq.ToSet();
// fo.outputs[outputs[index]]);
// var s := seq(|state|, (index: nat) requires index < |state| =>
// reveal Seq.ToSet();
// fo.state[state[index]]);
// reveal Valid();
// reveal Seq.HasNoDuplicates();
// OutputsHasNoDuplicates();
// SO(o, s)
// }
// function fi2si(fi: FI): (si: SI)
// requires Valid()
// requires FIValid(fi, inputs, state)
// ensures SIValid(si, inputs, state)
// {
// var i := seq(|inputs|, (index: nat) requires index < |inputs| =>
// reveal Seq.ToSet();
// fi.inputs[inputs[index]]);
// var s := seq(|state|, (index: nat) requires index < |state| =>
// reveal Seq.ToSet();
// fi.state[state[index]]);
// reveal Valid();
// reveal Seq.HasNoDuplicates();
// InputsHasNoDuplicates();
// SI(i, s)
// }
// lemma fi2si2fi(fi: FI)
// requires Valid()
// requires FIValid(fi, inputs, state)
// ensures si2fi(fi2si(fi)) == fi
// {
// var si := fi2si(fi);
// assert si.inputs == seq(|inputs|, (index: nat) requires index < |inputs| =>
// reveal Seq.ToSet();
// fi.inputs[inputs[index]]);
// var fi_next := si2fi(si);
// assert fi_next.inputs == SeqsToMap(inputs, si.inputs);
// forall np | np in fi.inputs
// ensures fi_next.inputs[np] == fi.inputs[np]
// {
// reveal Seq.ToSet();
// assert np in inputs;
// var index := Seq.IndexOf(inputs, np);
// assert si.inputs[index] == fi.inputs[np];
// reveal MapMatchesSeqs();
// reveal SeqsToMap();
// assert fi_next.inputs[np] == si.inputs[index];
// }
// assert fi_next.inputs == fi.inputs;
// assert fi_next.state == SeqsToMap(state, si.state);
// forall n | n in fi.state
// ensures fi_next.state[n] == fi.state[n]
// {
// reveal Seq.ToSet();
// assert n in state;
// var index := Seq.IndexOf(state, n);
// assert si.state[index] == fi.state[n];
// reveal MapMatchesSeqs();
// reveal SeqsToMap();
// assert fi_next.state[n] == si.state[index];
// }
// assert fi_next.inputs == fi.inputs;
// }
// lemma fo2so2fo(fo: FO)
// requires Valid()
// requires FOValid(fo, outputs, state)
// ensures so2fo(fo2so(fo)) == fo
// {
// var so := fo2so(fo);
// assert so.outputs == seq(|outputs|, (index: nat) requires index < |outputs| =>
// reveal Seq.ToSet();
// fo.outputs[outputs[index]]);
// var fo_next := so2fo(so);
// assert fo_next.outputs == SeqsToMap(outputs, so.outputs);
// forall np | np in fo.outputs
// ensures fo_next.outputs[np] == fo.outputs[np]
// {
// reveal Seq.ToSet();
// assert np in outputs;
// var index := Seq.IndexOf(outputs, np);
// assert so.outputs[index] == fo.outputs[np];
// reveal MapMatchesSeqs();
// reveal SeqsToMap();
// assert fo_next.outputs[np] == so.outputs[index];
// }
// assert fo_next.outputs == fo.outputs;
// assert fo_next.state == SeqsToMap(state, so.state);
// forall n | n in fo.state
// ensures fo_next.state[n] == fo.state[n]
// {
// reveal Seq.ToSet();
// assert n in state;
// var index := Seq.IndexOf(state, n);
// assert so.state[index] == fo.state[n];
// reveal MapMatchesSeqs();
// reveal SeqsToMap();
// assert fo_next.state[n] == so.state[index];
// }
// assert fo_next.outputs == fo.outputs;
// }
// lemma si2fi2si(si: SI)
// requires Valid()
// requires SIValid(si, inputs, state)
// ensures fi2si(si2fi(si)) == si
// {
// reveal MapMatchesSeqs();
// reveal SeqsToMap();
// }
// lemma so2fo2so(so: SO)
// requires Valid()
// requires SOValid(so, outputs, state)
// ensures fo2so(so2fo(so)) == so
// {
// reveal MapMatchesSeqs();
// reveal SeqsToMap();
// }
// function f(fi: FI): (fo: FO)
// requires Valid()
// requires FIValid(fi, inputs, state)
// ensures FOValid(fo, outputs, state)
// {
// var si := fi2si(fi);
// assert SIValid(si, inputs, state);
// reveal Valid();
// var so := sf(si);
// var fo := so2fo(so);
// fo
// }
// lemma NotInBothOutputsAndStateINPs(np: NP)
// requires Valid()
// ensures !(np in outputs && np in StateINPs(state))
// {
// reveal Valid();
// StateINPsSeqSame(state);
// reveal Seq.ToSet();
// }
// lemma NotInBothInputsAndStateONPs(np: NP)
// requires Valid()
// ensures !(np in inputs && np in StateONPs(state))
// {
// reveal Valid();
// StateONPsSeqSame(state);
// reveal Seq.ToSet();
// }
//}
function StateINPsSeq(state: seq<CNode>): seq<NP>
{
seq(|state|, (i: nat) requires i < |state| => NP(state[i], INPUT_0))
}
lemma StateINPsSeqNoDuplicates(state: seq<CNode>)
requires Seq.HasNoDuplicates(state)
ensures Seq.HasNoDuplicates(StateINPsSeq(state))
{
reveal Seq.HasNoDuplicates();
}
lemma StateINPsSeqSame(state: seq<CNode>)
requires Seq.HasNoDuplicates(state)
ensures Seq.ToSet(StateINPsSeq(state)) == StateINPs(state)
{
reveal Seq.HasNoDuplicates();
reveal Seq.ToSet();
if |state| == 0 {
} else {
var s := state[0];
var smaller_state := state[1..];
StateINPsSeqSame(smaller_state);
assert s !in smaller_state;
var smaller_inps_set := StateINPs(smaller_state);
var smaller_inps_seq := StateINPsSeq(smaller_state);
assert Seq.ToSet(smaller_inps_seq) == smaller_inps_set;
assert StateINPsSeq(state) == [NP(s, INPUT_0)] + smaller_inps_seq;
assert StateINPs(state) == {NP(s, INPUT_0)} + smaller_inps_set;
}
}
lemma StateONPsSeqSame(state: seq<CNode>)
requires Seq.HasNoDuplicates(state)
ensures Seq.ToSet(StateONPsSeq(state)) == StateONPs(state)
{
reveal Seq.HasNoDuplicates();
reveal Seq.ToSet();
if |state| == 0 {
} else {
var s := state[0];
var smaller_state := state[1..];
StateONPsSeqSame(smaller_state);
assert s !in smaller_state;
var smaller_onps_set := StateONPs(smaller_state);
var smaller_onps_seq := StateONPsSeq(smaller_state);
assert Seq.ToSet(smaller_onps_seq) == smaller_onps_set;
assert StateONPsSeq(state) == [NP(s, OUTPUT_0)] + smaller_onps_seq;
assert StateONPs(state) == {NP(s, OUTPUT_0)} + smaller_onps_set;
}
}
function StateONPsSeq(state: seq<CNode>): seq<NP>
{
seq(|state|, (i: nat) requires i < |state| => NP(state[i], OUTPUT_0))
}
lemma StateONPsSeqNoDuplicates(state: seq<CNode>)
requires Seq.HasNoDuplicates(state)
ensures Seq.HasNoDuplicates(StateONPsSeq(state))
{
reveal Seq.HasNoDuplicates();
}
lemma StateONPsSeqContains(state: seq<CNode>, n: CNode)
ensures (n in state) == (NP(n, OUTPUT_0) in StateONPsSeq(state))
{
if n in state {
var index: nat :| index < |state| && state[index] == n;
assert StateONPsSeq(state)[index] == NP(n, OUTPUT_0);
} else {
}
}
lemma StateONPsSeqNoIntersection(state1: seq<CNode>, state2: seq<CNode>)
requires SeqsNoIntersection(state1, state2)
ensures SeqsNoIntersection(StateONPsSeq(state1), StateONPsSeq(state2))
{
reveal Seq.ToSet();
assert forall x: CNode, y: CNode :: x in Seq.ToSet(state1) && y in Seq.ToSet(state2) ==> x != y;
assert forall x: CNode :: (x in Seq.ToSet(state1)) == (x in state1);
assert forall x: CNode :: (x in Seq.ToSet(state2)) == (x in state2);
assert forall x: CNode, y: CNode :: x in state1 && y in state2 ==> x != y;
forall x: CNode
ensures (x in state1) == (NP(x, OUTPUT_0) in StateONPsSeq(state1))
{
StateONPsSeqContains(state1, x);
}
assert forall x: CNode :: (x in state1) == (NP(x, OUTPUT_0) in StateONPsSeq(state1));
assert forall x: CNode, y: CNode :: (NP(x, OUTPUT_0) in StateONPsSeq(state1)) && (NP(y, OUTPUT_0) in StateONPsSeq(state2)) ==> x != y;
}
function StateINPs(state: seq<CNode>): set<NP>
{
(set n | n in state :: NP(n, INPUT_0))
}
function StateONPs(state: seq<CNode>): set<NP>
{
(set n | n in state :: NP(n, OUTPUT_0))
}
function StateONPsFromSet(state: set<CNode>): set<NP>
{
(set n | n in state :: NP(n, OUTPUT_0))
}
datatype ScufMap = ScufMap(
inputs: seq<NP>,
outputs: seq<NP>,
state: seq<CNode>
) {
ghost predicate Valid()
{
&& Seq.HasNoDuplicates(inputs)
&& Seq.HasNoDuplicates(outputs)
&& Seq.HasNoDuplicates(state)
&& SeqsNoIntersection(inputs, outputs)
&& SeqsNoIntersection(inputs, StateONPsSeq(state))
&& SeqsNoIntersection(outputs, StateINPsSeq(state))
}
predicate InSc(sc: set<CNode>)
{
&& NPsInSc(sc, Seq.ToSet(inputs))
&& NPsInSc(sc, Seq.ToSet(outputs))
&& Seq.ToSet(state) <= sc
}
function NPs(): set<NP>
{
Seq.ToSet(inputs) + Seq.ToSet(outputs) + StateONPs(state) + StateINPs(state)
}
function si2fi(si: SI): (fi: FI)
requires SIValid(si, inputs, state)
ensures FIValid(fi, inputs, state)
{
reveal Seq.HasNoDuplicates();
var i := SeqsToMap(inputs, si.inputs);
assert i.Keys == Seq.ToSet(inputs);
var s := SeqsToMap(state, si.state);
FI(i, s)
}
function so2fo(so: SO): (fo: FO)
requires SOValid(so, outputs, state)
ensures FOValid(fo, outputs, state)
{
var o := SeqsToMap(outputs, so.outputs);
var s := SeqsToMap(state, so.state);
FO(o, s)
}
function fo2so(fo: FO): (so: SO)
requires Valid()
requires FOValid(fo, outputs, state)
ensures SOValid(so, outputs, state)
{
var o := seq(|outputs|, (index: nat) requires index < |outputs| =>
reveal Seq.ToSet();
fo.outputs[outputs[index]]);
var s := seq(|state|, (index: nat) requires index < |state| =>
reveal Seq.ToSet();
fo.state[state[index]]);
reveal Seq.HasNoDuplicates();
SO(o, s)
}
function fi2si(fi: FI): (si: SI)
requires Valid()
requires FIValid(fi, inputs, state)
ensures SIValid(si, inputs, state)
{
var i := MapToSeq(inputs, fi.inputs);
var s := MapToSeq(state, fi.state);
reveal Seq.HasNoDuplicates();
SI(i, s)
}
lemma fi2siInputs(fi: FI, np: NP)
requires Valid()
requires FIValid(fi, inputs, state)
requires np in fi.inputs
ensures
var si := fi2si(fi);
reveal Seq.ToSet();
var index := Seq.IndexOf(inputs, np);
si.inputs[index] == fi.inputs[np]
{
reveal Seq.ToSet();
reveal MapMatchesSeqs();
}
lemma fi2si2fi(fi: FI)
requires Valid()
requires FIValid(fi, inputs, state)
ensures si2fi(fi2si(fi)) == fi
{
var si := fi2si(fi);
assert si.inputs == MapToSeq(inputs, fi.inputs);
var fi_next := si2fi(si);
assert fi_next.inputs == SeqsToMap(inputs, si.inputs);
forall np | np in fi.inputs
ensures fi_next.inputs[np] == fi.inputs[np]
{
reveal Seq.ToSet();
assert np in inputs;
var index := Seq.IndexOf(inputs, np);
reveal MapMatchesSeqs();
reveal SeqsToMap();
assert fi_next.inputs[np] == si.inputs[index];
}
assert fi_next.inputs == fi.inputs;
assert fi_next.state == SeqsToMap(state, si.state);
forall n | n in fi.state
ensures fi_next.state[n] == fi.state[n]
{
reveal Seq.ToSet();
assert n in state;
var index := Seq.IndexOf(state, n);
reveal MapMatchesSeqs();
reveal SeqsToMap();
assert fi_next.state[n] == si.state[index];
}
assert fi_next.inputs == fi.inputs;
}
lemma fo2so2fo(fo: FO)
requires Valid()
requires FOValid(fo, outputs, state)
ensures so2fo(fo2so(fo)) == fo
{
var so := fo2so(fo);
assert so.outputs == seq(|outputs|, (index: nat) requires index < |outputs| =>
reveal Seq.ToSet();
fo.outputs[outputs[index]]);
var fo_next := so2fo(so);
assert fo_next.outputs == SeqsToMap(outputs, so.outputs);
forall np | np in fo.outputs
ensures fo_next.outputs[np] == fo.outputs[np]
{
reveal Seq.ToSet();
assert np in outputs;
var index := Seq.IndexOf(outputs, np);
assert so.outputs[index] == fo.outputs[np];
reveal MapMatchesSeqs();
reveal SeqsToMap();
assert fo_next.outputs[np] == so.outputs[index];
}
assert fo_next.outputs == fo.outputs;
assert fo_next.state == SeqsToMap(state, so.state);
forall n | n in fo.state
ensures fo_next.state[n] == fo.state[n]
{
reveal Seq.ToSet();
assert n in state;
var index := Seq.IndexOf(state, n);
assert so.state[index] == fo.state[n];
reveal MapMatchesSeqs();
reveal SeqsToMap();
assert fo_next.state[n] == so.state[index];
}
assert fo_next.outputs == fo.outputs;
}
lemma si2fi2si(si: SI)
requires Valid()
requires SIValid(si, inputs, state)
ensures fi2si(si2fi(si)) == si
{
reveal MapMatchesSeqs();
reveal SeqsToMap();
}
lemma so2fo2so(so: SO)
requires Valid()
requires SOValid(so, outputs, state)
ensures fo2so(so2fo(so)) == so
{
reveal MapMatchesSeqs();
reveal SeqsToMap();
}
//function f(fi: FI): (fo: FO)
// requires Valid()
// requires FIValid(fi, inputs, state)
// ensures FOValid(fo, outputs, state)
//{
// var si := fi2si(fi);
// assert SIValid(si, inputs, state);
// //reveal Valid();
// var so := sf(si);
// var fo := so2fo(so);
// fo
//}
}
predicate ScufMapUpdateFunctionConsistent(mp: ScufMap, uf: UpdateFunction)
requires mp.Valid()
requires uf.Valid()
{
&& (|mp.inputs| == uf.input_width)
&& (|mp.outputs| == uf.output_width)
&& (|mp.state| == uf.state_width)
}
//opaque ghost predicate MapFunctionsEquiv(mf1: MapFunction, mf2: MapFunction)
// requires mf1.Valid()
// requires mf2.Valid()
//{
// reveal MapFunction.Valid();
// && mf1.inputs == mf2.inputs
// && mf1.outputs == mf2.outputs
// && mf1.state == mf2.state
// && forall fi: FI :: FIValid(fi, mf1.inputs, mf1.state) ==> (
// mf1.f(fi) == mf2.f(fi)
// )
//}
//opaque ghost predicate MapFunctionsSFEquiv(mf1: MapFunction, mf2: MapFunction)
// requires mf1.Valid()
// requires mf2.Valid()
//{
// reveal MapFunction.Valid();
// && mf1.inputs == mf2.inputs
// && mf1.outputs == mf2.outputs
// && mf1.state == mf2.state
// && forall si: SI :: SIValid(si, mf1.inputs, mf1.state) ==> (
// mf1.sf(si) == mf2.sf(si)
// )
//}
//lemma MapFunctionsEquivSFEquiv(mf1: MapFunction, mf2: MapFunction)
// requires mf1.Valid()
// requires mf2.Valid()
// requires MapFunctionsSFEquiv(mf1, mf2)
// ensures MapFunctionsEquiv(mf1, mf2)
//{
// reveal MapFunctionsSFEquiv();
// reveal MapFunction.Valid();
// forall fi: FI | FIValid(fi, mf1.inputs, mf1.state)
// ensures mf1.f(fi) == mf2.f(fi)
// {
// var si1 := mf1.fi2si(fi);
// var si2 := mf2.fi2si(fi);
// mf1.fi2si2fi(fi);
// mf2.fi2si2fi(fi);
// assert si1 == si2;
// var so1 := mf1.sf(si1);
// var so2 := mf2.sf(si2);
// assert so1 == so2;
// var fo1 := mf1.f(fi);
// var fo2 := mf2.f(fi);
// assert fo1 == mf1.so2fo(so1);
// assert fo2 == mf2.so2fo(so2);
// assert fo1 == fo2;
// }
// reveal MapFunctionsEquiv();
//}
datatype UpdateFunction = UpdateFunction(
input_width: nat,
output_width: nat,
state_width: nat,
sf: SI --> SO
) {
predicate SIVal(si: SI)
{
&& (|si.inputs| == input_width)
&& (|si.state| == state_width)
}
predicate SOVal(so: SO)
{
&& (|so.outputs| == output_width)
&& (|so.state| == state_width)
}
opaque ghost predicate Valid()
{
&& forall si: SI :: SIVal(si) ==> (sf.requires(si) && SOVal(sf(si)))
}
lemma SFBehaves(si: SI)
requires Valid()
requires SIVal(si)
ensures sf.requires(si)
ensures SOVal(sf(si))
{
reveal Valid();
}
//opaque ghost predicate MFConsistent(mf: MapFunction)
// requires Valid()
//{
// reveal Valid();
// && (|mf.inputs| == input_width)
// && (|mf.outputs| == output_width)
// && (|mf.state| == state_width)
// && (forall si :: SIVal(si) ==> mf.sf.requires(si) && mf.sf(si) == sf(si))
//}
//function ReplacementMF(old_mf: MapFunction): (new_mf: MapFunction)
// requires Valid()
// requires old_mf.Valid()
// requires MFConsistent(old_mf)
// ensures new_mf.Valid()
// ensures MapFunctionsEquiv(old_mf, new_mf)
// ensures MFConsistent(new_mf)
//{
// reveal Valid();
// reveal MapFunction.Valid();
// reveal MFConsistent();
// reveal MapFunctionsEquiv();
// MapFunction(
// old_mf.inputs,
// old_mf.outputs,
// old_mf.state,
// (si: SI) requires SIVal(si) => sf(si)
// )
//}
}
opaque ghost predicate UpdateFunctionsEquiv(rf1: UpdateFunction, rf2: UpdateFunction)
requires rf1.Valid()
requires rf2.Valid()
{
reveal UpdateFunction.Valid();
&& rf1.input_width == rf2.input_width
&& rf1.output_width == rf2.output_width
&& rf1.state_width == rf2.state_width
&& (forall si: SI :: rf1.SIVal(si) ==> rf1.sf(si) == rf2.sf(si))
}
lemma UFConsistentEquiv(uf1: UpdateFunction, uf2: UpdateFunction, mp: ScufMap)
requires uf1.Valid()
requires uf2.Valid()
requires mp.Valid()
requires UpdateFunctionsEquiv(uf1, uf2) || UpdateFunctionsEquiv(uf2, uf1)
requires ScufMapUpdateFunctionConsistent(mp, uf1)
ensures ScufMapUpdateFunctionConsistent(mp, uf2)
{
reveal UpdateFunctionsEquiv();
}
//const NullMF := MapFunction(
// [], [], [],
// (si: SI) requires |si.inputs| == 0 && |si.state| == 0 => SO([], []))
const NullScufMap := ScufMap([], [], [])
lemma NullScufMapValid()
ensures NullScufMap.Valid()
{
reveal Seq.HasNoDuplicates();
reveal Seq.ToSet();
}
const NullUpdateFunctionConst := UpdateFunction(0, 0, 0,
(si: SI) requires |si.inputs| == 0 && |si.state| == 0 => SO([], []))
lemma NullUpdateFunctionValid()
ensures NullUpdateFunctionConst.Valid()
{
reveal UpdateFunction.Valid();
reveal Seq.ToSet();
reveal Seq.HasNoDuplicates();
}
function NullUpdateFunction(): (uf: UpdateFunction)
ensures uf.Valid()
{
NullUpdateFunctionValid();
NullUpdateFunctionConst
}
datatype DelayFunction = DelayFunction(
latency: nat,
input_width: nat,
output_width: nat,
bf: seq<bool> --> seq<bool>
) {
predicate BIVal(bi: seq<bool>)
{
|bi| == input_width
}
predicate BOVal(bo: seq<bool>)
{
|bo| == output_width
}
ghost predicate Valid()
{
forall bi :: BIVal(bi) ==> bf.requires(bi) && BOVal(bf(bi))
}
}
ghost predicate RFWillOutput(rf: UpdateFunction, delay: nat, state: seq<bool>, bo: seq<bool>)
requires rf.Valid()
requires |bo| == rf.output_width
requires |state| == rf.state_width
{
reveal UpdateFunction.Valid();
forall si :: rf.SIVal(si) && si.state == state ==> (
if delay == 0 then
rf.sf(si).outputs == bo
else
var new_state := rf.sf(si).state;
RFWillOutput(rf, delay-1, new_state, bo)
)
}
ghost predicate DelayREquiv(df: DelayFunction, rf: UpdateFunction)
requires df.Valid()
requires rf.Valid()
{
reveal UpdateFunction.Valid();
&& (df.input_width == rf.input_width)
&& (df.output_width == rf.output_width)
&& (forall si :: rf.SIVal(si) ==>
var bi := si.inputs;
var bo := df.bf(bi);
var so := rf.sf(si);
if df.latency == 0 then
bo == so.outputs
else
RFWillOutput(rf, df.latency-1, so.state, bo)
)
}
// How can we be more generic about something that places a constaint on how inputs and outputs and state are related over time.
// An explict RF is a full description.
// What we want is a way to relate that to something else.
}