-
Notifications
You must be signed in to change notification settings - Fork 87
Peripheral Access Conventions
bunnie edited this page Sep 26, 2020
·
12 revisions
- Make it clear what's going on
- Make it easy to inspect constants for correctness
- Base off of "Volatile" crate syntax
- Rely on Rust optimizer to turn otherwise complicated ops into the desired shift-and-masks
- Split into "base/offset", so the crate can be used for e.g. virtual memory mapped peripherals
![Simple Register Example](https://raw.githubusercontent.com/wiki/betrusted-io/xous-core/images/reg_simple.png)
soc.svd
gives us bit fields, but not memory regions or interrupts:
<peripheral>
<name>AUDIO</name>
<baseAddress>0xF0016000</baseAddress>
<groupName>AUDIO</groupName>
<registers>
<register>
<name>RX_CTL</name>
<description><![CDATA[Rx data path control]]></description>
<addressOffset>0x000c</addressOffset>
<resetValue>0x00</resetValue>
<size>32</size>
<access>read-write</access>
<fields>
<field>
<name>enable</name>
<msb>0</msb>
<bitRange>[0:0]</bitRange>
<lsb>0</lsb>
<description><![CDATA[Enable the receiving data]]></description>
</field>
<field>
<name>reset</name>
<msb>1</msb>
<bitRange>[1:1]</bitRange>
<lsb>1</lsb>
<description><![CDATA[Writing `1` resets the FIFO. Reset happens regardless of enable state.]]></description>
</field>
</fields>
</register>
</registers>
</peripheral>
csr.csv
gives us only names of whole registers and bases, but also gives us memory regions and interrupts:
csr_base,audio,0xf0016000,,
csr_register,audio_rx_ctl,0xf001600c,1,rw
constant,audio_interrupt,6,,
memory_region,audio,0xe0000000,4,io
proposed Rust-syntax accessors to be generated from a combination of the above two files:
// this goes in betrusted_pac.rs
const HW_AUDIO_BASE: u32 = 0xf001_6000;
const HW_AUDIO_MEM: u32 = 0xe000_0000;
const HW_AUDIO_LEN: u32 = 0x1000; // minimum 1x 4k-page
const HW_AUDIO_RX_CTL: u32 = 0xc;
const HW_AUDIO_RX_CTL_ENABLE: [u32; 2] = [0b01; 0];
const HW_AUDIO_RX_CTL_RESET: [u32; 2] = [0b10; 1];
// set up the base pointers (note "unsafe" blocks omitted for clarity)
let audio_base = (HW_AUDIO_BASE as *mut u32) as *mut Volatile<u32>;
let audio_mem = (HW_AUDIO_MEM as *mut u32) as *mut Volatile<u32>;
// read RX_CTL
let rx_ctl_value = (*audio_base.add(HW_AUDIO_RX_CTL)).r();
let enable: bool = (*audio_base.add(HW_AUDIO_RX_CTL)).rm(HW_AUDIO_RX_CTL_ENABLE) != 0; // read based on mask
let reset: bool = (*audio_base.add(HW_AUDIO_RX_CTL)).rm(HW_AUDIO_RX_CTL_RESET) != 0;
(*audio_base.add(HW_AUDIO_RX_CTL)).ow(HW_AUDIO_RX_CTL_RESET); // sets the RESET bit, and also implicitly clears ENABLE
(*audio_base.add(HW_AUDIO_RX_CTL)).ow(0, HW_AUDIO_RX_CTL_RESET_MASK); // dynamic dispatch is possible in Rust, yes?
// these two proposals manipulates two bits
(*audio_base.add(HW_AUDIO_RX_CTL))
.rw(0, HW_AUDIO_RX_CTL_RESET)
.rw(1, HW_AUDIO_RX_CTL_ENABLE);
// actually same as above. The "False" can be dropped with no harm.
(*audio_base.add(HW_AUDIO_RX_CTL))
.rw(1, HW_AUDIO_RX_CTL_ENABLE);
// write and read to the audio memory window
(*audio_mem).write( audio_sample );
let mic_data: u16 = (*audio_mem).read() as u16;
// map to virtual memory
let audio_base_vmem = xous::syscall::map_memory(
xous::MemoryAddress::new(HW_AUDIO_BASE),
None,
HW_AUDIO_LEN,
xous::MemoryFlags::R | xous::MemoryFlags::W,
)
.expect("couldn't map audio port");
// example of using vmem to access using the same constants/crate
let abase = (audio_base_vmem.as_ptr() as *mut u32) as *mut Voltaile<u32>;
(*abase.add(HW_AUDIO_RX_CTL)).rw(1, HW_AUDIO_RX_CTL_ENABLE);
// not addressed: interrupts??
![Simple Register Example](https://raw.githubusercontent.com/wiki/betrusted-io/xous-core/images/reg_simple2.png)
<peripheral>
<name>UART</name>
<baseAddress>0xF0004000</baseAddress>
<groupName>UART</groupName>
<registers>
<register>
<name>RXTX</name>
<addressOffset>0x0000</addressOffset>
<resetValue>0x00</resetValue>
<size>32</size>
<access>read-write</access>
<fields>
<field>
<name>rxtx</name>
<msb>7</msb>
<bitRange>[7:0]</bitRange>
<lsb>0</lsb>
</field>
</fields>
</register>
</registers>
</peripheral>
csr_base,uart,0xf0004000,,
csr_register,uart_rxtx,0xf0004000,1,rw
const HW_UART_BASE: u32 = 0xf004_0000;
const HW_UART_RXTX: u32 = 0x0;
const HW_UART_RXTX_RXTX: [u32; 2] = [0b1111_1111, 0];
// example of the simplest type of register accessor
let uart_base = (HW_UART_BASE as *mut u32) as *mut Volatile<u32>;
let rx_char: u8 = (*uart_base.add(HW_UART_RXTX)).r() as u8;
// these are identical in this case because the register is simple
(*uart_base.add(HW_UART_RXTX)).ow(tx_char, HW_UART_RXTX_RXTX);
(*uart_base.add(HW_UART_RXTX)).ow(tx_char);
(*uart_base.add(HW_UART_RXTX))
.rw(tx_char, HW_UART_RXTX_RXTX); // this will read the register and throw away contents before replacing it
![Simple Register Example](https://raw.githubusercontent.com/wiki/betrusted-io/xous-core/images/reg_compound.png)
<peripheral>
<name>AUDIO</name>
<baseAddress>0xF0016000</baseAddress>
<groupName>AUDIO</groupName>
<registers>
<register>
<name>RX_STAT</name>
<description><![CDATA[Rx data path status]]></description>
<addressOffset>0x0010</addressOffset>
<resetValue>0x80000000</resetValue>
<size>32</size>
<access>read-only</access>
<fields>
<field>
<name>overflow</name>
<msb>0</msb>
<bitRange>[0:0]</bitRange>
<lsb>0</lsb>
<description><![CDATA[Rx overflow]]></description>
</field>
<field>
<name>underflow</name>
<msb>1</msb>
<bitRange>[1:1]</bitRange>
<lsb>1</lsb>
<description><![CDATA[Rx underflow]]></description>
</field>
<field>
<name>dataready</name>
<msb>2</msb>
<bitRange>[2:2]</bitRange>
<lsb>2</lsb>
<description><![CDATA[256 words of data loaded and ready to read]]></description>
</field>
<field>
<name>empty</name>
<msb>3</msb>
<bitRange>[3:3]</bitRange>
<lsb>3</lsb>
<description><![CDATA[No data available in FIFO to read]]></description>
</field>
<field>
<name>wrcount</name>
<msb>12</msb>
<bitRange>[12:4]</bitRange>
<lsb>4</lsb>
<description><![CDATA[Write count]]></description>
</field>
<field>
<name>rdcount</name>
<msb>21</msb>
<bitRange>[21:13]</bitRange>
<lsb>13</lsb>
<description><![CDATA[Read count]]></description>
</field>
<field>
<name>fifo_depth</name>
<msb>30</msb>
<bitRange>[30:22]</bitRange>
<lsb>22</lsb>
<description><![CDATA[FIFO depth as synthesized]]></description>
</field>
<field>
<name>concatenate_channels</name>
<msb>31</msb>
<bitRange>[31:31]</bitRange>
<lsb>31</lsb>
<description><![CDATA[Receive and send both channels atomically]]></description>
</field>
</fields>
</register>
</registers>
</peripheral>
csr_base,audio,0xf0016000,,
csr_register,audio_rx_stat,0xf0016010,1,ro
constant,audio_interrupt,6,,
memory_region,audio,0xe0000000,4,io
const HW_AUDIO_BASE: u32 = 0xf001_6000;
const HW_AUDIO_MEM: u32 = 0xe000_0000;
const HW_AUDIO_RX_STAT: u32 = 0x10;
const HW_AUDIO_RX_STAT_EMPTY: [u32; 2] = [0b1000, 3];
const HW_AUDIO_RX_STAT_RDCOUNT: [u32; 2] = [0b11_1111_1110_0000_0000_0000, 13];
// set up the base pointers
let audio_base = (HW_AUDIO_BASE as *mut u32) as *mut Volatile<u32>;
let audio_mem = (HW_AUDIO_MEM as *mut u32) as *mut Volatile<u32>;
// read RX_STAT
let rx_stat = (*audio_base.add(HW_AUDIO_RX_STAT)).r(); // full 32 bit value
let empty: bool = (*audio_base.add(HW_AUDIO_RX_STAT)).rm(HW_AUDIO_RX_STAT_EMPTY) != 0;
// this will shift rdcount automatically
let rdcount: usize = (*audio_base.add(HW_AUDIO_RX_STAT)).rm(HW_AUDIO_RX_STAT_RDCOUNT);
// this overwrites the *entire* register with just WRCOUNT, and everything else as 0
(*audio_base.add(HW_AUDIO_RX_STAT)).ow(value, HW_AUDIO_RX_STAT_RDCOUNT);
// this will read the existing value and just update these two fields
(*audio_base.add(HW_AUDIO_RX_STAT))
.rw(value1, HW_AUDIO_RX_STAT_EMPTY)
.rw(value2, HW_AUDIO_RX_STAT_RDCOUNT);
// write and read to the audio memory window
(*audio_mem).write( audio_sample );
let mic_data: u16 = (*audio_mem).read() as u16;
// not addressed: interrupts??