-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathclassifier.py
87 lines (63 loc) · 2.53 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
from sklearn.metrics import accuracy_score, f1_score
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoModelForSequenceClassification, BertTokenizer
import data_prep
model_ckpt = "URLTran-BERT"
config = AutoConfig.from_pretrained(model_ckpt)
config.num_labels = 2
config.problem_type = "single_label_classification"
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained(model_ckpt, config=config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def predict(url, tokenizer, model):
inputs = data_prep.preprocess(url, tokenizer)
return torch.argmax(torch.softmax(model(**inputs).logits, dim=1)).tolist()
def train_model(train_dataset, model):
train_loader = DataLoader(train_dataset, batch_size=128, shuffle=True)
# model training
model.to(device)
model.train()
# initialize optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-4)
epochs = 10
for epoch in range(epochs):
for batch in train_loader:
optimizer.zero_grad()
# prep data for predict step
inputs = batch["input_ids"]
labels = batch["label"]
X = inputs.to("cpu")
y = labels.to("cpu")
outputs = model(X, labels=y)
loss = outputs.loss
loss.backward()
optimizer.step()
print(f"Epoch: {epoch} Loss: {loss.item()}")
model.save_pretrained(f"models/URLTran-BERT-CLS-{epoch}")
def eval_model(eval_dataset, tokenizer, model):
eval_loader = DataLoader(eval_dataset, batch_size=2000, shuffle=True)
y_true = []
y_pred = []
model.eval()
with torch.no_grad():
for batch in eval_loader:
inputs = batch["input_ids"]
labels = batch["label"]
X_eval = inputs.to("cpu")
y_eval = labels.to("cpu")
outputs = model(X_eval, labels=y_eval)
predictions = [
torch.argmax(pred).tolist()
for pred in torch.softmax(outputs.logits, dim=1)
]
y_eval_true = y_eval.tolist()
y_true.extend(y_eval_true)
y_pred.extend(predictions)
total_acc = accuracy_score(y_true, y_pred)
total_f1 = f1_score(y_true, y_pred)
print(f"Acc: {total_acc} F1: {total_f1}")
if __name__ == "__main__":
data_path = "data/final_data.csv"
dataset = data_prep.URLTranDataset(data_path, tokenizer)
train_model(dataset, model)