-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel_utils.py
82 lines (58 loc) · 2.4 KB
/
model_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import os
from PIL import Image
import torch
from torchvision import transforms
from torch.autograd import Variable
import numpy as np
def is_image_file(filename):
return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg"])
def load_img(filepath):
"""
TO-DO: Skip grayscale images or return error
"""
img = Image.open(filepath)
return img
class DatasetFromFolder(torch.utils.data.Dataset):
def __init__(self, image_dir, input_transform=None, target_transform=None):
super(DatasetFromFolder, self).__init__()
self.image_filenames = [os.path.join(image_dir, x) for x in os.listdir(image_dir) if is_image_file(x)]
self.input_transform = input_transform
self.target_transform = target_transform
def __getitem__(self, index):
input = load_img(self.image_filenames[index])
target = input.copy()
if self.input_transform:
input = self.input_transform(input)
if self.target_transform:
target = self.target_transform(target)
return input, target
def __len__(self):
return len(self.image_filenames)
def calculate_valid_crop_size(crop_size, upscale_factor):
return crop_size - (crop_size % upscale_factor)
def img_transform(crop_size, upscale_factor=1):
return transforms.Compose([
transforms.Scale(crop_size // upscale_factor),
transforms.CenterCrop(crop_size // upscale_factor),
transforms.ToTensor()])
def get_training_set(path, hr_size=256, upscale_factor=4):
train_dir = path
crop_size = calculate_valid_crop_size(hr_size, upscale_factor)
return DatasetFromFolder(train_dir,
input_transform=img_transform(crop_size, upscale_factor=upscale_factor),
target_transform=img_transform(crop_size))
def denorm_meanstd(arr, mean, std):
new_img = np.zeros_like(arr)
for i in range(3):
new_img[i, :, :] = arr[i, :, :] * std[i]
new_img[i, :, :] += mean[i]
return new_img
def image_loader(image_name, max_sz=256):
""" forked from pytorch tutorials """
r_image = Image.open(image_name)
mindim = np.min((np.max(r_image.size[:2]), max_sz))
loader = transforms.Compose([transforms.CenterCrop(mindim),
transforms.ToTensor()])
image = Variable(loader(r_image))
return image.unsqueeze(0)