-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathfind_alphas.py
executable file
·212 lines (175 loc) · 7.01 KB
/
find_alphas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#!/usr/bin/env python
import numpy as np
import pandas as pd
import click as ck
from sklearn.metrics import classification_report
from sklearn.metrics.pairwise import cosine_similarity
import sys
from collections import deque
import time
import logging
from sklearn.metrics import roc_curve, auc, matthews_corrcoef
from scipy.spatial import distance
from scipy import sparse
import math
from utils import FUNC_DICT, Ontology, NAMESPACES
from evaluate_deepgoplus import compute_mcc, compute_roc, evaluate_annotations
from matplotlib import pyplot as plt
from joblib import Parallel, delayed
import multiprocessing
import json
logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO)
@ck.command()
@ck.option(
'--train-data-file', '-trdf', default='data/train_data.pkl',
help='Data file with training features')
@ck.option(
'--test-data-file', '-tsdf', default='data/predictions.pkl',
help='Test data file')
@ck.option(
'--terms-file', '-tf', default='data/terms.pkl',
help='Data file with sequences and complete set of annotations')
@ck.option(
'--diamond-scores-file', '-dsf', default='data/test_diamond.res',
help='Diamond output')
@ck.option(
'--ont', '-o', default='mf',
help='GO subontology (bp, mf, cc)')
def main(train_data_file, test_data_file, terms_file,
diamond_scores_file, ont):
go_rels = Ontology('data/go.obo', with_rels=True)
terms_df = pd.read_pickle(terms_file)
terms = terms_df['terms'].values.flatten()
terms_dict = {v: i for i, v in enumerate(terms)}
train_df = pd.read_pickle(train_data_file)
test_df = pd.read_pickle(test_data_file)
print("Length of test set: " + str(len(test_df)))
annotations = train_df['prop_annotations'].values
annotations = list(map(lambda x: set(x), annotations))
test_annotations = test_df['prop_annotations'].values
test_annotations = list(map(lambda x: set(x), test_annotations))
go_rels.calculate_ic(annotations + test_annotations)
# Print IC values of terms
ics = {}
for term in terms:
ics[term] = go_rels.get_ic(term)
prot_index = {}
for i, row in enumerate(train_df.itertuples()):
prot_index[row.proteins] = i
# BLAST Similarity (Diamond)
diamond_scores = {}
with open(diamond_scores_file) as f:
for line in f:
it = line.strip().split()
if it[0] not in diamond_scores:
diamond_scores[it[0]] = {}
diamond_scores[it[0]][it[1]] = float(it[2])
blast_preds = []
#print('Diamond preds')
for i, row in enumerate(test_df.itertuples()):
annots = {}
prot_id = row.proteins
# BlastKNN
if prot_id in diamond_scores:
sim_prots = diamond_scores[prot_id]
allgos = set()
total_score = 0.0
for p_id, score in sim_prots.items():
allgos |= annotations[prot_index[p_id]]
total_score += score
allgos = list(sorted(allgos))
sim = np.zeros(len(allgos), dtype=np.float32)
for j, go_id in enumerate(allgos):
s = 0.0
for p_id, score in sim_prots.items():
if go_id in annotations[prot_index[p_id]]:
s += score
sim[j] = s / total_score
ind = np.argsort(-sim)
for go_id, score in zip(allgos, sim):
annots[go_id] = score
blast_preds.append(annots)
last_release_metadata = 'metadata/last_release.json'
with open(last_release_metadata, 'r') as f:
last_release_data = json.load(f)
last_release_data['alphas'][ont] = find_alpha(ont, test_df, blast_preds, go_rels, terms)
with open(last_release_metadata, 'w') as f:
json.dump(last_release_data, f)
################ ALGORITHM TO FIND BEST ALPHAS PARAMETER ##################################
def eval_alphas(alpha, ont, test_df, blast_preds, go_rels, terms):
deep_preds = []
go_set = go_rels.get_namespace_terms(NAMESPACES[ont])
go_set.remove(FUNC_DICT[ont])
labels = test_df['prop_annotations'].values
labels = list(map(lambda x: set(filter(lambda y: y in go_set, x)), labels))
alphas = {NAMESPACES['mf']: 0, NAMESPACES['bp']: 0, NAMESPACES['cc']: 0}
alphas[NAMESPACES[ont]] = alpha
for i, row in enumerate(test_df.itertuples()):
annots_dict = blast_preds[i].copy()
for go_id in annots_dict:
annots_dict[go_id] *= alphas[go_rels.get_namespace(go_id)]
for j, score in enumerate(row.preds):
go_id = terms[j]
score *= 1 - alphas[go_rels.get_namespace(go_id)]
if go_id in annots_dict:
annots_dict[go_id] += score
else:
annots_dict[go_id] = score
deep_preds.append(annots_dict)
fmax = 0.0
tmax = 0.0
precisions = []
recalls = []
smin = 1000000.0
rus = []
mis = []
for t in range(1, 101): # the range in this loop has influence in the AUPR output
threshold = t / 100.0
preds = []
for i, row in enumerate(test_df.itertuples()):
annots = set()
for go_id, score in deep_preds[i].items():
if score >= threshold:
annots.add(go_id)
new_annots = set()
for go_id in annots:
new_annots |= go_rels.get_anchestors(go_id)
preds.append(new_annots)
# Filter classes
preds = list(map(lambda x: set(filter(lambda y: y in go_set, x)), preds))
fscore, prec, rec, s, ru, mi, fps, fns = evaluate_annotations(go_rels, labels, preds)
avg_fp = sum(map(lambda x: len(x), fps)) / len(fps)
avg_ic = sum(map(lambda x: sum(map(lambda go_id: go_rels.get_ic(go_id), x)), fps)) / len(fps)
#print(f'{avg_fp} {avg_ic}')
precisions.append(prec)
recalls.append(rec)
# print(f'Fscore: {fscore}, Precision: {prec}, Recall: {rec} S: {s}, RU: {ru}, MI: {mi} threshold: {threshold}')
if fmax < fscore:
fmax = fscore
tmax = threshold
if smin > s:
smin = s
precisions = np.array(precisions)
recalls = np.array(recalls)
sorted_index = np.argsort(recalls)
recalls = recalls[sorted_index]
precisions = precisions[sorted_index]
aupr = np.trapz(precisions, recalls)
if ont == 'mf':
smin /= 15
elif ont == 'bp':
smin /= 40
elif ont == 'cc':
smin /= 10
return alpha, np.sum([smin, -fmax, -aupr])
def find_alpha(ont, test_df, blast_preds, go_rels, terms):
extra = [ont, test_df, blast_preds, go_rels, terms]
inputs = range(45, 75, 1)
num_cores = 30
results = Parallel(n_jobs=num_cores)(delayed(eval_alphas)(i/100, *extra) for i in inputs)
chosen = min(results, key=lambda x: x[1])
return chosen[0]
#####################################################################################
if __name__ == '__main__':
alphas = {'mf': 0, 'bp': 0, 'cc': 0}
main()