-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
71 lines (59 loc) · 2.2 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from typing import Tuple
import torch
from omegaconf import DictConfig
from pytorch_lightning import LightningDataModule
from torch.utils.data import DataLoader
from data_handling.augmentations import get_augmentations_from_config
"""A batch is a 3-tuple of imgs, labels, and metadata dict"""
BatchType = Tuple[torch.Tensor, torch.Tensor, dict[str, torch.Tensor]]
class BaseDataModuleClass(LightningDataModule):
def __init__(self, config: DictConfig, shuffle: bool = True, parents=None) -> None:
super().__init__()
self.config = config
self.shuffle = shuffle
self.parents = parents
self.train_tsfm, self.val_tsfm = get_augmentations_from_config(config.data)
if not config.trainer.use_train_augmentations:
self.train_tsfm = self.val_tsfm
self.sampler = None
self.create_datasets()
def train_dataloader(self):
if self.sampler is not None and self.shuffle:
return DataLoader(
self.dataset_train,
num_workers=self.config.data.num_workers,
pin_memory=self.config.data.pin_memory,
persistent_workers=False,
batch_sampler=self.sampler,
)
return DataLoader(
self.dataset_train,
self.config.data.batch_size,
shuffle=self.shuffle,
num_workers=self.config.data.num_workers,
pin_memory=self.config.data.pin_memory,
)
def val_dataloader(self):
return DataLoader(
self.dataset_val,
self.config.data.batch_size,
shuffle=False,
num_workers=self.config.data.num_workers,
pin_memory=self.config.data.pin_memory,
)
def test_dataloader(self):
return DataLoader(
self.dataset_test,
self.config.data.batch_size,
shuffle=False,
num_workers=self.config.data.num_workers,
pin_memory=self.config.data.pin_memory,
)
@property
def dataset_name(self):
raise NotImplementedError
def create_datasets(self):
raise NotImplementedError
@property
def num_classes(self):
raise NotImplementedError