From 325bfefaec8104f7badd4a0ff83ca0525352cb75 Mon Sep 17 00:00:00 2001 From: Sebastian Falbesoner Date: Fri, 8 Nov 2024 01:20:21 +0100 Subject: [PATCH] Add hazmat usage example --- .gitignore | 1 + Makefile.am | 11 +++ examples/CMakeLists.txt | 4 + examples/hazmat.c | 196 ++++++++++++++++++++++++++++++++++++++++ 4 files changed, 212 insertions(+) create mode 100644 examples/hazmat.c diff --git a/.gitignore b/.gitignore index bffba8cb2c..16cbd810e3 100644 --- a/.gitignore +++ b/.gitignore @@ -12,6 +12,7 @@ ecdsa_example schnorr_example ellswift_example musig_example +hazmat_example *.exe *.so *.a diff --git a/Makefile.am b/Makefile.am index f4f2e9ea04..11ecaa3d9c 100644 --- a/Makefile.am +++ b/Makefile.am @@ -206,6 +206,17 @@ musig_example_LDFLAGS += -lbcrypt endif TESTS += musig_example endif +if ENABLE_MODULE_HAZMAT +noinst_PROGRAMS += hazmat_example +hazmat_example_SOURCES = examples/hazmat.c +hazmat_example_CPPFLAGS = -I$(top_srcdir)/include -DSECP256K1_STATIC +hazmat_example_LDADD = libsecp256k1.la +hazmat_example_LDFLAGS = -static +if BUILD_WINDOWS +hazmat_example_LDFLAGS += -lbcrypt +endif +TESTS += hazmat_example +endif endif ### Precomputed tables diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index c9da9de6be..7f040f79ee 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -29,3 +29,7 @@ endif() if(SECP256K1_ENABLE_MODULE_MUSIG) add_example(musig) endif() + +if(SECP256K1_ENABLE_MODULE_HAZMAT) + add_example(hazmat) +endif() diff --git a/examples/hazmat.c b/examples/hazmat.c new file mode 100644 index 0000000000..bd538b698c --- /dev/null +++ b/examples/hazmat.c @@ -0,0 +1,196 @@ +/************************************************************************* + * To the extent possible under law, the author(s) have dedicated all * + * copyright and related and neighboring rights to the software in this * + * file to the public domain worldwide. This software is distributed * + * without any warranty. For the CC0 Public Domain Dedication, see * + * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * + *************************************************************************/ + +#include +#include +#include + +#include +#include + +#include "examples_util.h" + +int main(void) { + secp256k1_context* ctx; + unsigned char randomize[32]; + secp256k1_hazmat_scalar a[3], a_sum; + secp256k1_hazmat_point A[3], A_sum; + unsigned char lhs_ser[33], rhs_ser[33]; + int return_val, i; + + /* Create a secp256k1 context + * Note that in the hazmat module, the context is only needed for multiplication + * with the generator point (function `secp256k1_hazmat_multiply_with_generator`). + */ + ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); + if (!fill_random(randomize, sizeof(randomize))) { + printf("Failed to generate randomness\n"); + return 1; + } + /* Randomizing the context is recommended to protect against side-channel + * leakage. See `secp256k1_context_randomize` in secp256k1.h for more + * information about it. This should never fail. + */ + return_val = secp256k1_context_randomize(ctx, randomize); + assert(return_val); + + /* Generate keypairs */ + for (i = 0; i < 3; i++) { + unsigned char scalar_buf[32]; + unsigned char point_ser[33]; + + if (!fill_random(scalar_buf, sizeof(scalar_buf))) { + printf("Failed to generate randomness\n"); + return 1; + } + if (!secp256k1_hazmat_scalar_parse(&a[i], scalar_buf) || secp256k1_hazmat_scalar_is_zero(&a[i])) { + printf("Generated secret key is invalid. This indicates an issue with the random number generator.\n"); + return 1; + } + secp256k1_hazmat_multiply_with_generator(ctx, &A[i], &a[i]); + + secp256k1_hazmat_point_serialize(point_ser, &A[i]); + printf("scalar a_%d: ", i+1); print_hex(scalar_buf, sizeof(scalar_buf)); + printf("point A_%d: ", i+1); print_hex(point_ser, sizeof(point_ser)); + + secure_erase(scalar_buf, sizeof(scalar_buf)); + } + + /* Simple example: verify that (a_1 + a_2 + a_3) * G = A_1 + A_2 + A_3 holds */ + secp256k1_hazmat_scalar_set_zero(&a_sum); + secp256k1_hazmat_point_set_infinity(&A_sum); + for (i = 0; i < 3; i++) { + secp256k1_hazmat_scalar_add(&a_sum, &a_sum, &a[i]); + secp256k1_hazmat_point_add(&A_sum, &A_sum, &A[i]); + } + + { + secp256k1_hazmat_point A_lhs; + + secp256k1_hazmat_multiply_with_generator(ctx, &A_lhs, &a_sum); + secp256k1_hazmat_point_serialize(lhs_ser, &A_lhs); + secp256k1_hazmat_point_serialize(rhs_ser, &A_sum); + + printf("\n"); + printf("(a_1 + a_2 + a_3) * G: "); + print_hex(lhs_ser, sizeof(lhs_ser)); + printf(" A_1 + A_2 + A_3: "); + print_hex(rhs_ser, sizeof(rhs_ser)); + + /* Verify equality for both the hazmat points and their serialization */ + return_val = secp256k1_hazmat_point_equal(&A_lhs, &A_sum); + assert(return_val == 1); + return_val = memcmp(lhs_ser, rhs_ser, sizeof(lhs_ser)); + assert(return_val == 0); + } + + /* Next example: verify that a_1 * A_2 = A_1 * a_2 (ECDH) */ + { + secp256k1_hazmat_point lhs, rhs; + + secp256k1_hazmat_multiply_with_point(&lhs, &a[0], &A[1]); + secp256k1_hazmat_multiply_with_point(&rhs, &a[1], &A[0]); + secp256k1_hazmat_point_serialize(lhs_ser, &lhs); + secp256k1_hazmat_point_serialize(rhs_ser, &rhs); + + printf("\n"); + printf(" a_1 * A_2: "); + print_hex(lhs_ser, sizeof(lhs_ser)); + printf(" A_1 * a_2: "); + print_hex(rhs_ser, sizeof(rhs_ser)); + + return_val = secp256k1_hazmat_point_equal(&lhs, &rhs); + assert(return_val == 1); + return_val = memcmp(lhs_ser, rhs_ser, sizeof(lhs_ser)); + assert(return_val == 0); + } + + /* Yet another example, to demonstrate also scalar multiplication: + * verify that (a_1 * a_2) * A_3 = a_1 * (a_2 * A_3) */ + { + secp256k1_hazmat_point lhs, rhs; + secp256k1_hazmat_scalar tmp_scalar; + secp256k1_hazmat_point tmp_point; + + secp256k1_hazmat_scalar_mul(&tmp_scalar, &a[0], &a[1]); + secp256k1_hazmat_multiply_with_point(&lhs, &tmp_scalar, &A[2]); + secp256k1_hazmat_multiply_with_point(&tmp_point, &a[1], &A[2]); + secp256k1_hazmat_multiply_with_point(&rhs, &a[0], &tmp_point); + secp256k1_hazmat_point_serialize(lhs_ser, &lhs); + secp256k1_hazmat_point_serialize(rhs_ser, &rhs); + + printf("\n"); + printf("(a_1 * a_2) * A_3: "); + print_hex(lhs_ser, sizeof(lhs_ser)); + printf(" a_1 * (a_2 * A_3): "); + print_hex(rhs_ser, sizeof(rhs_ser)); + + return_val = secp256k1_hazmat_point_equal(&lhs, &rhs); + assert(return_val == 1); + return_val = memcmp(lhs_ser, rhs_ser, sizeof(lhs_ser)); + assert(return_val == 0); + } + + /* Show negation and neutral elements for scalars and points: + * a_i - a_i = 0 + * A_i - A_i = point at infinity + */ + for (i = 0; i < 3; i++) { + secp256k1_hazmat_scalar a_result, a_negated; + secp256k1_hazmat_point A_result, A_negated; + + a_negated = a[i]; + secp256k1_hazmat_scalar_negate(&a_negated); + secp256k1_hazmat_scalar_add(&a_result, &a[i], &a_negated); + assert(secp256k1_hazmat_scalar_is_zero(&a_result)); + + A_negated = A[i]; + secp256k1_hazmat_point_negate(&A_negated); + secp256k1_hazmat_point_add(&A_result, &A[i], &A_negated); + assert(secp256k1_hazmat_point_is_infinity(&A_result)); + } + + /* To demonstrate parsing points and scalars, verify that the discrete log + * of the generator point is the scalar with value 1. */ + { + secp256k1_hazmat_point generator, generator_calculated; + secp256k1_hazmat_scalar scalar_one; + unsigned char generator_ser[33] = + "\x02\x79\xBE\x66\x7E\xF9\xDC\xBB\xAC\x55\xA0\x62\x95\xCE\x87\x0B\x07" + "\x02\x9B\xFC\xDB\x2D\xCE\x28\xD9\x59\xF2\x81\x5B\x16\xF8\x17\x98"; + unsigned char scalar_one_ser[32] = + "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" + "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"; + unsigned char generator_calculated_ser[33]; + + return_val = secp256k1_hazmat_point_parse(&generator, generator_ser); + assert(return_val); + return_val = secp256k1_hazmat_scalar_parse(&scalar_one, scalar_one_ser); + assert(return_val); + secp256k1_hazmat_multiply_with_generator(ctx, &generator_calculated, &scalar_one); + secp256k1_hazmat_point_serialize(generator_calculated_ser, &generator_calculated); + return_val = secp256k1_hazmat_point_equal(&generator, &generator_calculated); + assert(return_val == 1); + return_val = memcmp(generator_ser, generator_calculated_ser, sizeof(generator_ser)); + assert(return_val == 0); + } + + /* It's best practice to try to clear secrets from memory after using them. + * This is done because some bugs can allow an attacker to leak memory, for + * example through "out of bounds" array access (see Heartbleed), or the OS + * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. + * + * Here we are preventing these writes from being optimized out, as any good compiler + * will remove any writes that aren't used. */ + for (i = 0; i < 3; i++) { + secure_erase(&a[i], sizeof(a[i])); + } + secure_erase(&a_sum, sizeof(a_sum)); + + return 0; +}