-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpython-scipy-modülü-1.py
122 lines (81 loc) · 2.91 KB
/
python-scipy-modülü-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
"""
) ( (
( /( )\ ) )\ ( ) ) (
)\()) ((_) ( /( ((_) )\ ) ( /( ( ( /( )(
((_)\ _ )(_)) _ (()/( )(_)) )\ )(_)) (()\
| |(_) | | ((_)_ | | )(_)) ((_)_ ((_) ((_)_ ((_)
| '_ \ | | / _` | | | | || | / _` | (_-< / _` | | '_|
|_.__/ |_| \__,_| |_| \_, | \__,_| /__/ \__,_| |_|
|__/
"""
python -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose
sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from scipy import linalg, optimize
np.info(optimize.fmin)"""
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None,full_output=0, disp=1, retall=0, callback=None)
.....
.....
.....
"""
import numpy as np
np.some_function()
from scipy import some_module
some_module.some_function()
import numpy as np
a = np.concatenate(([3], [0]*5, np.arange(-1, 1.002, 2/9.0)))
a"""
array([ 3. , 0. , 0. , 0. , 0. ,
0. , -1. , -0.77777778, -0.55555556, -0.33333333,
-0.11111111, 0.11111111, 0.33333333, 0.55555556, 0.77777778,
1. ])
"""
a = np.r_[3,[0]*5,-1:1:10j]
np.mgrid[0:5,0:5]"""
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])
"""
np.mgrid[0:5:4j,0:5:4j]"""
array([[[ 0. , 0. , 0. , 0. ],
[ 1.6667, 1.6667, 1.6667, 1.6667],
[ 3.3333, 3.3333, 3.3333, 3.3333],
[ 5. , 5. , 5. , 5. ]],
[[ 0. , 1.6667, 3.3333, 5. ],
[ 0. , 1.6667, 3.3333, 5. ],
[ 0. , 1.6667, 3.3333, 5. ],
[ 0. , 1.6667, 3.3333, 5. ]]])
"""
from numpy import poly1d
p = poly1d([3,4,5])
print(p)"""
2
3 x + 4 x + 5
"""
from numpy import poly1d
p = poly1d([3,4,5])print(p*p) 4 3 2
# 9 x + 24 x + 46 x + 40 x + 25
####################################################################print(p.integ(k=6))
3 2
# 1 x + 2 x + 5 x + 6
####################################################################print(p.deriv())# 6 x + 4####################################################################p([4, 5])# array([ 69, 100])
def addsubtract(a,b):
if a > b:
return a - b
else:
return a + b
vec_addsubtract = np.vectorize(addsubtract)
vec_addsubtract([0,3,6,9],[1,3,5,7])# array([1, 6, 1, 2])
x = np.arange(10)
condlist = [x<3, x>5]
choicelist = [x, x**2]
np.select(condlist, choicelist)# array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81])