forked from MomentEI/GridPath_RA_Toolkit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuild_scenario.py
1131 lines (892 loc) · 51.6 KB
/
build_scenario.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Copyright 2022 Moment Energy Insights LLC.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
"""
Generates the GridPath input data for a scenario using Monte Carlo Simulation or Weather-Synchronized Simulation
To call in command line:
python build_scenario.py [scenario_name] [# of threads]
Notes:
settings must be populated for [scenario_name] in scenario_settings.csv
files and directories listed in scenario_settings.csv for [scenario_name] must be populated
"""
import threading
import multiprocessing
import numpy as np
import csv
import os
import datetime
import sys
import glob
import shutil
class Parameter:
def __init__(self,name,aggregation,vartype,scalar):
self.name = name
self.aggregation = aggregation
self.vartype = vartype
self.scalar = scalar
self.timeseries = []
self.unitModel = 'NA'
self.unitFOR = 0
self.unitMTTR = 1
self.unitMTTF = 1
self.units = 1
self.gentieModel = 'NA'
self.gentieFOR = 0
self.gentieMTTR = 1
self.gentieMTTF = 1
class Aggregation:
def __init__(self,name,temporal):
self.name = name
self.temporal = temporal
self.total = 0
class VarType:
def __init__(self,name,filename,print_mode,header,value):
self.name = name
self.filename = filename
self.print_mode = print_mode
self.header = header
self.value = value
class Timeseries:
def __init__(self,name,stat):
self.name = name
self.stat = stat
self.draw_inds = []
self.rows = 0
def timeseries_sync(case_name,timeseries,timeseries_inds1):
N_timeseries = len(timeseries[0])
# Pull sycnhronized weather days based on what's available in the temporal record
print('identifying synchronized conditions...')
timeseries_header = []
timeseries_timestamps = []
timeseries_timestamps_dt64 = []
weather_timestamps_dt64 = []
hydro_timestamps_dt64 = []
for i in range(N_timeseries):
ts = timeseries[1][i]
print(' ...'+ts.name+'...')
# pull in all the timestamps
with open(os.path.join('temporal_data',ts.name,'timestamps.csv')) as csvfile:
file_reader = csv.reader(csvfile, delimiter=',')
header = file_reader.__next__()
if 'HE' in header:
timeseries_header.append(header[0:-1])
else:
timeseries_header.append(header)
timeseries_timestamps.append([])
timeseries_timestamps_dt64.append([])
ts.rows = 0
for row in file_reader:
ts.rows += 1
# store the timestamp so that it can be used later to report out the drawn days
if 'HE' in header:
timeseries_timestamps[i].append(row[0:-1])
HE = row[header.index('HE')].zfill(2)
if HE == '01':
year = row[header.index('year')]
month = row[header.index('month')].zfill(2)
# if daily data is not provided, assign the row to the first day of the month
if 'day' not in header:
day = '01'
else:
day = row[header.index('day')].zfill(2)
timestamp_tmp = np.datetime64(year+'-'+month+'-'+day)
if timestamp_tmp not in timeseries_timestamps_dt64[i]:
timeseries_timestamps_dt64[i].append(timestamp_tmp)
else:
timeseries_timestamps[i].append(row)
year = row[header.index('year')]
month = row[header.index('month')].zfill(2)
# if daily data is not provided, assign the row to the first day of the month
if 'day' not in header:
day = '01'
else:
day = row[header.index('day')].zfill(2)
timestamp_tmp = np.datetime64(year+'-'+month+'-'+day)
if timestamp_tmp not in timeseries_timestamps_dt64[i]:
timeseries_timestamps_dt64[i].append(timestamp_tmp)
# find the unique timestamps that are common to all weather-based timeseries
if ts.stat == 'met' or ts.stat == 'cmb':
if len(weather_timestamps_dt64) == 0:
weather_timestamps_dt64 = timeseries_timestamps_dt64[i]
else:
weather_timestamps_dt64 = np.intersect1d(weather_timestamps_dt64,timeseries_timestamps_dt64[i])
# find the unique timestamps that are common to all hydro-based timeseries
elif ts.stat == 'hyd':
if len(hydro_timestamps_dt64) == 0:
hydro_timestamps_dt64 = timeseries_timestamps_dt64[i]
else:
hydro_timestamps_dt64 = np.intersect1d(hydro_timestamps_dt64,timeseries_timestamps_dt64[i])
else:
print('Error - bin data for statistical model '+ts.stat+' not found.')
# convert unique timestamps to array format
hydro_timestamps = np.zeros([len(hydro_timestamps_dt64),2],dtype=int)
for i in range(len(hydro_timestamps_dt64)):
dt64_tmp = hydro_timestamps_dt64[i]
hydro_timestamps[i,:] = [dt64_tmp.astype('object').year,dt64_tmp.astype('object').month]
weather_timestamps = np.zeros([len(weather_timestamps_dt64),3],dtype=int)
for i in range(len(weather_timestamps_dt64)):
dt64_tmp = weather_timestamps_dt64[i]
weather_timestamps[i,:] = [dt64_tmp.astype('object').year,dt64_tmp.astype('object').month,dt64_tmp.astype('object').day]
hydro_years = np.unique(hydro_timestamps[:,0])
if len(hydro_years) == 0:
hydro_years = [0]
weather_years = np.unique(weather_timestamps[:,0])
if len(weather_years) == 0:
weather_years = [0]
sim_years = len(hydro_years)*len(weather_years)
# initialize file to store draw data for each time series
draw_data_file = open(os.path.join('Simulations',case_name+'_log','draw_data.csv'),'w',newline='')
draw_data_writer = csv.writer(draw_data_file)
header = ['horizon','day','hydro year','month','weather year','weekend']
for i in range(N_timeseries):
ts = timeseries[1][i]
for h in timeseries_header[i]:
header.append(ts.name+' '+h)
draw_data_writer.writerow(header)
# Simulate weather days over 52 weeks of each weather year for each hydro year
print('combining hydro and weather conditions over synchronous records...')
T = 0
timepoint = []
tp_week = []
month_print = []
HE_print = []
draw_digits = len(str(sim_years*52))
# loop through hydro years
for i in range(len(hydro_years)):
print(' hydro year: '+str(hydro_years[i]))
# loop through the weather days, capturing 52 weeks each year
year_last = int(weather_timestamps[0,0])
day_of_year = 1
print(' weather year: '+str(year_last))
for j in range(np.shape(weather_timestamps)[0]):
# determine the weather year
weather_yr = int(weather_timestamps[j,0])
# if the weather year has changed from the prior timestamp, reset the day_of_year to 1
if weather_yr != year_last:
print(' weather year: '+str(weather_yr))
day_of_year = 1
year_last = weather_yr
# only record the day if it's in the first 52 weeks of the year
if day_of_year <= 52*7:
# determine the month
mo_tmp = int(weather_timestamps[j,1])-1
# pull the corresponding hydro index
hydro_ind = i*12 + mo_tmp
# prepare draw information to print
week_print = np.floor(T/(24*7))+1
day_print = np.floor(T/24)+1
draw_data_tmp = np.array([int(week_print),int(day_print),hydro_years[i],mo_tmp+1,weather_yr,9999])
# loop through the timeseries
for k in range(N_timeseries):
ts = timeseries[1][k]
if ts.stat == 'met' or ts.stat == 'cmb':
draw_tmp = int(np.where(timeseries_timestamps_dt64[k] == weather_timestamps_dt64[j])[0]*24)
elif ts.stat == 'hyd':
draw_tmp = int(hydro_ind)
else:
print('Error - bin data for statistical model '+ts.stat+' not found.')
ts.draw_inds.append(draw_tmp)
# record day in draw data
draw_data_tmp = np.append(draw_data_tmp,np.array(timeseries_timestamps[k][draw_tmp]))
# print day data
draw_data_writer.writerow(draw_data_tmp)
# record the hourly timepoints
week_of_year = np.ceil(day_of_year/7)
day_of_week = day_of_year - (week_of_year-1)*7
for hr in range(24):
#hr_of_week = int((day_of_week-1)*24+hr+1)
timepoint.append(str(int(week_print)).zfill(draw_digits)+str(int((day_of_week-1)*24+hr+1)).zfill(3))
tp_week.append(int(week_print))
month_print.append(mo_tmp+1)
HE_print.append(hr+1)
T += 24
# go to the next day
day_of_year += 1
draw_data_file.close()
return timeseries, timepoint, tp_week, month_print, HE_print
def timeseries_MC(case_name,timeseries,timeseries_inds1,iterations):
N_timeseries = len(timeseries[0])
# Import bin data
print('importing weather bins...')
weatherbin_timestamp = []
weatherbin_month = []
weatherbin_weekend = []
weatherbin_weather = []
with open('bins/weather_bins.csv') as csvfile:
file_reader = csv.reader(csvfile, delimiter=',')
file_reader.__next__()
for row in file_reader:
year = row[0]
month = row[1].zfill(2)
day = row[2].zfill(2)
weatherbin_timestamp.append(np.datetime64(year+'-'+month+'-'+day))
weatherbin_month.append(int(row[3]))
weatherbin_weekend.append(int(row[4]))
weatherbin_weather.append(int(row[5]))
weatherbin_month = np.array(weatherbin_month)
weatherbin_weekend = np.array(weatherbin_weekend)
weatherbin_weather = np.array(weatherbin_weather)
# create an array that represents the weather on the prior day
weatherbin_priorweather = np.ones(np.shape(weatherbin_weather))
weatherbin_priorweather[1:-1] = weatherbin_weather[0:-2]
print('importing hydro bins...')
hydrobin_timestamp = []
hydrobin_month = []
hydrobin_hydro = []
with open('bins/hydro_bins.csv') as csvfile:
file_reader = csv.reader(csvfile, delimiter=',')
file_reader.__next__()
for row in file_reader:
year = row[0]
month = row[1].zfill(2)
hydrobin_timestamp.append(np.datetime64(year+'-'+month+'-01'))
hydrobin_month.append(int(row[2]))
hydrobin_hydro.append(int(row[3]))
hydrobin_month = np.array(hydrobin_month)
hydrobin_hydro = np.array(hydrobin_hydro)
# map the temporal data to the bins
print('binning temporal data...')
timeseries_header = []
timeseries_timestamps = []
for i in range(N_timeseries):
ts = timeseries[1][i]
print(' ...'+ts.name+'...')
# pull timestamps from associated bin data
if ts.stat == 'met' or ts.stat == 'cmb':
bin_timestamp = weatherbin_timestamp
elif ts.stat == 'hyd':
bin_timestamp = hydrobin_timestamp
else:
print('Error - bin data for statistical model '+ts.stat+' not found.')
# note - this code only pulls timestamps that have bin assignments
timeseries_inds1[i] = np.zeros(np.shape(bin_timestamp))
ts.rows = 0
with open(os.path.join('temporal_data',ts.name,'timestamps.csv')) as csvfile:
file_reader = csv.reader(csvfile, delimiter=',')
header = file_reader.__next__()
if 'HE' in header:
timeseries_header.append(header[0:-1])
else:
timeseries_header.append(header)
timeseries_timestamps.append([])
t = 1
for row in file_reader:
ts.rows += 1
# store the timestamp so that it can be used later to report out the drawn days
if 'HE' in header:
timeseries_timestamps[i].append(row[0:-1])
else:
timeseries_timestamps[i].append(row)
year = row[header.index('year')]
month = row[header.index('month')].zfill(2)
# if daily data is not provided, assign the row to the first day of the month
if 'day' not in header:
day = '01'
else:
day = row[header.index('day')].zfill(2)
timestamp_tmp = np.datetime64(year+'-'+month+'-'+day)
if ('HE' in header and int(row[header.index('HE')]) == 1) or 'HE' not in header:
timeseries_inds1[i][bin_timestamp == timestamp_tmp] = t
# update the index tracker - t represents the index (base 1) of the temporal data corresponding to each binned day
t += 1
# initialize file to store draw data for each time series
draw_data_file = open(os.path.join('Simulations',case_name+'_log','draw_data.csv'),'w',newline='')
draw_data_writer = csv.writer(draw_data_file)
header = ['horizon','day','hydro year','month','weather bin','weekend']
for i in range(N_timeseries):
ts = timeseries[1][i]
for h in timeseries_header[i]:
header.append(ts.name+' '+h)
draw_data_writer.writerow(header)
# Simulate weather days over 52 weeks for each simulation year
print('randomly drawing conditions...')
np.random.seed(seed=0)
T = 0
timepoint = []
tp_week = []
month_print = []
HE_print = []
N_digits = len(str(iterations))
for yr in range(iterations):
if np.mod(yr+1,10) == 0:
print(' ...year '+str(yr+1)+' of '+str(iterations)+'..')
# randomly draw hydro conditions - check this logic to see if it can pick 0 and max indices
hydro_tmp = hydrobin_hydro[np.random.randint(len(hydrobin_hydro))]
# start with the first calendar day of the study year
day_tmp = np.datetime64(str(study_year)+'-01-01')
# randomly draw the weather conditions on the last day of the prior year
weatherbin_weather_sub = weatherbin_weather[weatherbin_month == 12]
prior_weather = weatherbin_weather_sub[np.random.randint(len(weatherbin_weather_sub))]
n_days = 1
while day_tmp.astype(object).year == study_year and n_days <= 52*7:
# determine the month and whether the day is a weekend or weekday
mo_tmp = day_tmp.astype(object).month
weekend_tmp = (day_tmp.astype(datetime.datetime).isoweekday() > 5)*1
# randomly pick the weather bin from the days within the month where the prior day matched the prior weather bin
weatherbin_weather_sub = weatherbin_weather[(weatherbin_priorweather == prior_weather)*(weatherbin_month == mo_tmp)]
weather_tmp = weatherbin_weather_sub[np.random.randint(len(weatherbin_weather_sub))]
# find all the days (hourly data) or months (monthly data) in the selected bins
met_inds_tmp = (weatherbin_month == mo_tmp)*(weatherbin_weather == weather_tmp)
cmb_inds_tmp = met_inds_tmp*(weatherbin_weekend == weekend_tmp)
hyd_inds_tmp = (hydrobin_month == mo_tmp)*(hydrobin_hydro == hydro_tmp)
# prepare draw information to print
week_print = np.floor(T/(24*7))+1
day_print = np.floor(T/24)+1
draw_data_tmp = np.array([week_print,day_print,hydro_tmp,mo_tmp,weather_tmp,weekend_tmp])
# loop through the timeseries
for i in range(N_timeseries):
ts = timeseries[1][i]
# find the corresponding temporal days based on the statistical model
inds_tmp = eval(ts.stat+'_inds_tmp')
# find the overlap with the available days of timeseries data
timeseries_inds_tmp = timeseries_inds1[i][inds_tmp*(timeseries_inds1[i] > 0)]
# randomly draw and record a day from the overlapping available timeseries data
draw_tmp = int(timeseries_inds_tmp[np.random.randint(len(timeseries_inds_tmp))] - 1)
ts.draw_inds.append(draw_tmp)
# record drawn day in draw data
draw_data_tmp = np.append(draw_data_tmp,np.array(timeseries_timestamps[i][draw_tmp]))
# print draw data
draw_data_writer.writerow(draw_data_tmp)
# record the hourly timepoints
week_of_year = int(np.ceil(n_days/7))
day_of_week = n_days - (week_of_year-1)*7
for hr in range(24):
hr_of_week = int((day_of_week-1)*24+hr+1)
timepoint.append(str(yr+1).zfill(N_digits)+str(week_of_year).zfill(2)+str(hr_of_week).zfill(3))
tp_week.append(int(week_print))
month_print.append(mo_tmp)
HE_print.append(hr+1)
# go to the next day
n_days += 1
day_tmp += np.timedelta64(1,'D')
prior_weather = weather_tmp
T += 24
draw_data_file.close()
return timeseries, timepoint, tp_week, month_print, HE_print
def simulate_aggregation(a,case_name,study_year,timepoint_sub,parameters,vartypes,timeseries,weather_mode,iterations,opt_window,agg_no):
sys.stdout = open(os.path.join('Simulations',case_name+'_log',a.name+'.out'), 'w')
sys.stderr = open(os.path.join('Simulations',case_name+'_log',a.name+'.err'), 'w')
np.random.seed(agg_no)
# determine the number of weeks simulated for each forced outage iteration
N_weeks = int(len(timepoint_sub)/168)
# if running synchronized weather, set it up to loop through the forced outage iterations. Otherwise the timeseries data already loops through iterations, so no need to iterate again here
if weather_mode == 'Synchronized':
FO_iterations = iterations
elif weather_mode == 'MonteCarlo':
FO_iterations = 1
else:
print('Error - Weather mode not recognized')
sys.stdout.flush()
# determine the number of rows of data for each draw
if a.temporal == 'timepoint':
N = 168
elif a.temporal == 'week':
N = 1
else:
print('Error - temporal structure not recognized')
sys.stdout.flush()
# determine the time, in hours, between each data point (for the failure and repair model)
dt = 168/N
# loop through variable types
for v in range(len(vartypes[0])):
# only generate outputs if there is non-zero capacity associated with the variable type for the aggregation
if a.total[v] > 0:
print(a.name+' - '+vartypes[0][v])
sys.stdout.flush()
# determine number of columns of data
M = len(vartypes[1][v].value)
# determine the rounding precision for the aggregation
N_round = len(str(int(a.total[v]))) + 1
stage_id = '1'
# pull in temporal data for all parameters in the aggregation
param_temporal_data = []
N_params = 0
agg_params = []
for i in range(len(parameters[0])):
# pull the parameter
p = parameters[1][i]
# only proceed if the parameter corresponds to the aggregation and variable type
if p.aggregation == a.name and p.vartype == vartypes[0][v]:
# store the parameter index
agg_params.append(i)
# pull in any parameter timeseries data
if p.timeseries != []:
ts_ind = timeseries[0].index(p.timeseries)
param_temporal_data.append(np.zeros([timeseries[1][ts_ind].rows,M]))
with open(os.path.join('temporal_data',p.timeseries,p.name+'.csv')) as csvfile:
file_reader = csv.reader(csvfile)
ind_tmp = 0
for row in file_reader:
if ind_tmp == 0:
M_hist = len(row)
param_temporal_data[N_params][ind_tmp,0:M_hist] = np.array(row,dtype=float)
ind_tmp += 1
param_temporal_data[N_params] = param_temporal_data[N_params][:,0:M_hist]
else:
param_temporal_data.append(np.zeros(1))
# count the number of parameters in the iteration
N_params += 1
# loop through the weeks
for n in range(N_weeks):
# initialize an array to store the total aggregation availability
data = np.zeros([N*FO_iterations,M])
# loop through the parameters in the aggregation
for i in range(N_params):
# pull the parameter
p = parameters[1][agg_params[i]]
# pull the timeseries data corresponding to the draws
if p.timeseries != []:
# initialize an array to store the timeseries data associated with the parameter draw
param_draw_ts = np.zeros([N,M])
# pull the parameter timeseries indices associated with all weeks
day_inds_tmp = timeseries[1][ts_ind].draw_inds
# determine the number of columns of temporal data
M_hist = np.shape(param_temporal_data[i])[1]
# loop through the days in the week
for d in range(7):
if a.temporal == 'timepoint':
# downscale from day to hours
param_draw_ts[d*24:(d+1)*24,0:M_hist] = param_temporal_data[i][day_inds_tmp[n*7+d]:day_inds_tmp[n*7+d]+24,:]
elif a.temporal == 'week':
# upscale from day to week
param_draw_ts[0,0:M_hist] += param_temporal_data[i][day_inds_tmp[n*7+d],:]/7
else:
print('Error - temporal structure not recognized')
sys.stdout.flush()
else:
# if no timeseries data is available for the parameter, initialize the parameter availability with ones
param_draw_ts = np.ones([N,M])
# initialize an array to store the parameter availability across the forced outage iterations
param_draw_data = np.zeros([N*FO_iterations,M])
# simulate forced outages
for k in range(FO_iterations):
# set the availability in the draw equal to the availability based on timeseries data
param_draw_data[k*N:(k+1)*N] = param_draw_ts
# simulate unit forced outages
if p.unitModel != 'NA':
if p.unitModel == 'Derate' or (weather_mode == 'Synchronized' and k == 0):
# use a flat forced outage derate to scale the parameter availability
param_draw_data[k*N:(k+1)*N] *= (1-p.unitFOR)
elif p.unitModel == 'MonteCarlo':
if p.unitFOR > 0:
# randomly draw the starting state in the first time step for each unit
avail_tmp = 1.0-(np.random.rand(p.units) < p.unitFOR)
# loop through the timesteps in the draw
for h in range(N):
# calculate the availability of each unit using an exponential failure and repair model
avail_tmp = (avail_tmp == 1)*(1.0 - (np.random.exponential(p.unitMTTF,p.units) < dt)) + (avail_tmp == 0)*(np.random.exponential(p.unitMTTR,p.units) < dt)
# use the average availability across the units to scale the parameter availability
param_draw_data[k*N+h] *= np.mean(avail_tmp)
else:
print('Error - Unit forced outage model not recognized.')
sys.stdout.flush()
# simulate gen tie forced outages
if p.gentieModel != 'NA':
if p.gentieModel == 'Derate' or (weather_mode == 'Synchronized' and k == 0):
# use a flat forced outage derate to scale the parameter availability
param_draw_data[k*N:(k+1)*N] *= (1-p.gentieFOR)
elif p.gentieModel == 'MonteCarlo':
if p.gentieFOR > 0:
# randomly draw the starting state in the first time step
avail_tmp = 1.0-(np.random.rand() < p.gentieFOR)
# loop through the timesteps in the draw
for h in range(N):
# calculate the gen tie availability using an exponential failure and repair model
# if it's starting online, determine whether it experiences an outage
if avail_tmp == 1:
avail_tmp = 1.0 - (np.random.exponential(p.gentieMTTF) < dt)
# if it's starting in an outage, determine whether it comes back online
else:
avail_tmp = (np.random.exponential(p.gentieMTTR) < dt)*1.0
# use the resulting gen tie availability to scale the parameter availability
param_draw_data[k*N+h] *= avail_tmp
else:
print('Error - Gen tie forced outage model not recognized.')
sys.stdout.flush()
# add the weighted parameter availability to the aggregation availability (weighted average across the parameters)
data += param_draw_data*p.scalar/a.total[v]
# round data to reduce file sizes
data = np.round(data,N_round)
# pull the array of strings that should be evaluated to print the data associated with the variable type
value_tmp = vartypes[1][v].value
# loop through the forced outage iterations
for k in range(FO_iterations):
# determine the subproblem number (to be printed to file)
week = int(k*N_weeks) + n + 1
year = int(np.ceil(week/52))
if opt_window == 'weekly':
subproblem = week
elif opt_window == 'annual':
subproblem = year
else:
print('Error - Optimization window not recognized')
print(' subproblem: '+str(subproblem))
sys.stdout.flush()
# print to a subproblem-specific file
filename_tmp = os.path.join('Simulations',case_name,str(subproblem),'inputs',vartypes[1][v].filename+'_tmp',a.name+'.csv')
sys.stdout.flush()
if os.path.exists(filename_tmp):
file_tmp = open(filename_tmp,'a',newline='')
files_writer = csv.writer(file_tmp)
else:
file_tmp = open(filename_tmp,'w',newline='')
files_writer = csv.writer(file_tmp)
files_writer.writerow(vartypes[1][v].header)
# loop through timesteps
for i in range(N):
sys.stdout.flush()
# determine row of data array corresponding to the forced outage iteration and timestep
t = k*N + i
# determine the corresponding timepoint to print to file
if weather_mode == 'Synchronized':
timepoint = str(k+1).zfill(len(str(iterations)))+str(timepoint_sub[n*N+i])
elif weather_mode == 'MonteCarlo':
timepoint = str(timepoint_sub[n*N+i])
else:
print('Error - Weather mode not recognized')
sys.stdout.flush()
row_tmp = []
for value in value_tmp:
row_tmp.append(eval(value))
files_writer.writerow(row_tmp)
file_tmp.close()
sys.stdout.close()
sys.stderr.close()
def remove_subproblems(subproblem_folders):
for subproblem in subproblem_folders:
shutil.rmtree(subproblem)
def print_temporal_files(case_name,vartypes,subproblem_list,FO_iterations,timepoint_sub,tp_week_sub,month_print,weather_mode,study_year):
N_timepoints = len(timepoint_sub)
N_weeks = np.max(tp_week_sub)
N_digits = len(str(FO_iterations))
for j in subproblem_list:
# create the directories for the subproblem
for vartype in vartypes[1]:
if os.path.exists(os.path.join('Simulations',case_name,str(j+1),'inputs',vartype.filename+'_tmp')) == False:
os.makedirs(os.path.join('Simulations',case_name,str(j+1),'inputs',vartype.filename+'_tmp'))
# print periods file
with open(os.path.join('Simulations',case_name,str(j+1),'inputs','periods.tab'),'w',newline='') as csvfile:
csvwriter = csv.writer(csvfile, delimiter = '\t')
csvwriter.writerow(['period','discount_factor','period_start_year','period_end_year','hours_in_period_timepoints'])
csvwriter.writerow([study_year,'1',study_year,study_year+1,int(N_timepoints*FO_iterations)])
# print horizons file
with open(os.path.join('Simulations',case_name,str(j+1),'inputs','horizons.tab'),'w',newline='') as csvfile:
csvwriter = csv.writer(csvfile, delimiter = '\t')
csvwriter.writerow(['horizon','balancing_type_horizon','boundary'])
if opt_window == 'weekly':
csvwriter.writerow([j+1,'week','circular'])
elif opt_window == 'annual':
csvwriter.writerow([j+1,'year','circular'])
for w in range(52):
csvwriter.writerow([j*52+w+1,'week','circular'])
# initialize horizon_timepoints file
horizon_timepoints_file = open(os.path.join('Simulations',case_name,str(j+1),'inputs','horizon_timepoints.tab'),'w',newline='')
horizon_timepoints_writer = csv.writer(horizon_timepoints_file, delimiter = '\t')
header = ['horizon','balancing_type_horizon','timepoint']
horizon_timepoints_writer.writerow(header)
# initialize timepoints file
timepoint_file = open(os.path.join('Simulations',case_name,str(j+1),'inputs','timepoints.tab'),'w',newline='')
timepoint_writer = csv.writer(timepoint_file, delimiter = '\t')
header = ['timepoint','period','timepoint_weight','number_of_hours_in_timepoint','previous_stage_timepoint_map','month']
timepoint_writer.writerow(header)
if opt_window == 'weekly':
i = int(np.mod(j,N_weeks))
k = int((j-i)/N_weeks)
for h in range(168):
if weather_mode == 'Synchronized':
timepoint = str(k+1).zfill(N_digits)+str(timepoint_sub[i*168 + h])
elif weather_mode == 'MonteCarlo':
timepoint = str(timepoint_sub[i*168 + h])
else:
print('Error - weather mode not recognized')
horizon_timepoints_writer.writerow([j+1,'week',timepoint])
timepoint_writer.writerow([timepoint,study_year,'1.0','1','.',month_print[i*168 + h]])
elif opt_window == 'annual':
k = int(np.ceil(j*52/N_weeks))
for i in range(52):
for h in range(168):
if weather_mode == 'Synchronized':
timepoint = str(k+1).zfill(N_digits)+str(timepoint_sub[(j*52+i)*168 + h])
elif weather_mode == 'MonteCarlo':
timepoint = str(timepoint_sub[(j*52+i)*168 + h])
else:
print('Error - weather mode not recognized')
horizon_timepoints_writer.writerow([j+1,'year',timepoint])
horizon_timepoints_writer.writerow([j*52+i+1,'week',timepoint])
timepoint_writer.writerow([timepoint,study_year,'1.0','1','.',month_print[i*168 + h]])
else:
print('Error - optimization window not recognized')
timepoint_file.close()
horizon_timepoints_file.close()
def consolidate_files(case_name,vartypes,subproblem_list):
for j in subproblem_list:
for k in range(len(vartypes[0])):
filename_tmp = os.path.join('Simulations',case_name,str(j+1),'inputs',vartypes[1][k].filename+'.tab')
if os.path.exists(filename_tmp) == False:
with open(filename_tmp,'w',newline='') as appended_file:
appended_out = csv.writer(appended_file,delimiter = '\t')
# loop through the output files
i = 0
for file in glob.glob(os.path.join('Simulations',case_name,str(j+1),'inputs',vartypes[1][k].filename+'_tmp','*')):
with open(file) as csvfile:
csvreader = csv.reader(csvfile)
if i > 0:
csvreader.__next__()
else:
appended_out.writerow(csvreader.__next__())
for row in csvreader:
appended_out.writerow(row)
i += 1
# delete temporary files
if os.path.exists(os.path.join('Simulations',case_name,str(j+1),'inputs',vartypes[1][k].filename+'_tmp')):
shutil.rmtree(os.path.join('Simulations',case_name,str(j+1),'inputs',vartypes[1][k].filename+'_tmp'))
if __name__ == '__main__':
case_name = sys.argv[1]
no_jobs = int(sys.argv[2])
###########################################################################
# Remove old directories
###########################################################################
print('removing old directories...')
if os.path.isdir(os.path.join('Simulations',case_name)) == True:
old_subproblems = glob.glob(os.path.join('Simulations',case_name,'*'))
N_old_subproblems = len(old_subproblems)
if N_old_subproblems > 0:
N_old_batch = int(np.ceil(N_old_subproblems/no_jobs))
N_jobs = int(min(N_old_subproblems/N_old_batch,no_jobs))
jobs = []
for n in range(N_jobs):
subproblem_folders = old_subproblems[n*N_old_batch:min(N_old_subproblems,(n+1)*N_old_batch)]
p = threading.Thread(target=remove_subproblems,args=(subproblem_folders,))
jobs.append(p)
p.start()
for job in jobs:
job.join()
# remove the rest of the directory and its contents
shutil.rmtree(os.path.join('Simulations',case_name))
if os.path.isdir(os.path.join('Simulations',case_name+'_log')):
shutil.rmtree(os.path.join('Simulations',case_name+'_log'))
###########################################################################
# Import settings
###########################################################################
print('importing scenario information...')
with open('settings/scenario_settings.csv') as csvfile:
file_reader = csv.reader(csvfile)
scenarios = file_reader.__next__()
if case_name not in scenarios:
print('Error - scenario not listed in scenario_settings.csv')
else:
scenario_ind = scenarios.index(case_name)
study_year = int(file_reader.__next__()[scenario_ind])
weather_mode = file_reader.__next__()[scenario_ind]
opt_window = file_reader.__next__()[scenario_ind]
iterations = int(file_reader.__next__()[scenario_ind])
parameters_file = file_reader.__next__()[scenario_ind]
aggregations_file = file_reader.__next__()[scenario_ind]
timeseries_file = file_reader.__next__()[scenario_ind]
vartypes_file = file_reader.__next__()[scenario_ind]
common_files = file_reader.__next__()[scenario_ind]
# import variable type settings
print('importing variable type settings...')
# vartypes[0] is a list of the vartype names and vartypes[1] is an array of the associated vartype objects
vartypes = [[],[]]
if os.path.exists(os.path.join('settings',vartypes_file)):
with open(os.path.join('settings',vartypes_file)) as csvfile:
file_reader = csv.reader(csvfile)
header = file_reader.__next__()
for row in file_reader:
vartype_name_tmp = row[0]
vartypes[0].append(vartype_name_tmp)
vartype_header = []
vartype_value = []
for col in range(3,len(row)):
if header[col] == 'header' and row[col] != 'NA':
vartype_header.append(row[col])
if header[col] == 'value' and row[col] != 'NA':
vartype_value.append(row[col])
vartypes[1].append(VarType(vartype_name_tmp,row[1],row[2],vartype_header,vartype_value))
else:
print('Error - variable types file not found.')
# import aggregations
print('importing aggregations...')
# aggregations[0] is a list of the aggregation names and aggregations[1] is an array of the associated aggregation objects
aggregations = [[],[]]
if os.path.exists(os.path.join('settings',aggregations_file)):
with open(os.path.join('settings',aggregations_file)) as csvfile:
file_reader = csv.reader(csvfile)
file_reader.__next__()
for row in file_reader:
agg_name_tmp = row[0]
aggregations[0].append(agg_name_tmp)
aggregations[1].append(Aggregation(agg_name_tmp,row[1]))
# initialize vector to store aggregation totals by variable type
aggregations[1][-1].total = np.zeros(len(vartypes[0]))
else:
print('Error - aggregation file not found.')
# import parameters
print('importing load and resource parameters...')
# parameters[0] is a list of the parameter names and parameters[1] is an array of the associated parameter objects
parameters = [[],[]]
if os.path.exists(os.path.join('settings',parameters_file)):
with open(os.path.join('settings',parameters_file)) as csvfile:
file_reader = csv.reader(csvfile)
file_reader.__next__()
for row in file_reader:
# add the parameter to the parameters array
param_name_tmp = row[0]
param_agg_tmp = row[1]
# if the parameter aggregation is in the aggregation list, load the parameter
if param_agg_tmp in aggregations[0]:
param_var_tmp = row[2]
param_scalar_tmp = float(row[3])
parameters[0].append(param_name_tmp)
parameters[1].append(Parameter(param_name_tmp,param_agg_tmp,param_var_tmp,param_scalar_tmp))
# store any timeseries information
if row[4] != 'NA':
parameters[1][-1].timeseries = row[4]
# store any unit forced outage model information
param_unitmodel_tmp = row[8]
if param_unitmodel_tmp != 'NA':
parameters[1][-1].unitModel = param_unitmodel_tmp
parameters[1][-1].units = int(row[5])
parameters[1][-1].unitFOR = float(row[6])
parameters[1][-1].unitMTTR = float(row[7])
if parameters[1][-1].unitFOR > 0:
parameters[1][-1].unitMTTF = parameters[1][-1].unitMTTR*(1/parameters[1][-1].unitFOR - 1)
else:
parameters[1][-1].unitMTTF = 0
# store any gen tie forced outage model information
param_gentiemodel_tmp = row[11]
if param_gentiemodel_tmp != 'NA':
parameters[1][-1].gentieModel = param_gentiemodel_tmp
parameters[1][-1].gentieFOR = float(row[9])
parameters[1][-1].gentieMTTR = float(row[10])
if parameters[1][-1].gentieFOR > 0:
parameters[1][-1].gentieMTTF = parameters[1][-1].gentieMTTR*(1/parameters[1][-1].gentieFOR - 1)
else:
parameters[1][-1].gentieMTTF = 0
# add the parameter scalar (typically MW) to aggreagtion total
aggregations[1][aggregations[0].index(param_agg_tmp)].total[vartypes[0].index(param_var_tmp)] += param_scalar_tmp
else:
print('Error - parameters file not found.')
# import timeseries settings
print('importing timeseries settings...')
# timeseries[0] is a list of the timeseries names and timeseries[1] is an array of the associated timeseries objects
timeseries = [[],[]]
# timeseries_inds1 stores the indices (base 1) of the first time step in each binned period.
# - this is an intermediate variable used to determine the indices of periods drawn from the temporal data (draw_inds)
# - it is not stored as part of the Timeseries object to save space
timeseries_inds1 = []
if os.path.exists(os.path.join('settings',timeseries_file)):
with open(os.path.join('settings',timeseries_file)) as csvfile:
file_reader = csv.reader(csvfile, delimiter=',')
file_reader.__next__()
for row in file_reader:
timeseries_name_tmp = row[0]