-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlinear_unit.py
70 lines (57 loc) · 2.01 KB
/
linear_unit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
from perceptron import Perceptron
import matplotlib.pyplot as plt
# 定义激活函数f
f = lambda x: x
# def f(x):
# return x
class LinearUnit(Perceptron):
def __init__(self, input_num):
'''初始化线性单元,设置输入参数的个数'''
Perceptron.__init__(self, input_num, f)
def get_training_dataset():
'''
捏造5个人的收入数据
'''
# 构建训练数据
# 输入向量列表,每一项是工作年限
input_vecs = [[5], [3], [8], [1.4], [10.1]]
# 期望的输出列表,月薪,注意要与输入一一对应
labels = [5500, 2300, 7600, 1800, 11400]
return input_vecs, labels
def train_linear_unit():
'''
使用数据训练线性单元
'''
# 创建感知器,输入参数的特征数为1(工作年限)
lu = LinearUnit(1)
# 训练,迭代10轮, 学习速率为0.01
input_vecs, labels = get_training_dataset()
lu.train(input_vecs, labels, 100, 0.01)
# 返回训练好的线性单元
return lu
def plot(linear_unit):
input_vecs, labels = get_training_dataset()
fig = plt.figure()
ax = fig.add_subplot(111)
# map() Python2.x 返回列表。 Python3.x 返回迭代器, matplotlib需要转成list
input_v = list(map(lambda x: x[0], input_vecs))
ax.scatter(input_v, labels)
weights = linear_unit.weights
bias = linear_unit.bias
x = range(0, 12, 1)
y = list(map(lambda x: weights[0] * x + bias, x))
ax.plot(x, y)
plt.show()
if __name__ == '__main__':
'''训练线性单元'''
linear_unit = train_linear_unit()
# 打印训练获得的权重
print(linear_unit)
# 测试
print('Work 3.4 years, monthly salary = %.2f' % linear_unit.predict([3.4]))
print('Work 15 years, monthly salary = %.2f' % linear_unit.predict([15]))
print('Work 1.5 years, monthly salary = %.2f' % linear_unit.predict([1.5]))
print('Work 6.3 years, monthly salary = %.2f' % linear_unit.predict([6.3]))
plot(linear_unit)