-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_train.py
208 lines (167 loc) · 8.23 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse
import os
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from datasets import SASRecDataset
from sasrec_models import S3RecModel
from trainers import FinetuneTrainer
from sasrec_utils import (
EarlyStopping,
check_path,
get_item2attribute_json,
get_user_seqs,
set_seed,
)
import warnings
warnings.filterwarnings(action="ignore")
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--sweep", default="True", type=bool)
parser.add_argument("--wandb", default=1, type=int, help="option for running wandb")
parser.add_argument("--data_dir", default="../data/train/", type=str)
parser.add_argument("--output_dir", default="output/", type=str)
parser.add_argument("--data_name", default="Ml", type=str)
# model args
parser.add_argument(
"--hidden_size", type=int, default=128, help="hidden size of transformer model"
)
parser.add_argument(
"--num_hidden_layers", type=int, default=2, help="number of layers"
)
parser.add_argument("--num_attention_heads", default=2, type=int)
parser.add_argument("--hidden_act", default="gelu", type=str) # gelu relu
parser.add_argument(
"--attention_probs_dropout_prob",
type=float,
default=0.5,
help="attention dropout p",
)
parser.add_argument(
"--hidden_dropout_prob", type=float, default=0.5, help="hidden dropout p"
)
parser.add_argument("--initializer_range", type=float, default=0.01)
parser.add_argument("--max_seq_length", default=200, type=int)
# train args
parser.add_argument("--lr", type=float, default=0.001, help="learning rate of adam")
parser.add_argument(
"--batch_size", type=int, default=64, help="number of batch_size"
)
parser.add_argument("--epochs", type=int, default=200, help="number of epochs")
parser.add_argument("--no_cuda", action="store_true")
parser.add_argument("--log_freq", type=int, default=1, help="per epoch print res")
parser.add_argument("--seed", default=42, type=int)
parser.add_argument("--mask_p", type=float, default=0.2, help="mask probability")
parser.add_argument("--aap_weight", type=float, default=0.2, help="aap loss weight")
parser.add_argument("--mip_weight", type=float, default=1.5, help="mip loss weight")
parser.add_argument("--map_weight", type=float, default=1.0, help="map loss weight")
parser.add_argument("--sp_weight", type=float, default=0.5, help="sp loss weight")
parser.add_argument(
"--weight_decay", type=float, default=0.0, help="weight_decay of adam"
)
parser.add_argument(
"--adam_beta1", type=float, default=0.95, help="adam first beta value"
)
parser.add_argument(
"--adam_beta2", type=float, default=0.999, help="adam second beta value"
)
parser.add_argument("--gpu_id", type=str, default="0", help="gpu_id")
# parser.add_argument("--using_pretrain", action="store_true")
parser.add_argument("--using_pretrain", default=True)
parser.add_argument("--tqdm", default=1, type=int, help="option for running tqdm")
# LR Scheduler
parser.add_argument("--scheduler", type=str, default="None", help="Choice LR-Scheduler")
parser.add_argument("--lr_gamma", type=float, default=0.5, help="scheduler lr gamma")
parser.add_argument("--lr_step_size", type=int, default=20, help="scheduler lr step_size")
parser.add_argument("--lr_step_size_up", type=int, default=10, help="scheduler lr step_size_up")
parser.add_argument("--lr_step_size_down", type=int, default=20, help="scheduler lr step_size_down")
parser.add_argument("--lr_milestones", nargs='+', type=int, default=[30,60,90], help="scheduler lr milestones")
parser.add_argument("--lr_base_lr", type=float, default=0.001, help="scheduler lr base_lr")
parser.add_argument("--lr_max_lr", type=float, default=0.1, help="scheduler lr max_lr")
parser.add_argument("--lr_mode", type=str, default="triangular", help="scheduler lr mode")
parser.add_argument("--lr_T_0", type=int, default=30, help="scheduler lr T_0")
parser.add_argument("--lr_T_mult", type=int, default=2, help="scheduler lr T_mult")
parser.add_argument("--lr_T_max", type=float, default=0.001, help="scheduler lr T_max")
parser.add_argument("--lr_T_up", type=int, default=5, help="scheduler lr T_up")
parser.add_argument("--lr_eta_min", type=float, default=0.001, help="scheduler lr eta_min")
parser.add_argument("--lr_eta_max", type=float, default=0.01, help="scheduler lr eta_max")
parser.add_argument("--model_name", default="Finetune_full", type=str)
args = parser.parse_args()
# save model args
args_str = f"{args.model_name}_{args.data_name}_max_seq_len_{args.max_seq_length}_hidden_{args.hidden_size}_beta2_{args.adam_beta2}_attn_drop_{args.attention_probs_dropout_prob}"
args.log_file = os.path.join(args.output_dir, args_str + ".txt")
print(str(args))
set_seed(args.seed)
check_path(args.output_dir)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
args.cuda_condition = torch.cuda.is_available() and not args.no_cuda
args.data_file = args.data_dir + "train_ratings.csv"
item2attribute_file = args.data_dir + args.data_name + "_item2attributes.json"
user_seq, max_item, valid_rating_matrix, test_rating_matrix, _ = get_user_seqs(
args.data_file
)
item2attribute, attribute_size = get_item2attribute_json(item2attribute_file)
args.item_size = max_item + 2
args.mask_id = max_item + 1
args.attribute_size = attribute_size + 1
args.item2attribute = item2attribute
# set item score in train set to `0` in validation
args.train_matrix = valid_rating_matrix
# save model
checkpoint = args_str + ".pt"
args.checkpoint_path = os.path.join(args.output_dir, checkpoint)
train_dataset = SASRecDataset(args, user_seq, data_type="train")
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset, sampler=train_sampler, batch_size=args.batch_size
)
eval_dataset = SASRecDataset(args, user_seq, data_type="valid")
eval_sampler = SequentialSampler(eval_dataset)
eval_dataloader = DataLoader(
eval_dataset, sampler=eval_sampler, batch_size=args.batch_size
)
test_dataset = SASRecDataset(args, user_seq, data_type="test")
test_sampler = SequentialSampler(test_dataset)
test_dataloader = DataLoader(
test_dataset, sampler=test_sampler, batch_size=args.batch_size
)
if args.wandb:
import wandb
wandb.login()
wandb.init(project="max_seq_len_200_sweep", entity="movie-recsys-12", config=vars(args))
# wandb.run.name = f"{args_str}"
model = S3RecModel(args=args)
trainer = FinetuneTrainer(
model, train_dataloader, eval_dataloader, test_dataloader, None, args
)
print(args.using_pretrain)
if args.using_pretrain:
# pretrained_path = os.path.join(args.output_dir, f"pretrain_max_seq_len_{args.max_seq_length}_hidden_{args.hidden_size}_aap_{args.aap_weight}_mip_{args.mip_weight}_map_{args.map_weight}.pt")
pretrained_path = os.path.join(args.output_dir, f"pretrain_max_seq_len_{args.max_seq_length}.pt")
try:
trainer.load(pretrained_path)
print(f"Load Checkpoint From {pretrained_path}!")
except FileNotFoundError:
print(f"{pretrained_path} Not Found! The Model is same as SASRec")
else:
print("Not using pretrained model. The Model is same as SASRec")
early_stopping = EarlyStopping(args.checkpoint_path, patience=10, verbose=True, sweep=args.sweep)
for epoch in range(args.epochs):
trainer.train(epoch)
scores, _ = trainer.valid(epoch)
if args.wandb:
wandb.log(
{
"RECALL@5": scores[0],
"NDCG@5": scores[1],
"RECALL@10": scores[2],
"NDCG@10": scores[3],
"Lr_rate": trainer.scheduler.optimizer.param_groups[0]['lr'],
}
)
early_stopping(np.array(scores[-1:]), trainer.model)
if early_stopping.early_stop:
print("Early stopping")
break
if __name__ == "__main__":
main()