-
Notifications
You must be signed in to change notification settings - Fork 1
/
decoding.py
106 lines (84 loc) · 2.84 KB
/
decoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""Functions related to decoding
AUTHOR: Britta U. Westner <britta.wstnr[at]gmail.com>
"""
import time
from mne.decoding import (SlidingEstimator, cross_val_multiscore, LinearModel,
get_coef)
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.cross_decomposition import CCA
def sliding_logreg_source(X, y, cross_val, return_clf=False):
"""Run a sliding estimator with Logistic Regression on source data.
Parameters:
-----------
X : np.array
features.
y : vector
response vector.
cross_val : cross validation object
cross validation to adopt.
return_clf : bool
whether the clf object should be returned as well.
Returns
-------
score : float
cross-validated AUC score
clf : classifier object
If return_clf == True, the classifier object will be returned, too.
"""
startt = time.time()
# Model
clf = make_pipeline(StandardScaler(), LinearModel(LogisticRegression()))
sliding = SlidingEstimator(clf, scoring='roc_auc', n_jobs=1)
print('Computing Logistic Regression.')
score = cross_val_multiscore(sliding, X, y, cv=cross_val)
endt = time.time()
print('Done. Time elapsed for sliding estimator: %i seconds.'
% (endt - startt))
if return_clf is True:
return score, clf
else:
return score
def get_pattern(X, y, clf, time_point):
"""Get pattern from classifier on X and y at peak time.
Re-fit the classifier without cross-validation and get the patterns/
coefficients.
Parameters:
-----------
X : array
The data to fit (features).
y : vector
The response vector.
clf : sklearn classifier object
The classifier to re-fit.
time-point : float | None
If data is more than two dimensional: which time-point to fit.
Returns:
--------
pattern : array
The sensor or source pattern of coefficients.
"""
X_tp = X[:, :, time_point]
clf.fit(X_tp, y)
pattern = get_coef(clf, 'patterns_', inverse_transform=True)
return pattern
def cca_covariance_matrices(x_cov, y_cov, n_comp=None):
"""Use CCA to align covariance matrices from different runs.
Get a transform matrix to align covariance matrices with each other.
Parameters:
----------
x_cov : array
covariance matrix that should be aligned
y_cov : array
covariance matrix that is used for alignment
n_comp : int | None
number of components
"""
if n_comp is not None:
tfm_model = CCA(n_components=n_comp)
else:
tfm_model = CCA(n_components=len(x_cov))
# TODO: maybe rank is better
x_al, y_al = tfm_model.fit(x_cov, y_cov).transform(x_cov)
return x_al, y_al