-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbatch_build.R
193 lines (166 loc) · 7.86 KB
/
batch_build.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
## NOTE: Please set working directory to root of the repository folder structure ##
library(tidyverse)
library(igraph)
args <- commandArgs(trailingOnly = TRUE)
if (length(args) != 1) {
stop('No argument provided.')
}
week <- args[1]
euclidean_dist <- function(x, y) {sqrt(sum((x - y)^2))}
transform_values <- function(x) {1.025^x-1}
inv_transform <- function(y) {log(y+1)/log(1.025)}
##### 00. Read in the data #####
tracking <- data.frame()
for (i in list.files(pattern='.csv')) {
print(paste0(i,'...'))
df <- read.csv(i)
if (str_detect(str_match(i, '(.*).csv')[2], 'week')) {
df$week <- as.numeric(str_match(i, 'week(.*).csv')[2])
tracking <- rbind(tracking, df)
} else {
assign(str_match(i, '(.*).csv')[2], df)
}
rm(df)
}
##### 01. Join all data into main frame #####
df <- tracking %>%
left_join(players, by = 'nflId') %>%
left_join(plays, by = c('gameId', 'playId')) %>%
left_join(pffScoutingData, by = c('gameId', 'playId', 'nflId')) %>%
left_join(games, by = c('week', 'gameId'))
##### 02. Loop through tracking and define networks for each play #####
df_line <- data.frame()
print(paste0('Week: ',week))
sliced <- df[df$week == week, ]
game_count <- 1
for (game in unique(sliced$gameId)) {
print(paste0(' Game: ',game_count,'/',length(unique(sliced$gameId))))
temp <- sliced %>% filter(gameId == game)
for (play in unique(temp$playId)) {
dat <- temp %>% filter(playId == play)
for (frame in unique(dat$frameId)) {
sliver <- dat %>% filter(frameId == frame)
qb <- sliver %>% filter(officialPosition == 'QB')
if (nrow(qb) > 1) {
qb <- qb[1, ] # keep first row only
}
line <- sliver %>% filter(officialPosition %in% c('C','G','T'))
offense <- sliver %>% filter(officialPosition %in% c('WR','RB','FB','TE'))
defense <- sliver %>% filter(officialPosition %in% c('DE','NT','DT','OLB','MLB','ILB','LB','SS','FS','CB','DB'))
out <- data.frame()
hurry <- ifelse(sum(line$pff_hurryAllowed, na.rm=T)>1,1,0)
sack <- ifelse(sum(line$pff_sackAllowed, na.rm=T)>1,1,0)
hit <- ifelse(sum(line$pff_hitAllowed, na.rm=T)>1,1,0)
# get distances between the QB and defense and the QB and O-line
q_xy <- qb %>% dplyr::select(x,y) %>% unique(.)
for (lineman in unique(line$nflId)){
l_xy <- line %>% filter(nflId == lineman) %>% dplyr::select(x,y) %>% unique(.)
add <- data.frame(
week,'gameId'=game,'playId'=play,'frameId'=frame,'event'=qb$event,
'ref'=qb$nflId,'player'=lineman,'player_pos'='line','dist'=euclidean_dist(q_xy,l_xy),q_xy,l_xy, hurry, sack, hit,
'pos_team'=unique(qb$possessionTeam), 'def_team'=unique(qb$defensiveTeam)
)
colnames(add)[10:13] <- c('rx','ry','x','y')
out <- rbind(out, add)
}
for (defender in unique(defense$nflId)){
d_xy <- defense %>% filter(nflId == defender) %>% dplyr::select(x,y) %>% unique(.)
add <- data.frame(
week,'gameId'=game,'playId'=play,'frameId'=frame,'event'=qb$event,
'ref'=qb$nflId,'player'=defender,'player_pos'='defense','dist'=euclidean_dist(q_xy,d_xy),q_xy,d_xy, hurry, sack, hit,
'pos_team'=unique(qb$possessionTeam), 'def_team'=unique(qb$defensiveTeam)
)
colnames(add)[10:13] <- c('rx','ry','x','y')
out <- rbind(out, add)
}
for (attacker in unique(offense$nflId)){
o_xy <- offense %>% filter(nflId == attacker) %>% dplyr::select(x,y) %>% unique(.)
add <- data.frame(
week,'gameId'=game,'playId'=play,'frameId'=frame,'event'=qb$event,
'ref'=qb$nflId,'player'=attacker,'player_pos'='offense','dist'=euclidean_dist(q_xy,o_xy),q_xy, o_xy, hurry, sack, hit,
'pos_team'=unique(qb$possessionTeam), 'def_team'=unique(qb$defensiveTeam)
)
colnames(add)[10:13] <- c('rx','ry','x','y')
out <- rbind(out, add)
}
# get distances between O-line and defense
for (lineman in unique(line$nflId)){
coord <- line %>% filter(nflId == lineman) %>% dplyr::select(x,y)
for (defender in unique(defense$nflId)){
d_xy <- defense %>% filter(nflId == defender) %>% dplyr::select(x,y)
add <- data.frame(
week,'gameId'=game,'playId'=play,'frameId'=frame,'event'=qb$event,
'ref'=lineman,'player'=defender,'player_pos'='defense','dist'=euclidean_dist(coord,d_xy),coord,d_xy, hurry, sack, hit,
'pos_team'=unique(qb$possessionTeam), 'def_team'=unique(qb$defensiveTeam)
)
colnames(add)[10:13] <- c('rx','ry','x','y')
out <- rbind(out, add)
}
}
if(nrow(out)>0) { # sometimes there is no ball snap in the data, so out will be null
# extract edges, nodes, and create graph
out$dist[which(out$player_pos=='offense')] <- 10 # tricking R to not showing these edges
edges <- out[, c('ref','player')] %>% unique(.)
nodes <- rbind(
data.frame(player=out$ref[1], 'player_pos'='qb'),
unique(out[, c('player', 'player_pos')])
) %>% mutate(
color = case_when(
player_pos == 'qb' ~ 'yellow',
player_pos == 'line' ~ 'blue',
player_pos == 'defense' ~ 'red',
player_pos == 'offense' ~ 'green'
)
)
g <- graph.data.frame(edges, directed=FALSE)
E(g)$weight <- transform_values(out$dist) # transform the edges
# plot
l <- layout.auto(g)
qb_slice <- qb %>% select('player'=nflId, x, y)
line_slice <- out %>% filter(player_pos=='line') %>% dplyr::select(player,x,y) %>% unique(.)
def_slice <- out %>% filter(player_pos=='defense') %>% dplyr::select(player,x,y) %>% unique(.)
off_slice <- out %>% filter(player_pos=='offense') %>% dplyr::select(player,x,y) %>% unique(.)
colnames(qb_slice) <- c('player', 'x', 'y')
colnames(line_slice) <- c('player', 'x', 'y')
colnames(def_slice) <- c('player', 'x', 'y')
colnames(off_slice) <- c('player', 'x', 'y')
l <- as.matrix(rbind(qb_slice, line_slice, def_slice, off_slice)[, 2:3])
V(g)$name <- nodes$player
V(g)$color <- nodes$color
edge_attr(g)$weight[which(inv_transform(E(g)$weight) == 0)] <- 0.001 # deal with zeroes
g <- delete.edges(g, which(inv_transform(E(g)$weight) > 7)) # remove edges >7 yards
# calculate various network measures
l_idx <- which(names(V(g)) %in% line_slice$player)
# node measures
betw <- betweenness(g, normalized = TRUE)
eigs <- eigen_centrality(g)$vector
close <- closeness(g)
# line metrics
line_betw_mean <- mean(betw[l_idx])
line_eigs_mean <- mean(eigs[l_idx])
line_close_mean <- mean(close[l_idx])
line_betw_var <- var(betw[l_idx])
line_eigs_var <- var(eigs[l_idx])
line_close_var <- var(close[l_idx])
preds <- data.frame(
line_betw_mean, line_eigs_mean, line_close_mean,
line_betw_var, line_eigs_var, line_close_var
)
# store team attributes for modeling
append_df <- cbind(
out %>% dplyr::select(week, gameId, playId, frameId, event) %>% unique(.) %>% filter(complete.cases(.)),
'any_hurry' = hurry, 'any_sack' = sack, 'any_hit' = hit,
preds
)
df_line <- rbind(df_line, append_df)
}
}
}
game_count <- game_count + 1
}
df_line$week <- as.integer(df_line$week)
games$week <- as.integer(games$week)
main <- df_line %>%
left_join(plays, by = c('gameId', 'playId')) %>%
left_join(games, by = c('week', 'gameId'))
write.csv(main, paste0('data/build',week,'.csv'))