-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplga_transformer_model.py
executable file
·601 lines (492 loc) · 25.3 KB
/
plga_transformer_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
import numpy as np
import tensorflow as tf
import power_law_attention_layer as plgatt
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, att_dropout_rate_in=0.0,
att_dropout_rate_eij=0.0, Adropout_rate=0.0, A_dff=None,
num_reslayerA=None, num_denseA=None, **kwargs):
super().__init__(**kwargs)
self.num_heads = num_heads
self.d_model = d_model
self.att_dropout_rate_in=att_dropout_rate_in
self.att_dropout_rate_eij = att_dropout_rate_eij
self.Adropout_rate=Adropout_rate
self.A_dff = A_dff if A_dff is not None else self.d_model
self.num_denseA = num_denseA if num_denseA is not None else 1
self.num_reslayerA = num_reslayerA if num_reslayerA is not None else 1
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.wq = tf.keras.layers.Dense(d_model, name='wq')
self.wk = tf.keras.layers.Dense(d_model, name='wk')
self.wv = tf.keras.layers.Dense(d_model, name='wv')
self.plgatt_layer= plgatt.plga_layer(F_hidden=self.depth, att_head=1,
activation=None,
pw_regularizer=None,
in_dropout_prob=self.att_dropout_rate_in,
eij_dropout_prob=self.att_dropout_rate_eij,
name='plga_layer')
self.dense = tf.keras.layers.Dense(d_model, name='dense')
#residual layers for metric tensor learning
self.reslayerAs=[ResLayerA(depth=self.depth, A_dff=self.A_dff,
Adropout_rate=self.Adropout_rate,
num_denseA=self.num_denseA,
index=str(i)) for i in range(self.num_reslayerA)]
def split_heads(self, x, batch_size):
"""Split the last dimension into (num_heads, depth).
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
"""
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, inputs, training=None, **kwargs):
'''
Args:
inputs: [q,k,v,mask]
training
Returns:
inductive and deductive task outputs.
'''
q, k, v, mask = inputs
batch_size = tf.shape(q)[0]
q = self.wq(q) # (batch_size, seq_len, d_model)
k = self.wk(k)
v = self.wv(v)
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len, depth)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
#Calculate density matrix using linear self attention
qt = tf.transpose(q, perm=[0,1, 3, 2])
A = tf.matmul(qt, q) # (batch_size, num_head, depth, depth)
#Deep residual network for learning metric tensor
for i in range(self.num_reslayerA):
A=self.reslayerAs[i]([A], training=training)
#Apply multi-head power law attention
Hnext, Elst, Alst, pwlst, attvlst, balst, avAplst, Eplst = self.plgatt_layer([q, k, v, A, mask], training=training)
Hnext = tf.transpose(Hnext, perm=[0, 2, 1, 3])
Hnext= tf.reshape(Hnext, (batch_size, -1, self.d_model)) # [batch_size, seq_len, d_model]
output = self.dense(Hnext)
return output, Elst, Alst, pwlst, attvlst, balst, avAplst, Eplst
def get_config(self):
config = super().get_config()
config=config.update({
"d_model":self.d_model,
"num_heads":self.num_heads,
"wq":self.wq,
"wk":self.wk,
"wv":self.wv,
"cgattL":self.cgattL,
"dense":self.dense,
"Afnn":self.Afnn,
"att_dropout_rate": self.att_droput_rate,
"Adropout_rate": self.Adropout_rate,
"A_dff": self.A_dff,
"num_denseA": self.num_denseA,
"num_reslayerA": self.num_reslayerA
})
return config
class EncoderLayer(tf.keras.layers.Layer):
'''
Single encoder layer implementation
'''
def __init__(self, d_model, num_heads, dff, rate=0.1, att_dropout_rate_in=0.0, att_dropout_rate_eij=0.0,
Adropout_rate=0.0, A_dff=None, num_reslayerA=None, num_denseA=None, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.num_heads = num_heads
self.dff = dff
self.rate = rate
self.att_dropout_rate_in = att_dropout_rate_in
self.att_dropout_rate_eij = att_dropout_rate_eij
self.Adropout_rate=Adropout_rate
self.A_dff = A_dff
self.num_denseA=num_denseA
self.num_reslayerA = num_reslayerA
self.mha = MultiHeadAttention(self.d_model, self.num_heads, self.att_dropout_rate_in,
self.att_dropout_rate_eij, self.Adropout_rate, self.A_dff,
self.num_reslayerA, self.num_denseA)
self.ffn = self.enc_point_wise_feed_forward_network()
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6, name='layernorm1')
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6, name='layernorm2')
self.dropout1 = tf.keras.layers.Dropout(self.rate, name='dropout1')
self.dropout2 = tf.keras.layers.Dropout(self.rate, name='dropout2')
def call(self, inputs, training=None, **kwargs):
'''
inputs: [x, mask].
Returns encoder output and deductive task outputs for SLM attention block.
'''
x, mask = inputs
attn_output, Elst, Alst, pwlst, attvlst, balst, avAplst, Eplst = self.mha([x, x, x, mask], training=training)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(x + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layernorm2(out1 + ffn_output) # (batch_size, input_seq_len, d_model)
return out2, [Elst, Alst, pwlst, attvlst, balst, avAplst, Eplst]
def enc_point_wise_feed_forward_network(self):
return tf.keras.Sequential([
tf.keras.layers.Dense(self.dff, activation='relu', name='dense1'),
tf.keras.layers.Dense(self.d_model, name='dense2')
])
def get_config(self):
config = super().get_config()
config=config.update({
"d_model":self.d_model,
"num_heads":self.num_heads,
"dff":self.dff,
"rate":self.rate,
"mha":self.mha,
"layernorm1":self.layernorm1,
"layernorm2":self.layernorm2,
"dropout1":self.dropout1,
"dropout2":self.dropout2,
"att_dropout_rate_in":self.att_droput_rate_in,
"att_dropout_rate_eij": self.att_dropout_rate_eij,
"Adropout_rate": self.Adropout_rate,
"A_dff":self.A_dff,
"num_denseA": self.num_denseA,
"num_reslayerA": self.num_reslayerA
})
return config
class DecoderLayer(tf.keras.layers.Layer):
'''
Single decoder layer implementation.
'''
def __init__(self, d_model, num_heads, dff, rate=0.1, att_dropout_rate_in=0.0, att_dropout_rate_eij=0.0,
Adropout_rate=0.0, A_dff=None, num_reslayerA=None, num_denseA=None, **kwargs):
super().__init__(**kwargs)
self.d_model=d_model
self.num_heads=num_heads
self.dff=dff
self.rate=rate
self.att_dropout_rate_in = att_dropout_rate_in
self.att_dropout_rate_eij = att_dropout_rate_eij
self.Adropout_rate=Adropout_rate
self.A_dff=A_dff
self.num_denseA = num_denseA
self.num_reslayerA = num_reslayerA
self.mha1 = MultiHeadAttention(self.d_model, self.num_heads, self.att_dropout_rate_in,
self.att_dropout_rate_eij, self.Adropout_rate, self.A_dff,
self.num_reslayerA, self.num_denseA)
self.mha2 = MultiHeadAttention(self.d_model, self.num_heads, self.att_dropout_rate_in,
self.att_dropout_rate_eij, self.Adropout_rate, self.A_dff,
self.num_reslayerA, self.num_denseA)
self.ffn = self.dec_point_wise_feed_forward_network()
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6, name='layernorm1')
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6, name='layernorm2')
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6, name='layernorm3')
self.dropout1 = tf.keras.layers.Dropout(self.rate, name='dropout1')
self.dropout2 = tf.keras.layers.Dropout(self.rate, name='dropout2')
self.dropout3 = tf.keras.layers.Dropout(self.rate, name='dropout3')
def call(self, inputs, training=None, **kwargs):
'''
inputs: [x, enc_output, look_ahead_mask, padding_mask ]
Returns decoder output and deductive task outputs for TLM and XLM attention blocks.
'''
x, enc_output, look_ahead_mask, padding_mask = inputs
attn1, Elst1, Alst1, pwlst1, attvlst1, balst1, avAplst1, Eplst1 = self.mha1([x,x,x, look_ahead_mask], training=training)
attn1 = self.dropout1(attn1, training=training)
out1 = self.layernorm1(attn1 + x)
attn2, Elst2, Alst2, pwlst2, attvlst2, balst2, avAplst2, Eplst2 = self.mha2([out1, enc_output, enc_output, padding_mask], training=training)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layernorm2(attn2 + out1)
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output, training=training)
out3 = self.layernorm3(ffn_output + out2) # (batch_size, target_seq_len, d_model)
return out3, [Elst1, Alst1, pwlst1, attvlst1, balst1, avAplst1, Eplst1], [Elst2, Alst2, pwlst2, attvlst2, balst2, avAplst2, Eplst2]
def dec_point_wise_feed_forward_network(self):
return tf.keras.Sequential([
tf.keras.layers.Dense(self.dff, activation='relu'),
tf.keras.layers.Dense(self.d_model)
])
def get_config(self):
config = super().get_config()
config = config.update({
"d_model":self.d_model,
"num_heads":self.num_heads,
"dff":self.dff,
"rate":self.rate,
"mha1":self.mha1,
"mha2":self.mha2,
"ffn":self.ffn,
"layernorm1":self.layernorm1,
"layernorm2":self.layernorm2,
"layernorm3":self.layernorm3,
"dropou1": self.dropout1,
"dropout2": self.dropout2,
"dropout3": self.dropout3,
"att_dropout_rate_in": self.att_droput_rate_in,
"att_dropout_rate_eij": self.att_dropout_rate_eij,
"A_dff": self.A_dff,
"num_denseA": self.num_denseA,
"num_reslayerA": self.num_reslayerA
})
return config
class Encoder(tf.keras.layers.Layer):
'''
Multilayer encoder implementation.
'''
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
maximum_position_encoding, rate=0.1, att_dropout_rate_in=0.0, att_dropout_rate_eij=0.0,
Adropout_rate=0.0, A_dff=None, num_reslayerA=None, num_denseA=None, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.num_layers = num_layers
self.num_heads=num_heads
self.dff=dff
self.input_vocab_size=input_vocab_size
self.maximum_position_encoding=maximum_position_encoding
self.rate =rate
self.att_dropout_rate_in = att_dropout_rate_in
self.att_dropout_rate_eij = att_dropout_rate_eij
self.Adropout_rate=Adropout_rate
self.A_dff=A_dff
self.num_denseA = num_denseA
self.num_reslayerA = num_reslayerA
self.embedding = tf.keras.layers.Embedding(self.input_vocab_size, self.d_model, name='enc_embedding')
self.pos_encoding = self.positional_encoding(self.maximum_position_encoding)
self.enc_layers = [EncoderLayer(self.d_model, self.num_heads, self.dff, self.rate, self.att_dropout_rate_in,
self.att_dropout_rate_eij, self.Adropout_rate, self.A_dff,
self.num_reslayerA, self.num_denseA) for _ in range(self.num_layers)]
self.dropout = tf.keras.layers.Dropout(self.rate)
def call(self, inputs, training=None, **kwargs):
'''
inputs: [x, mask].
Returns output of encoder and attention weights for SLM attention block.
'''
x, mask = inputs
seq_len = tf.shape(x)[1]
# adding embedding and position encoding.
x = self.embedding(x)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)
enc_att_weights = []
for i in range(self.num_layers):
x, enc_att_w = self.enc_layers[i]([x, mask],training=training)
enc_att_weights.append(enc_att_w)
return x, enc_att_weights
def get_angles(self, pos, i):
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(self.d_model))
return pos * angle_rates
def positional_encoding(self, position):
angle_rads = self.get_angles(np.arange(position)[:, np.newaxis],
np.arange(self.d_model)[np.newaxis, :])
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
def get_config(self):
config=super().get_config()
config = config.update({
"num_layers":self.num_layers,
"d_model":self.d_model,
"num_heads":self.num_heads,
"dff":self.dff,
"input_vocab_size":self.input_vocab_size,
"maximum_position_encoding":self.maximum_position_encoding,
"rate":self.rate,
"embedding":self.embedding,
"pos_encoding":self.pos_encoding,
"enc_layers": self.enc_layers,
"dropout":self.dropout,
"att_dropout_rate_in": self.att_droput_rate_in,
"att_dropout_rate_eij": self.att_dropout_rate_eij,
"Adropout_rate": self.Adropout_rate,
"A_dff": self.A_dff,
"num_denseA": self.num_denseA,
"num_reslayerA": self.num_reslayerA
})
return config
class Decoder(tf.keras.layers.Layer):
'''
Multi layer decoder implementation
'''
def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size,
maximum_position_encoding, rate=0.1, att_dropout_rate_in=0.0, att_dropout_rate_eij=0.0,
Adropout_rate=0.0, A_dff=None, num_reslayerA=None, num_denseA=None, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.num_layers = num_layers
self.num_heads=num_heads
self.dff=dff
self.target_vocab_size = target_vocab_size
self.maximum_position_encoding = maximum_position_encoding
self.rate = rate
self.att_dropout_rate_in = att_dropout_rate_in
self.att_dropout_rate_eij = att_dropout_rate_eij
self.Adropout_rate=Adropout_rate
self.A_dff=A_dff
self.num_denseA = num_denseA
self.num_reslayerA = num_reslayerA
self.embedding = tf.keras.layers.Embedding(self.target_vocab_size, self.d_model, name='dec_embedding')
self.pos_encoding = self.positional_encoding(self.maximum_position_encoding)
self.dec_layers = [DecoderLayer(self.d_model, self.num_heads, self.dff, self.rate, self.att_dropout_rate_in,
self.att_dropout_rate_eij, self.Adropout_rate, self.A_dff,
self.num_reslayerA, self.num_denseA) for _ in range(self.num_layers)]
self.dropout = tf.keras.layers.Dropout(self.rate, name='dropout')
def call(self, inputs, training=None, **kwargs):
'''
inputs: [x, enc_output, look_ahead_mask, padding_mask].
Returns output of decoder and attention weights for TLM and XLM attention blocks.
'''
x, enc_output, look_ahead_mask, padding_mask = inputs
seq_len = tf.shape(x)[1]
x = self.embedding(x) # (batch_size, target_seq_len, d_model)
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
x += self.pos_encoding[:, :seq_len, :]
x = self.dropout(x, training=training)
dec_att_weigths1, dec_att_weights2=[],[]
for i in range(self.num_layers):
x, dec_att_w1, dec_att_w2 = self.dec_layers[i]([x, enc_output, look_ahead_mask, padding_mask], training=training)
dec_att_weigths1.append(dec_att_w1)
dec_att_weights2.append(dec_att_w2)
return x, dec_att_weigths1, dec_att_weights2
def get_angles(self, pos, i):
angle_rates = 1 / np.power(10000, (2 * (i // 2)) / np.float32(self.d_model))
return pos * angle_rates
def positional_encoding(self, position):
angle_rads = self.get_angles(np.arange(position)[:, np.newaxis],
np.arange(self.d_model)[np.newaxis, :])
# apply sin to even indices in the array; 2i
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
# apply cos to odd indices in the array; 2i+1
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
pos_encoding = angle_rads[np.newaxis, ...]
return tf.cast(pos_encoding, dtype=tf.float32)
def get_config(self):
config=super().get_config()
config = config.update({
"num_layers":self.num_layers,
"d_model":self.d_model,
"num_heads":self.num_heads,
"dff":self.dff,
"target_vocab_size":self.target_vocab_size,
"maximum_position_encoding":self.maximum_position_encoding,
"rate":self.rate,
"embedding":self.embedding,
"pos_encoding":self.pos_encoding,
"dec_layers":self.dec_layers,
"dropout":self.dropout,
"att_dropout_rate_in":self.att_droput_rate_in,
"att_dropout_rate_eij": self.att_dropout_rate_eij,
"Adropout_rate": self.Adropout_rate,
"A_dff": self.A_dff,
"num_denseA": self.num_denseA,
"num_reslayerA": self.num_reslayerA
})
return config
class Transformer(tf.keras.Model):
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size, target_vocab_size,
pe_input, pe_target, rate=0.1, att_dropout_rate_in=0.0, att_dropout_rate_eij=0.0,
Adropout_rate=0.0, A_dff=None, num_reslayerA=None, num_denseA=None, **kwargs):
'''
Args:
num_layers: number of encoder-decoder layers.
d_model: embedding/LM feature dimension
num_heads: number of attention heads
dff: number of neurons on single layer of fully connected network
input_vocab_size: vocabulary size for source language
target_vocab_size: vocabulary size for target language
pe_input: maximum positional encoding number for source
pe_target: maximum positional encoding number for target
rate: drop out rate for embeddings and output of fully connected networks.
att_dropout_rate_in: drop out rate for power law attention query and key inputs
att_dropout_rate_eij: drop out rate for power law attention weight
Adropout_rate: drop out rate for each unit in residual network for metric tensor learning
A_dff:;Number of neurons in single layer of residual unit for metric tensor learning
num_reslayerA: number of residual units
num_denseA: number of dense layers in each residual unit.
Returns:
Logit probabilities for predicted sentence and power law attention weights for deductive task.
'''
super().__init__(**kwargs)
self.num_layers = num_layers
self.d_model=d_model
self.num_heads=num_heads
self.dff=dff
self.input_vocab_size = input_vocab_size
self.target_vocab_size = target_vocab_size
self.pe_input=pe_input
self.pe_target= pe_target
self.rate=rate
self.att_dropout_rate_in = att_dropout_rate_in
self.att_dropout_rate_eij = att_dropout_rate_eij
self.Adropout_rate=Adropout_rate
self.A_dff = A_dff
self.num_denseA = num_denseA
self.num_reslayerA = num_reslayerA
self.tokenizer = Encoder(self.num_layers, self.d_model, self.num_heads, self.dff,
self.input_vocab_size, self.pe_input, self.rate, self.att_dropout_rate_in,
self.att_dropout_rate_eij, self.Adropout_rate, self.A_dff,
self.num_reslayerA, self.num_denseA)
self.decoder = Decoder(self.num_layers, self.d_model, self.num_heads, self.dff,
self.target_vocab_size, self.pe_target, self.rate, self.att_dropout_rate_in,
self.att_dropout_rate_eij, self.Adropout_rate, self.A_dff,
self.num_reslayerA, self.num_denseA)
self.final_layer = tf.keras.layers.Dense(self.target_vocab_size,name='dense_final_layer')
def call(self, inputs, training=None, **kwargs):
inp, tar, enc_padding_mask, look_ahead_mask, dec_padding_mask=inputs
enc_output, enc_att_weights = self.tokenizer([inp, enc_padding_mask], training=training)
dec_output, dec_att_weights1, dec_att_weights2 = self.decoder([tar, enc_output, look_ahead_mask, dec_padding_mask], training=training )
final_output = self.final_layer(dec_output)
return final_output, [enc_att_weights, dec_att_weights1, dec_att_weights2]
def get_config(self):
config=super().get_config()
config = config.update({
"num_layers":self.num_layers,
"d_model":self.d_model,
"num_heads":self.num_heads,
"dff":self.dff,
"input_vocab_size":self.input_vocab_size,
"target_vocab_size":self.target_vocab_size,
"pe_input":self.pe_input,
"pe_target":self.pe_target,
"rate":self.rate,
"final_layer":self.final_layer,
"tokenizer": self.tokenizer,
"decoder": self.decoder,
"att_dropout_rate_in":self.att_droput_rate_in,
"att_dropout_rate_eij": self.att_dropout_rate_eij,
"Adropout_rate": self.Adropout_rate,
"A_dff": self.A_dff,
"num_denseA":self.num_denseA,
"num_reslayerA":self.num_reslayerA
})
return config
class ResLayerA(tf.keras.layers.Layer):
def __init__(self, depth, A_dff, Adropout_rate=0.0, num_denseA=None, index='0', **kwargs):
super().__init__(**kwargs)
self.depth=depth
self.A_dff = A_dff
self.Adropout_rate = Adropout_rate
self.num_denseA = num_denseA if num_denseA is not None else 1
self.index=index
self.denseAs = [tf.keras.layers.Dense(self.A_dff, activation='relu', name="denseA"+self.index+str(i))
for i in range(self.num_denseA)]
self.dropoutA = tf.keras.layers.Dropout(rate=self.Adropout_rate, name="Adropout"+self.index)
self.denseA = tf.keras.layers.Dense(self.depth, name="denseA"+self.index)
self.layernormA = tf.keras.layers.LayerNormalization(epsilon=1e-6, name='layernormA'+self.index)
def ResUnit(self, A, training):
Ain = tf.identity(A)
for i in range(self.num_denseA):
A = self.denseAs[i](A)
A = self.denseA(A)
A = self.dropoutA(A, training=training)
A = self.layernormA(A + Ain)
return A
def call(self, inputs, training=None, **kwargs):
A=inputs[0]
return self.ResUnit(A, training=training)
def get_config(self):
config=super().get_config()
config = config.update({
"denseAs":self.denseAs,
"dropoutA":self.dropoutA,
"denseA":self.denseA,
"layernormA":self.layernormA,
"Adropout_rate": self.Adropout_rate,
"A_dff": self.A_dff,
"num_denseA":self.num_denseA
})
return config