-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathviz.py
233 lines (201 loc) · 6.4 KB
/
viz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
## Visualisation utilities
--------------------------------------------------
## Author: Callum J. Court.
## Email: [email protected]
## Version: 1.0.0
--------------------------------------------------
## License: MIT
## Copyright: Copyright Callum Court & Batuhan Yildirim 2020, ICSG3D
-------------------------------------------------
"""
import os
import time
from itertools import product
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
from matplotlib.offsetbox import AnnotationBbox, OffsetImage
from mpl_toolkits.mplot3d import Axes3D
from skimage.transform import resize
from sklearn.manifold import TSNE
import cv2
def explode(data):
shape_arr = np.array(data.shape)
size = shape_arr[:3] * 2 - 1
exploded = np.zeros(np.concatenate([size, shape_arr[3:]]), dtype=data.dtype)
exploded[::2, ::2, ::2] = data
return exploded
def expand_coordinates(indices):
x, y, z = indices
x[1::2, :, :] += 1
y[:, 1::2, :] += 1
z[:, :, 1::2] += 1
return x, y, z
def viz(
sample, name="plot.png", show=True, alpha=0.2, ax=None, resample_d=(20, 20, 20)
):
sample = resize(sample, resample_d) # resize, otherwise it's super slow
colours = cm.viridis(sample)
colours = explode(colours)
filled = colours[:, :, :, -1] != 0
x, y, z = expand_coordinates(np.indices(np.array(filled.shape) + 1))
if ax is None:
fig = plt.figure()
ax = fig.gca(projection="3d")
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
ax.voxels(x, y, z, filled, facecolors=colours, alpha=alpha)
if show:
plt.show(block=True)
plt.close()
else:
return ax
def viz_duo(x_sample, y_sample, name="test.png", show=True, alpha=0.2):
x_sample = resize(x_sample, (12, 12, 12)) # resize, otherwise it's super slow
y_sample = resize(y_sample, (12, 12, 12)) # resize, otherwise it's super slow
fig = plt.figure()
ax = fig.add_subplot(121, projection="3d")
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
ax.set_title("Real")
colours = cm.viridis(x_sample)
colours = explode(colours)
filled = colours[:, :, :, -1] != 0
x, y, z = expand_coordinates(np.indices(np.array(filled.shape) + 1))
ax.voxels(x, y, z, filled, facecolors=colours, alpha=alpha)
ax = fig.add_subplot(122, projection="3d")
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
ax.set_title("Predicted")
colours = cm.viridis(y_sample)
colours = explode(colours)
filled = colours[:, :, :, -1] != 0
x, y, z = expand_coordinates(np.indices(np.array(filled.shape) + 1))
ax.voxels(x, y, z, filled, facecolors=colours, alpha=alpha)
if show:
plt.show()
plt.close()
def animate(m, s, d=32):
print(m.shape, s.shape)
plt.ion()
fig, axes = plt.subplots(1, 2)
for i in range(d):
axes[0].imshow(m[:, :, i])
axes[1].imshow(s[:, :, i])
plt.pause(0.2)
axes[0].clear()
axes[1].clear()
plt.close()
return
def animate_numeric(m, s, d=32):
print(m.shape, s.shape)
plt.ion()
fig, axes = plt.subplots(1, 2)
for i in range(d):
axes[0].clear()
axes[1].clear()
for ix in range(d):
for jx in range(d):
tm = float("%.1f" % m[ix, jx, i])
ts = float("%.1f" % s[ix, jx, i])
if ts != 0:
textm = axes[0].text(
ix, jx, tm, ha="center", va="center", color="b", fontsize=8
)
texts = axes[1].text(
ix, jx, ts, ha="center", va="center", color="b", fontsize=8
)
axes[0].set_xlim(0, d)
axes[1].set_xlim(0, d)
axes[0].set_ylim(0, d)
axes[1].set_ylim(0, d)
input()
plt.close()
return
def viz_slice(x, d):
fig, axes = plt.subplots(1, 1)
plt.cla()
axes.imshow(x[:, :, d])
plt.show()
plt.close()
return
def imscatter(x, y, ax, imageData, zoom=1.0, frame=True):
images = []
for i in range(len(x)):
x0, y0 = x[i], y[i]
# Convert to image
img = imageData[i]
# img = img.astype(np.uint8)
# img = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
# Note: OpenCV uses BGR and plt uses RGB
image = OffsetImage(img, zoom=1.0)
ab = AnnotationBbox(image, (x0, y0), xycoords="data", frameon=frame)
images.append(ax.add_artist(ab))
ax.update_datalim(np.column_stack([x, y]))
ax.autoscale()
def tsne_latent(Zs, Ms):
embedded = TSNE(n_components=2).fit_transform(Zs)
fig, ax = plt.subplots()
imscatter(embedded[:, 0], embedded[:, 1], ax, Ms, zoom=1.0)
plt.show(block=True)
plt.close()
return
def points(S, ax=None, show=True, d=32):
if len(S.shape) > 2:
S = S.reshape(d, d, d, S.shape[-1])
S = S[S[:, :, :, 0] != 0]
elements = np.unique(S[:, 0])
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
for elem in elements:
xyz = S[S[:, 0] == elem]
ax.scatter(xyz[:, -3], xyz[:, -2], xyz[:, -1], label=elem)
ax.set_xlim(0, 32)
ax.set_ylim(0, 32)
ax.set_zlim(0, 32)
ax.legend()
if show:
plt.show(block=True)
plt.close()
return ax
def plot_points_3d(S, alpha=0.5, ignore=[], ax=None):
""" 3D scatter """
a, b, c = S.shape
xc = np.linspace(0, S.shape[0], S.shape[0])
yc = np.linspace(0, S.shape[1], S.shape[1])
zc = np.linspace(0, S.shape[2], S.shape[2])
coords = np.array(list(product(xc, yc, zc))).reshape(a, b, c, 3)
S = S.reshape(a, b, c, 1)
unique = np.unique(S)
scoords = np.concatenate([S, coords], axis=-1)
scoords = scoords[scoords[:, :, :, 0] != 0]
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
for un in unique:
if un in ignore:
continue
mask = scoords[:, 0] == un
smask = scoords[mask]
ax.scatter(smask[:, 1], smask[:, 2], smask[:, 3], label=un, alpha=alpha)
ax.set_xlim(0, a)
ax.set_ylim(0, b)
ax.set_zlim(0, c)
ax.legend()
if ax is None:
plt.show(block=True)
return ax