-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbaryrat.py
1342 lines (1150 loc) · 50.9 KB
/
baryrat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""A Python package for barycentric rational approximation.
"""
import numpy as np
import scipy.linalg
import math
try:
import gmpy2
import flamp
except ImportError:
gmpy2 = None
flamp = None
else:
from gmpy2 import mpfr, mpc
__version__ = '2.1.0'
def _is_mp_array(x):
"""Checks whether `x` is an ndarray containing gmpy2 extended precision numbers."""
return (gmpy2
and x.dtype == 'O'
and len(x) > 0
and (isinstance(x.flat[0], mpfr) or isinstance(x.flat[0], mpc)))
def _q(z, f, w, x):
"""Function which can compute the 'upper' or 'lower' rational function
in a barycentric rational function.
`x` may be a number or a column vector.
"""
return np.sum((f * w) / (x - z), axis=-1)
def _compute_roots(w, x, use_mp):
# Cf.:
# Knockaert, L. (2008). A simple and accurate algorithm for barycentric
# rational interpolation. IEEE Signal processing letters, 15, 154-157.
#
# This version requires solving only a standard eigenvalue problem, but
# has troubles when the polynomial has leading 0 coefficients.
if _is_mp_array(w) or _is_mp_array(x):
use_mp = True
if use_mp:
assert flamp, 'flamp package is not installed'
ak = flamp.to_mp(w) # TODO: this always copies!
bk = flamp.to_mp(x)
ak /= sum(ak)
M = np.diag(bk) - np.outer(ak, x)
lam = flamp.eig(M, left=False, right=False)
# remove one simple root
lam = np.delete(lam, np.argmin(abs(lam)))
return lam
else:
# the same procedure in standard double precision
ak = w / w.sum()
M = np.diag(x) - np.outer(ak, x)
lam = scipy.linalg.eigvals(M)
# remove one simple root
lam = np.delete(lam, np.argmin(abs(lam)))
return np.real_if_close(lam)
def _compute_roots2(z, f, w):
# computation of roots/poles by companion matrix pair; see, e.g.:
# Fast Reduction of Generalized Companion Matrix Pairs for
# Barycentric Lagrange Interpolants,
# Piers W. Lawrence, SIAM J. Matrix Anal. Appl., 2013
# https://doi.org/10.1137/130904508
#
# This version can deal with leading 0 coefficients of the polynomial, but
# requires solving a generalized eigenvalue problem, which is currently not
# supported in mpmath/flamp.
B = np.eye(len(w) + 1)
B[0,0] = 0
E = np.block([[0, w],
[f[:,None], np.diag(z)]])
evals = scipy.linalg.eigvals(E, B)
return np.real_if_close(evals[np.isfinite(evals)])
def _mp_svd(A, full_matrices=True):
"""Convenience wrapper for high-precision SVD."""
assert flamp, 'flamp package is not installed'
return flamp.svd(A, full_matrices=full_matrices)
def _mp_qr(A):
"""Convenience wrapper for high-precision QR decomposition."""
assert flamp, 'flamp package is not installed'
return flamp.qr(A, mode='full')
def _nullspace_vector(A, use_mp=False):
if _is_mp_array(A):
use_mp = True
if use_mp:
Q, _ = _mp_qr(A.T)
else:
if A.shape[0] == 0:
# some LAPACK implementations have trouble with size 0 matrices
result = np.zeros(A.shape[1])
result[0] = 1.0
return result
Q, _ = scipy.linalg.qr(A.T, mode='full')
return Q[:, -1].conj()
class BarycentricRational:
"""A class representing a rational function in barycentric representation.
Args:
z (array): the interpolation nodes
f (array): the values at the interpolation nodes
w (array): the weights
The rational function has the interpolation property r(z_j) = f_j at all
nodes where w_j != 0.
"""
def __init__(self, z, f, w):
if not (len(z) == len(f) == len(w)):
raise ValueError('arrays z, f, and w must have the same length')
self.nodes = np.asanyarray(z)
self.values = np.asanyarray(f)
self.weights = np.asanyarray(w)
def __call__(self, x):
"""Evaluate rational function at all points of `x`."""
zj,fj,wj = self.nodes, self.values, self.weights
xv = np.asanyarray(x).ravel()
if len(xv) == 0:
return np.empty(np.shape(x), dtype=xv.dtype)
D = xv[:,None] - zj[None,:]
# find indices where x is exactly on a node
(node_xi, node_zi) = np.nonzero(D == 0)
one = xv[0] * 0 + 1 # for proper dtype when using MP
with np.errstate(divide='ignore', invalid='ignore'):
if len(node_xi) == 0: # no zero divisors
C = np.divide(one, D)
r = C.dot(wj * fj) / C.dot(wj)
else:
# set divisor to 1 to avoid division by zero
D[node_xi, node_zi] = one
C = np.divide(one, D)
r = C.dot(wj * fj) / C.dot(wj)
# fix evaluation at nodes to corresponding fj
# TODO: this is only correct if wj != 0
r[node_xi] = fj[node_zi]
if np.isscalar(x):
return r[0]
else:
r.shape = np.shape(x)
return r
def uses_mp(self):
"""Checks whether any of the data of this rational function uses
extended precision.
"""
return _is_mp_array(self.nodes) or _is_mp_array(self.values) or _is_mp_array(self.weights)
def eval_deriv(self, x, k=1):
"""Evaluate the `k`-th derivative of this rational function at a scalar
node `x`, or at each point of an array `x`. Only the cases `k <= 2` are
currently implemented.
Note that this function may incur significant numerical error if `x` is
very close (but not exactly equal) to a node of the barycentric
rational function.
References:
https://doi.org/10.1090/S0025-5718-1986-0842136-8 (C. Schneider and
W. Werner, 1986)
"""
if k == 0:
return self(x)
# the implementation below assumes scalars, so use numpy to vectorize
# if we got an array
if not np.isscalar(x):
return np.vectorize(lambda X: self.eval_deriv(X, k=k), otypes=[x.dtype])(x)
# is x one of our nodes?
nodeidx = np.nonzero(x == self.nodes)[0]
if len(nodeidx) > 0:
i = nodeidx[0] # node index of x
dx = self.nodes - x
dx[i] = np.inf # set i-th summand to 0
if k == 1:
# first-order divided differences
dd = (self(self.nodes) - self(x)) / dx
elif k == 2:
# second-order divided differences with nodes (x, x, z_i)
# (note that repeated nodes correspond to the first derivative)
dd1 = (self(self.nodes) - self(x)) / dx
dd = (dd1 - self.eval_deriv(x, k=1)) / dx
else:
raise NotImplementedError('derivatives higher than 2 not implemented')
return -np.sum(dd * self.weights) / self.weights[i] * math.factorial(k)
else:
# x is not a node -- use divided differences
if k == 1:
# first-order divided differences
dd = (self(self.nodes) - self(x)) / (self.nodes - x)
elif k == 2:
# second-order divided differences with nodes (x, x, z_i)
# (note that repeated nodes correspond to the first derivative)
dd1 = (self(self.nodes) - self(x)) / (self.nodes - x)
dd = (dd1 - self.eval_deriv(x, k=1)) / (self.nodes - x)
else:
raise NotImplementedError('derivatives higher than 2 not implemented')
return BarycentricRational(self.nodes, dd, self.weights)(x) * math.factorial(k)
def jacobians(self, x):
"""Compute the Jacobians of `r(x)`, where `x` may be a vector of
evaluation points, with respect to the node, value, and weight vectors.
The evaluation points `x` may not lie on any of the barycentric nodes
(unimplemented).
Returns:
A triple of arrays with as many rows as `x` has entries and as many
columns as the barycentric function has nodes, representing the
Jacobians with respect to :attr:`self.nodes`, :attr:`self.values`,
and :attr:`self.weights`, respectively.
"""
z, f, w = self.nodes, self.values, self.weights
N1 = len(z)
x_c = np.atleast_2d(x).T # column vector
dr_z, dr_f, dr_w = [], [], []
qz1 = _q(z, 1, w, x_c)
# build matrices columnwise (j = node index)
for j in range(N1):
f_diff = np.subtract(f[j], f)
x_minus_zj = np.subtract(x, z[j])
dr_z.append(_q(z, f_diff * w[j], w, x_c) / (x_minus_zj * qz1)**2)
dr_f.append(np.divide(w[j], (x_minus_zj * qz1)))
dr_w.append(_q(z, f_diff, w, x_c) / (x_minus_zj * qz1**2))
return np.column_stack(dr_z), np.column_stack(dr_f), np.column_stack(dr_w)
@property
def order(self):
"""The order of the barycentric rational function, that is, the maximum
degree that its numerator and denominator may have, or the number of
interpolation nodes minus one.
"""
return len(self.nodes) - 1
def poles(self, use_mp=False):
"""Return the poles of the rational function.
If ``use_mp`` is ``True``, uses the ``flamp`` multiple precision
package to compute the result. This option is automatically enabled if
:meth:`uses_mp` is True.
"""
if use_mp or self.uses_mp():
return _compute_roots(self.weights, self.nodes, use_mp=True)
else:
return _compute_roots2(self.nodes, np.ones_like(self.values), self.weights)
def polres(self, use_mp=False):
"""Return the poles and residues of the rational function.
If ``use_mp`` is ``True``, uses the ``flamp`` multiple precision
package to compute the result. This option is automatically enabled if
:meth:`uses_mp` is True.
"""
zj,fj,wj = self.nodes, self.values, self.weights
m = len(wj)
if self.uses_mp():
use_mp = True
# compute poles
pol = self.poles(use_mp=use_mp)
# compute residues via formula for simple poles of quotients of analytic functions
C_pol = 1.0 / (pol[:,None] - zj[None,:])
N_pol = C_pol.dot(fj*wj)
Ddiff_pol = (-C_pol**2).dot(wj)
res = N_pol / Ddiff_pol
return pol, res
def zeros(self, use_mp=False):
"""Return the zeros of the rational function.
If ``use_mp`` is ``True``, uses the ``flamp`` multiple precision
package to compute the result. This option is automatically enabled if
:meth:`uses_mp` is True.
"""
if use_mp or self.uses_mp():
return _compute_roots(self.weights*self.values, self.nodes,
use_mp=True)
else:
return _compute_roots2(self.nodes, self.values, self.weights)
def gain(self):
"""The gain in a poles-zeros-gain representation of the rational function,
or equivalently, the value at infinity.
"""
return np.sum(self.values * self.weights) / np.sum(self.weights)
def reciprocal(self):
"""Return a new :class:`BarycentricRational` which is the reciprocal of this one."""
return BarycentricRational(
self.nodes.copy(),
1 / self.values,
self.weights * self.values)
def numerator(self):
"""Return a new :class:`BarycentricRational` which represents the numerator polynomial."""
weights = _polynomial_weights(self.nodes)
return BarycentricRational(self.nodes.copy(), self.values * self.weights / weights, weights)
def denominator(self):
"""Return a new :class:`BarycentricRational` which represents the denominator polynomial."""
weights = _polynomial_weights(self.nodes)
return BarycentricRational(self.nodes.copy(), self.weights / weights, weights)
def degree_numer(self, tol=1e-12):
"""Compute the true degree of the numerator polynomial.
Uses a result from [Berrut, Mittelmann 1997].
"""
N = len(self.nodes) - 1
for defect in range(N):
if abs(np.sum(self.values * self.weights * (self.nodes ** defect))) > tol:
return N - defect
return 0
def degree_denom(self, tol=1e-12):
"""Compute the true degree of the denominator polynomial.
Uses a result from [Berrut, Mittelmann 1997].
"""
N = len(self.nodes) - 1
for defect in range(N):
if abs(np.sum(self.weights * (self.nodes ** defect))) > tol:
return N - defect
return 0
def degree(self, tol=1e-12):
"""Compute the pair `(m,n)` of true degrees of the numerator and denominator."""
return (self.degree_numer(tol=tol), self.degree_denom(tol=tol))
def reduce_order(self):
"""Return a new :class:`BarycentricRational` which represents the same rational
function as this one, but with minimal possible order.
See (Ionita 2013), PhD thesis.
"""
# sample at intermediate nodes and compute Loewner matrix
aux_nodes = (self.nodes[1:] + self.nodes[:-1]) / 2
aux_v = self(aux_nodes)
L = (aux_v[:, None] - self.values[None, :]) / (aux_nodes[:, None] - self.nodes[None, :])
# determine the order as the rank of L (cf. (Ionita 2013))
order = np.linalg.matrix_rank(L)
if order == self.order:
return BarycentricRational(self.nodes.copy(), self.values.copy(), self.weights.copy())
n = order + 1 # number of nodes in new barycentric function
scale = 1 if n==1 else int((len(self.nodes) - 1) / (n - 1)) # distribute new nodes over the old ones
subset = np.arange(0, scale*n, scale) # choose a subset of n nodes from self.nodes
# compute Loewner matrix for new subset of nodes
nodes = self.nodes[subset]
values = self.values[subset]
aux_nodes = (nodes[1:] + nodes[:-1]) / 2
aux_v = self(aux_nodes)
L = (aux_v[:, None] - values[None, :]) / (aux_nodes[:, None] - self.nodes[None, subset])
# compute weight vector in nullspace
w = _nullspace_vector(L)
return BarycentricRational(nodes, values, w)
################################################################################
def aaa(Z, F, tol=1e-13, mmax=100, return_errors=False):
"""Compute a rational approximation of `F` over the points `Z` using the
AAA algorithm.
Arguments:
Z (array): the sampling points of the function. Unlike for interpolation
algorithms, where a small number of nodes is preferred, since the
AAA algorithm chooses its support points adaptively, it is better
to provide a finer mesh over the support.
F: the function to be approximated; can be given as a function or as an
array of function values over ``Z``.
tol: the approximation tolerance
mmax: the maximum number of iterations/degree of the resulting approximant
return_errors: if `True`, also return the history of the errors over
all iterations
Returns:
BarycentricRational: an object which can be called to evaluate the
rational function, and can be queried for the poles, residues, and
zeros of the function.
For more information, see the paper
| The AAA Algorithm for Rational Approximation
| Yuji Nakatsukasa, Olivier Sete, and Lloyd N. Trefethen
| SIAM Journal on Scientific Computing 2018 40:3, A1494-A1522
| https://doi.org/10.1137/16M1106122
as well as the Chebfun package <http://www.chebfun.org>. This code is an
almost direct port of the Chebfun implementation of aaa to Python.
"""
Z = np.asanyarray(Z).ravel()
if callable(F):
# allow functions to be passed
F = F(Z)
F = np.asanyarray(F).ravel()
J = list(range(len(F)))
zj = np.empty(0, dtype=Z.dtype)
fj = np.empty(0, dtype=F.dtype)
C = []
errors = []
reltol = tol * np.linalg.norm(F, np.inf)
R = np.mean(F) * np.ones_like(F)
for m in range(mmax):
# find largest residual
jj = np.argmax(abs(F - R))
zj = np.append(zj, (Z[jj],))
fj = np.append(fj, (F[jj],))
J.remove(jj)
# Cauchy matrix containing the basis functions as columns
C = 1.0 / (Z[J,None] - zj[None,:])
# Loewner matrix
A = (F[J,None] - fj[None,:]) * C
# compute weights as right singular vector for smallest singular value
_, _, Vh = np.linalg.svd(A, full_matrices=False)
wj = Vh[-1, :].conj()
# approximation: numerator / denominator
N = C.dot(wj * fj)
D = C.dot(wj)
# update residual
R = F.copy()
R[J] = N / D
# check for convergence
errors.append(np.linalg.norm(F - R, np.inf))
if errors[-1] <= reltol:
break
r = BarycentricRational(zj, fj, wj)
return (r, errors) if return_errors else r
def interpolate_rat(nodes, values, use_mp=False):
"""Compute a rational function which interpolates the given nodes/values.
Args:
nodes (array): the interpolation nodes; must have odd length and
be passed in strictly increasing or decreasing order
values (array): the values at the interpolation nodes
use_mp (bool): whether to use ``gmpy2`` for extended precision. Is
automatically enabled if `nodes` or `values` use ``gmpy2``.
Returns:
BarycentricRational: the rational interpolant. If there are `2n + 1` nodes,
both the numerator and denominator have degree at most `n`.
References:
https://doi.org/10.1109/LSP.2007.913583
"""
# ref: (Knockaert 2008), doi:10.1109/LSP.2007.913583
# see also: (Ionita 2013), PhD thesis, Rice U
values = np.asanyarray(values)
nodes = np.asanyarray(nodes)
n = len(values) // 2 + 1
m = n - 1
if not len(values) == n + m or not len(nodes) == n + m:
raise ValueError('number of nodes should be odd')
xa, xb = nodes[0::2], nodes[1::2]
va, vb = values[0::2], values[1::2]
# compute the Loewner matrix
B = (vb[:, None] - va[None, :]) / (xb[:, None] - xa[None, :])
# choose a weight vector in the nullspace of B
weights = _nullspace_vector(B, use_mp=use_mp)
return BarycentricRational(xa, va, weights)
def _pseudo_equi_nodes(n, k):
"""Choose `k` out of `n` nodes in a quasi-equispaced way."""
if k > n:
raise ValueError("k must not be larger than n")
else:
return np.rint(np.linspace(0.0, n-1, k)).astype(int)
def _defect_matrix(x, i0, iend, f=None):
powers_m = np.arange(i0, iend)
W = x[None, :] ** powers_m[:, None]
if f is not None:
W *= f[None, :]
return W
def _defect_matrix_arnoldi(x, m, f=None):
# Arnoldi-type orthonormalization of the defect matrix.
# Based on an idea from Filip et al., 2018, p. A2431.
# doi: 10.1137/17M1132409
if m == 0:
return np.empty((0, len(x)), dtype=x.dtype)
if f is None:
f = 0 * x + 1 # has the proper dtype when using MP
if f.dtype == 'O' or x.dtype == 'O': # slight hack - mpfr has no sqrt() method!
norm = flamp.vector_norm
else:
norm = np.linalg.norm
f = f / norm(f)
Q = [f]
for k in range(1, m):
q = Q[-1] * x
for j in range(len(Q)):
q -= Q[j] * np.inner(q, Q[j])
q /= norm(q)
Q.append(q)
return np.array(Q)
def interpolate_with_degree(nodes, values, deg, use_mp=False):
"""Compute a rational function which interpolates the given nodes/values
with given degree `m` of the numerator and `n` of the denominator.
Args:
nodes (array): the interpolation nodes
values (array): the values at the interpolation nodes
deg: a pair `(m, n)` of the degrees of the interpolating rational
function. The number of interpolation nodes must be `m + n + 1`.
use_mp (bool): whether to use ``gmpy2`` for extended precision. Is
automatically enabled if `nodes` or `values` use ``gmpy2``.
Returns:
BarycentricRational: the rational interpolant
References:
https://doi.org/10.1016/S0377-0427(96)00163-X
"""
m, n = deg
nn = m + n + 1
if len(nodes) != nn or len(values) != nn:
raise ValueError('number of interpolation nodes must be m + n + 1')
if n == 0:
return interpolate_poly(nodes, values)
elif m == n:
return interpolate_rat(nodes, values, use_mp=use_mp)
else:
N = max(m, n) # order of barycentric rational function
# split given values into primary and secondary nodes
primary_indices = _pseudo_equi_nodes(nn, N + 1)
secondary_indices = np.setdiff1d(np.arange(nn), primary_indices, assume_unique=True)
xp, vp = nodes[primary_indices], values[primary_indices]
xs, vs = nodes[secondary_indices], values[secondary_indices]
# compute Loewner matrix - shape: (m + n - N) x (N + 1)
L = (vs[:, None] - vp[None, :]) / (xs[:, None] - xp[None, :])
# add weight constraints for denominator and numerator degree; see (Berrut, Mittelmann 1997)
# B has shape N x (N + 1)
B = np.vstack((
L,
_defect_matrix_arnoldi(xp, N - n), # reduce maximum denominator degree by N - n
_defect_matrix_arnoldi(xp, N - m, vp) # reduce maximum numerator degree by N - m
))
# choose a weight vector in the nullspace of B
weights = _nullspace_vector(B, use_mp=use_mp)
return BarycentricRational(xp, vp, weights)
def _polynomial_weights(x):
n = len(x)
w = np.array([
1.0 / np.prod([x[i] - x[j] for j in range(n) if j != i])
for i in range(n)
])
return w / np.abs(w).max()
def interpolate_poly(nodes, values):
"""Compute the interpolating polynomial for the given nodes and values in
barycentric form.
Args:
nodes (array): the interpolation nodes
values (array): the function values at the interpolation nodes
Returns:
BarycentricRational: the polynomial interpolant
"""
n = len(nodes)
if n != len(values):
raise ValueError('input arrays should have the same length')
weights = _polynomial_weights(nodes)
return BarycentricRational(nodes, values, weights)
def interpolate_with_poles(nodes, values, poles, use_mp=False):
"""Compute a rational function which interpolates the given values at the
given nodes and which has the given poles.
Args:
nodes (array): the interpolation nodes (length `n`)
values (array): the function values at the interpolation nodes (length `n`)
poles (array): the locations of the poles of the rational function (length `n-1`)
use_mp (bool): whether to use ``gmpy2`` for extended precision
Returns:
BarycentricRational: the rational interpolant with the given poles
"""
# ref: (Knockaert 2008), doi:10.1109/LSP.2007.913583
n = len(nodes)
if n != len(values) or n != len(poles) + 1:
raise ValueError('invalid length of arrays')
nodes = np.asanyarray(nodes)
values = np.asanyarray(values)
poles = np.asanyarray(poles)
# compute Cauchy matrix
C = 1.0 / (poles[:,None] - nodes[None,:])
# compute null space
weights = _nullspace_vector(C, use_mp=use_mp)
return BarycentricRational(nodes, values, weights)
def floater_hormann(nodes, values, blending):
"""Compute the Floater-Hormann rational interpolant for the given nodes and
values.
Args:
nodes (array): the interpolation nodes (length `n`)
values (array): the function values at the interpolation nodes (length `n`)
blending (int): the blending parameter (usually called `d` in the literature),
an integer between 0 and `n-1` (inclusive). For functions with
higher smoothness, the blending parameter may be chosen higher. For
`d=n-1`, the result is the polynomial interpolant.
Returns:
BarycentricRational: the rational interpolant
References:
(Floater, Hormann 2007): https://doi.org/10.1007/s00211-007-0093-y
"""
n = len(values) - 1
if n != len(nodes) - 1:
raise ValueError('input arrays should have the same length')
if not (0 <= blending <= n):
raise ValueError('blending parameter should be between 0 and n')
weights = np.zeros(n + 1)
# abbreviations to match the formulas in the literature
d = blending
x = nodes
for i in range(n + 1):
Ji = range(max(0, i-d), min(i, n-d) + 1)
weight = 0.0
for k in Ji:
weight += np.prod([1.0 / abs(x[i] - x[j])
for j in range(k, k+d+1)
if j != i])
weights[i] = (-1.0)**(i-d) * weight
return BarycentricRational(nodes, values, weights)
def _piecewise_mesh(nodes, n):
"""Build a mesh over an interval with subintervals described by the array
``nodes``. Each subinterval has ``n`` points spaced uniformly between the
two neighboring nodes. The final mesh has ``(len(nodes) - 1) * n`` points.
"""
#z = np.concatenate(([z0], nodes, [z1]))
M = len(nodes)
return np.concatenate(tuple(
np.linspace(nodes[i], nodes[i+1], n, endpoint=(i==M-2))
for i in range(M - 1)))
def local_maxima_bisect(g, nodes, num_iter=10):
L, R = nodes[1:-2], nodes[2:-1]
# compute 3 x m array of endpoints and midpoints
z = np.vstack((L, (L + R) / 2, R))
values = g(z[1])
m = z.shape[1]
for k in range(num_iter):
# compute quarter points
q = np.vstack(((z[0] + z[1]) / 2, (z[1] + z[2])/ 2))
qval = g(q)
# move triple of points to be centered on the maximum
for j in range(m):
maxk = np.argmax([qval[0,j], values[j], qval[1,j]])
if maxk == 0:
z[1,j], z[2,j] = q[0,j], z[1,j]
values[j] = qval[0,j]
elif maxk == 1:
z[0,j], z[2,j] = q[0,j], q[1,j]
else:
z[0,j], z[1,j] = z[1,j], q[1,j]
values[j] = qval[1,j]
# find maximum per column (usually the midpoint)
#maxidx = values.argmax(axis=0)
# select abscissae and values at maxima
#Z, gZ = z[maxidx, np.arange(m)], values[np.arange(m)]
Z, gZ = np.empty(m+2), np.empty(m+2)
Z[1:-1] = z[1, :]
gZ[1:-1] = values
# treat the boundary intervals specially since usually the maximum is at the boundary
Z[0], gZ[0] = _boundary_search(g, nodes[0], nodes[1], num_iter=3)
Z[-1], gZ[-1] = _boundary_search(g, nodes[-2], nodes[-1], num_iter=3)
return Z, gZ
def local_maxima_golden(g, nodes, num_iter):
# vectorized version of golden section search
golden_mean = (3.0 - np.sqrt(5.0)) / 2 # 0.381966...
L, R = nodes[1:-2], nodes[2:-1] # skip boundary intervals (treated below)
# compute 3 x m array of endpoints and midpoints
z = np.vstack((L, L + (R-L)*golden_mean, R))
m = z.shape[1]
all_m = np.arange(m)
gB = g(z[1])
for k in range(num_iter):
# z[1] = midpoints
mids = (z[0] + z[2]) / 2
# compute new nodes according to golden section
farther_idx = (z[1] <= mids).astype(int) * 2 # either 0 or 2
X = z[1] + golden_mean * (z[farther_idx, all_m] - z[1])
gX = g(X)
for j in range(m):
x = X[j]
gx = gX[j]
b = z[1,j]
if gx > gB[j]:
if x > b:
z[0,j] = z[1,j]
else:
z[2,j] = z[1,j]
z[1,j] = x
gB[j] = gx
else:
if x < b:
z[0,j] = x
else:
z[2,j] = x
# prepare output arrays
Z, gZ = np.empty(m+2, dtype=z.dtype), np.empty(m+2, dtype=gB.dtype)
Z[1:-1] = z[1, :]
gZ[1:-1] = gB
# treat the boundary intervals specially since usually the maximum is at the boundary
# (no bracket available!)
Z[0], gZ[0] = _boundary_search(g, nodes[0], nodes[1], num_iter=3)
Z[-1], gZ[-1] = _boundary_search(g, nodes[-2], nodes[-1], num_iter=3)
return Z, gZ
def _boundary_search(g, a, c, num_iter):
X = [a, c]
Xvals = [g(a), g(c)]
max_side = 0 if (Xvals[0] >= Xvals[1]) else 1
other_side = 1 - max_side
for k in range(num_iter):
xm = (X[0] + X[1]) / 2
gm = g(xm)
if gm < Xvals[max_side]:
# no new maximum found; shrink interval and iterate
X[other_side] = xm
Xvals[other_side] = gm
else:
# found a bracket for the minimum
return _golden_search(g, X[0], X[1], num_iter=num_iter-k)
return X[max_side], Xvals[max_side]
def _golden_search(g, a, c, num_iter=20):
golden_mean = 0.5 * (3.0 - np.sqrt(5.0))
b = (a + c) / 2
gb = g(b)
ga, gc = g(a), g(c)
if not (gb >= ga and gb >= gc):
# not bracketed - maximum may be at the boundary
return _boundary_search(g, a, c, num_iter)
for k in range(num_iter):
mid = (a + c) / 2
if b > mid:
x = b + golden_mean * (a - b)
else:
x = b + golden_mean * (c - b)
gx = g(x)
if gx > gb:
# found a larger point, use it as center
if x > b:
a = b
else:
c = b
b = x
gb = gx
else:
# point is smaller, use it as boundary
if x < b:
a = x
else:
c = x
return b, gb
def local_maxima_sample(g, nodes, N):
Z = _piecewise_mesh(nodes, N).reshape((-1, N))
vals = g(Z)
maxk = vals.argmax(axis=1)
nn = np.arange(Z.shape[0])
return Z[nn, maxk], vals[nn, maxk]
def chebyshev_nodes(num_nodes, interval=(-1.0, 1.0), use_mp=False):
"""Compute `num_nodes` Chebyshev nodes of the first kind in the given interval."""
if use_mp:
nodes = (1 - flamp.cos((2*flamp.to_mp(np.arange(1, num_nodes + 1)) - 1) / (2*num_nodes) * gmpy2.const_pi()))
a, b = interval
a, b = gmpy2.mpfr(a), gmpy2.mpfr(b)
return nodes * ((b - a) / 2) + a
else:
# compute nodes in (-1, 1)
nodes = (1 - np.cos((2*np.arange(1, num_nodes + 1) - 1) / (2*num_nodes) * np.pi))
# rescale to desired interval
a, b = interval
return nodes * ((b - a) / 2) + a
def brasil(f, interval, deg, tol=1e-4, maxiter=1000, max_step_size=0.1,
step_factor=0.1, npi=-30, init_steps=100, info=False):
"""Best Rational Approximation by Successive Interval Length adjustment.
Computes best rational or polynomial approximations in the maximum norm by
the BRASIL algorithm (see reference below).
References:
https://doi.org/10.1007/s11075-020-01042-0
Arguments:
f: the scalar function to be approximated. Must be able to operate
on arrays of arguments.
interval: the bounds `(a, b)` of the approximation interval
deg: the degree of the numerator `m` and denominator `n` of the
rational approximation; either an integer (`m=n`) or a pair `(m, n)`.
If `n = 0`, a polynomial best approximation is computed.
tol: the maximum allowed deviation from equioscillation
maxiter: the maximum number of iterations
max_step_size: the maximum allowed step size
step_factor: factor for adaptive step size choice
npi: points per interval for error calculation. If `npi < 0`,
golden section search with `-npi` iterations is used instead of
sampling. For high-accuracy results, `npi=-30` is typically a good
choice.
init_steps: how many steps of the initialization iteration to run
info: whether to return an additional object with details
Returns:
BarycentricRational: the computed rational approximation. If `info` is
True, instead returns a pair containing the approximation and an
object with additional information (see below).
The `info` object returned along with the approximation if `info=True` has
the following members:
* **converged** (bool): whether the method converged to the desired tolerance **tol**
* **error** (float): the maximum error of the approximation
* **deviation** (float): the relative error between the smallest and the largest
equioscillation peak. The convergence criterion is **deviation** <= **tol**.
* **nodes** (array): the abscissae of the interpolation nodes (2*deg + 1)
* **iterations** (int): the number of iterations used, including the initialization phase
* **errors** (array): the history of the maximum error over all iterations
* **deviations** (array): the history of the deviation over all iterations
* **stepsizes** (array): the history of the adaptive step size over all iterations
Additional information about the resulting rational function, such as poles,
residues and zeroes, can be queried from the :class:`BarycentricRational` object
itself.
Note:
This function supports ``gmpy2`` for extended precision. To enable
this, specify the interval `(a, b)` as `mpfr` numbers, e.g.,
``interval=(mpfr(0), mpfr(1))``. Also make sure that the function `f`
consumes and outputs arrays of `mpfr` numbers; the Numpy function
:func:`numpy.vectorize` may help with this.
"""
a, b = interval
assert a < b, 'Invalid interval'
if np.isscalar(deg):
m = n = deg
else:
if len(deg) != 2:
raise TypeError("'deg' must be an integer or pair of integers")
m, n = deg
nn = m + n + 1 # number of interpolation nodes
errors = []
stepsize = np.nan
# start with Chebyshev nodes
nodes = chebyshev_nodes(nn, (a, b))
# choose proper interpolation routine
if n == 0:
interp = interpolate_poly
elif m == n:
interp = interpolate_rat
else:
interp = lambda x,f: interpolate_with_degree(x, f, (m, n))
for k in range(init_steps + maxiter):
r = interp(nodes, f(nodes))
# determine local maxima per interval
all_nodes = np.concatenate(([a], nodes, [b]))
errfun = lambda x: abs(f(x) - r(x))
if npi > 0:
local_max_x, local_max = local_maxima_sample(errfun, all_nodes, npi)
else:
local_max_x, local_max = local_maxima_golden(errfun, all_nodes, num_iter=-npi)
max_err = local_max.max()
deviation = max_err / local_max.min() - 1
errors.append((max_err, deviation, stepsize))
converged = deviation <= tol
if converged or k == init_steps + maxiter - 1:
# convergence or maxiter reached -- return result
if not converged:
print('warning: BRASIL did not converge; dev={0:.3}, err={1:.3}'.format(deviation, max_err))
else:
# Until now, we have only equilibrated the absolute errors.
# Check equioscillation property for the signed errors to make
# sure we actually found the best approximation.
signed_errors = f(local_max_x) - r(local_max_x)
# normalize them so that they are all 1 in case of equioscillation
signed_errors /= (-1)**np.arange(len(signed_errors)) * np.sign(signed_errors[0]) * max_err
equi_err = abs(1.0 - signed_errors).max()
if equi_err > tol:
print('warning: equioscillation property not satisfied, deviation={0:.3}'.format(equi_err))
if info:
from collections import namedtuple
Info = namedtuple('Info',
'converged error deviation nodes iterations ' +
'errors deviations stepsizes')
errors = np.array(errors)
return r, Info(
converged, max_err, deviation, nodes, k,
errors[:,0], errors[:,1], errors[:,2],
)
else:
return r
if k < init_steps:
# PHASE 1:
# move an interpolation node to the point of largest error
max_intv_i = local_max.argmax()
max_err_x = local_max_x[max_intv_i]
# we can't move a node to the boundary, so check for that case
# and move slightly inwards
if max_err_x == a:
max_err_x = (3 * a + nodes[0]) / 4
elif max_err_x == b:
max_err_x = (nodes[-1] + 3 * b) / 4
# find the node to move (neighboring the interval with smallest error)
min_k = local_max.argmin()
if min_k == 0:
min_j = 0
elif min_k == nn:
min_j = nn - 1
else:
# of the two nodes on this interval, choose the farther one
if abs(max_err_x - nodes[min_k-1]) < abs(max_err_x - nodes[min_k]):
min_j = min_k
else:
min_j = min_k - 1
# move the node and re-sort the array
nodes[min_j] = max_err_x
nodes.sort()
else:
# PHASE 2:
# global interval size adjustment
intv_lengths = np.diff(all_nodes)
mean_err = np.mean(local_max)
max_dev = abs(local_max - mean_err).max()
normalized_dev = (local_max - mean_err) / max_dev
stepsize = min(max_step_size, step_factor * max_dev / mean_err)
scaling = (1.0 - stepsize)**normalized_dev
intv_lengths *= scaling
# rescale so that they add up to b-a again
intv_lengths *= (b - a) / intv_lengths.sum()
nodes = np.cumsum(intv_lengths)[:-1] + a