-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathREADME.Rmd
182 lines (144 loc) · 7.54 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
output: github_document
---
# ggcorrplot2
[![Build Status](https://travis-ci.org/caijun/ggcorrplot2.svg?branch=master)](https://travis-ci.org/caijun/ggcorrplot2)
Implementation of corrplot using ggplot2
## Introduction
Reinventing wheels is not what I like doing. [corrplot](https://CRAN.R-project.org/package=corrplot) is a great R package, but I am really tired of customizing the appearance of corrplot, for example, the space between colorbar and its tick labels, the space around the plot that I don't know how to control when writing it to PDF on my macOS. This is most likely because I am more familiar with the Grammar of Graphics implemented in ggplot2 than the base plotting system in R. There are several R packages (e.g., [ggcorrplot](https://github.com/kassambara/ggcorrplot) developed by Alboukadel Kassambara, [ggcorr](https://github.com/briatte/ggcorr) developed by François Briatte) that can visualize a correlation matrix into a [corrgram](https://www.tandfonline.com/doi/abs/10.1198/000313002533) using ggplot2; however, they are unable to visualize a correlation matrix using ellipse and mixed methods. **ggcorrplot2** has implemented only a subset of features of **corrplot** to meet my urgent needs. See examples in the **Getting started** section. More functionality will be added in the future as needed.
## Installation
Get the development version from github:
```r
if (!requireNamespace("devtools")) install.packages("devtools")
devtools::install_github("caijun/ggcorrplot2")
```
## Getting started
The `mtcars` dataset will be used to demonstrate the usages of **ggcorrplot2**. Most parameters of **ggcorrplot2** functions are the same as those of **corrplot**. Therefore, it's easy for users to migrate from **corrplot** to **ggcorrplot2**.
```{r, echo = FALSE}
knitr::opts_chunk$set(
dpi = 200,
fig.path = "figs/README-"
)
```
```{r, fig.height=4}
library(ggcorrplot2)
data(mtcars)
# Use corr.test() from psych package to calculate the correlation matrix and
# corresponding p value matrix without adjustment.
library(psych)
ct <- corr.test(mtcars, adjust = "none")
corr <- ct$r
p.mat <- ct$p
# Visualize the correlation matrix
# --------------------------------
# method = "circle" (default)
ggcorrplot(corr)
# method = "square"
ggcorrplot(corr, method = "square")
# method = "ellipse"
ggcorrplot(corr, method = "ellipse")
# method = "number", display the correlation coefficients
ggcorrplot(corr, method = "number")
# Visualize the upper or lower triangle of correlation matrix
# -----------------------------------------------------------
# the upper triangle
ggcorrplot(corr, type = "upper")
# the lower triangle
ggcorrplot(corr, type = "lower")
# Visualize the correlation matrix using mixed methods
# ----------------------------------------------------
# default: upper = "circle", lower = "number"
ggcorrplot.mixed(corr)
# upper = "ellipse", lower = "number"
ggcorrplot.mixed(corr, upper = "ellipse", lower = "number")
# Combine correlogram with the significance test
# ----------------------------------------------
# Insignificant coefficients according to the default significant level
# (sig.lvl = 0.05) are indicated by X by default.
ggcorrplot.mixed(corr, upper = "ellipse", lower = "number", p.mat = p.mat)
# Leave blank on insignificant coefficients
ggcorrplot.mixed(corr, upper = "ellipse", lower = "number", p.mat = p.mat,
insig = "blank")
# Label significant coefficients with asterisks (*, default) denoting the significance level
ggcorrplot.mixed(corr, upper = "ellipse", lower = "number", p.mat = p.mat,
insig = "label_sig", sig.lvl = c(0.05, 0.01, 0.001))
# Label significant coefficients with varying number of + denoting the significance level
(p <- ggcorrplot.mixed(corr, upper = "ellipse", lower = "number", p.mat = p.mat,
insig = "label_sig", sig.lvl = c(0.05, 0.01, 0.001), pch = "+",
pch.cex = 4))
```
The above examples reproduce some features of **corrplot**. In the following example, the added advantages of implementing **corrplot** using ggplot2, such as customizing the appearance of corrgram, combining a corrgram with other plots (including non-corrgrams) into one plot using [cowplot](https://github.com/wilkelab/cowplot), are demonstrated.
```{r, fig.width=9, fig.height=5, fig.align="center", message=FALSE}
# Customize the appearance of corrplot using functions from ggplot2
library(ggplot2)
# Use different color palette
col1 <- colorRampPalette(c("#7F0000", "red", "#FF7F00", "yellow", "white",
"cyan", "#007FFF", "blue", "#00007F"))
# Change the colorbar direction to horizontal and place it at the bottom
# As mixed methods are used, there are two scales: color filled in ellipse and
# number color
p <- p + scale_fill_gradientn(colours = col1(10), limits = c(-1, 1),
guide = guide_colorbar(
direction = "horizontal",
title = "",
nbin = 1000,
ticks.colour = "black",
frame.colour = "black",
barwidth = 15,
barheight = 1.5)) +
scale_colour_gradientn(colours = col1(10), limits = c(-1, 1),
guide = guide_colorbar(
direction = "horizontal",
title = "",
nbin = 1000,
ticks.colour = "black",
frame.colour = "black",
barwidth = 15,
barheight = 1.5)) +
theme(legend.position = "bottom")
p
# Combine a lower corrgram and a mixed corrgram side by side with a shared colorbar on the bottom
# NAs are allowed in correlation matrix and p value matrix, which are labelled as NA
# Assign NAs
rid <- c(2, 3, 1, 2)
cid <- c(3, 2, 2, 1)
pos <- cbind(rid, cid)
corr[pos] <- NA
p.mat[pos] <- NA
# a lower corrgram
p1 <- ggcorrplot(corr, type = "lower", method = "square", p.mat = p.mat,
insig = "label_sig", sig.lvl = c(0.05, 0.01, 0.001), show.diag = FALSE)
# a mixed corrgram
p2 <- ggcorrplot.mixed(corr, upper = "ellipse", lower = "number", p.mat = p.mat,
insig = "label_sig", sig.lvl = c(0.05, 0.01, 0.001),
pch = "+", pch.cex = 4)
library(cowplot)
prow <- plot_grid(p1 + theme(legend.position = "none"),
p2 + theme(legend.position = "none"),
rel_widths = c(1, 1), nrow = 1, align = 'hv',
labels = c("(a)", "(b)"), label_x = 0, label_y = 1)
# Extract the legend from the first corrgram
legend <- get_legend(p1)
# Add the legend to the bottom of the plot row we made earlier.
p <- cowplot::plot_grid(prow, legend, ncol = 1, rel_heights = c(1, 0.15))
p
```
## Citation
To cite the 'ggcorrplot2' package in publications use:
```
Jun Cai, Granville Matheson and Samson Leonard Daniël (2022). ggcorrplot2: Visualize a Correlation Matrix using ggplot2. R package version 0.1.2.
```
A BibTeX entry for LaTeX users is
```
@Manual{,
title = {ggcorrplot2: Visualize a Correlation Matrix using ggplot2},
author = {Jun Cai and Granville Matheson and Samson Leonard Daniël},
year = {2022},
note = {R package version 0.1.2},
url = {https://github.com/caijun/ggcorrplot2},
}
```
The above citation information can be generated by calling `citation("ggcorrplot2")` in R.
## Contact
Bugs and feature requests can be filed to
<https://github.com/caijun/ggcorrplot2/issues>. Pull requests are also welcome.