-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_prune_search.py
326 lines (302 loc) · 11.2 KB
/
run_prune_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import random
import numpy as np
import json
import argparse
import os
import torch
from tqdm import tqdm
import logging
from transformers import AutoTokenizer, set_seed
from rewards.text_classification_reward import PromptedClassificationReward
from utils.fsc_datasets import PromptedClassificationDataset
from algs.genetics import GeneticAlgorithmTrainer, Genetics
from algs.particle_swarm import ParticleSwarmOptimizer
from algs.greedy import GreedyTrainer
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def remove_special_token(text: str, special_token: str) -> str:
return text.replace(special_token, "")
def find_kl_dict(args, data, vocab, obj_func, prompted_dataset):
premise_texts, hypothesis_texts, class_labels = prompted_dataset.get_data(data)
if args["prune_type"] == "kl":
default_probs = obj_func.compute_default_kl(
premise_texts, hypothesis_texts, class_labels, "", True
)
else:
default_probs = obj_func.compute_default_reward(
premise_texts, hypothesis_texts, class_labels, "", True
)
collect_kl = []
kl_dict = {}
for v, k in tqdm(vocab.items()):
if args["prune_type"] == "kl":
kl = obj_func.compute_kl(
premise_texts, hypothesis_texts, class_labels, v, True, default_probs
)
else:
kl = obj_func.compute_reward_diff(
premise_texts, hypothesis_texts, class_labels, v, True, default_probs
)
collect_kl.append(kl)
kl_dict[v] = kl
for k, v in kl_dict.items():
kl_dict[k] = float(v)
with open(args["dict_path"], "w") as fp:
json.dump(kl_dict, fp, indent=4, ensure_ascii=False)
collect_kl_np = []
for tensor in collect_kl:
collect_kl_np.append(tensor.cpu().numpy())
return kl_dict, collect_kl_np
def load_kl_dict(args):
# load the KL dict from json file
with open(args["dict_path"], "r") as fp:
kl_dict = json.load(fp)
collect_kl_np = []
for k, v in kl_dict.items():
collect_kl_np.append(v)
return kl_dict, collect_kl_np
def load_vocab(args):
with open(args["vocab_path"], "r") as fp:
vocab = json.load(fp)
vocab_key = []
vocab_id = []
for k, v in vocab.items():
vocab_key.append(k)
vocab_id.append(v)
return vocab, vocab_key, vocab_id
def action_set_pruning(args, kl_dict, collect_kl_np, vocab):
if not args["random_prune"]:
collect_kl_np = np.array(collect_kl_np)
top_10_percent = np.percentile(collect_kl_np, args["percentile"])
# filter the vocab based on the top_10_percent_idx
new_vocab = {
word: vocab[word]
for word, value in kl_dict.items()
if value > top_10_percent
}
vocab = new_vocab
vocab_key = []
vocab_id = []
for k, v in vocab.items():
vocab_key.append(k)
vocab_id.append(v)
logger.info(len(vocab_key))
else:
# random select 10% of the vocab
vocab, vocab_key, vocab_id = random_pruning(args, vocab, args["percentile"])
logger.info(len(vocab_key))
return vocab, vocab_key, vocab_id
def random_pruning(args, vocab: dict, percent: int = 99):
vocab_key = []
vocab_id = []
for k, v in vocab.items():
vocab_key.append(k)
vocab_id.append(v)
length = int(len(vocab_key) * (100 - percent) / 100)
pruned_index = random.sample(list(np.arange(len(vocab_key))), length)
vocab_key = [vocab_key[i] for i in pruned_index]
vocab_id = [vocab_id[i] for i in pruned_index]
vocab = {vocab_key[i]: vocab_id[i] for i in range(len(vocab_key))}
logger.info(len(vocab_key))
return vocab, vocab_key, vocab_id
def main(args):
print(args)
set_seed(args["seed"])
revocab_flag = args["reprune_vocab"]
shots = args["num_shots"]
batch_size = args["train_batch_size"]
args["is_mask_lm"] = False
special_space = "▁"
if "bert" in args["model_name"]:
args["is_mask_lm"] = True
special_space = "Ġ"
logging.info("......Loading dataset......")
prompt_dataset = PromptedClassificationDataset(args)
verbalizer_predefined = prompt_dataset.get_verbalizer()
args["verbalizers"] = verbalizer_predefined
logging.info("verbalizers: %s", verbalizer_predefined)
args["num_labels"] = len(verbalizer_predefined)
train_dataset, val_dataset, test_dataset = prompt_dataset.get_few_shot_dataset(
shots
)
logging.info("......truncating vocab......")
crossover_tokenizer = AutoTokenizer.from_pretrained(args["model_name"])
vocab = crossover_tokenizer.get_vocab()
# preprocess the vocab
special_tokens = [
crossover_tokenizer.unk_token,
crossover_tokenizer.pad_token,
crossover_tokenizer.sep_token,
crossover_tokenizer.cls_token,
]
vocab = {
word: index
for word, index in vocab.items()
if word not in special_tokens and special_space in word
}
for v in verbalizer_predefined:
if v not in vocab:
print("verbalizer not in vocab: ", v)
assert v in vocab
logging.info("the vocab length before action set pruning: %s", len(vocab))
dataset = train_dataset
print(dataset)
batch_size = min(batch_size, len(dataset))
idx = np.random.choice(len(dataset), batch_size, replace=False)
data = [dataset[i] for i in idx]
logging.info(f"Length of dataset = {len(data)}")
obj_func = PromptedClassificationReward(
args=args,
reward_type=args["reward_type"],
task_lm=args["model_name"],
is_mask_lm=args["is_mask_lm"],
num_classes=args["num_labels"],
verbalizers=args["verbalizers"],
use_bn_calibration=args["bn_calibrate"],
)
if revocab_flag:
# pruning efficiency section
# random select 10% of the vocab
if args["vocab_path"] != "none":
# this is to do kmeans clustering and pruning
vocab, _, vocab_id = load_vocab(args)
kl_dict, collect_kl_np = find_kl_dict(
args, data, vocab, obj_func, prompt_dataset
)
else:
if not args["run_manual"]:
kl_dict, collect_kl_np = load_kl_dict(args)
else:
kl_dict = {}
collect_kl_np = []
if not args["run_manual"]:
vocab, _, vocab_id = action_set_pruning(args, kl_dict, collect_kl_np, vocab)
else:
vocab_id = [v for k, v in vocab.items()]
if args["method"] == "genetic":
genetics = Genetics(crossover_tokenizer, vocab_id)
trainer = GeneticAlgorithmTrainer(
pop_size=128,
mutate_size=64,
crossover_size=64,
mutate_frac=0.1,
str_len=5,
epochs=30,
stages=1,
n_classes=args["num_labels"],
genetics=genetics,
eval_batch_size=args["eval_batch_size"],
obj_func=obj_func,
prompt_dataset=prompt_dataset,
use_bn_calibrator=args["bn_calibrate"],
logger=logger,
)
elif args["method"] == "particle_swarm":
trainer = ParticleSwarmOptimizer(
pop_size=128,
epochs=30,
mutate_frac=0.1,
str_len=5,
n_classes=args["num_labels"],
eval_batch_size=args["eval_batch_size"],
obj_func=obj_func,
prompt_dataset=prompt_dataset,
use_bn_calibrator=args["bn_calibrate"],
logger=logger,
vocab_id=vocab_id,
crossover_tokenizer=crossover_tokenizer,
)
elif args["method"] == "greedy":
trainer = GreedyTrainer(
crossover_tokenizer=crossover_tokenizer,
obj_func=obj_func,
prompt_dataset=prompt_dataset,
logger=logger,
vocab_id=vocab_id,
str_len=5,
n_classes=args["num_labels"],
eval_batch_size=args["eval_batch_size"],
)
else:
raise NotImplementedError(f"Unknown method = {args['method']}!")
if not args["run_manual"]:
logging.info("......training......")
best_str_list = trainer.train(train_dataset)
logging.info("......evaluating......")
best_prompt = trainer.validate(val_dataset, best_str_list)
logging.info("......testing......")
_, logits = trainer.test(
test_dataset, best_prompt, return_logits=args["save_logits"]
)
else:
logging.info("......manual validation......")
trainer.manual(val_dataset, bn_calibrate_if_available=False)
logging.info("......manual testing......")
_, logits = trainer.manual(test_dataset, return_logits=args["save_logits"])
if args["save_logits"]:
with open(os.path.join(args["save_path"], "logits.pth.tar"), "wb") as fp:
torch.save(logits, fp)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--method",
type=str,
default="genetic",
choices=["genetic", "particle_swarm", "greedy"],
)
parser.add_argument("--model_name", type=str, default="google/flan-t5-large")
parser.add_argument("--dataset_name", type=str, default="xnli")
parser.add_argument(
"--reward_type",
type=str,
default="cross_entropy",
help="cross_entropy or entropy",
)
parser.add_argument("--prune_type", type=str, default="reward", help="reward or kl")
parser.add_argument("--num_shots", type=int, default=16)
parser.add_argument("--train_batch_size", type=int, default=2000)
parser.add_argument("--eval_batch_size", type=int, default=8)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument(
"--n_epochs", type=int, default=30, help="Number of training epochs"
)
parser.add_argument(
"--percentile", type=float, default=99, help="top x% of the tokens to prune"
)
parser.add_argument(
"--reprune_vocab",
type=bool,
default=False,
help="whether to prune again for the complete vocab",
)
parser.add_argument(
"--random_prune", type=bool, default=False, help="whether to prune randomly"
)
parser.add_argument(
"--ngram_prune", type=bool, default=False, help="whether to prune ngrams"
)
parser.add_argument(
"--run_manual",
action="store_true",
help="whether to evaluate the manual template",
)
parser.add_argument("--save_path", type=str, default="output")
parser.add_argument("--dict_path", type=str, default="./kl_dict.json")
parser.add_argument("--vocab_path", type=str, default="none")
parser.add_argument(
"--template_id",
type=int,
default=0,
help="the index for the prompt template to be evaluated",
)
parser.add_argument("--bn_calibrate", action="store_true")
parser.add_argument("--save_logits", action="store_true")
args = parser.parse_args()
args = vars(args)
if not os.path.exists(args["save_path"]):
os.makedirs(args["save_path"])
logger.addHandler(
logging.FileHandler(os.path.join(args["save_path"], "output.log"))
)
main(args)