-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture01_optional.tex
585 lines (454 loc) · 16 KB
/
slides_lecture01_optional.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
%
% Optional reading
%
\begin{frame}[plain,c]
\begin{center}
{\Huge \bf Optional reading for Lecture \thislecture}
\end{center}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
\begin{frame}{Worked example: Electric field and force of 3 point charges}
\begin{blockexmplque}{Question}
Three charges are arranged as following:
$Q_1$ = 1 nC at (-1,-1,0) cm, $Q_2$ = 1 nC at (1,-1,0) cm and $Q_3$ = -2nC at (0,2,0) cm.
Calculate:
\begin{enumerate}
\item The electric field (vector) at the point (0,0,0).
\item The force acting on charge $Q_3$.
\end{enumerate}
\end{blockexmplque}
\vspace{0.2cm}
The electric field $\vec{E}$ at $\vec{r}$, due to $Q_1$, $Q_2$, and $Q_3$,
is given by the superposition of the fields produced by each point charge:
\begin{equation*}
\vec{E}(\vec{r}) = \frac{1}{4\pi \epsilon_0}
\sum_{i=1}^{2} \frac{Q_i}{|\vec{r}-\vec{r}_i|^3} \Big( \vec{r}-\vec{r}_i \Big)
\end{equation*}
Therefore, at $\vec{r}=\vec{0}$, it is given by:
\begin{equation*}
\vec{E}(\vec{0}) = \frac{1}{4\pi \epsilon_0} \Big\{
\frac{Q_1}{|\vec{r}_1|^3} \Big( - \vec{r}_1 \Big) +
\frac{Q_2}{|\vec{r}_2|^3} \Big( - \vec{r}_2 \Big) +
\frac{Q_3}{|\vec{r}_3|^3} \Big( - \vec{r}_3 \Big)
\Big\}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Electric field and force of 3 point charges}
Substituting the given quantities into the previous equation, we get:
\begin{equation*}
\vec{E}(\vec{0}) =
(9.0 \times 10^9 \; \frac{N \cdot m^2}{C^2}) \Big\{
\frac{ (1.0 \times 10^{-9} \; C)}{\sqrt{2}^3 \times 10^{-6} \; m^3} \Big( 1, 1, 0 \Big) \times 10^{-2} m +
\end{equation*}
\begin{equation*}
+ \frac{ (1.0 \times 10^{-9} \; C)}{\sqrt{2}^3 \times 10^{-6} \; m^3} \Big(-1, 1, 0 \Big) \times 10^{-2} m +
\frac{(-2.0 \times 10^{-9} \; C)}{2^3 \times 10^{-6} \; m^3} \Big( 0,-2, 0 \Big) \times 10^{-2} m
\Big\} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{E}(\vec{0}) =
9.0 \times 10^9 \Big\{
\frac{2.0 \times 10^{-11}}{\sqrt{2}^3 \times 10^{-6}} + \frac{4.0 \times 10^{-11}}{2^3 \times 10^{-6}} \Big\} \Big(0, 1, 0 \Big) \; \frac{N}{C}
\Rightarrow
\end{equation*}
\begin{equation*}
\vec{E}(\vec{0}) =
9.0 \times 10^9 \Big\{
0.707 \times 10^{-5} + 0.500 \times 10^{-5} \Big\} \Big(0, 1, 0 \Big) \; \frac{N}{C}
\Rightarrow
\end{equation*}
\begin{equation*}
\vec{E}(\vec{0}) =
1.0863 \times 10^5 \Big(0, 1, 0 \Big) \; \frac{N}{C}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Electric field and force of 3 point charges}
The force $\vec{F}_{3}$ acting on $Q_3$ is the vector sum of $\vec{F}_{31}$ and $\vec{F}_{32}$.
\begin{equation*}
\vec{F}_{31} = \frac{1}{4\pi \epsilon_0} \frac{Q_1 Q_3}{|\vec{r}_3-\vec{r}_1|^3} \Big( \vec{r}_3-\vec{r}_1 \Big) \Rightarrow
\end{equation*}
\begin{equation*}
\vec{F}_{31} = (9.0 \times 10^9 \; \frac{N \cdot m^2}{C^2})
\frac{(1.0 \times 10^{-9} \; C)(-2.0 \times 10^{-9} \; C)}{\sqrt{10.0}^3 \times 10^{-6} \; m^3} \Big(1,3,0\Big) \times 10^{-2} \; m
\end{equation*}
\begin{equation*}
\vec{F}_{32} = \frac{1}{4\pi \epsilon_0} \frac{Q_2 Q_3}{|\vec{r}_3-\vec{r}_2|^3} \Big( \vec{r}_3-\vec{r}_2 \Big) \Rightarrow
\end{equation*}
\begin{equation*}
\vec{F}_{32} = (9.0 \times 10^9 \; \frac{N \cdot m^2}{C^2})
\frac{(1.0 \times 10^{-9} \; C)(-2.0 \times 10^{-9} \; C)}{\sqrt{10.0}^3 \times 10^{-6} \; m^3} \Big(-1,3,0\Big) \times 10^{-2} \; m
\end{equation*}
\begin{equation*}
\vec{F}_3 =
\vec{F}_{31} + \vec{F}_{32} = (9.0 \times 10^9 \; \frac{N \cdot m^2}{C^2})
\frac{(-2.0 \times 10^{-18} \; C^2)}{\sqrt{10.0}^3 \times 10^{-6} \; m^3} \Big(0,6,0\Big) \times 10^{-2} \; m \Rightarrow
\end{equation*}
\begin{equation*}
\vec{F}_{3} = -34.1 \Big(0,1,0\Big) \; {\mu}N
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
% from HR, Section 21-4, Problem 13
%
{
\problemslide
\begin{frame}{Worked example: Equilibrium position of charge}
\begin{blockexmplque}{Question}
In the figure below, particle 1 of charge +1.0 $\mu$C and particle 2
of charge -3.0 $\mu$C are held at separation $L$ = 10.0 cm on an x axis.
If particle 3 of unknown charge $q_3$ is to be located such that the net
electrostatic force on it from particles 1 and 2 is zero,
what must be the x and y coordinates of particle 3?
\begin{center}
\includegraphics[width=0.30\textwidth]{./images/problems/lect01_3charges_0_net_force_on_third.png}
\end{center}
\end{blockexmplque}
\vspace{0.2cm}
There is no equilibrium position for $q_3$ between the two fixed charges,
because it is being pulled by one and pushed by the other
(since $q_1$ and $q_2$ have different signs).
In this region, the two forces on q3 ($\vec{F}_{31}$ and $\vec{F}_{32}$)
have components that cannot cancel.
\end{frame}
%
%
%
\begin{frame}{Worked example: Equilibrium position of charge}
For the same reason, there are no equilibrium positions off-axis
(with the axis defined as that which passes through the two fixed charges),
and therefore y=0.\\
\vspace{0.3cm}
On the semi-infinite region of the axis that is nearest $q_2$
and furthest from $q_1$ an equilibrium position for $q_3$ cannot be found
because $|q_1| < |q_2|$ and the magnitude of force exerted by $q_2$
is everywhere (in that region) stronger than that exerted by $q_1$ on $q_3$.\\
\vspace{0.3cm}
Thus, we must look in the semi-infinite region of the axis which is nearest
$q_1$ and furthest from $q_2$ (x$<$0).
\end{frame}
%
%
%
\begin{frame}{Worked example: Equilibrium position of charge}
In that region, the net force on $q_3$ has magnitude which is given by:
\begin{equation*}
F_{3} = \left\rvert
\frac{1}{4\pi\epsilon_0} \frac{|q_1 q_3|}{|x|^2} -
\frac{1}{4\pi\epsilon_0} \frac{|q_2 q_3|}{(L+|x|)^2}
\right\rvert
\end{equation*}
Setting $F_{3}$ equal to zero, the above expression yields:
\begin{equation*}
\frac{|q_1|}{|x|^2} - \frac{|q_2|}{(L+|x|)^2} = 0 \Rightarrow
\Big(\frac{L+|x|}{|x|} \Big)^{2} = \frac{|q_2|}{|q_1|} \Rightarrow
\frac{L}{|x|} + 1 = \sqrt{\frac{|q_2|}{|q_1|}} \Rightarrow
\end{equation*}
\begin{equation*}
|x| = \frac{L}{\sqrt{\frac{|q_2|}{|q_1|}} - 1} \Rightarrow
\end{equation*}
\begin{equation*}
|x| = \frac{10\;cm}{\sqrt{\frac{|-3\;{\mu}C|}{|+1\;{\mu}C|}} - 1}
= \frac{10\;cm}{\sqrt{3} - 1} \approx 13.66 \; cm
\Rightarrow x = -13.66 \; cm
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
\begin{frame}{Worked example: Field of two charged beads on ring}
\begin{blockexmplque}{Question}
The figure below shows a plastic ring of radius $R$ = 50 cm.
Two small charged beads are on the ring: Bead 1 of charge +2 $\mu$C
is fixed in place at the left side;
bead 2 of charge +6 $\mu$C can be moved along the ring.
The two beads produce a net electric field of magnitude $E$ at the
centre of the ring.
At what (a) positive and (b) negative value of
angle $\theta$ should bead 2 be positioned so that $E$ = 2 $\times$ 10$^{5}$ N/C?\\
\begin{center}
\includegraphics[width=0.34\textwidth]{./images/problems/lect01_ring_with_2_beads.png}
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Field of two charged beads on ring}
The net electric field components along x and y are
\begin{equation*}
E_{x} = \frac{q_1}{4\pi\epsilon_0 R^2} - \frac{q_2 cos\theta}{4\pi\epsilon_0 R^2}
\;\;\; and \;\;\;
E_{y} = - \frac{q_2 sin\theta}{4\pi\epsilon_0 R^2}
\end{equation*}
The magnitude of the net electric field is:
\begin{equation*}
E = \sqrt{E_{x}^2 + E_{y}^2} =
\sqrt{ (\frac{q_1}{4\pi\epsilon_0 R^2} - \frac{q_2 cos\theta}{4\pi\epsilon_0 R^2})^2 +
(-\frac{q_2 sin\theta}{4\pi\epsilon_0 R^2})^2 }
\end{equation*}
\begin{equation*}
= \frac{1}{4\pi\epsilon_0 R^2}
\sqrt{ (q_1 - q_2 cos\theta)^2 + (q_2 sin\theta)^2 }
\end{equation*}
\begin{equation*}
= \frac{1}{4\pi\epsilon_0 R^2}
\sqrt{ q_1^2 + q_2^2 cos^2\theta + q_2^2 sin^2\theta - 2 q_1 q_2 cos\theta }
\end{equation*}
\begin{equation*}
= \frac{1}{4\pi\epsilon_0 R^2}
\sqrt{ q_1^2 + q_2^2 - 2 q_1 q_2 cos\theta }
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Field of two charged beads on ring}
Therefore:
\begin{equation*}
(E 4\pi\epsilon_0 R^2)^2 = q_1^2 + q_2^2 - 2 q_1 q_2 cos\theta \Rightarrow
cos\theta = \frac{q_1^2 + q_2^2 - E^2 (4\pi\epsilon_0)^2 R^4}{2 q_1 q_2}
\end{equation*}
Substituting
$E$ = 2 $\times$ 10$^{5}$ N/C
$q_1$ = 2 $\times$10$^{-6}$ C,
$q_2$ = 6 $\times$10$^{-6}$ C, and
$R$ = 0.5 m,
in the equation above, we have:
\begin{equation*}
\small
cos\theta =
\frac{(2 \times 10^{-6} \; C)^2 + (6 \times 10^{-6} \; C)^2 -
(\frac{2 \times 10^{5} \; N/C}{8.99 \times 10^{9} \; N \cdot m^2/C^2})^2 (0.5 \; m)^4}
{2 (2 \times 10^{-6} \; C) (6 \times 10^{-6} \; C)} \Rightarrow
\end{equation*}
\begin{equation*}
cos\theta \approx
\frac{3}{8} = 0.375 \Rightarrow
\theta \approx \pm 68^{o}
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
\begin{frame}{Worked example: $\vec{E}$ at centre of curvature of bent rod}
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.60\textwidth}
The figure on the right shows a plastic rod with total charge -$Q$ uniformly
distributed along the rod. It is bent in a 120$^o$ circular arc of radius $R$
and symmetrically placed across an x axis with the origin at the
centre of curvature P of the rod.
\end{column}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/problems/lect01_plastic_rod_bent_circular_arc.png}
\end{center}
\end{column}
\end{columns}
\vspace{0.2cm}
Show that the electric field $\vec{E}$, due to the rod, at point P is:
\begin{equation*}
\vec{E} = \frac{3\sqrt{3}Q}{8\pi^2 \epsilon_0 R^2} \hat{x}
\end{equation*}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: $\vec{E}$ at centre of curvature of bent rod}
The electric field $\vec{E}$ at the point $\vec{r}$, due to a continuous
distribution of charge, is given by:
\begin{equation*}
\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0}
\int \frac{dq(\pvec{r}')}{|\vec{r}-\pvec{r}'|^3} (\vec{r}-\pvec{r}')
\end{equation*}
Taking the point $P$ to be at the origin of the coordinate system,
we have $\vec{r}=\vec{0}$,
while for the vector $\pvec{r}'$ pointing to charge $dq$
at an arbitrary point on the plastic rod (circular arc of radius $R$)
we can write $|\pvec{r}'|=R$ and $\pvec{r}'=R\hat{r}$.
Therefore, the above expression for $\vec{E}$ becomes:
\begin{equation*}
\vec{E} = - \frac{1}{4\pi\epsilon_0 R^2}
\int dq(\pvec{r}') \hat{r}
\end{equation*}
The infinitesimal charge $dq$ at position $\pvec{r}'$ can be expressed as:
\begin{equation*}
dq(\pvec{r}') = \lambda d\ell
\end{equation*}
where $\lambda$ is the charge density.
\end{frame}
%
%
%
\begin{frame}{Worked example: $\vec{E}$ at centre of curvature of bent rod}
Considering that the charge is distributed
over a third of the circumference of a circle of radius $R$,
$\lambda$ is given by:
\begin{equation*}
\lambda = \frac{-Q}{2\pi R/3} = -\frac{3Q}{2\pi R}
\end{equation*}
The element $d\ell$ is:
\begin{equation*}
d\ell = R d\theta
\end{equation*}
Therefore, $dq$ can be written as:
\begin{equation*}
dq(\pvec{r}') = -\frac{3Q}{2\pi} d\theta
\end{equation*}
Substituting $dq$ into the earlier expression for $\vec{E}$, we find:
\begin{equation*}
\vec{E} =
-\frac{1}{4\pi\epsilon_0 R^2} \Big(-\frac{3Q}{2\pi}\Big) \int_{-\pi/3}^{\pi/3} d\theta \hat{r} =
\frac{3Q}{8\pi^2\epsilon_0 R^2} \int_{-\pi/3}^{\pi/3} d\theta \hat{r}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: $\vec{E}$ at centre of curvature of bent rod}
The vector $\hat{r}$ is written in cartesian coordinates as:
\begin{equation*}
\hat{r} = cos\theta \hat{x} + sin\theta \hat{y}
\end{equation*}
Substituting in the previous expression for $\vec{E}$, we have:
\begin{equation*}
\vec{E} =
\frac{3Q}{8\pi^2\epsilon_0 R^2}
\Big\{ \hat{x} \int_{-\pi/3}^{\pi/3} cos\theta d\theta +
\hat{y} \int_{-\pi/3}^{\pi/3} sin\theta d\theta
\Big\} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{E} =
\frac{3Q}{8\pi^2\epsilon_0 R^2}
\Big\{ \hat{x} sin\theta \Big\rvert_{-\pi/3}^{\pi/3} -
\hat{y} cos\theta \Big\rvert_{-\pi/3}^{\pi/3}
\Big\} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{E} =
\frac{3Q}{8\pi^2\epsilon_0 R^2}
\Big\{ \hat{x} \Big( \frac{\sqrt{3}}{2} - (-\frac{\sqrt{3}}{2}) \Big) -
\hat{y} \Big( \frac{1}{2} - \frac{1}{2} \Big)
\Big\} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{E} =
\frac{3\sqrt{3}Q}{8\pi^2\epsilon_0 R^2} \hat{x}
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
\begin{frame}{Worked example: $\vec{E}$ at centre of square formed by charges}
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.65\textwidth}
In the figure on the right, eight particles form a square in which distance
$d$ is 2 cm.\\
The charges are:
$q_1$=+3$e$, $q_2$=+$e$, $q_3$=-5$e$, $q_4$=-2$e$,
$q_5$=+3$e$, $q_6$=+$e$, $q_7$=-5$e$, and $q_8$=+$e$.\\
In unit vector notation, what is the net electric field at the square's centre?
\end{column}
\begin{column}{0.35\textwidth}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/problems/lect01_8_charges_on_square.png}
\end{center}
\end{column}
\end{columns}
\end{blockexmplque}
The total electric field $\vec{E}$ at the square's centre is computed,
using the superposition principle, as:
\begin{equation*}
\vec{E} = \sum_{i=1}^{8} \vec{E}_{i}
\end{equation*}
where $\vec{E}_{i}$ is the electric field produced by charge $q_i$ ($i$=1,...,8).
\end{frame}
%
%
%
\begin{frame}{Worked example: $\vec{E}$ at centre of square formed by charges}
We note that, for the given charges, the electric fields along the diagonals
cancel out:
\begin{equation*}
\vec{E}_{1} + \vec{E}_{5} = \vec{0}
\end{equation*}
\begin{equation*}
\vec{E}_{3} + \vec{E}_{7} = \vec{0}
\end{equation*}
The remaining contributions to the total electric field are:
\begin{equation*}
\vec{E}_4 =
\frac{q_4}{4\pi\epsilon_0 d^2} \hat{x} =
\frac{2e}{4\pi\epsilon_0 d^2} \hat{x}
\end{equation*}
\begin{equation*}
\vec{E}_8 =
\frac{q_8}{4\pi\epsilon_0 d^2} \hat{x} =
\frac{e}{4\pi\epsilon_0 d^2} \hat{x}
\end{equation*}
Therefore, total electric field is given by:
\begin{equation*}
\vec{E} =
\frac{2e}{4\pi\epsilon_0 d^2} \hat{x} +
\frac{e}{4\pi\epsilon_0 d^2} \hat{x} =
\frac{3e}{4\pi\epsilon_0 d^2} \hat{x}
\end{equation*}
\end{frame}
} %\problemslide
% ------------------------------------------------------------------------------
%
% Programming task
%
{
\programmingslide
%
%
%
\begin{frame}{PHYS201 scientific programming task for Lecture \thislecture}
{\small
Write a program that:
\begin{itemize}
{\scriptsize
\item {\bf Can read an arbitrary distribution of N discrete charges (in 2-D)},\\
e.g. by accepting as input a text file with N rows, where the $i^{th}$
row contains the coordinates $x_i$, $y_i$ in m, and the charge $q_i$ in C.
\item {\bf Allows you to visualise the input charge distribution},\\
e.g using appropriately-positioned circles whose color or size represents amount of charge.
\item {\bf Allows you to visualise the electric field lines}
in the vicinity of the charge distrubution.\\
}
\end{itemize}
\vspace{0.2cm}
Test your program, reproducing some of the simpler field maps shown before.\\
}
\end{frame}
} % programming