-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture02_main.tex
1535 lines (1236 loc) · 42.2 KB
/
slides_lecture02_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{1 }
\renewcommand{\thislecture}{2 }
\renewcommand{\nextlecture}{3 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture \\
{\it Electric flux; Gauss' law}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture01_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
\begin{itemize}
{\small
\item {\bf Electric flux}
\begin{itemize}
{\scriptsize
\item The "flow" of an electric field (i.e. the number of electric field lines) through a surface.
}
\end{itemize}
\item {\bf Gauss' law}
\begin{itemize}
{\scriptsize
\item Relates the flux through a closed surface with the net charge contained in it.
\item Our first Maxwell equation! Will study both its `differential' and `integral' forms.
}
\end{itemize}
}
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Electric flux}
The flux $\Phi_E$ of the electric field $\vec{E}$ through a surface S is the {\em number of field lines}
flowing through S.
\begin{itemize}
\item
The number of field lines, and thus $\Phi_E$ is proportional to $|\vec{E}|$ and, obviously, proportional to S.
\item
The flux decreases if the surface is not perpendicular to the field, and becomes zero when the surface
is parallel to the field.
\end{itemize}
\begin{columns}
\begin{column}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/electric_flux_surface_perpendicular.png}\\
\end{center}
\end{column}
\begin{column}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/electric_flux_surface_angle.png}\\
\end{center}
\end{column}
\begin{column}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/electric_flux_surface_parallel.png}\\
\end{center}
\end{column}
\end{columns}
\begin{center}
We can write the electric flux as $\Phi_E = |\vec{E}| \; S \; cos\theta$.
\end{center}
\end{frame}
%
%
%
\begin{frame}{Electric flux}
\begin{columns}
\begin{column}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/electric_flux_surface.png}\\
\includegraphics[width=0.98\textwidth]{./images/schematics/surface_normal.png}\\
{\scriptsize
Note that if the surface is closed, it is customary
to define the direction of each element dS to point outwards.\\
}
\end{center}
\end{column}
\begin{column}{0.67\textwidth}
{\small
It is useful to express a surface S as a vector:
The surface vector $\vec{S}$ is perpendicular to the surface, and has a size which is proportional to its area.
The vector can point to either side of S. \\
Then the electric flux $\Phi_E$ can be expressed as the dot product of $\vec{E}$ and $\vec{S}$:
\begin{equation*}
\Phi_{E} = \vec{E} \cdot \vec{S} = |\vec{E}| \; |\vec{S}| \; cos\theta
\end{equation*}
Of course, S may not be flat, or $\vec{E}$ might change along S.
But we can always divide S in infinitesimally small areas dS that are approximately
flat and within which $\vec{E}$ remains constant.\\
Then the flux $d\Phi_{E}$ through each element dS is given by $d\Phi_{E} = \vec{E} \cdot d\vec{S}$
and the total flux $\Phi_E$ by the integral:
\begin{equation*}
\Phi_{E} = \int_{S} \vec{E} \cdot d\vec{S}
\end{equation*}
}
\end{column}
\end{columns}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example
%
{
\problemslide
%
% Halliday-Resnick, Question 1, page 621
%
\begin{frame}{Worked example: Calculation of electric flux (Easy)}
\begin{blockexmplque}{Question}
A surface has the area vector $\vec{A}$ = (2$\hat{x}$+3$\hat{y}$) m$^2$.
What is the flux of a uniform electric field through the area if the field is
\begin{itemize}
\item $\vec{E}$ = 4$\hat{x}$ N/C, and
\item $\vec{E}$ = 4$\hat{z}$ N/C?
\end{itemize}
\end{blockexmplque}
\vspace{0.1cm}
The flux of a uniform electric field $\vec{E}$ through a planar surface
$\vec{A}$ is given by
\begin{equation*}
\Phi = \vec{E} \cdot \vec{A}
\end{equation*}
Therefore, for the 2 cases:
\begin{itemize}
\item $\Phi = \Big\{ 4\hat{x} \cdot (2\hat{x} + 3\hat{y}) \Big\} \; \frac{N\cdot m^2}{C}
= \Big\{ 8 (\hat{x} \cdot \hat{x}) + 12 (\hat{x} \cdot \hat{y}) \Big\} \; \frac{N\cdot m^2}{C}
= 8 \; \frac{N\cdot m^2}{C}$
\item $\Phi = \Big\{ 4\hat{z} \cdot (2\hat{x} + 3\hat{y}) \Big\} \; \frac{N\cdot m^2}{C}
= \Big\{ 8 (\hat{z} \cdot \hat{x}) + 12 (\hat{z} \cdot \hat{y}) \Big\} \; \frac{N\cdot m^2}{C}
= 0 \; \frac{N\cdot m^2}{C}$
\end{itemize}
\end{frame}
} % Example
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Worked example
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Calculation of electric flux}
\begin{blockexmplque}{Question}
An electric field $\vec{E}$ is given by:
\begin{equation*}
\vec{E} =
\big\{ 2x \; \frac{N}{m \cdot C} \big\} \hat{x} +
\big\{ 2 \; \frac{N}{C} - 2y \frac{N}{m \cdot C} \big\} \hat{y} +
\big\{ 4z \; \frac{N}{m \cdot C} \big\} \hat{z}
\end{equation*}
\vspace{-0.3cm}
\begin{columns}
\begin{column}{0.47\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/problems/lect02_electric_flux_area_on_cylinder.png}\\
\end{center}
\end{column}
\begin{column}{0.53\textwidth}
Determine the electric flux crossing \\
a 1 mm $\times$ 1 mm area on the surface \\
of the cylindrical shell at:
\begin{equation*}
r = 10 \; m, \;\; z = 2 \; m, \; \phi = 53.2^{o}
\end{equation*}
\end{column}
\end{columns}
\end{blockexmplque}
\vspace{0.4cm}
\end{frame}
%
%
%
\begin{frame}{Worked example: Calculation of electric flux}
At the point P:
\begin{equation*}
x = r cos\phi = (10 \; m) cos53.2^o = (10 \; m) 0.6 = 6 \; m
\end{equation*}
\begin{equation*}
y = r sin\phi = (10 \; m) sin53.2^o = (10 \; m) 0.8 = 8 \; m
\end{equation*}
\vspace{0.2cm}
The electric field $\vec{E}$ varies very little over the small given area.
Taking it to be constant is a good approximation.\\
Therefore, I will just substitute x = 6 m, y = 8 m, and z = 2 m
in the given expression for $\vec{E}$:
\begin{equation*}
\vec{E} =
\big\{ 2 \cdot (6\; m) \; \frac{N}{m \cdot C} \big\} \hat{x} +
\big\{ 2 \; \frac{N}{C} - 2 \cdot (8 \; m) \frac{N}{m \cdot C} \big\} \hat{y} +
\big\{ 4 \cdot (2\;m) \; \frac{N}{m \cdot C} \big\} \hat{z} \Rightarrow
\end{equation*}
\begin{equation*}
\vec{E} =
\big\{ 12 \hat{x} - 14 \hat{y} + 8 \hat{z} \big\} \frac{N}{C}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Calculation of electric flux}
Now, I need to express the area $d\vec{S}$ in vector form.\\
\vspace{0.2cm}
Because the area is very small ($|d\vec{S}|$ = 1 mm$^2$) in comparison to the
size of the cylinder (r = 10 m), we can consider the area $d\vec{S}$ to be {\em planar}.\\
\vspace{0.1cm}
Also, as one can easily see, the vector $d\vec{S}$ lies on the xy plane.\\
\vspace{0.3cm}
Therefore:
\begin{equation*}
d\vec{S} = dS_x \hat{x} + dS_y \hat{y}
\end{equation*}
where:
\begin{equation*}
dS_x = |d\vec{S}| cos\phi = (10^{-6} \; m^2) \; cos53.2^o = 0.6 \times 10^{-6} \; m^2
\end{equation*}
\begin{equation*}
dS_y = |d\vec{S}| sin\phi = (10^{-6} \; m^2) \; sin53.2^o = 0.8 \times 10^{-6} \; m^2
\end{equation*}
\vspace{0.2cm}
Putting everything together:
\begin{equation*}
d\vec{S} = \big\{ 0.6 \hat{x} + 0.8 \hat{y} \big\} \times 10^{-6} \; m^2
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Calculation of electric flux}
We're now ready to calculate the flux d$\Phi$ of the electric field $\vec{E}$
through the small patch $d\vec{S}$:\\
\vspace{0.2cm}
\begin{equation*}
d\Phi = \vec{E} \cdot d\vec{S} \Rightarrow
\end{equation*}
\vspace{0.1cm}
\begin{equation*}
d\Phi =
\big\{ 12 \hat{x} - 14 \hat{y} + 8 \hat{z} \big\} \frac{N}{C}
\cdot \big\{ 0.6 \hat{x} + 0.8 \hat{y} \big\} \times 10^{-6} \; m^2 \Rightarrow
\end{equation*}
\vspace{0.1cm}
\begin{equation*}
d\Phi =
\big\{ 12 \cdot 0.6 - 14 \cdot 0.8 + 8 \cdot 0 \big\} \times 10^{-6} \frac{N \cdot m^2}{C} =
\big\{ 7.2 - 11.2 + 0 \big\} \times 10^{-6} \frac{N \cdot m^2}{C}
\Rightarrow
\end{equation*}
\vspace{0.1cm}
\begin{equation*}
d\Phi = -4 \times 10^{-6} \frac{N \cdot m^2}{C}
\end{equation*}
\vspace{0.1cm}
Q: What is the significance of the minus sign?
\end{frame}
} % Example
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Electric flux through a closed surface}
\begin{center}
What is the electric flux through the closed surface shown?\\
\end{center}
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.38\textwidth}
{\small
No charge is contained in the closed surface.\\
\vspace{0.2cm}
Since flux lines start from positive charges and end in negative charges,
every line that enters the closed surface eventually exits.\\
\vspace{0.2cm}
Field lines that enter and field lines that exit contribute with different signs in $\oint \vec{E} d\vec{S}$
(recall that the surface vector points outwards).\\
\vspace{0.2cm}
The flux is 0.
}
\begin{center}
\end{center}
\end{column}
\begin{column}{0.62\textwidth}
\includegraphics[width=0.90\textwidth]{./images/schematics/electric_dipole_field_lines_closed_surf_noq.png}\\
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Electric flux through a closed surface}
\begin{center}
What is the electric flux through the closed surface shown?\\
\end{center}
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.38\textwidth}
{\small
Both a positive and an equal negative charge are contained within the closed surface.
Certain lines originating from the positive charge can reach the negative charge without exiting the closed surface.
Lines that do exit though the closed surface, re-enter to terminate on the negative charge. \\
\vspace{0.2cm}
The flux is 0 again.
}
\begin{center}
\end{center}
\end{column}
\begin{column}{0.62\textwidth}
\includegraphics[width=0.90\textwidth]{./images/schematics/electric_dipole_field_lines_closed_surf_bothq.png}\\
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Electric flux through a closed surface}
\begin{center}
What is the electric flux through the closed surface shown?\\
\end{center}
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.38\textwidth}
{\small
All field lines are exiting.
The flux is non-zero and positive.
}
\begin{center}
\end{center}
\end{column}
\begin{column}{0.62\textwidth}
\includegraphics[width=0.90\textwidth]{./images/schematics/electric_dipole_field_lines_closed_surf_posq.png}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Electric flux through a closed surface}
\begin{center}
What is the electric flux through the closed surface shown?\\
\end{center}
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.38\textwidth}
{\small
Now all field lines are entering.
The flux is non-zero. It has the same value as in the previous page, but now it is negative.
}
\begin{center}
\end{center}
\end{column}
\begin{column}{0.62\textwidth}
\includegraphics[width=0.90\textwidth]{./images/schematics/electric_dipole_field_lines_closed_surf_negq.png}\\
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Gauss' law}
In the previous few slides, the {\em essence} of {\bf Gauss' law} was illustrated.\\
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.33\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/people/gauss.jpg}\\
\vspace{0.2cm}
{\scriptsize
Carl Friedrich Gauss\\ (1777-1855)\\ German mathematician\\
}
\end{center}
\end{column}
\begin{column}{0.67\textwidth}
{\em \bf
The electric flux $\Phi_{E} = \oint \vec{E} d\vec{S}$ through a closed surface
is related to the net charge $Q_{enc}$ enclosed within the surface.\\
}
\vspace{0.4cm}
As it turns out, this relation is simply:
\begin{equation*}
{\color{red}
\Phi_{E} = \frac{Q_{enc}}{\epsilon_0}
}
\end{equation*}
It doesn't matter how elaborate the shape of the surface or the enclosed
charge distribution (and the resulting field) may be:\\
The above simple relation {\bf always holds}!\\
\end{column}
\end{columns}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Finding $\Phi$ from $Q_{enc}$ (Easy)}
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/problems/lect02_enclosed_charges.png}\\
\end{center}
\end{column}
\begin{column}{0.60\textwidth}
The figure on the left shows 5 charged lumps of a material.
The cross-section of the surface $S$ is indicated.\\
What is the {\em net electric flux} through the surface if:\\
\begin{itemize}
\item $q_1$ = $q_4$ = 3.1 nC,
\item $q_2$ = $q_5$ = -5.9 nC, and
\item $q_3$ = -3.1 nC?
\end{itemize}
\end{column}
\end{columns}
\end{blockexmplque}
\vspace{0.2cm}
\begin{equation*}
\Phi =
\frac{Q_{enc}}{\epsilon_0} =
\frac{q_1+q_2+q_3}{\epsilon_0} =
\frac{(3.1 - 5.9 - 3.1) \times 10^{-9} \; C}{8.85 \times 10^{-12} \; C^2/(N \cdot m^2)} =
-0.67 \times 10^{3} \frac{N \cdot m^2}{C}
\end{equation*}
\end{frame}
} % Example
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Worked example
% Halliday-Resnick, Sec. 23.4, Problem 5, page 622
%
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Finding $\Phi$ from $Q_{enc}$}
\begin{blockexmplque}{Question}
A proton is a distance $d$/2 directly above the center of a square of side $d$.
What is the magnitude of the electric flux through the square?
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/problems/lect02_charge_above_surface.png}
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Finding $\Phi$ from $Q_{enc}$}
Consider a closed Gaussian surface in the shape of a cube of edge length $d$,
with the proton (of charge $q$) positioned in the centre of the cube.
Gauss's law tells us that the flux $\Phi$ through that surface is given by:
\begin{equation*}
\Phi = \frac{q}{\epsilon_0}
\end{equation*}
Because of the symmetry of the configuration, the same electric flux
$\Phi_{face}$ passes through each of the 6 faces of the cube, so:
\begin{equation*}
\Phi = 6 \Phi_{face}
\end{equation*}
Therefore:
\begin{equation*}
\Phi_{face} = \frac{q}{6 \epsilon_0} \Rightarrow
\end{equation*}
\begin{equation*}
\Phi_{face} =
\frac{1.6 \times 10^{-19} \; C}
{6 (8.85 \times 10^{-12} \; \frac{C^2}{N \cdot m^2})} =
3 \times 10^{-9} \; \frac{N \cdot m^2}{C}
\end{equation*}
\end{frame}
} % Example
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Worked example
% Halliday-Resnick, Sec. 23.4, Problem 10, page 622
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Finding $Q_{enc}$ from $\Phi$}
\begin{blockexmplque}{Question}
The figure below shows a closed surface in the shape of a cube of
edge length 2 m. It lies in a region where the non-uniform electric field
$\vec{E}$ is given by the following:
\begin{equation*}
\vec{E} = (3x+4)\hat{x} + 6\hat{y} + 7\hat{z}.
\end{equation*}
In the above expression, $|\vec{E}|$ has units of N/C if $x$ is given in m.
What is the net charge contained by the cube?
\begin{center}
\includegraphics[width=0.30\textwidth]{./images/problems/lect02_cube.png}
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Finding $Q_{enc}$ from $\Phi$}
It is easy to see that the constant terms of $\vec{E}$ make no contribution
to the total flux, therefore we can consider only the non-constant component.\\
\vspace{0.3cm}
Let $\vec{E}_{nc}$ be that non-constant component of the field,
which is given by:
\begin{equation*}
\vec{E}_{nc} = (3x \frac{N \cdot m}{C}) \hat{x}
\end{equation*}
Let $\vec{S}_{x+}$ ($\vec{S}_{x-}$) be the area vector of the front (back)
face of the cube lying on the $yz$ plane. That vector points towards
positive (negative) $x$.\\
\vspace{0.3cm}
For a given $x$, $\vec{E}_{nc}$ is constant along the $yz$ plane.
Since the field is uniform and the surfaces are planar,
the flux through the 2 cube faces lying on $yz$ planes can be written as:
\begin{equation*}
\Phi_{x} =
\vec{S}_{x+} \cdot \vec{E}_{nc}(x = 0 \; m)
+ \vec{S}_{x-} \cdot \vec{E}_{nc}(x = -2 \; m)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Finding $Q_{enc}$ from $\Phi$}
Because the magnitude of $\vec{E}_{nc}$ is proportional
to $x$ and the first term is evaluated at $x$=0, the first term is zero.
What remains is:
\begin{equation*}
\Phi_{x} = \vec{S}_{x-} \cdot \vec{E}_{nc}(x = -2 \; m)
= (4 \; m^2) (-\hat{x}) \cdot (-6 \; N/C) \hat{x}
= 24 \; N \cdot m^2/C
\end{equation*}
Since $\vec{E}_{nc}$ points along $\hat{x}$,
the flux $\Phi_{y}$ ($\Phi_{z}$) through the cube faces lying on $xz$ ($xy$)
planes is zero.
Therefore, the total flux through all 6 faces of the cube is:
\begin{equation*}
\Phi = 24 \; N \cdot m^2/C
\end{equation*}
Finally, from Gauss's law:
\begin{equation*}
\Phi = \frac{q_{enc}}{\epsilon_0} \Rightarrow
q_{enc} = \Phi \epsilon_0 \Rightarrow
\end{equation*}
\begin{equation*}
q_{enc} = (24 \; N \cdot m^2/C) (8.85 \times 10^{-12}
\; \frac{C^2}{N \cdot m^2}) \Rightarrow
\end{equation*}
\begin{equation*}
q_{enc} = 2.124 \times 10^{-10} \; C
\end{equation*}
\end{frame}
} % Example
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Gauss' law - Derivation for a simple case}
%\begin{center}
We will derive Gauss' law for a very simple case: A single charge Q in the centre of a sphere of radius R.
%\end{center}
\begin{columns}
\begin{column}{0.34\textwidth}
\begin{center}
\includegraphics[width=0.85\textwidth]{./images/schematics/gauss_law_S.png}
\begin{equation*}
\vec{E}(\vec{r}) = \frac{Q}{4\pi\epsilon_0 r^{2}} \hat{r}
\end{equation*}
\begin{equation*}
d\vec{S} = dS \hat{r}
\end{equation*}
\end{center}
\end{column}
\begin{column}{0.66\textwidth}
\begin{equation*}
\Phi_E = \oint_{sphere} \vec{E} \cdot d\vec{S} \Rightarrow
\end{equation*}
\begin{equation*}
\Phi_E = \oint_{sphere} \big( \frac{Q}{4\pi\epsilon_0 R^{2}} \hat{r} \big) \cdot \big( dS \hat{r} \big) \xRightarrow {\hat{r}\cdot\hat{r}=1}
\end{equation*}
\begin{equation*}
\Phi_E = \frac{Q}{4\pi\epsilon_0 R^{2}} \oint_{sphere} dS \Rightarrow
\end{equation*}
\begin{equation*}
\Phi_E = \frac{Q}{4\pi\epsilon_0 R^{2}} 4\pi R^{2} \Rightarrow
\end{equation*}
\begin{equation*}
{\bf \color{magenta}
\Phi_E = \frac{Q}{\epsilon_0}
}
\end{equation*}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Gauss' law - Generalisation for any surface}
Although the law was derived for a very simple case, it is a {\bf general result}.\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.34\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/schematics/gauss_law_generalisation_geom_0.png}\\
\end{center}
\end{column}
\begin{column}{0.66\textwidth}
The same result would have been obtained
\begin{itemize}
\item if the charge was not in the centre but in any other position within the sphere, or
\item if I had any other closed surface shape instead of a sphere.
\end{itemize}
\end{column}
\end{columns}
Only one thing matters for the calculation of $\Phi_E$: The {\bf net charge within the surface}.
\end{frame}
%
%
%
\begin{frame}{Gauss' law - Generalisation for any surface}
\begin{columns}
\begin{column}{0.34\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/gauss_law_generalisation_geom_1.png}\\
{\scriptsize
Consider element $dS$ on a general surface $S$ and the corresponding element $dS^{\prime}$ on a sphere $S^{\prime}$,
both covering the same solid angle $d\Omega$
}
\end{center}
\end{column}
\begin{column}{0.66\textwidth}
By definition, on the spherical surface $S^{\prime}$:
\begin{equation*}
d\Omega = \frac{dS^{\prime}}{r^{2}} \Rightarrow dS^{\prime} = r^{2} d\Omega
\end{equation*}
By construction:
\begin{equation*}
dS^{\prime} = dS cos\theta \Rightarrow dS = \frac{dS^{\prime}}{cos\theta} \Rightarrow dS = \frac{r^{2} d\Omega}{cos\theta}
\end{equation*}
So, the flux $\Phi_E$ through the general surface $S$ is
\begin{equation*}
\Phi_E = \int_{S} \vec{E} \cdot d\vec{S} = \int_{S} E dS cos\theta
= \int_{\Omega} E \frac{r^{2} d\Omega}{\cancel{cos\theta}} \cancel{cos\theta} =
\end{equation*}
\begin{equation*}
\int_{\Omega} E r^{2} d\Omega = \int_{S^{\prime}} E dS^{\prime}
= \int_{S^{\prime}} \vec{E} d\pvec{S}' = \Phi_E^{sphere} = \frac{Q}{\epsilon_0}
\end{equation*}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Gauss' law - Generalization for any charge distribution}
Our result for a {\em single charge} enclosed by an arbitrary closed surface S is:
\begin{equation*}
\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q}{\epsilon_0}
\end{equation*}
What is the {\bf form of Gauss' law if the surface S encloses an array of charges} (or a continuous charge distribution)?
The result can be obtained via a straightforward application of the superposition principle.\\
\begin{equation*}
\left.
\begin{array}{l}
\oint_{S} \vec{E_{1}} \cdot d\vec{S} = \frac{Q_{1}}{\epsilon_0}\\
\\
\oint_{S} \vec{E_{2}} \cdot d\vec{S} = \frac{Q_{2}}{\epsilon_0}\\
\\
... \\
\\
\oint_{S} \vec{E_{n}} \cdot d\vec{S} = \frac{Q_{n}}{\epsilon_0}
\end{array}
\right\}
% \oint_{S} (\vec{E_{1}}+\vec{E_{2}}+...+\vec{E_{n}}) d\vec{S} = \frac{Q_{1}+Q_{2}+...+Q_{n}}{\epsilon_0} \Rightarrow
\oint_{S} (\sum_{i=1}^{n}\vec{E_{i}}) \cdot d\vec{S} = \frac{\sum_{i=1}^{n}Q_{i}}{\epsilon_0} \Rightarrow
\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{enc}}{\epsilon_0}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Integral form of Gauss' law}
Our result for any array of charges (or continuous charge distribution), with net charge $Q_{enc}$,
enclosed by an arbitrary closed surface S is:
\begin{equation*}
\oint \vec{E} \cdot d\vec{S} = \frac{Q_{enc}}{\epsilon_0}
\end{equation*}
This is known as the {\bf \underline{integral form} of Gauss' law}.\\
\vspace{0.2cm}
This form is useful in cases where the problem at hand has a symmetry.\\
The symmetry can be exploited to simplify the calculation of the integral.\\
\end{frame}
%
% Worked example
%
{
\problemslide
%
% Another
%
\begin{frame}{Worked example (Planar symmetry)}
\begin{blockexmplque}{Question}
The figure on the left shows two large, parallel, non-conducting sheets,
each with a fixed uniform charge on one side.\\
\begin{columns}
\begin{column}{0.20\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/problems/lect02_2_charged_planes.png}\\
\end{center}
\end{column}
\begin{column}{0.80\textwidth}
The magnitudes of the surface charge densities are\\
$\sigma_{(+)}$ = 6.8 $\mu$C/m$^2$ for the positively charged sheet, and
$\sigma_{(-)}$ = - 4.3 $\mu$C/m$^2$ for the negatively charged sheet.\\
Find the electric field $\vec{E}$
(a) to the left of the sheets,
(b) between the sheets, and
(c) to the right of the sheets.
\end{column}
\end{columns}
\end{blockexmplque}
\vspace{0.4cm}
Note: We will revisit this example when we study the {\bf parallel plate capacitor}
in Lecture 4.\\
\end{frame}
%
%
%
\begin{frame}{Worked example (Planar symmetry)}
Consider an infinite positively charged plane with surface charge density
$\sigma$ and the (appropriately chosen)
cylindrical {\em Gaussian} surface shown below.\\
\begin{columns}
\begin{column}{0.60\textwidth}
The symmetry of the problem indicates that $\vec{E}$ is
{\bf perpendicular to the sheet}: There is no
flux through the curved surface but only through the 2 circular end caps.\\
\vspace{0.2cm}
Additionally, because the plane is positively charged, the field $\vec{E}$
is directed outwards.\\
\end{column}
\begin{column}{0.40\textwidth}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/problems/lect02_charged_plane_3d.png}\\
\end{center}
\end{column}
\end{columns}
The surface charge enclosed by the Gaussian surface is $Q_{enc} = \sigma A$.\\
\vspace{0.2cm}
Therefore, applying Gauss' law, we get:
\begin{equation*}
\oint \vec{E} \cdot d\vec{S} = \frac{Q_{enc}}{\epsilon_0} \Rightarrow
EA + EA = \frac{\sigma A}{\epsilon_0} \Rightarrow
{\color{red}
E = \frac{\sigma}{2\epsilon_0}
}
\end{equation*}
The electric field stays the same for any point, irrespectively of its distance from the plane.
\end{frame}
%
%
%
\begin{frame}{Worked example (Planar symmetry)}
Repeating the exercise for a negatively charged plane yield of the same magnitude.
with the difference that it would point inwards.\\
\vspace{0.2cm}
For the case of the 2 parallel plates, the electric field $\vec{E}$ anywhere in
space is given by the superposition of 2 fields:\\
\vspace{0.2cm}
\begin{itemize}
\item The field $\vec{E}_{(+)}$, due to the positively charged plane, with direction
away from that plane and magnitude:
\begin{equation*}
E_{(+)} =
\frac{\sigma_{(+)}}{2\epsilon_0} =
\frac{6.8 \times 10^{-6} \; C/m^2}{2(8.85 \times 10^{-12} \; C/(N \cdot m^2))} =
3.84 \times 10^{5} N/C
\end{equation*}
\item The field $\vec{E}_{(-)}$, due to the positively charged plane, with direction
away from that plane and magnitude:
\begin{equation*}
E_{(-)} =
\frac{\sigma_{(-)}}{2\epsilon_0} =
\frac{4.3 \times 10^{-6} \; C/m^2}{2(8.85 \times 10^{-12} \; C/(N \cdot m^2))} =
2.43 \times 10^{5} N/C
\end{equation*}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Worked example (Planar symmetry)}
\begin{columns}
\begin{column}{0.50\textwidth}
We can now work out the electric field on the left of the planes,
between the planes, and on the right of the planes.
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}