-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture02_summary.tex
44 lines (36 loc) · 1.13 KB
/
slides_lecture02_summary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
\renewcommand{\summarizedlecture}{2 }
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle}
\begin{itemize}
{\small
\item {\bf Electric flux}
\begin{itemize}
{\small
\item The electric flux $\Phi_E$ is the number of field lines of the electric field $\vec{E}$
flowing through a surface S
\begin{equation*}
\Phi_E = \int_{S} \vec{E} \cdot d\vec{S}
\end{equation*}
}
\end{itemize}
\item {\bf Gauss' law}
\begin{itemize}
{\small
\item Our first Maxwell equation!
\item In integral form (useful if a symmetry can be exploited to simplify the integral evaluation):
Relates the flux through a closed surface with the net charge contained in it
\begin{equation*}
\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{enc}}{\epsilon_0}
\end{equation*}
\item In differential form:
Relates the divergence of the electric field with the local charge density
\begin{equation*}
\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}
\end{equation*}
}
\end{itemize}
}
\end{itemize}
\end{frame}